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Abstract: Nowadays, data are being produced like never before because the use of the Internet
of Things, social networks, and communication in general are increasing exponentially. Many of
these data, especially those from public administrations, are freely offered using the open data concept
where data are published to improve their reutilisation and transparency. Initially, the data involved
information that is not updated continuously such as budgets, tourist information, office information,
pharmacy information, etc. This kind of information does not change during large periods of time,
such as days, weeks or months. However, when open data are produced near to real-time such as air
quality sensors or people counters, suitable methodologies and tools are lacking to identify, consume,
and analyse them. This work presents a methodology to tackle the analysis of open data sources using
Model-Driven Development (MDD) and Complex Event Processing (CEP), which help users to raise
the abstraction level utilised to manage and analyse open data sources. That means that users can
manage heterogeneous and complex technology by using domain concepts defined by a model that
could be used to generate specific code. Thus, this methodology is supported by a domain-specific
language (DSL) called OpenData2CEP, which includes a metamodel, a graphical concrete syntax,
and a model-to-text transformation to specific platforms, such as complex event processing engines.
Finally, the methodology and the DSL have been applied to two near real-time contexts: the analysis
of air quality for citizens’ proposals and the analysis of earthquake data.

Keywords: open data; complex event processing; model-driven development; model to text
transformation; data analysis

1. Introduction

Currently, many companies and public administrations are adopting the open data paradigm in
order to offer transparent information such as contracts, budgets, resources, and so on [1]. Specifically,
open-data publishing is an emerging trend for public administrations [2] and smart cities [3,4]. For them,
data reutilisation and transparency are key elements around which a new economy based on the value
of data could be defined [5,6]. The main benefits of open data [1] include (i) political and social benefits,
such as more transparency, democratic accountability, more participation and self-empowerment of
citizens, public engagement or scrutinisation of data; (ii) economic benefits, such as economic growth
and stimulation of competitiveness, stimulation of innovation, development of new products and
services, creation of a new sector adding value to the economy; and (iii) operational and technical
benefits, such as the ability to reuse data, optimisation of administrative processes, fair decision-making
by enabling compassion, the creation of new data based on combining data, external quality checks on
data (validation), and the ability to merge, integrate and mesh public and private data. In general,
the main consequences for citizens are that using public data could help them to understand and
analyse what is happening around them in real-time.
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Complex Event Processing (CEP) [7,8] is an approach that is used to carry out real-time complex
analyses based on event pattern identification. Thus, raw data from the external world are notified as
events which can be filtered, combined, or correlated in order to identify event patterns that are given
to the interested parties [9]. CEPs have been used successfully in several areas, such as healthcare,
home automation, operational intelligence in business and transportation, and traffic management.
Usually, in order to carry out this kind of analysis, CEP engines offer a stream-oriented language which
extends SQL [8], for instance, StreamSQL in StreamBase [10] or EPL in Esper [11] include filtering,
combining, or temporal window primitives [12,13].

Nowadays, many of the open data producers offer data in real-time [4], so a real-time
analysis of open data could improve their use by third parties (citizens, external companies,
other administrations, etc.). For instance, a data user can analyse the pH value of the water and
identify unusual data values in real-time. These data could be used as inputs to CEP engines.
On the other hand, open data producers offer data using well-known file formats such as CSV, Excel,
PDF, XML (https://www.w3.org/XML/), JSON (http://json.org) or RDF (https://www.w3.org/RDF/).
Thus, users can query the data catalogues in open-data websites or download the data in common
file formats such as CSV, Excel, or PDF. Usually, data formats such as XML, JSON or RDF are
not downloaded directly, but also, they are consumed by using specific software tools or mobile
apps. Professional users can design complex queries using SparQL [14] a query language upon RDF
format information. However, defining and analysing open data is highly complex process and,
as a consequence, open data sources could be difficult for final users to analyse.

On the other hand, many data catalogues can be continuously updated (real-time publishing),
for instance, the pollution data gathered from pollution sensors distributed throughout a city. In order
to manage continuous queries where the data is published using RDF, the W3C RDF Stream Processing
(RSP) Community Group (https://www.w3.org/community/rsp/) aims to define a common model for
producing, transmitting, and continuously querying RDF streams, including extensions to both RDF
and SPARQL to represent streaming data as well as their semantics. Thus, several proposals could
be used to carry out continuous queries on RDF sources such as C-SPARQL [15] or TripleWave [16].
However, on the one hand, data endpoints based on SparQL are uncommon nowadays because open
data information is usually offered using more common data formats, such as CSV, JSON and specific
APIs. On the other hand, general users and unprofessional users (for instance, citizens), in particular,
require methodologies and tools that improve the access and analysis of continuous data catalogues
(data streams) available in open data sources not only in RDF but also in JSON or CSV.

In order to tackle this heterogeneous technology (complex event processing engines, open
data tools, notification technology, etc.) we used model-driven development [17–20] increases the
abstraction level where the software is developed, focusing on the domain concepts and their
relationships. These concepts and relationships are defined by a model which, for instance, can be
analysed and validated before automatically generating code. Besides, text code can be generated from
a model using model-to-text transformation, decreasing the incidence of user errors while increasing
the user productivity. Thus, in the context of model-driven development, software development is
guided through Models (M1) which conform to a MetaModel (M2). Further, a Metamodel conforms
to a MetaMetaModel (M3) which is reflexive [21]. The MetaMetaModel level is represented by
well-known standards and specifications, such as Meta-Object Facilities (MOF) [22] and ECore in
EMF [23]. A MetaModel defines the concepts and relationships in a specific domain in order to model
partial reality. Then, these models can be used to totally or partially generate the application code
by model transformations [24]. Thus, the software code can be generated for a specific technological
platform, improving the technological independence and decreasing the error proneness.

This study proposes a methodology to (a) identify data catalogues in open data sources; (b) define
complex patterns to be analysed in the data catalogues; and finally (c) define how results should be
notified using several kinds of formats, such as email, Twitter, JMS, REST API, etc. Additionally,
a Domain-Specific Language is developed using model-driven development techniques, supporting
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the aforementioned methodology that allows users to define and to carry out complex and continuous
analyses on real-time open data. Besides, in order to integrate heterogeneous technology, an Enterprise
Service Bus (ESB) [25] is used to deploy the system generated.

The main contributions of this study are as follows:

• This paper shows that model-driven development is a suitable approach to the development of
tools to tackle the complexity of heterogeneous technology as occurs in the context of open data
sources and complex event processing.

• A methodology named OpenData2CEP is defined to describe each step needed to carry out the
analysis of complex event patterns on open data sources.

• A model-driven approach is developed to support the methodology proposed. It facilitates
the development of each methodological phase by defining an OpenData2CEP metamodel and
a model-to-text transformation towards code generation for a specific Enterprise Service Bus (ESB)
and CEP engine which facilitate the deployment of the analysis defined.

• Two case studies are developed following the methodology and tools presented which include
different event pattern analyses.

The rest of the paper is structured as follows. In Section 2, we give an overview of existing open
data tools, stream processing engines and languages, and model-driven approaches that are applied to
open-data and complex event processing. In Section 3, we present the OpenData2CEP methodology.
Section 4 describes the OpenData2CEP design and implementation phases including the OpenData2CEP
Metamodel. In Section 5, two case studies are presented. Finally, Section 6 elaborates on the limitations
of the present approach before Section 7 concludes the paper.

2. Related Works

The present study unites two well-known research areas: open data and stream processing.
They are tackled from the model-driven point of view; as a consequence, this section reviews general
open data analysis tools, stream processing approaches, and model-driven studies related to open data
and stream processing.

2.1. Open Data Tools

Currently, several tools can be found that define, publish, and visualise open-data. Common
tools with the aim of defining open data catalogues include Open Refine [26] (formerly Google Refine),
Socrata [27], CKAN [28], Protégé or Google Fusion Tables [29]. Open Refine [26] makes it possible to
work with messy data by cleaning them, transforming them from one format into another, aligning data
with linked-data databases, etc. Regarding the inclusion of semantic structure in open data using
RDF format, the most used tools is Protégé [30]. CKAN [28] is a data management system that is
focused on publishing, sharing, finding, and using data. Currently, it is used by data publishers,
such as national and regional governments, companies and organisations, and can offer open data
catalogues with several file formats, such as PDF, CSV, XML, RDF, etc. Google Fusion Tables [29] focus
on how to manage and visualise data catalogues, making it possible create charts, maps, network
graphs from data catalogues with hundreds of thousands of rows. Finally, Socrata [27] is one of the
most important platforms for publishing and managing open data, and is especially used by USA
governments including the federal government, state governments, county governments, or city
governments.

Regarding the use of ontology-based software tools for open data in the Internet of Things (IoT)
domain, there are several projects such as SSN Ontology Validation Service [31], which was designed
in the context of the CityPulse FP7 EU project to validate the RDF dataset designed according to the
SSN V1 ontology; Read4SmartCities [32], a project providing a catalogue of ontologies relevant for
building smart cities focused on different domains (energy, climate, weather, environment, building,
occupancy, user behaviour and characteristics); OpenSensingCity [33], which provides a web portal that
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collects information about the smart cities and provides web applications to visualise the list of existing
projects, ontologies, and datasets; or Linked Open Vocabularies for the Internet of Things (LOV4IoT) [34],
which references 391 ontologies related to an IoT applicative domain exploiting sensor and/or semantic
web technology. There are collections and analyses of more open data and IoT projects and software
tools in [35–37].

These tools make it possible to define, publish, visualise, query, and filter open data catalogues;
however, they are not designed to analyse stream data.

2.2. Stream Processing Languages and Engines

Nowadays, event stream processing is an emergent area that has the goal of managing the
intensive data produced from smart cities, smart agro, system interactions, etc., in order to analyse and
correlate them with the aim of identifying important and critical situations. In this context, stream
processing engines that manage huge volumes of data over short periods of time require efficient
mechanisms to analyse, query, and correlate data.

Event processing can be addressed by Event Stream Processing (ESP) and Complex Event
Processing (CEP). On the one hand, events can be processed in order by stream processing which
takes into account the timestamp when the events are produced. So, this kind of data can be managed
using Event Stream Processing (Apache Storm [38], Apache Samza [39] or S4 [40]), which can process
event streams using very little memory because they do not have to remember many events. However,
if we want to carry out a complex analysis based on identifying event patterns, a CEP (Complex Event
Processing) engine should be used. In this sense, CEP is a superset of ESP [13,41].

Several Complex Event Processing engines have appeared with different approaches to analyse
complex event patterns in stream data. Some of them define a language similar to SQL, known as
an Event Processing Language (EPL), which includes temporal relations and data windows, for example
Esper EPL [11], Oracle EPL [42], Stream SQL [10] or CCL [43]. Other approaches, such as Apache
Kafka [44], Apache Flink [45] and FiwareCEP [46] (which is part of a wide European project named
FIWARE [47]), make it possible to analyse streamed data, although they do not provide a query
language like EPL, but rather, provide a wide API to carry out the Complex Event Processing.

The main characteristics of an EPL language are that it facilitates the definition of Complex
Event Processing, including filters, aggregations, groups, event correlations, temporal relations,
data windows, etc. In addition, the fact that the query language is similar to SQL helps users to learn
and use it. In [48] the main characteristics of popular Event Processing Languages were analysed
by designing an abstract metamodel representing an EPL language. This means that Esper EPL [11],
Oracle EPL [42], Stream SQL [10] or CCL [43] query languages have core concepts that define how to
analyse complex event patterns.

EPL languages include defining event patterns, which are patterns that combine other events.
These event patterns were classified in [49] as including the following types: (i) selection patterns, which
make it possible to create complex events every time a given simple event is detected; (ii) windows,
which make it possible to assign windows to patterns, restricting their scope; (iii) temporal sequencing
of events based on the operator followedBy (‘->’) which defines a temporal ordering between events;
(iv) pattern combinations, where event patterns can be combined using logical operators (OR, AND, etc.)
and temporal connectors such as (until or while); and (v) high-order complex events, which are defined
as a pattern that specifies the event makes use of other complex events previously defined, for instance,
using operators such as every or every-distinct.

Otherwise, Apache Kafka [44], Apache Flick [45] and FiwareCEP [46] make it possible to manage
stream data that can be efficiently analysed, including filters, aggregations, joins, window data and so
on. However, they do not provide a query language like EPL, but rather, they provide a wide API
to carry out the Complex Event Processing. These wide API allow users to develop code in order to
connect several kinds of data sources or data streams, which can be consumed using several kinds
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of formats (binary, XML, JSON, CSV, etc.). FiwareCEP [46] merits special attention because it offers
a native mechanism to process streams coded in JSON.

Finally, in the context of linked data, that is, semantic data sources which are usually
defined through RDF [50], there is a consolidated query language named SparQL [14]. However,
it has an important limitation because queries are executed once and at a specific moment,
and as a consequence, it does not allow processing of stream data. An extension of SparQL, named
C-SparQL [15] improves the stream reasoning for linked data. It includes clauses to manage temporal
relations and data windows, as do EPLs.

All of these proposals could be employed by professional users to define and execute Complex
Event Processing. However, on the one hand, a deep knowledge about specific code language and
specific API is needed and, on the other hand, they do not offer simple mechanisms for inexpert users
to explore and improvetheir use.

2.3. Model-Driven Approach Applied to Open-Data and Complex Event Processing

Model-Driven technologies have been applied as a transversal resource in order to manage
data and their transformation from a high abstraction level. This means that data is brought
into the model-driven technological space including model, text-to-model transformations (t2m),
model-to-model transformations (m2m) and model-to-text transformations (m2t). The following allow
the management and analysis of data from several points of view, from event definitions to code
generation, which can be executed under a specific framework.

Medit4CEP [51] uses model-driven techniques to facilitate the definition of complex event patterns
which could be analysed using a CEP. It implements a graphical concrete syntax for Eclipse IDE to
define complex event patterns. For this, Medit4CEP generates a second specific graphical tool for
Eclipse from the data event specification which can also be defined in the first Eclipse graphical editor.
Then, users can model complex event patterns using concepts similar to the ones defined in the EPL
language [48]. Finally, a model-to-text transformation to the Mule ESB project is generated to manage
the kind of events defined on a Complex Event Engine. However, this approach does not manage open
data sources, but rather, the data is defined ad hoc through connections with previous data sources.

On the other hand, Modisco [52] is a generic and extensible framework for model-driven reverse
engineering. It allows users to obtain models from text artefacts such as XML, SQL, COBOL, etc.).
Specific discoverers/injectors can be implemented to extend the original Modisco approach in order
to cover additional text formats. Modisco has been used successfully to obtain Schemas in JSON
Data [53] and to obtain conceptual models from legacy web applications [54]. Modisco’s flexibility
could be applied to produce models from data stored in text documents.

Segura et al. [55] proposed an adaptation of the Data as a Service (DaaS) paradigm to develop open
data applications. For this, model-driven engineering is used to manage the heterogeneous sources
and then to publish the data using a REST API infrastructure. Specifically, multi-level modelling for
the description of domains is improved based on generic meta-models and a library of injectors is
offered to bring data on demand from heterogeneous sources into the MDE technical space. Finally,
a REST-infrastructure is generated to access the back-end data. However, although this process makes
it possible to model data, the authors did not offer a mechanism to analyse the data published in
real-time.

Our approach focuses on specific concepts that can be managed from models that, to our knowledge,
has not been used previously, that is, model-driven techniques are applied to the management of open
data sources are then analysed by Complex Event Processing.

3. OpenData2CEP Methodology

In this section, we describe a methodology named OpenData2CEP which is able to connect open
data sources to a complex event process engine in order to carry out complex analyses. The methodology
includes the following phases: (a) open data source identification; (b) definition of complex event
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patterns using the data published from the open data catalogue; (c) definition of the notification system
where an event pattern will be identified; and (d) execution of the continuous queries on the open data
source. In Figure 1, the main steps, inputs, and outputs of our methodology are defined. Each one is
described below.

Figure 1. OpenData2CEP methodology overview.

3.1. Open Data Catalogue Source Identification

The identification of data sources is a process that each user should carry out by hand as each
potential user will have their own interests, so they should search where their target data are published.
In order to achieve this goal, users can search, for instance, on national open data sources, such
as http://datos.gob.es, http://www.data.gouv.fr, http://www.dati.gov.it, http://www.data.overheid.nl,
https://www.data.gov, https://usopendata.org or http://data.gov.uk, among others. As an example,
much of this information can be produced in real-time, such as data gathered by pollution sensors
located on city streets. For us, these frequently updated near real-time data are the most interesting
data catalogues.

The data catalogue formats available are related to the concept of five stars of data reutilisation [56].
In this sense, open data sites with five stars, that is those with the highest data reutilisation,
define linked-data based on RDF, making it possible to carry out complex queries using SparQL [14].
On the other hand, open data sites identified as having four stars publish their information using RDF,
and finally, common open data sites with three stars publish data by using non-proprietary data forms,
such as XML, CSV, or JSON formats. Usually, this information is well organized and an endpoint
(for instance, an URL) allows it to be downloaded. In any case, users should identify the URL where
the data can be queried or downloaded.

As an example, the Gijón (Spain) open data website https://transparencia.gijon.es produces,
as well as other information, an open data catalogue about air quality. These data are obtained from
a set of sensors throughout the city and are updated every 60 min. As a consequence, for example,
a user can analyse the evolution of the air quality in their home zone. In this case, the open data source,
identified in this work as AirDataG, is published in several formats, such as TEXT, CSV, and XML
formats. In addition, a PDF file describes each field in the open data source. For instance, an air quality
record includes the following fields: station, title, latitude, longitude, solar date, SO2 (sulfur dioxide),
NO (nitric oxide), CO (carbon monoxide) , PM10 (particulate matter 10 or PM10), O3 (ozone), dd, vv, TMP,
HR, PRB, RS, LL, BEN, TOL, MXIL, PM25 (particulate matter 2.5 or PM2.5). Usually, this information can
be obtained from the CSV header row or the data catalogue description.

3.2. Defining Complex Event Patterns Using the Data Published from the Open Data Catalogue

As mentioned, users of a specific data source should be able to define thecomplex event patterns
which will be used to analyse the data source. For instance, in a pollution environment context,
a complex event pattern could analyse several values in order to identify patterns which define
risky situations. So, the complex event patterns should be defined ad-hoc by the user. Usually,
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a complex event pattern in the context of CEP is defined by using an Event Processing Language (EPL),
which is a declarative language that deals with high frequency time-based event data.

An EPL allows developers to define complex sentences by identifying statistics and window
time clauses over a dataset. For instance, the regional government has defined several limits and
target values in order to maintain a suitable air quality. For instance, ozone (O3) should have a value
under 240 µg/m3 and SO2 (sulphur dioxide) should have a value under 350 µg/m3. Other air measures,
such as PM2.5 and PM10, should have values based on daily and annual averages. The former, PM2.5,
should have an annual average value of less than or equal to 10 µg/m3 and a daily average of less than
or equal to 25 µg/m3. The latter, PM10, should have an annual average value of less than or equal to
20 µg/m3 and a daily average of less than or equal to 50 µg/m3. So, a flexible language should be used
to define these kinds of analyses.

An EPL allows developers to define complex event patterns in order to identify statistics,
time correlations, and data window clauses over a dataset. For instance, in a simple EPL query
(similar to SQL), we can issue the AirDataG events which present risks for people:

select * from AirDataG where O3 > 240 and SO2 > 350.

In the previous EPL sentence, each AirDataG row analysed is an event. So, an event can be defined
from a set of data which represents a concept. Usually, each event has several attributes that can be
analysed. Thus, the SQL concepts of correlation through joins, filtering, and aggregation through
grouping can be effectively leveraged. For example, in Algorithm 1, from the data event identified,
a data correlation can be found where four events of AirDataG have values of O3 with a positive
tendency and near to the limit established; as a consequence, an alert can be issued. In Algorithm 1,
the complex event pattern is named Air03Tendency.

Algorithm 1: Example of Event Processing Language (EPL) expression to identify O3 tendency
values.

1 create schema AirDataG (Station Float,Title String,Latitude Float,Longitude Float, SolarDate
2 String,SO2 Float,NO Float,CO Float,PM10 Float,O3 Float,dd Float,vv Float,TMP Float,HR Float,

3 PRB Float,RS Float,LL Float,BEN Float,TOL Float,MXIL Float,PM25 Float);

4
5 @Name("Air03Tencency")

6 select a4.*
7 from pattern [(every (a1 = AirDataG(a1.O3 > 200)
8 -> a2 = AirDataG(a2.O3 > a1.O3)

9 -> a3 = AirDataG(a3.O3> a2.O3)

10 -> a4 = AirDataG((a4.O3 > a3.O3)

11 )))]

12 ;

Therefore, EPL is an expressive language that is used to define complex queries on continuous
event streams. Users should manage the common issues when dealing with the definition of complex
event patterns including: data source selection, parameter selection, statistics, or time windows.
So, users need knowledge related to how they should define complex event patterns from open
data sources. For instance, in Algorithm 2, the EPL sentences analyse the air quality parameters,
specifically, parameters that should be analysed daily or annually, for instance, the PM10 field should
have an annual average value of less than or equal to 20 µg/m3 and a daily average of less than or
equal to 50 µg/m3 (daily average).

Event Time Considerations

Usually, in order to carry out a successful analysis using Complex Event Processing, we should
consider the time at which the event occurs. This is a natural issue when the events are caught in
real-time, for instance, where a sensor provides data that are processed directly by Complex Event
Processing or specific software. However, related to the open data sources, we should take into



Sensors 2018, 18, 4125 8 of 22

consideration that all data are first stored and later made available to be downloaded and processed.
The use of these open data requires the execution of queries later on using data that have been produced
earlier. As a consequence, we should identify how the event time should be analysed. Usually, this
task requires the identification of the time-stamp field at the open data source. In other cases, a set of
fields could be joined in order to suitably identify the time-stamp, for instance, supposing that an open
data source includes seconds, minutes, hours, days, months, and years as fields to temporally identify each
event. Time-stamp data allow analysers to suitably establish the temporal frame which enables the
definition of complex patterns and analyses based on the time-stamp of when events occur.

In the previous example, the time-stamp was defined by the SolarDate attribute using the following
template “yyyy-MM-dd-hh:mm:ss”. In Algorithm 2, the event patterns are defined based on time issues.

Algorithm 2: Example of EPL sentences working with window time.

1 create schema AirDataG (Station Float,Title String, Latitude Float,Longitude Float, SolarDate
2 String,SO2 Float,NO Float,CO Float,PM10 Float,O3 Float,dd Float,vv Float,TMP Float,HR Float,

3 PRB Float,RS Float,LL Float,BEN Float,TOL Float,MXIL Float,PM25 Float);

4
5 @Name("Air_PM10_Diary_Average")

6 select a1.*

7 from AirDataG.win:time_batch(24 h).stat:uni(PM10) a1

8 where a1.average > 50;
9

10 @Name("Air_PM10_Anual_Average")

11 select a1.*

12 from AirDataG.win:time_batch(1 year).stat:uni(PM10) a1

13 where a1.average > 20;

3.3. Defining the Notification System When an Event Pattern Is Identified

Once an event pattern has been matched, the final users should be notified. Usually, this notification
should be carried out by presenting the information on a log file or printing it out on the console.
In addition, other notification mechanisms such as email, twitter or similar technologies could be
explored. In our methodology, the notification phase defines several mechanisms, such as email,
log files, Java Message Services (JMS), Twitter, and REST API services, that can be used to publish the
complex analysis results. Thus, using JMS make it possible to generate a JMS message when an event
patten has been matched, whereas using a REST to produce JSON or XML data improves the data
reutilisation, offering the filtrated information obtained from the aforementioned analysis. Both allow
users to generate value-added information which can be consumed by third tools or users.

From the point of view of open data sources, the offering of analysed results could help specific
results to be found among a large amount of data. Besides, taking into account that our main goal
is the analysis of near real-time open data sources, offering a notification based on the resources
(for instance, JMS message or REST API) obtained helps users to suitably manage their email inbox
and computer files, because the users do not store notification information which could be queried at
a specific endpoint.

3.4. Executing the Continuous Queries on the Open Data Source

Using a CEP engine to analyse continuous open data allows users to join the best of two research
areas: Complex Event Processing and open data. On the one hand, a CEP engine consumes a large
amount of data in order to analyse them in a short period of time, thus consuming them in near
real-time. On the other hand, open data offers well-structured information, for instance, based on
public administration data.

Usually, CEPs are designed to consume stream data from several kinds of streams. For example,
in Esper CEP [11], users can implement the data analysis using the esperio-csv, esperio-db, esperio-amqp
extensions, among others, which make it possible to input CSV, DB, and AMQP data.
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However, developers must write ad-hoc code in order to use these adapters/connectors,
and, as a consequence, users require additional technical knowledge. From the point of view of
open data sources where data are produced by using different data formats, friendly tools should be
developed to improve their use with the goal of connecting, configuring, and deploying the CEP engine.
From our point of view, the use of an Enterprise Service Bus (ESB) could help to achieve this goal.

In this sense, Several ESBs, such as MuleESB [57] and Apache Camel [58], make it possible to
consume stream data based on different formats such as JSON, XML or similar. For this, the ESB engine
usually has several adapters or connectors available. They could be connected with your favourite CEP.
For example, Mule ESB allows access to both (i) different format files, such as CSV, JSON, XML, etc.,
and (ii) different communication protocols, such as HTTP, FTP, JMS, etc.

Thus, an Enterprise Service Bus (ESB) can be used to carry out continuous queries. Specifically,
in our proposal, we used MuleESB [57], which facilitates the building of Service Oriented-Architectures
(SOA) using common technologies (SOAP, REST, JMS or AMQP) and data transformation. In addition,
from our point of view, the execution of continuous queries on open data sources could be carried out
using cloud characteristics, such as easy deployment, infrastructure management, scalability, and so on.
As a consequence, the application developed could be deployed in the cloud to improve scalability
characteristics and pay per use. Besides, this deployment could be defined using current prominent
tendencies, such as microservices deployed on containers, such as Docker or Kubernetes.

4. OpenData2CEP Tool: Design and Implementation Phases

In order to implement the aforementioned OpenData2CEP methodology a model-driven
development approach was developed. Figure 2 shows the general overview of the OpenData2CEP
model-driven approach where the main phases are identified: design (Figure 2 (1)), model-to-text
transformation (Figure 2 (2)) and deployment and execution (Figure 2 (3)). The design phase (Figure 2 (1))
allows users to design the main configuration issues, such as the open data source identification
or complex event pattern edition using models which help users to manage the open data and
complex event concepts from a high abstraction level; the model-to-text transformation phase (Figure 2 (2))
implements a model-driven transformation, specifically, a model-to-text transformation, which makes
it possible to generate the artefacts needed to deploy the system on a concrete ESB and CEP engine.
Finally, the execution phase (Figure 2 (3)), allows users to deploy their specific queries on a concrete ESB
and CEP engine.

Figure 2. OpenData2CEP development vs. OpenData2CEP methodology.
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Figure 3 presents the OpenData2CEP metamodel. Then, a model-to-text transformation is presented
in order to obtain the ESB and CEP artefacts needed to carry out the complex event analysis. Finally,
deployment issues are identified in order to facilitate the application deployment.

Figure 3. OpenData2CEP Metamodel.

4.1. Design Phase: OpenData2CEP Metamodel

Figure 3 defines the OpenData2CEP metamodel, which represents the main concepts/entities
and relationships needed to carry out complex analyses on near real-time open-data sources.
Using model-driven development, users only need to know the concepts of this specific domain
and their relationships, delegating the code generation and deployment in the specific model-to-text
transformations developed ad-hoc.

The OpenData2CEP metamodel defines a ConfigCEP entity as the root element in the metamodel,
identifying both targetCEP and targetESB, which define the final technology where the analysis will
be executed. Currently, targetCEP only includes Esper [11] and targetCEP includes MULE_ESB [57].
However, the model-to-text transformation could be extended to allow other targetCEP and targetESB.

The DataSource entity defines the open data sources, including characteristics such as poll_TimeMs
to identify how many milliseconds should pass before checking the data source again or whether
duplicateData should be used to check if the data offered by the datasource should be analysed before
to sending it to the CEP. The main goal of this concept is to specify whether duplicate data needs to
be deleted. The Data entity makes it possible to define the specific characteristics of the data offered
by the datasource: (i) url specifies the url where the data source could be queried, that is, where data
could be downloaded; DataFormat specifies the data format, which could be one of the predefined
DataFormat datatypes (CSV, JSON, XML or RDF). Users can define the datasource fields using the Attr
entity. As has been mentioned, the data in the datasource should be frequently cleaned because two
queries, for example, two consecutive GET HTTP methods on the url datasource, can produce similar
results, including several already processed records. The Clear entity should be defined to configure
the clean characteristics.

In order to define the complex analysis, users can define the EPL entity which wraps EPL
sentences [59]. The eplQuery characteristic allows users to define complex patterns using the EPL
pattern schema defined from the Attr entities (Users could learn how to write EPL sentences using the
online analyser [60]).
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Notification matters are defined using the Notification hierarchy which includes LogFile, email,
REST, JMS, and Twitter. We focus on two of them, REST and JMS. The former makes it possible
to publish the matched pattern using a specific REST infrastructure available in a url, while the
latter makes it possible to publish each event pattern matched as an event by using JMS architecture.
Both of them make it possible to describe an open-data source which could be used as input to other
complex analyses.

Besides the OpenData2CEP metamodel, a graphical concrete syntax is developed to facilitate users’
modelling to conform to the OpenData2CEP metamodel. Specifically, final users can use the Eclipse
Graphical Editor that has been developed from the OpenData2CEP metamodel by using the Graphical
Modeling Framework (GMF) [61] and EuGenia [62]. In the following sections, several examples are
modeled using this graphical editor.

4.2. Model-to Text-Transformation Phase. ESB and CEP Artefacts Code Generation

A model-to-text transformation allows users to obtain a complete Mule ESB project which can
be deployed on the Mule ESB engine. To obtain these results, the model transformation generates
both: (i) an ESB project code and artefacts (including the CEP engine configuration) and (ii) an ESB
notification project code. This code has been generated from models conforming to the OpenData2CEP
metamodel using Acceleo [63].

4.2.1. ESB Project Code and Artefacts

The main workflow defined in the MuleESB project describes the steps used to carry out the
data transformation needed to obtain suitable results. As can be observed in Figure 4, this workflow
includes downloading the open data source, processing the data sources in order to delete the records
already processed, and sending the records to the Esper Engine where they are analysed following the
EPL sentences defined in the OpenData2CEP models. Finally, the events matched will send notification
artefacts, for instance, emails, log files, JMS, etc.

Figure 4. Example of Mule ESB workflow generated from an OpenData2CEP model.

Algorithm 3 shows an example of an esper-config.xml generated file which defines the event types
that the Esper CEP engine should consume. Note that the generation of these files takes into account
the Data elements defined in a specific OpenData2CEP model. As can be observed, the configuration file
defines the event type for each data element defined as a java.util.Map. For instance, from a previously
defined data element called AirDataG, the attributes station, title, latitude and longitude, among others,
were generated as map properties at the AirDataG java.util.Map. This configuration file is used by Esper
CEP to know the internal structure of each event type, that is, in our proposal, it corresponds with
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the structure of the open data source. Note that this structure is defined during the design phase when
users define it in a specific OpenData2CEP model.

Algorithm 3: Example of Esper configuration file generated from the AirDataG OpenData2CEP
model.

1 <esper-configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance"

2 xmlns="http://www.espertech.com/schema/esper"

3 xsi:schemaLocation="http://www.espertech.com/schema/esper

4 http://www.espertech.com/schema/esper/esper-configuration -2.0.xsd">

5 <event-type name="AirDataG" >

6 <java-util-map>

7 <map-property name="Station" class="string"/>

8 <map-property name="Title" class="string"/>

9 <map-property name="latitude" class="float"/>

10 <map-property name="longitude" class="float"/>

11 <map-property name="SolarData" class="date"/>

12 <map-property name="SO2" class="float"/>

13 <map-property name="NO" class="float"/>

14 <map-property name="CO" class="float"/>

15 <map-property name="PM10" class="float"/>

16 <map-property name="O3" class="float"/>

17 ...

18 </java-util-map>

19 </event-type>

20 </esper-configuration>

4.2.2. ESB Notification Project Code

Notification code is generated from the OpenData2CEP model. In this sense, most interesting
strategies include the use of email notifications, REST API, and JMS notifications.

• Email notifications are implemented using Mule ESB Connectors which allows emails to be sent
to previously modelled recipients using the SMTP protocol.

• REST API is generated in order to offer the matched event patterns.

API REST is generated using the following schema. Note that each URL produces a JSON file
with the data queried:

GET /analysis_project/epl_pattern/notification_name

GET /analysis_project/epl_pattern/notification_name?date=2016/11/10

GET /analysis_project/epl_pattern/notification_name?from_date=2016/11/10

• Java Message Service (JMS) notifications make it possible to publish a topic matched event
pattern, and a publish/subscribe architecture is defined as a consequence. On the one hand,
the Mule ESB could publish the matched pattern, while, on the other hand, any user interested in
the results obtained from the event pattern analysis could subscribe to the topic. The message
generated is a JMSTextMessage which includes a JSON record. By default, the topic is available
in http://localhost:61616 where a topic named topic.analysisProject.eplPattern.notificationName is
defined on ActiveMQ JMS Broker [64].

All notification strategies are generated from a model to Mule ESB flow, which generates all
artefacts needed to deploy the whole analysis system using model transformation. Figure 5 shows
an excerpt of the flows generated in order to publish the matched event pattern using JMS and email,
that is, to generate the notification system.

http://localhost:61616
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Figure 5. Example of Mule Enterprise Service Bus (ESB) flows generated from a Java Message Service
(JMS) and email notification.

5. Case Studies

Two case studies werecarried out using our methodology and tools in order to evaluate the
aforementioned characteristics.

Thus, each case study is defined following the OpenData2CEP methodology, focusing on the
OpenDataCEP tools: design and implementation phase based on model-driven development, as shown in
Figure 2, which includes the open data identification, complex event pattern definition and event notification
definition methodology phases Figure 2. Besides, from the point of view of the implementation phase,
the model-to-text transformation is described for each case study.

The first case study is based on the Gijón open data website where air quality is measured.
Our proposal includes continuously checking these data and analysing the air quality following the
council norms. The second case study is an experiment developed using the earthquake data published
by the U.S. Geological Survey open data website. For instance, earthquake data could be used to alert
people in specific areas or to analyse earthquake magnitude tendencies.

