Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/9322
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSantos, Matheus Machado dos-
dc.contributor.authorRibeiro, Pedro Otávio Cardozo de Souza-
dc.contributor.authorNúñez Trujillo, Pedro Miguel-
dc.contributor.authorDrews-Jr, Paulo-
dc.contributor.authorBotelho, Silvia Silva da Costa-
dc.date.accessioned2019-05-17T11:06:24Z-
dc.date.available2019-05-17T11:06:24Z-
dc.date.issued2017-
dc.identifier.issn1424-8220-
dc.identifier.urihttp://hdl.handle.net/10662/9322-
dc.description.abstractLa exploración submarina utilizando robots ha ido en aumento en los últimos años. La automatización de tareas tales como monitoreo, inspección y mantenimiento bajo el agua requiere la comprensión del entorno del robot. El reconocimiento de objetos en la escena se está convirtiendo en un problema crítico para estos sistemas. En este trabajo, se estudia una tubería de clasificación de objetos bajo el agua aplicada en imágenes acústicas adquiridas por Forward-Looking Sonar (FLS). La segmentación de objetos combina el umbral, la búsqueda de píxeles conectados y las técnicas de análisis de picos de intensidad. El descriptor del objeto extrae la intensidad y las características geométricas de los objetos detectados. Se presenta una comparación entre los clasificadores Máquina de vectores de soporte, Vecinos más cercanos a K y Árboles aleatorios. Se desarrolló una herramienta de código abierto para anotar y clasificar los objetos y evaluar su rendimiento de clasificación. El método propuesto segmenta y clasifica eficientemente las estructuras en la escena utilizando un conjunto de datos real adquirido por un vehículo submarino en un área de puerto. Los resultados experimentales demuestran la solidez y precisión del método descrito en este documento.es_ES
dc.description.abstractThe submarine exploration using robots has been increasing in recent years. The automation of tasks such as monitoring, inspection, and underwater maintenance requires the understanding of the robot’s environment. The object recognition in the scene is becoming a critical issue for these systems. On this work, an underwater object classification pipeline applied in acoustic images acquired by Forward-Looking Sonar (FLS) are studied. The object segmentation combines thresholding, connected pixels searching and peak of intensity analyzing techniques. The object descriptor extract intensity and geometric features of the detected objects. A comparison between the Support Vector Machine, K-Nearest Neighbors, and Random Trees classifiers are presented. An open-source tool was developed to annotate and classify the objects and evaluate their classification performance. The proposed method efficiently segments and classifies the structures in the scene using a real dataset acquired by an underwater vehicle in a harbor area. Experimental results demonstrate the robustness and accuracy of the method described in this paper.es_ES
dc.description.sponsorship• National Institute of Science and Technology - Integrated Oceanography and Multiple Uses of the Continental Shelf and Adjacent Ocean - Integrated Oceanography Center INCT-Mar COI funded by CNPq. Beca 610012/2011-8 • BS-NAVLOC (CAPES no 321/15, DGPU 7523 / 14-9, proyecto MEC PHBP14 / 00083)es_ES
dc.format.extent16 p.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSensores submarinoses_ES
dc.subjectMonitoreo bajo el aguaes_ES
dc.subjectVigilancia submarinaes_ES
dc.subjectUnderwater sensorses_ES
dc.subjectUnderwater monitoringes_ES
dc.subjectUnderwater surveillancees_ES
dc.titleObject classification in semi structured enviroment using forward-looking sonares_ES
dc.typearticlees_ES
dc.description.versionpeerReviewedes_ES
europeana.typeTEXTen_US
dc.rights.accessRightsopenAccesses_ES
dc.subject.unesco1203.04 Inteligencia Artificiales_ES
dc.subject.unesco3308 Ingeniería y Tecnología del Medio Ambientees_ES
europeana.dataProviderUniversidad de Extremadura. Españaes_ES
dc.identifier.bibliographicCitationSantos, M. M. dos; Ribeiro, P. O. Cardozo de Souza; Núñez Trujillo, P. M.; Drews-Jr, P. y Botelho, S. Silva da Costa. (2017). Object classification in semi structured enviroment using forward-looking sonar. Sensors, 17, 10, 2235. ISSN 1424-8220es_ES
dc.type.versionpublishedVersiones_ES
dc.contributor.affiliationUniversidade Federal do Rio Grande. Brasiles_ES
dc.contributor.affiliationUniversidad de Extremadura. Departamento de Tecnología de los Computadores y de las Comunicacioneses_ES
dc.relation.publisherversionhttps://doi.org/10.3390/s17102235es_ES
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/17/10/2235es_ES
dc.identifier.doi10.3390/s17102235-
dc.identifier.publicationtitleSensorses_ES
dc.identifier.publicationissue10es_ES
dc.identifier.publicationfirstpage1es_ES
dc.identifier.publicationlastpage16es_ES
dc.identifier.publicationvolume17, 2235es_ES
Appears in Collections:DTCYC - Artículos

Files in This Item:
File Description SizeFormat 
s17102235.pdf5,49 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons