Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/22966
Registro completo de Metadatos
Campo DCValoridioma
dc.contributor.authorGonzález Velasco, Miguel-
dc.contributor.authorGutiérrez Pérez, Cristina-
dc.contributor.authorMartínez Quintana, Rodrigo-
dc.contributor.authorMinuesa Abril, Carmen-
dc.contributor.authorPuerto García, Inés María del-
dc.date.accessioned2024-10-29T11:07:17Z-
dc.date.available2024-10-29T11:07:17Z-
dc.date.issued2016-01-17-
dc.identifier.isbn978-3-319-31641-3-
dc.identifier.urihttp://hdl.handle.net/10662/22966-
dc.descriptionThis is a post-peer-review, pre-copyedit version of the work published in Branching Processes and their Applications, volume 219 of Lecture Notes in Statistics-Proceedings, Springer-Verlag, pp. 185-205. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-31641-3_11 This version of the work is subject to Springer Nature’s AM terms of use, see: https://www.springernature.com/gp/open-science/policies/accepted-manuscript-terms.es_ES
dc.description.abstractA controlled branching process is a stochastic model that is well suited to describing the probabilistic evolution of populations in which, for various reasons of an environmental, social, or other nature, there is a mechanism that establishes the number of progenitors who take part in each generation. For this model, a Bayesian analysis is described, considering a non-parametric offspring distribution and control distributions belonging to the power series family that depend on a single parameter termed the control parameter. Inferences on the offspring distribution, on the offspring mean, and on the control parameter (or on its parametrization as the migration parameter) are considered within two sampling schemes: first, the classical branching theory scheme based on the observation of the entire family tree; and second, the more realistic situation in which only the generation-by-generation population size is observed. In this latter case, the Dirichlet process and the Gibbs sampler are used to estimate the posterior density of the main parameters of interest. Inference on posterior predictive distributions for as-yet unobserved generations is also considered. Monte Carlo sampling based and analytical approximations are discussed. The results are illustrated with simulated data.es_ES
dc.description.sponsorship- Ministerio de Educación, Cultura y Deporte (ayuda FPU13/03213), Ministerio de Economía y Competitividad de España (proyectos MTM2012-31235 y MTM2015-70522-P), Junta de Extremadura (ayudaGR15105), FEDER, y the National Fund for Scientific Research at the Ministry of Education and Science of Bulgaria (ayuda DFNI-I02/17).es_ES
dc.format.extent20 p.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.relation.ispartofBranching Processes and their Applications, volumen 219 de Lecture Notes in Statistics-Proceedingses_ES
dc.relation.ispartofseriesLecture Notes in Statistics-Proceedings;219-
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.subjectControlled branching processes_ES
dc.subjectMonte Carlo methodes_ES
dc.subjectBayesian inferencees_ES
dc.subjectGibbs sampleres_ES
dc.subjectProceso de ramificación controladoes_ES
dc.subjectMétodo Monte Carloes_ES
dc.subjectInferencia Bayesianaes_ES
dc.subjectMuestreador de Gibbses_ES
dc.titleBayesian analysis for controlled branching processeses_ES
dc.typebookPartes_ES
dc.description.versionpeerReviewedes_ES
europeana.typeTEXTen_US
dc.rights.accessRightsabiertoes_ES
dc.subject.unesco1209 Estadísticaes_ES
dc.subject.unesco1202 Análisis y Análisis Funcionales_ES
europeana.dataProviderUniversidad de Extremadura. Españaes_ES
dc.identifier.bibliographicCitationGonzález, M., Gutiérrez, C., Martínez, R., Minuesa, C., del Puerto, I.M. (2016). Bayesian Analysis for Controlled Branching Processes. In: del Puerto, I., et al. Branching Processes and Their Applications, 185-205. Lecture Notes in Statistics,vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-31641-3_11es_ES
dc.type.versionacceptedVersiones_ES
dc.contributor.affiliationUniversidad de Extremadura. Departamento de Matemáticases_ES
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007/978-3-319-31641-3_11es_ES
dc.identifier.doi10.1007/978-3-319-31641-3_11-
dc.identifier.publicationfirstpage185es_ES
dc.identifier.publicationlastpage205es_ES
dc.identifier.orcid0000-0001-7481-6561es_ES
dc.identifier.orcid0000-0003-1348-748Xes_ES
dc.identifier.orcid0000-0003-1533-038Xes_ES
dc.identifier.orcid0000-0002-8858-3145es_ES
dc.identifier.orcid0000-0002-1034-2480es_ES
Colección:DMATE - Libros o capítulos de libros

Archivos
Archivo Descripción TamañoFormato 
978-3-319-31641-3_185_AAM.pdf227,58 kBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons