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Abstract: Different ways to estimate future return levels (RLs) for extreme rainfall, based on extreme
value theory (EVT), are described and applied to the Iberian Peninsula (IP). The study was done
for an ensemble of high quality rainfall time series observed in the IP during the period 1961–2010.
Two approaches, peaks-over-threshold (POT) and block maxima (BM) with the generalized extreme
value (GEV) distribution, were compared in order to identify which is the more appropriate for the
estimation of RLs. For the first approach, which identifies trends in the parameters of the asymptotic
distributions of extremes, both all-days and rainy-days-only datasets were considered because a
major fraction of values of daily rainfall over the IP is zero. For the second approach, rainy-days-only
data were considered showing how the mean, variance and number of rainy days evolve. The 20-year
RLs expected for 2020 were estimated using these methods for three seasons: autumn, spring and
winter. The GEV is less reliable than the POT because fixed blocks lead to the selection of non-extreme
values. Future RLs obtained with the POT are greater than those estimated with the GEV, mainly
because some gauges show significant positive trends for the number of rainy days. Autumn, rather
than winter, is currently the season with the heaviest rainfall for some regions.

Keywords: extreme value theory; return levels; extreme rainfall

1. Introduction

The precipitation regime in the Iberian Peninsula (IP) is highly variable due to its complex
topography, for which reason no wide areas are left without coverage. The spatial variability of the IP
rainfall is such that certain regions receive more than 3000 mm/year, while others, for example in the
southeast, receive on average less than 200 mm/year, the lowest values in Europe. The atmospheric
circulation patterns over the IP change depending on the season [1]. Although precipitation is
generated by different physical processes during the different times of the year [2], the intensification
of rainfall during the rainy seasons is due to frontal systems coming from the Atlantic Ocean [3,4],
which cause persistent rainfall. For the eastern IP, rainfall is produced by easterly flows leading to
heavy convective precipitation over the Mediterranean area, especially when there is colder air at
high levels. Furthermore, over extensive regions of the IP, a few rainy days concentrate much of
the annual precipitation [5]. This variability leads to a study of extreme rainfall over the IP being
particularly interesting.

Previous extreme rainfall studies covering particular regions in Spain, the whole of Spain or the
whole IP have considered a variety of indices, all taken from the Expert Team on Climate Change
Detection and Indices (ETCCDI) set of indices recommended for use by the World Meteorological
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Organization [6]. For the region of Andalusia, among others [7], the most noteworthy results were
found in winter, with a predominance of decreasing trends for intensity indices in central and western
(CW) Andalusia, but positive trends in the south-eastern (SE) area. Another study of the whole IP [8]
analyzed annual and seasonal trends of extreme precipitation indices using observations for Portugal
and Spain and the ERA-driven simulation.

Some studies of extreme rainfall trends for the IP have used the statistical extreme value theory
(EVT) and some the block maxima (BM) [9] or the peaks-over-threshold (POT) approaches [10,11].
These methods each have advantages and disadvantages, and it is important to compare the results
they give. Recently, a new method has been developed for the calculation of non-stationary return
levels (RLs) for extreme rainfall in a southwestern region of the IP [12]. The aim of this present study
was not to propose a method to estimate the Rls, but to compare two ways of dealing with possible
trends in rainfall so as to estimate near-future extremes. This objective is tackled for a set of complete
daily rainfall time series from 76 gauges over the period 1961–2010 for the whole IP.

The organization of the paper is as follows: the data used are described in Section 2; an overview
of the method is given in Section 3; and the main results are presented and discussed in Section 4.
Finally, the main conclusions are presented in Section 5.

2. Data

The study area was the Iberian Peninsula. Most of the time series were taken from an extensive
database of daily rainfall time series provided by the Spanish National Meteorology Agency (In Spanish:
Agencia Estatal de METerología, AEMET). The quality requirements were to choose time series with
no missing data and to cover the orographic diversity of the IP.

The final choice was a set of 76 daily rainfall time series (Table 1) corresponding to gauges as
regularly spaced as possible over the IP. Their locations are shown in Figure 1. The study period was
1961–2010. Most of the time series were selected from the daily rainfall time series of AEMET according
to the quality requirements described above. Four of the series were provided and quality controlled by
the European Climate Assessment and Dataset service (ECA, available online at http://eca.knmi.nl),
and one series was from Portugal (Gafanha da Nazaré) provided by the National System of Water
Resources Information (SNIRH, available online at http://snirh.apambiente.pt/, managed by the
Portuguese Institute for Water) database.
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Data homogeneity was evaluated using the R-based program RHTestV3, developed at the Climate
Research Branch of the Meteorological Service of Canada, and available from the ETCCDI, Expert Team
on Climate Change Detection and Indices website (http://etccdi.pacificclimate.org/). This program
is capable of identifying multiple step changes at documented or undocumented change-points.
It is based on a two-phase regression model with a linear trend for the entire base series [13,14].
This analysis, together with the metadata of the stations showed that none of the 76 time series had
change-points significant at 5%, with all of them being homogeneous in the cited period of study.

For this study of extreme precipitation over the IP, in view of the highly seasonal nature of
rainfall, each season was studied separately. The definition of the seasons used was that common in
climatological studies: winter was December, January and February; spring was March, April and
May; and autumn was September, October and November. Summer was not considered because of
the low number of rainy events during that season in most parts of the IP. For the BM approach, each
season was considered for the selection of its maximum value. For the POT approach, the threshold
used in defining extreme rainfall for each season separately was the 98th percentile of all the daily
rainfall values for the whole period and the 95th percentile of the rainy-days-only values.

Table 1. Codes used on the map: names, geographic coordinates, and altitudes of the observatories.

Code Name Latitude (◦-′-′′) Longitude (◦-′-′′) Altitude (m)

acs Alcuescar 39-10-50N 6-13-43W 488
agr Agramunt 41-47-16N 1-05-54E 349
agu Arguellite 38-20-10N 2-25-58W 980
ala Alameda de Cervera 39-16-00N 3-07-38W 646
ali Alicante 38-22-00N 0-29-40W 82
alr Almonaster la Real 37-52-18N 6-47-13W 610
ami Amieva (Retaño) 43-13-28N 5-01-51W 730
atz Atzeneta del Maestrat 40-13-00N 0-10-17W 400
bad Badajoz (Talavera la Real) 38-53-00N 6-49-45W 185
bar Barcelona 41-17-49N 2-04-39E 6
bdo Barrado 40-05-00N 5-52-57W 796
bej Beja 38-01-00N 7-52-00W 246
bil Bilbao 43-18-00N 2-54-36W 39
bra Braganza 41-48-00N 6-44-00W 690
cal Calzada de Calatrava 38-42-15N 3-46-17W 645
car Cartagena 37-38-15N 0-43-02W 1
cel Cella 40-27-20N 1-17-27W 1023
cls San Carlos del Valle 38-50-40N 3-14-02W 753
cor A Coruña 43-22-02N 8-25-10W 58
cue Cuenca 40-04-00N 2-08-24W 956
dto Dos Torres 38-27-00N 4-53-57W 600
eca Embalse de Camarillas 38-20-40N 1-38-56W 397
fob Fuenteobejuna 38-19-30N 5-33-47W 571
fue Fuenterrabía 43-21-24N 1-47-25W 8
gaf Gafanha da Nazare 40-37-05N 8-42-21W 8
gra Granada 37-08-13N 3-37-53W 687
grd Grado 43-22-39N 6-04-10W 60
grz Grazalema 36-45-30N 5-22-07W 823
her Herrera del Duque 39-09-57N 5-01-09W 465
hon Honrubia 39-36-45N 2-16-48W 820
hoy Hoyos 40-10-15N 6-43-17W 510
lau Laujar Monterrey 37-01-35N 2-53-57W 1280
leo León 42-35-24N 5-39-00W 916
lib Librilla 37-53-11N 1-21-22W 168
lis Lisboa 38-43-00N 9-09-00W 77
lla Villagarcia del Llano 39-19-30N 1-50-57W 740

http://etccdi.pacificclimate.org/
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Table 1. Cont.

Code Name Latitude (◦-′-′′) Longitude (◦-′-′′) Altitude (m)

log Logroño 42-27-06N 2-19-51W 352
mad Madrid (Retiro) 40-24-40N 3-40-41W 667
mal Málaga 36-40-00N 4-29-17W 7
mfr Morón de la Frontera 37-09-49N 5-36-43W 87
min Mingorria 40-45-05N 4-40-02W 1032
mol Molina de Aragón 40-50-40N 1-53-07W 1063
mon Montorio 42-35-00N 3-46-42W 944
nav Navacerrada 40-46-50N 4-00-37W 1890
ome Els Omellons 41-30-06N 0-57-36E 386
ont Ontinyent 38-49-40N 0-36-27W 350
opo Oporto 41-08-00N 8-36-00W 93
pal Pozo Alcón (El Hornico) 37-46-30N 2-55-07W 1020
par Palomar de Arroyos 40-46-44N 0-45-04W 1206
pen Embalse de Pena 40-49-17N 0-08-08E 620
pcr Pantano Maria Cristina 40-01-40N 0-09-47W 130
pin Presa de Pineta 42-38-08N 0-12-03E 1150

pmo Paracuello de Monegros 41-42-17N 0-12-41W 356
pon Ponferrada 42-33-50N 6-36-00W 534
reu Reus 41-08-45N 1-09-36E 73
ric Ricote (La Calera) 38-08-46N 1-22-58W 480
sal Salamanca (Matacán) 40-56-50N 5-29-41W 790
sev Sevilla 37-25-26N 5-54-13W 26
ssp Santiago de la Espada 38-06-44N 2-33-10W 1340
sfe San Fernando 36-28-00N 6-12-00W 97
sgo Santiago de Compostela 42-54-00N 8-26-00W 364
smz Salinas del Manzano 40-05-30N 1-33-17W 1155
sor Soria 41-46-00N 2-28-00W 1082
sue Sueca 39-12-00N 0-18-17W 7
tmt Torrecilla del Monte 42-05-40N 3-41-37W 949
tol Toledo (Lorenzana) 39-51-34N 4-01-32W 540
tor Torredonjimeno 37-45-54N 3-57-25W 591
tts Tortosa 40-49-14N 0-29-29E 48
val Valencia de Alcántara 39-24-58N 7-14-52W 460
vdl Valladolid 41-38-40N 4-46-27W 846
vig Vigo 42-13-25N 8-37-55W 255
vil Villacarriedo 43-13-37N 3-48-38W 212

vlm Villarmuerto 41-03-20N 6-21-47W 767
zam Zamora 41-29-56N 5-45-20W 656
zar Zaragoza 41-39-43N 1-00-29W 247
zor Salto de Zorita 40-20-35N 2-52-57W 642

3. Methods

The 20-year RLs for the precipitation in the IP were studied using two different EVT
approaches—the BM and the POT—considering both all-days (rainy and non-rainy) and
rainy-days-only datasets. The BM approach is frequently applied to the study of extreme events
of meteorological variables in the framework of EVT. Its focus is on modeling the BM of the variables
with the generalized extreme value (GEV) distribution. The GEV theory is a kind of “law of large
numbers”. It states that the maximum of n independent and identically distributed variables with
probability distribution function of type F tends to follow a GEV distribution when n tends to infinity
(i.e., in practice, for large enough n).

In a similar way, the POT approach is based on the asymptotic convergence of the exceedances
of a high threshold u to a general Pareto distribution (GPD) when u tends to infinity. This holds true
again for independent and identically distributed variables.
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Making an optimal choice for the threshold u is a difficult problem. A very high value of u leads
to few exceedances and consequently high variance estimators. On the contrary, a very low value of u
is likely to violate the asymptotic basis of the model, leading to biases [15].

An independent and identical distribution is assumed by the theory, but is generally not verified
for meteorological variables. Weak dependence can be dealt with: annual maxima can generally be
considered as independent, and values above the threshold can be made independent, for example by
applying a run declustering procedure [16]. An identical distribution is not true because of seasonality,
interannual variability and possible trends. To handle seasonality, estimations are made for each
season rather than for the whole year. Interannual variability and trends are more difficult to tackle.
The estimation of RLs in a non-stationary context has been the subject of a growing number of papers
in recent years. While some authors consider that taking non-stationarity into account implies too large
uncertainties to be justified [17,18], others suggest methods for doing so together with new definitions
for an RL in such a context [19–24].

The objective of the present work was not to derive an RL for some design purpose, but to
compare two ways of dealing with possible trends in rainfall when estimating near-future extremes.
The focus was therefore not on the definition of a non-stationary RL, but on the type of trends to be
considered and the consequences of the choice for both the BM and the POT approaches. Thus, two
different approaches were used to compute future RLs:

(1) The first consists of identifying trends in the parameters of the asymptotic distributions of
extremes: location and scale parameters of the GEV for the BM and threshold and scale parameters
of the GPD for the POT. The trend identification is based on likelihood ratio tests at a 5%
significance level between models with linear or constant parameters [15], and the confidence
intervals (CI) are computed by bootstrapping in order to take the uncertainty in the trends into
account (see the Appendix in [12] for details).

(2) A residual process that has been explained extensively elsewhere [12] is used in order to calculate
the 20-year RLs for 2020. The idea is to use trends in the main characteristics of the whole
distribution rather than those in the extreme values only. If the non-stationarity of extremes in a
statistical framework is explained by means and variances, the daily mean and standard deviation
in 2020 are estimated by linear extrapolation of the linear trends that have been estimated from
observations so as to be able to compute the RLs for 2020.

Although linear trends are poorly suited to represent future evolutions in rainfall correctly, they
were chosen here as a simple way to compare two different approaches under similar conditions.
The second approach is appropriate for the use of climate simulation results to compute future means
and standard deviations and is preferable if the aim is to estimate future RLs as design values for an
installation or project.

4. Results

This section presents the main results of the 20-year RL (Z20) estimations. The present day was
estimated using both all-days (Section 4.1) and rainy-days-only (Section 4.2) data, and the near future
was estimated for 2020 (Section 4.3).

4.1. Present 20-Year RLs Estimated from All-Days Rainfall Data

Considering all days (rainy and non-rainy), the 20-year RLs for the two approaches were estimated
for the present day by using the daily rainfall time series. Figure 2 shows the results for the three
seasons considered. For autumn and spring, all the 20-year RLs estimated using the POT approach lay
inside the CI of the 20-year RLs using GEV. In winter, only one gauge (vlm) showed no overlapping
CIs, the RL estimated with the POT (55.09 [47.96; 62.22]) being greater than that corresponding to the
BM (50.16 [45.51; 54.81]). The difference between the two values is small, but since the CI with BM is
narrower than with POT, the RL estimated with the POT does not fall inside the GEV CI.



Water 2018, 10, 179 6 of 16

Water 2018, 10, x FOR PEER REVIEW  6 of 16 

 

since the CI with BM is narrower than with POT, the RL estimated with the POT does not fall inside 
the GEV CI. 

 

 

Figure 2. Spatial distribution of 20-year return levels (RLs) estimated from the all-days data obtained 
for the peaks-over-threshold (POT) according to whether they do or do not lie within the CI of the  
20-year RLs obtained for the block maxima (BM). 

In order to further analyze this exception, Figure 3 shows the GEV/POT comparison for this 
gauge (vlm) in winter. Looking at the top figure, one observes that the frequency of threshold 
exceedances has decreased over the last decade, and the last values are lower than the rest. 
Considering the red points for GEV in greater detail, one sees that, as one maximum is chosen for 
each season, high and low values are mixed, some of them being lower than the POT threshold. The 
shape parameter is different: ξ = 0 for POT and ξ = −0.2845 for GEV. In this latter case, the distribution 
is strongly bounded, which is surprising for precipitation. Since sigma measures the variability, the 
scale parameter is greater in GEV because the maximum is more variable than in POT when choosing 
such low values as the maximum (a season with less than 10 mm of rainfall is not really a maximum). 
The estimates were made as if the time series were stationary, which is probably not the case and 
may further explain the differences. 

 

Figure 2. Spatial distribution of 20-year return levels (RLs) estimated from the all-days data obtained
for the peaks-over-threshold (POT) according to whether they do or do not lie within the CI of the
20-year RLs obtained for the block maxima (BM).

In order to further analyze this exception, Figure 3 shows the GEV/POT comparison for this gauge
(vlm) in winter. Looking at the top figure, one observes that the frequency of threshold exceedances
has decreased over the last decade, and the last values are lower than the rest. Considering the red
points for GEV in greater detail, one sees that, as one maximum is chosen for each season, high and low
values are mixed, some of them being lower than the POT threshold. The shape parameter is different:
ξ = 0 for POT and ξ = −0.2845 for GEV. In this latter case, the distribution is strongly bounded, which
is surprising for precipitation. Since sigma measures the variability, the scale parameter is greater
in GEV because the maximum is more variable than in POT when choosing such low values as the
maximum (a season with less than 10 mm of rainfall is not really a maximum). The estimates were
made as if the time series were stationary, which is probably not the case and may further explain
the differences.
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Figure 3. Comparison of GEV/POT for the gauge “vlm” in winter. The top panel shows the comparison
between the threshold from the POT and the location parameter from the BM. The symbols show the
independent exceedances for the POT (black) and the seasonal maxima for the BM (red). The bottom
panel compares the scale parameter between the two methods.

4.2. Present 20-Year RLs Estimated from Rainy Days

Considering rainy-days-only and studying when Z20-POT is inside the CI of Z20-GEV, we show
in Figure 4 the results for the three seasons considered. For both autumn and winter, all the gauges
except one in each case (pcr and cal, respectively) have Z20-POT inside the Z20-GEV CI, and for spring,
there are three exceptions (cal, gra, ssp). In all cases, Z20-POT is greater than Z20-GEV. The CI obtained
using GEV is narrower than that corresponding to POT.

Water 2018, 10, x FOR PEER REVIEW  7 of 16 

 

 
Figure 3. Comparison of GEV/POT for the gauge “vlm” in winter. The top panel shows the 
comparison between the threshold from the POT and the location parameter from the BM. The 
symbols show the independent exceedances for the POT (black) and the seasonal maxima for the BM 
(red). The bottom panel compares the scale parameter between the two methods. 

4.2. Present 20-Year RLs Estimated from Rainy Days 

Considering rainy-days-only and studying when Z20-POT is inside the CI of Z20-GEV, we show 
in Figure 4 the results for the three seasons considered. For both autumn and winter, all the gauges 
except one in each case (pcr and cal, respectively) have Z20-POT inside the Z20-GEV CI, and for 
spring, there are three exceptions (cal, gra, ssp). In all cases, Z20-POT is greater than Z20-GEV. The 
CI obtained using GEV is narrower than that corresponding to POT. 

 

Figure 4. Similar to Figure 2, but showing the 20-year RLs estimated for the rainy-days-only data. 

The gauges with non-overlapping CIs and different values for the RL present the same behavior. 
Figure 5 illustrates the GEV/POT comparison for the gauge “pcr” in autumn. There are many maxima 
in the second half of the study period with the BM approach, with low rainfall leading to smaller  
RL values. 
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The gauges with non-overlapping CIs and different values for the RL present the same behavior.
Figure 5 illustrates the GEV/POT comparison for the gauge “pcr” in autumn. There are many maxima
in the second half of the study period with the BM approach, with low rainfall leading to smaller
RL values.
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Figure 5. Similar to Figure 3, but showing the comparison GEV/POT for the gauge “pcr” in autumn.

4.3. Future 20-Year RLs

In this section, we shall present the main results of calculating the 20-year RLs for 2020. It is
remarkable that, in a stationary context, according to the likelihood ratio test at a 95% confidence level,
the value of the shape parameter is zero for most of the stations for all three seasons considered.

4.3.1. Using Trends in the Parameters

We first studied the future 20-year RLs obtained through extrapolating the trends in the parameters
(scale and location for GEV and scale and threshold for POT), checking whether the RLs obtained with
POT lay within the CI of the RLs obtained with GEV. Figure 6 shows the results. As can be seen, there
are several gauges with non-overlapping CIs: 10 for autumn, 11 for winter and 5 for spring. For these
gauges, Tables 2–4 list the degree of each parameter for GEV and POT, with zero meaning no trend
and one a linear trend. Most of these gauges show discrepancies between the degree obtained for the
parameters using the two methods; when there is a linear trend in the scale or location parameters
using GEV, there is no trend in the scale parameter using POT, and vice versa. This leads to different
values of the 20-year RL for 2020 as estimated by extrapolating the parameters.

Table 2. Degree of the parameters for GEV (location and scale) and POT (scale) for autumn. Zero means
no trend and 1 linear trend.

Code agr alr bra cue log mad sgo atz sue vil

Location-GEV 1 0 0 0 0 0 0 0 0 1
Scale-GEV 0 0 0 1 0 1 0 0 1 0
Scale-POT 0 1 0 0 0 0 1 1 0 1

Red. open (not overlapping and
POT RL > GEV RL)

Red. filled (not overlapping
and POT RL < GEV RL)

Our consideration of a varying threshold for POT was roughly equivalent to considering a linear
trend in the location parameter (µ) for GEV. Thus, those situations in which µ shows a linear trend,
and σ for GEV and GPD shows no trend should be similar. The gauges that disagree (such as “agr”)
may be a result of the sampling, because lower values are considered using the BM approach. By way
of example, Figure 7 shows the behavior with the two approaches for the gauge “agr” in autumn.
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Figure 8 shows the comparison of the two approaches for the gauge “dto” in winter. Again, the
decrease in the location parameter is greater than that in the threshold due to the lower maximum
values, especially in the second half of the time series. This leads to a lower value of Z20 for 2020 when
using GEV than when using POT. The same is the case for the gauge “cal”.
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Table 3. Degree of the parameters for GEV (location and scale) and POT (scale) for winter. Zero means
no trend and 1 linear trend.

Code cal dto eca lib log val alr bad reu vig vil

Location-GEV 1 1 0 1 0 0 0 0 0 0 0
Scale-GEV 0 0 0 0 0 0 1 0 0 0 0
Scale-POT 0 0 0 1 0 1 0 0 1 1 0

Red. open (not overlapping and POT
RL > GEV RL)

Red. filled (not overlapping and POT
RL < GEV RL)
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Table 4. Degree of the parameters for GEV (location and scale) and POT (scale) for spring. Zero means
no trend and 1 linear trend.

Code agu cue mon vdl nav

Location-GEV 0 0 0 0 0
Scale-GEV 1 1 0 0 0
Scale-POT 0 0 1 1 1

Red. open (not overlapping and
POT RL > GEV RL)

Red. filled (not overlapping
and POT RL < GEV RL)

4.3.2. Using the Stationarity Test

The next step is to estimate the 20-year RLs for 2020 obtained by extrapolating the linear trends
in the daily mean and standard deviation of the amount of rain for rainy days and in the number of
rainy days [12]. The hypothesis that the non-parametric temporal evolution is essentially linked to
the evolutions of the mean and the variance (the methodological approach mentioned in [12]) had
previously been used to test the stationarity of the extremes of standardized residuals of the time
series. Table 5 shows the percentage of gauges that verified this stationarity at a 90% confidence level.
The stationarity test was reasonably well satisfied by both methods: for the BM approach, 87% of
the gauges satisfied the test in autumn and spring and a lower proportion, 78%, in winter; for the
POT approach, greater proportions of gauges satisfied the test: 95% in autumn and spring and 92%
in winter.
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Table 5. Percentage of the stations that completely satisfied the stationarity of the extremes of the
residuals for the three seasons considered, using the two methods.

GEV POT

Autumn 87% 95%
Winter 78% 92%
Spring 87% 95%

Having checked that the stationarity test is fairly well satisfied by both methods, we then estimated
the 20-year RLs for 2020. Figure 9 shows the spatial distribution of the stations with an RL obtained
with POT that was within the CI of the RL obtained with GEV. The comparison showed similar results
for the two methods, giving overlapping CIs for all the gauges in winter, and all except one in both
autumn and spring.
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Figure 9. Spatial distribution of the 20-year RLs for 2020 obtained through the stationarity test for the
POT that lie or do not lie within the CI of the 20-year RLs for 2020 obtained for the BM.

It should be noted that we did not extrapolate the trends in parameters, but the trends in mean
and variance. These trends are the same for the means in both approaches, but not for the variances, as
shall be explained below. The differences in the Z20 results may thus come from the variance trends
and/or from the selected high values of Y(t): the annual maxima or excesses of the 95th percentile,
which may lead to different extremes for Y(t). We took into account the proportion of rainy days with
the POT, but not with GEV, so that the computation of the extremes of X(t) is different from that of Y(t).

To go into greater depth of the exceptions (red circles in Figure 9), let us now analyze these two
gauges explicitly. The gauge that is the exception in autumn is “mfr” with Z20-POT=81.04 (64.41;86.03)
outside the CI of Z20-BM=73.39 (63.96;80.43).
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This gauge shows a negative (positive) trend for variance using the BM (POT), leading to different
results for Z20 when extrapolating these trends. There is also a positive trend in the number of rainy
days. However, the variance with the two methods is different because all-days were used for the
BM, but rainy-days-only for the POT. This is another drawback of the BM approach: mixing rainy
and non-rainy days mixes two different processes, so that the variance mixes them, as well. Figure 10
shows the comparison between the two approaches using this gauge “mfr” in autumn in the two top
panels and the evolution of the mean, standard deviation and number of rainy days in the three bottom
panels (seasonal values in black, linear trends in red). This highlights the importance of considering
rainy-days-only because, when all days are considered, a positive trend in variance of the rain of rainy
days and in the number of rainy days can result in a negative trend in variance.
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Figure 10. Comparison of GEV/POT for gauge “mfr” in autumn, but considering Y (two top panels)
and the evolution of the mean, standard deviation and number of rainy days (seasonal values in black,
linear trends in red) in the three bottom panels.

The gauge that is the exception in spring is “reu” with Z20-POT=51.58 (36.46; 59.10) outside the CI
of Z20-GEV=44.80 (33.64; 51.11). It shows a positive trend for variance with both methods, with a more
positive trend in the number of rainy days producing a higher Z20 when using the POT technique.
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4.4. Changes in Future 20-Year RLs

Although extrapolating recent trends may not be the best approach to computing future RLs, the
comparison here was aimed at analyzing the differences induced by changes similar to those already
experienced. For both techniques, BM and POT, the spatial distribution of the differences between
the 20-year RLs obtained for 2020 using the latter method (stationarity test) and those corresponding
to the present day are shown in Figure 11. The changes for the BM are on the left, and those for the
POT on the right, with blue (red) meaning decreasing (increasing) values of the 20-year RLs for 2020.
The scale used is the same for both approaches. For the three seasons considered, the two approaches
usually give similar results, although there are some remarks that need to be made. In autumn, there
is an increase in the western IP and a decrease in the east, although there is also an increase in the
southeast. The increase in the northeast with the BM (left) is greater than with the POT. In winter, most
of the IP presents a decrease in the 20-year RLs for 2020, with only a small area in the southeast having
increasing RLs, this being more notable with the POT approach.
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5. Discussion

The estimation of the 20-year RLs for the present day with both the BM and the POT approaches
led to similar results regardless of whether rainy-days-only or all-days (rainy and non-rainy) datasets
were used. There were only a few gauges showing non-overlapping CIs (one for autumn and
winter and three for winter), with the RL obtained from the POT approach being greater than that
corresponding to the BM. It is important to note that, because of the large number of zeros, the
asymptotic assumption in the case of the BM is weakened, i.e., the maximum in the rainfall time series
is not the maximum of 90 values (which is of course already quite far from infinity), but of far fewer.

The study of the 20-year RLs for a near-future time obtained through the extrapolation of the
trends in the parameters of the extreme value distribution led to similar results for a great part of the
gauges using both the BM and the POT approaches, although there were some exceptions. These were
mainly related to the decrease of extreme rainfall at the end of the study period. The decrease in
location was greater than that in the threshold due to the lower maxima during the last part of the
time series. Even if one considers the maxima obtained with the BM approach that are lower than
the mobile threshold (red circles in the upper panel of Figure 7), most of them occur at the end of the
observation period and also correspond to years that have no maximum precipitation value with the
POT approach (black dots in the same figure). This leads to a lower 20-year RL value in 2020 using
GEV than using POT when extrapolating the parameters of the extreme value distribution.

