Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/22966
Títulos: Bayesian analysis for controlled branching processes
Autores/as: González Velasco, Miguel
Gutiérrez Pérez, Cristina
Martínez Quintana, Rodrigo
Minuesa Abril, Carmen
Puerto García, Inés María del
Palabras clave: Controlled branching process;Monte Carlo method;Bayesian inference;Gibbs sampler;Proceso de ramificación controlado;Método Monte Carlo;Inferencia Bayesiana;Muestreador de Gibbs
Fecha de publicación: 2016-01-17
Editor/a: Springer Nature
Series/Nº de informe.: Lecture Notes in Statistics-Proceedings;219
Resumen: A controlled branching process is a stochastic model that is well suited to describing the probabilistic evolution of populations in which, for various reasons of an environmental, social, or other nature, there is a mechanism that establishes the number of progenitors who take part in each generation. For this model, a Bayesian analysis is described, considering a non-parametric offspring distribution and control distributions belonging to the power series family that depend on a single parameter termed the control parameter. Inferences on the offspring distribution, on the offspring mean, and on the control parameter (or on its parametrization as the migration parameter) are considered within two sampling schemes: first, the classical branching theory scheme based on the observation of the entire family tree; and second, the more realistic situation in which only the generation-by-generation population size is observed. In this latter case, the Dirichlet process and the Gibbs sampler are used to estimate the posterior density of the main parameters of interest. Inference on posterior predictive distributions for as-yet unobserved generations is also considered. Monte Carlo sampling based and analytical approximations are discussed. The results are illustrated with simulated data.
Descripción: This is a post-peer-review, pre-copyedit version of the work published in Branching Processes and their Applications, volume 219 of Lecture Notes in Statistics-Proceedings, Springer-Verlag, pp. 185-205. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-31641-3_11 This version of the work is subject to Springer Nature’s AM terms of use, see: https://www.springernature.com/gp/open-science/policies/accepted-manuscript-terms.
URI: http://hdl.handle.net/10662/22966
ISBN: 978-3-319-31641-3
DOI: 10.1007/978-3-319-31641-3_11
Colección:DMATE - Libros o capítulos de libros

Archivos
Archivo Descripción TamañoFormato 
978-3-319-31641-3_185_AAM.pdf227,58 kBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons