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Abstract

Advances in computing technology and remote sensing field have fostered the development of
powerful spectrometers that are able to collect large volumes of hyperspectral data. These data
are characterized by their high spectral resolution, recording solar radiation and absorption
of surface materials by measuring different wavelengths, along the electromagnetic spectrum.
As a result, hyperspectral imaging (HSI) is a popular topic within the remote sensing field
because of the large and rich amount of both spectral and spatial information it contains,
which allows for better characterization and exploitation of the Earth’s surface. However, HSI
data processing methods must face great challenges, especially those supervised classification
methods, due to the high spectral dimensionality of the data (which introduces an important
amount of data variability) and the limited availability of training samples to cover all the
data (resulting in a poor model fit).

In this context, deep learning (DL) methods arise as an interesting solution to enhance
the HSI data processing and classification, reaching promising results in a wide range of
applications within computer vision tasks. This thesis focus its efforts in the development of
new and efficient DL approaches for HSI classification, processing not only spectral informa-
tion but also spatial and spectral-spatial features from original HSI data cube and providing
more robust solutions to overfitting, high dimensionality, data anomalies and data variability.
To illustrate the advantages and benefits of the implemented proposals in comparison with
the current state-of-the-art in HSI land cover classification, several experiments have been
conducted considering real HSI scenes and performing the corresponding comparison with
the available processing methods in the literature.
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General overview of the Thesis

1.1 Challenges of hyperspectral data classification

Advances in communication and computer technologies have provided a great development in
remote sensing and Earth Observation fields, allowing the acquisition of high quality images
of the Earth’s surface, through remote sensors located on aerial and satellite platforms, which
provides a large amount of data with different spatial, spectral and temporal resolutions.
The analysis and processing of these remote data have proven to be very useful in a wide
range of social-economic activities, such as natural resource management, planning of urban
areas, management of agricultural fields, risk prevention and target detection. In fact, remote
sensing missions are currently developed and launched with powerful sensors that are able to
perform a detailed characterization of the observed surface by gathering the acquired data
into images with:

• a high spatial resolution, understood as the level of detail of an image perceived by the
human eye, and expressed in meters per pixel (mpp),

• a high spectral resolution, understood as the number of measurements in the spectral
domain over different wavelengths, usually from the shortwave infrared (SWIR) and
near infrared (NIR) to the visible spectrum, and expressed as the number of spectral
bands contained in the data cube,

• and a wide range of temporal resolution, understood as the availability of data from
the same observation area at different time points, closely linked to the revisit times of
the sensors.

This thesis document focuses particularly on those remote sensing products and images of the
second type, which are characterized by their extensive information contained in the spectral
domain, the so-called hyperspectral imaging (HSI). Specifically, imaging spectrometers
generates HSI products as large data cubes, where each pixel captures the solar radiation
reflected by the scene materials in hundreds of narrow bands along the electromagnetic
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spectrum, providing a “continuous” spectral signature of the observed materials rather than
the discrete information of RGB color models and multispectral images (MSI). This spectral
signature can be interpreted as the unique and distinctive fingerprint of each terrestrial
material, allowing us to “see what the human eye is not able to see”. Such wealth of spectral
information is very useful to make a detailed study of the observed surface, not only to check
its composition but also the state of the soil. Through the application of pattern recognition
and machine learning techniques, HSI images have revolutionized the field of applied remote
sensing, being widely used in precision agriculture activities, the study of pests and crops
diseases, the analysis of the water reserves quality, the chemical composition of the soil, soil
erosion and degradation of coastal zones, for instance.

Multiple methods have been developed with the goal of analyzing and processing effec-
tively, efficiently and with a reasonable computation time, the information contained in the
HSI data cubes, exploiting both the spectral and spatial information. Some of these methods
can be categorized in different groups, depending on the functionality of each one, such
as methods to enhance the spatial resolution (pan-sharpening, for instance), denoising and
recovering techniques to enhance the spectral information of the image, spectral unmixing
techniques, spectral dimensionality reduction and band selection methods to reduce spectral
redundancies and correlations, anomalies and change detection approaches and techniques to
categorize and classify the land cover captured in each pixel, among others. In particular,
this thesis document emphasizes those are methods based on land cover classification, whose
purpose is to assign to each spectral pixel that composes the scene, the category or label
corresponding to the material collected at that pixel.

Framed within machine learning field, the scientific community has developed a multitude
of spectral, spatial and spectral-spatial classifiers to perform HSI land cover classification,
which are often inspired by widely used pattern recognition algorithms (such as the k-means
or the support vector machine, among others) and are specially adapted to process the
spectral-spatial information contained into the HSI data cube. However, the classification
of HSI data is an arduous problem due to the high dimensionality of HSI data, which leads
to a number of difficulties that hinder the performance of traditional classifiers. In a more
detailed way, the main challenges of the HSI data classification are related to the following
factors:

• Although each spectral pixel contained into the HSI scene provides a great deal of
information in the form of spectral signature, its high dimensionality increases the
complexity of classification models. This is due to the so-called peaking paradox,
which demonstrates that the use of additional features increases the number of statistical
parameters employed by the models to define each land cover class.
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• Due to the higher number of statistical parameters that must be estimated, classification
models need more training data with the aim of being able to adjust them correctly. This
may give rise to the curse of dimensionality, whereby, beyond a certain spectral size,
the training set does not contain enough information to correctly tune the large amount
of parameters. As a result, the models are poorly adjusted to the data, producing
over-fitting problems (Hughes phenomenon).

• In addition to the behaviour of classifiers when faced with large data, the internal
characteristics of these data must be taken into account, too. In this sense, the spectral
information contained into HSI data cubes can be affected by several artifacts that
make the classification process harder. On the one hand, uncontrolled changes in the
light captured by the remote sensor can introduce a great variability within the data, for
instance different variations in scene illumination or changes in atmospheric conditions.
On the other hand, some anomalies and limitations in the sensor can hinder the quality
of the spectral information. It must be noted that, in a simple way, the spectrometer
measures the radiation by scattering the light beam that passes through an entrance
slit by means of a refracting element. In this sense, the width of the slit can introduce
some blurring and smoothing effects that hinders the spectral resolution. Also, other
factors, such as a poor radiometric accuracy and signal-to-noise ratio (SNR), can
impact negatively on the quality of the captured data.

• Furthermore, keeping a low bandwidth in order to record the spectral information in
hundreds of continuous narrow bands involves a compromise between the spectral and
the spatial resolutions due to technological limitations. In this sense, the lower the
bandwidth, the lower the received radiation signal, reducing the spatial resolution. As
a result, medium or low-spatial resolution HSI cube are obtained with high mpp, where
each pixel represents a large area from the target surface, so its spectral signatures are
very mixed. This increases the variability of samples that belongs to the same land
cover, while intensify the similarity between pixels belonging to edge zones.

• Finally, the acquisition of labeled HSI samples is already very expensive. This is due
to several factors: on the one hand, satellite HSI-based observation missions remain
poorly represented within Earth Observation field due to their technical constraints
and practical challenges. As a result, the number of current operational spectrometers
are still low compared to other types of remote sensors, such as those spatial-high-
resolution and MSI devices in Landsat, Sentinel and SPOT systems. On the other hand,
the airborne spectrometers cover much smaller areas than the satellite-based sensors,
so the amount of HSI data sets is limited. In addition, repositories with labeled HSI
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scenes are usually not publicly available, being the tagging of each pixel and arduous
and expensive task.

1.2 Efficient deep learning methods for effective
classification of hyperspectral remote sensing data

This thesis focuses its efforts on solving these limitations by developing powerful HSI
classifiers that are highly effective and computationally efficient. In this sense, deep learning
techniques are particularly interesting for this thesis, due to their great success within the field
of computer vision, which has led them to stand out as the current state of the art. Moreover,
deep learning methods offer a great versatility, exhibiting a large generalization power that
makes them universal function approximators. In this sense, deep learning architectures
can model any kind of optimization problem as a mapping function with some inputs and
the desired output, where the mapping function is usually implemented as a deep stack
of operational layers. This hierarchical-based architecture offers a high flexibility when
designing the mapping function, allowing the use of different types of layers and connections.
Moreover, deep models do not require any prior data or handmade-extracted information
about the data, while the forward-backward step mechanism allows to adjust them to the
data automatically. Despite these attractive properties, deep learning methods also exhibit
several limitations when classifying remote sensing HSI data, such as their propensity for
over-fitting when there are few training samples available, the high computational burden
due to the large amount of parameters that must be adjusted and the training degradation
of very deep networks, among others. In order to overcome these shortcomings, this thesis
proposes the study of new deep learning architectures to perform the classification of remote
sensing HSI data in an effective and efficient way, applying techniques of high performance
computing (HPC) (in particular the parallelization of the models over graphics processing
unit -GPU- devices) to improve not only the quality of the classification results but also to
develop an efficient management of deep models in terms of memory and computational
resources consumption.

More specifically, this thesis has the following scientific objectives:

1. The first objective is to analyze and identify the current state-of-the-art in the analysis
and processing of HSI data from remote Earth observation, exploring in the available
literature those DL techniques that have been successfully employed for land cover
classification.

6



2. The second objective is to explore in detail the problem of hyperspectral analysis,
studying the characteristics of current operational sensors and the available data reposi-
tories, identifying the main characteristics, challenges, difficulties and limitations of
the available data.

3. The third objective is to analyze different deep learning based classification methods,
observing their strengths and weaknesses in order to propose, implement and validate
methodological and computational improvements of these methods to enable faster,
more accurate and more efficient analysis of the spectral-spatial information contained
in the captured hyperspectral images, by:

• improving deep learning architectures and algorithms, and

• developing distributed many-core solutions based on GPUs, characterized by their
high performance and low power consumption comparison with conventional
multicore CPUs,

and conducting an exhaustive comparative analysis of the improvements developed
in real applications, using real hyperspectral images obtained by different current
spectrometers, such as AVIRIS and ROSIS instruments in order to validate them.

4. The last objective is to validate the new developed algorithms and models for the
classification of the hyperspectral images, evaluating with special attention those
improvements obtained both in terms of accuracy (through well-known metrics such as
overall accuracy -OA-, average accuray -AA- and kappa coefficient -K-) as well as in
terms of complexity and execution time, through a comprehensive and fair comparison
with the classification methods employed by the scientific community.

Following these objectives, this thesis by compendium presents the results obtained
throughout the PhD period in six different publications, which have been submitted and
published by several international journals with impact index:

• The first article, entitled Scalable Recurrent Neural Network for Hyperspectral Image
Classification [249], introduces one of the most widely used deep learning architectures
in the field of computer vision, the recurrent neural network (RNN), which have been
adapted to perform the spectral-based classification of HSI scenes. In particular, the
new simple recurrent unit (SRU) is tested, applying a GPU-parallelized implementation
in order to obtain not only good accuracy results but to achieve also a competitive
performance in terms of run times and data scalability. The quantitative and qualitative
results obtained from the experiments demonstrate the benefits of the proposal, whose
computational results stand out in comparison with current RNN implementations.
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• The second article, entitled A New Deep Convolutional Neural Network for Fast
Hyperspectral Image Classification [246], takes a further step into the deep learning
field, applying the most popular architecture, the convolutional neural network (CNN),
to the classification of HSI scenes employing spectral-spatial information in an efficient
way. In addition to conducting a detailed study of how spatial information affects the
classifier, the results obtained during the experimentation demonstrate the superiority
of the proposal when compared to other implementations.

• The third article, entitled Neighboring Region Dropout for Hyperspectral Image Classi-
fication [247] delves into the performance of the CNN model. In particular, this paper
focuses on those mechanisms that improve the generalization and learning procedure
of the network based on data occlusion and dropout techniques. In this context, it pro-
poses a new spatial occlusion method to enhance the performance of the model during
the training stage when dealing with HSI data classification problems. The proposal
achieves outstanding results in comparison with standard regularization methods.

• The fourth article, entitled Visual Attention-Driven Hyperspectral Image Classification
[138], follows the research line of the previous ones, studying new implementations to
improve and enhance the CNN model accuracy and performance during HSI classifica-
tion tasks. In this case, the proposal takes advantage of residual and skip connections
along the CNN model, applying visual attention mechanism to enforce the most in-
teresting spectral-spatial features contained into the HSI scene by applying masks
automatically learned by the model. Obtained results demonstrate that the approach is
more robust to over-fitting than traditional implementations, achieving higher accuracy
values with very small training sets.

• The fifth article, entitled Neural Ordinary Differential Equations for Hyperspectral
Image Classification [248], proposes a re-interpretation of the residual architecture for
CNN models. In this context, residual network (ResNet) for HSI data classification
is able to reach very good results in terms of accuracy in comparison with standard
CNNs, however its complexity and depth drastically increase the memory and runtime
consumption as we add residual blocks. To overcome this limitation, the proposal
re-interpret the traditional-discrete ResNet as a continuous-time ordinary differential
equation (ODE), drastically reducing the number of parameters (and therefore the
memory consumption) to be trained, while maintaining or even improving the accuracy
results compared to the current state-of-the-art in HSI data classification.
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• Finally, the sixth article, entitled Capsule Networks for Hyperspectral Image Classi-
fication [244], redesigns the CNN model, grouping the basic convolution layer into
capsules of different levels, which are connected through a dynamic routing that al-
lows the learning of spatial relationships, something that CNN cannot achieve due to
mechanisms such as pooling. The result is a model which is significantly more robust
to over-fitting problems when training with few training samples than standard CNNs,
overcoming the results obtained by the current state-of the-art in HSI classifiers.

All the proposed models have been implemented on GPUs, seeking to optimize computational
resources. Moreover, as we can observe, the considered publications in this document main-
tain the same research line, which is mainly focused on the classification of the land cover of
HSI scenes through the implementation of new and efficient deep learning techniques, which
are adapted to the computational power of current computing devices to provide accurate
results in reasonable execution times. Furthermore, these techniques aim to overcome the
limitations of traditional classification algorithms when dealing with complex HSI data,
extracting spectral, spatial and spectral-spatial features from the HSI data cube and providing
more robust solutions to over-fitting, high dimensionality, anomalies and variability of HSI
data. To illustrate the advantages and benefits of the implemented proposals in comparison
with the current state-of-the-art, the conducted experiments consider a large variety of real
HSI scenes, which have been widely used by the scientific community as benchmarks.

In order to introduce the above mentioned scientific contributions in a clear and
contextualized way, this thesis will be organized following the structure proposed by the
survey conducted by the PhD student entitled Deep learning classifiers for hyperspectral
imaging: A review [243], which presents a systematic review about the available deep
learning architectures and their application for HSI data processing in classification tasks,
highlighting their strengths and weaknesses in comparison with shallow models and standard
machine learning methods, and analyzing the current trends. In this context, the original
paper have been also included into this compendium of publications as scientific review.
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Abbreviations

List of acronyms and abbreviations used in this thesis:

AA Average accuracy
AE Autoencoder
AIS Airborne imaging spectrometer
ANN Artificial neural network
AVIRIS Airborne visible infrared imaging spectrometer
AVIRIS-NG Airborne visible infrared imaging spectrometer next generation
BIL Band-interleaved-by-line
BIP Band-interleaved-by-pixel
BIP Big Indian pines scene
BSQ Band sequential
CapsNet Capsule network
CASI Compact airborne spectrographic imager
CHRIS Compact high resolution imaging spectrometer
CNN Convolutional neural network
CONV Convolution layer
CPU Central processing unit
DAE Deep autoencoder (synonym of SAE)
DBN Deep belief network
DenseNet Dense network
DESIS DLR Earth sensing imaging spectrometer
DL Deep learning
DN Digital number
DNN Deep neural network
EDNN Extremely deep neural network
ELM Extreme learning machine
EnMAP Environmental mapping and analysis program
EO Earth Observation
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ER Evidential reasoning
FC Fully connected
FE Feature extraction
FOV Field of view
GAN Generative adversarial network
GLAC Gradient local auto-correlation
GPU Graphics processing unit
GRU Gated recurrent unit
GSD Ground sample distance
HISUI Hyperspectral imager suite
HOG Histogram of oriented gradients
HPC High performance computing
HSI Hyperspectral imaging
HYDICE Hyperspectral digital imagery collection experiment
HYMAP Hyperspectral mapper
HyspIRI Hyperspectral infrared imager
IAP invariant attribute profile
IFOV Instantaneous field of view
IP Indian pines scene
IS Imaging spectrometry
ISODATA Iterative self-organizing data analysis technique
K Kappa coefficient
KNN K-nearest neighbors
KSC Kennedy space center scene
LBP Local binary patterns
LDA Linear discriminant analysis
LR Logistic regression
LReLU Leaky rectified linear activation function
LSTM Long short term memory
MFN Multilayer feedforward network
ML Machine learning
ML Maximum likelihood
MLP Multilayer perceptron
MLR Multinomial logistic regression
MP Morphological profiles
mpp Meters per pixel
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MSE Mean squared error
MSI Multispectral imaging
NIR Near infrared
OA Overall accuracy
ODE Ordinary differential equation
PCA Principal component analysis
POOL Pooling layer
PR Pattern recognition
PReLU Parametric rectified linear activation function
PRetanh parametric rectified tanh
PRISM Portable remote imaging spectrometer
PRISMA Precursore iperspettrale della missione applicativa
RBF Radial basis function
RBM Restricted Boltzmann machine (RBM)
ReLU Rectified linear activation function
ResNet Residual neural network
RF Random forest
RNN Recurrent neural network
ROSIS Reflective optics system imaging spectrometer
RS Remote sensing
SAE Stacked autoencoder
SAM Spectral angle mapper
SC Sparse coding
SDAE Stacked denoising autoencoder
SDAE Spatial updated deep autoencoder
SeLU Scaled exponential linear unit
SHALOM Spaceborne hyperspectral applicative land and ocean mission
SIFT Scale invariant feature transform
SL Statistical learning
SNR Signal-to-noise ratio
SOM Self-organizing map
SRU Simple recurrent unit
S-SAE Segmented stacked autoencoder
SURF Speeded-up robust features
SV Salinas valley scene
SVM Support vector machine
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SWIR Short-wave infrared
UAV Unmanned aerial vehicle
UH University of Houston scene
UP University of Pavia scene
UV radiation Ultra-violet radiation
VDNN Very deep neural network
VSWIR visible-to-shortwave infrared
VRU Vanilla recurrent unit
WOS Web of Science
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Hyperspectral imaging classification

3.1 Introduction:
Remote sensing and imaging spectrometry

Within the field of Earth Observation (EO), the terms remote sensing (RS) and imaging spec-
trometry (IS) are closely linked, where the former emphasizes the recording of information
through non-contact observation procedures, i.e. without the observed target and the capture
device coming into direct physical contact [102, 299, 330], and the latter emphasizes the
nature of the gathered information. Focusing on RS, despite there is no single and universally
accepted interpretation about RS [111], some authors have refined the above broad definition,
focusing it on the capture, treatment, analysis and interpretation of some type of emitted
or reflected signal from the Earth’s surface by measuring the behaviour of the signal waves
when they interact with terrestrial matter through remote sensors located on mobile platforms,
such as spacecraft and aircraft [44, 315]. This interpretation leaves us a very wide margin
of study, embracing remotely sensed data based on the measurement of a wide variety of
signals, such as seismic, sonic and electromagnetic waves. In this context, this thesis focuses
its study on the RS dedicated to the analysis of the electromagnetic radiation reflected by
terrestrial materials.

Electromagnetic radiation can be understood as a wave motion, for which electric and
magnetic fields oscillate periodically and perpendicular to each other and to the direction
of propagation. In particular, it spreads in harmonic and sinusoidal fashion defined by its
wavelength λ , amplitude A and frequency ν , propagating at a speed c, which can reach
3× 108 meters per second (m/s) the in the vacuum space. These parameters are closely
related through Eq. (3.1):

c = νλ , λ = c/ν and ν = c/λ (3.1)

Moreover, the frequency ν and wavelength λ can be determined by the energy of a quantum,
which is the minimum unit and fundamental particle that carries the electromagnetic energy
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Fig. 3.1 Detail of the electromagnetic spectrum, coupled with traditional remotely sensed
images according to their spectral resolution

[5, 274]. In this sense, the greater the energy of the quantum (denoted as Q), the greater the
frequency ν . On the contrary, the greater the energy of the quantum, the smaller wavelength
λ . This relationship can be extracted from Eq. (3.2):

Q = hc/λ = hν (3.2)

where h denotes the Planck’s constant. As a result, the electromagnetic spectrum can be
obtained as the set of all electromagnetic radiations, arranged according to their wave-
length/frequencies in different regions of the spectrum, which in turn defines their behaviour
during the emission, transmission and absorption of the energy they convey. Fig. 3.1 dis-
plays the electromagnetic spectrum arranged from the shortest wavelengths (i.e. the waves
with highest frequencies) to the longest wavelengths (and therefore, the waves with lowest
frequencies).

Nowadays, all wavelengths are used for different tasks and applications, from the ap-
plication of gamma rays for the treatment of cancers through radiotherapy procedures, to
the use of radio waves for the transmission of information such as radio and television
broadcasts or WiFi signals. However, in RS field the use of certain wavelengths is limited by
the atmosphere absorption phenomena [276]. For instance, the ultra-violet radiation (or UV,
which is in the range 0.001-0.01µm) is largely scattered by the atmosphere, so it is usually
discarded in RS applications. On the contrary, the visible and infrared regions (in the ranges
0.4-0.75µm and 0.75-1000µm, respectively) contain a significant number of wavelengths
that are unaffected by atmospheric absorption, identified as atmospheric windows [95, 296],
while the radio waves are almost unaffected, being able to go through the clouds. In this way,
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the following spectral regions have been identified as the most interesting for the exploitation
of RS information [276]: i) the so-called optical wavelengths of the visible and infrared
regions, ii) the thermal wavelengths of the infrared region, and iii) the radio wavelengths of
the microwave and radio spectral regions. Taking this into account, the field of study of this
thesis can be defined more closely, being mainly focused on the analysis of optical RS in
general, and on the solar radiation reflected by surface’s objects and material in particular.

At this point, it is interesting to introduce the IS as a technique to analyze the physical-
chemical characteristics of a target by measuring its reflected, emitted and transmitted
radiation along the electromagnetic spectrum [120], obtaining much more data than the
human eye is able to detect. In this regard, the use of imaging techniques has become a key
method within RS field, providing a huge amount of data collected from one surface area by
measuring over a wide range of spectral wavelengths. The combination of both techniques has
boosted the electro-optical RS field [13], developing a wide variety of activities, mechanisms
and technologies for the accurate acquisition of electromagnetic information about the Earth’s
surface, as well as powerful sensors that are able to collect valuable data about the target
materials and objects that other type of sensors cannot cover.

Fig. 3.2 Remote sensing system overview based on capturing solar radiation reflected by
materials on the Earth’s surface. Imaging spectrometers capture in each element of the
scene the degree of absorption/reflection of the signal along different wavelengths within
the electromagnetic spectrum. The raw data obtained is usually transferred to the ground
segment for further processing.

In particular, great efforts have been invested in those visible-to-shortwave infrared
(VSWIR) specialized imaging spectrometers, which are able to measure the spectrum in
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the ranges from visible (in the range 0.4-0.75µm) to near-infrared (the so-called NIR, in
the range 0.75-1.4 µm) and shortwave infrared (also known as SWIR, in the range 1.4-
3µm) wavelengths, sponsored by the significant advances in hardware devices and software
frameworks [54, 195]. This has led to a great development of the the remote sensing
hyperspectral imaging (HSI) techniques, which has gained increasing popularity within the
EO field [53]. Looking at Fig. 3.1, we can observe that HSI systems collect the spectral
information into hundreds of narrow and continuous bands, where each band contains the
reflectance measurement at the corresponding wavelength [120], denoted as ρ(λ ):

ρ(λ ) = (ER(λ )/EI(λ )) ·100 (3.3)

where ER(λ ) is the energy at wavelength λ reflected from the captured material and
EI(λ ) = ER(λ )+EA(λ )+ET (λ ) is the original energy at wavelength λ that impacts the
observed material, which can be obtained as the combination of those energies reflected,
absorbed EA(λ ) and transmitted ET (λ ) by the material. As a result, a distinctive, unique
and continuous spectral signature is obtained for each captured target, as opposed to broad-
band systems, such as standard RGB color maps and multispectral sensors (MSIs), which
discretize the spectral information into a few (at most tens) spectral bands, under-sampling
the available information [320]. In this sense, HSI sensors gather extremely valuable and
rich information to understand the different phenomena of the Earth’s surface on a local and
global scale through the availability of HSI sensors located on a wide range of platforms,
including manned and unmanned aerial platforms, satellite platforms and even in-situ ground
imaging platforms [4, 21, 239].

Related to this, Fig. 3.2 provides a general overview of a standard HSI-RS system, while
Fig. 3.3 shows some details of a standard HSI sensor (particularly, a push-broom HSI sensor).
In this regard, one of the most widely used methods for HSI data acquisition is to raster-scan
the scene as the aerial/satellite platform moves along the target region’s surface (the so-called
along-track direction), where HSI sensors works as line scan spectrometers [222, 293, 316].
By combining spectroscopy and digital imaging, the sensor device images a footprint or
swath (which depends on the instantaneous field of view, IFOV) of the target area, acquiring
a sequence of pixels and producing at an integration time a band-interleaved-by-line (BIL)
matrix with the reflectance measurements along different wavelengths for each pixel. To do
this, the sensor projects the scanned line onto an entrance slit and then refracts the signal
at hundreds of different wavelengths (considering a narrow bandwidth, which is usually
between 4-15nm) through a dispersing element. This element changes the speed of the
electromagnetic radiation, bending different wavelengths at different angles as they slow
down at different speeds. The final sensing elements collects the information contained into
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Fig. 3.3 Standard scheme of an imaging spectrometer following spatial scanning procedure.
As the platform moves, the sensor captures the radiation reflected by the materials within
its field of view (FOV), scanning a swath of the target area depicted by the instantaneous
field of view (IFOV). This radiation is treated through a lens system and refracted at different
wavelengths by a dispersing element. Then, the refracted signal is recorded by the camera’s
sensor at every spatial position.

these wavelengths, creating the matrix by assigning a digital number (DN) to each pixel.
As the mobile platform moves across the observed region (it must be synchronized with
the capture-rate of the sensor), multiple matrices are gathered and staked together in a BIL
encoded data cube [10, 105]. After some corrections, the raw HSI data cube is transmitted
to the ground segment, where its final post-processing is made1. As a result, the final HSI
data cube is obtained, which can be interpreted as a batch of several images, where each one
correspond to a spectral band with wavelength λ .

From its early applications in the 1980s as a pure research tool [119, 271], where
HSI sensors located on aerial platforms recorded the surface information in different flight
campaigns [28, 184, 78], such as the Jet Propulsion Laboratory instruments Airborne Imaging

1In addition to line scanning performed by push-broom imaging spectrometers, there are other techniques
for HSI data acquisition, such as point scanning, which is performed by whisk-broom imaging spectrometers
by replacing the entrance slit with an aperture point. These sensors acquire all the spectral bands pixel by pixel,
imposing that sensors have to move not only along-track but also across-track directions. The resulting data
cube is stored following the band-interleaved-by-pixel (BIP) encoding. Comparing line scanning with point
scanning, some works point out the simpler operation and higher signal-to-noise ratio (SNR) of push-broom
sensors, coupled with their more compact and less heavy design in comparison with whisk-broom devices
[4, 76, 105]. However, push-broom sensors suffer some artifacts that jeopardize the spectral information [230].

Spectral, wavelength or plane scanning is also another interesting HSI acquisition technique, where stationary
sensors employ band-pass filters to spectrally scan the entire scene band by band, alternating the filters to
capture the desired wavelength. As a result, the data cube obtained is stored following a band sequential
(BSQ) strategy [4]. More recently, some HSI data acquisition approaches explore the non-scanning or snapshot
imaging techniques [129], which are able to collect the spectral-spatial features of the scene during a single
detector integration period.
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Spectrometer (AIS) [323] and the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS)
[124], the VSWIR-IS has evolved not only for research purposes but also for operational
and commercial applications [100, 301], developing a wide range of aerial and satellite
imaging spectrometers, and recently also stationary and hand-held sensors that are currently
producing high-quality HSI data [79, 117, 212]. For instance, Table 3.2 provides some details
of the most popular spectrometers [268] (it should be noted that not all sensors are currently
operational, for instance Hyperion sensor was decommissioned on March 20, 2017 [165],
while the updated HyspIRI mission is scheduled for release in 2020/2021 [159]).

Table 3.2 Some popular airborne and satellite HSI sensors/missions. Some spectral-spatial
features are provided. On the one hand, focusing on spectral characteristics, this table
provide the number of collected bands, the range of considered wavelength (in µm) and the
bandwidth (in nm). On the other hand, the ground sample distance (GSD, in mpp) is supplied
as the main spatial feature.

Sensor Bands Range Width GSD

A
ir

bo
rn

e

AVIRIS [124] 224 0.36-2.45 10 20
AVIRIS-NG [42] 600 0.38-2.51 5 0.3-4.0
CASI [16] 144 0.36-1.05 2.4 2.5
HYDICE [278] 210 0.40-2.50 10.2 1-7
HYMAP [73] 126 0.45-2.50 15 5
PRISM [231] 248 0.35-1.05 3.5 2.5
ROSIS [186] 115 0.43-0.86 4 1.3

Sa
te

lli
te

CHRIS [80] 62 0.415-1.05 5-15 18-36
DESIS [92] 180 0.40-1.00 3.30 30
EnMAP [126] 228 0.42–2.40 5.25-12.5 30
HISUI [162] 185 0.4-2.5 10-12.5 30
Hyperion [255] 220 0.40-2.50 10 30
HyspIRI [196] - 0.38-2.51 10 30
PRISMA [261] 237 0.40-2.50 ≤12 30
SHALOM [100] 241 0.40-2.50 10 10

Some of these sensors exhibit impressive data acquisition rates, which are usually in the
order of gigabytes per day (GB/day). In particular those spectrometers located at spacecraft
platforms are able to acquire huge volumes of HSI data, such as Hyperion, which was able
to record 1.6 TB/day. Nowadays, the HISUI instrument is currently collecting 690 GB of
HSI data per day, and the SHALOM device has an acquisition rate of 837 GB/day, while
EnMap and PRISMA missions are capturing 75 GB/day and 51.25 GB/day respectively
[267]. Considering airborne spectrometers, they are limited by both the maximum flight time
of the airborne platform and the available storage capacity. For instance the whisk-broom
AVIRIS sensor is capable of acquiring 9 GB/h, with a data capacity of 10 GB per flight [318],
while its airborne platform has a maximum flight time of 5-6.5 hours.
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The large flow of HSI data generated coupled with the impressive amount of both
spatial and spectral information they provide, have made HSI data a powerful source of RS
information, allowing the accurate land cover categorization at pixel level. In this sense, the
exploitation of this kind of data is reaching promising results in a wide range of applications
[155, 174, 320, 320]. The vast majority of applications are focused on the management,
exploitation and conservation of natural resources2, followed by agriculture activities3

[4, 232] and urban planning [145, 146, 213]. The potential of HSI data in the prevention
and management of natural risks and disasters has also been demonstrated [281, 320, 326].
Finally, other activities in which it is possible to exploit the spectrum-spatial information of
HSI cubes are military and defense applications [40, 122, 277] and archaeological prospects
[49, 291], being the NIR and SWIR information pretty useful for buried structures detection.

As a result of its application in this wide range of social and economic activities, the
demand for HSI processing methods has increased over the past few years, positioning HSI’s
technology and data products as a hot topic within RS [243]. In this sense, it is mandatory
to design, develop and implement effective techniques and methodologies to efficiently
extract the information contained in the HSI cube. There are currently a large variety of HSI
processing methods, which can be classified into the following categories, depending on their
purpose [50]:

1. HSI data restoration [112, 358] and denoising [59, 217, 335, 339]: the purpose of these
HSI processing methods is to reduce those anomalies and noises introduced both by the
sensor’s own electronic, optical and thermal artifacts and by atmospheric phenomena.

2. Resolution enhancement [93, 228, 348, 347]: usually, HSI scenes exhibit a low spatial
resolution because of the technical limitations of the sensor, whereby the narrower the
bandwidth, the worse the spatial resolution. The goal of these methods is to enhance
the spatial resolution of HSI data, for instance by combining the spatial information of

2For instance, in forestry and natural environment management, some relevant works focus their research on
exploit the spectral-spatial information contained into HSI data cubes to analyze the status and health of forests
[75, 177, 298] and those areas of special environmental interest, such as mangrove forests [148], wetlands [3],
coastal zones [258, 295] and other ecosystems [125]. Other works focus on the application of HSI techniques
for the management of marine and water resources, by analyzing the water quality in lakes, rivers and coastal
zones [38, 39, 94, 179, 240], for instance. Also, some research have successfully employed HSI data to map
mineral deposits [2, 275, 292] and to analyze soil degradation [373].

3There are some interesting works that explore the potential of HSI data in precision agriculture [128], for
instance by studying the water status of crops for irrigation scheduling [283] or even the crop water content
[52] and chemical features [118, 227, 314]. Other works propose the analysis and control of crop variability
through HSI data [343]. Also, some research proposes the use of HSI data as an effective tool for pest and crop
diseases control [257, 306, 365], while others consider this kind of data for analyzing the effect of agricultural
activities on soil erosion and degradation, and the generation of associated residues [11, 20, 51].
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high-resolution scenes with the spectral information of the HSI cube or by applying
super-resolution techniques.

3. Dimensionality reduction [41, 137, 297] and band selection [89, 127, 156, 289]: due
to the dense and narrow spectral sampling of HSI instruments, the resulting data cubes
if affected by a high correlation between consecutive bands, so there is a high degree
of spectral redundancy. The purpose of these HSI processing methods is to reduce the
high spectral dimensionality of HSI data cubes by removing the redundant information
and keeping the most significant and discriminative information.

4. Data compression [70, 259, 266]: on the one hand, the huge amount of spectral data
increases dramatically the storage and computing requirements, making HSI data
cubes difficult to handle. On the other hand, standard compression algorithms become
obsolete due to the different behaviors and relationships between the spectral and
spatial domains. The purpose of these methods is to compress the 3-dimensional cube
while keeping constant spectral-spatial relationships of the data cube.

5. Spectral unmixing [33, 147, 149, 236, 288, 300, 369]: due to the trade-off between the
bandwidth and the spatial resolution of the HSI data cube, it is quite common for HSI
pixels to cover large areas of the target surface, capturing different types of materials
and objects. As a result, the obtained spectral signatures are very mixed. The main
purpose of these methods can be divided into two goals. On the one hand, to estimate
the number of those pure elements of the scene whose spectral signature is not mixed
(the so-called endmembers). On the other hand, to estimate the abundances of these
end members in each pixel vector of the HSI cube.

6. Image segmentation [199–201]: the purpose of these methods is to partition the HSI
data cube into spatially-connected and non-overlapped regions, following a homogene-
ity criterion (which can be based on spectral and/or contextual information).

7. Target [87, 220, 363], object [322, 364] and anomaly [170, 312, 342] detection: the
main purpose of these methods is to detect a particular material within the HSI scene,
by separating it from the rest of the background.

8. Data classification [46, 99, 116, 243]: the goal of these methods is to assign a label to
each spectral pixel contained into a HSI data cube. These labels represents different
land-cover materials, such as man-made materials, crops, artificial structures, different
soil types... As a result a classification map is obtained. The goal of these methods is
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to analyze those spectral, spatial and spectral-spatial features that are characteristic of
each class.

These techniques are not mutually exclusive; on the contrary, they can be combined to im-
prove the extraction, study and application of spectral and also spatial information contained
in the HSI scenes. In particular, this thesis focuses its efforts on the classification of HSI
data because of their great potential in the study and analysis of land cover and land use
[65, 374], being one of the most widespread techniques for HSI data exploitation within
the RS community [55]. In this sense, the following section will delve into the HSI data
classification problem.

3.2 Hyperspectral data classification

Before going deeper into the classification of HSI data, a few mathematical notations should
be introduced. As discussed above, HSI data is a collection of several hundred images
captured from the same scene, where each one contains the corresponding reflectance
measurements obtained at the respective wavelength λ . In this sense, we can observe the
HSI scene as the 3-dimensional array X ∈ Nn1×n2×nb , where n1 ×n2 indicates the height and
width spatial dimensions and nb the number of channels/bands at the spectral dimension.
Therefore, each band contains n1 ×n2 pixels, where the i-th element stores the reflectance
measurement of the captured material at the corresponding wavelength, i.e. xi,t ∈ N= ρ(λt)

with i ∈ [1,n1 ·n2] and t ∈ [1,nb]. Following this notation, all the measurements of the i-th
element can be extracted along the bands to compose the spectral signature of the captured
material, xi ∈ Nnb = [xi,1, . . . ,xi,nb ]. As every material absorbs and reflects the solar radiation
at specific wavelengths due its physical-chemical properties, the obtained spectral signature
represents the fingerprint of the item, being unique and distinctive for each type of matter.
By analyzing this information, we can accurately identify the content of the HSI scene at
pixel level. In this thesis, such analysis will be carried out through classification techniques.

In general, the purpose of any classification method is to allocate the target elements
into groups/classes based on some kind of criteria or invariant property of those elements.
In the case of HSI images, classification methods aim to assign each spectral signature of
the data cube to a label, which can be associated or not to a known land cover type [72], by
analyzing their spectral, spatial and/or spectral-spatial features, being quite different from the
classification of other remote data images. In this context, the classification of HSI data can
be considered an optimization problem, where the classifier is defined as a mapping function,
which may or may not have some parameters θ , f (·,θ) ∈ F drawn from a hypothesis space
F , which describes the relationship between a random feature vector space X (i.e., the
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Fig. 3.4 Graphical overview of HSI data classification. The spectral signature of each
pixel works like a fingerprint of the captured material. Classifiers exploit that information,
analyzing the patterns of each signature to identify the content of the pixel. Asa a result, a
classification map is obtained, where each pixel is tagged with the corresponding label of the
observed coverage.

instance space with all possible observations) and a random target vector space Y (i.e., the
set of unique and mutually exclusive labels), f : X → Y [35, 142]. In this case, the instance
space X is the considered HSI dataset X = [x1, . . . ,xn1·n2] composed by all the spectral
pixels, while Y ⊂ {1, . . . ,nc} comprises the current nc labels. Thus, the goal of f is to obtain
the sample-label pairs {xi,yi}(n1·n2)

i=1 for each HSI pixel, where yi ∈ Nnc is the corresponding
label of the i-th sample in one-hot encoding. The outcome of applying the mapping function
to the entire X is the classification map Y ∈ Nn1×n2×nb , as we can observe in Fig. 3.4.

In the available literature, there is a vast number of scientific contributions about HSI
data classification. In general, these methods have been inspired by previous algorithms that
were originally developed for statistical pattern recognition and computer vision applications.
In this context, these algorithms exhibit a wide variety of methodologies, procedures and
different learning strategies. Moreover, they can be classified through various taxonomies
depending on the criterion considered. For instance, some interesting works [253, 294, 334]
propose a historical line, categorizing the large number of methods and algorithms according
to the perspective of the classification problem that has been evolved over the years. Thus,
some works emphasize the evolution of the classification problem from a purely statistical
point of view, until the development of the automatic learning and the predictive ability of
the algorithms [193]. Therefore, the following sections will briefly review the evolution
of classification methods, reviewing the fundamental concepts from the point of view of
statistical learning (SL) to deep learning (DL) models, through the evolution of pattern
recognition (PR) and machine learning (ML).
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3.2.1 Classification problem: from statistical learning to deep learning

Within the field of artificial intelligence, the problem of automatic processing and learning
has always been a hot topic, developing a large variety of artificial systems in order to analyze
and learn the information contained into any type of dataset (such as numerical, text and
image databases). In fact, data classification challenge has been addressed from different
points of view as algorithms and processing methods have evolved. In this sense, one of the
first approaches was given by SL theory [46, 324], which laid many of the fundamentals on
which PR and ML fields are currently based. In fact, SL can be observed as the theoretical
branch [327].

Following previous notation, SL states that the goal of the mapping function f (·) is to
mimic the joint distribution that relates the instances to their respective labels, i.e. P(X|Y).
To do this, a loss function L (such as the mean squared error –MSE–) is defined to penalize
the distance/difference between obtained predictions f (x) and real labels y, for any (x,y)∼P,
computing the expected risk R( f ) as:

R( f ) =
∫

L ( f (x),y)dP(x,y) (3.4)

If the joint probability P is known, then it is easy to find the hypothesis that best fits the
data through Eq. (3.4) as f ∗ = arg min

f∈F
R( f ). However, P is usually unknown, so Eq. (3.4)

becomes impractical. Instead of R( f ), the empirical risk R̂( f ) is employed. Regarding this,
if we have access to a training set Dtrain = {xi,yi}n

i=1 which contains some information about
P, such as (xi,yi)∼ P, ∀i ∈ [1,n], we can compute the empirical risk denoted by R̂( f ) as:

R̂( f ) =
∫

L ( f (x),y)dPδ (x,y) (3.5a)

symplified as R̂( f ) =
1
n

n

∑
i=1

L ( f (xi),yi) (3.5b)

where Pδ (x,y) denotes the empirical distribution based on Dirac measure δ :

Pδ (x,y) =
1
n

n

∑
i=1

δ (x = xi,y = yi) (3.6)

Considering R̂( f ), empirical risk minimization can be employed to find the hypothesis
f ∗ that best fits the data as f ∗ = arg min

f∈F
R̂( f ). As we can observe, this SL approach has

one important weakness: it is not ensured that f ∗ generalizes outside the data [279]. In this
context, we can roughly suppose that SL focuses more on the theoretical framework and how
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mathematically formalize inference process than on the automatic learning of algorithms,
methods, and models.

The second approaches emerged between the 1970s and 1980s, leading to pattern recog-
nition (PR), which can be defined as the ability to recognize specific patterns or regularities
and respond appropriately to them [286]. Its origins are based on statistics and engineering
[48, 90], providing some of the most important milestones in the data analysis [58] such
as the nearest neighbor decision rules [77, 113], the Bayes decision theory [69, 223, 313],
the implementation of different error rates estimations such as the leave-one-out method
[109, 187], the feature evaluation through statistical distances and error bounds [167, 209],
the probability density estimation in non-parametric problems [252], the Fisher linear dis-
criminant analysis and multicategory generalizations [90, 210, 356], the decomposition of
mixture densities for unsupervised learning [108, 254], the k-means algorithm [163] and
its variants [182, 207] and the supervised parameter estimation [85, 160], to name a few.
Many applications have exploited the potential of PR methods to automatically extract and
process information such as robotics [329], medicine [66, 194], economic forecasting [104],
election statistics [206], social media analysis and language processing [15, 68, 221], among
others. Also, PR algorithms have been successfully employed to the characterization of those
measurements taken from the Earth’s surface [58, 107]. However, due to their engineering
background, PR does not really imply learning the patterns. They can process the infor-
mation from the data either by using the knowledge already acquired or by analyzing the
statistical information extracted from the patterns and/or their representation, which allows
the implementation of traditional handcrafted algorithms that do not even learn from the data.

Fig. 3.5 Graphic description of the relationships between statistical learning (SL), pattern
recognition (PR), machine learning (ML) and deep learning (DL). Broadly speaking, PR
is an engineering application of ML. ML is a form of PR focuses on training machines to
recognize patterns and apply them to practical problems. DL can be understood as a subfield
of ML, where the models are characterised by their hierarchical and deep structure. Finally,
SL gives mathematical support to all the above approaches.

In the 1990s, more emphasis was placed on the learning process by considering statistical
and probabilistic techniques, giving rise to the machine learning (ML) field, which is more
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focused on allowing an artificial system to learn from data rather than through explicit
programming. Indeed, the main objective of ML is to design general purpose methodologies
and procedures to extract valuable information from the data, such as data regularities, hidden
patterns and internal relationships, without it being mandatory to have domain-specific
expertise [84]. Although its origins are based on computer science instead engineering, ML
is closely connected to PR (see Fig. 3.5), in fact all ML methods are applied in PR systems
but not all PR algorithms use ML models [34, 106]. In this regard, ML involves learning
patterns from available data in order to apply the knowledge acquired on new data to make
predictions about them, sacrificing a little precision in exchange for the automatic learning.
There is a broad variety of processing models and methodologies for HSI data classification
based on ML approaches [180, 181]. Regarding this, the current literature offers us a fair
amount of works that review these methods in detail [1, 8, 14, 46, 62, 72, 99, 114, 117,
202, 204, 224, 262, 302, 360], among others. Very briefly, some of the most widely used
algorithms can be grouped into the following categories:

• Unsupervised and supervised methods: Both are learning strategies in which, in the
first case, the methods do not need a guide to learn the internal relationships and hidden
patterns of the data, discovering the information contained by themselves, while in the
second case, the models need a supervision technique in the form of guided training
with labeled data. Some popular unsupervised methods are k-means [135], iterative
self-organizing data analysis technique (ISODATA) [332], k-nearest neighbors (KNN)
[47] or similarity-based measurements [89], for instance, while random forests (RFs)
[130] and support vector machines (SVMs) [226] are very popular supervised methods.

• Spectral, spatial and spectral-spatial methods: These methods differ in the type of
features they use to discriminate between one class and another [24]. For example,
spectral methods (also called pixel-wise methods) use the spectral information con-
tained in the pixel in isolation, while spectral-wise methods also consider the contextual
information that surrounds the pixel. For instance, the spectral angle mapper (SAM)
[45, 43] and the traditional distance metrics based classifiers [88, 172] are quite known
spectral methods, while morphological profiles (MP) [30, 98, 157] and its variant [82]
or the sparse coding (SC) [56, 345] can employ spectral and spatial features.

• Parametric and non-parametric methods: these categories include those methods that
do or do not make some assumptions about the form of the mapping function f (·). In
this sense, parametric models assume the data is from a known distribution, defining
a fixed structure about f (·) and employing a finite number of parameters. On the
contrary, non-parametric models assume the distribution derived from the training
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data, without adopting a fixed structure of f , so the number of parameters will depend
on the data, being potentially infinite. Maximum likelihood (ML) [185], logistic
regression (LR) [12] and linear discriminant analysis (LDA) [88] are some popular
parametric models, while evidential reasoning (ER) [290]) and KNN can be considered
as non-parametric learning methods.

• Stochastic (also probabilistic) and deterministic classifiers: These categories separate
those methods whose output contains a certain degree of uncertainty and those methods
whose output is accurately determined by the input. The most widely used probabilistic
classifier is the multinomial logistic regression (MLR) [134], while SVMs and extreme
learning machines (ELMs) [137] are deterministic, for instance.

However, the ML is a continuously growing field, where new and improved algorithms and
methodologies are constantly being developed to refine and achieve more accurate results
from increasingly larger and more complex data sets. In this regard, promoted by the great
technological advances experienced since the early 2000s, ML has endured a remarkable
transformation due to the development of new deep learning (DL) models [294]. These
models are closely inspired by the biological mechanisms of the human brain, developing a
number of algorithms based on artificial neural networks (ANNs) [131, 264, 346]. The main
idea behind ANNs lies in the extraction of those relevant features from the available data to
obtain abstract representations that allow pattern recognition to be performed without prior
knowledge of the data. Indeed, ANNs can be observed as universal function approximators,
where given a sequence of patterns x1 . . .xn and the sequence of desired responses y1 . . .yn,
the system finds the θ parameters (weights) that best fit the relationship {xi,yi}n

i=1, as we
can observe in Fig. 3.6. In this sense, ANNs exhibit some attractive properties which make
them a good solution for the classification of HSI data within the RS field:

• ANN automatically adjusts its parameters to a new environment as data evolves,
without the need for pre-programmed mechanisms.

• ANN can deal with a large variety of data, whether linear or non-linear, diffuse,
probabilistic or noisy, for instance.

• ANN systematically performs many operations in parallel, allowing its computational
optimization in many-core architectures, such as multicore processors and graphics
processing units (GPUs).

In this regard, DL takes advantage of ANNs to implement very deep and complex architec-
tures, which are based on the stacking of many layers composed by neurons [123, 193]. As a
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result, a deep-hierarchical architecture is obtained, in which each layer is able to provide a
different interpretation of the data it conveys, extracting and learning increasingly abstract
features as it progresses through the network. This has fostered the implementation of very
deep models (called deep neural networks or DNNs) with a large a variety of architectures
and learning strategies [243, 361], becoming an inspiration for the implementation of new
and improved HSI data classifiers, marking a clear trend since 2017 [116, 243, 260, 372].

Fig. 3.6 Graphic description of a function approximator. f ∗(·) is an unknown and highly
complex function that, given an x input, returns a y response. f ∗(·) can be approximated by
a known f (·,θ) function that, in an iterative way, can adjust its parameters θ by computing
an error or loss function L (y,y′), until the obtained output matches the desired output ∀x,y
in a dataset Dtrain = {xi,yi}n

i=1.

In this sense, the goal of this thesis is to delve into DL techniques applied to HSI data
analysis and processing. Along these years of the PhD program, the strengths and weaknesses
of several deep classification models have been analyzed, focusing on their performance in
RS-HSI data classification tasks, in order to explore and implement new architectures and
methodologies that allow the efficient and effective analysis of this type of data, also seeking
its optimization on many-core platforms such as GPUs.

3.2.2 Hyperspectral dataset considered in this thesis

At this point it is interesting to note some of the most widely used HSI datasets for clas-
sification purposes. These datasets are composed by individual HSI scenes that include
labeled samples and unlabeled samples, allowing the implementation of both supervised and
unsupervised learning approaches. The labeled samples comprises the scene ground-truth
(GT) while the unlabeled samples compose the image background information, being funda-
mental elements for the training and testing of classification methods. Table 3.3 shows a
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Table 3.3 Details of the ground-truth corresponding to different HSI scenes. In particular, the
number of samples per class of the Indian Pines (IP), Kennedy Space Center (KSC), Salinas
Valley (SV), University of Pavia (UP) and University of Houston (UH) data sets are provided.

INDIAN PINES (IP) KENNEDY SPACE CENTER (KSC) SALINAS VALLEY (SV) UNIVERSITY OF PAVIA (UP)

Color Land-cover type Samples Color Land-cover type Samples Color Land-cover type Samples Color Land-cover type Samples
Background 10776 Background 309157 Background 56975 Background 164624

Alfalfa 46 Scrub 761 Brocoli-green-weeds-1 2009 Asphalt 6631
Corn-notill 1428 Willow-swamp 243 Brocoli-green-weeds-2 3726 Meadows 18649
Corn-min 830 CP-hammock 256 Fallow 1976 Gravel 2099

Corn 237 Slash-pine 252 Fallow-rough-plow 1394 Trees 3064
Grass/Pasture 483 Oak/Broadleaf 161 Fallow-smooth 2678 Painted metal sheets 1345
Grass/Trees 730 Hardwood 229 Stubble 3959 Bare Soil 5029

Grass/pasture-mowed 28 Swap 105 Celery 3579 Bitumen 1330
Hay-windrowed 478 Graminoid-marsh 431 Grapes-untrained 11271 Self-Blocking Bricks 3682

Oats 20 Spartina-marsh 520 Soil-vinyard-develop 6203 Shadows 947
Soybeans-notill 972 Cattail-marsh 404 Corn-senesced-green-weeds 3278
Soybeans-min 2455 Salt-marsh 419 Lettuce-romaine-4wk 1068
Soybean-clean 593 Mud-flats 503 Lettuce-romaine-5wk 1927

Wheat 205 Water 927 Lettuce-romaine-6wk 916
Woods 1265 Lettuce-romaine-7wk 1070

Bldg-Grass-Tree-Drives 386 Vinyard-untrained 7268
Stone-steel towers 93 Vinyard-vertical-trellis 1807

Total samples 21025 Total samples 314368 Total samples 111104 Total samples 207400

UNIVERSITY OF HOUSTON (UH)
Color Land cover type Samples train Samples test

Background 649816
Grass-healthy 198 1053
Grass-stressed 190 1064
Grass-synthetic 192 505

Tree 188 1056
Soil 186 1056

Water 182 143
Residential 196 1072
Commercial 191 1053

Road 193 1059
Highway 191 1036
Railway 181 1054

Parking-lot1 192 1041
Parking-lot2 184 285
Tennis-court 181 247

Running-track 187 473

Total samples 2832 12197
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brief summary of some popular HSI datasets, including the land cover categories with the
corresponding number of labeled samples per class.

Some of the most widely used scenes are those scenes captured by the AVIRIS sensor
[124], such as Indian Pines (IP, also known as 92AV3C), Kennedy Space Center (KSC)
and Salinas Valley (SV) scenes. Focusing on the first one, the IP scene was collected in
1992 over the Indian Pines test site in north-west Indiana. The observed surface (composed
by 145× 145 pixels) belongs to an agricultural area, being composed by regular patches
of different crops coupled with irregular forest and grass zones. Focusing on the spectral
features, it collects 224 spectral bands in the wavelength range from 0.4 to 2.5µm with
nominal spectral resolution of 10 nm, however, 24 bands were removed in order to avoid
null and water absorption bands (in particular [104-108], [150-163] and 220), keeping the
remaining 200 bands. This image is particularly challenging because the pixels are very
mixed due to a low spatial resolution (it is noteworthy that IP has a high GSD of 20 mpp), and
the available GT is composed by 16 classes highly unbalanced. There is also a larger version
of IP scene, which is usually known as big Indian Pines (BIP). It covers the same agricultural
area of IP, but spanning a much larger extent. In particular, BIP comprises 2678×614 pixels
with 220 spectral bands. In this case 58 different land cover types constitute the GT, where
the 20.33% of the samples are labeled. The second dataset, known as KSC scene, was
acquired in 1996 over the Kennedy Space Center, Florida. It contains 512×614 pixels with
a spatial resolution of 18 mpp. As IP, the original data cube comprises 224 spectral bands,
which were collected with a bandwidth of 10 nm in the spectral range 0.4-2.5µm. However
only 176 spectral bands have been retained after the removal of those spectral bands affected
by water absorption and low SNR. This dataset is characterized by a very small set of labeled
samples, in fact, only 5211 out of the available 314368 pixels are labeled into 13 different
land cover classes, i.e. only a 1.66% of the image is labeled in comparison with the 48.74%
of IP. The third HSI dataset, known as SV scene, was also collected over several agricultural
fields of Salinas Valley, California during a flight campaign in 1998, covering an area of
512×217 pixels with a higher spatial resolution of 3.7 mpp. As IP and BIG, SV records
spectral information in the wavelength range from 0.4 to 2.5µm with bandwidth of 10 nm,
collecting 224 bands, of which 20 water absorption bands have been removed, in particular
[108-112], [154-167] and 224. As in IP, its ground truth is also divided into 16 different land
cover categories of different crops and fallows, where the 48.72% of the data is labeled. This
scene is usually cropped, selecting a particular sub-scene (Salinas A) composed by 83×86
pixels that represent a difficult classification scenario. In fact, Salinas A contains highly
similar pixels, which correspond to the same type of crop with different maturation times
[263].
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In addition to the scenes provided by AVIRIS, there are other interesting HSI datasets due
to the nature of their content. For instance, the ROSIS sensor [186] provided the University
of Pavia (UP) and Pavia Centre (PC) scenes during a flight campaign over Pavia, northern
Italy. In particular, UP scene was acquired over the campus of Pavia city and contains
610× 340 pixels, while PC scene was collected over the historical city. The original PC
image contains 1096×1096 pixels, however, a 381-pixel-wide strip with no information is
usually removed, obtaining as a result a 1096×715 scene. Both scenes were gathered with a
high spatial resolution of 1.3 mpp. Moreover, ROSIS instrument is able to cover up to 120
spectral bands in the wavelength range from 0.43 to 0.86µm, nevertheless 12 and 13 noisy
bands of UP and PC have been removed, keeping the remaining 103 and 102 spectral bands.
Both scenes contain 9 different land cover categories, which belong to multiple man-made
structures, natural objects and shadows, being 20.62% and 18.90% of UP and PC scenes
labeled, respectively.

Also CASI instrument [16] has provided a large HSI dataset, known as University of
Houston (UH) [341]. This dataset was presented at the IEEE Geoscience and Remote Sensing
Society (GRSS) Image Analysis and Data Fusion Technical Committee during the 2013
Data Fusion Contest (DFC) [83], being one of the most recently acquired HSI data for
classification tasks. In fact, UH scene was gathered in 2012 over the university campus and
the adjacent residential area located in Houston. It contains 349×1905 pixels with a spatial
resolution of 2.5 mpp (it is the second scene with the best spatial resolution, behind of UP
and PC scenes, and ahead of SV dataset). It includes 144 channels with the sampled spectral
information in the 0.38-1.05µm range. The available GT is composed by 15 different land
cover categories, where the amount of labeled data is quite limited. In fact, only the 2.26%
of the samples is labeled. Moreover the GT is divided into two spatial disjoint regions, the
training region (which is composed by the 0.43% of the labeled data) and test region (which
is composed by the 1.83% of the labeled samples), making it an ideal benchmark to test the
robustness and generalization of classification methods.

3.3 Deep Learning: overview about basic concepts

3.3.1 Towards deep architectures: the neuron as a starting point

DL proposes a new learning paradigm based on deep and complex neural architectures for
the extraction of features at different levels and the learning of abstract data representations.
As standard and shallow ANNs (i.e. the multilayer perceptron –MLP– [173]), the basis of DL
methods is inspired by the behaviour of biological neuronal models, where a set of neurons
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Fig. 3.7 Graphic description of the i-th neuron in the l-th layer. This neuron processes
the input features of the previous layer x(l−1) = [x(l−1)

1 , . . . ,x(l−1)
k ] by a weighted sum of

them, applying its respective weights w(l)
i = [w(l)

i,1, . . . ,w
(l)
i,k ]. The result is processed by a

threshold-based function H (the activation function) that decides whether or not the input
stimulus activates the neuron to produce the final output. These neurons are organized in
layers, producing a large variety of architectures depending on the way they are connected.

can communicate with each other through synaptic connections in order to provide a certain
response to a given stimulus. In this context, the main computational element of any artificial
neural system is the computation cell or artificial neuron.

The basic functionality of artificial neurons is described in Fig. 3.74. They are intercon-
nected creating a layer-based architecture, where the i-th neuron of the l-th layer receives as
input data either the entire vector or a part of the feature vector processed by the previous
layer, i.e. x(l−1) = [x(l−1)

1 , . . . ,x(l−1)
k ]. Each feature is combined with the others through

a weighted summation, employing a mechanism of weights on the neuron’s connections
to simulate the synaptic procedure of the biological system. In fact, these weights repre-
sent the significance of each feature in the neuron. The resulting output is processed by a
threshold-based function, which decides whether or not to trigger the neuron to produce the
final activation output x(l)i . Mathematically, Eq. (3.7) details the processing performed by the
artificial neuron:

x(l)i = H

(
k

∑
j=1

w(l)
i, j x

(l−1)
j +b(l)i

)
(3.7)

4This thesis focuses on the standard neuron that takes the weighted sum of its input values, and returns the
output when it has processed by an activation function, building multilayer feedforward networks (MFNs), such
as the MLP, which is trained by forward and backward propagation. In this sense other traditional ANNs, such
as the radial basis function (RBF) [31] and Kohonen self-organizing map (SOM) [178] networks are beyond
the scope of this work, as well as their training processes.
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where x(l−1)
j ∈ x(l−1) is the j-th feature of the input data ∀ j ∈ [1,k], w(l)

i, j ∈ w(l)
i is the weight

that connects the i-th neuron in the current layer l with the j-neuron in the previous layer
l −1 and b(l)i is a threshold or bias. H represents the activation function. Finally, x(l)i is the
obtained output of the i-th neuron in the current layer l.

The architecture based on layers of neurons has proven to be more flexible and versatile
than standard ML algorithms, such as the SVM, emulating the global and complex mapping
function f (·,θ) through several independent (i.e. the design of each layer is completely
isolated from the rest, comprising an arbitrary number of neurons through a bias node) and
hierarchically ordered (i.e., the outputs of one f (l) are the input of the next f (l+1)) functions
such as:

f (x,θ)≈ f̂
(

f (L)
(
. . .
(

f (1)
(

x,θ (1)
)
. . .
)
,θ (L)

))
(3.8)

where each f (l)(x(i−1),θ (l)) = x(l) represents the mathematical transformations that the
l-th layer applies to its input feature data x(i−1) taking into account its parameters θ (l),
∀l ∈ [1,L] (being L the number of layers in a neural-based model), and f̂ (x(L)) = y is the
final classification layer, which takes the obtained abstract data representation and assigns its
corresponding label [243]. More precisely, and taking into account the Eq. (3.7) and that the
original input data is composed by the set of HSI instances X, each layer can be defined by
the following Eq. (3.9):

X(l) = H
(

X(l−1),W(l),b(l)
)
, (3.9)

where X(l−1) and X(l) represent the neuronal activations of the previous and current layer,
respectively, H is the activation function, θ (l) = W(l),b(l) are the layer’s parameters, i.e. the
matrix of weights W(l) = [w(l)

1 , . . . ,w(l)
K ] where each w(l)

i defines the strength of connection
between the i-th neuron in layer l and all or some of the neurons in the previous layer,
∀i ∈ [1,K], being K the number of neurons comprised by layer l. In this way, the neural
model can capture really complex polynomial relationships as the data is processed by the
stack of layers, which would be almost impractical to convey by other ML methods.

3.3.2 Where learning resides: backward step and parameter updating

Neural architectures can be divided into feedforward and recurrent models according to
the way neurons in different layers are connected. Feedforward models always connect
neurons in layer l to those neurons in layer l +1, with no feedback connections in which the
outputs of a layer l feed back to the layer itself or to previous layers, i.e. the data flow always
goes ahead from one layer to another. In contrast, recurrent networks include feedback
connections between their layers. In any case, the data always flows through the network
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until it reaches the last classification layer, applying Eq. (3.8). This step is known as the
forward step or forward propagation, where the model’s parameters (i.e. weights W(l) and
biases b(l), ∀l ∈ [1,L]) are applied over the data to extract the relevant and discriminative
information. In this sense, the appropriate adjustment of these parameters is fundamental
for the performance and reliability of the model. It is precisely the parameter adjustment
procedure where the network learns to extract the most relevant information from the data
that will best contribute to its performance during classification.

As we can observe in Fig. 3.6, the learning process of any NN takes the inputs x and the
desired outputs y and updates the internal state (i.e. the model’s parameters) according to
a loss function L that measures the distance between the predicted output and the desired
one, with the aim of reducing the difference between them. Eq. (3.10) provides a popular
non-negative loss function, known as the MSE:

L (W,b) =
1

2n

n

∑
i=1

||y′i −yi||2 (3.10)

where W and b denote the collection of all weights and biases of the model, respectively.
In order to obtain the set of W and b that minimize the loss function, the neural model
usually applies some optimizer based on the gradient of the loss function, which can measure
the impact of modifying each model parameter on the error achieved (error-change rate),
which is given by the partial derivative of the loss function with respect to any weight or
bias of the network, i.e. ∂L /∂w(l)

i, j and ∂L /∂b(l)i . However, the estimation of the error-
change rate for each parameter cannot be directly obtained, as the layers are connected in a
hierarchical way, so any change in a parameter can affect the following layers, and therefore
their corresponding parameters. In this context, the entire optimization process is conducted
through an iterative process using the backpropagation algorithm [284], which decomposes
the derivative calculation and propagates back the error signal from the end of the model to
the initial layers.

Considering z(l)i as the intermediate result of the i-th neuron located at the l-th layer (i.e.
the result of the sum of the Eq. (3.7) without the activation function), the procedure defines
the local error gradient of the i-th neural unit at the l-th layer as:

δ
(l)
i =

∂L

∂ z(l)i

(3.11)

In this sense, the backpropagation methods begins to propagate the error signal through the
neurons in the last layer of the network through the chain rule. As we can observe in Fig. 3.8,
the gradient of the lost function can be directly obtained at the neurons outputs as ∂L /∂x(L)i ,
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Fig. 3.8 Local error gradient at the i-th neuron in the L-th layer (output layer). The error
signal given by the loss function H is backpropagated to each neuron of the output layer.

where x(L)i is the post-activation output. Then, in order to backpropagate the gradient signal
to the pre-activation state z(l)i , the intermediate derivative ∂x(L)i /∂ z(L)i =H ′(z(L)i ) is obtained.
Finally, the desired local error gradient is obtained as:

δ
(L)
i =

∂L

∂x(L)i

H ′
(

z(L)i

)
(3.12)

Once the local error gradient is obtained at each neuron of the last layer, the signal can be
easily backpropagated through the layers as we can observe in Fig. 3.9, where the local error
gradient of the current neuron can be calculated as the sum of the next layer’s gradient signals
with the first derivative of the activation function pondered by the weights of the connections.
Eq. (3.13) gives us the mathematical formulation:

δ
(l)
i = ∑

j
w(l+1)

j,i δ
(l+1)
j H ′

(
z(l)i

)
(3.13)

Finally, as the error signal is propagated throughout the network, from the top layers (i.e.
those layers that are more close to the output data) to the bottom layers (i.e. those layers that
are more close to the input data), the error change rate of each weight w(l)

i, j and bias b(l)i can
be obtained applying the chain rule as:

∂L

∂w(l)
i, j

= δ
(l)
i x(l−1)

j and
∂L

∂b(l)i

= δ
(l)
i (3.14)
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Fig. 3.9 Local error gradient at the i-th neuron in the l-th hidden layer.

The learning of the network is completed with the parameters adjustment following the
gradient descent of the error function provided by Eq. (3.14) in order to reduce the distance
between the predicted and desired outputs. In this sense, each weight w(l)

i, j and bias b(l)i is
updated by Eq. (3.15):

w(l)
i, j = w(l)

i, j − ε
∂L

∂w(l)
i, j

and b(l)i = b(l)i − ε
∂L

∂b(l)i

(3.15)

where the hyperparameter ε indicates the learning rate, whose value must be chosen so it
does not exceed the loss function (very high learning rates) but neither to extremely slow
down the convergence of the optimizer (very low learning rates).

As we can observe, the entire forward-backward propagation scheme allows networks to
learn directly from data, resulting in a more compact and efficient learning procedure, which
is completely oriented to the task conducted by the network.

3.3.3 The relevance of feature extraction in deep architectures

If the backward step is essential for the network’s learning, the forward step is not less
important. In fact, the stack of hierarchical functions defined by Eq. (3.8) of any ANN and/or
DNN model allows to exploit the ability of neural layers to extract data representations at
different levels during the step forward, where the lower layers extract more basic and generic
characteristics, such as edges, corners and textures, and the deeper layers gradually refine
those basic characteristics to obtain more complex and high-level structures, building more
abstract and discriminating data representations. In this sense, the functions f (1) . . . f (L) work
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together to become a feature extractor (FE) that encodes the most informative features from
the input data, while the final f̂ assigns the label to the original input data by analyzing its
obtained features (i.e. the high-level data representation).

FE and ML/DL have always gone hand in hand. Traditionally, ML classification methods
have been enhanced by handcrafted FE approaches, with the aim of providing representative
features for the final classifier [272], as we can observe in Fig. 3.10. Usually, these features
are manually designed by the user through some popular spectral-spatial FE methods such as
the speeded-up robust features (SURF) [22, 161], the histogram of oriented gradients (HOG)
[81], the principal component analysis (PCA) [282, 337], the gradient local auto-correlation
(GLAC) [57, 176], the local binary patterns (LBP) [203], the scale invariant feature transform
(SIFT) [7] or the newest invariant attribute profiles (IAPs) [153], among others. However,
these handcrafted features are very specific and do not usually provide a sufficiently abstract
representation of the data. Moreover, they are critically dependent on the developer/user’s
knowledge, making hard to obtain their most optimal configuration [344].

Fig. 3.10 Comparative between hadcrafted features exploited by standard ML algorithms and
features automatically extracted and classified by deep neural models.

On the contrary, neural-based models are able to automatically extract features from the
raw input data, shifting the burden of feature design by developing an end-to-end framework
composed by both FE-stage and final classification stage, as Fig. 3.10 represents. Moreover,
as the networks are trained with the same data considered in the classification problem, the
FE-stage is able to learn highly abstract features that are directly obtained and refined by
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the classification problem itself, allowing a higher adaptability and flexibility in comparison
with standard handcrafted features [367]. As a result, neural-based models have attracted
a significant attention from the ML scientific community, thanks to their great potential
for capturing patterns and structural relationships within the data, demonstrating a better
recognition performance than some traditional FE methods [9, 29, 219, 265]. In addition,
technological advances (both in hardware devices and software frameworks) within the field
of computing and telecommunications have allowed the development and implementation of
much deeper architectures and more complex layers than those implemented by traditional
ANNs, fostering the rise of the DL architectures [241, 243, 334, 361].

In this regard, it can be said that depth is the main characteristic of deep models, since
the greater the depth, the greater the level of abstraction. Then, the following question may
arise: at what point a model goes from being shallow to deep? Similar to the definition of RS,
there is no general accepted agreement on the depth a network must have to be considered
as a deep model [294]. However, some experts in the DL field consider single-hidden-layer
models as shallows ANNs, being considered DNN when they have two or more hidden
layers [26, 150, 183]. Some authors even distinguish between deep, very deep (VDNNs)
[304, 310, 311] and ultra-deep (also known as extremely deep neural networks, EDNNs)
[191] models, depending on whether they have more than twelve or fifty hidden layers
respectively, reaching even thousands of layers [141]. Table 3.4 provides a brief summary of
these categories.

Table 3.4 General taxonomy of deep neural-based models depending on their depth

Shallow model Deep model Very deep model Ultra-deep model
Hidden layers 1 2, 3+ 12+ 50+

Although it is an important element, depth is not everything within the DL field. In fact,
the most powerful characteristic of deep methods is the handling of the features extracted
from the original data, which allows for complex data representations during the FE stage
than traditional shallow models [321]. This has a major impact when dealing with HSI data.
Fig. 3.11 provides a graphic description of those features that can be exploited in a HSI
data cube. As we can observe, the HSI data cube X ∈ Nn1×n2×nb not only offers the spectral
information contained in each of its pixels thanks to its spectral domain given by nb, but also
the contextual information of them, thanks to its spatial organization as a map of n1 × n2

pixels. This allows to extract spatial relationships between a pixel and its neighbors [188].
These types of features have already been widely exploited by traditional shallow ML models
(for instance, through any of the FE method mentioned above) [98, 317]. However the
novelty of the DL lies in the fact that DNNs can easily adapt their architectures to efficiently
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Fig. 3.11 Graphical representation of the information that can be processed by an HSI
classifier: spectral, spatial, and spectral-spatial features are extracted from the original HSI
data cube and processed by the classification method. For spatial methods it is very common
to use a mirroring strategy over the edges of the image to take advantage of the pixels
located at the bordes, otherwise these pixels are cut out and not taken into account during the
classification process.

exploit and even combine both types of information in a more versatile end-to-end fashion.
For instance, shallow ANNs usually employ spectral features by processing each pixel of the
HSI image in isolation due to their fully-connected architectures.

In this sense, the topological structure of DNNs is closely linked to both the type of
features that can be extracted and the way they are processed. For instance, pixel-wise DNN
models are usually composed by fully-connected (FC) layers as traditional ANNs. This
type of layer allows the extraction of spectral features, reshaping the HSI data cube as a
matrix of (n1n2)×nb dimensions. Each spectral pixel is individually processed by the layers
[285], learning the spectral relationships between the information contained in the pixel
(i.e. the spectral signature) and the land cover type it represents [62]. The effectiveness of
these methods depends on the spectral quality of the pixel, achieving very accurate results
when each pixel contains a perfect signature of a single cover material [103]. However, the
technical limitations of the sensor do not allow the collection of data with a high spatial
resolution. So in real scenarios, the pixels are very mixed and can contain:

• Small sub-pixel objects.

• Boundaries between different land cover materials.

• Marked transition zones between different ecological components (ecotone).

As a result, the HSI data cube suffers from high intra-class (also known as intra-cluster)
variability and great inter-class (or inter-cluster) similarity, in the sense that pixels belonging
to the same class may contain very different spectral signatures due to the mixture of materials
and elements, while pixels belonging to different classes may present very similar spectral
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signatures if they are in border areas, for instance. In this regard, the performance of pixel-
wise DNN strongly depends on the available samples, consuming a large amount of them to
properly cover these variations.

To overcome these limitations, some works take into account the spatial information
during the classification task [157, 164, 362]. The main assumption is that neighboring pixels
usually belong to the same land cover category [115, 233], so they can provide valuable
additional information that can reduce the high variability within the data, managing also
the label uncertainty. Thus, spatial-based classifiers consider the contextual information
provided by the pixel neighborhood window [32, 61], which can be extracted by traditional
FE methods, such as principal components [166, 282, 337], covariance matrices [143],
minimum noise fraction (MNF) [357], Gabor filtering [64, 169], among others. In particular,
the use of PCA is the most widespread method due to its simplicity, reducing the spectral
dimension of the data (which also reduces the spectral redundancy and band correlations)
while keeping the spatial information [132, 247]. It is noteworthy that methods such as PCA
do not eliminate spectral information, but rather compress it, so some authors do not consider
these models to be purely spatial while others do [61, 136, 218]. On the other side, this
spatial information can be processed by the DNNs by FC architectures (which vectorize
the information) or by convolutional architectures [132, 247] (which allow to maintain the
original shape by applying 2D and 3D convolutions layers).

Spatial-based methods does not generally guarantee the desired improvement in clas-
sification performance compared to spectral methods. In this context, the exploitation of
spatial and spectral features together is more beneficial than in isolation, as it comprises
both the analysis of spectral signatures and the associated spatial-structural information
[242, 246, 352]. In this sense, DNN models follow two main strategies in order to process
both kind of features: i) the first one is inspired by the traditional ML vector vision [62, 63],
where the spatial information is vectored and included as concatenated information to the
spectral vector, and ii) the second strategy is inspired by the processing of the 3D patches
extracted from the original HSI data cube in order to maintain the original structure informa-
tion [61, 242, 245, 246], processing the spectral-spatial information in a more natural and
intuitive way. In the last case, convolutional neural networks (CNN) [193] are employed
instead the standard FC architectures.

3.3.4 New layers for better feature extraction

Supported by the development of image processing techniques [193] and as a direct conse-
quence of the different types of features to be processed (spectral, spatial and spectral-spatial),
deep models have adapted their architectures looking for the optimal FE stage. As a result, a
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large variety of layers have been developed. In this regard, Paoletti et al. [243] performs a
detailed review about the most popular ones.

Fully connected layer

It is the most popular layer of traditional ANNs, being widely used since the 1960s in models
such as the MLP [74, 110]. As we can observe in Fig. 3.12, each neuron located in the l-th
layer is connected to the outputs of the neurons in the previous layer l −1 through weighted
connections. In this sense, the FC layer only applies a linear dot product between the input
layer data, which is arranged into a vector x(l−1), and the matrix of weights that connect each
neuron to the input W(l). An offset or bias is usually added to this product so that the neuron
does not overflow the activation function afterwards, b(l).

Fig. 3.12 Graphical comparison between fully connected (FC) and convolutional (CONV)
models. The FC layers are characterized as an array of neurons where each neuron of the
l-layer is connected to the neurons of the l −1 layer. They process vectorized information,
making them ideal for processing the spectral information contained in the HSI cube. On
the contrary, the CONV layers are organized in kernels locally connected to certain regions
of the entrance, being organized in 1D, 2D and 3D structures. As a result they can process
information arranged in vector, matrix and volume structures, respectively, being ideal to
process the spectral-spatial information contained in the HSI cube.

When working with FC-based achitectures, it is very common to reshape the HSI data
cube into a matrix X ∈ N(n1n2)×nb . Thus, when it is sent to the network, each layer performs
a matrix multiplication between the input matrix X(l−1) and its own weights W(l), so each
mapping function f (l) given above by Eq. (3.9) is defined as:

X(l) = W(l) ·X(l−1)+b(l) (3.16)

The FC-based architecture imposes a large number of parameters to train due to the large
number of connections between each layer, so they are very prone to over-fitting problems
when there is not enough training data. Also, the reshaping of input data into vectors greatly
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restricts the representative capacity of the model, losing the spatial relationships of the data
and its potential to reduce the model’s uncertainty during classification [60]. In this regard,
the FC-based architecture can be ineffective for spatial and spectral-spatial feature analysis.

Convolution layer

The first works about convolution (CONV) layers appear in the late 1980s [192] as a neural
model inspired by the ventral pathway of the visual cortex, whose neurons are activated or
not depending on some specific visual stimuli that fall within their range (also known as local
receptive fields). These neuronal activations produce a series of responses in a hierarchical
way, so deeper neurons of the visual cortex will be able to respond to more abstract stimuli.

Fig. 3.13 Graphical representation of a convolution layer. On the left side, we can observe
how a 2× 2 spatial kernel is applied over a 6× 6 input slide. The kernel is sliced with a
stride of 2, moving every two columns/rows. As a result, a 3×3 feature map is obtained.
This behavior can be extended to multidimensional input data (on the right side), so the
kernel slides through the spatial and spectral dimensions with a local receptive field defined
by k(l)× k(l)×q(l). The resulting feature maps are stacked together, resulting in an output
feature volume.

In this regard, the CONV layer defines a filter bank similarly to the local receptive field,
being able to process multidimensional arrays by applying a linear n-dimensional kernel over
small pre-defined regions from the layer’s input data. As Fig. 3.13 illustrates, the l-th CONV
layer performs a FE stage over the input data (denoted as X(l−1)) by mimicking the operation
of a sliding window algorithm. Particularly, it defines K(l) fixed-size filters that can be both
spectral and spatially overlapped over the input X(l−1), performing a dot product between the
kernel’s weights and the current features window. These filters slide through both dimensions
by a stride s(l), obtaining in each operation a value of the output features map. Unlike the
FC layers, the structure of the filters can be 1D, 2D and 3D, depending on the layer’s filter
bank, so it can also accept input data organized in 1D, 2D, and 3D arrays, allowing for the
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extraction of spectral, spatial and spectral-spatial features in a natural and structured way.
For instance, let consider an input volume X(l−1) ∈ Rn(l−1)

1 ×n(l−1)
2 ×n(l−1)

b , the filter bank can be
defined as a k(l)× k(l)×q(l) kernel, where k(l) refers to the spatial dimensions and q(l) to the
spectral one. The resulting output X(l) ∈ Rn(l)1 ×n(l)2 ×K(l)n(l)b will be denoted as feature volume
(also known as feature vector or feature map depending on its dimensions). In this sense,
each mapping function f (l) previously defined by Eq. (3.9) is redefined as indicated by Eq.
(3.17a), while Eq. (3.17b) illustrates the computation of the output element (i, j, t) of the z-th
filter (being z = {1, · · · ,K(l)}) that belongs to the l-th convolution layer:

X(l) =
(

W(l) ∗X(l−1)+b(l)
)

K(l)×k(l)×k(l)×q(l)
(3.17a)

x(l)i, j,zt =
k(l)

∑
î=1

k(l)

∑
ĵ=1

q(l)

∑
t̂=1

(
w(l)

î, ĵ,t̂
· x(l−1)

(i·s(l)+î),( j·s(l)+ ĵ),(t·s(l)+t̂)

)
+b(l) (3.17b)

where i, j and î, ĵ are the spatial indices that cover the input and output volumes and the
kernel weights, respectively, being i ∈ [1,n(l)1 ] and j ∈ [1,n(l)2 ]. In this sense, n(l)1 and n(l)2 are
the spatial dimensions of the resulting output volume X(l), which can be obtained from the
input volume’s dimensions, n(l−1)

1 and n(l−1)
2 , as:

n(l)1 =

⌊
n(l−1)

1 +2p(l)− k(l)

s(l)

⌋
+1 and n(l)2 =

⌊
n(l−1)

2 +2p(l)− k(l)

s(l)

⌋
+1 (3.18)

being s(l) the stride and p(l) the zero-padding that fills the edges of the input volume with
zeros. t and t̂ are the spectral indices that cover the data and weight volumes along the
channel dimension, obtaining t in a quite similar way to i and j, i.e. t ∈

[
1,n(l)b

]
, where

n(l)b =
⌊

n(l−1)
b −q(l)/s(l)

⌋
+ 1, spectral zero-padding is not usually employed, while the

spectral stride is usually set to 1. Index z ∈ [1,K(l)] indicates the filter that is currently applied
over the input data.

During the training step, the CONV layer adjusts its weights to learn some features
distributed in a certain way both in spatial and spectral domains (depending on the dimension
of the kernel), applying them as a filter to other regions of the input data [101]. Focusing
on HSI data processing, the local connectivity allows the CONV layer to learn spectral-
spatial correlations and regularities among HSI pixels, overcoming the limitations of FC-
based architectures. Moreover, the sparse connectivity coupled with the parameter sharing
mechanism significantly reduce the number of parameters that must be adjusted within a
CONV layer compared to a FC layer.
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Pooling layer

Pooling (POOL) layers arise from the popularization of CONV-based architectures (i.e. CNN
models) for image processing. In this context, these layers are more focused on the spatial
processing of the data than on the spectral or spectral-spatial one. Indeed, they arise as an
effort to overcome the great sensitivity of the CONV layer to the spatial location of the
features, since they reduce the spatial resolution of the output volume X(l) by performing
a non-linear sub-sampling strategy. Initially, this limitation was addressed through a plain
down-sampling conducted by strided CONV layers [308]. The spatial down-sampling of
feature maps not only allows for a more robust data representations, reducing the impact of
small spatial shifts (invariance to spatial translations), but also summarize the spatial features
into a smaller volume, reducing the model’s complexity in terms of volume’s dimensionality
and model’s parameters [37] which in turn also allows for a reduction of the computation
time and the memory consumption.

Fig. 3.14 Graphical representation of a 2×2 pooling layer with stride 2. This kernel conducts
a sample-based discretization process by which, applying some selection rule given by a
numerical operation, it selects the features desired. For instance, if the max pooling is
implemented, the dark cells will represent the maximum values within the receptive field of
the POOL layer.

As Fig. 3.14 indicates, the POOL layer defines a spatial kernel with size k× k which is
slid over the input volume with a stride 1 < s < k in order to reduce the spatial size of each
feature map by a s factor. Furthermore, in contrast to the CONV’s kernels, the POOL’s kernel
is not learned, as it defines a specific numerical operation. The most popular operations are
the max-pooling, which selects the highest value within the window defined by the layer’s
receptive field, the sum-pooling, which sums up all the values within the kernel window,
and the average-pooling, which in addition to summing up, conducts the average of those
values contained in the receptive field [349]. More advanced pooling techniques have also
been implemented, such as mixed pooling [349], stochastic pooling [354], pyramid pooling
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[140, 351] or wavelet pooling [336]. Moreover, some works also propose spectral pooling to
summarize data in the spectral domain [280, 305, 359].

Activation function

The FE procedure applied by FC and CONV layers is incomplete if the neuronal unit is
not able to distinguish between the most relevant features, i.e those that provide more
information to the classification task, and those that are unimportant. In fact, FC and CONV
layers are simple linear regressors, as they only apply a linear operation over the data (i.e. the
cumulative sum of the matrix multiplication between weights and inputs). In this sense, the
activation function plays a key role during the model’s learning as it is the principal feature
detector mechanism [123]. As we could observe in the previous Eq. (3.9), the mapping
function defined by each layer f (l) contains an activation function H (·), which defines the
final output in terms of the combination of those features obtained by the previous FC/CONV
layer. Its purpose is to introduce some non-linearity in order to detect (and hence learn)
non-linear representations of the data structure, allowing to perform more complex tasks.

Fig. 3.15 Graphical representation of the most commonly used activation functions within
deep neural architectures.

Fig. 3.15 shows some of the most widely used activation functions [6, 225, 251, 269, 307],
which should be bounded, continuous, monotonic, and continuously differentiable with
respect to the layer’s weights [18] with the aim of making learning feasible during backward
propagation. Usually, the sigmoid H (x) = 1

1+e−x and tanh H (x) = ex−e−x

e+e−x have been widely
used in shallow networks with acceptable results. However, their gradient signal tends to fade
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when the architectures are too deep (the so-called vanishing gradient problem). To overcome
this limitation, new and more effective activation functions have been developed, such as
the rectified linear activation function (ReLU) H (x) = max(0,x) [234] which prevents the
vanishing gradient problem at the same time that provides a sparsity function, being more
efficient than previous functions, although it can suffer the “dying ReLU” problem [256, 340].
It has inspired other rectified-based functions, such as the leaky ReLU (LReLU) [215], the
parametric ReLU (PReLU) [139] or the scaled exponential linear unit (SeLU) [175, 251].
While these functions are generally implemented by hidden layers, there are other interesting
functions that are usually applied to the output layers, such as the softplus H (x) = ln(1+ex)

[91] and softmax H (xi) =
exi

∑ j ex j activation functions.

3.3.5 Deep neural networks: taxonomy of deep architectures

Deep feedforward neural networks and the design of new layers have been the inspiration
for the development of new deep architectures. In this sense, DNNs offer a wide range of
deep architectures compared to traditional ANNs thanks to the flexibility of their topologies,
connection and types of layers. These deep architectures include autoencoders (AEs),
deep belief networks (DBNs), recurrent neural networks (RNNs) and convolutional neural
networks (CNNs) as main architectures, with a wide variety of modifications being developed
from these models [243]. As it is such a vast field, this thesis reduces its explanation to the
basic concepts of the main models.

Stacked autoencoders

AEs are feedforward neural networks composed by input, hidden and output layers (either
FC or CONV). Their training is purely unsupervised, as they are focused on representing the
input data in a feature space determined by the hidden layer, from which they reconstruct
the original input on the output layer. In this sense, if X ∈ X is the original input data in
the data space X , the hidden layer maps X to a code representation C ∈ C by applying its
recognition weights WX →C (also known as encoder components). The reverse process is
applied within the output layer, whose generative weights WC→X (also known as decoder
components) map the code dictionary C to the original representation, obtaining as a result
the reconstructed input X′ ∈ X . This process is described by Eq. (3.19), where ⊗ represents
the matrix multiplication or the convolution operation, depending on the kind of layer:

C = H (WX →C ⊗X+bX →C ) (3.19a)

X′ = H (WC→X ⊗C+bC→X ) (3.19b)
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Fig. 3.16 Graphical illustration of a traditional tied SAE for spectral FE. The AE layers on
the left-side performs the encoding stage, while the AE layers on the right-side performs the
decoding stage. Both stages are connected by a bottleneck layer, that represents the latent
space.

Both, WX →C and WC→X are trained by backpropagation mechanism, where the error
signal given by L = ||X−X′||22 is propagated backwards through the output and hidden
layers.

In this regard, deep (also stacked) AEs (DAEs and/or SAEs) [62] are composed by several
concatenated AEs, where the l-th AE corresponds with l-th hidden layer of the model. In this
sense, the l-th AE receives as input data the output of the previous AE. Fig. 3.16 represents
a traditional tied SAE composed by FC layers, employed for extracting spectral features
from HSI data. As it can be observed, several AE layers perform the encoding stage by
reducing the spectral dimensionality of the data, until reaching the middle layer of the model
(known as bottleneck layer). This layer represents the latent space [19] of the SAE, whose
data representations are usually extracted and employed by ML algorithms (such as SVM
or LR) to perform the final classification. The following layers perform the decoding stage,
until reaching the output layer where the final reconstruction of the input data is obtained.

Deep belief networks

DBNs are composed by several restricted Boltzmann machines (RBMs) [190], which are
two-layered ANNs that learn the probability distribution of the input data in an unsupervised
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fashion. Focusing on RBMs, they are stochastic generative models where the input layer
is composed by visible nodes, while the output layer is composed by hidden nodes (in fact,
there is not a proper output layer, really). In a similar way to AEs, the RBM implements a
two-step process. In the first step, the input data is multiplied by the weights that connects
the visible and hidden nodes, W, adding a bias b to each hidden node. Then, the obtained
result is processed by an activation function, following Eq. (3.20):

H(t+1) = H
(
VT

t W+b
)

(3.20)

where Vt is the input data at visible units during iteration t, and Ht+1 is the resulting data of
hidden units. The second step performs is in fact a reconstruction stage, where the reverse
process is applied over H to obtain the desired V, as Eq. (3.21) defines:

Vt+1 = H
(
Ht+1WT +b

)
(3.21)

In this context, the loss function will be defined as L = ||Vt −Vt+1||22, allowing the un-
supervised learning of the RBM’s parameters. DBNs takes advantage of these models,
concatenating several pre-trained RBMs and refining the full-model’s parameters through
labeled data.

Fig. 3.17 Graphical illustrations of a RBM (left-side) and a DBN (right-side).

Recurrent neural networks

In contrast to feedforward models, RNNs introduce loops in their connections, creating a
sequential dependency in which the activations of the nodes in each step depend on those
of the previous step. This structure makes the RNN an ideal model for learning temporal
sequences, where an internal state or memory allows the association between the current
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Fig. 3.18 Traditional RNN model for spectral HSI data processing, where the data cube is
processed band-by-band within the model. The spectral signature of each pixel is processed
as a temporal sequence, obtaining as a result a hidden state h that works as the model memory.

input data and the previous ones. This state creates a mechanism for remembering the context
of the data, predicting future events depending on those previously remembered.

Depending on the way they create, maintain and update that internal state (see Fig. 3.18),
RNNs are classified into three subtypes: vanilla RNNs, which are the most simple ones; long
short memory (LSTM) [152], which introduces a complex gate-based mechanism (input,
output and forget gates) to control the flow of information, and gated recurrent unit (GRU)
[71], which simplifies the gate mechanism, implemented only two gates (updatin and reset
gates) to update and clear the model memory. Paoletti et al. [243] provides further details
about these models.

Convolutional neural networks

CNNs are deep feedforward models, where the main layer building-block is the CONV layer,
which can be combined with non-linear activation and POOL layers to extract, detect and
resume the relevant spectral, spatial and spectral-spatial features contained within the data
depending on the dimensions of CONV’s kernels and the multidimensional input array. In
this context, the architecture of any CNN comprises an end-to-end model, in which two parts
are clearly distinguished. On the one hand, the FE-net, which is composed by a hierarchical
stack of CONV-activation-POOL blocks, which perform the feature extraction and detection
stages to learn high-level representations of the input data. On the other hand, the final
classifier, which is usually composed by a stack of FC layers, where the output layer provides
the final class label. Fig. 3.19 provides a graphical overview about the three basic CNN
models that can be applied over HSI data, considering 1D, 2D and 3D kernels.
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Fig. 3.19 From top to bottom, graphical illustration of CNN1D, CNN2D and CNN3D
architectures applied for processing the spectral, spatial and spectral-space information
contained in the HSI data cube.

The greatest advantage of CNNs lies in their great potential to extract any kind of feature
from the raw data, without applying complex pre-processing mechanisms to it. Furthermore,
their flexibility in terms of kernel dimensions, layer connections and model’s depth, and the
impressive ability to make strong assumptions about the input data have established CNN-
based models as the most successful and popular DNN architecture, being extremely popular
for HSI data classification. In fact, CNNs represent the current state-of-the-art in image
processing, where from time to time, new architectures are developed with the CONV layers
as the main inspiration, for instance residual networks (ResNets) [245, 331, 370], dense
networks (DenseNets) [242, 333] and generative adversarial networks (GANs) [144, 355].
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3.4 Deep neural networks for hyperspectral data analysis

By conducting a detailed review of the existing literature about RS field and DL-based
techniques, we can observe a significant increase in the interest that these techniques have
inspired in HSI data processing. As a result, a wide variety of works have been designed
to exploit deep architectures for spectral, spatial and spectral-spatial classification. In this
regard, Fig. 3.20 provides the number of published papers related to DL-based HSI data
classification models in the past seven years according to the web of science5 (WOS).

Fig. 3.20 A total of 361 interesting scientific contributions about the processing and classifi-
cation of HSI with DL-based architectures have been analyzed by WOS and grouped by year
(date of acquisition: 14 May 2020).

As we can observe, since the popularization of DL in early 2016 [25], the number of
published contributions has been increasing during these years following an upward trend that
is expected to continue through 2020. In this regard, the DL for HSI data classification will be
further explored, through the implementation of new and more advanced deep architectures
in the next several years. Moreover, these contributions are covering a large set of scientific
areas and disciplines. For instance, Fig. 3.21 shows the number of contributions organized
by area of those articles previously listed by WOS search tool.

Moreover, in the last three years, a large number of literature reviews have been conducted,
analyzing the impact these methods have had on the processing of HSI data, not only on
the performance of the algorithms in terms of accuracy but also in terms of computational
behaviour, such as the contributions of Audebert et al. [14], Gewali et al. [114], Li et al.
[202], Liu et al. [211], Narendra and Sivakumar [235], Paoletti et al. [243], Petersson et al.

5http://www.webofknowledge.com/WOS
The following search terms have been employed: TS=(hyperspectral AND remote sensing AND classification
AND (deep learning OR convolutional OR deep model OR deep feature)) OR TI=(hyperspectral AND remote
sensing AND classification AND (deep learning OR convolutional OR deep model OR deep feature))
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Fig. 3.21 Tree-map by area of those scientific works that are listed by the WOS about
DL-based classification methods for RS-HSI data processing (date of acquisition: 14 May
2020).

[260], Signoroni et al. [302], Yuan et al. [350], Zhang et al. [361]. In this sense, Table 3.5
provides some of the most relevant articles about DL-classifiers for HSI data:

Table 3.5 Some relevant contributions about DL models for HSI data classification

Chen et al. [62] Unsupervised spectral, spatial and spectral-spatial FE by stacked
autoencoder (SAE, also known as deep AE, DAE). LR performs
the final classification of learned features. KSC and UP scenes are
considered for testing purposes.

Wang et al. [328] Unsupervised spectral FE by stacked denoising AE (SDAE). MLR
performs the final classification of those extracted deep-spectral
features. Synthetic data and IP scene are considered.

Zabalza et al. [353] Unsupervised spectral FE by segmented SAE (S-SAE) to reduce
the computational complexity of the model. SVM performs the
final feature classification. IP image and a subscene extracted
from PC (known as Pavia CA) dataset are considered.

Ma et al. [214] Semisupervised spectral-spatial FE by spatial updated deep AE
(SDAE), which is improved by adding a regularization term to de-
termine the spatial similarity of the samples. IP, PC and Botswana
scenes are considered for testing purposes.
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Chen et al. [63] Unsupervised spectral, spatial and spectral-spatial FE by deep
belief network (DBN). LR performs the final feature classification.
IP and UP scenes are considered for testing purposes.

Zhong et al. [368] Unsupervised spectral FE by DBN, which is eventually fine-tuned
in a supervised way by backpropagation for classification purposes.
IP and UP scenes are considered for testing purposes.

Mou et al. [229] Spectral classification by RNN, implementing a modified gated
recurrent unit (GRU) and adopting the parametric rectified tanh
(PRetanh) activation function. IP, UP and UH scenes are consid-
ered for testing purposes.

Zhou et al. [371] Spectral, spatial and spectral-spatial HSI data classification by
RNN, implementing a long short term memory (LSTM) based
architecture. IP, UP and KSC scenes are considered for testing
purposes.

Hu et al. [154] Spectral HSI data classification by CNN1D model. IP, SV and UP
scenes are considered for testing purposes.

Chen et al. [61] Spectral, spatial and spectral-spatial HSI data classification by
CNN1D, CNN2D and CNN3D models with LR. IP, UP and KSC
scenes are considered for testing purposes.

Liang and Li [205] Spatial FE with CNN2D, which are enhanced through SC. IP and
UP have been considered for testing purposes.

The success of these deep models within HSI data classification tasks lies in their
“Swiss army knife” behaviour due to its impressive flexibility to process the spectral, spatial
and spectral-spatial information contained into the HSI data cube in a natural and simple
way, where the same model is able to process these types of features with any changes or
adaptations in its structure, such as SAEs and CNNs, where the spectral-spatial features
can be concatenated as a 1D-array or by selecting the suitable kernel dimension. Moreover,
their hierarchical structure allows to extract hidden and sophisticated patterns and structures
within the raw HSI data with different levels of abstraction (low-level at the bottom layers
and high-level at the top layers), which in turn allows us to choose the appropriate “degree of
depth” to solve the classification problem, that is, for simple datasets shallow models will be
enough, while for larger and more complex datasets, deeper networks can be considered. As
a result, we can easily adapt the model to the complexity of the problem, leading to precision
results never seen before, thanks to which DNNs are considered as the current state-of-the-art
in image processing [141]. In addition to the flexibility in terms of the model’s depth and
the kind of features it can extract (i.e. the wide variety of architectures and neural layers
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that are available), the ability to generalise any type of knowledge using almost any learning
approach allows us to address the classification problem using different strategies, employing
a wide range of methodologies, from unsupervised models as SAEs and DBNs to supervised
ones, like RNNs and CNNs, being able to apply intermediate solutions belonging to the wide
field of semi-supervised learning [97, 136, 198, 211, 338]

These features make DNNs very powerful models for HSI data processing. However, like
almost all ML algorithms, the development of these models has certain intrinsic limitations
that may hinder their performance. Moreover, these limitations can be really exacerbated
when dealing with the challenges imposed by HSI data.

3.4.1 Challenges and limitations of deep models when facing
hyperspectral data classification

As noted above, DNN models face some challenges related to processing high-dimensional
data sets, such as HSI data cubes. In fact, any ML/DL method has to take into account that,
despite the strong conviction that the spectral resolution of HSI data should enhance the
separability between different land cover classes, it actually introduces more complexity to
processing models, even having adverse effects on their performance. This adverse behavior
observed within the algorithms when facing high-dimensional data has been mathematically
demonstrated as the peaking paradox [168, 303, 319]. The logic behind this paradox is quite
intuitive: as the feature domain grows, the number of spectral bands xi ∈Nnb = [x1,i, . . . ,xi,nb]

to be considered by the processing method increases, so the number of statistical parameters
to cover that information will be increased too. More parameters means that the method
will have to adjust more degrees of freedom, so the estimation errors will boost, hampering
the performance [189]. Nevertheless, the peaking paradox is only the tip of the iceberg,
leading to the curse of the dimensionality of HSI data classification methods [23]. In this
regard, classification methods need more training data due to the high number of statistical
parameters that must be correctly estimated. However, beyond a critical spectral size, the
training set does not contain enough information to properly refine and adjust the large
amount of parameters. As a result, the models are poorly adjusted to the data, producing
over-fitting problems. In this sense, despite achieving acceptable accuracy during the training
stage, the model is not able to generalize the knowledge to new samples, so the accuracy
during inference is usually quite poor (Hughes phenomenon [158]).

In addition to the negative performance of classifiers when dealing with high-dimensional
feature space, the internal characteristics of these data must be taken into account, too. In
this sense, HSI data introduces several artifacts that make the classification process harder.
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On the one hand, uncontrolled changes in the reflectance ρ(λ ) captured by the spectrometer
at each wavelength λ can introduce a great intra-class variance within the spectral signatures
of the HSI data cube. These are usually produced by changes in atmospheric conditions
that introduces variations in the scene illumination. On the other hand, instrument noise
can degrade the collected information, hindering the quality of the data cube collected by
corrupting the spectral signatures [273], even preventing several bands from being used
due to saturation/cutoff or calibration errors [255]. Furthermore, since the spectrometer
measures the solar radiation by scattering the light beam that passes through an entrance slit
by means of a refracting element, some blurring and smoothing effects can be introduced due
to the width of the slit. Also, other factors, such as a poor radiometric accuracy and SNR,
can impact negatively on the quality of the captured spectral data. Regarding the spatial
information, HSI pixels often cover large regions on the surface of the Earth due to the
trade-off between spectral bandwidth and spatial resolution. As a result, HSI data cubes have
low/medium spatial resolution, where the pixels tend to exhibit mixed spectral signatures,
leading to high inter-class similarity in border regions. In the end, these challenges create
potential ambiguities and uncertainties [121, 325].

Besides these issues, the problematic lack of labeled samples prevents the correct training
of deeper and more complex models, exacerbating the curse of the dimensionality, in the
sense that there are not enough samples to cover the high data variability. This is due to
several factors: on the one hand, despite the launch of new HSI-EO missions (such as
the EnMAP or PRISMA projects), satellite HSI-based observation missions remain poorly
represented within EO field due to their technical constraints and practical challenges. As
a result, the number of current operational spectrometers are still low compared to other
types of remote sensors, such as those spatial-high-resolution and MSI devices in Landsat,
Sentinel and SPOT systems. On the other hand, the airborne spectrometers cover much
smaller areas than the satellite-based sensors, so the amount of HSI data sets is limited. In
addition, repositories with labeled HSI are usually not openly and publicly available, being
the tagging of each pixel and arduous, time-consuming and expensive task as it requires a
human expert.

In addition to the challenges introduced by HSI data, the inherent limitations of current
DL-based models should be considered [238]. In this context, while HSI data includes
an important degree of difficulty compared to other types of RS data because of its high
dimensionality, DL involves a greater complexity in the classifiers, by increasing the number
of parameters required by deep models. Consider the training stage, for instance, the learning
and adjustment of a DNN’s parameters is formulated as a non-convex and NP-complete
problem [36], which must be solved through an optimization process without guarantee of
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Fig. 3.22 Curves for test and training risks when compared to the complexity of the deep
model, i.e. the number of parameters employed by the model. From left to right, given a
training set Dtrain, as the model includes more parameters, the training error decreases until
be close to zero, by adjusting their degrees of freedom to the training data. However, the
test error begins to grow after a number of parameters, because the network is not able to
generalize the data distribution, so it cannot apply its knowledge about unseen data..

convergence, since by introducing more learnable parameters more degrees of freedom are
considered that can lead to multiple local minima [17], where the optimizer (and therefore
the model’s learning) gets stuck [60, 237].

The increase in depth, and therefore in the number of parameters, implies a very high
consumption of training data in order to learn properly the model’s weights and biases.
Thus, DNNs tend to overfit (see Fig. 3.22) when there are few training parameters [96].
In this regard, the high-dimensional nature of HSI data, its high variability and the limited
availability of training samples greatly hamper the generalization ability of deep models.
Furthermore, as the depth of the model increases, the forward propagation suffers a significant
degradation [141], while the backpropagation suffers some difficulties in propagating the
gradient signal to all layers [310]. In fact, the gradient fades slightly as it goes through each
layer, resulting in its practical vanishing when the depth is extremely large. These problems
elongate the loss function L until the model cannot properly adjust its parameters at each
iteration. In addition, DL-based models run much slower than classical ML algorithms due to
the large amount of parameters that must be managed, requiring computationally expensive
and memory-intensive methods [67]. In this sense, a high computational burden is involved
due to the large amount of parameters that must be managed, therefore DNNs often require
hardware accelerators (such as GPUs) in order to reduce computation times (in fact, to make
the training feasible).
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Finally, deep models implements a “black box” mechanism during the training stage,
where the internal models’ dynamics are very hard to interpret [27, 208]. In fact, designers
have no control over the features that the model will extract in each layer, which may hinder
the design and implementation of optimization decisions.

3.5 Contributions of this thesis to the scientific field

This thesis focuses its efforts on providing some solutions to the the above-mentioned
limitations that DL models suffer when face the HSI data classification problem. In this sense,
the main goal is the design, implementation and validation of new models and methodologies
based on deep architectures that not only improve the accuracy results of the classifiers, but
also their computational performance in terms of run times and memory consumption.

With this purpose in mind, different tasks have been conducted throughout the develop-
ment of this thesis. The first one has consisted in the analysis of the current state-of-the-art
about HSI data within EO and RS fields, exploring in detail the characteristics of current
operational sensors and the available data repositories, identifying the main characteristics,
challenges, difficulties and limitations of the available data6. This analysis has focused in
particular on the classification techniques used on HSI data.

After understanding the idiosyncrasies of HSI data, the second task has reviewed in the
available literature the current developed DL architectures, understanding its evolution from
the traditional shallow ANN models to the current models with an impressive depth and
complexity, and composed of different types of layers. This has be done by listing their
advantages and limitations in comparison to traditional HSI-ML methods, and exploring
their adaptation and application to HSI data classification. In this way, the main DL models
used have been identified, as well as the way in which they are used and the results obtained
in comparison with traditional ML methods7.

Once strengths and weaknesses of deep models have been identified when solving HSI
data classification problems, the third task is to design, implement and validate new method-
ologies and architectures that overcome the limitations of current models, with the aim of
providing a faster, more accurate and more efficient analysis of the spectral-spatial infor-
mation contained in the HSI data cubes. In this sense, new DL-based architectures have
been implemented for HSI data classification, developing distributed many-core solutions
based on GPU devices and conducting an exhaustive comparative analysis of the improve-
ments developed in real applications, using the real HSI images described in section 3.2.2.

6The knowledge acquired has been summarized in sections 3.1, 3.2.2 and 3.4.1.
7The knowledge acquired has been summarized in sections 3.2, 3.3 and 3.4.
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In this context, proposed methods have been evaluated in terms of accuracy performance,
considering some well-known metrics such as overall accuracy (OA), average accuray (AA)
and kappa coefficient (K). The complexity of models in terms of number of parameters and
run times has also been taken into account to measure their computational performance,
conducting a comprehensive and fair comparison with the classification methods employed
by the scientific community.

In this regard, following sections will summarize each of the contributions included in
this publication compendium. Given the number of different models implemented, they will
be presented one by one, from the simplest to the most complex one.

3.5.1 Review about deep hyperspectral data classifiers

Although it is not an article that presents new implementations or methodological solutions
to the scientific field, the work entitled Deep Learning Classifiers for Hyperspectral Imaging:
A Review [243] has been included in this compendium due to the extensive overview about
DL for HSI data classification it presents. In this sense, it is a very interesting contribution
to delve into the concepts that this thesis has been introducing within the previous sections,
in a clear and contextualised way. Thus, it presents a wide variety of architectures for
spectral, spatial and spectral-spatial HSI analysis based on SAEs, DBNs, RNNs and CNNs
models, highlighting the new trends that the scientific community is developing to improve
classification results, such as ResNets [245, 331, 370] and DenseNets [242, 333]. Moreover,
it conducts a detailed comparison between a large set of DL models (such as MLP, vanilla,
GRU and LSTM RNNs, CNN1D, CNN2D and CNN3D) and available publications [115, 136,
171, 242, 244, 245, 370], considering also different amounts of spectral-spatial information.

Fig. 3.23 Graphical representation of the spatial overlapping between the current training
sample (in red) and the test samples (in green) considering different neighbourhood window
sizes for the training sample, i.e. 3×3, 5×5 and 7×7.
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In addition, this review is one of the first that introduces the controversy about the use of
spatial information in supervised classifiers when random selection mechanism selects the
training samples, which can be spatially overlapped with the test samples as described in Fig.
3.23, an undesired effect that could significantly facilitate the subsequent classification of the
test samples during the inference stage (as they have been previously processed in some way
by the model during the training step). All the experiments were conducted over IP, UP, SV
and UH datasets, considering also the spatially disjoint samples of IP and UP datasets.

3.5.2 Improving the scalability of recurrent neural models

As pointed before, the RNN is composed by recurrent cells with internal loops between
their connections, allowing to keep the learned information within the model during some
iterations. In this sense, the spectral signatures contained into the HSI data cube can be
considered as a time sequence in which, at each timestep, the spectral value changes, existing
a dependency between the previous and subsequent bands [229].

The RNN model has been applied for data classification through three main architectures,
which depends on the desing of their recurrent cell. The vanilla recurrent unit (VRU) is the
simplest unit, which hampers its ability to discover hidden relationships and patterns within
complex sequences like spectral signatures. The LSTM obtains better accuracy than the
previous one by including three gates to control the information flow. However, due to the
complexity of the control-gate mechanism, deep recurrent architectures could be affected by
the vanishing gradient problem. Finally, the GRU tries to avoid the previous limitation by
simplifying the internal structure of the cell, seeking a balance between the VRU and LST to
minimize the impact of the vanishing gradient problem.

Focusing on HSI data classification, these models can achieve acceptable accuracy
considering that they only take into account spectral information. However, they scales
poorly when dealing with high-dimensional data cubes, due to the high dependence on
previous steps. Although the vast majority of publications have optimized and parallelized the
algebraic operations, the dependencies between the current and old hidden states hampering
the speed up of these models, badly affecting the performance when the dimensionality
and the amount of data grow. In order to mitigate this problem, this thesis incorporates the
proposal for improvement presented in the entitled work Scalable Recurrent Neural Network
for Hyperspectral Image Classification [249]. This paper presents a new RNN classifier
based on simple recurrent units that performs HSI classification in a highly scalable and
efficient way. In particular, it adopts the simple recurrent unit (SRU) [197] as the recurrent
cell body, which maintains two internal states, the hidden and the cell state, controlled by two
gates (forgot and reset gates). Moreover, the entire network has been parallelized on a GPU
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device in order to obtain not only good accuracy results but to achieve also a competitive
performance in terms of run times and data scalability. The quantitative and qualitative
results obtained from the experiments conducted over the AVIRIS’ IP, BIP and SV scenes
reveal an interesting performance, not only in terms of classification accuracy (in line with
existing methods), but also in terms of computational performance when dealing with large
datasets.

3.5.3 Enhancing the convolutional neural network for fast and
accurate hyperspectral data classification considering
spectral-spatial features

As pointed in section 3.4.1, deep networks in general, and CNNs in particular exhibit a
high computational burden due to the large number of parameters that must be trained. It
should be noted that each CONV layer with kernel 3D involves ((k(l) · k(l) ·q(l))+1) ·K(l)

parameters at least, which in a deep architecture means that millions of parameters must
be not only correctly adjusted, but also computed along with the feature volumes. This is
worsened by the high dimensionality of the HSI data. As a result, the first CNN models for
processing the spectral-spatial information contained into the HSI data cube exhibited very
high run times, so they often applied PCA to reduce the spectral information. For instance
Chen et al. [61] summarizes the spectral information in 32 bands.

In this context, the work A New Deep Convolutional Neural Network for Fast Hyperspec-
tral Image Classification [246] proposes a CNN architecture to process the spectral-spatial
features from the raw HSI data cube, without summarizing the spectral information. The
architecture has been efficiently implemented on a GPU device to parallelize the algebraic
operations required during kernel computation. In addition, this work conducts a detailed
study of how spatial information affects the classifier by testing different input spatial sizes.
Experiments have been conducted over IP and UP scenes, reaching competitive results in
comparison with other classifiers such as the SVM or the CNN developed by Chen et al. [61].

3.5.4 Enhancing the feature extraction during the training stage

CNN models suffer a major problem of over-fitting when few training samples are available.
To avoid this limitation, some works propose the use of regularization techniques that improve
the training of the model, by extracting more robust, discriminative and decoupled features
from the original data. In this context, dropout regularization [151, 309] has proven to be a
good solution to enhance the performance and robustness of the CNN model. It is able to
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avoid complex co-adaptations on training data by randomly deactivating a percentage of the
neural activations. As a result, the generalization ability of the model is drastically enhanced.
However, although traditional regularization dropout strategy has been shown to be effective
in FC-based architectures, it does not achieve the desired performance in the CONV layers,
as it maintains the spatial dependencies in the resulting feature maps.

To overcoming this limitation, this thesis develops the work entitled Neighboring Region
Dropout for Hyperspectral Image Classification [247], which introduces the neighboring
region dropout technique to selectively cuts off certain neighboring outputs, creating spatial
dropped regions within the CONV layer’s feature maps. This technique has been tested over
IP and UP datasets. The obtained experimental results reveal that the newly proposed method
helps to achieve better classification accuracy than traditional dropout strategy, even when
very few training samples are available, with a low computational cost.

3.5.5 Avoiding vanishing gradient problem in deep convolutional
neural networks through attention mechanism

To overcome the data degradation during the forward pass and the the vanishing of the
gradient during the backpropagation, some works propose the implementation of short paths
from low-level layers to high-level layers, i.e. residual connections [141]. As we can observe
in Fig. 3.24, several FE and detection stages (i.e. CONV, activation and POOL layers) are
grouped into residual units, whose inputs are directly connected to their outputs through an
aggregation operation. In this sense, the residual connection applies an identity mapping that
helps to propagate previous information to the subsequent units, alleviating the forward data
degradation and improving the backward step by promoting the propagation of the gradient.

Inspired by the residual learning, this thesis proposes the work entitled Visual Attention-
Driven Hyperspectral Image Classification [138] with the aim of improving the performance
of CNNs and ResNets through attention techniques. The implemented network takes advan-
tage of residual and skip connections along the CNN model, applying a new visual attention
mechanism to increase the sensitivity of the network to those features of the HSI scene that
contain the most important and useful information for classification purposes. This is done by
applying masks that have been automatically learned during the training stage of the model.
The basic idea is to “open” the black box of the CNN model, implementing a training guided
by the most relevant features. The proposal was tested over IP, UP, SV and UH datasets. The
obtained results demonstrate that the approach is more robust to over-fitting than the current
state-of-the-art methods, achieving higher accuracy values with very small training sets and
exhibiting a greater tolerance to data disturbances.
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Fig. 3.24 Graphical representation of the residual unit, where the inputs and outputs of a
block of layers are combined through an aggregation function. G (l) defines all the mapping
functions performed within the residual block.

3.5.6 Reducing the number of parameters through a continuous
interpretation of residual models

A very interesting approach to alleviate the over-fitting of deep models is to reduce their
complexity in terms of the number of parameters to be trained. In this sense, it should be
noted that deep models may not only incur serious over-fitting problems, but also excessive
memory consumption. This is worsened in those architectures such as the ResNet, whose
memory consumption increases directly with each residual block introduced into the model.
Therefore, the thinning of the network make the deep model lighter, reducing the number of
parameters which leads to faster training and execution and lower memory consumption.

To overcome this limitation, this thesis presents the work Neural Ordinary Differential
Equations for Hyperspectral Image Classification [248], which re-interprets the traditional-
discrete ResNet as a continuous-time ordinary differential equation (ODE), as Fig. 3.25
indicates. The ODE function is designed as a CNN and combined with a deep architecture.
As a result, the implemented model drastically reduces the number of parameters (and
therefore the memory consumption) to be trained, offering a great flexibility when processing
and classifying HSI data. The model has been developed on a GPU devices, being tested
over IP, UP, SV and KSC datasets. A significant performance has been achieved even when a
very few training samples are available in comparison with other ResNet implementations,
so it proves to be a robust solution to over-fitting problem.
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Fig. 3.25 Graphical representation of the residual unit when it is considered discreetly as a
set of residual blocks and continuously through an ODE.

3.5.7 Developing new deep architectures for accurate
hyperspectral data classification

In addition to those limitations described in section 3.4.1, convolution-based architectures
have a limited capacity to exploit the spatial relationships between features detected at
different positions within the image. This is due to the spatial summary that the POOL layers
make in the extracted feature maps. In fact, although the POOL layer contributes in a positive
way by providing certain invariance to data translations, its use implies a certain loss of
spatial information by disregarding how different features are spatially related to each others.

Fig. 3.26 Graphical visualization of the HSI-CapsNet, where each capsule unit is composed
by a set of convolution layers. Communication between the capsules belonging to different
layers is done by dynamic routing which calculates the probability that the capsules in the
lower layers can activate the capsules in the upper layers.
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As an improvement of the convolutional architecture, this thesis proposed the adoption
of capsule layers [287] (see Fig. 3.26) for the first time in the literature with the aim of
performing spectral-spatial HSI data processing. This architecture encodes the data internal
relationships into an activity vector instead of the traditional scalar value of the convolution
feature map. Such data representation has demonstrated to be powerful in encoding useful
features from the data, solving the limitations exhibited by the pooling layer. In this sense, the
entitled work Capsule Networks for Hyperspectral Image Classification [244] develops and
tests the spectral-spatial CapsNet for HSI classification over a wide variety of HSI images,
which includes information about agricultural and urban areas. In particular, IP, UP, SV, KSC
and BIP scenes have been considered, outperforming the accuracies reached by the current
state-of-the-art, which is mainly composed by traditional CNN models and ResNets.
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Conclusions

DL methods have revolutionized image analysis and proved to be a powerful tool for process-
ing high-dimensional remotely sensed data. Hierarchical structures, composed by chains of
operational layers/blocks concatenated one after another, demonstrate a great generalization
power, working as universal approximators. In particular, their behavior can be adapted to
the special characteristics of HSI data in order to perform classification tasks. This thesis
has conducted an exhaustive analysis of the most popular DL models for the HSI processing,
where those CNN-based architectures have been found to be particularly effective, due to
their ability to extract highly discriminatory features and effectively leverage the spatial-
contextual and spectral information contained in HSI data cubes. In this sense, the challenges
of both deep models and HSI data have been analysed, exploring also the challenges of HSI
classification with DL techniques.

Special attention has been paid to new trends in the current state-of-the-art, reviewing the
strengths and weaknesses of the most widely used techniques for improving the performance
of DL architectures. In partcicular, the performance of the DL models can be significantly
improved through through new connections (both, residual and skip connections) and data
paths. Moreover, the use of standardization techniques, together with the reusability of
the information contained in HSI data via residual connections and the concatenation of
different paths have allowed to overcome important problems such as over-fitting and the
vanishing gradient when few training samples are available, or when very deep structures are
implemented.

One of the main aspects preventing the full adaptation of the discussed paradigms to
practical problems is that most of the considered models are highly demanding in compu-
tational terms, particularly when applied to complex HSI scenes. However, advances in
computer technology and hardware platforms are rapidly allowing to increment the com-
plexity and depth of the networks, making the required fine-tuning processes feasible in
a reasonable amount of time. In this sense, there have been several efforts in the field of
hardware accelerators that have made possible to implement deep models into embedded
processors, such as GPUs, which can effectively parallelize the workload of DL-based net-
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works [270, 86, 366, 133]. Regarding to this, the optimization and parallelization of these
models is an attractive research direction which can provide efficient mechanisms to address
the enormous computational requirements introduced by DL-based HSI data processing,
since the acquisition ratios of imaging spectrometers and and the volume of future available
repositories are expected to be extremely large [32].

In addition to the comprehensive analysis of HSI-DL, this thesis provides six new works
to the scientific community that have been published in the journals in the area of remote
sensing and computer science, all of them with impact factor. These publications provide
significant novelties both in the developing of new architectures for data processing (such as
[248, 138] and [244]), and in the implementation of additional techniques for enhancing the
performance of standard models (such as [247]), also providing several model optimizations
through an efficient data management and the parallelization over GPU devices (such as
[249, 246]).

In addition to these outstanding works, this thesis has been very productive in terms of
scientific contributions to the HSI remote sensing community, contributing with 28 scientific
journal articles. Of these works, some have been distinguished with certain merits for their
impact on the scientific community. For instance, four of them have been labeled as “Highly
Cited Papers” in Web of Science/Clarivate Analytics Essential Science Indicators (ESI),
being the publication A new deep convolutional neural network for fast hyperspectral image
classification [246] considered as hot paper during its first two years and the Most Cited
ISPRS Journal of Photogrammetry and Remote Sensing Articles since 20178. Moreover, one
of the most recent articles [250] has been selected as the cover of the Multidisciplinary Digital
Publishing Institute (MDPI) Remote Sensing journal of april 2020. Their contributions in
congresses have also been productive, being one of them [216] the recipient of the best paper
award of the IEEE Workshop on Hyperspectral Image Processing 2019 (WHISPERSS’19)
congress.

Finally, the PhD student has been recipient of the recognition of Best Reviewers of the
IEEE Geoscience and Remote Sensing Letters journal in 2020, and she is currently editing
three special issues in the MDPI Remote sensing that are closely related to the topic of the
thesis:

• Remote Sensing: "Big Data in Earth Observation: A New Computing Paradigm for
Remote Data Analysis".

• Remote Sensing: "Deep Neural Networks for Remote Sensing Applications".

8Information available on
https://www.journals.elsevier.com/isprs-journal-of-photogrammetry-and-remote-sensing/
most-cited-articles
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• Remote Sensing: "Convolutional Neural Networks for Object Detection".
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[373] Žížala, D., Zádorová, T., and Kapička, J. (2017). Assessment of soil degradation by
erosion based on analysis of soil properties using aerial hyperspectral images and ancillary
data, czech republic. Remote Sensing, 9(1):28.

[374] Zomer, R. J., Trabucco, A., and Ustin, S. (2009). Building spectral libraries for wet-
lands land cover classification and hyperspectral remote sensing. Journal of environmental
management, 90(7):2170–2177.

98



Thesis publications

The following publications have been achieved in the context of this thesis work. Journal
papers show the number of citations at May 15, 2020.

Journal Papers:

1. M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza. A New Deep Convolutional Neural
Network for Fast Hyperspectral Image Classification. ISPRS Journal of Photogram-
metry and Remote Sensing, vol. 145, Part A, pp. 120-147, November 2018. DOI:
10.1016/j.isprsjprs.2017.11.021. [IF(2018)=6.942]. Google Scholar Citations: 146.
ESI Highly Cited Paper.

2. M. E. Paoletti, J. M. Haut, R. Fernandez-Beltran, J. Plaza, A. Plaza, J. Li and F.
Pla. Capsule Networks for Hyperspectral Image Classification. IEEE Transactions on
Geoscience and Remote Sensing, vol. 57, no. 4, pp. 2145-2160, April 2019. DOI:
10.1109/TGRS.2018.2871782. [IF(2018)=5.630]. Google Scholar Citations: 51. ESI
Research Front.

3. J. M. Haut, M. E. Paoletti, J. Plaza, A. Plaza and J. Li. Visual Attention-Driven Hyper-
spectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing,
vol. 57, no. 10, pp. 8065-8080, October 2019. DOI: 10.1109/TGRS.2019.2918080.
[IF(2018)=5.630]. Google Scholar Citations: 10.

4. M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza. Neural Ordinary Differential
Equations for Hyperspectral Image Classification. IEEE Transactions on Geoscience
and Remote Sensing, vol. 58, no. 3, pp. 1718-1734, March 2020.
DOI: 10.1109/TGRS.2019.2948031. [IF(2018)=5.630]. Google Scholar Citations: 0.

5. M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza. Neighboring Region Dropout for
Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Letters,
accepted for publication, 2020. DOI: 10.1109/LGRS.2019.2940467. [IF(2018)=3.534].
Google Scholar Citations: 0.

99



6. M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza. Scalable Recurrent Neural Network
for Hyperspectral Image Classification. Journal of Supercomputing, accepted for
publication, 2020. DOI: 10.1007/s11227-020-03187-0. [IF(2018)=2.157]. Google
Scholar Citations: 1.

7. M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza. Deep Learning Classifiers for
Hyperspectral Imaging: A Review. ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 158, pp. 279-317, December 2019. DOI: 10.1016/j.isprsjprs.2019.09.006.
[IF(2018)=6.942]. Google Scholar Citations: 13.

8. J. M. Haut, M. E. Paoletti, J. Plaza and A. Plaza. Cloud Implementation of the
K-Means Algorithm for Hyperspectral Image Analysis. Journal of Supercomputing,
vol. 73, no. 1, pp. 514-529, January, 2017. DOI: 10.1007/s11227-016-1896-3.
[IF(2017)=1.532]. Google Scholar Citations: 51.

9. J. M. Haut, M. E. Paoletti, J. Plaza, J. Li and A. Plaza. Active Learning with Convolu-
tional Neural Networks for Hyperspectral Image Classification Using a New Bayesian
Approach. IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 11, pp.
6440-6461, November 2018. DOI: 10.1109/TGRS.2018.2838665. [IF(2018)=5.630].
Google Scholar Citations: 52.

10. J. M. Haut, M. E. Paoletti, J. Plaza and A. Plaza. Fast Dimensionality Reduction
and Classification of Hyperspectral Images with Extreme Learning Machines. Journal
of Real-Time Image Processing, vol. 15, no. 3, pp. 439-462, October 2018. DOI:
10.1007/s11554-018-0793-9. [IF(2018)=2.588]. Google Scholar Citations: 14.

11. J. M. Haut, R. Fernandez-Beltran, M. E. Paoletti, J. Plaza, A. Plaza and F. Pla. A
New Deep Generative Network for Unsupervised Remote Sensing Single-Image Super-
Resolution. IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 11, pp.
6792-6810, November 2018. DOI: 10.1109/TGRS.2018.2843525. [IF(2018)=5.630].
Google Scholar Citations: 40.

12. R. Fernandez-Beltran, J. M. Haut, M. E. Paoletti, J. Plaza, A. Plaza and F. Pla.
Multimodal Probabilistic Latent Semantic Analysis for Sentinel-1 and Sentinel-2
Image Fusion. IEEE Geoscience and Remote Sensing Letters, vol. 15, no. 9, pp.
1347-1351, September 2018. DOI: 10.1109/LGRS.2018.2843886. [IF(2018)=3.534].
Google Scholar Citations: 7.

13. N. He, M. E. Paoletti, J. M. Haut, L. Fang, S. Li, A. Plaza and J. Plaza. Feature
Extraction with Multiscale Covariance Maps for Hyperspectral Image Classification.

100



IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 2, pp. 755-
769, February 2019. DOI: 10.1109/TGRS.2018.2860464. [IF(2018)=5.630].Google
Scholar Citations: 48. ESI Research Front.

14. M. E. Paoletti, J. M. Haut, R. Fernandez-Beltran, J. Plaza, A. Plaza and F. Pla. Deep
Pyramidal Residual Networks for Spectral-Spatial Hyperspectral Image Classification.
IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 2, pp. 740-754,
February 2019 [IF(2018)=5.630]. Google Scholar Citations: 38. ESI Research Front.

15. M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza. Deep&Dense Convolutional Neural
Network for Hyperspectral Image Classification. Remote Sensing, vol. 10, no. 9,
article number 1454, September 2018. [IF(2017)=4.118]. Google Scholar Citations:
24.

16. J. M. Haut, S. Bernabe, M. E. Paoletti, R. Fernandez-Beltran, A. Plaza and J. Plaza.
Low-High Power Consumption Architectures for Deep Learning Models Applied to
Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Letters,
accepted for publication, 2019. DOI: 10.1109/LGRS.2018.2881045. [IF(2018)=3.534].
Google Scholar Citations: 7.

17. R. Fernandez-Beltran, J. M. Haut, M. E. Paoletti, J. Plaza, A. Plaza and F. Pla. Remote
Sensing Image Fusion Using Hierarchical Multi-Modal Probabilistic Latent Seman-
tic Analysis. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 11, no. 12, pp. 4982-4993, December 2018. DOI: 10.1109/JS-
TARS.2018.2881342. [IF(2018)=3.392]. Google Scholar Citations: 15.

18. J. M. Haut, M. E. Paoletti, J. Plaza, A. Plaza and J. Li. Hyperspectral Image Classifi-
cation Using Random Occlusion Data Augmentation. IEEE Geoscience and Remote
Sensing Letters, accepted for publication, 2019. DOI: 10.1109/LGRS.2019.2909495.
[IF(2018)=3.534]. Google Scholar Citations: 6.

19. J. M. Haut, M. E. Paoletti, R. Fernandez-Beltran, J. Plaza, A. Plaza and J. Li. Re-
mote Sensing Single-Image Super-Resolution Based on a Deep Compendium Model.
IEEE Geoscience and Remote Sensing Letters, accepted for publication, 2019. DOI:
10.1109/LGRS.2019.2899576. [IF(2018)=3.534]. Google Scholar Citations: 3.

20. J. M. Haut, R. Fernandez-Beltran, M. E. Paoletti, J. Plaza and A. Plaza. Remote
Sensing Image Super-Resolution Using Deep Residual Channel Attention. IEEE
Transactions on Geoscience and Remote Sensing, vol. 57, no. 11, pp. 9277-9289,

101



November 2019. DOI: 10.1109/TGRS.2019.2924818. [IF(2018)=5.630]. Google
Scholar Citations: 5.

21. J. M. Haut, Jose A. Gallardo, M. E. Paoletti, G. Cavallaro, J. Plaza, A. Plaza and M.
Riedel. Cloud Deep Networks for Hyperspectral Image Analysis. IEEE Transactions
on Geoscience and Remote Sensing, vol. 57, no. 12, pp. 9832-9848, December 2019.
DOI: 10.1109/TGRS.2019.2929731. [IF(2018)=5.630]. Google Scholar Citations: 2.

22. J. A. Gallardo, M. E. Paoletti, J. M. Haut, R. Fernandez-Beltran, J. Plaza and A. Plaza.
GPU Parallel Implementation of Dual-Depth Sparse Probabilistic Latent Semantic
Analysis for Hyperspectral Unmixing. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 12, no. 9, pp. 3156-3167, September
2019. DOI: 10.1109/JSTARS.2019.2934011. [IF(2018)=3.392]. Google Scholar
Citations: 1.

23. A. Maffei, J. M. Haut, M. E. Paoletti, J. Plaza, L. Bruzzone and A. Plaza. A Sin-
gle Model CNN for Hyperspectral Image Denoising. IEEE Transactions on Geo-
science and Remote Sensing, vol. 58, no. 4, pp. 2516-2529, April 2020. DOI:
10.1109/TGRS.2019.2952062. [IF(2018)=5.630]. Google Scholar Citations: 0.

24. A. Alcolea, M. E. Paoletti, J. M. Haut, J. Resano and A. Plaza. Inference in Supervised
Spectral Classifiers for On-Board Hyperspectral Imaging: An Overview. Remote Sens-
ing, vol. 12, no. 2, 534, Feburary 2020. DOI: 10.3390/rs12030534. [IF(2018)=4.118].
Google Scholar Citations: 0.

25. M. E. Paoletti, J. M. Haut, X. Tao, J. Plaza and A. Plaza. GPU Implementation of
Support Vector Machines for fast Remotely Sensed Hyperspectral data classification.
Remote Sensing, vol. 12, no. 8, 1257, April 2020. DOI: 10.3390/rs12081257.
[IF(2018)=4.118]. Google Scholar Citations: 0. Selected as journal cover.

26. S. Moreno-Álvarez, J. M Haut, M. E Paoletti, J. A. Rico-Gallego, J. C. Díaz-Martín,
J. Plaza. Training deep neural networks: a static load balancing approach. Journal of
Supercomputing, accepted for publication, 2020. DOI: 10.1007/s11227-020-03200-6.
[IF(2018)=2.157]. Google Scholar Citations: 0.

27. T. Alipour-Fard, M. E. Paoletti, J. M. Haut, H. Arefi, J. Plaza and A. Plaza. Multi-
branch Selective Kernel Networks for Hyperspectral Image Classification. IEEE
Geoscience and Remote Sensing Letters, accepted for publication, 2020. DOI:
10.1109/LGRS.2020.2990971. [IF(2018)=3.534]. Google Scholar Citations: 0.

102



Submited Journal Papers:

1. M. E. Paoletti, J. M. Haut, X. Tao, J. Plaza and A. Plaza. Parameter-free Convolu-
tional Neural Network for Hyperspectral Image Classification. IEEE Transactions on
Geoscience and Remote Sensing. [IF(2018)=5.630].

2. X. Tao, M. E. Paoletti, J. M. Haut, P. Ren, J. Plaza and A. Plaza. Endmember
Estimation with Maximum Distance Analysis. IEEE Transactions on Geoscience and
Remote Sensing. [IF(2018)=5.630].

3. M. E. Paoletti, J. M. Haut, P. Ghamisi, N. Yokoya, J. Plaza and A. Plaza. U-
IMG2DSM: Unpaired Simulation of Digital Surface Models with Generative Ad-
versarial Networks. IEEE Geoscience and Remote Sensing Letters. [IF(2018)=3.534].

Journal Papers in Spanish:

1. M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza. Estudio Comparativo de Técnicas
de Clasificación de Imágenes Hiperespectrales. Revista Iberoamericana de Automática
e Informática industrial, 16(2), 129 - 137. 2019. DOI: 10.4995/riai.2019.11078.
[IF(2018)=1.313]. Google Scholar Citations: 2.

Peer-Reviewed International Conference Papers:

1. J. M. Haut, M. E. Paoletti, J. Plaza and A. Plaza. Cloud Implementation of the K-
Means Algorithm for Hyperspectral Image Analysis. Proceedings of the International
Conference on Computational and Mathematical Methods in Science and Engineering
(CMMSE’16), Rota, Spain, 2016. ISBN: 978-84-608-608-6082-2.

2. J. M. Haut, M. E. Paoletti, A. Paz-Gallardo, J. Plaza and A. Plaza. Cloud Implemen-
tation of the Logistic Regression for Hyperspectral Image Analysis. Proceedings of
the International Conference on Computational and Mathematical Methods in Science
and Engineering (CMMSE’17), Rota, Spain, 2017. ISBN: 978-84-617-8694-7.

3. M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza. Yinyang K-means clustering
for hyperspectral image analysis. Proceedings of the International Conference on
Computational and Mathematical Methods in Science and Engineering (CMMSE’17),
Rota, Spain, 2017. ISBN: 978-84-617-8694-7.

103



4. M. Peñalver, F. Del Frate, M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza. Onboard
Payload-Data Dimensionality Reduction. IEEE Geoscience and Remote Sensing Sym-
posium (IGARSS’17), Fort Worth, Texas, 2017. DOI: 10.1109/IGARSS.2017.8127069.

5. M. E. Paoletti, J. M. Haut, J. Plaza, A. Plaza, Q. Liu and R. Hang. Multicore Imple-
mentation of the Multi-Scale Adaptive Deep Pyramid Matching Model for Remotely
Sensed Image Classification. IEEE Geoscience and Remote Sensing Symposium
(IGARSS’17), Fort Worth, Texas, 2017. DOI: 10.1109/IGARSS.2017.8127436.

6. J. M. Haut, Y. Liu, M. E. Paoletti, X. Xu, J. Plaza and A. Plaza. Evaluation of Different
Regularization Methods for the Extreme Learning Machine Applied to Hyperspectral
Images. IEEE Geoscience and Remote Sensing Symposium (IGARSS’18), Valencia,
Spain, 2018. DOI: 10.1109/IGARSS.2018.8518746.

7. J. M. Haut, R. Fernandez-Beltran, M. E. Paoletti, J. Plaza, A. Plaza and F. Pla. Inter-
Sensor Regression Analysis for Operational Sentinel-2 and Sentinel-3 Data Products.
IEEE Geoscience and Remote Sensing Symposium (IGARSS’18), Valencia, Spain,
2018. DOI: 10.1109/IGARSS.2018.8517976.

8. M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza. An Investigation of Self-Normalized
Deep Neural Networks for Hyperspectral Image Classification. IEEE Geoscience and
Remote Sensing Symposium (IGARSS’18), Valencia, Spain, 2018. DOI: 10.1109/
IGARSS.2018.8517449.

9. J. M. Haut, M. E. Paoletti, J. Plaza, A. Plaza and F. del Frate. Cloud Computing
Implementation of a Neural Classifier for Remotely Sensed Hyperspectral Image.
MED2018. European Space Research Institute of European Space Agency (ESRIN-
ESA), Frascati, Italy, 2018.

10. C. Liu, J. Li, M. E. Paoletti, J. M. Haut, A. Plaza, Q. Shi. Accessibility-Free Active
Learning for Hyperspectral Image Classification. IEEE Geoscience and Remote
Sensing Symposium (IGARSS’19), Yokohama, Japan, 2019.

11. S. Bernabé García, C. García, R. Fernandez-Beltrán, M. E. Paoletti, J. M. Haut, J.
Plaza and A. Plaza. Open Multi-Processing Acceleration For Unsupervised Land
Cover Categorization Using Probabilistic Latent Semantic Analysis. IEEE Geoscience
and Remote Sensing Symposium (IGARSS’19), Yokohama, Japan, 2019.

12. M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza. Solving Deep Neural Networks with
Ordinary Differential Equations for Remotely Sensed Hyperspectral Image Classifica-

104



tion. IEEE Geoscience and Remote Sensing Symposium (IGARSS’19), Yokohama,
Japan, 2019.

13. M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza. Scalable Recurrent Neural Network
for Spectral-Spatial Classification of Hyperspectral Images. Proceedings of the In-
ternational Conference on Computational and Mathematical Methods in Science and
Engineering (CMMSE’19), Rota, Spain, 2019.

14. S. Moreno-Álvarez, M. E. Paoletti, J. M. Haut, J. A. Rico-Gallego, J. Plaza, J C.
Diaz-Martin. Exploring Distributed Deep Network Training Accuracy and Perfor-
mance on Heterogeneous Clusters. Proceedings of the International Conference on
Computational and Mathematical Methods in Science and Engineering (CMMSE’19),
Rota, Spain, 2019.

15. A. Maffei, J. M. Haut, M. E. Paoletti, J. Plaza, L. Bruzzone and A. Plaza. Effi-
cient Convolutional Neural Network for Spectral-Spatial Hyperspectral Denoising.
IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote
Sensing (WHISPERS’19), Amsterdam, The Netherlands, 2019

Accepted for Presentation Peer-Reviewed International Conference Papers:

1. M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza. Training CapsNets via Active
Learning for Hyperspectral Image classification. IEEE Geoscience and Remote Sensing
Symposium (IGARSS’20), Waikoloa, EEUU, 2020.

National Conferences:

1. J. M. Haut, M. E. Paoletti, J. Plaza and A. Plaza. Evaluación de rendimiento de
una implementación Cloud para un clasificador neuronal aplicado a imágenes hipere-
spectrales. Jornadas SARTECO Congreso Español de Informática (CEDI’2016),
Salamanca, Spain, 2016.

2. J. M. Haut, M. E. Paoletti, J. A. Gallardo, J. Plaza and A. Plaza. Red neuronal profunda
distribuida para compresión de imágenes hiperspectrales. Jornadas SARTECO, Teruel,
Spain, 2018.

3. J. A. Gallardo, J. M. Haut, M. E. Paoletti, A. Plaza and J. Plaza. Nueva imple-
mentación paralela en GPUs del algoritmo pLSA para desmezclado de imágenes
hiperespectrales. Jornadas SARTECO, Cáceres, Spain, 2019.

105



4. M. Blanco, J. M. Haut, M. E. Paoletti, A. Plaza and J. Plaza. Una nueva plataforma
social para el procesamiento de imágenes hiperespectrales de manera masiva. Jornadas
SARTECO, Cáceres, Spain, 2019.

5. S. Moreno, M. E. Paoletti, J. M. Haut, J. A. Rico-Gallego, J. Plaza and J.C. Díaz-
Martín. Evaluación de Rendimiento del Entrenamiento Distribuido de Redes Neu-
ronales Profundas en Plataformas Heterogéneas. Jornadas SARTECO, Cáceres, Spain,
2019.

6. A. Maffei, J. M. Haut, M. E. Paoletti, J. Plaza, L. Bruzzone and A. Plaza. Una única
arquitectura neuronal profunda para para eliminar ruido en imágenes hiperespectrales.
Jornadas SARTECO, Cáceres, Spain, 2019.

106



Copyright notice

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints invoked
by each author’s copyright. In most cases, these works may not be reposted without the
explicit permission of the copyright holder.

Institute of Electrical and Electronics Engineers
In reference to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of University of Extremadura’s products or services. Internal
or personal use of this material is permitted. If interested in reprinting/republishing IEEE
copyrighted material for advertising or promotional purposes or for creating new collective
works for resale or redistribution, please go to http://www.ieee.org/publications_standards/
publications/rights/rights_link.html to learn how to obtain a License from RightsLink.

107

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html




Escuela Politecnica
Av. de la Universidad, S/N, 10003
Caceres, Spain
Phone: 0034927257000. Ext. 51662
Email: aplaza,jplaza{@unex.es}

Dr. Antonio Plaza Miguel y Dr. Javier Plaza Miguel como directores de la tesis titulada ”Procesamiento
eficiente y profundo de imgenes hiperespectrales de la observación remota de la Tierra y aplicaciones en
tareas de clasificación”, certifico el factor de impacto y la categorización de la siguiente publicación, inclu-
ida en la tesis doctoral. Del mismo modo, se especifica la aportación del doctorado. Si necesitas cualquier
información o clarificación, por favor, no dude en contactar conmigo.

Antonio Plaza Miguel PhD. and Javier Plaza Miguel PhD as directors of the Phd thesis titled ”Deep-efficient
processing of remote sensing hyperspectral images and applications in classification tasks.”, certify the
impact factor and the categorization of the following publication, included in the doctoral thesis. In the
same way, the contribution of the doctorate is specified. If you need any further information or clarification,
please do not hesitate contacting me.

Artculo / Paper

Autores/Authors: M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza.
Title: Deep Learning Classifiers for Hyperspectral Imaging: A Review.
Journal: ISPRS Journal of Photogrammetry and Remote Sensing.
Other Information: vol. 158, pp. 279-317, December 2019.
DOI: 10.1016/j.isprsjprs.2019.09.006.
Impact factor 2018: 6.942. Q1
Abstract: Advances in computing technology have fostered the development of new and powerful
deep learning (DL) techniques, which have demonstrated promising results in a wide range of
applications. Particularly, DL methods have been successfully used to classify remotely sensed
data collected by Earth Observation (EO) instruments. Hyperspectral imaging (HSI) is a hot topic
in remote sensing data analysis due to the vast amount of information comprised by this kind of
images, which allows for a better characterization and exploitation of the Earth surface by combining
rich spectral and spatial information. However, HSI poses major challenges for supervised classifi-
cation methods due to the high dimensionality of the data and the limited availability of training
samples. These issues, together with the high intraclass variability (and interclass similarity) often
present in HSI data may hamper the effectiveness of classifiers. In order to solve these limitations,
several DL-based architectures have been recently developed, exhibiting great potential in HSI data
interpretation. This paper provides a comprehensive review of the current-state-of-the-art in DL
for HSI classification, analyzing the strengths and weaknesses of the most widely used classifiers in
the literature. For each discussed method, we provide quantitative results using several well-known
and widely used HSI scenes, thus providing an exhaustive comparison of the discussed techniques.
The paper concludes with some remarks and hints about future challenges in the application of DL
techniques to HSI classification.

Contribución del doctorado: Planteamiento de la hipótesis, desarrollo práctico, análisis y discusión
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A B S T R A C T

Advances in computing technology have fostered the development of new and powerful deep learning (DL)
techniques, which have demonstrated promising results in a wide range of applications. Particularly, DL methods
have been successfully used to classify remotely sensed data collected by Earth Observation (EO) instruments.
Hyperspectral imaging (HSI) is a hot topic in remote sensing data analysis due to the vast amount of information
comprised by this kind of images, which allows for a better characterization and exploitation of the Earth surface
by combining rich spectral and spatial information. However, HSI poses major challenges for supervised clas-
sification methods due to the high dimensionality of the data and the limited availability of training samples.
These issues, together with the high intraclass variability (and interclass similarity) –often present in HSI data–
may hamper the effectiveness of classifiers. In order to solve these limitations, several DL-based architectures
have been recently developed, exhibiting great potential in HSI data interpretation. This paper provides a
comprehensive review of the current-state-of-the-art in DL for HSI classification, analyzing the strengths and
weaknesses of the most widely used classifiers in the literature. For each discussed method, we provide quan-
titative results using several well-known and widely used HSI scenes, thus providing an exhaustive comparison
of the discussed techniques. The paper concludes with some remarks and hints about future challenges in the
application of DL techniques to HSI classification. The source codes of the methods discussed in this paper are
available from: https://github.com/mhaut/hyperspectral_deeplearning_review.

1. Introduction

Imaging spectroscopy, also called hyperspectral imaging (HSI),
studies how the light interacts with the observed materials, measuring
the amount of light that is emitted, reflected or transmitted from a
certain object or target. Imaging spectrometers (also called HSI sensors)
usually operate in the 0.4 to 2.5µm spectral region, capturing the
visible and solar-reflected infrared spectrum (i.e., the near-infrared or
NIR, and the short-wavelength infrared or SWIR) from the observed
materials. However, as opposed to broad-band sensing systems that
under-sample the available spectral information, narrow-band HSI
systems are able to produce, for each captured target, a distinctive
spectral signature composed by reflectance measurements at hundreds
of different wavelength channels (Goetz et al., 1985). The exploitation
of spectral signatures as unique fingerprintsmakes imaging spectrometry
an interesting and powerful tool for the categorization of the surface of
the Earth, reaching promising results in a wide range of applications
(Huadong et al., 2001; Transon et al., 2017; Khan et al., 2018; Transon
et al., 2018). In the current literature, a great number of works focus on
the use of HSI data for resource management. For instance, in

agricultural applications (Teke et al., 2013) there are several works
focused on the analysis of environmental stress in crops and associated
diseases (Strachan et al., 2002; Feng et al., 2017), crops variability
(Yang et al., 2004; Rußwurm and Körner, 2017), soil erosion stages
(Bannari et al., 2006; Chabrillat et al., 2014) or precision agriculture
(Haboudane et al., 2004; Rodríguez-Pérez et al., 2007; Mahesh et al.,
2015), among many others. In forestry and environmental manage-
ment, relevant works have been presented on analyzing the status and
health of forests (Coops et al., 2003; Shang and Chisholm, 2014), in-
vasive species detection (Ustin et al., 2002a; Große-Stoltenberg et al.,
2016), and infestations in plantation forestry (Narumalani et al., 2009;
Peerbhay et al., 2015). Also, in water and maritime resources man-
agement (Younos and Parece, 2015), several studies have focused on
water quality analysis (Koponen et al., 2002; Olmanson et al., 2013; El-
Magd and El-Zeiny, 2014) and precipitations (Zhou et al., 2011) or sea
ice detection (Han et al., 2017). In geological exploration and miner-
alogy, HSI data have been used for detection and mapping of mineral
deposits (Resmini et al., 1997; Kokaly et al., 2013; Kokaly et al., 2016;
Mazhari et al., 2017; Scafutto et al., 2017; Aslett et al., 2018; Dumke
et al., 2018; Acosta et al., 2019) or soil composition analysis (Shi et al.,
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2014). Other areas in which the use of HSI provided relevant results
include urban planning (Abbate et al., 2003; Lulla et al., 2009; Heldens
et al., 2011; Man et al., 2015; Anand et al., 2017), disaster prediction
(Ustin et al., 2002b; Roberts et al., 2003; Transon et al., 2018;
Veraverbeke et al., 2018), military and defense applications (Richter,
2005; Briottet et al., 2006; Ardouin et al., 2007; El-Sharkawy and
Elbasuney, 2019) and archaeological analyses (Savage et al., 2012).
Several efforts have been made over the past decades to produce

high-quality HSI data for Earth Observation (EO) (Lucas et al., 2004;
Ghamisi et al., 2017b), developing a wide range of imaging spectro-
meters placed on aerial/satellite platforms, and recently also on sta-
tionary or hand-held platforms. These sensors combine the power of
digital imaging and spectroscopy to extract, for every location in an
image plane, the corresponding spectral signature, using thousands of
narrow and continuous bands and acquiring complete HSI data cubes
by raster-scanning the scene while the platform moves across the sur-
face (i.e. pushbroom sensors), covering large observation areas. As re-
sult, the captured area or scene is recorded in different wavebands,
creating a huge data cube × ×X n n nbands1 2 , composed by ×n n( )1 2
spectral vectors or HSI pixels, where each xi

nbands records the
spectral signature of the observed material.
Nowadays, several instruments are routinely capturing great vo-

lumes of HSI data, with some of them exhibiting high acquisition rates,
i.e. being able to capture gigabytes (GBs) or even terabytes (TBs) of data
per hour (Vane et al., 1989; Kruse et al., 2000). In this regard, Table 1
provides the specifications of some of the best-known spectrometers
currently available. Moreover, advances in computing technologies
have achieved great improvements in the data acquisition, storage and
processing procedures, allowing also the launch of a number of HSI-EO
missions –such as the NASA Hyperspectral Infrared Imager (HyspIRI)
(Roberts et al., 2012), the Environmental Mapping and Analysis Pro-
gram (EnMAP) (Kaufmann et al., 2008) or the Precursore IperSpettrale
della Missione Applicativa (PRISMA) program (Galeazzi et al., 2008)–
as well as the practical application of remotely sensed HSI data in real
scenarios (Tuia and Camps-Valls, 2009; Zhang and Du, 2012), pro-
viding a general idea about the importance and utility of HSI-based
remote sensing.
The specialized literature about remotely sensed HSI data covers a

wide range of processing techniques that can efficiently extract the
information contained in the HSI cube. The most popular ones include:
(i) spectral unmixing (Bioucas-Dias et al., 2012; Heylen et al., 2014; Shi
and Wang, 2014; Sánchez et al., 2015; Zhong et al., 2016a), (ii) re-
solution enhancement (Eismann and Hardie, 2005; Mookambiga and
Gomathi, 2016; Yi et al., 2017; Yi et al., 2018), (iii) image restoration
and denoising (Xu and Gong, 2008; Chen and Qian, 2011; Zhang et al.,
2014; Wei et al., 2017b), (iv) anomaly detection (Stein et al., 2002; Xu

et al., 2016; Kang et al., 2017), (v) dimensionality reduction (Bruce
et al., 2002; Haut et al., 2018d) and (vi) data classification (Fauvel
et al., 2013; Camps-Valls et al., 2014; Ghamisi et al., 2017a). In this
work, we particularly focus on the topic of HSI data classification,
which has received remarkable attention due its important role in land
use and land cover applications (Cheng et al., 2017a), and which is
currently one of the most popular techniques for HSI data exploitation
(Chang, 2007).
A wide variety of HSI data classification methodologies rely on

machine learning (ML) techniques (Kotsiantis et al., 2006; Kotsiantis
et al., 2007), which are already collected in an extensive list of detailed
reviews, such as Plaza et al. (2009), Zhang and Du (2012), Ablin and
Sulochana (2013), Fauvel et al. (2013), Camps-Valls et al. (2014), Li
and Du (2016), Chutia et al. (2016), Ghamisi et al. (2017b), Chen et al.
(2014b), or even more recently in Li et al. (2019a), Audebert et al.
(2019), Signoroni et al. (2019), among others. However, ML is a field in
constant evolution, where new and improved methods are designed
from time to time. In this sense, from the early 2000s, the ML field has
experimented a significant revolution thanks to the development of new
deep learning (DL) models (Schmidhuber, 2015), which have been
supported by advances in computer technology. These models have
become an inspiration for the development of new and improved HSI
data classifiers, marking a clear trend since 2017 (Petersson et al.,
2016; Ghamisi et al., 2017a; Zhu et al., 2017). In this sense, the aim of
this work is to delve deeper into those classification techniques based
on DL techniques, providing an updated review about the most popular
models and widely used architectures to perform remotely sensed HSI
data classification.
The remainder of the paper is organized as follows. In Section 2, we

introduce the problem of HSI data classification, providing a brief fra-
mework for ML and DL methods, introducing the general benefits of DL
models and their limitations, coupled with the challenges that must be
faced when working with remotely sensed HSI data. Section 3 in-
troduces some general DL concepts, while Section 4 reviews the prin-
cipal DNN architectures employed for HSI data classification. Section 5
introduces some widely-used techniques to overcome DL and HSI lim-
itations. Section 6 presents some popular programming frameworks for
the development of DL models. Section 7 provides an experimental
evaluation of the discussed methods using several well-known HSI data
sets. Our experimental assessment includes a detailed discussion of the
results obtained in terms of accuracy and performance. Section 8 con-
cludes the paper with a discussion on future trends, including ongoing
computational developments such as the use of parallelization and
distribution techniques via graphical processing units (GPUs) and cloud
computing environments.

Table 1
Some of the most widely-known HSI sensors, highlighting several of their spectral-spatial characteristics. In particular, we outline the spectral features, the number of
bands, range (µm), and spectral resolution (nm), taking into account also the spatial ground sample distance measured in meters per pixel (mpp).

Sensor Bands Range Width GSD

Airborne AVIRIS (Green et al., 1998) 224 0.36–2.45 10 20
AVIRIS-NG (Bue et al., 2015) 600 0.38–2.51 5 0.3–4.0
CASI (Babey and Anger, 1989) 144 0.36–1.05 2.4 2.5
HYDICE (Rickard et al., 1993) 210 0.40–2.50 10.2 1–7
HYMAP (Cocks et al., 1998) 126 0.45–2.50 15 5
PRISM (Mouroulis et al., 2014) 248 0.35–1.05 3.5 2.5
ROSIS (Kunkel et al., 1988) 115 0.43–0.86 4 1.3

Satellite EnMAP (Guanter et al., 2015) 228 0.42–2.40 5.25–12.5 30
DESIS (Eckardt et al., 2015) 180 0.40–1.00 3.30 30
HYPERION (Pearlman et al., 2003) 220 0.40–2.50 10 30
PRISMA (Pignatti et al., 2013) 237 0.40–2.50 12 30
SHALOM (Feingersh and Dor, 2015) 241 0.40–2.50 10 10
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2. Hyperspectral data classification: backgrounds and challenges

2.1. From traditional machine learning methods to deep learning models

Any classification problem can be mathematically formulated as an
optimization one, where a mapping function (with or without certain
parameters θ) f (·, )c receives an input data sample and obtains the
corresponding label category, , by applying several transformations
over the original input, i.e. f :c , with the aim of minimizing the
gap between the desired output and the obtained one. In this regard, the
purpose of classifying HSI data is to categorize those pixels xi

nbands

(spectral vectors) contained in the HSI scene × ×X n n nbands1 2 into a set
of unique and mutually exclusive land cover classes (He et al., 2017a),
obtaining the classification map …× nY {1, , }n n

classes1 2 . Moreover,
it is usual to binarize each category, performing the so-called one-hot
encoding × ×Y n n nclasses1 2 , so the mapping function = fY X( , )c as-
signs a vector label yi

nclasses to each spectral pixel, =x y{ , }i i i
n n

1
( · )1 2 .

In the literature, there is a vast amount of works about HSI data
classification. Usually, these methods have been inspired by those al-
gorithms and techniques developed in the fields of computer vision and
pattern recognition, exhibiting a wide variety of methodologies and
learning procedures. As a result, they can be divided in many groups
depending on multiple factors, from unsupervised methods (for in-
stance: k-means (Haut et al., 2017b), k-nearest neighbors -KNN- (Cariou
and Chehdi, 2015) or iterative self-organizing data analysis technique
-ISODATA- (Wang et al., 2014)) to supervised ones (support vector
machines -SVMs- (Melgani and Bruzzone, 2004) or random forests -RFs-
(Ham et al., 2005)), from statistical classifiers (such as multinomial
logistic regression -MLR- (Haut et al., 2017a)) to deterministic methods
(for instance, extreme learning machines -ELMs- (Li et al., 2018a)),
from parametric algorithms (such as the maximum likelihood -ML-
(Kuching, 2007)) to non-parametric ones (such as the evidential rea-
soning -ER- (Sanz, 2001)), from spectral-based methodologies (tradi-
tional distance metrics based classifiers (Du and Chang, 2001; Keshava,
2004), spectral angle mapper -SAM- (Camps-Valls, 2016; Calin et al.,
2018), etc.) to spatial or spectral-spatial ones (sparse coding -SC-
(Charles et al., 2011; Yang et al., 2014), morphological profiles -MP-
(Fauvel et al., 2008; Huang and Zhang, 2013; Bhardwaj and Patra,
2018), among others). In this regard, several taxonomies have been
proposed in order to categorize the available methods. For instance, Lu
and Weng (2007) offered an interesting and complete taxonomy of
thirteen categories, considering six different criteria, while Chutia et al.
(2016) presented a simpler taxonomy of six different groups depending
on the classification procedure. Also, Ghamisi et al. (2017a) provided a
complex taxonomy with eight criteria and twenty categories, although
none of them are exclusively dedicated to DL methods.
In fact, DL is a subfield of ML inspired by the structure and functions

of the biological brain (Bengio, 2009; LeCun et al., 2015; Goodfellow
et al., 2016), so those DL-HSI classifiers are often framed within the
field of artificial neural networks (ANNs) (Plaza et al., 2011b), which
are characterized by their flexible architecture, composed by groups
(layers) of connected computational units (neurons). ANNs work on the
basis that the global classification problem defined by fc is split into
several hierarchically ordered sub-mapping functions

= f f f fY X X( , ) ( ( ( ( , ) ), ))c
L L( ) (1) (1) ( ) , being L the number of

layers that compose the network, X the original input data and f the
final classifier (performed by a classification layer in end-to-end models
or by any standard ML classifier). This is supported by the assumption
that approximating a high number of small steps is better than solving a
small number of large steps, implementing a “divide & conquer”
strategy. In this context, each f l( ) is of the general form defined by Eq.
(1):

= f bX X W( , , ),l l l l l( ) ( ) ( 1) ( ) ( ) (1)

where weights W l( ) and biases b l( ) are the parameters l( ) of the sub-

mapping function f l( ), and X l( 1) and X l( ) are the input and output data,
respectively. Moreover, ANNs are inspired by the neural connections
that conform the biological brain’s structure and the pulses that travel
through synaptic connections to transmit information. In this sense,
each f l( ) is in fact composed by a set of neurons, which apply their
corresponding synaptic weights over the input data, and whose re-
sponses are filtered, determining the neural activations which will be
forwarded to the following +f l( 1).
This hierarchical structure of stacked functions has fostered the rise

of deep and very deep ANN models, as described in the outstanding and
comprehensive overview presented in Zhang et al. (2016b). These
models will be referred to hereinafter as DNNs and VDNNs. In this re-
gard, although the limits between one type of network and another
have not been established (Schmidhuber, 2015), there is an agreement
among the experts to establish a distinction between shallow and deep
architectures (Bengio et al., 2007b), whereby single-hidden layer
structures are considered as shallow ANNs, architectures with two or
more hidden layers are considered as DNNs, and models with dozens of
layers are categorized as VDNNs (Srivastava et al., 2015). For instance,
Hinton et al. (2006) presented a neural model with three hidden layers
as one of the first deep architectures; Krizhevsky et al. (2012) con-
sidered their model with more than 5 layers as a deep network, and
Simonyan and Zisserman (2014) introduced a VDNN with 16–19 layers.
Following this trend, extremely deep neural networks (EDNN, also
known as ultra-deep nets) have been introduced as architectures with
more than 50 layers, reaching even thousands of layers (He et al.,
2016). In this context, the stack of functions allows to extract data re-
presentations at different levels, which are processed by the successive
neural layers. In fact, any ANN works as a feature extractor (FE), re-
gardless of its depth, where each sub-mapping function encodes dif-
ferent characteristics from the input data. In general, these models’
architecture allows for the learning of generic features at the early
stages, a piece of knowledge that is traditionally considered as less
dependent on the application, while the final layers are able to learn
pieces of knowledge that are more related with the application at hand.
This allows for the extraction of highly abstract data representations,
which are directly obtained and refined by the classification problem
itself, being modeled by each l( ) of the architecture. This also allows a
higher flexibility in comparison with those methods that are sub-
ordinated to hand-crafted features, which should manually design the
desired features, employing some well-known FE methods such as the
scale invariant feature transform -SIFT- (Al-khafaji et al., 2018), his-
togram of oriented gradients -HOG-, local binary patterns -LBP- (Li
et al., 2015b), or speeded-up robust features -SURF-, among others. This
last procedure imposes several restrictions, in particular, the obtained
features are very specific and usually exhibit limited levels of in-
variance and abstraction. Also, they are critically dependent on the
user’s knowledge, making hard to guarantee their setup (Yang et al.,
2016).
In turn, the structure and functions of ANNs makes them universal

approximators (Cybenko, 1989; Hornik, 1991), allowing them to learn
any data system’s behavior without any prior or additional information
about the statistical distribution of the input data. In this sense, ANNs
have attracted the attention of a large number of researchers in the area
of HSI data classification (Benediktsson et al., 1993; Yang, 1999), and
nowadays also in their DL version (Chen and Wang, 2014), due to the
benefits that DNN models exhibit when compared to traditional ML
methods (Collobert and Bengio, 2004):

1. The ability to extract hidden and sophisticated structures (both,
linear and non-linear features) contained in the raw data. Such
ability is intrinsically related, on the one hand, to the capacity to
model their own internal representation (rather than having it pre-
specified, as handcrafted features by kernel functions (Camps-Valls
et al., 2006)) and, on the other hand, to their ability for generalizing
any kind of knowledge.
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2. They are extremely flexible in the types of data they can support. In
particular, they can take advantage of the spectral and spatial do-
mains of HSI data, in both separate and coupled fashion.

3. Also, they offer a large flexibility on architectures, in terms of the
type of layers, blocks or units, and their depth.

4. Moreover, their learning procedure can be adapted to a great variety
of learning strategies, from unsupervised to supervided techniques,
going through intermediate strategies.

5. Finally, advances in processing techniques such as batch partition
and high performance computing (HPC) (Plaza et al., 2009; Lee
et al., 2011; Bioucas-Dias et al., 2013), in particular on parallel and
distributed architectures (Plaza and Chang, 2008; Plaza et al.,
2011a), have allowed DNN models to scale better when dealing with
large amounts of data.

These characteristics make DNNs very powerful and popular models
for HSI data classification. However, as traditional ML approaches,
DNNs are not exempt from certain limitations, which are highly related
to the characteristics of HSI data.

2.2. Hyperspectral data challenges and deep learning limitations

ANN classifiers in general (and DL-based models in particular) need
to face some challenges related to the processing of high-spectral di-
mensional data sets such as HSI data cubes. In fact, although the rich
spectral information contained in each pixel xi

nbands is very useful to
perform an accurate discrimination process, its large dimensionality
brings new challenges, not only in terms of computation time and
storage, but also due to the so-called peaking paradox (Theodoridis and
Koutroumbas, 2003; Kallepalli et al., 2014; Sima and Dougherty, 2008).
This paradox establishes that the use of additional features (i.e., spec-
tral bands) brings complexity into the classifier, increasing the number
of statistical parameters that define the land cover classes, and which
must be estimated in advance. Following the previous notation, if we
formulate the classification process as the approximation of a function
f :c

n nbands classes that identifies, for each spectral pixel x Xi , its
corresponding label vector =f x y( )c i i,we can infer that the corre-
sponding estimation errors will increase when more parameters/fea-
tures are taken into account, hampering the final classification perfor-
mance (Landgrebe, 2005). This leads to the curse of dimensionality
problem (Bellman, 2015) that greatly affects supervised classification
methods, in which the size of the training set may not be sufficient to
accurately derive the statistical parameters, thus leading the classifier
to quickly overfit (Hughes phenomenon (Hughes, 1968)).
Coupled with their high dimensionality, HSI data presents several

artefacts that make the classification process a difficult task. Similar to
very high-resolution (VHR) images, HSI data also suffers a high in-
traclass variability, resulting from uncontrolled changes in the re-
flectance captured by the spectrometer (normally because of changes in
atmospheric conditions, occlusions due to the presence of clouds, and
variations in illumination, among other environmental interferers).
Also, the instrumental noise produced by the spectrometer may degrade
the data acquisition process, corrupting spectral bands to different de-
grees (Rasti et al., 2018), or even making several bands unusable due to
saturation/cutoff or calibration errors (Pearlman et al., 2003). Also,
there is a tendency in HSI instruments to include significant redundancy
across adjacent spectral bands, which leads to the presence of re-
dundant information that may hinder computational efficiency of
analysis algorithms. Regarding the spatial information, pixels in HSI
data often cover large spatial regions on the surface of the Earth in
images with low/medium spatial resolution, so they tend to generate
mixed spectral signatures, leading to high interclass similarity in border
regions. In the end, these challenges create potential ambiguities and
uncertainties (Varshney and Arora, 2004; Gomez et al., 2015) that must
be faced by classification algorithms in order to extract representative
features from the images.

Another important issue is the problematic lack of labelled data. In
fact, despite the launch and start-up of the HSI-EO missions described
on Section 1, the number of operational spaceborne spectrometers that
are continuously acquiring images is still low in comparison with
multispectral remote sensing sensors such as Landsat or the Sentinel
missions, and in general the captured data are not publicly offered.
Moreover, airborne spectrometers cover much smaller areas than those
sensors allocated on satellite platforms, so the amount of HSI datasets is
quite limited. In addition, the task of labelling each pixel contained in
the HSI dataset is arduous and time-consuming, as it generally requires
a human expert, further limiting the number of available HSI datasets
for classification tasks.
These challenges greatly worsen the limitations already exhibited

by DNN models (Nogueira et al., 2017), which are related to the
complexity of the classifiers, such as the number of parameters required
by deep models. In the following, we enumerate some of the afore-
mentioned issues:

1. The training of DNNs is complex, since the optimization and the
tuning of parameters in deep models is a non-convex and NP-com-
plete problem (Blum and Rivest, 1989), much harder to train and
without guaranteeing the convergence of the optimization process
(Chen and Wang, 2014; Nguyen and Hein, 2018). Also, the increase
in the number of parameters in deeper architectures often leads to
multiple local minima (Bach, 2017).

2. Resulting from the large amount of parameters that must be man-
aged in a deep model, there is a high computational burden in-
volved, requiring computationally expensive and memory-intensive
methods (Cheng et al., 2017b)

3. Also, due to the number of parameters that must be fine-tuned,
supervised deep models consume great amounts of training data,
and they tend to overfit when there are few training parameters
(Erhan et al., 2010). In this context, the high-dimensional nature of
HSI data, coupled with the limited availability of training samples,
makes DNNs quite ineffective in generalizing the distribution of HSI
data, requiring excessive adjustments at the training stage, while the
performance on the test data is generally poor.

4. Moreover, simply stacking of layers by itself does not achieve the
desirable improvement in precision results. In fact, forward propa-
gation suffers from an important degradation of the data (He et al.,
2016), while the backpropagation mechanism presents difficulties in
propagating the activations and gradient signal to all layers as the
network’s depth increase (Srivastava et al., 2015). The gradient
(which is necessary to update the model’s parameters) fades slightly
as it passes through each DNN layer. This degradation becomes
quite severe in VDNNs, resulting in its practical disappearance or
vanishing. These problems elongate the model’s objective function
until the model cannot properly change its weights at each iteration.

5. The “black box” nature of the training procedure is also a dis-
advantage, being the model’s internal dynamics very hard to inter-
pret (Benítez et al., 1997; Lipton, 2016). This may hinder the design
and implementation of optimization decisions, although several ef-
forts have been done to visualize the parameters of DNN models
(Shwartz-Ziv and Tishby, 2017), and to enhance the extraction of
more significant and interpretable filters.

The combination of the aforementioned challenges introduced by
HSI data and the limitations of deep models force developers to care-
fully select and implement those models that best suit HSI data,
choosing the architectures, learning strategies and improvement tricks
that best fit the data while maintaining computational efficiency. In the
following sections, these points will be covered in detail, providing a
list of current models and methods that have been successfully applied
to HSI data classification.
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3. Deep neural networks: flexible and configurable models

Standard ANN models for HSI data classification exhibit a rather
limited performing, usually conducting supervised learning of purely
spectral features in a fully-connected architecture. On the contrary,
DNNs offer a great variety of models, allowing for the inclusion of
different layers, the exploitation of features in both the spectral and
spatial domains, and the adoption of different learning strategies. In the
following, these concepts will be briefly introduced.

3.1. Type of features

The type of features obtained from HSI data × ×X n n nbands1 2 are one
of the factors that impose several restrictions in the performance of the
classifier, being crucial to the discrimination between the different
classes. In particular, HSI data are characterized by their two spatial
components: ×n n1 2, and by their large spectral domain, nband, allowing
the exploitation of both types of features (Landgrebe, 2002). Although
there are also many traditional ML methods that allow for the ex-
ploitation of these two types offeatures, DNN models stand out for their
versatility, adapting both their input and their internal operation to the
use of such features through the implementation of different types of
layers.
Focusing on traditional pixel-wise DNN classifiers, these methods

exploit the ability of HSI data for detecting and uniquely characterizing
the captured surface materials in certain land cover classes, learning
existing relationships between the spectral signatures associated to each
HSI pixel and the information that is contained in them (Chen et al.,
2014b). In this sense, spectral-based DNN models learn spectral feature
representations from X, processing each pixel vector x Xi in a way
that is completely isolated from the rest of the pixels in the image
(Romero et al., 2016), under the assumption that each xi contains a
perfect and pure signature of a single surface material, without any
mixing of different land cover materials (Fisher, 1997). The perfor-
mance and final accuracy of these classifiers is strongly related to the
available training samples, usually requiring a large number of them to
properly learn the parameters of the classifier (Hu et al., 2015) and to
deal the spectral intraclass variability and interclass similarity –with the
aim of avoiding the misclassification of the samples (traditional “salt &
pepper” noise)– (Huang and Zhang, 2013).
To deal with these limitations, recent research has demonstrated the

benefits of exploiting the spatial arrangement of HSI data (Jiménez
et al., 2005; Zhang et al., 2012; Huang and Zhang, 2013), enhancing the
classification performance of standard pixel-wise HSI classification
procedures (Tarabalka et al., 2010; Mei et al., 2016) by analyzing the
contextual information around each pixel xi (Fauvel et al., 2008;
Tarabalka et al., 2009; Bioucas-Dias et al., 2013). With advances in
remote sensing technology, the spatial resolution has become gradually
better, making HSI data cubes able to represent target zones/objects
using finer spectral pixels and increasing the number of captured
samples for each type of coverage (which intrinsically increases the
intraclass variability), and improving the acquisition and observation of
certain spatial patterns present in particular land cover materials. These
classifiers operate under the assumption that adjacent pixels commonly
belong to the same land cover category (Mura et al., 2010; Ghamisi
et al., 2018), providing additional valuable information to the classifi-
cation task which helps to reduce the intraclass variance and the label
uncertainty. In the available literature, the contextual information
given by the spatial arrangement of the HSI data cube can be employed
by two kind of DNN classifiers: (i) those that only exploit the spatial
features, and (ii) those that combine both spatial and spectral features
to perform the final classification.
Focusing on spatial-based DNN classifiers, these models usually

process some spatial information extracted from the original data cube
X, learning only spatial feature representations from the data (Chen
et al., 2016). Although some spatial models may employ spatial

handcrafted features as input data, such as the minimum noise fraction
(MNF) (Zhang et al., 2019a) and covariance matrices (He et al., 2018),
Gabor filtering (Chen et al., 2017b; Kang et al., 2018), among others,
the most common and simple strategy to perform spatial HSI classifi-
cation is to feed the network with some features extracted by the
principal component analysis (PCA) method (Wold et al., 1987; Jolliffe,
2002; Fernandez et al., 2016), which reduces the spectral redundancy
and the number of dimensions while keeping the spatial information
intact (Yue et al., 2015; Haut et al., 2019a). In this context, although
there is no consensus on the number of bands to be reduced, a DNN
model is generally considered to be spatial when it applies PCA to the
input data and its architecture allows only spatial features to be ex-
tracted (Makantasis et al., 2015; Chen et al., 2016; Haut et al., 2018c).
Although spatial-based DNN models may overcome spectral

methods under some circumstances, in particular, in high spatial re-
solution HSI scenes with clear and distinctive spatial structures (and
with spectral signatures that are not mixed) (Chen et al., 2016), the
joint exploitation of both spatial and spectral features is more desirable,
as it not only comprises the analysis of spectral signatures but also the
associated contextual information (Paoletti et al., 2017a; Paoletti et al.,
2018a). In this regard, available DNN architectures are able to process
both features by including spatial information as concatenated in-
formation to the spectral vector (following the traditional ML vector
vision (Chen et al., 2014b; Chen et al., 2015)), or by processing the 3-
dimensional cube to maintain the original structure and contextual
information (Chen et al., 2016; Paoletti et al., 2017a; Paoletti et al.,
2018a; Paoletti et al., 2018c).

3.2. Type of layers

As mentioned before, the type of layer has a decisive influence on
the architecture of the model, allowing for the processing of different
features. Following the previous notation, DNN models divide the
global mapping function f (·, )c into hierarchically stacked submapping
functions f (·, )l l( ) ( ) . In this regard, each f l( ) performs a two-step stage,
composed by FE and detection, which are in turn implemented by
several types of stacked layers, being l( ) their parameters.
Contextualizing the evolution of DL methods, at early days, neural

models emerged within the fields of pattern recognition and signal
processing, inspired by the behaviour of the biological brain and im-
plementing a hierarchical structure where each part of the stack con-
forms a layer, being neurons (also perceptrons) the basic unit of each
layer (Ball et al., 2017). However, with the development of image
processing, traditional fully-connected structures became ineffective for
the analysis of 2-dimensional and 3-dimensional data cubes (LeCun
et al., 2015). To overcome this limitation, a fully-connected structure
was adapted to the behaviour of those neurons that compose the bio-
logical visual cortex, characterized by a local receptive field in which
they are activated or not in the presence of some specific visual stimuli,
creating a hierarchical structure in which deeper neurons are able to
respond to more abstract and higher level features. With this in mind,
DNN models can implement several types of layers, where the most
common ones are explained below.

3.2.1. Fully-connected layers
Also known as FC layers, they connect every neuron in the l-th layer

to every neuron in the subsequent layer +l 1, as it can be observed on
the leftmost model in Fig. 1, where a traditional feed-forward multi-
layer perceptron (MLP) (Collobert and Bengio, 2004) is represented.
These layers apply a linear transformation between the input layer data
X l( 1) and the layer parameters, weights W l( ) and biases b l( ), adapting
the original mapping function of Eq. (1) as follows:

= + bX W X·l l l l( ) ( ) ( 1) ( ) (2)

The main drawback of FC layers is the high number of connections,
imposing a large number of parameters that must be fine-tuned. In
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particular, the number of parameters can be calculated as the sum
of all the connections between adjacent layers =nparameters

+=
+n n( · 1)i

L
nodes

l
nodes

l
0
1 ( ) ( 1) , which involves the number of weights and the

bias. Also, both the input data that they need and the extracted features
are limited to a vector representation of the input data, losing to some
extent the potential of the spatial-contextual information (Chen and
Wang, 2014).

3.2.2. Convolutional layers
As we can observe in Fig. 1, the CONV layer defines a block of

neurons that operate as linear kernels (also called filter bank) connected
and applied over small pre-defined regions from the input data (input
volume hereinafter). The main idea lies on analyzing the statistical
properties of the HSI cube × ×X n n nbands1 2 , which can be considered as
a stationary source of spectral pixels in which data features are equally
distributed into the entire X in relation to spatial positions (Field,
1999). This suggests that the learned features at a certain position of X
can be successfully applied to other regions of X, which in the end can
be understood as the chance to employ the same features at all locations
of the input image.
In this sense, CONV layers can be interpreted as a traditional sliding

window method, where K l( ) fixed-size filters are overlapped over the
input layer data, sliding at certain intervals defined by the stride of the
layer s l( ). This can be observed in Fig. 2. In contrast with FC layers,
CONV layers offer a great versatility, since the size of these chunks or
windows is defined by the receptive field of the layer, indicated as

× ×k k ql l l( ) ( ) ( ), where k l( ) is applied over the two spatial axes and q l( ) is
applied over the spectral axis. This allows the CONV layer to accept 1-
D, 2-D and 3-D inputs, and to extract spatial, spectral or spatial-spectral
features.

= + × × ×bX W X( )l l l l
K k k q
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As Eq. (3a) indicates, the l-th CONV layer applies K l( ) linear 3D-
kernels over the input layer X l( 1), which performs a dot product be-
tween its weights and biases, W l( ) and b l( ), respectively, and small
chunks of the input volume data. As a result, an output volume X l( )

composed by K l( ) feature volumes is obtained. In particular, Eq. (3b)
indicates the general calculation of the feature i j t( , , ) for the z-th fea-
ture of the output volume, xi j t

l
, ,
( )z.

CONV layers exhibit some advantages over traditional FC layers
(Guo et al., 2016; Li et al., 2017b). In particular, the local connectivity
allows to learn spatial correlations among neighboring pixels, in-
troducing some invariance to the location of the feature. Also, the
sparse connectivity and the parameter sharing mechanism reduces the
number of parameters that must be fined-tuned.

3.2.3. Activation layers
Usually, the data transformations applied by FC and CONV layers

are considered the FE stage of the network, defining a linear operation
of element-wise matrix multiplication and addition over the data. In
this sense, those DNN models without activation layers (or with linear
activation ones) are essentially working as linear regressors. A non-
linear activation layer must be implemented behind FC and CONV
layers in order to learn non-linear representations of the data structure.
In fact, the activation layer is considered as the detector stage of DNN
models (Goodfellow et al., 2016), and is implemented by a non-linear,
element-wise activation function which allows to model a response
variable (i.e., a feature score) that varies non-linearly with the output
volume of the previous FC/CONV layer, giving as a result an output
volume containing the activations of each neuron of the previous layer,

=X X( )l l( ) ( 1) . In this regard, (·) can be implemented by several
activation functions, depending on the desired properties. Fig. 3 gives
the graphical visualization of some widely used functions. For instance,

Fig. 1. Comparison between the traditional fully-connected (left) and the convolutional architecture (right) of a DNN model. The first model is represented as a
conventional multilayer perceptron (MLP) with 3 hidden fully-connected (FC) layers, while the second model is represented as a convolutional neural network (CNN)
with 3 hidden convolution layers too. Focusing on the last one, neurons in the CNN create 3-dimensional blocks with local connectivity over one pre-defined window
of each layer input volume, known as receptive field. FC layers can be observed at the architecture tail, conforming the classifier network.

Fig. 2. Graphical visualization of the CONV layer from a 2D point of view (left) and 3D point of view (right). On the left we can observe how the 2D kernel is applied
over spatial regions of the input volume X l( 1) with a stride =s 2l( ) (the dark circle symbolizes the dot product between the window from the original data and the
kernel). On the right we can observe how the z-th kernel of size × ×k k ql l l( ) ( ) ( ) produces, for each region to which it is applied, a scalar value (represented as a smaller
rectangle) which is allocated into the z-th feature map, composing an output volume X l( ) of K l( ) feature maps.
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the sigmoid = +x( ) e
1

1 x presents a smooth and continuously differ-
entiable function, whose values range from 0 to 1 (not inflating the
neural activation values). However, as it only produces positive values
in the 0–1 range, it becomes hard and slow to optimize. The tanh
function = +x( ) e e

e e
x x

x is very similar to the sigmoid, being less smooth
and symmetric over the origin, as its values range from −1 to 1. This
makes its gradient steeper than that of the sigmoid.
Although these standard activations can operate properly with

shallow architectures, the smallest derivative terms tend to zero when
the model’s architecture is deep enough, leading to the vanishing gra-
dient problem. The rectified linear activation function (ReLU) (Nair and
Hinton, 2010) tries to overcome previous limitations by applying a
max(·) function between 0 and the input data x, setting the gradient to
0 if the data are equal or smaller than 0, and to x otherwise, i.e.

=x x( ) max(0, ), with an output range of +[0, ) (it is unbounded on
the positive side). This alleviates the vanishing gradient problem, as the
derivative of the positive x is always 1. Moreover, ReLU conducts a
sparsity activation function where not all the neurons are activated at
the same time, being more computationally efficient than the sigmoid,
for instance. However, if the gradient is set to 0, the influence of the
affected neurons is eliminated, so they cannot contribute to improving
the learning process (Pedamonti, 2018), leading to the dying ReLU
problem.
Other interesting functions are the softplus (Dugas et al., 2001) and

softmax activation functions, with equations = +x e( ) ln(1 )x and
=x( )i e

e
xi

j
xj , respectively. The first one produces values in the range

+[0, ), i.e. it is similar to a smoothed ReLU being differentiable into 0
and where its derivative is the sigmoid function, which makes it com-
putationally slower during the backward step. The second one is in-
spired by the sigmoid, squeezing the input layer data between 0 and 1

and dividing the obtained outputs by the sum of them. In this sense, the
softmax function works as a winner-take-all function that gives the
probability of the input data belonging to a particular class, and it is
usually employed as the final layer of a DNN model.
Despite the wide range of activation functions available in the

current DL literature (Agostinelli et al., 2014; Sonoda and Murata,
2017; Ramachandran et al., 2017), the vast majority of DNN models for
the analysis of HSI remote sensing data employ ReLU and softmax as
the principal activation functions, with few exceptions (Mei et al., 2016;
Paoletti et al., 2018).

3.2.4. Down-sampling layers
Also known as pooling or POOL layers, they are inspired by the

spatial processing of CONV layers. Particularly, POOL layers perform a
non-linear sub-sampling strategy with the aim of: (i) reducing the
spatial dimensions of the extracted feature maps, sumarizing them into
a reduced volume, (ii) contributing to the data with certain invariance
to small transformations, and (iii) reducing the computation time and
the complexity in terms of both, data size/dimensionality and network
parameters (Boureau et al., 2010). The POOL layer implements a
sample-based discretization process (see Fig. 4), applying some nu-
merical operation over a square window defined by the spatial re-
ceptive field ×k kl l( ) ( ) of the layer. The most usual operations are the
average-pooling, the sum-pooling or the max-pooling (Scherer et al.,
2010), although it should be noted that several alternative methods
have been also implemented, such as stochastic pooling (Zeiler and
Fergus, 2013), mixed pooling (Yu et al., 2014) or wavelet pooling
(Williams and Li, 2018). Also, several works have investigated the re-
placement of pooling layers by CONV layers with increased stride
(Springenberg et al., 2014).

3.3. Learning strategies

In addition to the type of features and layers used, DNN models also
allow the implementation of different learning strategies. Following the
previous notation, the classification function f (·, )c can be understood
as a particular DNN model. In this sense, the performance of fc will
depend on certain parameters that must be correctly fine-tuned.
Moreover, depending on how this parameter adjustment is carried out,
two main types of learning can be distinguished: unsupervised and su-
pervised learning

3.3.1. Unsupervised learning
Unsupervised learning performs the classification without a priori

knowledge about the given data, optimizing parameters by the in-
herent similarities present in the data structure (Xiaoli Jiao, 2007;
Romero et al., 2016; Hassanzadeh et al., 2018). In this context, an
unsupervised DNN performs a greedy layer-wise unsupervised pre-training
(Bengio et al., 2013), where each layer performs hierarchical un-
supervised FE for inferring the underlying structure of the data, being

Fig. 3. Graphical visualization of different activation functions that can be
implemented in a DNN model, including the linear function =x x( ) , the leaky
ReLU, and SeLU (Section 5.3.3 contains further details).

Fig. 4. Graphical visualization of the POOL layer
from a 2D point of view. Dark cells indicate the
selected value from the pooling operation (for in-
stance, if the max pooling has been implemented,
dark cells would represent the higher value of each
region from the volume), although the final value
also can be obtained as the average or sum value of
the entire region. In fact, the pooling layer can be
interpreted as a kernel of size ×k kl l( ) ( ).
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combined at the end to initialize another deep supervised or generative
model (Bengio et al., 2012) that will carry out the final regression or
classification task. In fact, unsupervised DNN models are usually em-
ployed for clustering (Xie et al., 2016; Tian et al., 2017; Shaham et al.,
2018; Min et al., 2018), anomaly detection (Penttilä, 2017; Ma et al.,
2018a) and data encoding (Li et al., 2014; Paul and Kumar, 2018; Kang
et al., 2018). In particular, there is a wide range of works about un-
supervised DL methods for HSI data pre-processing, being widely used
to perform dimensionality reduction (DR) (Lin et al., 2013b).

3.3.2. Supervised learning
In contrast to unsupervised learning, supervised learning needs to

learn those parameters that model the relationship between xi and yi
by performing an inference procedure based on previous knowledge
(Sabale and Jadhav, 2015; Qiu et al., 2017). In this way, it is needed to
split the original scene X into those training samples with known
identity = =yx{ , }train i i i

n
1

labeled that will be used during the training step to
categorize the rest of unlabeled pixels, which will be employed during
the inference = =x{ }test i i

n
1

unlabeled (Sabalel and Jadhav, 2014). Usually,
supervised DNNs models are able to achieve better performance than
their unsupervised counterparts, being the most widely used (Chen and
Wang, 2014; Sabale and Jadhav, 2015; Qiu et al., 2017; Paoletti et al.,
2017a; Paoletti et al., 2018a). However, this learning also imposes a
severe training constraint, whereby DNN models need to consume large
amounts of labelled data during the training to correctly fine-tune the
model parameters (Makantasis et al., 2015).

4. When HSI data meets DL: main classification models

To date, in addition to the traditional MLP (Roodposhti et al., 2019),
four DNN models have become the mainstream DL architectures for the
analysis of HSI data: autoencoders (AEs), deep belief networks (DBNs),
recurrent neural networks (RNNs) and CNNs. In the following we re-
view each model, pointing the most relevant works in the HSI litera-
ture, and then paying more attention to state-of-the-art models such
CNNs.

4.1. Autoencoders (AEs)

When dealing with HSI data classification tasks, the extraction of
accurate features becomes a critical preprocessing step to model the
internal structures and relationships of the data, helping to reduce the
Hughes effect and the curse of dimensionality. In this sense, auto-
associative neural networks (AANNs), also known as autoencoders
(AEs) (Hinton and Zemel, 1993; Bishop, 1995; Chen et al., 2014b;
Karhunen et al., 2015; Zhang et al., 2016c; Plaut, 2018) have been
widely used as deep models to perform unsupervised coding from HSI
data. Regarding its operational mode, the AE model does not carry out
classification tasks, but reconstructs the input data by reducing

X Xmin 2 (the distance between the obtained representation X and
the original data X). In fact, the main particularly of these networks lies
in their ability to project the original input samples into a new space,
generating compressed, extended or even equally-dimensioned outputs,
with the least possible amount of distortion. This projection is per-
formed by a traditional architecture implemented by encoder and de-
coder nets, both linked by a bottleneck layer that represents the latent
space (Baldi and Hornik, 1989; Hinton and Zemel, 1993), as it can be
observed in Fig. 5.
HSI-AEs emerged as typically pixel-wise methods, being usually

exploited to carry out dimensionality reduction (DR) and high-level
spectral FE due to the existing correlation between adjacent bands
(Ahmad et al., 2017). In this regard, the spectral pixel xi

nbands is
taken as input of the encoder, representing it in a new space nnew by
applying a hierarchical set of Lencoder recognition weights or encoder
components, as Eq. (4a) illustrates. Then, the obtained code vector or
code dictionary ci

nnew is sent as an input to the decoder, which

applies a set of Ldecoder generative weights over the code vector to re-
cover and/or obtain an approximate reconstruction of the original input
vector, xi, as Eq. (4b) indicates.

= ++l L bc x W xFor in : ( · )i encoder i
l l

i
l l( 1) ( ) ( ) ( ) (4a)

= ++ll L bx c W cFor in : ( · )i decoder i
ll ll

i
ll ll( 1) ( ) ( ) ( ) (4b)

Several AE models for HSI data analysis have been presented in the
literature. Focusing on spectral-based ones, Zhu et al. (2017a) propose
an unsupervised tied AE (TAE) for spectral FE, based on the maximum
noise fraction (MNF) (Green et al., 1988; Iyer et al., 2017) as pre-pro-
cessing DR step, and fine-tuning with classification via softmax. Fol-
lowing a simple architecture, Hassanzadeh et al. (2017) combine the
multi-manifold spectral clustering (MMSC) (Wang et al., 2010) with the
unsupervised contractive AE (CAE) (Rifai et al., 2011) to enhance the
HSI data classification by reinforcing the model’s learning through a
regularizer term, being less sensitive to small variations in the training
samples. A pixel-wise stacked AE (SAE) is proposed by Okan et al.
(2014), which implements a two-step training strategy with un-
supervised representation learning and supervised fine-tuning, before
the final supervised classification, performed by a logistic regression
layer. Furthermore, Wang et al. (2016) implement a stacked denoising
AE (SDAE), which stochastically corrupts the inputs in order to over-
come the identity-function risk present in deep AEs. Also, in order to
reduce the computational complexity of SAEs, Zabalza et al. (2016)
propose a segmented SAE (S-SAE) to comprise original features into
smaller data segments, being separately processed by smaller and in-
dependent SAEs.
Also, recent works combine AEs with spectral-spatial feature ex-

traction methods. For instance, Chen et al. (2014b) present three dif-
ferent AEs and SAEs to generate shallow and deep or high-level features
using spectral, spatial and spectral-spatial information, using a logistic
regression method to perform the final classification, while Lin et al.
(2013b) perform a comparison between spectral and spectral-spatial
AEs with shallow and deep architectures. In both cases, the spatial in-
formation is obtained via PCA reduction, obtaining nnew components
and flattening the × ×d d nnew cube that surrounds each pixel into a
vector. Mughees et al. (2016) also develop a SAE to perform spectral
processing, while spatial analysis is performed by an adaptive boundary
adjustment-based segmentation method. As a result, the spectral-based
classification map and the spatial-based single band segmented map are
combined by a majority voting based method. Wang et al. (2017b)
apply guided filtering (He et al., 2013) to exploit the spatial informa-
tion, flattening it to combine it with spectral information in a multilayer
fine-tuning SAE (FSAE). Li et al. (2015a) implement a SAE, which is
pre-trained in unsupervised fashion over 3D Gabor features extracted
from the HSI data cube, with an MLP performing the final classification.
Ma et al. (2016b) combine the FE performed by the SAE with a relative
distance prior in the fine-tuning process, in order to enhance the model
when the number of available labeled samples is not enough. Also, Ma
et al. (2016a) introduce a spatial updated deep auto-encoder (SDAE) to
improve the extraction of spectral-spatial information by adding a
regularization term in the energy function, and updating the features by
integrating contextual information. Paul and Kumar (2018) propose a
segmented stacked autoencoder (S-SAE) for spectral-spatial HSI data
classification as an improvement of the SAE, reducing its complexity
and computational times through the use of mutual information (MI), to
perform spectral segmentation, and morphological profiles (MPs) to
assimilate the spatial information contained in the HSI cube. Tao et al.
(2015) develop two stacked sparse AEs (SSAEs) to extract overcomplete
sparse spectral and spatial features, which are stacked and embedded
into a linear SVM for classification purposes. Wan et al. (2017) also
propose a SSAE to process different types of features, such as spectral-
spatial, multifractal and other higher-order statistical ones, while a RF
is employed for classification. Zhao et al. (2017a) exploit again the
SSAE with RF to extract and classify more abstract and deep-seated
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features from spectral, spatial and spectral-spatial sets. In contrast, Xing
et al. (2016) develop a SDAE to extract robust spectral features from
HSI data, using logistic regression to perform the supervised fine-tuning
and classification. Liu et al. (2015) also employ a SDAE to learn spectral
feature representations from the input data, while a superpixel tech-
nique is employed to generate the spatial constraints for refining the
spectral classification results. Recently, Zhou et al. (2019a) have pro-
posed a two-stage AE, called compact and discriminative SAE (CDSAE),
where the first one performs the training of a discriminative SAE
(DSAE, where each layer performs a local Fisher discriminant regular-
ization) to learn a feature mapping by minimizing the reconstruction
error, and the second one performs the classification of the data, up-
dating the DSAE’s parameters. Also, the extraction of spectral features
using AEs has been combined with neural models such as CNNs (to
extract spatial information), as Hao et al. (2018) discussed.
Although AE structures have demonstrated to be a powerful tool,

their performance is often hampered by the large number of parameters
that must be trained, learned and updated, which requires a large
number of samples to perform the fine-tuning process, a demand that
cannot be always satisfied. Although several new techniques have been
adopted to avoid this problem, such as the use of active learning (AL)
(Li, 2015), additional enhancements are needed. Furthermore, the
spatial processing step that AEs usually perform on the data implies the
use of DR methods followed by a flattening of the data into a vector,
neglecting the rich spectral-spatial structural information that HSI data
cubes contain (Chen et al., 2014a; Tuia et al., 2015).

4.2. Deep belief networks (DBNs)

DBNs combine probability and graph theory to implement a gen-
erative probabilistic graphical model (PGM) with the structure of a
directed acyclic graph (DAG) (Ball et al., 2017). In the literature,

several works address the implementation of DBNs as a stack of un-
supervised networks, such as restricted Boltzmann machines (RBMs)
(Smolensky, 1986; Larochelle and Bengio, 2008; Tan et al., 2019) with
a greedy learning algorithm as optimizer (Hinton et al., 2006; Hinton
and Salakhutdinov, 2006).
In HSI data analysis, DBNs have been employed as a variant of the

AE model with greedy layer-wise training to perform FE. In this sense,
Li et al. (2014) implement a DBN for feature extraction and classifica-
tion, stacking spectral-spatial characteristics and using logistic regres-
sion for classification. Also, Chen et al. (2015) introduce three DBNs to
extract spectral, spatial and spectral-spatial high-level features from HSI
data in hierarchical fashion, and performing the final classification task
by means of logistic regression. There are also several efforts aimed at
improving the performance of this kind of DNN for HSI classification
purposes, for instance Le et al. (2015) review the hyper-parameters
used by the spectral and spectral-spatial DBNs of Chen et al. (2015),
while Zhong et al. (2017a) present a diversified DBN for HSI data
classification, which regularizes the pre-training and fine-tuning pro-
cedures by a diversity-promoting prior over latent factors to avoid the
co-adaptation of the latter. Guofeng et al. (2017) improve the standard
training process of DBNs in order to avoid the effect of a gradient dis-
appearance, using PCA and kernel PCA (KPCA). Inspired by DBNs, Zhou
et al. (2017) developed a group belief network (GBN), which considers
the characteristics of grouped spatial-spectral features from HSI data by
modifying the bottom layer of each RBM that composes the model ar-
chitecture.
Although DBNs are very promising DL methods for HSI data clas-

sification, as they often provide good results (and improve their per-
formance with the incorporation of spatial information), they suffer
from the same limitation as SAEs: these neural models are designed for
processing 1D-signals, so the rich spatial information contained in HSI
data cubes must be vectorized to be processed together with the

Fig. 5. Traditional representation of a tied autoencoder, composed by two main parts: an encoder and a decoder, linked by a bottleneck layer.
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spectral one, or even separately processed by other techniques in order
to be properly exploited. In the end, this kind of spectral-spatial pro-
cessing cannot fully incorporate the spatial-contextual information
present in HSI data cubes.

4.3. Recurrent neural networks (RNNs)

The architecture of RNN models (Williams and Zipser, 1989) is char-
acterized by loops in the connections, where node-activations at each step
depend on those of the previous step. This internal structure (similar to a
directed graph) makes the RNN an ideal model for learning temporal se-
quences, exhibiting a dynamic temporal behavior for a given data se-
quence, with an internal state or memory that allows for the association
between the current input data and the previous ones at each step (i.e.
remembering the context). This fact enables RNNs as a powerful tool for
predicting future events depending on the previously remembered ones,
being particularly interesting for remote sensing land-cover analysis,
which exhibits many changes in their reflective characteristics over time,
hampering the classification task (Rußwurm and Körner, 2017).
RNNs can be categorized into three main groups: vanilla RNNs, long

short term memory (LSTM) (Hochreiter and Schmidhuber, 1997) and
gated recurrent unit (GRU) (Cho et al., 2014) architectures. The vanilla
RNN was the first recurrent model introduced as a DL framework, and
its operation is quite intuitive. Given an input data sample xt

n

captured at time t, the vanilla RNN computes its corresponding output
yt as a hidden state at time =t y h, t t, which represents the current
memory of the model, as Eq. (5) indicates:

= =
+ +

t
b th W x U h

0 if 0
( · · ) if 0t

h t h t h1 (5)

where (·) is a non-linear activation function (for instance, the sig-
moid), bh is the bias,Wh, is the weight matrix of the input, andUh is the
weight matrix of the recurrent connections.
Although vanilla is the easiest RNN model to implement, its simplicity

leads to a degradation of information when high dimensional input data
are processed. In this sense, the LSTM offers advantages when dealing with
the deficiencies of the original RNN by developing a recurrent unit com-
posed by a cell, which remembers values at arbitrary time intervals, and
three gates (input, output and forget gates), intended to regulate the flow
of information in and out of the cell. A schematic overview is presented in
Fig. 6. In this case the model stores, for each input at time t, two states: the
original hidden state, ht , and the cell state, ct, which removes or adds
information to the cell, depending on the gates. In particular, the input
gate it determines whether or not a new input is allowed to go inside the
cell, the forget gate ft deletes the irrelevant or unimportant information,
and the output gate ot allows the information to affect the network’s
output at time t. This mechanism allows the LSTM unit to learn which
information is important along time, as Eq. (6) indicates:
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where W U, and b are the weight matrices and biases for the different
gates or the cell (depending on ).
Finally, the GRU unit is a LSTM variant (see Fig. 6) in which the

input and forget gates are changed by update (zt) and reset (rt) gates,
removing the output gate (which implies less parameters):
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As any traditional pixel-based approach, the RNN exploits each HSI
pixel in band-to-band fashion, performing a similarity check between
temporary data and spectral bands, using a many-to-one scheme such as
the LSTM and GRU models for HSI data processing presented by Mou
et al. (2017). Also, Guo et al. (2018) propose a LSTM model with a
guided filter, taking into account three principal components extracted
by PCA, and Zhou et al. (2018a) combining spectral LSTM-classification
with PCA extracted spatial LSTM-classification via decision fusion. Lyu
et al. (2016) develop the REFEREE change rule for a LSTM-based model
in order to enhance the efficiency and performance when dealing with
change detection in multispectral and HSI data. Zhang et al. (2018b)
introduce the LSS-RNN, a RNN model with a local spatial sequential
method (LSS) that includes a low-level FE step, implemented using
Gabor filtering and differential morphological profiles (DMPs) (Huang
and Zhang, 2013), whose corresponding features are stacked together
and passed through the LSS to obtain higher-level features, which fi-
nally feed the RNN. Furthermore, Sharma et al. (2018) enhances the
pixel-based RNN by implementing a patch-based RNN (PB-RNN) with
LSTM units, which is able to process the multi-spectral, multi-temporal
and spatial information contained into the dataset.
Other interesting RNN models take advance of the flexibility offered

by CONV layers, including some stages of FE and detection with CONV
after applying the recurrent unit. For instance, Venkatesan and Prabu
(2019) employ a RNN to classify the features obtained by a spectral
CNN model (developing a CNN1D), while Luo (2018) proposed a
shortened spatial-spectral RNN with Parallel-GRU (St-SS-pGRU) with
the aim of improving performance, increasing efficiency and simpli-
fying the training procedure of standard band-by-band GRU models.
Zhou et al. (2018b) first perform a spatial FE with CNNs, and then send
the obtained features to a fusion network based on GRUs. Mou et al.
(2019) implement a multi-spectral-temporal-spatial model for change
detection by adopting an end-to-end network with several CONV layers
(at the beginning of the architecture) in order to extract spectral-spatial
features in a natural and structured way, enhancing the data re-
presentation before applying the LSTM unit and a FC layer to perform
the final classification. Moreover, Shi and Pun (2018) combine the
feature extraction performed by the spectral-spatial CNN model with a
multi-scale hierarchical recurrent neural network (MHRNNs) that cap-
tures the spatial relations of local spectral-spatial features at different
scales. Also, several convolutional RNNs (CRNNs) (Zuo et al., 2015)
have been implemented for HSI classification. For instance, Wu and
Prasad (2017) present a 1D-CRNN, where several 1D-convolutional
layers are used to perform spectral FE, sending the obtained features to
the recurrent layers, and finally integrating spatial constraints by
adding linear opinion pools (LOP) (Benediktsson and Sveinsson, 2003)
at the end of the flowchart in order to improve classification

Fig. 6. Architecture of RNN models: comparison between the internal archi-
tecture of a LSTM recurrent unit and a GRU one.
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performance. A similar model is used by Wu and Prasad (2018), where
a 1D-CRNN is trained in a semi-supervised way with labeled and un-
labeled data using pseudo labels. Yang et al. (2018) introduce the 2D-
CRNN and 3D-CRNN for HSI data classification, performing a direct
comparison with their CNN counterparts and demonstrating the su-
periority of the proposed RNN models. Finally, Liu et al. (2017d) in-
troduce a bidirectional-convolutional LSTM (Bi-CLSTM) to learn spec-
tral-spatial features from HSI data, while Seydgar et al. (2019) integrate
a CNN model with 3D-kernels and the CLSTM network to extract low-
dimensional and shallow spectral-spatial features that are recurrently
analyzed, focusing on the spatial information but also considering the
spectral one.

4.4. Convolutional neural networks (CNNs)

In contrast with the previous models, in which the FC layer is the
basis of their architectures, in the CNN model (Lecun et al., 1998) the
CONV layer is the basic structural unit, inspired by the natural vision
process to perform FE (LeCun et al., 2015; Goodfellow et al., 2016). In
this sense, CNN models elegantly integrate spectral features with spa-
tial-contextual information from HSI data in a more efficient way as
compared to previous DNN models. The large flexibility that this model
provides regarding the dimensionality of the operational layers, their
depth and breadth, and its ability to make strong assumptions about the
input images (Krizhevsky et al., 2012), have turned the CNN into one of
the most successful and popular DNN models, being the current state-
of-the-art in DL (Gu et al., 2018) and an extremely popular tool for HSI
data classification.
The architecture of a CNN is composed by two well-differentiated

parts that can be interpreted as two networks. These coupled networks
are trained together as an end-to-end model to optimize all the weights
in the CNN: (i) the FE-net, composed by a hierarchical stack of feature
extraction and detection stages that learns high-level representations of
the inputs, and (ii) the classifier, composed by a stack of FC layers that
performs the final classification task, computing the membership of
each input sample to a certain class (Ball et al., 2017).
Focusing on the FE-net, it is composed by several hierarchically

stacked extraction and detection stages, where the l-th stage defines the
l-th submapping function f l( ). Usually, these submapping functions are
composed by CONV, activation or ReLU, and POOL layers (Murugan,
2017). In this way, the CNN model is able to reveal the features that are
shared across the data domain via localized kernels, extracting the local
stationarity properties of X (Defferrard et al., 2016). In fact, the feature
extraction performed by the CNN is very similar to the ones adopted by
other DNN models, i.e. the first stages are able to detect recognizable
features, while the last stages combine all the features detected by the
previous layers, detecting more abstract features. However, the flex-
ibility when designing kernels allows for a more efficient and natural
extraction of spectral, spatial and spectral-spatial features, as Fig. 7
shows, while the locally-connected nature of the convolutional kernels,
coupled with the parameter-sharing across layers, permits to alleviate
the number of parameters that must be fine-tuned by the model, making
the computations more efficient as compared with traditional FC ar-
chitectures. Focusing on the classifier net, it performs the final classi-
fication taking into account the information obtained by the FE-net.
Usually, this part is implemented by several stages composed by FC and
ReLU layers, placing a softmax on the last FC layer. The resulting output
can be interpreted as the probability that each input data pattern be-
longs to a certain class, where the optimization function can be defined
as the difference between all the desired outputs yi (for each input data
sample xi) and the obtained ones, y i, which can be calculated as the
cross-entropy of the data:

= y ylog( )c
i

i i
(8)

Moreover, the classifier net can be implemented by a standard MLP

model, or by other classifiers such as SVM (Paoletti et al., 2017b) or
logistic regression (Zheng et al., 2017). Also, the classifier can be dis-
regarded, using the first part, i.e. the FE-net, for other purposes such as
unsupervised FE (Romero et al., 2016). In the current literature, three
kinds of CNN models can be found for HSI data classification, de-
pending on whether they perform spectral, spatial, or spectral-spatial
feature analysis. In the following, we review some available works in
each category.

4.4.1. Spectral CNN models for HSI data analysis
Regarding spectral models (top of Fig. 7), they consider the spectral

pixels xi
nchannels as the input data, where nchannels can either be the

number of original bands nbands or a reasonable number of spectral
channels nnew, extracted using PCA or other DR methods, to which 1D-
kernels are applied on each CONV layer, ×K ql l( ) ( ), obtaining as a result
an output X l( ) composed by K l( ) feature vectors.
Hu et al. (2015) and Salman and Yüksel (2016) present a deep CNN

with five 1-D layers that receive as input data the pixel vectors, clas-
sifying HSI data cubes only in the spectral domain, while Charmisha
et al. (2018) present a CNN1D architecture called vectorized CNN
(VCNN) to perform DR and classification of HSI data based on the to-
pology of Hu et al. (2015). Li et al. (2017a) propose a CNN1D model for
exploring spectral information correlated between pixels, extracting
pixel pair features (PPFs) from the original data, being the input a
combination of the center pixel and each of its surrounding neighbors
(exploiting the similarity between pixels). Similarly, Du and Li (2018)
develop subtraction PPFs, where the CNN1D model’s input is the
spectral difference between the central pixel and its adjacent pixels,
performing HSI target detection. Mei et al. (2016) train the model by
considering the spectrum of the pixel, the spectral mean of neighboring
pixels, and the mean and standard deviation per spectral band of the
neighboring pixels, introducing several improvements into the CNN1D
architecture, such as batch normalization layers (Xu et al., 2015b), a
dropout process (Krizhevsky et al., 2012) and a new nonlinear activa-
tion function known as Parametric ReLU (PReLU) (He et al., 2015).
Acquarelli et al. (2018) develop seven shallow CNN1D models with
spectral-locality-aware regularization (R), smoothing-based data aug-
mentation (S) and label-based data augmentation (L), to include some
kind of spatial information into the network, creating seven combina-
tions (CNN-R, CNN-S, CNN-L, CNN-RS, CNN-RL, CNN-SL and CNN-
RSL), although the spectral pixels are processed independently, i.e. one
by one. Finally, Ghamisi et al. (2017a) and Chen et al. (2016) present
standard CNN1D models for spectral processing.
In addition to 1-D architectures, the CNN2D architecture can be

adapted to work only with spectral information. For instance, Jia et al.
(2016) take into account only the pixel spectral array xi, which is folded
into a map matrix and sent to the CNN2D as input.

4.4.2. Spatial CNN for HSI data analysis
Regarding spatial models, they only consider spatial information

obtained from the HSI data cube. In this sense, it is usual to employ
CNN2D architectures to process the spatial information, where each
CONV layer applies × ×K k kl l l( ) ( ) ( ) kernels over the input data, ob-
taining as a result K l( ) feature maps.
The spatial information can be extracted from the original HSI data

cube by reducing the spectral dimension by employing some DR-
method, such as PCA, and cropping spatial patches of ×d d pixel-cen-
tered neighbors. For instance Chen et al. (2016) and Haut et al. (2019a)
train a CNN2D with one principal component (PC), while Liang and Li
(2016) employ three PCs to train the CNN2D and post-process the ex-
tracted spatial-features with sparse coding (SC) (Charles et al., 2011;
Song et al., 2014) to create a sparse dictionary of more representative
spatial features for classification. Xu et al. (2018) propose the random
patches network (RPNet) as a CNN2D model where input data is whi-
tened by PCA, taking into account only three PCs. Also, Zheng et al.
(2017) perform an end-to-end classification with a CNN2D that receives

M.E. Paoletti, et al. ISPRS Journal of Photogrammetry and Remote Sensing 158 (2019) 279–317

289



as input six PCs. Zhao et al. (2015) propose a a CNN2D architecture for
extracting deep spatial features using, on the one hand, a multiscale
convolutional AE based on the Laplacian pyramid and, on the other
hand, the PCA to extract three PCs. Then, the extracted spatial features
are concatenated together with the spectral information, using the lo-
gistic regression as a classifier. Furthermore, Ding et al. (2017) consider
the HSI cube as a collection of 2-D images (i.e.images from different
bands), which are cropped into patches to train a CNN2D model to
automatically learn the data-adaptive kernels from the data through
clustering.
In addition to introducing PCA-extracted spatial patches, some

works propose the use of spatial-handcrafted features. For instance,
Chen et al. (2017b) reduce the spectral domain to three PCs and extract
spatial features (edges and textures) by applying Gabor Filtering. These
features are sent to the CNN2D model, reducing the workload and ad-
dressing the overfitting problem. Another example is Romero et al.
(2016), which performs a study between shallow and deep CNN2D
models trained with the enforcing population and lifetime sparsity
(EPLS) algorithm (Romero et al., 2015) for unsupervised learning of
sparse multi/hyperspectral features.
Recently, a deformable HSI classification network model (DHCNet)

has been proposed by Zhu et al. (2018a), using PCA to extract the three
most informative PCs of the original HSI data cube and splitting the
image into neighborhood windows to feed a CNN2D model, composed
by deformable convolutions and downsampling that fuse the neigh-
boring structural information of each input data sample in an adaptive
manner.

4.4.3. Spectral-spatial CNN for HSI data analysis
Regarding spectral-spatial models, they consider both spectral

properties and spatial information from the HSI data cube. In this sense,
several strategies and architectures can be developed to perform the
spectral-spatial processing, mainly due to the great flexibility that CNN
models exhibit.
Following traditional pixel-wise methods, the CNN1D can be em-

ployed to perform spectral-spatial classification, rearranging the the
spatial information and concatenating it to the spectral features (Zhang
et al., 2016). For instance, Slavkovikj et al. (2015) integrate spatial and
spectral information by reshaping the spectral-spatial neighborhood
window to be processed by 1-D kernels, and Ran et al. (2017) improve
the contextual information of the CNN1D by developing spatial PPFs
(SPPFs), introducing the constraint that only the central pixel and its
immediate surrounding pixels are paired.
Focusing on CNN2D architectures, these models can perform spec-

tral-spatial processing in different ways. The most direct one is to feed
the model with 3-D neighboring regions of size × ×d d nchannels, where
nchannels can be certain number of PCs or the original nbands. In this re-
gard, some methods perform an initial DR in order to reduce the
spectral correlation and redundancy. For instance, Makantasis et al.
(2015) compose 3-D inputs with 10–13 PCs, applying the randomized
PCA (R-PCA) over the HSI data cube. Yu et al. (2017) develop a spec-
tral-spatial CNN with ×1 1 CONV layers, also called cascaded cross-
channel parametric pooling or CCCP layers (Lin et al., 2013a), and one
global average pooling (GAP) layer instead of the traditional FC layers,
to better analyze the HSI data information. Paoletti et al. (2017a)

Fig. 7. Traditional architectures of spectral, spatial and spectral-spatial convolutional models employed by CNN1D, CNN2D and CNN3D architectures (top to bottom).
The CNN1D architecture is commonly employed for spectral analysis, applying a hierarchical stack of L FE and detection stages, where each CONV layer exhibits kernels
of ×K ql l( ) ( ). The CNN2D model can perform both spatial and spectral-spatial analysis by accepting spatial patches with few principal components or spectral-spatial
patches with all (or most) available spectral bands, to which each CONV layer applies a kernel of × ×K k kl l l( ) ( ) ( ). Finally, the CNN3D model is employed for spectral-
spatial analysis, taking full advantage of the spectral signatures contained in the input data by applying CONV layers with × × ×K k k ql l l l( ) ( ) ( ) ( ) kernels.
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develop a spectral-spatial model that efficiently takes into account the
full spectrum, reaching competitive results, while Dong et al. (2019)
propose a spectral-spatial CNN2D with a band-attention mechanism to
improve the feature representation of the data.
The spectral-spatial processing can be performed by CNN2D archi-

tectures introducing spectral-spatial handcrafted features. For instance
He et al. (2018) train the CNN2D model with covariance matrices,
which encode the spectral-spatial information of different-sized neigh-
borhoods of 20 PCs, obtaining multiscale covariance maps. Aptoula
et al. (2016) use attribute profiles (APs) (Mura et al., 2010) as input to
the CNN2D model, taking advantage of the spatial information and
spectral properties that APs can capture in an image at various scales.
Yue et al. (2015) develop a CNN2D architecture to process spectral and
spatial features by composing the spectral information as three different
feature maps, and concatenating them to the spatial patches (reduced
by PCA to three PCs).
Moreover, several approaches combine the CNN2D with other dif-

ferent models to perform spatial and spectral feature extraction in se-
parated fashion; for instance, Zhao and Du (2016) propose a spectral-
spatial feature based classification (SSFC) approach that employs a
CNN2D to find spatial-related features, while the spectral feature ex-
traction is performed by a balanced local discriminant embedding al-
gorithm (BLDE). Yue et al. (2016) extract spectral features from a SAE,
while a multiscale spatial FE is performed by a CNN2D with spatial
pyramid pooling (SPP). Zhang et al. (2017) and Yang et al. (2016)
combine the hierarchical spectral and spatial-related features extracted
from a CNN1D and CNN2D, respectively, performing the final classifi-
cation with a softmax regression classifier. Ma et al. (2018b) introduce
a two-branch model, where the spatial branch is composed by a CONV-
DECONV architecture with skip connections, and the spectral branch is
implemented by a contextual DNN.
In addition to the CNN1D and CNN2D models, the CNN3D model is

usually adopted for spectral-spatial classification, where the 3-D filters
of size × × ×K k k ql l l l( ) ( ) ( ) ( ) are able to extract high-level spectral-spa-
tial features in a natural way, extracting as output K l( ) feature volumes.
For instance, Chen et al. (2016) review the three kinds of convolutional
models that use the full pixel vectors in the original HSI data cubes to
create the input blocks for their CNN3D model, and Li et al. (2017c)
perform an interesting comparison between the spectral-spatial CNN3D
model, two spectral-based methods (SAE and DBN), and the spatial
CNN2D for HSI data classification, demonstrating that the CNN3D-
based method is able to outperform these state-of-the-art methods.
Furthermore, the CNN3D model can be used as a simple AE in order to
obtain spectral-spatial features. For instance, Mei et al. (2019a) and
Sellami et al. (2019) perform the classification on the spectral-spatial
features obtained by a CNN3D model.
As with CNN1D and CNN2D models, the available literature offers

more complex and sophisticated procedures for HSI data processing
involving CNN3D architectures. For instance, Luo et al. (2018) develop
a hybrid CNN2D-3D architecture able to deal with overfitting problems,
using a 3-D kernel as the first layer of the network to extract feature
vectors from the original 3D inputs, which are characterized by a small
neighborhood window (only ×3 3 with the full dimensionality given by
nbands). Then, the procedure reshapes the obtained feature vectors into
one single matrix that is sent to the second 2-D kernel, and also to the
subsequent pooling and FC layers, performing an end-to-end classifi-
cation. With certain similarities, Leng et al. (2016) propose a cube-
CNN-SVM (CCS) architecture which extracts several feature vectors
from the original HSI data cube, performing the classification in an easy
and efficient way with an SVM classifier. Roy et al. (2019) also combine
a CNN3D with a CNN2D, where the CNN3D first extracts spectral-
spatial features that are then refined by the CNN2D. Li et al. (2018b)
follow a similar architecture, changing the final SVM by an RF. More-
over, Gao et al. (2018b) develop a CNN architecture with as many
“branches” as AP features extracted from the HSI data cube, extracting
independently the corresponding output volumes, which are

concatenated and computed by the rest of the network. Cao et al.
(2018) improve the performance of bayesian-inspired CNN3D model by
placing spatial smoothness prior on data labels extracted with Markov
random fields (MRFs) (Sun et al., 2015). Finally, Wang et al. (2019)
introduce the alternately updated spectral-spatial CNN (AUSSC) as an
end-to-end CNN3D with a recurrent feedback structure to learn refined
spectral and spatial features.

4.4.4. Residual learning
CNN models have revolutionized the image processing field, es-

tablishing themselves as the current state-of-the-art. In this sense, the
constant improvements in convolutional architectures, and their
adoption in HSI data processing problems, have made possible to
achieve performances never seen before in HSI classification (Khan
et al., 2018). However, like the rest of DNN models, very deep CNN
models must face some limitations related to the depth and the data
degradation, as pointed out in Section 2.2. To overcome these issues,
some works have focused on increasing the network’s depth by creating
short paths from low-level layers to high-level layers (i.e. residual
connections). The development of convolutional architectures with re-
sidual learning has been a crucial step in the implementation of VDNN
models, allowing the development of models with hundreds of layers.
The internal structure of residual neural networks (ResNets) (He

et al., 2016) is based on groups of FE and detection stages which
compose the basic building block, known as residual unit (Xie et al.,
2017). The inputs of such block are directly connected to the outputs
through an aggregation operation, as it can be observed in Fig. 8. Such
residual connection performs an identity mapping that helps to pro-
pagate previous information to the subsequent units, improving the
backward step by promoting the propagation of the gradient. In this
regard, the output volume X l( ) of the l-th residual unit is given by Eq.
(9), where (·) represents all the operations applied over the input data
X l( 1), which depend on all the parameters (weights l( ) and biases

l( )) of the layers that compose the l-th unit:

= +X X X( , , )l l l l l( ) ( 1) ( ) ( ) ( 1) (9)

Eq. (9) reveals that the previous knowledge, in terms of generated
features, is exploited once again in the current unit. The available lit-
erature gathers some works concerning the use of the ResNet in HSI
processing. For instance, Zhong et al. (2017b) develop an end-to-end
spectral-spatial ResNet (SSResNet) for HSI classification, outperforming
traditional CNN models even with small training sets (Zhong et al.,
2017c). Also, Paoletti et al. (2018c) present a pyramidal ResNet for
spectral-spatial HSI data classification, improving the results of Zhong
et al. (2017b). Lee et al. (2016) and Lee and Kwon (2017) propose the
contextual deep CNN, which employs residual learning to simplify the
training of the proposed network. Moreover, Mou et al. (2018) imple-
ment an unsupervised classification method based on the AE archi-
tecture with CONV-DECONV layers, following the ResNet architecture
for spectral-spatial HSI data classification. In addition, Xie et al. (2018)
and Yuan et al. (2019) employ the residual-based model as a spectral-
spatial denosing AE for HSI data restoration and classification. Song

Fig. 8. Graphical visualization of a residual unit. The architecture reinforces the
learning process of the model by reusing previous information.
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et al. (2018) implement the deep feature fusion network (DFFN),
composed by stages or branches of CONV layers connected with in-
ternal residual units, whose features are concatenated at the end (before
the final classification). Li et al. (2019b) develop the multiscale deep
middle-level feature fusion network (MMFN), an architecture that
combines CONV layers and residual blocks into two stages to extract
optimal multiscale features and to fuse and learn the complementary
information from the obtained features. Chen et al. (2019a) present two
DL ensemble methods based on CNNs and ResNets, implementing
transfer learning to make full use of the learned weights. Moreover,
recent works have focused on improving the performance of ResNets
through attention techniques, for instance Haut et al. (2019) improve
the spectral-spatial classification of the ResNet model including a visual
attention mechanism to enhance the analysis of features. Mei et al.
(2019b) develop a two-branch model, where the CNN’s branch contains
the spatial attention mechanism and the ResNet’s branch implements
the spectral attention mechanism. In addition to classification tasks, the
ResNet has been also tested for HSI data super-resolution by Wang et al.
(2017a), exhibiting good results.
The introduction of connections between different layers has in-

spired other models. Particularly, densely connected networks
(DenseNets) (Huang et al., 2017) follow and extend the ResNet idea,
reusing low-level, middle-level and high-level features by con-
catenating ( ) all the previous feature maps obtained in a dense block
(see Fig. 9). In this sense, the output of each dense block is calculated as
the concatenation of the inner blocks that compose it:

=X X X( , , ) ( , , )l l l l( ) ( 1) ( ) ( ) (1) (1) (1) (10)

In both cases, ResNets and DenseNets increase the number of con-
nections, which does not imply a growth of model parameters that must
be fine-tuned. Quite opposite, internal connections allow to reduce
their number due to the presence of redundant information. At the same
time, they reinforce the feature propagation along the network, per-
forming a kind of regularization. Several works have adapted the
DenseNet model to HSI processing tasks. For instance, Paoletti et al.
(2018a) implement a Deep&Dense CNN model for spectral-spatial
classification of HSI data, while Wang et al. (2018a) analyze spectral,
spatial and spectral-spatial DenseNets for HSI classification. In a similar
way to ResNet, the DenseNet can be combined with attention me-
chanims. For instance, Ma et al. (2019) propose the double-branch
multi-attention mechanism network (DBMA) to separately extract
spectral and spatial features, adopting (at each branch) an attention
mechanism to extract the most discriminative features and Fang et al.
(2019) propose an end-to-end 3-D DenseNet with spectral-wise atten-
tion mechanism for enhancing HSI classification. Also, the ResNet and
DenseNet can be combined to construct a joint network, known as dual-
path network (DPN) (Chen et al., 2017a), composed by bottleneck-
blocks whose output is split into two branches: the first branch is ele-
ment-wisely added to the residual path, and the second branch is
concatenated with the densely connected path. This model has been
successfully employed for HSI classification purposes; for instance,
Kang et al. (2018) reach very good accuracy in comparison with ResNet
and DenseNet, taking into account very small training sets (0.3%-0.5%)
and using PCA to extract 5–10 PCs.

4.5. Other improved convolutional-based networks

In addition to ResNets and DenseNets, some other convolutional-
inspired architectures have been developed for HSI data analysis. For
instance, Liu et al. (2018) implement a siamese CNN (S-CNN) (Koch
et al., 2015) for HSI data classification, which contains two branches of
identical sub-networks that share the same configuration and para-
meters. This implies less parameters to fine-tune, requiring less training
data and reducing the tendency to overfitting, helping to manage da-
tasets with high intraclass variability and interclass similarity, reaching

good performance with a small number of training samples.
Inspired by the inception architecture (Szegedy et al., 2015; Szegedy

et al., 2016), the work of Lee et al. (2016) introduces an inception
module at the beginning of their model, composed by n-parallel streams
with several layers and different kernel sizes, whose outputs are merged
by concatenation. Moreover, inspired by the network-in-network (NiN)
(Lin et al., 2013a) architecture, Shamsolmoali et al. (2018) train a RNN
with combined spectral-spatial features extracted by a CNNiN.
Based on the fully convolutional network (FCN) (Long et al.,

2015a), whose learnable layers rely only on CONV and DECONV layers,
Li et al. (2018a) implement an AE-based FCN for HSI-FE, using an ELM
to classify the obtained features. Following the CONV-DECONV archi-
tecture and adding skip connections, the hourglass CNN architecture
(Newell et al., 2016; Haut et al., 2018b) creates an encoder-decoder
structure where each block of CONV layers that compose the encoder is
connected to the corresponding DECONV layer at the decoder coun-
terpart. This architecture can be employed for HSI data denoising
(Sidorov and Hardeberg, 2019).
Recently, a new kind of network based on capsules and dynamic

routing has been implemented, called Capsule Networks (CapNets)
(Sabour et al., 2017). This architecture encodes the data internal re-
lationships into an activity vector (instead of a traditional scalar value).
Such data representation has demonstrated to be powerful in encoding
useful features from the data, solving the limitations exhibited by the
pooling layer. In this sense, Paoletti et al. (2018b) present a spectral-
spatial CapsNet for HSI classification that outperforms the accuracies
reached by traditional CNN models and the ResNet. Also, Deng et al.
(2018) present a HSI-CapsNet that provides good results when very few
training samples are employed.

5. Overcoming the limitations of DL in HSI Classification

The vast number of works discussing DNN models (in general) and
CNNs (in particular) for HSI data analysis reveals the great possibilities
that DL-based methods are able to offer in this context, not only in
terms of architectural modifications, but also regarding their combi-
nation with other methods and algorithms, as we pointed out on Section
3. This also includes a large variety of remote sensing image processing
techniques apart from data classification (FE, DR, unmixing, re-
construction, super-resolution, etc.) Convolutional-based networks such
as CNNs and ResNets represent the most groundbreaking advance in DL
in the last few years, allowing the implementation of VDNN models
with hundreds/thousands of layers and compelling performance, fol-
lowing the assumption that deeper models are able to extract more
complex and high-level relationships from the data (Srivastava et al.,
2015). In the end, this expected to lead to improvements in model ac-
curacy and performance (Krizhevsky, 2012; Yu et al., 2013). This has

Fig. 9. Graphical visualization of a dense block. Instead of CONV layers, the
DCNN is composed by dense blocks D l( ), where each one contains several inner
blocks Bi

l( ) composed by several CONV layers. The architecture of each D l( )

allows for the reutilization of the low, middle and top feature maps extracted by
each inner block.
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also placed CNNs and ResNets as the current mainstream technologies
in DL for HSI classification. However, these models must also face the
limitations listed on Section 2, related to intrinsic problems of HSI
analysis and the efficient management of depth. In order to deal with
the aforementioned issues, several techniques and mechanisms have
been developed in previous years to enhance the learning process and
improve the performance of deep architectures. In the following, we
provide a description of the available strategies to mitigate these issues.

5.1. Opening the black box

Regarding the “black box” nature of DNN models (in general) and
convolutional-based ones (in particular), several efforts have been
made to “open” the box and understand what are the filters actually
doing (Rauber et al., 2017). For instance, mNeuron (Wei et al., 2017a) is
a powerful Matlab plugin that allows the visualization of convolutional
neural network parameters, while t-distributed stochastic neighbor
embedding (t-SNE) (Maaten and Hinton, 2008) and uniform manifold
approximation and projection (UMAP) (McInnes et al., 2018) are non-
linear dimensionality reduction techniques which are also employed to
visualize the models parameters in a simple way. Liu et al. (2017b)
propose to formulate the CNN model as a directed acyclic graph (DAG),
developing the CNNVis as a visual analysis system to better understand,
diagnose and refine CNN models.
Regarding parameter visualization, several works propose to un-

derstand how DL is working in step-by-step fashion. In this context, Lei
et al. (2018) present an ambitious dissertation, analyzing the DL-based
models as physical systems from a microscopic, macroscopic, and
worldview perspectives. Ravanelli and Bengio (2018) present a more
concrete proposal, developing the SincNet, a convolutional-based
model that exploits parametrized sinc functions in the first layer to
discover more significant filters. Also, the BagNet (Brendel and Bethge,
2019) employs a visual bag-of-local-features model to perform the
classification, extracting features that are easy to identify and interpret.
There is a wide variety of proposals to understand what networks do

(Mahendran and Vedaldi, 2015; Nguyen et al., 2015). However, in the
current literature about HSI-classification, little attention has been paid
to this issue. Qiu and Jensen (2004) propose a method for under-
standing the performance of a three-layer MLP in HSI classification, but
no relevant efforts have been reported with DL-architectures.

5.2. Reducing overfitting

In order to address the overfitting problem in convolutional-based
models, several strategies have been reported that can be classified into
four main categories: (i) those that affect the data, (ii) those that affect
the model, (iii) those that affect the training process, and (iv) new
learning paradigms to deal with the limited availability training data.

5.2.1. Data augmenting and noise inclusion
Gathering enough labeled samples to capture the high variability of

HSI data is complicated, time consuming and expensive. Several works
have focused on addressing this issue through the generation of virtual
samples to enhance the robustness of convolutional-based models
(Acquarelli et al., 2018). Following traditional methods, Yu et al.
(2017) enlarge the training set by rotating and flipping the input
spectral-spatial patches, while Lee and Kwon (2017) mirror the spec-
tral-spatial training patches four times, across the horizontal, vertical
and diagonal axes. On the other hand, Haut et al. (2019a) implement a
mechanism to add spatial-structured noise to the input HSI data by
randomly occluding some areas of the input patch in order to enhance
the performance and robustness of the CNN model. Chen et al. (2016)
present two methods to create additional training samples: the first one
changes the spectral radiation of the original training samples xi by
multiplying them by a random factor and adding random noise, and the
second one by mixing the spectral properties of two samples of the same

class with proper ratios. Also, Acquarelli et al. (2018) present two
methods: smoothing-based data augmentation, which takes advantage
of the spectra of neighboring pixels, and label-based data augmenta-
tion, which exploits the labels of neighboring pixels to favor those
classes with less samples, in addition to creating copies of the original
data by inserting random noise. Ghamisi et al. (2016) propose a dither
algorithm (Simpson, 2015) to suppress non-linear distortions and data
aliasing, generating new samples by adding random noise to the ori-
ginal training samples, in addition to using the fractional order Dar-
winian particle swarm optimization (FODPSO) to select the most in-
formative spectral bands. An interesting work has been recently
proposed by He and Chen (2019), who implement a transformation
network (STN) to obtain an optimal input of the CNN model for HSI
classification, which translates, rotates and scales the network’s input
until obtaining an optimized one.

5.2.2. Reducing the complexity of the model
The second strategy to reduce overfitting is focused on reducing the

computational complexity of deep CNNs (Maji and Mullins, 2018), for
instance, by optimizing the internal structures of the CONV layers,
pruning them to obtain a more simple and efficient network archi-
tecture (Cheng et al., 2017b). The thinning of the network (and the
subsequent parameter reduction) make the CNN model lighter, which
leads to faster training and execution, although not many efforts have
been made in this direction in the HSI arena. Recently, works focused
on designing optimal CNN architectures for HSI data processing have
been presented. Specifically, Chen et al. (2019b) propose a metho-
dology to automatically design efficient CNN1D and CNN3D archi-
tectures for HSI data classification. Given a number of operations (i.e.,
layers such as CONV, POOL or normalization), a gradient descent-based
search algorithm evaluates all possible configurations and selects the
best and optimal one.

5.2.3. Enhancing the training process
The methods for this purpose cover a wide range of techniques. For

instance, L1/L2 regularization methods insert a penalty into the loss
function in order to minimize the absolute value of the weights or the
squared magnitude of the weights (weight decay or Tikhonov regular-
ization), respectively (Murugan and Durairaj, 2017). The regularization
process forces the model to make compromises on its weights, making it
more general. In particular, the L1 regularization enforces the identi-
fication of the most relevant features in a dataset, while the L2 pursues
a regularization that is less aggressive, but more efficient in computa-
tional terms. For instance, Chen et al. (2016) use the L2 regularization.
In addition to these methods, dropout regularization (Hinton et al.,

2012; Srivastava et al., 2014) has also been proven to be a good solu-
tion to enhance the performance and robustness of the CNN model,
preventing complex co-adaptations on training data. The mechanism is
quite simple: it randomly deactivates a percentage of the activations in
order to improve the network generalization, forcing the neurons to
make more compromised assumptions. For instance, Paoletti et al.
(2017a) make use of dropout in the layers of the CNN. Based on
dropout, multiple regularization techniques have been developed (Ba
et al., 2013; Zhang et al., 2016a; Molchanov et al., 2017) such as its
generalization to large FC layers: the drop-connect (Wan et al., 2013),
which sets randomly selected connection weights to zero. However,
traditional dropout injects random single-pixel noise to the feature
maps, resulting in spatially unstructured noise, which makes it in-
effective in 2-D and 3-D models (Park and Kwak, 2017). In this sense,
spatial-dropout (Tompson et al., 2015) and dropblock (Ghiasi et al.,
2018) regularization techniques overcome the problem by dropping
spatial-regions of the feature maps.
Another interesting regularization technique for preventing over-

fitting is early stopping (Caruana et al., 2001), which saves at each
epoch those models that outperform the previous trained networks,
discarding the others and storing at the end the results of the best
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model. For instance Ran et al. (2017), Acquarelli et al. (2018), and
Wang et al. (2018a) employ this technique to assess the convergence of
their convolutional-based models.

5.2.4. Improvements on learning strategies
Overfitting in DNN models is intimately related to the number of

samples available for training, representing one of the main limitations
of supervised and very deep models. In this context, some improve-
ments on learning paradigms have been developed in the DL field that
can effectively improve the performance of DNNs when very few
samples are available. We describe four of such paradigms: (i) semi-
supervised and (ii) active learning (AL), (iii) transfer learning (TL), and
(iv) self-supervised learning.

Semi-supervised learning In-between unsupervised and su-
pervised learning, DNN models allow the implementation of hybrid
approaches. In particular, semi-supervised learning (Ratle et al., 2010)
provides a wide range of techniques to expand the training set train by
including unlabeled data during the training stage (Ratle et al., 2010;
Sabalel and Jadhav, 2014). For instance Ma et al. (2016c) present a
semi-supervised learning strategy based on multi-decision labeling
(local, global and self-decision levels), where unlabeled samples with
high confidence are selected to extent the training set. Kang et al.
(2019) extract pseudo-training samples from PCA and extended mor-
phological attribute profiles (EMAPs) (Dalla Mura et al., 2011), ap-
plying extended random walker optimizers to feed a spectral-spatial
convolutional-based deep feature fusion network (DFFN). Wu and
Prasad (2018) present a convolutional-based recurrent model fed by
pseudo training samples obtained by previous clustering. Fang et al.
(2018) adopt separated spectral and spatial residual architectures with
co-training, where the most confident labeled samples at each iteration
are included in train. A similar approach has been implemented by
Zhou et al. (2019b), in which two separated spatial and spectral SAEs
are co-trained, enlarging train by a region growing method. An inter-
esting trend is the adoption of the ladder network (Rasmus et al., 2015;
Pezeshki et al., 2016), a new DNN model based on hierarchichal latent
variable models, for semi-supervised classification of HSI data (Liu
et al., 2017a; Büchel and Ersoy, 2018).
In addition to the addition of unlabeled data to train, some semi-

supervised techniques are able to replicate new samples. In particular,
the DNN structure known as generative adversarial network (GAN)
(Goodfellow et al., 2014). For instance, Zhu et al. (2018b) propose
convolutional-based GAN1D and GAN3D architectures to learn the in-
trinsic characteristics of HSI data, enhancing the classification perfor-
mance achieved by the traditional CNN1D and CNN3D. Also He et al.
(2017b), Zhu et al. (2018b), and Zhan et al. (2018) present similar
approaches, while Zhang et al. (2018a) introduce a Wasserstein GAN to
perform unsupervised FE.

Active learning (AL) AL is a semi-supervised machine learning
algorithm (MacKay, 1992) that can easily deal with the availability of a
limited amount of labeled data by training the model with a small set of
labeled samples that is reinforced by the acquisition of new (re-
presentative and intelligently selected) unlabeled samples, reducing the
cost of acquiring large labeled training sets and the number of needed
training samples. In the literature, several works combining the DNN
and AL paradigms can be found. For instance, Haut et al. (2018c) dis-
cuss the use of Bayesian CNNs for spectral, spatial and spectral-spatial
HSI classification, providing robust classification results in comparison
with traditional CNN models. In addition to convolutional models, Liu
et al. (2017c) employ AL with a DBN, while Li (2015) develops an AL-
based SAE.

Transfer learning (TL) The TL paradigm (Yosinski et al., 2014;
Long et al., 2015b) is based on the assumption that learned features in
one task can be used for other tasks (Pan and Yang, 2010). Low-level
layers in convolutional-based architectures are able to learn generic
features that are less dependent on the final task, while the top-level
layers learn more specific knowledge, extracting features that are more

related with the final task. In this sense, TL-based algorithms usually
employ off-the-shelf pre-trained networks (i.e. models that were trained
on different datasets) to process the data of interest, tailoring them
slightly for the new task by removing some the last few layers of the
model and retraining again with some new final layers. As a result, the
amount of data used to pre-train the CNN can be leveraged, alleviating
the need for new data (this is useful when limited amounts of training
sets are available) and producing better results in a shorter amount of
time (Windrim et al., 2018). The most widely used off-the-shelf pre-
trained networks are trained with the ImageNet dataset, composed by
14 million images belonging to 1000 different classes. The most popular
topologies are the following ones:

• ResNet-50, composed by 50 residual layers,
• DenseNet121 (Huang et al., 2017), composed by 4 dense blocks
connected by transition layers,
• VGG-16 and VGG-19 (Simonyan and Zisserman, 2014), which in-
crease the depth by using many layers: 16 and 19, respectively,
using a simple architecture with small kernels (CONV layers of

×3 3) and reducing the volume size (through POOL layers of ×2 2),
• MobileNet (Howard et al., 2017), whose architecture is suitable for
onboard processing, maximizing the accuracy while taking into
account restricted resources for an integrated application,
• Xception (Chollet, 2017), based on inception networks, where the
original modules have been replaced with depthwise separable
convolutions in order to make a more efficient use of model para-
meters.

Several works adapt the TL paradigm to process HSI data (Mei et al.,
2017; Jiao et al., 2017; Windrim et al., 2018; Yang et al., 2017; Deng
et al., 2019; Zhang et al., 2019), visibly improving the training of deep
CNN models when limited amounts of labeled data are available for the
training stage.

Self-supervised learning This learning strategy emerges as an al-
ternative approach to supervised learning, being able to extract the
naturally available contextual information and embedded metadata as
supervisory signals, without an explicit need for =x y{ , }i i i

n
1

labelled pairs. This
does not mean learning the inherent structure of data in the form of
unsupervised learning (Liu et al., 2019; Jing and Tian, 2019). In HSI
data classification, Wang et al. (2018b) propose the HSINet, which
contains a three-layer DNN, a multi-feature CNN, and an embedded
conditional random field to achieve self-supervised feature learning,
extracting spatial, spectral, color, boundary and contextual informa-
tion. Also, Liang et al. (2018) combine TL with self-supervised learning,
developing a pre-trained VGG-16 to extract deep multi-scale spatial
information from the HSI data cube, whose spatial information is pro-
cessed together with the raw spectral information by a SAE.

5.3. Vanishing gradient problem

Apart from improvements based on architectures, such as ResNets
and CapsNets, those methods employed to deal with the vanishing
gradient problem (Srivastava et al., 2015) can be categorized into three
main groups: (i) implementing data normalization between each net-
work layer, (ii) developing better initialization strategies with proper
optimizers, and (iii) implementing better non-linear activation func-
tions.

5.3.1. Avoiding vanishing gradient through data normalization
During gradient descent training, the layer’s weights W l( ) and the

obtained data X l( ) distributions can vary (covariate shift effect), making
the learning very unstable and saturating the activations whose first
derivative tends to zero. This leads to the vanishing gradient problem.
In this sense, it is common to employ normalization methods to control
the magnitude and mean of the neurons’ activations located into one
layer (independently of the other layers of the model). This aims at
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performing the parameters’ optimization in an easier way (Santurkar
et al., 2018) while, at the same time, dealing with the unbounded
nature of certain activation functions (for instance, the ReLU), whose
outputs are not constrained within a bounded range (such as the tanh
function). Table 2 provides a summary of several relevant normal-
ization methods that have been adopted in this context.

5.3.2. Avoiding vanishing gradient through initialization and optimization
strategies
Classical DNNs initialize their parameters, setting small random

values to the weights and biases that compose the model, under the
assumption that this helps the stochastic optimization algorithm used to
train the model. In this sense, the selection of the optimization algo-
rithm becomes fundamental in order to obtain a proper performance of
the model. This selection must take into account the type of data to be
used, the task to be performed, and the features of the problem.
Several optimization methods with different strengths and weak-

nesses have been developed with the aim of improving the process of
minimizing an objective function: the traditional stochastic gradient
descent (SGD), which is faster than standard gradient descent (GD) but
harder to converge to the minimum due to frequent updates and fluc-
tuations; the minibatch SGD, which reduces the high variance in the
parameter updates; the momentum, which speeds SGD by descending
along the relevant direction, reducing oscillations; the preconditioned
SGD (PSGD) (Li, 2018), which adaptively estimates a preconditioner for
handling efficiently the gradient noise and non-convexity of a target
function at the same time, giving good results in deep neural models
optimization (Li et al., 2016); Adagrad (Duchi et al., 2011), a variant of
PSGD which adapts the learning rate based on the parameters, being
well-suited for dealing with sparse data although its learning rate can
suffer from constant decaying, producing the decaying learning rate
problem and hampering the optimization process; AdaDelta (Zeiler,
2012), which tries to avoid the decaying learning rate problem by
calculating different learning rates for each parameter and is often
combined with the momentum technique; and finally the adaptive
moment estimation (Adam) (Kingma and Ba, 2014), which is a com-
bination of Adagrad and AdaDelta, outperforming the previous opti-
mization techniques. It is based on processing adaptive learning rates
for each parameter and storing several past gradients to keep a de-
caying average of those past gradients, which makes it efficient, with
fast convergence and effective when dealing the vanishing learning
rate. The excellent results of Adam algorithm have positioned it as the
method that is most widely used for optimizing deep networks, being
employed in some HSI-related works as Paoletti et al. (2017a, 2018c).
In addition to the improvements implemented on the optimizers

(Martens et al., 2012; Sutskever et al., 2013; Dauphin et al., 2014),
recently new investigations have been made in order to improve the
initialization of model parameters (Bengio et al., 2007a; Glorot and
Bengio, 2010; Erhan et al., 2010; He et al., 2015; Koturwar and
Merchant, 2017; Guo and Zhu, 2018), for instance by performing un-
supervised pre-training (Romero et al., 2016; Li et al., 2015a), which
initializes the parameters near to a local minimum, allowing for a better
generalization via unsupervised FE.

5.3.3. Avoiding vanishing gradient through new non-linear activation
techniques
Currently, several efforts for preventing the vanishing-gradient

problem have been made based on developing effective non-linear ac-
tivation functions (·) (Xu et al., 2015a; Pedamonti, 2018). In parti-
cular, some rectified-based activation functions have been adapted to
overcome the problem by preventing the gradient from being zero. For
instance, in order to face the dying ReLU problem the leaky ReLU
(LReLU) (Maas et al., 2013) and parametric ReLU (PReLU) (He et al.,
2015) functions have been implemented with Eq. (11) (see Fig. 3).

=
>

x a x x
x x

( ) · if 0
if 0 (11)

In particular, the LReLU sets the gradient signal as a linear com-
ponent of the input layer data X l( ), employing a small and constant
negative slope (usually =a 0.001) when the data is equal or smaller
than 0. This avoids the dying ReLU problem, as the function will not
have zero-slope parts, making the LReLU more balanced and allowing a
faster learning. PReLU works similarly, being a learnable in this case. In
this context, the vanishing gradient depends on the slope a. Instead of
that, the scaled exponential linear unit (SeLU) (Klambauer et al., 2017;
Paoletti et al., 2018) derives two parameters: and from the inputs,
as we can observe in Eq. (12), allowing as the smallest gradient
value and mapping the means and variances from one layer to the next
one in order to minimize the covariate shift effect.
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6. Popular deep learning frameworks

The current trend in the literature is to implement deeper and more
complex networks, with new topologies, more branches and connec-
tions, and better optimizers and functions. In this sense, certain pro-
gramming frameworks have been deployed in order to provide tech-
nical and coding support to developers of DL methods. In particular,
these DL frameworks offer a black-box environment for training and
validating DNN models through a high level programming interface.
Furthermore, instead of ad hoc software, the framework provides
quality and maintainability of applications at low cost, allowing for the
model to better adapt to market standards. In terms of performance,
available frameworks are able to easily exploit computing tools, de-
veloped and supported by large communities, relying on well-known
high performance computing (HPC) libraries such as CUDA, CUDNN,
MKL, BLAS, AVX operations and Protobuf, among others.
Table 3 provides a summary of the main DL frameworks currently

available in public repositories, including a brief description, the pro-
gramming language that was used for coding purposes, and the avail-
able application interfaces (APIs). It is interesting to highlight the use of
Python as one of the main programming languages in the community to
implement DL frameworks, due to its versatility and flexibility. In ad-
dition, the number of stars and forks have been provided as indirect
evaluation metrics of those repositories (see Fig. 10), where stars
measure the degree of popularity of the repository, while forks measure
the number of copies that have been made of the original repository.
These data has been obtained on two different dates: July 16th, 2018
and September 8th, 2019, in order to compare the evolution of these
indicators. It can be observed that the most popular DL framework is
TensorFlow (Abadi et al., 2016a; Abadi et al., 2016b), tracked by more
than 120.000 followers and with more than 70.000 branches and forks,
being the framework that has grown the most from 2018 to 2019.
Concerning TensorFlow, the high-level library Keras (Ketkar, 2017) has
also experimented an increase in the number of followers, allowing for
the development of ANN models in an easy and simple way. Also, it is
interesting to note that the frameworks based on Torch (Collobert et al.,
2002), Pytorch (Fey and Lenssen, 2019) and Fast.AI have also sig-
nificantly grown, providing an easy-to-debug tool for the implementa-
tion of neural models.

7. Experimental results

7.1. Hyperspectral datasets

After reviewing the main models and frameworks, we perform a
comparison between the most popular DL-based architectures and tra-
ditional ML-based algorithms in order to quantify the improvements
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Table 2
Some examples of normalization methods for neural networks.

Method Description

Local response normalization (LRN) (Krizhevsky et al.,
2012)

It was introduced by the first time in the AlexNet model to enhance the lateral inhibition property of the neurons, i.e.
the ability of the neural nodes to reduce the activity of its neighbors by competition, modulating the feedback signals
and enhancing the visual contrast (i.e. performing an attention mechanism) (Wyatte et al., 2012). In this sense, the
LRN allows to diminish responses that are uniformly large for the neighborhood, making large activation more
pronounced within a neighborhood and creating higher contrast in activation maps in order to increase the sensory
perception. It has been successfully applied by (Lee et al., 2016; Lee and Kwon, 2017).

Batch normalization (BN) (Ioffe and Szegedy, 2015) Considering the output volume X l( ) of the l-th layer as the data to normalize, with nbatch data representations, where

each one comprises K l( ) feature maps of size × ×d d nl l
channels

l( ) ( ) ( ) , being nbatch the batch size, ×d dl l( ) ( ) the spatial

dimensions and nchannels
l( ) the number of spectral bands, the BN method normalizes the obtained features by computing

the mean µ and variance 2 respect to the feature maps (channel) dimension. It has been widely used by the HSI
community (Liu et al., 2017a; Zhong et al., 2017c; Gao et al., 2018a; Deng et al., 2018), being usually applied before
the activation function, to maintain the data distribution to zero-mean and unit variance, scaling and shifting the data
through the learnable parameters and , respectively. This allows to reach a more independent and high-speed
learning (with larger learning rates and high accuracy), although it is very sensitive to the batch size nbatch (Bjorck
et al., 2018).

Weight normalization (WN) (Salimans and Kingma,
2016)

It normalizes the weights of the l-th layer, reparameterizingW l( ) in terms of a parameter vector v (weights’ direction
v v/|| ||) and a scalar parameter g (weights’ norm, which is also obtained by a learnable log-scale parameter s as =g es)
and directly performing the backpropagation with respect to those parameters instead, in order to fix the Euclidean
norm of W l( ). This, coupled with the mean-only batch normalization, allows the scale of neural activations to be
approximately independent of the parameter v , as well as their mean (Gitman and Ginsburg, 2017).

Layer normalization (LN) (Ba et al., 2016) Similar to BN, LN normalizes the data computing the mean µ and variance 2 with respect to the batch dimension, in
order to avoid the limitations of the BN method. In this sense, LN does not employ batch statistics, being the
normalization of each sample independent of other samples. This enables a beneficial behaviour in networks such as
RNNs.

Instance normalization (IN) (Ulyanov et al., 2016b) Inspired by Huang and Belongie (2017) in neural style transfer tasks Ulyanov et al. (2016a), the IN normalizes across
each feature map dimension in the batch independently avoiding the dependency of the batch and normalizing the
constrast of the content image. It is commonly used to remove variance of images on low-level vision tasks (Pan et al.,
2018). Also, coupled with BN, IN has inspired the development of other methods, such as batch-instance normalization
(BIN) (Nam et al., 2018) that extends the handling of the variability introduced by visual styles (textures, lighting,
filters) to general recognition problems.

Group normalization (GN) (Wu and He, 2018) GN divides the feature map (channel) dimension into several groups, normalizing each group in the current batch,
exhibiting a behavior that straddles the layer and instance normalization methods depending on the number of groups
that it creates.

Batch re-normalization (BRN) (Ioffe, 2017) It extends the BN method in order to deal with small or non-independent and identically distributed (non-i.i.d)
batches, normalizing the activations through the combination of the batch’s mean and variance (µ and 2 ,
respectively) and the moving averages (µ and 2) in an affine transformation.

Decorrelated batch normalization (DeBN) (Huangi
et al., 2018)

BN is able to scale and shift the obtained activations through parameters and . In this sense, the DeBN extends the
BN method to perform data whitening, taking into account the zero-phase component analysis (ZCA) method (Kessy
et al., 2018) to decorrelate the neural activations.

Table 3
Some of the most widely used DL-based frameworks (data obtained on September 8th, 2019).

NAME DESCRIPTION APIs STARS FORKS

Tensorflow An Open Source Machine Learning Framework for Everyone C++, Go, Java, JavaScript, Python,
Swift

133322 77067

Keras Deep Learning for Humans Python 43786 16673
OpenCV Open Source Computer Vision Library C++, Java, Python 37798 27983
PyTorch Tensors and Dynamic Neural Networks in Python with Strong GPU Acceleration C++, Python 31416 7712
Caffe A fast open framework for deep learning CLI, Matlab, Python 29000 17530
MXNet Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware

Dataflow Deep Scheduler
C++, Clojure, Java, Julia, Perl, Python,

R, Scala
17647 6276

CNTK Microsoft cognitive toolkit (CNTK), an Open Source Deep-learning Toolkit C++, C#, Python 16394 4365
Fast.AI The Fast.ai Deep Learning Library, plus Lessons and Tutorials Python 15384 5517

Deeplearning4j Eclipse Deeplearning4j, ND4J, DataVec and more - deep learning & linear algebra for Java/Scala
with GPUs + Spark

Java/Scala 11130 4735

Paddle PArallel Distributed Deep LEarning Python 9851 2628
ConvNetJS Deep Learning in Javascript. Train CNNs (or ordinary ones) in your browser. Javascript 9787 1951
Theano Python library that allows to define, optimize, and evaluate efficiently mathematical expressions

involving multi-dimensional arrays
Python 8900 2504

Horovod Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet Python 7380 1130
Chainer A flexible Framework of Neural Networks for Deep Learning Python 5028 1327
BigDL BigDL: Distributed Deep Learning Library for Apache Spark Python/Scala 3152 797

MatConvNet CNNs for MATLAB MATLAB 1205 713
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and advantages that can be gained by DL models in terms of perfor-
mance and classification accuracy. To this end, four images widely used
in the field of hyperspectral image processing have been selected to
complete the experimental part of the work: the Indian Pines (IP) and
Salinas Valley (SV) scenes, collected by AVIRIS, the University of Pavia
(UP) scene, gathered by ROSIS and the University of Houston (UH)
scene, collected by CASI. Table 4 shows a brief summary of these HSI
datasets, including the number of labeled samples per class, as well as
the available ground-truth information:

• The IP dataset (Table 4) was captured in 1992 by the AVIRIS sensor
(Green et al., 1998) over the Indian Pines test site in NW Indiana, an
agricultural area characterized by its crops of regular geometry and
also irregular forest regions. The scene consists of ×145 145 pixels
with a spatial resolution of 20 mpp and with 224 spectral bands,
which have been collected in the wavelength range from 0.4 to
2.5 µm. From these bands, 24 were removed for being null or water
absorption bands (in particular [104–108], [150–163] and 220),
considering the remaining 200 bands for the experiments. The
ground truth available is divided into sixteen classes and about half
of the data (10249 pixels from a total of 21025) contains labeled
samples.
• The UP scene (Table 4) was acquired by the ROSIS sensor (Kunkel
et al., 1988) over the campus of the University of Pavia, in the north
of Italy. The dataset contains nine different classes that belong to an
urban environment with multiple solid structures, natural objects
and shadows. After discarding the noisy bands, the considered scene
contains 103 spectral bands, with a size of ×610 340 pixels with
spatial resolution of 1.3 mpp and covering the spectral range from
0.43 to 0.86 µm. Finally, about 20% of the pixels (42776 of 207400)
contain ground-truth information.
• The SV image (Table 4) was gathered by the 224-band AVIRIS
sensor over several agricultural fields of Salinas Valley, California,
and it is characterized by a spatial resolution of 3.7 mpp. The area
covered comprises ×512 217 spectral samples. As in the case of the
IP dataset, we discard 20 bands due to water absorption and noise.
• The UH scene (Xu et al., 2016a) was collected by CASI in June 2012
over the University of Houston campus and the neighboring urban
area. This scene forms a cube of dimension × ×349 1905 144, with
spatial resolution of 2.5 m and spectral information captured in the
range from 0.38 to 1.05µm, containing 15 ground-truth classes

divided in two categories: training (top UH map in Table 4) and and
testing (bottom UH map in Table 4). In this sense, the UH scene
provides an interesting benchmark dataset, which was first pre-
sented at the IEEE Geoscience and Remote Sensing Society (GRSS)
Image Analysis and Data Fusion Technical Committee during the
2013 Data Fusion Contest (DFC) (Debes et al., 2014).

These datasets, along with the training and test data, are all avail-
able online from the GRSS Data and Algorithm Standard Evaluation
(DASE) website (http://dase.grss-ieee.org).

7.2. Experimental settings

In order to make an exhaustive analysis of the main DL-based ar-
chitectures employed for HSI classification purposes, an extensive set of
experiments have been carried out.

1. The first experiment compares the performance of supervised stan-
dard ML and DL classification methods with different amounts of
training samples over the four considered HSI datasets, studying
how they are affected by the lack of information and the type of
samples. In particular 1%, 5%, 10%, 15%, 20% and 25% of the la-
beled samples per class have been randomly selected to compose the
training set on IP, UP and SV, while the full available training set for
UH has been considered. Also, some of the most popular classifi-
cation algorithms available in the literature have been considered:
(1) random forest (RF), (2) multinomial logistic regression (MLR),
(3) support vector machine (SVM) with radial basis function kernel
(Waske et al., 2010), (4) multilayer perceptron (MLP), (5) vanilla
recurrent neural network (RNN), (6) RNN with gated recurrent unit
(GRU), (7) RNN with long short term memory (LSTM), (8) spectral
CNN (CNN1D), (9) spatial CNN with 2-D kernels and one PC
(CNN2D), (10) spectral-spatial CNN with 2-D kernels and forty PCs
(CNN2D40), and (11) spectral-spatial CNN with 3-D kernels and also
forty PCs (CNN3D). Regarding the configuration of the experiment,
the available training set has been divided into batches of 100
samples, using Adam optimizer with learning rate of 0.0008 for SV
and UP and 0.001 for IP and UH. Regarding the number of epochs,
MLP, CNN1D, CNN2D and CNN2D40 have been trained using 300
epochs. The parameters of RNN, GRU and LSTM models have been
adjusted using 200 epochs. Finally, the parameters of CNN3D have
been trained using 100 epochs. Furthermore, the topology details of
each model are reported on Table 5. It must be noted that we follow
the convention that deep architectures have at least two or more
hidden layers, while shallow models are composed by single-hidden
layer architectures (Bengio et al., 2007b; Schmidhuber, 2015). In
addition, the inclusion of batch normalization (BN) in some layers of
the convolutional models intends to, on the one hand, avoid van-
ishing/exploding gradients and, on the other hand, maintain the
distribution of the layer’s inputs (internal covariate shift) (Ioffe and
Szegedy, 2015). We have empirically observed that, on some (but
not all) CNN models, BN stabilizes and accelerates the training
stage. In this sense, we noted that these configurations helped these
particular convolutional models. Furthermore, we also empirically
observed that a filter size of ×5 5 provided better results than tra-
ditional kernels of ×3 3 (widely used in VGG-16 and similar ar-
chitectures).

2. The second experiment performs a specific comparison between
CNN models with and without handcrafted features. In this sense,
the IP, UP and UH datasets have been considered, employing as
spectral-spatial model the CNN baseline, the CNN with extended
morphological profiles (EMP-CNN) and the CNN with Gabor fil-
tering (Gabor-CNN) proposed by Ghamisi et al. (2018), whose ar-
chitectures are composed by two feature extraction and detection
stages, where each one contains a stack of CONV-ReLU-POOL layers.
These have been fed with input patches of ×27 27 pixels, preserving

Fig. 10. Stars and forks of the most representative DL framework repositories.
The light blue and red bars refer to the number of stars and forks measured on
July 16th, 2018, while the dark blue and red bars correspond to the number of
stars and forks measured on September 8th, 2019 (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.).
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three PCs for EMP-CNN and Gabor-CNN models and the full spec-
trum for the CNN baseline. Also, 50 samples per class have been
considered (when using the IP scene) to train the models, and 548,
540, 392, 524, 256, 532, 375, 514, and 231 labels of each class (see
Table 4) have been employed for testing the UP scene, while for the
UH scene all available training samples have been considered.

3. The third experiment compares the performance of several im-
proved convolutional-based architectures, in particular residual and
capsule-based models, over two HSI datasets, using 20% and 10% of
the available labeled samples for IP and UP datasets, respectively.

We have considered five deep architectures: (1) the spectral-spatial
residual network (SSRN) (Zhong et al., 2017b), (2) the spectral-
spatial pyramidal residual network (P-RN) (Paoletti et al., 2018c),
(3) the densely connected CNN (DenseNet) (Paoletti et al., 2018a),
(4) the spectral-spatial dual-path network (DPN) (Kang et al., 2018),
and (5) the capsule network (CapsNet) (Paoletti et al., 2018b).
Moreover, with the aim of exploring the performance of these
methods with different levels of spatial information, four different
spatial neighborhoods have been tested: × × ×5 5, 7 7, 9 9 and

×11 11.

Table 4
Number of available samples in the Indian Pines (IP), University of Pavia (UP), Salinas Valley (SV), and the University of Houston (UH) datasets. The
samples for the latter scene are divided in two categories: training (top) and testing (bottom).
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4. The fourth experiment studies how semi-supervised techniques (in
particular, the AL paradigm) are affected by the amount of training
data available when combined with DL-models, in particular spec-
tral, spatial and spectral-spatial convolutional-based models, taking
into account four classifiers with Bayesian perspective (Haut et al.,
2018c): (1) AL-MLR, (2) spectral CNN (CNN1D), (3) spatial CNN
with 2-D kernels and input patches keeping one PC with PCA
(CNN2D) and (4) spectral-spatial CNN with 3-D kernels and input
patches keeping all the spectral bands of the original datasets
(CNN3D). The IP and SV datasets have been considered for this
experiment.

5. The fith experiment performs two comparisons to analyze the per-
formance of different TLapproaches. Specifically, the first one per-
forms a comparison between five off-the-shelf deep models,
studying their classification accuracies over three HSI datasets: IP,
UP and SV, and employing the TL paradigm. In this sense (1) VGG16
(Simonyan and Zisserman, 2014), (2) VGG19 (Simonyan and
Zisserman, 2014), (3) ResNet50 (He et al., 2016), (4) MobileNet
(Howard et al., 2017), and (5) DenseNet121 (Huang et al., 2017)
have been considered. These models have been pre-trained with the
ImageNet, followed by a general training using IP, UP and SV da-
tasets in order to fit their BN layers, using Adam optimizer, a
learning rate of 0.0001 and 5 epochs. Then, a hidden FC layer with
256 neurons and an output FC layer with nclasses neurons have been
added at the end of these models, which were fine-tuned employing
several training percentages (1%, 5%, 10%, 15%, 20% and 25%).
This fine-tuning is carried out with Adam optimizer, a learning rate
of 0.001 and 50 epochs. In addition, a second comparison is carried
out, comparing the performance of the CNN1D, CNN2D, CNN2D40
and CNN3D models implemented in our first experiment (see
Table 5) employing the TL paradigm. In this sense, IP and SV have
been considered because of their spectral similarities, as the two
scenes were collected by the same spectrometer (AVIRIS). First,
these models have been pre-tained using the IP scene, because of its

spectral complexity, and then tested over the SV scene. The model
parameters are adjusted with 2, 4, 8, 16, 32, 64, 128 and 256
samples per SV class.

6. All previous experiments have been developed by randomly se-
lecting the training data from the available set of labeled samples
(with the exception of UH scene, which employs its own set of fixed
training samples). In this context, new trends suggest that the high
correlation between neighboring pixels can affect the performance
of the network, in the sense that the test set will be very close to the
train set, allowing the model to obtain too optimistic results, which
are not adjusted to the real generalization power of the model.
Regarding this, our sixth experiment compares the performance of
the models considered on the first experiment (i.e. RF, MLR, SVM,
MLP, RNN, GRU, LSTM, CNN1D, CNN2D, CNN2D40 and CNN3D)
trained with spatially disjoint samples of IP and UP datasets (these
training and test sets are available from the GRSS DASE website at
http://dase.grss-ieee.org).

In order to assess the results of these experiments, three widely used
quantitative metrics are used to evaluate the classification performance:
(i) the overall accuracy (OA), that computes the number of correctly
classified HSI pixels divided by the number of samples, (ii) the average
accuracy (AA), that computes the mean of the classification accuracies
of all classes, and (iii) the Kappa coefficient, that measures the agree-
ment between the obtained classification map and the original ground-
truth map.
All our experiments have been conducted on a hardware environ-

ment composed by a 6th-generation Intel R Core TM i7-6700 K pro-
cessor, with 8MB of Cache and a processing speed of 4.20 GHz with 4
cores/8 way multi-task processing. It includes 40 GB of DDR4 RAM with
2400MHz serial speed and a Toshiba DT01ACA hard disk with
7200RPM and 2 TB capacity. The environment is completed with a
NVIDIA GeForce GTX 1080 graphics processing unit (GPU) with 8 GB
GDDR5X video memory and 10 Gbps memory rate, and an ASUS Z170

Table 5
Neural network base model topologies considered in our experiments, emphasizing the input, hidden and output layers in order to demonstrate the depth of each
architecture. In this sense, the term “linear input” refers to the input layer of each model, while the last densely-connected layer with sofmax function is the output
layer. Regarding the input layer, spectral models receive pixel-vectors of nbands elements, while spatial and spectral-spatial methods employ an input patch size of

× × n19 19 channels, being =n 1channels for CNN2D and =n 40channels for CNN2D40 and CNN3D. Finally, the term “recurrentLayer”(†) indicates that this layer has been
implemented by a RNN/GRU/LSTM layer, depending on the kind of neural network. The number in the parentheses indicates the number of units (i.e. the di-
mensionality of the layer).

Model Main layer Norm. Ac. Function Downsampling

MLP Linear input(nbands) – – –

FC( +n · 10bands
2
3 ) – ReLU –

FC(nclass) – Softmax –

RNN Linear input(nbands) – – –
GRU recurrentLayer†(64) – Tanh –
LSTM recurrentLayer†(64) – Tanh –

FC(nclass) – Softmax –

CNN1D Linear input(nbands) – – –
CONV( ×20 24) – ReLU POOL(5)
FC(100) BN ReLU –
FC(nclass) – Softmax –

CNN2D Linear input( × × n19 19 channels) – – –
CONV( × ×50 5 5) – ReLU –
CONV( × ×100 5 5) – ReLU POOL( ×2 2)

CNN2D40 FC(100) BN ReLU –
FC(nclass) – Softmax –

CNN3D Linear input( × × n19 19 channels) – – –
CONV( × × ×32 5 5 24) BN ReLU –
CONV( × × ×64 5 5 16) BN ReLU POOL( × ×2 2 1)

FC(300) BN ReLU –
FC(nclass) – Softmax –
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pro-gaming motherboard. The software environment consists of the
Ubuntu 18.04.1 x64 operating system with CUDA 9.0 and cuDNN 7.1.1
and Python 2.7 as the programming language.

7.3. Experimental discussion

7.3.1. Comparison between standard supervised HSI classifiers and DL-
based networks
Our first experiment intends to compare different supervised clas-

sifiers, analyzing how the training percentage affects their performance.
In this sense, the considered methods can be separated into two broad
categories: traditional ML-based methods (RF, MLR, SVM, MLP) and
DL-based networks (RNN, GRU, LSTM, CNN1D, CNN2D, CNN2D40 and
CNN3D). Also, a second categorization can be made by dividing the
proposed methods into spectral classifiers (RF, MLR, SVM, MLP, RNN,
GRU, LSTM, CNN1D), spatial classifiers (CNN2D), and spectral-spatial
classifiers (CNN2D40 and CNN3D).
Fig. 11 gives the obtained results for IP, UP and SV datasets after the

execution of five Monte-Carlo runs. It is interesting to analyze the be-
havior of traditional ML methods when few labeled samples are avail-
able: they are highly affected by the lack of training data, being the
MLP the one exhibiting the best performance and RF the worst, in
general. Also, the pixel-based DL classifiers: vanilla RNN, GRU, LSTM
and CNN1D are highly affected by the limited availability of training
samples, exhibiting a similar behavior with regards to SVM and MLP,
with slightly higher accuracy when enough training data are employed.
In this case, we highlight the more stable performance of the CNN1D.
Regarding the spatial classifier (CNN2D), it presents the worst accuracy
when few samples are used in the training stage, even below traditional
ML methods, although the spatial information when using patches of
size ×19 19 seems to be sufficient to reach a remarkably good accuracy
with 15%-25% of training. Although the use of spatial information is
highly effective (with a suitable training percent), the conjunction of
spatial and spectral information achieves the best classification results.
In this sense, the CNN2D40 and the CNN3D are able to achieve an OA
near 100% with only 5% of training data in the considered datasets,
being the IP the hardest scene to classify in our opinion. If we compare
CNN2D and CNN2D40, we can observe how the spectral information is
able to reduce the uncertainty of the classifier when few training data is
available. In addition, the 2-D kernels of CNN2D40 classifier allows to
reduce the overfitting in comparison with the 3-D kernels of the
CNN3D, reaching similar results when enough training data are avail-
able.
Figs. 12–14 and Tables 6–8 present detailed classification maps and

accuracy measures for IP (15% of training), UP (10%) and SV (10%)
scenes. As we can observe, the spectral classifiers exhibit the familiar
salt and pepper noise (significantly less in the DL-based methods), be-
cause they ignore spatial-contextual information when providing a
pixel prediction. On the contrary, spatial and spectral-spatial classifiers
exhibit more regular results, with less noise at the edges. However, the
spatial CNN2D results often degrade some object and material shapes, a

problem that is considerably reduced with the spectral-spatial CNN3D,
providing classification results that are more similar with regards to the
corresponding ground-truth maps for IP, UP and SV datasets. In addi-
tion, Tables 6–8 indicate the runtime of each considered method, being
the standard ML-based classifiers the fastest ones (in particular, the
SVM) although the consumed time during their parameter search has
not been reflected, and the CNN-based algorithms the slowest ones due
to the computational complexity of the CONV layers. Moreover, we can
observe the number of parameters that each neural model needs to
adjust during the training phase, being the MLP the model with fewest
parameters and the CNN3D the one with the most parameters to fit.
Also, in order to provide a detailed comparison with a HSI bench-

mark, Table 9 and Fig. 15 show the classification results of considered
methods over the UH dataset, employing the available training data to
adjust the parameters of each supervised model. As we can observe in
Table 9, spectral classifiers (RF, MLR, SVM, and MLP, RNN, GRU, LST
and CNN1D) are able to reach good accuracies: between 73–87% of OA,
with the CNN1D being the best pixel-wise classifier, because its kernel
is able to process the spectral signatures in a more robust way than
tradidional ML models and FC architectures of neural-inspired models.
However, if we focus on the spatial classifier (CNN2D), we can see that
it exhibits the worst OA, AA and Kappa values. This behaviour may be
due to the fact that the reduction of the spectrum to a single band can
generate samples that are very mixed and difficult to discriminate. In
this sense, the available training samples are less descriptive for setting
the parameter values, and they become insufficient for the 378015
parameters of the spatial model. In this sense, the spectral information
is the key to discriminate correctly the samples of the UH dataset, as it
can be observed in the spectral-spatial CNN2D40. Although this model
has 48750 parameters more than its spatial counter-part, the CNN2D40
is able to take into account the original spectral information in its
spatial features, obtaining feature maps that are more representative of
the input data and being 1.86 times better than those provided by the
spatial CNN2D. Furthermore, the 3-D kernels of the spectral-spatial
CNN3D model are able to process these spectral features, combining
them with the spatial information in order to obtain the output vo-
lumes. The classification maps in Fig. 15 demonstrate that spectral
classifiers are very noisy, being in general unable to classify the area
hidden by the cloud in the UH scene, while the CNN3D reaches a better
result in general (see the parking areas, for instance) and showing some
spatial structures of the hidden area under the cloud, such as buildings
and parking lots.

7.3.2. Comparison between convolutional models, with and without
handcrafted features
Our second experiment compares the performance of: (i) a classic

spectral-spatial CNN for HSI classification (Ghamisi et al., 2018), which
receives as input data patches of size × × n27 27 bands extracted from the
original cube, (ii) a spatial CNN that processes extended morphological
profiles (EMP-CNN) obtained from the HSI data (Ghamisi et al., 2018)
(using input patches of × ×27 27 3), and (iii) a spatial CNN that

Fig. 11. OA evolution (y-axis) of each considered classifier with different training percentages (x-axis) over IP, UP, SV datasets. The standard deviation is also shown
around each plot.

M.E. Paoletti, et al. ISPRS Journal of Photogrammetry and Remote Sensing 158 (2019) 279–317

300



processes the Gabor filtered data (Gabor-CNN) (Ghamisi et al., 2018),
also employing input patches of size × ×27 27 3, in order to observe the
effects of extracting deep features directly from the data or from
handcrafted features.
The results obtained over three HSI datasets: IP, UP and UH, are

reported on Table 10. If we focus on the CNN baseline, the obtained
results are in line with those shown in Tables 6, 7 and 9. Comparing the
baseline with EMP-CNN and Gabor-CNN models, it is easy to confirm
that the Gabor-CNN model exhibits the best performance for all the
considered datasets, with the EMP-CNN being slightly worse. In this
context, the CNN-baseline appears to provide the worst results in this
particular case, with two to four percentage points below the Gabor-
CNN. With these results in mind, we highlight that spatial-based pro-
cessing of the data by powerful pre-processing methods, such as EMPs
and Gabor filters, can significantly improve the performance of con-
volutional models. Particularly, Gabor filters exhibit optimal localiza-
tion properties in both the spatial and frequency domains, allowing for
the successful combination of spatial and spectral information for the
extraction of edges and textures, while EMPs are also quite effective in
the task of modelling the spatial-contextual information contained in
the HSI data cube. This confirms and extends the obtained results of
previous works, such as the one by Anwer et al. (2018), where explicit
texture descriptors (local binary patterns) are used to improve classi-
fication results on several pre-trained models and aerial remote sensing
benchmarks with RGB images.

7.3.3. Comparison between improved convolutional-based architectures
Our third experiment performs a study about the performance of

improved convolutional-based models, considering different levels of

spatial information. In this sense, it must be noted that these archi-
tectures have been particularly developed to efficiently exploit their
depth, to obtain deeper and more abstract features, while avoiding the
problems associated with the depth through communication mechan-
isms that reuse the data of the model, such as residual connections or
dynamic routing. Table 11 shows the obtained results. As we can ob-
serve in the table, these methods are able to reach good accuracy, with
small-sized patches being able to reach the 99% of OA using patches of
size ×7 7. In addition, although the SSRN and the P-RN use the same
residual learning approach, the selection of the topology and the re-
sidual block architecture can substantially improve the performance of
the network. In particular, the SSRN implements two networks (both
with two residual units): one spectral network with all its kernels of size

× ×1 1 7, and one spatial network with all its kernels of size
× ×3 3 128. This reduces the number of parameters but prevents the
efficient extraction of spectral-spatial information. However, the P-RN
introduces only one network with three pyramidal residual modules,
each one composed by three pyramidal bottleneck residual units, im-
plementing its CONV layers of kernels × ×1 1, 7 7 and ×8 8. Although
the P-RN is more complex and deep than the SSRN, its performance is
significantly better. At the end, the topology allows the P-RN to achieve
significant precision gains, especially with smaller input spatial sizes.
Also, it is interesting to highlight the standard deviation of both clas-
sifiers, which is lower in the P-RN model. The residual block archi-
tecture of P-RN is able to extract additional feature maps (as the re-
sidual units become deeper) in comparison with the SSRN, exploiting
better the information contained within HSI input patches. In the end,
this improves the OA results and reduces the standard deviation, i.e. the
uncertainty.

Fig. 12. Classification maps for the IP dataset with 15% of training data. Images from (a) to (j) provide the classification maps corresponding to Table 6. The
corresponding overall classification accuracies (OAs) are shown in brackets.
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Looking at the results obtained by DenseNet and CapsNet, these
classifiers exhibit very similar behavior, reaching accuracy values be-
tween those obtained by the SSRN and P-RN when small spatial patches
are used as input data (maintaining significant quantitative improve-
ments with respect to the other HSI classifiers in the previous experi-
ment), and even outperforming the results obtained with a high amount
of spatial-contextual information. Finally, if we compare the residual
models (SSRN and P-RN) and the DenseNet with the DPN model, we can
observe that the DPN is able to outperform the results obtained by the
SSRN with few training samples, while its accuracy is normally between
that achieved by the P-RN and the DenseNet.

7.3.4. Comparison between semi-supervised and AL models
Our fourth experiment explores the use of labeled data during the

training stage in AL models, with the aim of analyzing how the amount
of training data affects their performance. In this context, the con-
sidered models follow a Bayesian perspective (Haut et al., 2018c),
where each one extracts probabilistic information about the samples, in
order to select those samples that provide more information to the
model while, at the same time, reducing the number of training sam-
ples.
The obtained results over IP and SV datasets are shown in Table 12.

As we can observe, the AL-CNN3D is able to reach 99% OA with ap-
proximately 3.92% of labeled data from IP and 0.53% of labeled data

Fig. 13. Classification maps for the UP dataset with 10% of training data. Images from (a) to (j) provide the classification maps corresponding to Table 7. The
corresponding overall classification accuracies (OAs) are shown in brackets.
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from SV, which is in line with the results obtained in previous experi-
ments: IP exhibits higher complexity compared with SV, whose pixels
are spectrally less mixed and the spatial distribution is more geometric,
with bigger areas made up of crops. On the contrary, the AL-MLR and
AL-CNN1D are unable to reach such high OAs. For instance the AL-
CNN1D is not able to improve 90% OA with the IP dataset, and it also

cannot reach 99% OA with the SV scene. Furthermore, although the AL-
CNN2D classifier is able to reach 99% OA in all the considered HSI
scenes, it generally needs more labeled data than its spectral-spatial
counterpart. These results strongly support the fact that joint spectral-
spatial features are more useful than separate spatial and spectral fea-
tures, making the AL-CNN3D model ideal for the extraction of highly

Fig. 14. Classification maps for the SV dataset with 10% of training data. Images from (a) to (j) provide the classification maps corresponding to Table 8. The
corresponding overall classification accuracies (OAs) are shown in brackets.
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discriminative features for classification purposes.

7.3.5. Comparison between transfer learning approaches
In the first test of our fifth experiment, we compare the performance

of five off-the-shelf DL-based models, which have been pre-trained over
the ImageNet and fine-tuned with different training percentages for the
IP, UP and SV datasets.
The obtained results are given in Fig. 16. Focusing on the IP dataset,

it can be observed that, with only 1% of labeled samples, the best OA is
reached by the DenseNet121, which achieves 67.80% OA, being closely
followed by the MobileNet. In this regard, it must be noted that IP
dataset exhibits higher complexity than the UP and SV scenes, where
the best results with 1% of the available labeled samples used for
training are achieved by DenseNet121 with 94.37% and 98.02%, re-
spectively. However we must highlight that, although these deep and
very deep models have not been specifically developed for HSI analysis,
they are able to reach interesting results in comparison with those
obtained by the specially-designed CNN models in the first experiment
(see Section 7.3.1). For instance, if we focus on the IP scene, VGG16,
Resnet50, MobileNet and DenseNet121 models are able to outperform
the CNN2D model with 1% of training data, while MobileNet and

DenseNet121 outperform the results obtained by CNN1D and
CNN2D40. With the UP dataset, VGG16, Resnet50, MobileNet and
DenseNet121 models outperform the OA of CNN1D and CNN2D
models, while with the SV dataset all pre-trained models outperform
the CNN2D’s results, and VGG16, Resnet50, MobileNet and Den-
seNet121 improve the classification accuracy of the CNN1D.
When more labeled samples are used for training, the OA increases

quite fast. For instance, with 5% of training data, the vast majority of
classifiers are able to reach at least 90% OA in the IP scene, and 99% in
the UP and SV scenes, with few exceptions (for instance the VGG19
with the IP scene). Compared with the previous results reported on
Section 7.3.1 we can observe that, in general, pre-trained models are
slightly worse than the CNN2D40 and the CNN3D. In addition to the
architectural design of the models, it must be highlighted that the
spatial size and the spectral resolution of the input patch is decisive in
improving the behavior of these deep networks. In this case, all the TL-
based models have been fed with patches of size × ×32 32 3, which are
then scaled to the original inputs of the networks (for instance, the
VGG16 employs patches of × ×224 224 3). This limitation forces us to
reduce the spectral dimensionality with PCA, which leads to a reduced
capacity for spectral discrimination (while employing an excessively

Table 6
Classification results for the IP dataset using 15% of the available labeled data.

Class RF MLR SVM MLP RNN GRU LSTM CNN1D CNN2D CNN2D40 CNN3D

Alfalfa 20.00 32.82 62.05 50.77 36.92 57.43 80.51 44.61 75.38 95.39 96.92
Corn-notill 61.53 75.07 81.45 78.90 73.49 80.17 82.19 81.04 91.54 98.73 98.91
Corn-min 53.62 57.96 70.55 66.27 58.04 70.33 70.16 70.69 86.95 98.95 98.84
Corn 35.12 45.67 72.93 61.19 44.28 66.47 53.83 60.10 88.56 99.50 97.71

Grass/Pasture 84.39 86.98 93.17 89.61 86.98 88.83 89.76 92.34 86.05 98.58 99.32
Grass/Trees 96.10 96.36 97.32 96.55 96.97 95.84 96.77 97.29 96.13 99.06 99.74

Grass/pasture-mowed 29.57 47.83 84.35 75.65 53.91 75.65 81.74 69.57 82.61 93.91 93.04
Hay-windrowed 96.11 99.16 98.32 97.54 98.67 98.67 98.52 98.18 97.88 100.00 100.00

Oats 1.18 18.82 51.76 61.18 27.06 68.23 62.35 44.70 65.88 98.82 100.00
Soybeans-notill 65.96 66.54 77.87 78.18 67.41 78.86 76.78 78.67 89.85 99.15 99.15
Soybeans-min 89.13 79.53 85.10 86.10 80.09 81.87 83.13 83.42 95.28 99.62 99.23
Soybean-clean 46.59 58.25 79.09 78.85 65.56 81.11 80.75 83.97 88.65 97.14 97.86

Wheat 92.18 98.51 98.39 98.74 97.93 98.51 98.62 98.62 97.82 99.77 99.89
Woods 94.53 95.31 95.59 94.55 92.11 95.35 93.58 94.51 98.40 99.87 99.59

Bldg-Grass-Tree-Drives 40.55 63.90 61.28 65.55 65.18 64.21 67.44 67.44 89.21 99.45 98.48
Stone-steel towers 83.54 85.06 87.60 89.37 86.08 86.58 82.78 87.59 82.53 96.20 95.70

OA 75.31 77.76 84.48 83.50 77.87 83.34 83.48 84.02 92.69 99.14 99.08
AA 61.88 69.24 81.05 79.31 70.67 80.51 81.18 78.30 88.29 98.38 98.40

K(x100) 71.41 74.46 82.26 81.13 74.65 80.98 81.13 81.75 91.65 99.02 98.95

Parameters 31047 217296 242640 255248 72616 378116 426866 1805196
Time (s.) 1.29 6.05 0.25 26.46 63.59 47.22 53.36 53.91 59.28 103.76 185.07

Table 7
Classification results for the UP dataset using 10% of the available labeled data.

Class RF MLR SVM MLP RNN GRU LSTM CNN1D CNN2D CNN2D40 CNN3D

Asphalt 91.63 92.39 94.29 93.81 92.33 94.33 93.02 95.85 98.01 99.97 100.00
Meadows 97.71 96.09 97.49 97.58 97.08 96.98 97.01 98.13 99.41 99.98 100.00
Gravel 66.88 73.27 80.84 78.11 75.43 77.63 78.18 81.48 93.90 99.43 99.35
Trees 89.10 86.90 94.21 93.59 91.89 94.04 94.14 94.15 98.14 99.32 99.74

Painted metal sheets 98.60 99.59 99.22 99.52 99.49 99.44 99.54 99.82 99.57 100.00 100.00
Bare Soil 64.35 77.83 90.91 91.64 87.2 88.14 86.4 91.71 98.08 99.99 100.00
Bitumen 77.66 56.34 87.35 85.53 82.07 84.88 86.77 87.52 89.72 99.80 99.98

Self-Blocking Bricks 88.52 86.68 87.47 88.92 84.38 88.37 87.27 85.68 98.28 99.61 99.74
Shadows 99.74 99.67 99.86 99.53 99.7 99.67 99.79 99.88 98.87 98.33 99.60

OA 89.37 89.73 94.10 94.04 92.32 93.39 93.0 94.61 98.27 99.83 99.92
AA 86.02 85.41 92.40 92.02 89.95 91.5 91.35 92.69 97.11 99.60 99.82

K(x100) 85.67 86.27 92.17 92.09 89.79 91.22 90.7 92.84 97.71 99.78 99.89

Parameters 8823 71817 97161 109769 33909 377409 426159 1803089
Time (s.) 4.29 8.63 0.44 68.22 150.06 113.07 128.09 139.58 139.82 226.22 448.32
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large spatial size).
At this point, it is important to note that the use of TL-based ap-

proaches in image processing tasks has two main benefits: the ability to
achieve good results with few training samples extracted from the
target scene and the reduction of runtime in the training procedure.
However, although TL-based approaches are fairly reliable when few
labeled samples are available, the models employed for HSI classifica-
tion are based on those trained by the DL community over RGB data-
sets, such as ImageNet. In this sense, the effectiveness of TL methods
depends mostly on the source application with which the models were
pre-trained, and on the relationship with the final target application in
which they will be used (Patricia and Caputo, 2014). In such case, the
Imagenet dataset is not related with the employed HSI data and, hence,
it was expected that these models would not be able to exhibit their full
potential in HSI classification.
To overcome this limitation, in our second test we study the per-

formance of the proposed CNN1D, CNN2D, CNN2D40 and CNN3D

models implemented on the first experiment (see Table 5) employing
the TL paradigm over two HSI datasets: IP and SV. In this context, the
pursued goal is to take advantage of TL’s ability to learn general
knowledge from other datasets and then apply such knowledge to a
specific task, polishing it on the target scene. Regarding this goal, we
take advantage of the most spectrally mixed and difficult samples from
IP to later recognize more precise characteristics in SV, employing
100% of the labeled data from IP scene (i.e. 10249 samples) to perform
the pre-training stage, while extracting 2, 4, 8, 16, 32, 64, 128 and 256
samples from SV scene to adjust the considered models. The obtained
results are given in Fig. 17. As we can observe, the behaviour is very
similar for each model. In other words, pre-training with IP labels al-
lows the considered models to achieve better accuracy when they are
inferring the SV samples with very few training samples. However, the
improvement is less significant when additional labeled samples from
SV are added to adjust the model parameters, which demonstrates that
(broadly speaking) TL is only recommended when there are very few

Table 8
Classification results for the SV dataset using 10% of the available labeled data.

Class RF MLR SVM MLP RNN GRU LSTM CNN1D CNN2D CNN2D40 CNN3D

Brocoli green weeds 1 99.46 99.47 99.63 99.57 99.48 99.67 99.42 99.88 99.45 99.90 100.00
Brocoli green weeds 2 99.83 99.94 99.91 99.87 99.91 99.94 99.9 99.96 99.51 99.96 100.00

Fallow 99.15 98.60 99.68 99.44 99.1 99.58 99.65 99.85 99.62 100.00 100.00
Fallow rough plow 99.42 99.28 99.31 99.25 98.36 99.52 99.39 99.57 99.89 99.84 99.86
Fallow smooth 97.87 99.12 99.35 99.09 98.56 99.33 99.37 99.05 99.88 99.88 99.95
Stubble 99.68 99.92 99.80 99.85 99.8 99.86 99.89 99.85 99.78 100.00 100.00
Celery 99.39 99.89 99.54 99.57 99.71 99.75 99.7 99.84 99.64 100.00 100.00

Grapes untrained 84.42 87.98 90.51 86.88 87.22 89.83 90.79 90.98 95.60 99.96 99.97
Soil vinyard develop 99.07 99.73 99.92 99.73 99.77 99.79 99.76 99.83 99.54 100.00 100.00

Corn senesced green weeds 91.56 95.79 97.71 96.56 96.49 97.56 96.63 98.03 98.45 99.94 99.99
Lettuce romaine 4wk 94.13 95.90 98.88 97.81 97.59 98.52 98.86 98.33 98.73 99.94 100.00
Lettuce romaine 5wk 98.79 99.63 99.79 99.65 99.46 99.87 99.63 99.96 99.58 99.99 99.99
Lettuce romaine 6wk 97.86 99.03 98.88 99.03 98.45 98.66 99.05 99.17 99.13 100.00 99.98
Lettuce romaine 7wk 91.34 96.03 97.65 96.80 96.82 98.09 97.61 97.34 97.53 99.88 99.98
Vinyard untrained 60.46 66.63 70.54 77.81 76.79 80.98 79.59 79.52 95.01 99.96 99.95

Vinyard vertical trellis 97.06 98.89 99.18 99.08 98.95 99.07 98.7 99.00 97.00 99.94 99.94

OA 90.12 92.35 93.67 93.73 93.59 94.93 94.85 95.01 97.94 99.96 99.98
AA 94.34 95.99 96.89 96.87 96.65 97.5 97.37 97.51 98.65 99.95 99.98

K(x100) 88.98 91.47 92.94 93.02 92.86 94.35 94.27 94.44 97.71 99.96 99.98

Parameters 32282 221392 246736 259344 74616 378116 426866 1805196
Time (s.) 2.85 65.21 0.94 86.63 191.62 152.44 163.35 177.78 177.29 282.69 551.72

Table 9
Classification results for UH dataset using the fixed training set available.

Class RF MLR SVM MLP RNN GRU LSTM CNN1D CNN2D CNN2D40 CNN3D

Grass healthy 82.49 82.62 82.34 81.58 82.19 82.24 82.05 81.75 61.12 80.48 81.79
Grass stressed 83.36 83.93 83.36 81.67 83.44 81.35 81.56 95.04 50.08 85.49 87.20
Grass synthetic 97.82 99.80 99.80 99.64 99.84 99.88 99.76 99.88 29.35 88.99 94.73

Tree 91.74 98.01 98.96 88.69 94.64 96.14 91.89 89.45 46.61 83.66 84.74
Soil 96.80 97.16 98.77 97.08 97.99 97.12 97.56 98.63 41.36 100.00 99.81
Water 99.16 94.41 97.90 94.41 95.24 99.3 96.5 95.94 44.06 92.59 97.76

Residential 75.28 74.25 77.43 76.79 81.05 77.76 78.1 80.88 61.14 74.65 76.56
Commercial 33.01 65.15 60.30 55.82 42.72 48.4 39.79 80.32 32.95 80.85 81.06
Road 69.40 69.12 76.77 69.91 79.28 74.96 77.94 77.09 59.43 81.34 88.46
Highway 43.86 54.44 61.29 49.71 48.86 61.64 48.17 72.57 32.45 63.69 78.30
Railway 70.36 76.09 80.55 75.67 74.84 80.91 77.53 86.36 44.42 93.74 96.28

Parking lot1 54.77 73.39 79.92 77.16 74.99 81.73 81.4 91.91 33.68 96.96 98.91
Parking lot2 60.14 68.42 70.88 72.21 69.61 69.4 71.02 74.74 84.00 82.88 72.56
Tennis court 98.87 98.79 100.00 99.03 100.0 99.92 99.43 99.36 68.67 98.79 97.90
Running track 97.50 95.98 96.41 98.31 97.29 97.76 97.25 98.14 15.69 97.34 96.36

OA 73.09 79.53 81.86 77.98 78.44 80.39 78.11 86.66 45.80 85.18 87.95
AA 76.97 82.10 84.31 81.18 81.46 83.23 81.33 88.14 47.00 86.76 88.83

K(x100) 71.09 77.89 80.43 76.29 76.75 78.79 76.46 85.53 41.53 83.90 86.91

Parameters 16975 150735 176079 188687 50515 378015 426765 1804895
Time (s.) 2.68 21.25 0.37 46.09 105.81 78.45 88.90 94.41 81.69 165.33 311.56
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samples in the target scene and there is another (larger) dataset with
similar characteristics that can help to model the parameters of a
classification network in a reasonable way.

7.3.6. Training and testing with spatially disjoint samples
As it can be observed on Figs. 18 and 19, given a particular HSI

scene, spectral-spatial DL-based classifiers have been traditionally
trained by extracting randomly selected samples (from the available
ground-truth) over the whole image, and cropping spectral-spatial
patches of × ×d d nchannels pixel-centered neighbors. In this sense, it is
likely that the test set is very close to the train set, or even that part of
the test is used in the train set as part of the neighboring region ×d d

Fig. 15. Classification maps for the UH dataset. Images from (a) to (j) provide the classification maps corresponding to Table 9. The corresponding overall classi-
fication accuracies (OAs) are shown in brackets.

Table 10
Classification results for the IP, UP and UH datasets considering the CNN models with EMP and Gabor handcrafted features (Ghamisi et al., 2018).

IP dataset UP dataset UH dataset

Class CNN EMP GABOR Class CNN EMP GABOR Class CNN EMP GABOR
CNN CNN CNN CNN CNN CNN

Alfalfa 79.25 85.02 84.44 Asphalt 88.43 95.87 87.75 Grass healthy 82.33 87.49 87.47
Corn-notill 90.14 73.45 91.53 Meadows 91.64 99.50 97.25 Grass stressed 84.30 80.99 86.01
Corn-min 98.77 100.00 98.77 Gravel 75.95 61.12 70.92 Grass synthetic 95.84 87.72 78.22
Corn 90.94 92.8 94.70 Trees 96.53 94.81 97.09 Tree 92.60 90.43 85.02

Grass/Pasture 98.85 98.70 99.28 Painted metal sheets 98.56 95.15 98.83 Soil 99.90 100.00 99.89
Grass/Trees 100.00 100.00 100.00 Bare Soil 57.87 64.84 64.62 Water 93.00 97.90 89.44

Grass/pasture-mowed 95.10 93.13 95.84 Bitumen 80.43 80.63 76.66 Residential 80.39 90.48 90.19
Hay-windrowed 91.20 92.25 90.94 Self-Blocking Bricks 98.10 97.26 99.05 Commercial 70.42 58.51 74.44

Oats 94.34 94.85 88.59 Shadows 96.84 96.08 98.36 Road 77.77 79.77 84.42
Soybeans-notill 100.00 100.00 100.00 Highway 56.08 64.28 63.61
Soybeans-min 95.54 99.34 99.34 Railway 75.59 78.37 80.06
Soybean-clean 89.66 89.53 89.66 Parking lot1 86.55 78.29 87.30

Wheat 100.00 100.00 100.00 Parking lot2 84.21 76.84 85.06
Woods 100.00 100.00 97.37 Tennis court 93.11 99.19 100.00

Bldg-Grass-Tree-Drives 100.00 100.00 100.00 Running track 88.37 77.04 56.95
Stone-steel towers 100.00 100.00 100.00

OA 91.53 92.40 92.84 OA 87.01 91.37 91.62 OA 82.75 84.04 84.12
AA 95.24 94.94 95.65 AA 87.15 87.25 87.83 AA 84.04 83.33 82.94
K 90.08 91.05 91.61 K 83.08 88.67 89.14 K 80.61 82.54 82.51
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selected around the training pixels. Some works (Hänsch et al., 2017)
point out that the random sampling strategy has a great influence on
the reliability and quality of the obtained solution, because this may
significantly facilitate the subsequent classification of the test samples
during the inference stage (as they have been previously processed in
some way by the network during the training step). As a result, the
performance obtained by the model may not be realistic, as artificially
optimistic results can be obtained. In order to avoid this important
issue, several works (Zhou et al., 2015; Hänsch et al., 2017; Liang et al.,
2017; Lange et al., 2018) support the strict spatial-separation between
train and test sets, allowing for the acquisition of more realistic accu-
racy results and a more accurate measurement of the real general-
ization-power of the model.
In this context, the aim of this experiment is to compare the results

obtained by the spectral (RF, MLR, SVM, MLP, RNN, GRU, LSTM and
CNN1D), spatial (CNN2D), and spectral-spatial (CNN2D40 and CNN3D)

methods using, on the one hand, the traditional random sampling
technique adopted by the methods discussed before in this paper and,
on the other hand, a sampling strategy based on selecting spatially
separated samples. To pursue this, spatially disjoint training and test
sets for the IP and UP datasets (available from the GRSS DASE website
(http://dase.grss-ieee.org) have been considered, as depicted on
Figs. 18 and 19. For spatial and spectral-spatial methods, neighboring
regions of × × n19 19 channels have been cropped from the scenes, setting
nchannels to 1 and 40 spectral bands for spatial and spectral-spatial
methods, respectively, while the spectral-based methods only process
the original spectral pixels. The obtained results (in terms of OA) are
reported on Table 13. As we can observe, there is a significant perfor-
mance gap between the obtained results considering randomly selected
training samples and spatially disjoint training samples, not only in the
spatial and spectral-spatial methods [which is relatively expected due
to the aforementioned aspects, as demonstrated by Ham et al. (2005)),
but also on purely spectral-based models (which are not really affected
by spatial correlations).
Focusing on the IP dataset, it can be noticed that the CNN2D,

CNN3D, CNN2D40 and RF are the methods that suffer the most from
this phenomenon. While the spectral-spatial methods’ performance is
significantly affected (reaching OA results in line with those obtained
for the UH dataset in the first experiment, whose training and testing
samples are spread over a larger area, preventing the possible over-
lapping effects between the test and train sets), the spectral-based RF is
also suffering from a drastic performance drop due to another factor:
the suitability of the selected samples. As it was pointed out on Section
2.2, HSI scenes generally suffer from high intraclass variability and
interclass similarity, resulting from uncontrolled phenomena such as
variations in illumination, presence of areas shaded and/or covered by
clouds, and noise distortions, among others. In this sense, the selection
of training samples must be carried out very carefully, to avoid situa-
tions in which the training and testing samples that belong to the same

Table 11
Overall accuracy (%) achieved by different DL-based approaches when considering different sizes of the input spatial patches. Also, for each model a parameter
estimation has been conducted in order to provide an overview of the different architectures.

Spatial Size SSRN P-RN DenseNet DPN CapsNet

IP dataset
×5 5 92.83 ± 0.66 98.80 ± 0.10 97.85 ± 0.28 97.53 ± 0.15 97.79 ± 0.40
×7 7 97.81 ± 0.34 99.26 ± 0.06 99.24 ± 0.14 99.29 ± 0.06 99.30 ± 0.11
×9 9 98.68 ± 0.29 99.64 ± 0.08 99.58 ± 0.09 99.64 ± 0.10 99.67 ± 0.06
×11 11 98.70 ± 0.21 99.82 ± 0.07 99.74 ± 0.08 99.67 ± 0.06 99.74 ± 0.09

UP dataset
×5 5 98.72 ± 0.17 99.52 ± 0.05 99.13 ± 0.08 99.21 ± 0.11 99.13 ± 0.08
×7 7 99.54 ± 0.11 99.81 ± 0.09 99.71 ± 0.10 99.70 ± 0.07 99.75 ± 0.03
×9 9 99.57 ± 0.54 99.79 ± 0.11 99.73 ± 0.15 99.88 ± 0.04 99.73 ± 0.10
×11 11 99.79 ± 0.08 99.92 ± 0.02 99.93 ± 0.03 99.94 ± 0.03 99.93 ± 0.02

Parameters 360 K. 2.4 M. 1.7M. 370 K. 9.0M.

Table 12
Number of samples that the AL-based MLR, CNN1D, CNN2D and CNN3D need
to reach a given % of OA for the IP and SV datasets.

Algorithm Overall Accuracy

70% 75% 80% 85% 90% 95% 99%

IP dataset
AL-MLR 342 522 – – – – –
AL-CNN1D 252 352 502 662 – – –
AL-CNN2D 222 252 292 352 402 512 662
AL-CNN3D 72 82 112 152 172 232 402

SV dataset
AL-MLR 32 32 52 132 412 – –
AL-CNN1D 32 32 42 62 232 – –
AL-CNN2D 72 92 122 162 272 412 622
AL-CNN3D 32 32 32 52 72 112 292

Fig. 16. OA evolution (y-axis) of each considered TL-based classifier with different training percentages (x-axis) over IP, UP and SV datasets. Standard deviation is
showed as shaded areas.
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class could be spectrally quite different due to the presence of shadows
or noise, for instance. This particularly affects spatial and spectral-
spatial convolutional networks (Su et al., 2019).
Focusing on the UP dataset, the same gap between models trained

and tested with randomly selected and spatially disjoint samples can be
observed. Here, all methods, including the spectral ones (except
CNN1D), reduce their OA values in more than 10 percentage points
when spatially disjoint training samples are used. In particular, the
CNN2D is the most significantly affected method, followed by the RF
method. In this sense, it can be concluded that spatial and spectral-
spatial methods are significantly affected by the spatial correlation
between the training and test sets, which calls for the development of
advanced sampling strategies to properly address the high variability of
HSI data.

8. Conclusions and future lines

DL methods have revolutionized image analysis and proved to be a
powerful tool for processing high-dimensional remotely sensed data,
adapting their behavior to the special characteristics of HSI data. In this
paper, we have provided an exhaustive review of DL models in the HSI
arena. Models based on the CNN architecture have been found to be
particularly effective, due to their capacity to extract highly dis-
criminatory features and effectively leverage the spatial-contextual and
spectral information contained in HSI data cubes. Traditional and
hierarchical structures, composed by chains of blocks concatenated one
after another, demonstrate a great generalization power that can be
improved through new connections and paths. In fact, the use of stan-
dardization techniques, together with the reusability of the information
contained in HSI data via residual connections (such as ResNet and
DenseNet) and the concatenation of different paths, such as inception
modules, have allowed to overcome important problems such as over-
fitting and the vanishing gradient when few training samples are
available, or when very deep structures are implemented. Also, tech-
niques such as AL and TL can help to improve the final performance of
very deep neural models in training scenarios dominated by limited

training samples, by employing semi-supervised strategies and pre-
trained models. In the latter case, additional efforts need to be made in
order to perform a more adequate training and adapt the available
networks to the special characteristics of HSI data.
One of the main aspects preventing the full adaptation of the dis-

cussed paradigms to practical problems is that most of the considered
models are highly demanding in computational terms, particularly
when applied to complex HSI scenes. However, advances in computer
technology and hardware platforms are rapidly allowing to increment
the complexity and depth of the networks, making the required fine-
tuning processes feasible in a reasonable amount of time. In this sense,
there have been several efforts in the field of hardware accelerators that
have made possible to implement deep models into embedded pro-
cessors, GPUs and field programmable gate arrays (FPGAs), which can
effectively parallelize the workload of DL-based networks (Randhe
et al., 2016; Dong et al., 2017; Zhao et al., 2017b; Haut et al., 2018a). In
addition, some research efforts are being carried out to distribute such
high computational workloads among various cores using big data
strategies, in particular, cloud computing techniques offer great flex-
ibility and scalability, leading to a natural solution for the management
of large and complex data HSI datasets. In this regard, we note that
more efforts are needed in the remote sensing community in order to
deploy cloud computing models, although there are already some works
dealing with the exploitation of processing algorithms on cloud archi-
tectures (Wu et al., 2016; Haut et al., 2017a; Haut et al., 2017b; Quirita
et al., 2017; Haut et al., 2019b). In summary, HPC is an attractive future
research direction which can provide efficient mechanisms to address
the enormous computational requirements introduced by DL-based HSI
data processing, since the acquisition ratios of imaging spectrometers
and the volume of future available repositories are expected to be ex-
tremely large (Bioucas-Dias et al., 2013), calling for the implementation
of complex but faster and more efficient DL-based architectures. Last
but not least, another important aspect worth being investigated in
future developments is the design of new sample selection methods able
to avoid any overlapping between the training and the testing set due to
the patch size used by spatial-based methods in the training stage.

Fig. 17. Transfer learning experiment from IP to SV datasets, employing (from left to right) the CNN1D, CNN2D, CNND240 and CNN3D models of Table 5.

Fig. 18. Comparison between the random selection method and the selection of spatially disjoint samples on the IP dataset, considering the same number of samples
per class.
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Abstract
Hyperspectral imaging (HSI) collects hundreds of images over large spatial obser-
vation areas on the Earth’s surface, recording scenes at different wavelength chan-
nels and providing a vast amount of information. Recurrent neural networks (RNNs) 
have been widely used for the classification of HSI datasets, understood as a single 
sequence of pixel vectors with high dimensionality. However, the RNN model scales 
poorly when dealing with HSI scenes with large dimensionality. In order to miti-
gate this problem, this paper presents a new RNN classifier based on simple recur-
rent units that performs HSI classification in a highly scalable and efficient way. Our 
experimental results (conducted on four real HSI datasets) reveal very good perfor-
mance, not only in terms of classification accuracy (in line with existing methods), 
but also in terms of computational performance when dealing with large datasets.

Keywords Hyperspectral image · Recurrent neural networks · CUDA

1 Introduction

The significant advances in computing technology achieved in the last decade, cou-
pled with the newest developments in imaging spectroscopy [18], have allowed 
the development of new Earth observation (EO) missions with powerful airborne 
and satellite hyperspectral imaging (HSI) sensors, which can capture high-quality 

Source codes: https ://githu b.com/mhaut /scala ble_RNN_HSI.

 * Juan M. Haut 
 juanmariohaut@unex.es

 Mercedes E. Paoletti 
 mpaoletti@aunex.es

 Javier Plaza 
 jplaza@unex.es; aplaza@unex.es

1 Department of Technology of Computers and Communications, University of Extremadura, 
Escuela Politecnica, Avda. de la Universidad s/n, Cáceres, Spain



 M. E. Paoletti et al.

1 3

images composed by hundreds of measurements (at different wavelength channels) 
over extensive spatial areas, acquiring information in hundreds of continuous and 
narrow bands, ranging from the visible to the near-infrared (NIR) and shortwave-
infrared (SWIR) [8] parts of the electromagnetic spectrum.

As a result, current spectrometers are able to produce very large HSI data cubes, 
where each pixel contains the spectral signature of the observed materials. These 
spectral signatures collect the physical–chemical behavior of materials in the pres-
ence of solar light, being unique for each kind of terrestrial object, and allowing to 
describe and identify each element of the scene, not only at an object level, but also 
at pixel (and even sub-pixel) level of detail [19], providing abundant information for 
the characterization of the surface of the Earth. Such information can be used in a 
wide range of human activities, such as hydrology [12], forestry [20], geology [22] 
and mineralogy [5]), as well as precision agriculture [7], urban planning [27], and 
prevention and management of disasters.

In this context, the analysis and processing of HSI datasets plays an important 
role in remote sensing [14], demanding the development of effective and efficient 
techniques for the analysis of these data. In particular, this paper focuses on meth-
ods that identify the content of an HSI scene by associating each pixel in the scene 
with a corresponding land-cover class. These methods can be described as the map-
ping function f (⋅, �) , where f ∶ � → � is able to relate each pixel of the HSI scene 
�i ∈ � with a land-cover category �i by adjusting its parameters � , obtaining at the 
end a classification map � with pairs of the form: {�i, �i}npixels

i=1 .
Besides, it must be noted that HSI data present several challenges related to its 

volume and complexity. While a detailed spectral signature allows for the unique 
identification of each material in the scene, its large spectral dimension and content 
can further complicate the classification process, imposing significant storage and 
processing restrictions. As a result, classification methods must be efficient and scal-
able in the use of computational and storage elements [25]. Moreover, the use of a 
large number of spectral features increases the complexity of classification methods, 
hampering their performance and leading to lower classification accuracies with 
more features (peaking paradox). In the field of HSI, this issue corresponds with 
the curse of dimensionality phenomenon that, coupled with high intraclass variabil-
ity and interclass similarity, makes the classification problem an extremely ill-posed 
one.

Among available classification methods, deep neural networks (DNNs) [3] have 
attracted the attention of the HSI research community due to several characteris-
tics that facilitate the classification of these kinds of data, including the following 
aspects:

– They do not need prior information about statistical properties of the HSI data 
to extract and process the spectral, spatial and spectral–spatial information con-
tained in the scenes.

– Their working mode is based on the optimization of a loss function, for instance 
the mean square error (MSE) between the networks’ outputs and the desired 
outputs, through the adjustment of the networks’ parameters � . To achieve this, 
they employ a forward-backward iterative mechanism (based on gradient descent 
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optimizers) to find the optimal � , being able to work as universal approximators 
[6].

– They offer great flexibility in terms of learning models, i.e., unsupervised, super-
vised and semi-supervised.

– As stacks of layers composed by neurons, they provide a great variety of archi-
tectures, from shallow to deep and very deep ones, employing fully (or locally) 
connected neurons, and implementing one or more paths.

Moreover, advances in computing technology have allowed the implementation of 
deepest and more complex neural models, which have led to a revolution in deep 
learning (DL) techniques [15]. Focusing on HSI classification, these DNNs are able 
to extract representative features, learning simple representations at the first layers 
and extending them to more complex abstractions at the final layers (hierarchical 
learning), discovering nonlinear relationships in the input HSI data and yielding 
high performance in HSI classification [24, 32].

In particular, the recurrent neural network (RNN) [29] is an interesting classifier 
that presents an internal structure similar to a directed graph, implementing loops 
in the connections of the layers that force each node activation of the current step to 
depend on the activations of the preceding ones. In this sense, the RNN is a power-
ful model for learning sequences of data, storing an internal state that provides a 
memory to relate the current input data sample with the previous ones. At the end, 
these states allow to process the contextual information of the data, extracting tem-
poral features. The RNN has been previously employed to perform HSI data clas-
sification, considering each spectral pixel as the input sequential data of the model, 
as Mou et al. propose in [21]. Other approaches even combine spectral information 
with spatial information. For instance, Zhou et al. [34] concatenate the spatial infor-
mation of a neighborhood window (extracted with PCA [30]) to the spectral infor-
mation of the pixel. Zhang et  al. [33] consider several principal components (for 
which they extract Gabor textures and differential morphological profiles) which are 
combined and stacked to conform local spatial sequential (LSS) features that will be 
sent as input to the RNN model.

Nonetheless, all the aforementioned spectral and spectral–spatial methodologies 
must face an important restriction. In particular, RNNs have been shown to suffer 
from overfitting when the length of their input sequences is very large, which hap-
pens often when dealing with HSIs, since spectral bands are handled as sequences of 
length n3 in which each sequence feature is a band, so overfitting becomes more evi-
dent as n3 increases. To mitigate this problem, it is usual to include more informa-
tion to the model, e.g., grouping the spectral bands to enlarge the size of the features 
and shorten the length of the sequence. However, this practice hampers the scal-
ability and performance of the network. Also, as the sequence and/or feature length 
increases, the runtimes needed by the model become longer.

In order to improve the performance of RNN models (in terms of both runtimes 
and scalability), some interesting parallel versions and toolkits have been developed 
[1, 17, 23]. For instance, [28] presents a general RNN with a parallel implementa-
tion for graphics processing units (GPUs) based on NVIDIA CUDA. Other works 
focus on the skip of the hidden states [2] in order to speed up the data processing. 
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However, to the best of our knowledge, very few efforts have been focused on accel-
erating the processing of HSIs with RNNs. However, accelerating RNNs for HSI 
data processing can give an adequate solution to the problems of scalability, runtime 
and overfitting when dealing with the high spectral dimensionality of these kinds of 
data.

This paper investigates (for the first time in the available literature) the scalable 
implementation of a novel variant of the RNN model, called simple recurrent unit 
(SRU) [16], for HSI data classification. Comparing the SRU with traditional recur-
rent units, its architecture allows faster learning in terms of training speed, reduc-
ing the number of trainable parameters while maintaining a reliable performance (in 
terms of accuracy). Thus, the main goal of this paper is to reduce the internal com-
plexity of the RNN model (i.e., the relationships between the current outputs and the 
previous ones), thus facilitating the parallelization of the computations performed 
by the recurrent units in order to enhance the performance of traditional RNN mod-
els for HSI data classification.

2  Recurrent neural units: overview

An HSI data scene � ∈ ℝn1×n2×n3 can be represented as a matrix of n1 × n2 pixels, 
where each pixel �i is composed by n3 spectral bands. On this wise, the classification 
pursues to associate each pixel with a corresponding land-cover class (label), obtain-
ing a classification map � ∈ ℝn1×n2×nclasses ≡ {�i, �i}

n1⋅n2
i=1

.
RNN models for HSI data interpretation process the spectral signature contained 

in each �i as a time sequence, where the spectral bands are considered as time steps 
(see Fig. 1). This allows the pixels to be processed in band-by-band fashion [21]. 
Alternatively, the bands can be arranged into groups [31]. Moreover, the RNN 
model provides three different units: (i) vanilla recurrent unit, (ii) long short-term 
memory (LSTM) [11], and (iii) gated recurrent unit (GRU) [4]. The vanilla unit is 
the oldest and simplest model, as defined by Eq. (1):

Fig. 1  Traditional band-by-band RNN model for HSI data classification. The spectral signature contained 
in each pixel is processed as a temporal sequence, where different spectral bands correspond to different 
time steps
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Considering �t ∈ ℝn as the input sequential sample, the vanilla model computes the 
output �t as a hidden state at time t, i.e., �t = �t , by combining the current input 
with the unit’s data weights �h and bias bh and the previous state �t−1 , weighted 
by the connection weights �h , being H(⋅) a nonlinear activation function such as 
sigmoid or hyperbolic tangent (tanh). As a result, the obtained hidden state works as 
the memory of the model, and it is applied to the subsequent sample �t+1.

Due to its simplicity, the vanilla RNN tends to quickly degrade the interpreta-
tion of high-dimensional data, reaching poor classification results. The LSTM deals 
with the data degradation by reinterpreting the original RNN as a cell composed by 
two main states, the hidden �t and cell �t states, which are controlled by three gates 
known as input �t , output �t and forget �t gates, in order to manage the information 
flow that goes through the unit. This mechanism allows the LSTM to learn useful 
information along time, disregarding the irrelevant one.

As we can observe in Eq. (2), �t works as the traditional output of the unit, while 
�t includes (or removes) information into (from) the cell, depending on the gates’ 
values. Thus, the input gate �t determines whether a new input sample is allowed to 
reach inside the cell or not; the forget gate �t deletes the irrelevant information; and 
the output gate �t weights the unit’s output signal at time t.

However, this control-gate mechanism introduces significant complexity to 
LSTM. With this in mind, the GRU model tries to make a compromise between the 
simplicity of the vanilla unit and the high performance of the LSTM. In fact, the 
GRU can be considered as a simplified LSTM, with the output gate removed (this 
involves fewer parameters) and the input and forget gates evolved into update ( �t ) 
and reset ( �t ) gates, as Eq. (3) shows:

(1)�t =

{
0 if t = 0

H
(
�h ⋅ �t + �h ⋅ �t−1 + bh

)
if t ≠ 0

(2)

�t = H
(

�i ⋅ �t + �i ⋅ �t−1 + bi
)

�t = H
(

�f ⋅ �t + �f ⋅ �t−1 + bf
)

�t = H
(

�o ⋅ �t + �o ⋅ �t−1 + bo
)

�t =

{

0 if t = 0

�t◦�t−1 + �t◦H
(

�c ⋅ �t + �c ⋅ �t−1 + bc
)

if t ≠ 0

�t =

{

0 if t = 0

�t◦H
(

�t
)

if t ≠ 0

(3)

�t = H
(

�z ⋅ �t + �z ⋅ �t−1 + bz
)

�t = H
(

�r ⋅ �t + �r ⋅ �t−1 + br
)

��
t
= tanh

(

�h ⋅ �t + �t◦�h ⋅ �t−1 + bh
)

�t =

{

0 if t = 0

�t◦�t−1 + (1 − �t)◦�
�
t

if t ≠ 0
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Although these models are able to reach acceptable performance in HSI data classi-
fication, they present an important computational restriction due to the high depend-
ence on previous steps. In fact, although algebraic operations can be optimized and 
parallelized in hardware, such dependencies hamper the speedup as the amount of 
data (and the dimensionality of the feature space) grow, making the RNN model 
scale poorly in this context. In addition, the RNN suffers from overfitting and van-
ishing gradient [10] problems. When processing HSI data, these models can see 
their performance severely compromised when the spectral dimension of the images 
is too high. In order to overcome these limitations, in the next section we introduce 
a new RNN-based architecture that employs a SRU as the main block of the model.

3  Proposed method

3.1  SRU methodology

The SRU simplifies the internal architecture of the recurrent cell. With a design in-
between that of the LSTM and GRU models, it exhibits two main states: the hidden 
state �t and the cell state �t , controlled by the forget �t and reset �t gates, as Eq. (4) 
indicates:

Internally, Eq. (4) can be divided in two main components: (i) the light recurrence, 
which reads the input �t at time t and computes the forget gate �t and the cell state �t 
values (capturing the relevant sequential information), and (ii) the highway network, 
which obtains the unit’s output by using the reset gate �t and the hidden state �t.

Focusing on the light recurrence concept, we observe that gates and cell states 
are not obtained by relying on previous hidden states (i.e., �t−1 ), but on the previous 
cell state (i.e., �t−1 ). Furthermore, the SRU units do not integrate the previous states 
through a matrix multiplication (⋅) , which is a quite complex mathematical operation 
to parallelize at the hardware level. This is because each dimension of the result-
ing output depends on all the entries of �t−1 , imposing a “waiting time” (in fact, a 
delay) until the state �t−1 is fully computed. In turn, the SRU performs a point-wise 
multiplication (⊙) , allowing the independence of each output’s dimension to obtain 
part of the output without having the previous state �t−1 fully calculated. This point-
wise multiplication is also employed by the highway network [26], which adaptively 
combines the current input �t with the cell state �t through the reset gate �t . Moreo-
ver, it reduces the vanishing gradient problem by implementing a skip connection 
(1 − �t)⊙ �t ⋅ 𝛼 , controlled by the scaling correction constant � , which helps to 
propagate the gradient signal.

(4)

�t = H
(

�f ⋅ �t + �f ⊙ �t−1 + bf
)

�t = H
(

�r ⋅ �t + �r ⊙ �t−1 + br
)

�t = �t ⊙ �t−1 +
(

1 − �t
)

⊙
(

�c ⋅ �t
)

�t = �t ⊙ �t + (1 − �t)⊙ �t ⋅ 𝛼
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3.2  Proposed CUDA‑based SRU for HSI classification

The proposed SRU has been implemented over a GPU using CUDA, aiming at 
increasing the model’s performance by parallelizing the operations given in Eq. 
(4). In this context, it must be noted that the HSI data have been reshaped into an 
n × n3 matrix (with n = n1 × n2 ) and divided into training Dtrain and test Dtest subsets 
to adjust the parameters and validate the model, being Dtrain organized as batches 
� ∈ ℝn3×nb , having each one nb sequences (i.e., pixels) of n3 features (i.e., spectral 
bands).

Besides, the network has been implemented as a many-to-one model with one 
cell that computes across input sequences to perform a single prediction from each 
one, defining the hidden space ℝnh . From Eq. 4, each weight matrix �∗ dotted by 
� is extracted, fusing these computations (by using cuBLAS) into a single matrix 
multiplication that obtains the auxiliary matrix � ∈ ℝnb×k⋅nh of Fig. 2. It is worth 
mentioning that, as a highway network’s point-wise operation is performed, if the 
input and output data sizes are not the same, the � will introduce a fourth matrix 
that will serve as the highway connection’s weights, setting k = 4 and performing 
(1 − �t)⊙ (� ⋅ �t) in Eq. (4). With this in mind, a CUDA kernel composed by nb ⋅ nh 
threads, arranged in the form of one-dimensional blocks, has been implemented. 
Algorithm 1 shows a pseudocode of the aforementioned kernel, where all the data 
structures (i.e., matrices and vectors) have been stored considering the C-style (i.e., 
row-major order) memory storage scheme. Moreover, Fig. 3 gives a graphical exam-
ple of how the CUDA threads access the positions of matrix � . Finally, our model 

Fig. 2  General matrix-to-matrix multiplication between the current HSI data batch and the model’s 
weights, optimized through cuBLAS library
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considers the following hyperparameters: nb = 100 , nh = 144 , n3 = spectral bands 
and k = 4 , setting the maximum number of threads per block to 512. 

4  Experimental results

4.1  Hyperspectral datasets

In order to test the proposed SRU model for HSI classification purposes, we per-
form an exhaustive comparison between all the available recurrent architectures: 
vanilla RNN, LSTM and GRU (implemented with CUDA and CuDNN) and the 
proposed method, with the aim of quantifying the computational improvements 
and the advantages that can be obtained in terms of performance and classifica-
tion accuracy. To this end, four widely used images in the field of HSI data classi-
fication have been considered: Indian Pines (IP), Big Indian Pines (BIG) and Sali-
nas Valley (SV), collected by AVIRIS, and the University of Pavia (UP) scene, 

Fig. 3  Diagram illustrating the threads’ access to auxiliary matrix � , where black, red green and purple 
arrows represent those threads with identifier 0, 1, 2 and nb ⋅ nh − 1 , respectively
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collected by ROSIS. Figure 4 shows a summary of these datasets, including the 
number of available labeled data in each case.

The IP, BIP and SV scenes were gathered by AVIRIS sensor [9] in 1992 
over agricultural areas and comprise 145 × 145 × 200 , 2678 × 614 × 220 and 
512 × 217 × 204 samples, respectively, organized in 16 and 58 different land-
cover classes. The UP scene was captured by ROSIS [13] over an urban area, 
comprising 610 × 340 × 113 samples labeled with 9 different classes.

4.2  Experimental environment

Several implementations of the considered RNN-based models for HSI classifica-
tion have been developed and tested on a hardware environment with a i9-9940X 
processor, located over an Gigabyte X299 Aorus, 128GB of DDR4 RAM, and an 
NVIDIA Titan RTX GPU with 24GB GDDR6. In order to provide an efficient 
implementation, the proposed model (together with the different RNN architec-
tures) has been parallelized on the GPU using CUDA 10.0.130 and cuDNN 7.6.0 
language over the Pytorch framework, with Ubuntu 18.04.3 x64 as operating 
system.

INDIAN PINES (IP) UNIVERSITY OF PAVIA (UP) SALINAS VALLEY (SV)

Color Land-cover type Samples Color Land-cover type Samples Color Land-cover type Samples
Background 10776 Background 164624 Background 56975

Alfalfa 46 Asphalt 6631 Brocoli-green-weeds-1 2009

Corn-notill 1428 Meadows 18649 Brocoli-green-weeds-2 3726

Corn-min 830 Gravel 2099 Fallow 1976

Corn 237 Trees 3064 Fallow-rough-plow 1394

Grass/Pasture 483 Painted metal sheets 1345 Fallow-smooth 2678

Grass/Trees 730 Bare Soil 5029 Stubble 3959

Grass/pasture-mowed 28 Bitumen 1330 Celery 3579

Hay-windrowed 478 Self-Blocking Bricks 3682 Grapes-untrained 11271

Oats 20 Shadows 947 Soil-vinyard-develop 6203

Soybeans-notill 972 Corn-senesced-green-weeds 3278

Soybeans-min 2455 Lettuce-romaine-4wk 1068

Soybean-clean 593 Lettuce-romaine-5wk 1927

Wheat 205 Lettuce-romaine-6wk 916

Woods 1265 Lettuce-romaine-7wk 1070

Bldg-Grass-Tree-Drives 386 Vinyard-untrained 7268

Stone-steel towers 93 Vinyard-vertical-trellis 1807

Total samples 21025 Total samples 207400 Total samples 111104

Fig. 4  Number of available labeled samples in the Indian Pines (IP), University of Pavia (UP), and Sali-
nas Valley (SV) HSI datasets
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4.3  Experimental settings

Two main experiments have been conducted to perform an exhaustive analysis of 
the performance and scalability of the proposed method, as compared with other 
RNN architectures:

– Our first experiment compares the RNN models with a fixed percentage of train-
ing samples. In particular, 15% of randomly selected samples from the IP and 
BIP scenes and 10% from the UP and SV scenes have been considered. The RNN 
models have been implemented following the architecture proposed in [21]. The 
main goal is to study the classification performance of the methods, using stand-
ard metrics such as the overall (OA) and average (AA) accuracy, and the kappa 
coefficient (K). Also run times and number of parameters have been measured. 
Moreover, two different implementations of vanilla RNN, LSTM and GRU have 
been considered: (i) direct CUDA implementations and (ii) CuDNN library-
based implementations.

– Our second experiment evaluates the scalability and speedup of the proposed 
model with different sizes of the input features. For this purpose, we have 
reduced the dimensionality of the scenes (while retaining most of the informa-
tion in the scenes) using PCA. In particular, for the AVIRIS datasets, in addi-
tion to the original 200, 204 and 220 spectral bands, the RNN models have been 
tested with 50, 100 and 150 principal components while, for the UP scene, 10, 40 
and 80 principal components have been, respectively, considered, in addition to 
the original 103 spectral bands.

4.4  Experimental discussion

4.4.1  Experiment 1: analysis of classification results

The results obtained in our first experiment are reported in Tables  1, 2 and 3. If 
we focus on the classification accuracy, we can observe that, in general, the CUDA 
implementations and their CuDNN counterparts reach similar OA, AA and K val-
ues, where vanilla RNN usually reaches the lowest accuracies. Comparing these 
results with those obtained by the SRU-based model, we can conclude that the SRU 
achieves intermediate results between the vanilla and LSTM/GRU, except for BIP 
and SV scenes, where it reaches slightly worse results than the vanilla model (the 
reason for this is that a strong overfitting was observed during the training stage, 
while the complexity of the BIP’s classes is greater than in other datasets). This 
indicates that the simplicity of the SRU (compared with LSTM and GRU) can nega-
tively affect the overfitting of the network (as it happens also with the vanilla RNN), 
requiring regularization and standardization mechanisms (such as dropout) in order 
to reduce this effect. The resulting classification maps can be seen in Fig. 5. As the 
considered methods are pixel based, they all exhibit some “salt & pepper” noise in 
the classification results being all very similar.



1 3

Scalable recurrent neural network for hyperspectral image…

Ta
bl

e 
1 

 C
la

ss
ifi

ca
tio

n 
re

su
lts

 o
bt

ai
ne

d 
fo

r t
he

 IP
 d

at
as

et
, u

si
ng

 1
5%

 ra
nd

om
ly

 se
le

ct
ed

 sa
m

pl
es

 to
 p

er
fo

rm
 th

e 
tra

in
in

g 
st

ag
e

Th
e 

be
st 

m
et

ric
 v

al
ue

s a
re

 in
 b

ol
d

C
la

ss
Va

ni
lla

 R
N

N
LS

TM
G

RU
 

Pr
op

os
ed

C
U

D
A

C
uD

N
N

C
U

D
A

C
uD

N
N

C
U

D
A

C
uD

N
N

1
28

.7
2 

±
 7

.5
22

.0
5 

±
 4

.7
6

38
.9

7 
±

 1
3.

51
43

.5
9 

±
 9

.5
9

55
.9

 ±
 6

.9
6

38
.9

7 
±

 1
4.

27
35

.9
 ±

 9
.3

2
2

73
.8

2 
±

 2
.1

5
70

.7
 ±

 2
.2

4
78

.1
9 

±
 3

.3
3

75
.4

 ±
 3

.2
8

76
.5

7 
±

 1
.2

8
75

.7
 ±

 3
.3

4
75

.8
 ±

 2
.7

5
3

55
.6

3 
±

 3
.8

6
54

.5
2 

±
 4

.3
9

62
.2

1 
±

 4
.2

5
66

.1
8 

±
 2

.5
64

.6
2 

±
 3

.5
9

61
.7

6 
±

 2
.7

5
65

.1
1 

±
 4

.4
3

4
41

.7
9 

±
 7

.4
1

43
.2

8 
±

 5
.5

5
55

.9
2 

±
 6

.5
1

56
.5
2 

±
 9

.6
4

55
.4

2 
±

 4
.7

2
55

.3
2 

±
 7

.1
8

54
.2

3 
±

 1
2.

67
5

86
.1

 ±
 2

.7
84

.9
8 

±
 2

.0
8

89
.4

6 
±

 3
.3

6
89

.4
6 

±
 1

.3
7

86
.1

5 
±

 4
.2

3
90

.8
8 

±
 2

.8
3

86
.4

9 
±

 2
.3

4
6

95
.0

 ±
 3

.0
3

94
.2

6 
±

 1
.4

95
.4

8 
±

 1
.1

7
96

.4
2 

±
 1

.7
1

97
.0

 ±
 1

.6
8

97
.0

 ±
 0

.8
96

.9
7 

±
 1

.0
4

7
40

.0
 ±

 1
2.

72
33

.9
1 

±
 1

0.
79

61
.7

4 
±

 1
6.

36
63

.4
8 

±
 2

.1
3

61
.7

4 
±

 6
.9

6
66

.0
9 

±
 1

3.
01

68
.7

 ±
 6

.3
9

8
97

.9
8 

±
 1

.0
6

97
.8

3 
±

 1
.7

99
.4

1 
±

 0
.5

1
99

.4
6 

±
 0

.3
3

99
.8

 ±
 0

.2
4

99
.6

1 
±

 0
.2

5
98

.8
7 

±
 1

.3
2

9
10

.5
9 

±
 6

.8
6

15
.2

9 
±

 6
.0

36
.4

7 
±

 9
.4

1
25

.8
8 

±
 8

.8
24

.7
1 

±
 1

4.
6

43
.5
3 

±
 1

7.
69

29
.4

1 
±

 1
1.

16
10

67
.5

8 
±

 2
.7

2
70

.0
 ±

 7
.0

5
73

.7
3 

±
 2

.7
6

75
.8
6 

±
 3

.3
3

73
.3

4 
±

 2
.4

9
73

.3
4 

±
 3

.2
1

74
.5

5 
±

 1
.2

5
11

77
.1

6 
±

 1
.0

4
76

.6
6 

±
 2

.7
5

82
.1
7 

±
 2

.2
2

79
.6

9 
±

 1
.2

8
81

.1
1 

±
 1

.3
80

.6
5 

±
 2

.7
4

79
.3

7 
±

 1
.4

8
12

65
.6

 ±
 3

.9
4

67
.5

 ±
 8

.2
5

81
.3
5 

±
 3

.5
4

80
.9

9 
±

 0
.9

3
75

.4
 ±

 1
.3

1
80

.4
4 

±
 5

.5
4

75
.2

8 
±

 4
.3

5
13

96
.4

4 
±

 3
.2

8
97

.2
4 

±
 1

.2
3

98
.5

1 
±

 1
.0

7
98

.7
4 

±
 0

.4
3

98
.5

1 
±

 0
.4

6
98

.2
8 

±
 0

.8
9

99
.2

 ±
 0

.4
6

14
93

.6
 ±

 1
.5

2
94

.5
5 

±
 1

.3
95

.3
3 

±
 2

.5
7

94
.9

8 
±

 2
.4

95
.0

 ±
 0

.9
8

95
.5
2 

±
 1

.3
8

94
.8

5 
±

 1
.3

8
15

63
.8

4 
±

 4
.2

4
59

.2
1 

±
 4

.4
7

70
.7

3 
±

 6
.2

4
70

.8
5 

±
 5

.2
6

71
.5

9 
±

 3
.7

7
72

.8
 ±

 2
.8

2
65

.1
8 

±
 4

.2
2

16
83

.2
9 

±
 4

.4
1

85
.0

6 
±

 2
.9

3
90

.1
3 

±
 4

.0
3

90
.1

3 
±

 5
.6

3
91

.6
5 

±
 4

.5
88

.1
 ±

 5
.4

7
88

.6
1 

±
 2

.1
2

O
A

76
.7

4 
±

 0
.6

2
76

.3
 ±

 0
.7

3
81

.9
 ±

 0
.5

9
81

.4
7 

±
 0

.5
5

81
.2

5 
±

 0
.2

81
.3

3 
±

 0
.5

2
80

.4
8 

±
 0

.4
7

A
A

67
.3

2 
±

 1
.0

5
66

.6
9 

±
 1

.5
75

.6
1 

±
 2

.3
3

75
.4

8 
±

 1
.6

3
75

.5
3 

±
 1

.0
4

76
.1
2 

±
 2

.4
1

74
.2

8 
±

 1
.6

2
K

(x
10

0)
73

.3
7 

±
 0

.7
4

72
.8

6 
±

 0
.9

79
.2
9 

±
 0

.6
9

78
.8

4 
±

 0
.6

3
78

.5
5 

±
 0

.2
5

78
.6

6 
±

 0
.6

77
.6

8 
±

 0
.5

2
Pa

ra
m

et
er

s
23

47
04

24
75

68
24

32
80

23
09

28
Ru

nt
im

e(
s)

17
7.

5 
±

 0
.7

48
.4

2 
±

 0
.7

7
17

0.
26

 ±
 1

.4
5

53
.5

8 
±

 1
.3

7
17

5.
9 

±
 0

.9
9

49
.6

9 
±

 1
.5

4
29

.9
 ±

 0
.2

3
Sp

ee
du

p
1.

0
3.

67
1.

04
3.

31
1.

01
3.

57
5.
94



 M. E. Paoletti et al.

1 3

Ta
bl

e 
2 

 C
la

ss
ifi

ca
tio

n 
re

su
lts

 o
bt

ai
ne

d 
fo

r t
he

 U
P 

da
ta

se
t, 

us
in

g 
10

%
 ra

nd
om

ly
 se

le
ct

ed
 sa

m
pl

es
 to

 p
er

fo
rm

 th
e 

tra
in

in
g 

st
ag

e

Th
e 

be
st 

m
et

ric
 v

al
ue

s a
re

 in
 b

ol
d

C
la

ss
Va

ni
lla

 R
N

N
LS

TM
G

RU
 

Pr
op

os
ed

C
U

D
A

C
uD

N
N

C
U

D
A

C
uD

N
N

C
U

D
A

C
uD

N
N

1
92

.6
9 

±
 1

.7
9

91
.4

7 
±

 0
.9

7
93

.3
5 

±
 1

.0
9

94
.2
9 

±
 0

.9
3

94
.0

4 
±

 0
.6

94
.1

 ±
 1

.1
2

93
.6

7 
±

 0
.9

5
2

97
.6

7 
±

 0
.4

4
97

.2
2 

±
 0

.5
97

.9
9 

±
 0

.2
8

97
.5

5 
±

 0
.4

3
97

.9
2 

±
 0

.3
6

97
.4

3 
±

 0
.5

4
97

.5
6 

±
 0

.3
3

3
72

.0
8 

±
 4

.4
6

72
.9

 ±
 2

.8
6

78
.7
3 

±
 3

.4
9

76
.3

5 
±

 1
.7

1
77

.8
1 

±
 1

.3
9

76
.0

 ±
 3

.1
8

76
.8

3 
±

 0
.9

6
4

92
.7

6 
±

 1
.5

93
.4

6 
±

 1
.0

9
93

.4
6 

±
 0

.6
4

94
.8

6 
±

 0
.4

4
94

.8
9 

±
 1

.1
4

94
.5

3 
±

 1
.5

1
93

.9
5 

±
 1

.2
3

5
99

.6
9 

±
 0

.0
6

99
.6

 ±
 0

.1
99

.6
5 

±
 0

.1
9

99
.8

 ±
 0

.1
3

99
.8

 ±
 0

.1
5

99
.8
7 

±
 0

.1
1

99
.6

2 
±

 0
.1

7
6

89
.1

6 
±

 0
.8

5
90

.9
9 

±
 1

.3
9

89
.3

2 
±

 0
.8

4
90

.2
2 

±
 1

.7
8

89
.2

1 
±

 1
.9

3
90

.1
 ±

 1
.8

6
89

.3
8 

±
 1

.4
5

7
81

.6
4 

±
 7

.1
86

.6
 ±

 5
.4

1
86

.5
2 

±
 1

.8
2

83
.5

9 
±

 5
.0

3
85

.6
3 

±
 4

.4
4

86
.5

5 
±

 2
.5

8
83

.7
6 

±
 1

.2
7

8
85

.3
3 

±
 3

.1
3

85
.4

6 
±

 1
.5

2
88

.2
9 

±
 1

.4
1

88
.0

3 
±

 1
.9

87
.6

7 
±

 2
.2

6
88

.4
 ±

 2
.1

9
87

.2
 ±

 1
.8

9
9

99
.7

9 
±

 0
.1

1
99

.9
3 

±
 0

.0
6

99
.6

9 
±

 0
.2

2
99

.6
7 

±
 0

.3
8

99
.6

 ±
 0

.0
6

99
.8

1 
±

 0
.1

6
99

.8
6 

±
 0

.1
4

O
A

92
.8

4 
±

 0
.3

2
92

.9
3 

±
 0

.0
9

93
.8

8 
±

 0
.2

93
.8

1 
±

 0
.0

6
93

.9
2 

±
 0

.0
6

93
.8

1 
±

 0
.1

2
93

.5
1 

±
 0

.1
A

A
90

.0
9 

±
 0

.9
8

90
.8

5 
±

 0
.6

4
91

.8
9 

±
 0

.3
2

91
.5

9 
±

 0
.4

5
91

.8
4 

±
 0

.4
6

91
.8

7 
±

 0
.5

91
.3

1 
±

 0
.2

3
K

(x
10

0)
90

.4
8 

±
 0

.4
1

90
.6

1 
±

 0
.1

2
91

.8
6 

±
 0

.2
6

91
.7

8 
±

 0
.0

8
91

.9
2 

±
 0

.0
9

91
.7

7 
±

 0
.1

7
91

.3
8 

±
 0

.1
3

Pa
ra

m
et

er
s

76
80

9
89

67
3

85
38

5
73

03
3

Ru
nt

im
e(

s)
35

1.
9 

±
 1

.3
3

10
9.

47
 ±

 0
.9

1
30

3.
16

 ±
 2

.0
2

11
8.

22
 ±

 0
.6

1
29

5.
75

 ±
 1

.1
9

11
0.

6 
±

 1
.3

9
57

.7
3 

±
 0

.2
1

Sp
ee

du
p

1.
0

3.
21

1.
16

2.
98

1.
19

3.
18

6.
1



1 3

Scalable recurrent neural network for hyperspectral image…

Ta
bl

e 
3 

 C
la

ss
ifi

ca
tio

n 
re

su
lts

 o
bt

ai
ne

d 
fo

r t
he

 S
V

 d
at

as
et

, u
si

ng
 1

0%
 ra

nd
om

ly
 se

le
ct

ed
 sa

m
pl

es
 to

 p
er

fo
rm

 th
e 

tra
in

in
g 

st
ag

e

Th
e 

be
st 

m
et

ric
 v

al
ue

s a
re

 in
 b

ol
d

C
la

ss
Va

ni
lla

 R
N

N
LS

TM
G

RU
 

Pr
op

os
ed

C
U

D
A

C
uD

N
N

C
U

D
A

C
uD

N
N

C
U

D
A

C
uD

N
N

1
99

.6
3 

±
 0

.0
9

99
.6

9 
±

 0
.4

2
99

.8
3 

±
 0

.0
9

99
.6

3 
±

 0
.4

5
99

.9
1 

±
 0

.0
9

99
.9
7 

±
 0

.0
7

99
.7

 ±
 0

.2
3

2
99

.9
7 

±
 0

.0
3

99
.8

8 
±

 0
.1

8
99

.8
3 

±
 0

.1
5

99
.9

8 
±

 0
.0

3
99

.9
7 

±
 0

.0
3

99
.9
8 

±
 0

.0
1

99
.9

6 
±

 0
.0

3
3

97
.4

6 
±

 1
.4

9
98

.1
9 

±
 0

.4
5

99
.7
3 

±
 0

.1
4

99
.4

6 
±

 0
.3

3
98

.6
6 

±
 1

.2
1

99
.5

6 
±

 0
.3

7
98

.8
2 

±
 0

.5
8

4
98

.6
9 

±
 0

.6
2

99
.1

7 
±

 0
.2

8
99

.4
4 

±
 0

.2
4

99
.3

 ±
 0

.2
4

98
.8

7 
±

 0
.3

5
99

.2
3 

±
 0

.2
6

99
.3

1 
±

 0
.4

4
5

98
.3

8 
±

 0
.5

3
98

.2
4 

±
 0

.5
7

99
.0

5 
±

 0
.4

1
99

.1
5 

±
 0

.4
9

99
.0

4 
±

 0
.5

3
99

.2
7 

±
 0

.3
4

98
.7

4 
±

 0
.4

8
6

99
.8

7 
±

 0
.1

99
.8

1 
±

 0
.1

2
99

.9
 ±

 0
.0

7
99

.8
6 

±
 0

.0
9

99
.8

8 
±

 0
.0

8
99

.8
9 

±
 0

.1
99

.8
9 

±
 0

.0
9

7
99

.7
8 

±
 0

.1
4

99
.6

9 
±

 0
.1

7
99

.7
5 

±
 0

.1
99

.8
4 

±
 0

.2
99

.7
9 

±
 0

.1
99

.7
 ±

 0
.1

1
99

.7
6 

±
 0

.1
1

8
88

.3
6 

±
 1

.0
4

89
.4

2 
±

 2
.2

7
88

.7
 ±

 1
.9

8
89

.8
 ±

 0
.9

7
88

.9
 ±

 1
.7

6
89

.3
4 

±
 0

.6
88

.3
3 

±
 1

.6
9

99
.8

1 
±

 0
.1

4
99

.8
 ±

 0
.1

1
99

.7
2 

±
 0

.2
99

.8
3 

±
 0

.1
1

99
.9

1 
±

 0
.1

99
.9
8 

±
 0

.0
1

99
.8

6 
±

 0
.0

8
10

96
.0

1 
±

 0
.4

3
96

.1
7 

±
 0

.9
2

97
.5

7 
±

 0
.3

2
97

.5
7 

±
 0

.5
1

97
.7

7 
±

 0
.4

9
97

.9
 ±

 0
.2

3
96

.6
1 

±
 0

.7
7

11
98

.0
9 

±
 0

.7
5

96
.7

5 
±

 0
.3

8
97

.7
7 

±
 1

.8
4

98
.0

6 
±

 1
.1

3
99

.3
3 

±
 0

.2
5

97
.8

6 
±

 1
.0

8
98

.3
8 

±
 0

.4
7

12
99

.5
3 

±
 0

.3
1

99
.0

8 
±

 0
.9

1
99

.8
8 

±
 0

.1
99

.7
 ±

 0
.4

7
99

.6
4 

±
 0

.2
1

99
.8

6 
±

 0
.1

1
99

.7
1 

±
 0

.2
13

98
.7

1 
±

 0
.7

6
98

.5
4 

±
 0

.4
3

98
.8
8 

±
 0

.7
5

98
.4

2 
±

 0
.9

2
98

.8
6 

±
 0

.6
9

98
.8

1 
±

 0
.4

9
98

.7
6 

±
 0

.4
4

14
96

.7
4 

±
 1

.1
4

97
.0

9 
±

 1
.5

8
97

.1
1 

±
 1

.7
7

97
.6

3 
±

 1
.0

6
97

.4
5 

±
 0

.7
1

98
.0
9 

±
 0

.8
9

96
.9

1 
±

 1
.1

4
15

73
.3

1 
±

 1
.1

2
69

.9
9 

±
 5

.3
6

76
.9

4 
±

 3
.2

2
75

.7
2 

±
 0

.6
2

77
.6
2 

±
 2

.1
6

77
.3

2 
±

 0
.9

9
69

.9
4 

±
 2

.6
3

16
99

.2
5 

±
 0

.3
2

99
.3
2 

±
 0

.2
8

99
.0

7 
±

 0
.3

5
99

.0
9 

±
 0

.3
8

99
.0

7 
±

 0
.5

7
99

.1
9 

±
 0

.6
1

99
.0

3 
±

 0
.3

O
A

93
.3

2 
±

 0
.2

1
93

.0
8 

±
 0

.3
1

94
.1

 ±
 0

.2
2

94
.1

8 
±

 0
.1

8
94

.2
6 

±
 0

.2
5

94
.3
7 

±
 0

.0
6

93
.0

 ±
 0

.0
9

A
A

96
.4

7 
±

 0
.1

1
96

.3
 ±

 0
.2

8
97

.0
7 

±
 0

.2
4

97
.0

7 
±

 0
.0

5
97

.1
7 

±
 0

.1
2

97
.2
5 

±
 0

.1
2

96
.4

8 
±

 0
.1

8
K

(x
10

0)
92

.5
5 

±
 0

.2
3

92
.2

9 
±

 0
.3

5
93

.4
3 

±
 0

.2
4

93
.5

1 
±

 0
.2

93
.6

 ±
 0

.2
8

93
.7
3 

±
 0

.0
7

92
.1

9 
±

 0
.1

Pa
ra

m
et

er
s

23
93

12
25

21
76

24
78

88
23

55
36

Ru
nt

im
e(

s)
56

4.
77

 ±
 1

.9
19

9.
83

 ±
 2

.0
9

55
2.

8 
±

 1
.8

8
21

6.
65

 ±
 1

.5
4

56
7.

29
 ±

 1
.9

3
19

8.
25

 ±
 1

.5
1

74
.1
3 

±
 0

.3
1

Sp
ee

du
p

1.
0

2.
84

1.
03

2.
62

1.
0

2.
86

7.
65



 M. E. Paoletti et al.

1 3

Focusing on the number of parameters and run times, we observe that both the 
CUDA and CuDNN versions require the same number of parameters. However, their 
run times are significantly different, being CuDNN faster. With this in mind, our model 
exhibits the lowest number parameters, resulting in less computational requirements, 
lower memory consumption and fast performance. In fact, the SRU is able to outper-
form all the optimized models in CuDNN. In order to analyze the speedup achieved 
by these methods, we first note that the slowest one is the most basic model (i.e., the 
vanilla RNN directly implemented in CUDA). Further, the CUDA versions of LSTM 
and GRU achieve low speedups, while the CuDNN counterparts achieve an approxi-
mate speedup of x3 for the IP, BIP and UP dataset, and x2 for the SV scene. How-
ever, the speedups achieved by the proposed method are close to x5, x6 and x7 for the 
IP, UP and SV scenes, respectively, and more than x10 for the BIP. This shows the 
improved computational performance (and scalability with size) of the proposed SRU 
implementation.

4.4.2  Experiment 2: speedup and scalability

The results of our second experiment are reported on the last rows of Tables 1, 2 and 3. 
Once more, the CUDA implementation of vanilla RNN was the slowest model, and we 
used it as a baseline to evaluate the other implementations. If we focus on the CUDA 
LSTM and GRU, their speedup never exceeds x1.20 and even decreases when more 
input features are used (e.g., for the IP and SV scenes). In turn, the CuDNN-based 
models exhibit speedup values of x2 and x3, being the CuDNN-based vanilla model 
the one with the highest speedup (closely followed by the GRU network). However, 
these implementations do not scale well when additional input features are considered, 
even reducing their speedup in some cases (e.g., for the SV scene). In this sense, the 
proposed method not only reaches the highest speedup values, but the associated speed-
ups always increase with the number of input features (for instance in BIP) (Table 4).

