Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/23136
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMoral, Francisco Jesús, 1968--
dc.contributor.authorRebollo Castillo, Francisco Javier-
dc.contributor.authorSerrano, João-
dc.date.accessioned2024-11-07T14:55:28Z-
dc.date.available2024-11-07T14:55:28Z-
dc.date.issued2019-
dc.identifier.issn0168-1699-
dc.identifier.urihttp://hdl.handle.net/10662/23136-
dc.descriptionPublicado en: Computers and Electronics in Agriculture, Volume 157, February 2019, Pages 500-508; con DOI: https://doi.org/10.1016/j.compag.2019.01.033es_ES
dc.description.abstractPasture soils can exhibit a high spatial variability which should be characterised to properly manage the yield potential of different within-field areas. Thus, with the aim of proposing an objective methodology to estimate the pasture soil fertility and, later, analyse its spatial pattern, the formulation of the probabilistic Rasch model constitutes a new approach in pasture fields. In this research, a case study was performed to illustrate the proposed method. Consequently, after taking some soil samples (34) and measuring different soil properties (sand, silt, and clay content, organic matter, phosphorus, potassium, moisture content, soil apparent electrical conductivity, elevation, and slope), the use of the Rasch model provides a integrated measure of pasture soil fertility at each sampling location, which can be computed using geostatistical algorithms to map its spatial distribution throughout the field. After verifying that data fit the model reasonably, the main outputs of the Rasch model were a ranking of all sampling locations according to the pasture soil fertility and another ranking of the soil properties according to their influence on the soil fertility, being the topographical properties (slope and elevation) the most influential. Later, the ordinary kriging algorithm was utilised to estimate soil fertility throughout the pasture field and the probability kriging algorithm was used to provide information for hazard assessment of pasture soil fertility, being both kriged maps the basis to delineate homogeneous zones. Finally, vegetation indices and pasture yield data at sampling points were employed to check that two zones previously determined were different. The analysis of zonal differences in pasture systems can lead to an optimal application of inputs and a more cost-effective management, with the associated environmental, economic, and energetic benefits.es_ES
dc.format.extent28 p.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPatrón espaciales_ES
dc.subjectModelo Rasches_ES
dc.subjectKriginges_ES
dc.subjectZonas de gestiónes_ES
dc.subjectSpatial patternes_ES
dc.subjectRasch modeles_ES
dc.subjectManagement zoneses_ES
dc.titleEstimating and mapping pasture soil fertility in a portuguese montado based on a objective model and geostatistical techniqueses_ES
dc.typearticlees_ES
dc.description.versionpeerReviewedes_ES
europeana.typeTEXTen_US
dc.rights.accessRightsopenAccesses_ES
dc.subject.unesco1209.03 Análisis de Datoses_ES
dc.subject.unesco3103.08 Gestión de la Producción Vegetales_ES
dc.subject.unesco3103.13 Fertilidad del Sueloes_ES
europeana.dataProviderUniversidad de Extremadura. Españaes_ES
dc.identifier.bibliographicCitationMoral García, F.J., Rebollo, F.J. & Serrano, J.M. (2019). Estimating and mapping pasture soil fertility in a portuguese montado based on a objective model and geostatistical techniques. Computers and Electronics in Agriculture, 1-28es_ES
dc.type.versionacceptedVersiones_ES
dc.contributor.affiliationUniversidad de Extremadura. Grupo de Investigación Alcántaraes_ES
dc.contributor.affiliationUniversidad de Extremadura. Departamento de Expresión Gráficaes_ES
dc.contributor.affiliationUniversidad de Extremadura. Instituto de Investigación de la Dehesa (INDEHESA)-
dc.contributor.affiliationUniversidade de Évora. Portugal-
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0168169918304149?via%3Dihubes_ES
dc.identifier.doi10.1016/j.compag.2019.01.033-
dc.identifier.publicationtitleComputers and Electronics in Agriculturees_ES
dc.identifier.e-issn1872-7107-
dc.identifier.orcid0000-0001-8465-1318es_ES
dc.identifier.orcid0000-0002-1233-0037es_ES
Appears in Collections:DEXGR - Artículos

Files in This Item:
File Description SizeFormat 
j_compag_2019_01_033_AAM.pdf930,39 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons