Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10662/5136
Títulos: | A novel robust scene change detection algorithm for autonomous robots using mixtures of gaussians regular paper |
Autores/as: | Manso Fernández-Argüelles, Luis Jesús Núñez Trujillo, Pedro Miguel Silva Filho, Sidnei Carlos da Drews-Jr, Paulo |
Palabras clave: | Robótica;Detección de cambios;Modelos de mezclas gaussianas;Robotics;Change detection;Gaussian mixture models |
Fecha de publicación: | 2014 |
Editor/a: | SAGE |
Resumen: | El interés por las técnicas de detección de cambios ha aumentado considerablemente en los últimos años en el campo de la robótica autónoma. Esto se debe en parte a que los cambios en el entorno de trabajo de un robot son útiles para varias habilidades robóticas (por ejemplo, cognición espacial, modelado o navegación) y aplicaciones (por ejemplo, robots de vigilancia o guía). Los cambios se detectan habitualmente comparando los datos actuales proporcionados por los sensores del robot con un mapa o modelo previamente conocido del entorno. Cuando los datos consisten en una nube de puntos grande, lidiar con ella es una tarea computacionalmente costosa, principalmente debido a la cantidad de puntos y la redundancia. El uso de Modelos de Mezcla Gaussiana (GMM) en lugar de nubes de puntos crudos conduce a un espacio de características más compacto que puede usarse para procesar eficientemente los datos de entrada. Esto nos permite segmentar con éxito el conjunto de puntos 3D adquiridos por el sensor y reducir la carga computacional del algoritmo de detección de cambios. Sin embargo, la segmentación del medio ambiente como una mezcla de gaussianos tiene algunos problemas que necesitan ser abordados adecuadamente. En este trabajo, se describe un nuevo algoritmo de detección de cambios con el fin de mejorar la robustez y el coste computacional de los enfoques anteriores. La propuesta se basa en el algoritmo clásico de Maximización de Expectativas (EM), para el cual se evalúan diferentes criterios de selección. Como se ha demostrado en la sección de resultados experimentales, el algoritmo de detección de cambios propuesto consigue la detección de cambios en el entorno de trabajo del robot más rápido y con mayor precisión que enfoques similares. Interest in change detection techniques has considerably increased during recent years in the field of autonomous robotics. This is partly because changes in a robot’s working environment are useful for several robotic skills (e.g., spatial cognition, modelling or navigation) and applications (e.g., surveillance or guidance robots). Changes are usually detected by comparing current data provided by the robot’s sensors with a previously known map or model of the environment. When the data consists of a large point cloud, dealing with it is a computationally expensive task, mainly due to the amount of points and the redundancy. Using Gaussian Mixture Models (GMM) instead of raw point clouds leads to a more compact feature space that can be used to efficiently process the input data. This allows us to successfully segment the set of 3D points acquired by the sensor and reduce the computational load of the change detection algorithm. However, the segmentation of the environment as a Mixture of Gaussians has some problems that need to be properly addressed. In this paper, a novel change detection algorithm is described in order to improve the robustness and computational cost of previous approaches. The proposal is based on the classic Expectation Maximization (EM) algorithm, for which different selection criteria are evaluated. As demonstrated in the experimental results section, the proposed change detection algorithm achieves the detection of changes in the robot’s working environment faster and more accurately than similar approaches. |
URI: | http://hdl.handle.net/10662/5136 |
ISSN: | 1729-8806 |
DOI: | 10.5772/57360 |
Colección: | DISIT - Artículos |
Este elemento está sujeto a una licencia Licencia Creative Commons