Please use this identifier to cite or link to this item:
http://hdl.handle.net/10662/8929
Title: | Ostrowski type fractional integral inequalities for generalized (g, s, m, φ)-preinvex functions |
Authors: | Kashuri, Artion Liko, Rozana |
Keywords: | Ostrowski type inequality;Hölder's inequality;Power mean inequality;Riemann- Liouville fractional integral;s-convex function in the second sense;m-invex;P-function;Desigualdad de tipo Ostrowski;Desigualdad de Hölder;Desigualdad media de potencia;Integral de Riemann-Liouville;Función s-convexa en el segundo sentido |
Issue Date: | 2017 |
Publisher: | Universidad de Extremadura |
Abstract: | In the present paper, a new class of generalized (g, s, m, φ)-preinvex function is introduced and some new integral inequalities for the left hand side of Gauss-Jacobi type quadrature formula involving generalized (g, s, m, φ)-preinvex functions are given. Moreover, some generalizations of Ostrowski type inequalities for generalized (g, s, m, φ)-preinvex functions via Riemann-Liouville fractional integrals are established. At the end, some applications to special means are given. |
URI: | http://hdl.handle.net/10662/8929 |
Appears in Collections: | Extracta Mathematicae Vol. 32, nº 1 (2017) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2605-5686_32_1_105.pdf | 136,13 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License