The results of the study of the changes between the present day and future 20-year RLs by using
the stationarity test were, in general, similar for the BM and POT. They pointed to an important
consequence: autumn, instead of winter, would be the season with most extreme rainfall in the western
IP due to the sharp increase in the RLs in the future. This is coherent with previous results [9,10]
indicating a significant positive trend for extreme rainfall over the western half of the IP and with the
findings of a regional study [12] of an area in the southwestern IP, which showed the same behavior.
An increase in the frequency of extreme precipitation in autumn for the same area of the IP has been
described as being due to increased northwesterly flows [25]. However, most of these changes are not
significant because, for most of the gauges, the CIs overlap. This is important because the estimation
of RLs is highly uncertain, especially in the context of climate change. In the comparison of the two
approaches used to compute the RLs, the stationarity test led to more robust results than using trends
in the parameters of the extreme value distribution. The disadvantages of the latter were its reduced
sample size, sensitivity to the threshold selection and the fact that there were negative trends in extreme
rainfall events at the end of the study period when using the BM. These problems are related to the
conclusions drawn in a previous work [12].

The present work has estimated future RLs by extrapolating the observed trends. This does not
allow the different signals involved—climate change and inter-annual variability—to be separated.
In order to better understand the impact of climate change on extreme rainfall over the IP,
complementary analyses with the aid of climate simulations might be necessary. The generally
linear trends identified from observed time series and then extrapolated into the future involve both
climate change and inter-annual variability signals present in the period of observation. In this sense,
there has been a study of how to discriminate the sources of variation in changes of several precipitation
characteristics, including heavy precipitation, for the end of the Twenty-First Century over the Rhine
Basin [26]. One of the conclusions was that, except for the summer season, natural variability explains
a considerable proportion of the variance of the changes in precipitation and is the dominant factor in
the winter season. It is noteworthy that extreme rainfall changes for the Iberian Peninsula are different
from those in other regions. For instance, some studies have found evidence of increasing trends in
intensity for various European regions, with the Czech Republic being an example [27].

6. Conclusions

We have described an EVT study to estimate non-stationary RLs of extreme rainfall for the present
day and the near future over the IP. We used a complete dataset of 76 gauges for the period 1961–2010.
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Two EVT approaches, BM and POT, were applied to estimate the 20-year RLs for the present day and
those expected for 2020.

Two methods were used to compute future rainfall RLs with the POT approach. In the first, trends
in the extremes were identified considering all-days rainfall data, taking into account a time-varying
threshold based on a linear quantile regression and, when appropriate, a trend in the GPD scale
parameter. In the second, the RLs were calculated considering rainy-days-only data, examining the
impact of evolutions of the mean and variance and of the number of rainy days. In this second case, a
novel adaptation of a stationarity test that had been designed and used for temperature time series
was applied to rainfall, finding that it was indeed satisfied for most of the gauges for all three seasons
considered. As in [12], this second procedure was found to have fewer disadvantages than the first and
could therefore be applied in using the evolution of mean and variance projected by climate models
for the estimation of future RLs.

The estimation of the present-day 20-year RLs considering all-days (rainy and non-rainy) and
rainy-days-only datasets led to similar results for the two approaches, with only a few gauges giving
different RLs with BM and POT, as was described in detail in the previous section. When using the
BM, the asymptotic assumption is weakened because, in some areas of the IP, the rainfall time series
include very many days with zero rainfall, and the BM is sometimes not a real maximum.

This study has estimated the 20-year RLs expect for 2020, with the main objective having been to
compare two EVT methods, BM and POT. There were some exceptions to the generally equivalent
behavior, which confirmed that POT is a better method for estimating RLs, with BM being less reliable
because fixed blocks lead to the selection of non-extreme values. Furthermore, the study of the changes
in the near-future RLs over the IP showed that, for some regions, autumn, not winter, is the season
with the heaviest rainfall over recent decades due to the increase in the RLs for the western IP.
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