Please use this identifier to cite or link to this item:
http://hdl.handle.net/10662/22966
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | González Velasco, Miguel | - |
dc.contributor.author | Gutiérrez Pérez, Cristina | - |
dc.contributor.author | Martínez Quintana, Rodrigo | - |
dc.contributor.author | Minuesa Abril, Carmen | - |
dc.contributor.author | Puerto García, Inés María del | - |
dc.date.accessioned | 2024-10-29T11:07:17Z | - |
dc.date.available | 2024-10-29T11:07:17Z | - |
dc.date.issued | 2016-01-17 | - |
dc.identifier.isbn | 978-3-319-31641-3 | - |
dc.identifier.uri | http://hdl.handle.net/10662/22966 | - |
dc.description | This is a post-peer-review, pre-copyedit version of the work published in Branching Processes and their Applications, volume 219 of Lecture Notes in Statistics-Proceedings, Springer-Verlag, pp. 185-205. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-31641-3_11 This version of the work is subject to Springer Nature’s AM terms of use, see: https://www.springernature.com/gp/open-science/policies/accepted-manuscript-terms. | es_ES |
dc.description.abstract | A controlled branching process is a stochastic model that is well suited to describing the probabilistic evolution of populations in which, for various reasons of an environmental, social, or other nature, there is a mechanism that establishes the number of progenitors who take part in each generation. For this model, a Bayesian analysis is described, considering a non-parametric offspring distribution and control distributions belonging to the power series family that depend on a single parameter termed the control parameter. Inferences on the offspring distribution, on the offspring mean, and on the control parameter (or on its parametrization as the migration parameter) are considered within two sampling schemes: first, the classical branching theory scheme based on the observation of the entire family tree; and second, the more realistic situation in which only the generation-by-generation population size is observed. In this latter case, the Dirichlet process and the Gibbs sampler are used to estimate the posterior density of the main parameters of interest. Inference on posterior predictive distributions for as-yet unobserved generations is also considered. Monte Carlo sampling based and analytical approximations are discussed. The results are illustrated with simulated data. | es_ES |
dc.description.sponsorship | - Ministerio de Educación, Cultura y Deporte (ayuda FPU13/03213), Ministerio de Economía y Competitividad de España (proyectos MTM2012-31235 y MTM2015-70522-P), Junta de Extremadura (ayudaGR15105), FEDER, y the National Fund for Scientific Research at the Ministry of Education and Science of Bulgaria (ayuda DFNI-I02/17). | es_ES |
dc.format.extent | 20 p. | es_ES |
dc.format.mimetype | application/pdf | en_US |
dc.language.iso | eng | es_ES |
dc.publisher | Springer Nature | es_ES |
dc.relation.ispartof | Branching Processes and their Applications, volumen 219 de Lecture Notes in Statistics-Proceedings | es_ES |
dc.relation.ispartofseries | Lecture Notes in Statistics-Proceedings;219 | - |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.subject | Controlled branching process | es_ES |
dc.subject | Monte Carlo method | es_ES |
dc.subject | Bayesian inference | es_ES |
dc.subject | Gibbs sampler | es_ES |
dc.subject | Proceso de ramificación controlado | es_ES |
dc.subject | Método Monte Carlo | es_ES |
dc.subject | Inferencia Bayesiana | es_ES |
dc.subject | Muestreador de Gibbs | es_ES |
dc.title | Bayesian analysis for controlled branching processes | es_ES |
dc.type | bookPart | es_ES |
dc.description.version | peerReviewed | es_ES |
europeana.type | TEXT | en_US |
dc.rights.accessRights | abierto | es_ES |
dc.subject.unesco | 1209 Estadística | es_ES |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | es_ES |
europeana.dataProvider | Universidad de Extremadura. España | es_ES |
dc.identifier.bibliographicCitation | González, M., Gutiérrez, C., Martínez, R., Minuesa, C., del Puerto, I.M. (2016). Bayesian Analysis for Controlled Branching Processes. In: del Puerto, I., et al. Branching Processes and Their Applications, 185-205. Lecture Notes in Statistics,vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-31641-3_11 | es_ES |
dc.type.version | acceptedVersion | es_ES |
dc.contributor.affiliation | Universidad de Extremadura. Departamento de Matemáticas | es_ES |
dc.relation.publisherversion | https://link.springer.com/chapter/10.1007/978-3-319-31641-3_11 | es_ES |
dc.identifier.doi | 10.1007/978-3-319-31641-3_11 | - |
dc.identifier.publicationfirstpage | 185 | es_ES |
dc.identifier.publicationlastpage | 205 | es_ES |
dc.identifier.orcid | 0000-0001-7481-6561 | es_ES |
dc.identifier.orcid | 0000-0003-1348-748X | es_ES |
dc.identifier.orcid | 0000-0003-1533-038X | es_ES |
dc.identifier.orcid | 0000-0002-8858-3145 | es_ES |
dc.identifier.orcid | 0000-0002-1034-2480 | es_ES |
Appears in Collections: | DMATE - Libros o capítulos de libros |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
978-3-319-31641-3_185_AAM.pdf | 227,58 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License