5.1. Case Study: Air Quality

This case study uses the open data produced by Gijón Council regarding air quality parameters
(http://opendata.gijon.es/descargar.php?id=1&tipo=CSV). For this case, we use our methodology and
tools to define complex event analysis on this continuous data source:

• Design and implementation phase: design

In Figure 6, we can observe the model AirDataG conforming to the OpenData2CEP metamodel.
In this model, the needed entities have been defined to describe the main characteristics of the
proposed analysis. Note that users could use the Eclipse Graphical Editor, which was developed
as a concrete syntax for the OpenData2CEP metamodel. Specifically, a data source called AirDataG
has been defined which manages AirData data elements defining several fields or attributes such
as station, title, latitude, longitude, solar date, etc. Thus, the model defined includes the following
main methodology phases: (i) data source identification; (ii) definition of complex event patterns
and (iii) definition of matched event pattern on notification. Regarding the complex event pattern
defined, as an example, both analyses are defined as follows: (i) the PM10 field should have
an annual average value of less than or equal to 20 µg/m3 and (ii) the PM10 field should have
a daily average value of less than or equal to 50 µg/m3. Note that these analyses include time
windows which will be suitable managed by the CEP engine and can be defined using the EPL
sentences presented below:

(i) EPL_Air_PM10_Diary_Average:

select a1.* from AirDataG.win:time(24 h).stat:uni(PM10) a1 where a1.average > 50;

http://opendata.gijon.es/descargar.php?id=1&tipo=CSV
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(ii) EPL_Air_PM10_Anual_Average:

select a1.* from AirDataG.win:time(1 year).stat:uni(PM10) a1 where a1.average > 20;

Figure 6. Case Study. AirDataG model conforming to the OpenData2CEP metamodel.

EPL sentences should be defined as properties on EPL entities, specifically at the eplQuery attribute.
Then, as can be observed in Figure 6, notification issues are defined from each EPL sentence.
For instance, for the EPL named EPL_Air_PM10_Annual_Average, both notification kinds have
been defined: REST and JMS notifications.

• Design and implementation phase: model-to-text transformation

The artefacts obtained after model-to-text transformation allow users to deploy the whole analysis
system on a MuleESB instance, including Mule project, esper-config.xml, data input metadata for
MuleESB, data output metadata for MuleESB and workflow.xml, among others. The data flow is
presented graphically in Figure 7. It includes a main AirDataG flow to address the events to the
CEP engine (Esper). A second flow named EPL_Air_PM10_Annual_Average processes the matched
event patterns, addressing them to specific notification flows. Specifically, in Figure 7, we can
observe the REST API deployed in a flow named REST _Air_PM10_Annual_Average_Alert.

Thus, notification issues are published following the model definitions (Figure 6). For instance,
both REST and JMS notifications were defined from the EPL sentence named
EPL_Air_PM10_Annual_Average.

First, the REST API for the notification proposal (Algorithm 4) is generated using the RAML
specification [65] and Apikit project [66] for integration with Mule ESB. Specifically, REST API
defines the following urls for AirPM10Alert _AnnualAverageNotification notification, which are
available through HTTP methods:

GET /AirDataG/AirPM10Alert_AnnualAverage/AirPM10Alert_Annual_Average_Alert

GET /AirDataG/AirPM10Alert_AnnualAverage/AirPM10Alert_Annual_Average_Alert?date=2016/11/10

GET /AirDataG/AirPM10Alert_AnnualAverage/AirPM10Alert_Annual_Average_Alert?from_hour=00:00:00

Second, the JMS notification defined includes the properties server and topic. These properties can
be used to subscribe a JMS client to the topic:

Server: http://localhost:61616

Topic: AirDataG.Air_PM10_AnnualAverage.AirPM10_Annual_Average_Alert
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Figure 7. Example of main workflow generated at the Mule project from the AirDataG example.
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Algorithm 4: REST API generated defined by RAML to be deployed using the Apikit tool for
Mule ESB.

1 #%RAML 0.8
2 ---
3 title: AirDataG
4 version: 1.0
5 baseUri: http://localhost:8080/AirDataG
6 documentation:
7 - title: Getting Started AirDataG

8 content: |

9 REST api notification for AirDataG.
10
11 /Air_PM10_Annual_Average/AirPM10_Annual_Average_Alert:
12 displayName: AirPM10Alert_DiaryAverage
13 get:
14 description: Obtain information from a collection of AirDataG
15 queryParameters:
16 date:
17 description: date
18 type: string
19 required: false
20 example: 2016/10/10
21
22 form_date:
23 description: from_hour
24 type: string
25 required: false
26 example: 00:00:00
27 responses:
28 200:
29 body:
30 application/json:
31 schema: !include schemas/airdatag-schema-input.json
32 example: !include examples/airdatag-example.json
33 404:
34 description: |
35 Unable to find a AirDataG values

5.2. Case Study: Earthquake Data

The other case study that we developed to show our methodology and tools focuses on earthquake
observations offered by the U.S. Geological Survey https://earthquake.usgs.gov/earthquakes/feed/v1.0/

csv.php. These earthquake data are published in close to real-time, specifically, for the past hour, 24 h,
7 days, and 30 days in ATOM, KML, or text (csv) file formats. Specifically, the last hour earthquake data
https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/all_hour.csv allows users to carry out
a continuous analysis. For instance, by using these earthquake data, users could analyse earthquake
magnitude tendencies or issue alerts to people where earthquakes with a magnitude greater than
a specific value will be reached.

• Design and implementation phase: design

The open data source could be found at https://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php,
where active earthquake data are updated continuously with a frequency close to real-time.
Specifically, we use the last hour earthquake data here. Thus, the earthquake data include several
items of information, such as time, latitude, longitude, depth, mag, magType, nst, gap, dmin, rms, net,
id, updated, place, type, locationSource, magSource, horizontalError, depthError, magError, magNst, and
status. For example, latitude and longitude mean the latitude and longitude values used to identify
a place, while mag defines the earthquake magnitude on the Richter scale.

https://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php
https://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php
https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/all_hour.csv
https://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php
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Figure 8 shows the OpenData2CEP model for this case study, including the Data, DataSource,
ConfigCEP, Notifications, and EPL entities. The model defined includes how to locate the data
resource and the set of fields defined.

Taking into account the fields identified at the open data source and defined in the model, users
can define their own event patterns. For instance, a user can define several patterns based on
earthquake data which could be useful for final users: (i) Alerts from earthquake magnitudes (mag)
with values >= 5; (ii) Places (longitude and latitude) where the average earthquake magnitude
(mag) was >= 2 in the last 5 days. (iii) Places (longitude and latitude) where the earthquake
magnitude (mag) is incremental, starting from a magnitude value (mag) >= 2. Specifically,
tree incremental earthquake magnitude values are identified.

Note that a specific area could be defined by the user, for example, by indicating
two latitudes/longitudes which build an area. In this sense, the event should be analysed
by grouping the data by user areas.
(i)

@Name("EarthQuake_greater_5") select * from EarthquakeData where mag > 5;

(ii)

@Name("EarthQueake_average_greater_2") select a1.* from
EarthquakeData.std:groupwin(longitude ,latitude).win:time(5 day).stat:uni(mag) a1

where a1.average >2 and a1.datapoints >=2;

(iii)

@Name("EarthQuakeTencency")

select a1.longitude , a1.latitude , a1.mag, a2.longitude , a2.latitude,a2.mag, a3.longitude ,
a3.latitude ,a3.mag

from pattern [(every (a1 = EarthquakeData(a1.mag >=1)
-> a2 = EarthquakeData(a2.mag > a1.mag)

-> a3 = EarthquakeData(a3.mag> a2.mag)

))]

where a1.longitude = a2.longitude and a1.latitude = a2.latitude and a1.latitude=a3.latitude

and a1.longitude=a3.longitude;

From the point of view of notification issues, as can be observed in Figure 8, two types of
notifications were defined: JMS and email notifications.

Figure 8. Case study: model of earthquake data analysis conforming to the OpenData2CEP metamodel.

• Design and implementation phase: model-to-text transformation

The artefacts obtained after model-to-text transformation allow users to deploy the whole analysis
system on a MuleESB instance, including the Mule project, esper-config.xml, data input metadata for
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MuleESB, data output metadata for MuleESB and workflow.xml files, among others. The data flow is
presented graphically in Figure 9.

Figure 9. Example of Mule workflow generated in a Mule project from the earthquake data model
defined in Figure 8.

The notification code is generated from the model definitions (Figure 8), that is, JMS and email
notifications are defined and are generated to be deployed with the following characteristics.

The JMS notification defined includes the properties Server and Topic which are used to configure
a JMS Connector for MuleESB:

Server: http://localhost:61616

Topic: earthquake.EarthQuake_greater_5.EarthQuake_greater_5_Alert

For email notifications, the properties defined are User, Pass, Server, and Port:

User: user@unex.es

Pass: *****

Server: tajo.unex.es

Port: 995

Thus, the code generated includes: (i) the MuleESB project; (ii) the Esper Mule workflow to analyse
the input data; and (iii) the notification code which includes JMS and email Mule workflow.

6. Discussion

The use of model-driven development allows users to tackle technological complexity and manage
heterogeneous technology from an abstract point of view. That is, applying software engineering
approaches such as model-driven development allows focus to be on the important issues, such as
the data analysis, rather than on technological troubles.

In this sense, model-driven development [17] focuses on raising the level of abstraction in
software development by working with models instead of focusing on code. In this study, we proposed
a metamodel named OpenData2CEP to guide the data analysis by generating the code artefacts needed
to deploy the analysis data on a Complex Event Processing Engine.

Currently, available data is heterogeneous and varied, involving data on the environment, traffic,
water, agriculture, economics, aero-space, public administration, society, education, culture and leisure,
health, urban infrastructure, and security, among others. This information is published by open data
proposals, as has been mentioned, such as https://usopendata.org or http://data.gov.uk. However,
although open data is an emerging development area, it is not sufficiently visible for people because
the data analysis is not within everybody’s reach. There are many open data sources that offer data
through multiple open data formats, and their main motivation is to improve the data reutilisation.

https://usopendata.org
http://data.gov.uk
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However, for society, the most important value is the data itself, that is, people want to improve their
lives through data analysis if possible. In this sense, this approach tries to direct users towards data
analysis by improving the methodologies and tools available to carry out these tasks.

Nowadays, complex-event analysis is needed to obtain added value from data and specifically
for near real-time data such as those usually offered by open data catalogues. For this, our proposal
includes the use of a complex event pattern engine which facilitates the execution of EPL sentences
based on a concrete open data catalogue. In this sense, complex event correlations and event patterns
can be defined to be applied on the open data sources which are continuously polled in order to
maintain the input data near real-time.

Limitations

In order to use our approach, users must know the EPL language so that they can define
complex event patterns to obtain better results, thus increasing the learning curve of our approach.
Nevertheless, other approaches, such as [51], make it possible to manage and define EPL languages
using model-driven technologies, specifically, by using an EPL graphical editor auto-generated from
event data definition.

Currently, our approach is limited to managing CSV formats because we have developed
a prototype tool; however, we aim to include other widely used open data formats, such as XML
and JSON. Then, the use of RDF data as an input will be evaluated because although RDF offers
meaningful advantages related to linked data, it involves additional work which will be tacked in
a further study.

7. Conclusions

Open data represents one of the main alternatives for democratising information. Generally, this
information is generated from public administrations that develop their work using citizens’ taxes.
Open data analysis should be improved through methodologies and tools that facilitate their use.
Along this line of thought, this study presents a methodology and its model-driven approach.
On the one hand, the methodology focuses on the main elements that should be taken into account
in order to tackle the complexity of analysing near real-time open data sources. For this, adding
a complex event processing engine decreases the time and effort needed to carry out the analysis.
On the other hand, the model-driven implementation presented to carry out this methodology makes
it possible to tackle the complexity of heterogeneous technology, such as data formats, complex event
processing engines, Enterprise Service Buses, etc. Thus, the use of models to represent complex context
like this makes it possible to focus on the main issues in the domain, delegating the generation of final
artefacts needed to deploy the analysis system to model transformations.

For complex-event processing, the information is organised by events, which usually have
a well-known structure based on specific data-types. For instance, in the previous example based
on quality air data, each record has the same structure in several fields. However, when we work
with linked data, each field in a record can be connected with external information, for example,
by using an URI or relations with other concepts. Under these circumstances, defining a complex event
pattern is more difficult; however, exploring the characteristics of linked data will help us to improve
our proposal.

Another important further study will be focused on implementing a push notification, that could
be integrated with a message platform such as Google Cloud Messaging [67], nimBees [68], etc.
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