Figure 6 shows a graphical representation of the runtimes measured (in s) for the dif-
ferent tested methods, as a function of the number of input features (spectral bands). As 
we can observe, the CUDA versions of vanilla, LSTM and GRU are clearly the slowest 
methods for the considered HSI datasets. These models are all negatively affected by 

Table 4  Classification results obtained for the BIP dataset, using 15% randomly selected samples. Due to 
space limitations, the accuracy of each class is not shown

The best metric values are in bold

Class Vanilla RNN LSTM GRU Proposed

CUDA CuDNN CUDA CuDNN CUDA CuDNN

OA 57.9 ± 0.49 58.12 ± 0.33 60.71 ± 1.39 60.28 ± 0.51 61.6 ± 0.33 61.38 ± 0.64 56.73 ± 0.22
AA 46.4 ± 0.58 46.09 ± 0.43 49.16 ± 1.14 48.31 ± 1.1 50.83 ± 0.68 49.47 ± 0.93 43.42 ± 0.55
K(x100) 54.34 ± 0.53 54.57 ± 0.34 57.42 ± 1.51 56.92 ± 0.54 58.42 ± 0.4 58.1 ± 0.69 53.04 ± 0.21
Parameters 849146 862010 857722 845370
Runtime(s) 5327.74 ±  

107.52
1759.85 ±  

107.58
5076.23 ±  

77.47
1934.94 ±  

68.97
5180.01 ±  

52.87
1745.2 ±  

89.31
508.19 ±  

56.77
Speedup 1.0 3.03 1.05 2.75 1.03 3.05 10.48
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the increase in the number of input features (i.e., the runtimes increase significantly 
with the number of input features). However, the CuDNN counterparts exhibit better 
computational performance and scalability than CUDA versions when the number of 
input features increases. Finally, the proposed SRU-based model clearly exhibits the 
lowest runtimes (which do not increase with the number of features), thanks to the opti-
mal parallelization of its point-wise operations. As a result, our method is not affected 
by the inclusion of additional input features, scaling significantly better than the other 
tested methods.

5  Conclusions and future work

In this paper, a new RNN model for HSI data classification is presented and dis-
cussed. The proposed model is based on the SRU architecture, which reduces the 
internal complexity of other previously developed recurrent approaches (i.e., LSTM 
and GRU) by decoupling the computational relationship between the current and 
previous states in the network architecture. This is achieved by resorting to eas-
ily parallelizable, point-wise operations. Our experiments, conducted using four 
benchmark HSI datasets, reveal that our method is able to achieve good classifica-
tion results using much fewer parameters than the traditional models (vanilla, LSTM 
and GRU), therefore consuming less memory. Moreover, our parallelization strategy 
significantly reduces the measured runtimes of the proposed method, which obtains 
higher speedups as the number of pixels (and the dimensionality of input features) in 
the HSI increase.

As future work, we will study the inclusion of standardization and regularization 
methods to reduce the overfitting of the proposed model, with the goal of further 
improving the reliability and precision of the obtained classification results.

(a) Ground-truth (b) V-RNN CUDA(c) V-RNN CuDNN (d) LSTM CUDA (e) LSTM CuDNN (f) GRU CUDA (g) GRU CuDNN (h) Proposed

Fig. 5  Classification maps of IP scene, using 15% randomly selected samples to perform the training 
stage

Fig. 6  Graphical representation of the runtimes (in s) measured for the different tested methods, as a 
function of the number of input features (spectral bands)
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a b s t r a c t

Artificial neural networks (ANNs) have been widely used for the analysis of remotely sensed imagery. In
particular, convolutional neural networks (CNNs) are gaining more and more attention in this field. CNNs
have proved to be very effective in areas such as image recognition and classification, especially for the
classification of large sets composed by two-dimensional images. However, their application to multi-
spectral and hyperspectral images faces some challenges, especially related to the processing of the
high-dimensional information contained in multidimensional data cubes. This results in a significant
increase in computation time. In this paper, we present a new CNN architecture for the classification
of hyperspectral images. The proposed CNN is a 3-D network that uses both spectral and spatial informa-
tion. It also implements a border mirroring strategy to effectively process border areas in the image, and
has been efficiently implemented using graphics processing units (GPUs). Our experimental results indi-
cate that the proposed network performs accurately and efficiently, achieving a reduction of the compu-
tation time and increasing the accuracy in the classification of hyperspectral images when compared to
other traditional ANN techniques.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Remote sensing image acquisition and processing has become
very important in recent times in Earth observation problems,
exhibiting many practical applications such as monitoring and
management of the environment, agriculture or security and
defense/intelligence issues. Of particular importance is the compu-
tationally efficient processing of images formed by multiple spec-
tral bands, called multispectral and hyperspectral images. These
kinds of images collect information corresponding to large obser-
vation areas on the surface of the Earth, using dozens/hundreds
of contiguous spectral bands (Chang, 2003), thus creating a
three-dimensional data cube with size significantly larger than tra-
ditional remotely sensed images. As a result, multispectral and
hyperspectral images require particular computational improve-
ments, especially for their storage and advanced processing.

Several methods have been developed for fast processing and
classification of multispectral and hyperspectral images (Cheng
et al., 2017; Yuan et al., 2015), from those that only use spatial or
spectral information to those that combine both kinds of data. This
includes unsupervised techniques such as clustering (Haut et al.,

2017a; Tarabalka et al., 2009; Paoletti et al., 2017). However, super-
vised classifiers are often preferred, due to their capacity to provide
high classification accuracies, although these methods may be
affected by the limited availability of training samples as they gen-
erally need a large number of samples in order to obtain those good
results. Inparticular, supervisedmethods face challenges in the clas-
sification of hyperspectral images due to the unbalance between the
high dimensionality of the data and the limited number of training
samples available in practice (Hughes phenomenon)
(Khodadadzadeh et al., 2014). In this sense, support vectormachines
(SVMs) (Scholkopf and Smola, 2001) and multinomial logistic
regression (MLR) (Böhning, 1992) have been proved to be very use-
ful for the supervised classification of hyperspectral images due to
their ability to deal with large input spaces (Melgani and
Bruzzone, 2004; Fauvel et al., 2008; Plaza et al., 2009; Camps-Valls
and Bruzzone, 2005;Wu et al., 2015; Haut et al., 2017b). Also, some
sampling query strategies have been proposed to address the lim-
ited availability of training samples, such as semi-supervised and
active learning methods (Li et al., 2010, 2011; Rajan et al., 2008).

At this point, we can highlight several spatial-spectral classifica-
tion methods that combine the strengths of semi-supervised meth-
ods and active learning techniques, for example those based on
morphological component analysis (MCA) (Starck et al., 2005), a
method that decomposes images into texture and cartoon

https://doi.org/10.1016/j.isprsjprs.2017.11.021
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(piecewise smooth) parts. In Zhou and Prasad (2017), authors pre-
sented a new framework that combines active and semi-
supervised learning with MCA for hyperspectral image classifica-
tion. Also, in Xu et al. (2016b) authors presented a new classification
framework for the fusion of hyperspectral and light detection and
ranging (LiDAR) data, combiningMCA for textural feature extraction
andMLR for classification purposes. Themultiple MCA (MMCA) (Xu
et al., 2016a) is an extension of the MCA that uses both spatial and
spectral features. Its goal is to separate an image into two compo-
nents: a smoothness component and a texture component.

On the other hand, due to their success in the field of pattern
recognition (Bishop, 1995; Atkinson and Tatnall, 1997) and the
availability of multiple training techniques (including machine
learning, deep learning and active learning techniques, as well as
supervised, unsupervised and semi-supervised approaches) to deal
with linearly non-separable data (Benediktsson and Swain, 1990),
artificial neural networks (ANNs) have attracted the attention of
a large number of researchers in the area of hyperspectral image
classification and analysis (Benediktsson et al., 1993; Yang, 1999)
as compared to probabilistic methods. In particular, we highlight
the use of convolutional neural networks (CNNs) (LeCun et al.,
1998a) as a powerful deep learning model for image classification,
which can effectively combine the spatial and spectral information.

1.1. Deep learning and CNNs: a review

For years, building a machine learning system required a great
deal of effort in designing a feature extractor that would transform
raw data (i.e. pixel values from an image) into a feature vector from
which the learning subsystem could detect/classify patterns (LeCun
et al., 2015). Deep learning (or deep structured learning) emerged in
2006 with deep belief networks (DBNs)1 (Hinton et al., 2006; Hinton
and Salakhutdinov, 2006) as a part of a machine learning system that
exploits many layers of non-linear information processing for super-
vised or unsupervised feature extraction and transformation, and also
for pattern analysis and classification (Bengio, 2009).

After DBNs, two new unsupervised deep models were devel-
oped: (1) a method for learning sparse, overcomplete features that
uses a linear encoder-decoder preceded by a sparsifying non-
linearity that turns a code vector into a quasi-binary sparse code
vector (Ranzato et al., 2006) and (2) a variant of autoencoder with
greedy layer-wise training (Bengio et al., 2007).

With the advancement of technology (both hardware and soft-
ware) and the development of new optimization algorithms2

(LeCun et al., 1998b) newmilestones were achieved in deep learning,
giving as result three types of deep methods:

� Unsupervised deep networks (generative learning): these meth-
ods work without labeled classes, looking for patterns between
pixels through capturing high-order correlation of data (e.g.
autoencoder-based methods3 (Licciardi and Del Frate, 2011;

Chen et al., 2014), RBMs (Midhun et al., 2014), DBNs (Li et al.,
2014b), and deep Boltzmann machines or DBMs (Salakhutdinov
and Hinton, 2009; Wu et al., 2016)).

� Supervised deep networks (discriminative deep networks):
these models work with labeled information and their goal is
to categorize the input data in these labels. They represent
the most common form of machine learning, deep or not
(LeCun et al., 2015), and these kinds of models are usually more
efficient to train and test, more flexible to construct, and more
suitable for end-to-end learning of complex systems (Deng
and Yu, 2014). We can distinguish between linear supervised
deep method4 (e.g. deep neural networks or DNNs5 with linear
activation functions) and non-linear supervised methods (e.g.
deep stacking networks or DSNs (He et al., 2016), recurrent neu-
ral networks or RNNs6 and Convolutional neural networks or
CNNs (LeCun et al., 2015)).7

� Hybrid deep networks (semisupervised methods): these meth-
ods make use of both generative and discriminative model com-
ponents, i.e., they work with and without labeled data (e.g.
generative adversarial networks or GANs (Goodfellow et al.,
2014)). Semi-supervised learning is very useful in hyperspectral
image classification in order to deal with the limited training
samples problem (Ma et al., 2016).

Focusing on CNNs, these supervised non-linear models are a
special type of deep learning model that is inspired by neuro-
science (Ghamisi et al., 2017) and are designed to process data that
come in the form of multiple arrays. The literature on CNN applied
to remote sensing classification shows different points of view in
the way these models are used. Basically there are three ways to
apply CNNs:

1. Extracting only spectral information: spectral-based classifica-
tion approaches are conceptually simple and easy to be imple-
mented, but they neglect the spatial components (Li et al.,
2014a). Normally, these methods assume that each pixel is pure
and typically labeled as a single land use and land cover type
(Fisher, 1997). For spectral feature classification with CNNs,
the spectral feature of the original image data is directly
deployed as the input vector (Zhang et al., 2016a), so we obtain
a 1-D CNN architecture that receives N � 1 input vectors, where
N is the number of spectral bands (Ghamisi et al., 2017; Hu
et al., 2015b; Chen et al., 2016).

2. Extracting only spatial information: these models consider the
neighboring pixels of a certain pixel in the original remote sens-
ing image in order to extract the spatial feature representation
(Zhang et al., 2016a). As a result, 2-D CNN architectures are
adopted, where the input data is a patch of P � P neighboring
pixels (Vetrivel et al., 2018; Chen et al., 2016; Hu et al.,
2015a). In this sense, several methods have been implemented
in order to extract high-level spatial features, as multi-scale
image information (Liu et al., 2016; Zhao and Du, 2016a;
Zhang et al., 2016b; Yu et al., 2017). For hyperspectral image

1 A DBN is composed by a stack of restricted Boltzmann machines (Smolensky,
1986; Larochelle and Bengio, 2008) (RBMs). The DBN core is a greedy learning
algorithm that optimizes the network weights layer by layer. Its complexity grows
linearly with the size and depth of the network.

2 For example, new variants of gradient descent optimizer were developed,
including batch and mini-batch gradient descent, the stochastic gradient descent
(SGD) or the included momentum in SGD (Qian, 1999). New optimizers also appear as
Adagrad optimizer (Duchi et al., 2011) and its extension Adadelta (Zeiler, 2012) or the
Adam optimizer (Kingma and Ba, 2014).

3 An autoencoder (Cho, 2014; Karhunen et al., 2015) is a neural network (or
mapping method) where the desired output is equal to the input data vector. We can
distinguish between linear autoencoders, with only one hidden layer that works like a
principal component analysis (PCA) if its weights between the encoder and decoder
are tied, and non-linear or deep autoencoders, which have more modeling power by
employing multiple nonlinear intermediate layers symmetrically in the encoder and
decoder (Cho, 2014).

4 Linear classifiers have an important limitation: these methods can only carve
their input space into very simple regions (half-spaces) separated by a hyperplane
(Chien, 1974).

5 A DNN is a multi-layer perceptron (MLP) with many hidden and fully connected
layers.

6 RNNs can also be used as generative learning models if the output is not a label
sequence associated with the input data sequence. Long short-term memory
networks (LSTMs) are a kind of RNN (Hochreiter and Schmidhuber, 1997).

7 CNNs can also work in unsupervised and semi-supervised mode (Dosovitskiy
et al., 2014; Romero et al., 2016; Liu et al., 2017). On the other hand, recent efforts
have resulted in deconvolutional neural networks (DCNN) (Zeiler et al., 2010). In Lu
et al. (2017) authors combined the spatial pyramid model (SPM) with a shallow
weighted DCNN to learn a set of feature maps and filters by minimizing the
reconstruction error between the input image and the convolution result.
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analysis normally it is necessary a pre-processing of the spectral
information, with reduction of the number of bands for exam-
ple (using, e.g., PCAs or autoencoders).

3. Extracting spectral-spatial information: the use of spatial fea-
tures with spectral information in combined fashion can signif-
icantly improve the classification accuracy. When we talk about
extracting spectral-spatial information with CNNs, two types of
models can be highlighted:
� Those models that mix various techniques in addition to

CNNs to extract spectral-spatial information separately and
then combine them, for example using a 1-D CNN and 2-D
CNN (Zhang et al., 2017; Yang et al., 2016) or combining dif-
ferent spectral feature extractors with spatial CNNs (Zhao
and Du, 2016b). These methods do not take full advantage
of the joint spatial/spectral correlation information.

� 3-D CNN architectures (Chen et al., 2016; Li et al., 2017) that
compute each pixel in association with a P � P spatial neigh-
borhood and B spectral bands (P � P � B). These models
apply 3-D kernels in order to learn the local signal changes
in both the spatial and the spectral domain of the hyperspec-
tral data cubes, exploiting important discriminative infor-
mation for classification and taking full advantage of the
structural characteristics of the 3-D remote sensing data in
general and hyperspectral images in particular (Li et al.,
2017).

In this work, we propose an improved 3-D deep CNN model
composed by 5 layers which uses all the spatial-spectral informa-
tion of the hyperspectral image. We also include a specific strategy
for management of the borders of the image and further develop an
efficient implementation in graphics processing units (GPUs) to
significantly speed up the computational performance. Deep
Learning techniques, and in particular CNNs, involve a huge
amount of matrix and vector operations. Most of these operations
can be easily and massively parallelized using GPUs, due to their
inherent design with hundreds/thousands of cores that can com-
pute one or several matrix operations in parallel which, compared
to a CPU with a few cores, results in a important decrease in com-
putation time.

As a result, the main contributions of our work can be high-
lighted as follows: (1) the development of a new CNN architecture
that considers the spatial and spectral information contained in
hyperspectral images in simultaneous fashion, and (2) the develop-
ment of an efficient implementation of the newly proposed archi-
tecture on GPUs that allows for efficient exploitation of the
proposed methodology in real applications.

The remainder of the paper is organized as follows. Section 2
provides some general aspects about CNNs. Section 3 describes
the proposed CNN. Section 4 validates the proposed approach by
comparing it with classic ANNs such as the MLP and other CNN
implementations in the literature, in order to illustrate the advan-
tages of the proposed implementation in terms of both computa-
tional efficiency and classification accuracy. Section 5 concludes
the paper with some remarks and hints at plausible future research
lines.

2. CNNs

CNNs are composed by a set of blocks that can be applied both
across space and across time (images, audio and video signals).
Each block transforms the input volume to an output volume of
neuron activations which will serve as input to the next block. In
contrast to conventional ANNs, the blocks of neurons in CNNs
operate like kernels which are connected and applied over one
patch of the input volume (see Fig. 1), that is, the neurons of a block

are not fully-connected to all neurons of the previous layer as in
the standard MLP (see Fig. 2). These blocks actually compose fea-
ture extraction stages, which specifically consist of three layers
(Zhang et al., 2016a) that are the key parts of almost all CNN
models:

1. Convolution layer: a 3-D layer where each neuron computes the
dot product between its weights and a small region of the input
volume, i.e. a rectangular section of the previous layer, to which
it is connected. Its goal is to identify certain features from the
previous layer and mapping their appearance to a feature map
(LeCun et al., 2015). We can see this layer as set of k filters of
size l� l� q (filter bank) where the neurons share the same
weights and bias and connect the input volume to the output
volume (Zhang et al., 2016a). Each filter detects a particular fea-
ture at every location on the input. The resulting output volume

of the layer l is a feature map of size dl � dl � kl that stores the
information where the feature occurs in the original input vol-

ume and is calculated as zli ¼ Bl þPkl�1

j¼1W
l
i;j � zl�1

j , where

i 2 ½1; kl�;Bl is the bias matrix of layer l and Wl
i;j is the weight

matrix or filter (also known as kernel or feature detector)8 that
connects the jth feature map in layer l� 1 (zl�1

j ) with the ith fea-
ture map in layer l.

Fig. 1. CNN architecture. Each block or layer of a CNN transforms the input volume
to an output volume of neuron activations. Neurons in layer l are connected to a
small region of layer l� 1.

Fig. 2. MLP architecture. All nodes in one layer are fully connected with the nodes
of the previous layer.

8 The concept of weight matrix can be understood as a feature detector or filter
which can beused to search for an specific spatial characteristic of the input data. The
weight matrix will assign a greater weight to the pixels that collect this characteristic
penalizing the pixels that do not exhibit this spatial behaviour.
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2. Nonlinearity layer: this layer embeds a nonlinear function (as
the rectified linear unit or ReLU). Jarrett et al. (2009), Nair and
Hinton (2010), and Glorot et al. (2011) that is applied to each
feature map’s component in order to learn nonlinear represen-
tations: al ¼ f ðzlÞ.

3. Pooling layer: this layer is used to make the features invariant
from the location and to summarize the output of multiple neu-
rons in convolution layers through a pooling function. In our
case, this layer executes a max operation within a small spatial
region R over the resulting feature map after the nonlinearity
layer: pl ¼ maxi2Rali.

Sparse connectivity and shared weights make CNNs ideal for
processing and classifying images, reducing the number of param-
eters to be learned by the network and ensuring some degree of
shift, scale, and distortion in-variance.

3. Proposed CNN

The structure of our new CNN is shown in Fig. 3. As we can see,
our CNN consists of an input layer, three convolution layers with
ReLU as nonlinear activation function, two maxpool layers, and
four fully-connected layers. The last one is the output layer which
obtains the desired label for the input data. In the following, we
first provide details about our preprocessing strategy for hyper-
spectral data, particularly to account for spatial information, prior
to feeding this information to the CNN. Then, we provide a detailed
explanation about the considered architecture.

3.1. Data preprocessing

Normally, CNNs receive a complete normalized image prior to
classification. However, in hyperspectral images the classes are

Fig. 3. Proposed CNN architecture.

Fig. 4. Graphical illustration of our border mirroring strategy (with d ¼ 9; d ¼ 19 and d ¼ 29) using the well-known AVIRIS Indian Pines hyperspectral image (and its
associated ground-truth) as an example.

M.E. Paoletti et al. / ISPRS Journal of Photogrammetry and Remote Sensing 145 (2018) 120–147 123



typically mixed within the image, so we feed the pixel (vectors)
one by one to the network. This allows exploiting the rich spectral
information contained in the hyperspectral data, but we need an
additional mechanism in order to include also the spatial
information.

To achieve this and take advantage of both the spatial and the
spectral information simultaneously, we have implemented a 3-D
approach in which we feed the network with a neighborhood win-
dow centered around each pixel vector. In this way, the input layer
accepts volumes of size d� d� n, where d is the width and height
of the input volume and n is the total number of bands of the orig-
inal hyperspectral image. This requires a pre-processing stage to
divide the hyperspectral image into patches of size d� d� n. The
desired label to be reached by the network will be the one that
owns the central pixel of the patch ½d=2þ 1; d=2þ 1;n�.

However, this preprocessing strategy faces a problem: for the
pixels belonging to the borders of the image a d� d surrounding
neighborhood cannot be defined. As we increase d, we cannot
properly account for the border information around some pixels.
Some approaches simply disregard those border pixels for which
they do not have spatial neighbours. This supposes a significant
loss of samples that, together with the scarcity of the samples,
can make the network result in overfitting. In order to avoid this
problem, we have implemented a simple algorithm to replicate
borders that allows us to feed the net with all the border pixels
and to use them as any other pixel in the image. In this way, we
can classify the complete hyperspectral image by replicating the
pixels near the border, i.e. mirroring the d=2 pixels of border out-
wards, in order to create the corresponding patches or windows
of the original border pixels, as illustrated graphically in Fig. 4
using the well-known AVIRIS Indian Pines hyperspectral image
(described in detail in Section 4).

3.2. CNN architecture details

Once the edges are replicated and the hyperspectral image is
split into 3-D patches, these are grouped in batches of size b and
sent to the CNN. Then, the d� d� n patches are sent as input vol-

ume to the first convolution layer (c1), composed by kc1 filters of

lc1 � lc1 � qc1, where qc1 ¼ n, the stride is fixed to 1, and there is
no padding.

After applying the ReLU function, the kc1 feature maps gener-
ated by c1 are sent to the first MaxPool layer (mp1), with a

lmp1 � lmp1 kernel, stride of 2, and padding. The resulting output vol-

ume pmp1 ¼ dmp1 � dmp1 � kc1 is sent to the second convolution

layer (c2) with kc2 filters of size lc2 � lc2 � qc2, where qc2 ¼ kc1, with
the same stride as in the first convolution and no padding either.

Again, after applying the ReLU function, the kc2 feature maps
generated by c2 are sent to the second MaxPool layer (mp2), with

a lmp2 � lmp2 kernel, stride of 2 and padding. The resulting output

volume pmp2 ¼ dmp2 � dmp2 � kc2 is sent to the last convolution layer

(c3), that has kc3 filters of size lc3 � lc3 � qc3. This layer has the pur-
pose of further refining the feature maps by processing each ele-

ment one by one, so kc3 ¼ qc3 ¼ kc2 and lc3 ¼ 1. There is no third
maxpool layer, so the output volume is reshaped in order to send
it to fully-connected layers.

Four fully-connected layers were implemented (fc1; fc2; fc3 and

fc4) with lfc1; lfc2; lfc3 and lfc4 nodes, respectively. The first three
fully-connected layers compute their output as

yfc ¼ f ðwfcyfc�1 þ bfcÞ, where wfc are their weight matrices, bfc are
their bias vectors, yfc�1 is the output of the previous layer (in the
first case, yfc�1 ¼ pC3, i.e. the output of C3 layer) and the activation

function f ð�Þ is ReLU. Finally, the last resulting matrix yfc3 is sent to
fc4, which computes the outputs of the network with a softmax

function as yfc4 ¼ wfc4yfc3 þ bfc4, where yfc4 contains the desired
labels for the original d� d� n input data.

In Algorithm 1 we can see a scheme of the operation of the pro-
posed method. As we can notice, the method uses cross-entropy in
order to determine the loss of the CNN model. It is defined as
Hy0 ðyÞ ¼

P
iy

0
ilogðyiÞ, where y is our predicted probability distribu-

tion and y0 is the true distribution, so the cross-entropy is a mea-
sure of how inefficiently predictions are calculated for describing
the truth.

Algorithm 1. Proposed CNN method

1: procedure CNN_method(Y ! original hyperspectral
image)

2: max epochs ! Set number of epochs value
3: max iters ! Set number of iterations value
4: d ! Set patch size value
5: n ¼ Y :bands
6: Ynorm ¼ band mean normalizeðYÞ
7: Y 0 ¼ border mirroringðYnorm; dÞ !mirroring of d border
pixels

8: P ¼ patches creationðY 0; d;nÞ ! splitting Y 0 into patches
of d� d� n

9: Ta; Tb ¼ training test setsðPÞ ! training Ta and testing
Tb sets

10: G ¼ batches creationðTa; bÞ ! grouping patches in
batches of size b

11: for e < max epochs do
12: for it < max iters do
13: G0 ¼ get next batchðGÞ
14: labels G0 predicted ¼ forward passðG0Þ
15: error ¼ cross entropyðlabels G0; labels G0 predictedÞ
16: W;B ¼ optimizerðerrorÞ
17: end for
18: end for
19: end procedure

As an interesting point we note that, for the initialization of all
weights and bias of the network, we have used the so-called Xavier
initializer (Glorot and Bengio, 2010), that allows the network to
achieve greater stability, and the Adagrad optimizer (Duchi et al.,
2011), as a simple method for learning rate adaptation. All the net-
work characteristics (weights and bias initialization, optimizer,
learning rate, steps, kernels size, use of padding and size of strides)
are configurable through a JavaScript Object Notation (JSON)9 file,
as well as parameters d and b, which makes the implementation of
the network flexible and easy to modify. Such implementation has
been performed in Python.10 In this way, the CNN takes advantage
of the information of the central pixel neighbors as well as all the
available spectral information, being able to adapt its structure
easily and quickly.

As we anticipated in Section 3.1, this kind of networks may suf-
fer from an overfitting problem because of the complexity of the
model derived from the large number of parameters that must
be learned, and a lack of training samples (that is quite common
in remote sensing applications). This problem may result in poor
predictive performance in the testing phase, despite a high
accuracy can be obtained in the training phase. To avoid such

9 http://www.json.org/.
10 https://www.python.org/.
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overfitting problems, we have allowed an optional and config-
urable dropout mechanism in the first and second convolution lay-
ers. The dropout method sets the output of some randomly
selected hidden neurons to zero, so that the dropped neurons do
not contribute in the forward pass and they are not used in the
back-propagation stage (Hinton et al., 2012).

To conclude this section, it is important to note that the pro-
posed CNN has been implemented using the TensorFlow open
source library for machine intelligence11 including its GPU func-

tionalities, that allow for fast performance even when dealing with
very large hyperspectral image volumes. In the following section,
we evaluate the proposed CNN from the viewpoint of both computa-
tional performance and classification accuracy.

4. Experiments and results

4.1. Experimental configuration

In order to evaluate the performance of our newly presented
CNN architecture, we use a hardware environment composed by

Color Land cover type Samples
Background 10776

Alfalfa 46

Corn-notill 1428

Corn-min 830

Corn 237

Grass/Pasture 483

Grass/Trees 730

Grass/Pasture-mowed 28

Hay-windrowed 478

Oats 20

Soybeans-notill 972

Soybeans-min 2455

Soybeans-clean 693

Wheat 205

Woods 1265

Bldg-Grass-Tree-Drives 386

Stone-steel towers 93

Total samples 21025

Fig. 5. Original ground-truth image of the AVIRIS Indian Pines scene and number of samples per class.

11 https://www.tensorflow.org.

Color Land cover type Samples
Background 164624

Asphalt 6631

Meadows 18649

Gravel 2099

Trees 3064

Painted metal sheets 1345

Bare Soil 5029

Bitumen 1330

Self-Blocking Bricks 3682

Shadows 947

Total samples 207400

Fig. 6. Original ground-truth image of the ROSIS University of Pavia scene and number of samples per class.
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a 6th Generation Intel
�
CoreTM i7-6700 K processor with 8 M of

Cache and up to 4.20 GHz (4 cores/8 way multitask processing),
40 GB of DDR4 RAM with a serial speed of 2400 MHz, a GPU NVI-
DIA GeForce GTX 1080 with 8 GB GDDR5X of video memory and
10Gbps of memory frequency, a Toshiba DT01ACA HDD with
7200RPM and 2 TB of capacity, and an ASUS Z170 pro-gaming
motherboard.

4.2. Hyperspectral image data

In our experiments, we have used two well-known hyperspec-
tral image data sets. The first one is the Indian Pines image, gath-
ered in 1992 by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor (Green et al., 1998) over a set of agri-
cultural fields with regular geometry and with a multiple crops and

Table 3
Configuration of the CNN architecture for the Indian Pines and University of Pavia datasets. The kernel size (like the number and type of layers, strides and padding) is one of the
design choices of the proposed CNN architecture. Large kernels allow our CNN to learn more complex features, although with larger kernels the computational time of the
training/testing phase is also greater.

CNN proposed topologies

Hyperspectral datasets convolution layers Fully Connected Layers

Kernel size ReLU Pooling Dropout N�neurons Function Dropout
kc � lc � lc � qc lmp � lmp

lfc

Indian Pines 600� 5� 5� 200 Yes 2� 2 Yes (10%) 1024 ReLU Yes(10%)
200� 3� 3� 600 Yes 2� 2 Yes (10%) 1024 ReLU No
200� 1� 1� 200 Yes No No 512 ReLU No

16 Softmax No

Pavia University 380� 7� 7� 103 Yes 2� 2 Yes(20%) 2048 ReLU No
350� 5� 5� 380 Yes 2� 2 Yes(20%) 2048 ReLU No
350� 1� 1� 350 Yes No No 1024 ReLU No

9 Softmax No

Common parameters

Bach size b Steps (iterations) Epochs Learning rate Optimizer

100 1500 20 0.01 AdagradOptimizer

Table 2
University of Pavia: number of samples in the training set used by the proposed method and by the method in Chen et al. (2016).

Pavia University

class pixels 200 samples per class 100 samples per class 50 samples per class Chen et al. (2016)

Asphalt 6631 200 100 50 548
Meadows 18649 200 100 50 540
Gravel 2099 200 100 50 392
Trees 3064 200 100 50 542
Painted metal sheets 1345 200 100 50 256
Bare soil 5029 200 100 50 532
Bitumen 1330 200 100 50 375
Self-blocking bricks 3682 200 100 50 514
Shadows 947 200 100 50 231

Total 42776 1800 900 450 3930

Table 1
Indian Pines: number of samples in the training set used by the proposed method and by the method in Chen et al. (2016).

Indian Pines

clase pixels 200 samples per class 100 samples per class 50 samples per class Chen et al. (2016)

Alfalfa 46 33 33 33 30
Corn-notill 1428 200 100 50 150
Corn-min 830 200 100 50 150
Corn 237 181 100 50 100
Grass/pasture 483 200 100 50 150
Grass/trees 730 200 100 50 150
Grass/pasture-mowed 28 20 20 20 20
Hay-windrowed 478 200 100 50 150
Oats 20 14 14 14 15
Soybeans-notill 972 200 100 50 150
Soybeans-min 2455 200 100 50 150
Soybeans-clean 593 200 100 50 150
Wheat 205 143 100 50 150
Woods 1265 200 100 50 150
Bldg-grass-tree-drives 386 200 100 50 50
Stone-steel towers 93 75 75 50 50

Total 10249 2466 1342 717 1765
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irregular patches of forest in Northwestern Indiana. The AVIRIS
Indian Pines scene has 145 � 145 pixels with 224 spectral bands
in the range from 400 to 2500 nm, with 10 nm of spectral resolu-

tion, 20 mmoderate spatial resolution, and 16 bits radiometric res-
olution. After an initial analysis, 4 zero bands and another 20 bands
with lower signal-to-noise ratio (SNR) have been removed because

Fig. 7. Illustration of the effect of using different patch sizes for the Indian Pines scene. The upper row shows the size of the neighborhood around the central pixel when we
use d ¼ 9; d ¼ 19 and d ¼ 29, as we can see on the axes from left to right (color map of band 140). In the lower row we can see the spectral signature of the pixels that form
each neighborhood, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Illustration of the effect of using different patch sizes for the University of Pavia scene. The upper row shows the size of the neighborhood around the central pixel
when we use d ¼ 15; d ¼ 21 and d ¼ 27, as we can see on the axes from left to right (color map of band 10). In the lower row we can see the spectral signature of the pixels
that form each neighborhood, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of atmospheric absorption phenomena in those bands, retaining
only 200 spectral channels. Moreover, about half of the pixels in
the hyperspectral image (10249 of 21025, i.e. 48.74%) contain
ground-truth information, which comes in the form of a single

label assignment for each pixel with a total of 16 ground-truth
classes (see Fig. 5).

The second data set used in experiments was collected by the
Reflective Optics System Imaging Spectrometer (ROSIS) sensor

Fig. 9. Indian Pines: Evolution of the validation loss in terms of steps (iterations) with d ¼ 9; d ¼ 19 and d ¼ 29. The shadow shows the standard deviation of the loss for the
five executions of each patch (zoom in error interval ½0;1�). This experiment has been executed using 1500 iterations.

Fig. 10. Indian Pines: Evolution of the validation loss in terms of time (seconds) with d ¼ 9;d ¼ 19 and d ¼ 29. The shadow shows the standard deviation of the loss for the
five executions of each patch (zoom in error interval ½0;1�). This experiment has been executed using 1500 iterations.

Table 4
Execution times (in seconds) and accuracies measured with patches of size d ¼ 9; d ¼ 19 and d ¼ 29 for the Indian Pines dataset and d ¼ 15; d ¼ 21 and d ¼ 27 for the University
of Pavia dataset. The CNN configuration is the one indicated in Table 3, with 1500 iterations, 100 samples per class and 5 executions.

Dataset Patch size Time per step Total time Accuracy

Avg. Std. dev. Avg. Std. dev. Avg. Std. dev.

Indian Pines d ¼ 9 0.02 0.01 29.22 1.05 78.46 4.45
d ¼ 19 0.08 0.02 116.30 3.22 91.34 1.59
d ¼ 29 0.16 0.03 248.29 7.91 95.53 0.48

University of Pavia d ¼ 15 0.02 0.01 34.78 1.13 94.02 0.62
d ¼ 21 0.05 0.02 74.66 2.22 95.08 1.41
d ¼ 27 0.09 0.02 131.66 2.88 94.13 0.66
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(Kunkel et al., 1988) during a flight campaign over the city of Pavia,
in northern Italy. The dataset covers an urban environment, with
various solid structures (asphalt, gravel, metal sheets, bitumen,
bricks), natural objects (trees, meadows, soil), and shadows (9
classes in total). Other objects whose compositions differ from
the labeled ones are considered as clutter. The scene was collected
over an university area. It contains 103 spectral bands with
610� 340 pixels in the spectral range from 0.43 to 0.86 lm, and
spatial resolution of 1.3 m/pixel. About 20.62% of the pixels in
the hyperspectral image (42776 of 207400) contain ground-truth
information (see Fig. 6).

4.2.1. Data preprocessing: division of training and testing sets
When our method divides the hyperspectral images into train-

ing and testing sets, it follows a method of preprocessing with class
balancing that must be conveniently explained at this point. In
addition to their huge dimensionality and the existing correlation
between the spectral features collected (Melgani and Bruzzone,

2004), hyperspectral images present another complication: the
class imbalance problem (He and Garcia, 2009). This problem
appears in a dataset when some of the classes are heavily under-
represented (in terms of their labeled samples) as compared to
other classes (García et al., 2011), leading to poor classification per-
formance in many real-world applications, especially for the
minority classes. In order to deal with this problem, and taking into
account that we could not identify a common pattern about sam-
ple selection strategies in the literature, we have tried to keep a
stratified sampling strategy in our experiments. As a result, we
tried to balance the number of samples selected in accordance with
the number of available samples per class.

The first step is to divide randomly the original dataset in two
subsets: the first one (training set) with 75%12 of the samples and
the second one (testing set) with the remaining 25%. If we keep that

Fig. 11. Pavia University: Evolution of the validation loss in terms of steps (iterations) with d ¼ 15;d ¼ 21 and d ¼ 27. The shadow shows the standard deviation of the loss
for the five executions of each patch (zoom in error interval ½0;1�). This experiment has been executed using 1500 iterations.

Fig. 12. Pavia University: Evolution of the validation loss in terms of time (seconds) with d ¼ 15; d ¼ 21 and d ¼ 27. The shadow shows the standard deviation of the loss for
the five executions of each patch (zoom in error interval ½0;1�). This experiment has been executed using 1500 iterations.

12 For each class we make sure that about 75% of each class is taken, until we have a
number of samples close to 75% of the complete dataset, so we make sure that all
classes are represented in the subset.
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75% of samples for the training set, we will once again experience
the class imbalance problem. For instance, in the Indian Pines image
the Alfalfa class has only 46 samples as opposed to Corn-notill,

which has 1428. 75% of each is 34;5 � 36 for Alfalfa and 1071 for
Corn-notill, a completely unbalanced result. The solution adopted
in this case is to simply reduce the number samples until a balanced

Table 5
Classification accuracies obtained by our CNN (with patch sizes of d ¼ 9; d ¼ 19 and d ¼ 29) for the Indian Pines hyperspectral dataset. We used 2500 iterations and repeated the
experiment 5 times.

Neural networks CNN d ¼ 9 CNN d ¼ 19 CNN d ¼ 29

Samples per class 50 100 200 50 100 200 50 100 200

Alfalfa 98.70 (1.06) 99.13 (1.06) 99.13 (1.06) 99.57 (0.87) 100.00 (0.00) 99.57 (0.87) 99.13 (1.74) 99.57 (0.87) 99.13 (1.06)
Corn-notill 70.76 (3.42) 76.93 (2.50) 80.48 (9.37) 76.74 (3.89) 85.84 (1.92) 94.47 (2.46) 82.10 (3.94) 91.32 (0.46) 98.17 (0.67)
Corn-min 78.92 (5.37) 90.55 (1.97) 96.65 (1.20) 82.77 (2.61) 93.23 (2.09) 98.22 (0.87) 86.41 (4.29) 94.84 (0.47) 98.92 (0.68)

Corn 96.54 (1.89) 99.75 (0.21) 99.66 (0.17) 99.41 (0.83) 99.66 (0.32) 100.00 (0.00) 97.81 (2.92) 100.00 (0.00) 100.00 (0.00)
Grass/Pasture 89.86 (4.56) 97.81 (0.81) 99.46 (0.52) 95.20 (1.54) 98.18 (0.73) 99.75 (0.20) 96.15 (3.75) 98.34 (1.23) 99.71 (0.21)
Grass/Trees 97.40 (0.94) 98.11 (0.88) 99.53 (0.32) 92.96 (2.64) 97.92 (1.31) 98.90 (0.43) 96.47 (2.43) 98.66 (0.94) 99.40 (0.52)

Grass/pasture-mowed 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
Hay-windrowed 99.29 (0.34) 99.62 (0.08) 99.67 (0.21) 99.12 (1.06) 99.08 (0.45) 99.62 (0.47) 99.62 (0.50) 99.96 (0.08) 100.00 (0.00)

Oats 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
Soybeans-notill 80.39 (3.52) 87.86 (1.95) 92.43 (2.03) 88.35 (4.26) 94.81 (1.94) 98.00 (0.78) 88.66 (1.62) 95.21 (1.26) 98.62 (1.39)
Soybeans-min 65.82 (5.83) 79.45 (1.74) 76.42 (4.61) 69.52 (3.63) 85.85 (1.35) 94.32 (2.02) 79.40 (1.33) 90.52 (1.16) 96.15 (0.57)
Soybean-clean 80.84 (4.29) 90.96 (3.58) 97.74 (0.86) 84.65 (3.19) 96.90 (1.61) 99.09 (0.45) 88.67 (1.80) 97.17 (1.64) 99.33 (0.18)

Wheat 99.61 (0.78) 99.80 (0.39) 99.71 (0.24) 99.90 (0.20) 99.90 (0.20) 100.00 (0.00) 99.32 (0.39) 100.00 (0.00) 99.90 (0.20)
Woods 91.21 (1.17) 94.80 (1.43) 97.71 (0.74) 88.35 (3.57) 95.54 (1.43) 98.85 (0.94) 96.74 (1.22) 98.12 (0.54) 98.96 (0.46)

Bldg-Grass-Tree-Drives 91.14 (2.07) 98.50 (0.81) 99.27 (0.60) 96.94 (3.11) 98.81 (1.42) 99.90 (0.13) 99.07 (0.26) 99.69 (0.25) 100.00 (0.00)
Stone-steel towers 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.57 (0.86) 100.00 (0.00) 100.00 (0.00) 99.78 (0.43) 98.92 (0.96) 100.00 (0.00)

Overall Accuracy 80.85 (1.58) 88.46 (0.32) 90.11 (0.67) 83.73 (1.30) 92.54 (0.16) 97.23 (0.30) 88.78 (0.78) 95.05 (0.28) 98.37 (0.17)
Average Accuracy 90.03 (0.98) 94.58 (0.22) 96.12 (0.28) 92.07 (0.66) 96.61 (0.24) 98.79 (0.10) 94.33 (0.35) 97.64 (0.13) 99.27 (0.11)

Kappa 78.44 (1.74) 86.92 (0.36) 88.81 (0.76) 81.68 (1.44) 91.54 (0.18) 96.85 (0.34) 87.31 (0.88) 94.38 (0.31) 98.15 (0.19)

Run time 47.97 (0.01) 48.50 (0.01) 48.21 (0.01) 193.40 (0.01) 192.85 (0.01) 197.65 (0.01) 421.07 (0.02) 404.15 (0.02) 405.46 (0.02)

Fig. 13. Classification results for Indian Pines image with d ¼ 9 and 50 (left), 100 (center) and 200 (right) samples per class. The upper row displays the classification result
without the background, and the lower row displays the classification result with the background.
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result is achieved. After we get 75% sampling of each class, we set a
maximum number of samples per class (as a threshold), for example
50, 100 or 200 samples per class. For those classes with many sam-
ples, we simply cut the samples until reaching the threshold. How-
ever, for those classes that have very few samples and do not
reach the threshold, only those available pixels are taken. In Table 1
we can observe the real number of samples that we are using in each
experiment when we refer to ‘‘50 samples per class”, ‘‘100 samples
per class” or ‘‘200 samples per class”. Except for those classes that
do not reach the proposed threshold (and that use 75% complete),
the rest of classes work with 15–25% of their samples. In Table 2
we can see that the same solution is adopted for the University of
Pavia data. In both cases, the proposed method uses less samples
than (Chen et al., 2016) with the exception of Indian Pines with
200 samples per class.

4.3. Hyperparameter tuning

The first step to carry out the experiments has been to adjust
the configuration parameters of the convolutional network to get
the best possible classification accuracy in the considered hyper-
spectral datasets, through cross-validation.

For the Indian Pines dataset, the CNN configuration parameters
have been adjusted according to Table 3. As we can see in the con-
volution layers, the noise of some of the Indian Pines image bands
is mitigated by a first expansion of depth, and the overfitting prob-
lem is solved by adding dropout in the first and second convolution
layers and in the first fully connected layer.13 The third convolution

layer refines the c2’s feature maps with the objective of obtaining a
better classification.

For the University of Pavia dataset, the CNN configuration
parameters have been adjusted according to Table 3. Also, we
improved the quality of the spectral information by extending
the depth of the feature maps in the first convolution. In this case,
the overfitting problem is worse than in the Indian Pines scene
(mainly due to the greater number of parameters to be learned),
so we increased the value of the dropout in the first and second
convolution layers. Again, the third convolution layer refines the
c2’s feature maps, with the objective of obtaining a better
classification.

4.4. Performance evaluation

To test the proposed CNN for hyperspectral image classification
with the configurations described in Section 4.3, several experi-
ments have been conducted, first with the Indian Pines hyperspec-
tral dataset and, second, with the University of Pavia hyperspectral
dataset. At this point, we emphasize that data pre-processing plays
a very important role in this kind of deep learning algorithms. In
practice, many classification methods work better after a data nor-
malization procedure. In this case hyperspectral datasets have
been scaled between in the range ½�0:5;0:5� and a band-mean nor-
malized procedure has been performed. This means that each of
the spectral channels in the image have been normalized by sub-
tracting the mean.

Testing parameter d: We tested different sizes of parameter d,
using a fixed number of 100 samples per class. For the Indian Pines
data, we have considered three patch sizes: d ¼ 9; d ¼ 19 and
d ¼ 29. In Fig. 7 we illustrate the effect of using different patch
sizes over a random pixel in the Indian Pines dataset. As we add

Fig. 14. Classification results for Indian Pines image with d ¼ 19 and 50 (left), 100 (center) and 200 (right) samples per class. The upper row displays the classification result
without the background, and the lower row displays the classification result with the background.

13 After the first experiment, we realized that these values were insufficient and the
network was fine-tuned again. A 10% dropout was added to the third convolution
layer and a 30% dropout was added to the first fully-connected layer to avoid
overfitting.
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pixels to the neighborhood, the spatial information around the
considered pixel is more clear, especially when it comes to edge
pixels. However, a patch too large can detract from the target pixel.
As for the spectral signature, adding more neighbors to the target
pixel also makes the signature as a whole more defined.

For the Pavia University data, we have tested other patch sizes:
d ¼ 15; d ¼ 21 and d ¼ 27. The difference is motivated by our pre-
assessment of the size of relevant features in the image. We also
provide in Fig. 8 an illustrative example of how the size of patches
impacts the overall performance in the University of Pavia data set.
In this case, the scene presents many object borders in the leftmost
part. By adding more spatial information we can better identify the

pixels belonging to such edges. However, given the reduced num-
ber of classes, if we add too many spectral signatures we can make
the patches slightly homogeneous.

For each d, we divided the original hyperspectral image into
pieces (mirroring the borders of the image, if necessary) and
grouping the patches into training samples and test samples. To
split the patches, we followed the steps described in Section 4.2.1.
Each execution of this experiment has been repeated 5 times.

Table 4 reports the obtained results. We can observe that, for
the Indian Pines image, d ¼ 29 achieves the best result, reaching
an overall accuracy of 95.53% with a smaller error in fewer
iterations (with only 400 iterations, d ¼ 29 has already reached a

Table 6
Obtained classification accuracies (with patch sizes of d ¼ 15; d ¼ 21 and d ¼ 27) for the University of Pavia hyperspectral dataset. We used 1500 iterations and repeated the
experiment 5 times.

Neural networks CNN d ¼ 15 CNN d ¼ 21 CNN d ¼ 27

Samples per class 50 100 200 50 100 200 50 100 200

Asphalt 79.86 (4.46) 90.58 (0.74) 92.81 (0.72) 86.41 (0.47) 91.30 (1.81) 95.31 (0.97) 82.66 (1.18) 92.07 (1.05) 96.31 (0.19)
Meadows 88.97 (1.65) 94.20 (1.94) 97.20 (0.95) 89.44 (4.85) 93.39 (1.52) 98.16 (0.12) 90.39 (3.03) 93.56 (1.76) 97.54 (0.39)
Gravel 83.52 (1.92) 92.28 (2.12) 96.97 (0.90) 85.31 (4.51) 92.01 (3.55) 97.92 (0.59) 88.74 (0.90) 93.66 (1.16) 96.84 (0.29)
Trees 96.31 (1.02) 97.45 (1.34) 98.62 (0.43) 94.36 (0.49) 96.87 (0.74) 98.74 (0.18) 90.88 (1.35) 94.51 (2.12) 97.58 (0.41)

Painted metal sheets 99.83 (0.09) 99.93 (0.11) 100.00 (0.00) 99.38 (0.13) 99.88 (0.09) 100.00 (0.00) 99.31 (0.21) 99.53 (0.37) 99.65 (0.15)
Bare Soil 90.72 (1.47) 95.18 (0.93) 98.57 (0.74) 93.54 (2.45) 98.50 (1.20) 99.57 (0.31) 88.73 (2.00) 97.67 (0.88) 99.33 (0.25)
Bitumen 91.88 (1.61) 92.38 (1.22) 97.27 (0.96) 91.00 (0.57) 96.19 (1.50) 99.75 (0.09) 92.73 (1.25) 95.16 (1.29) 98.90 (1.14)

Self-Blocking Bricks 82.91 (5.26) 92.07 (1.49) 96.17 (1.70) 89.77 (2.62) 94.41 (0.93) 98.20 (0.21) 91.74 (1.49) 94.88 (1.43) 98.89 (0.47)
Shadows 99.65 (0.22) 99.54 (0.51) 99.86 (0.13) 99.65 (0.10) 99.75 (0.13) 99.82 (0.18) 97.40 (1.87) 98.91 (0.88) 99.58 (0.09)

Overall Accuracy 88.17 (0.31) 93.95 (0.74) 96.83 (0.19) 90.22 (1.78) 94.37 (1.10) 98.06 (0.13) 89.58 (1.95) 94.35 (1.05) 97.80 (0.22)
Average Accuracy 90.40 (0.38) 94.85 (0.41) 97.50 (0.14) 92.10 (0.63) 95.81 (0.82) 98.61 (0.09) 91.40 (1.26) 95.55 (0.68) 98.29 (0.25)

Kappa 84.63 (0.36) 92.07 (0.94) 95.83 (0.24) 87.28 (2.21) 92.63 (1.42) 97.44 (0.18) 86.37 (2.50) 92.61 (1.35) 97.09 (0.29)

Run time 43.02 (0.01) 42.78 (0.01) 42.83 (0.01) 74.30 (0.01) 74.17 (0.01) 74.09 (0.01) 132.77 (0.02) 132.48 (0.02) 132.68 (0.02)

Fig. 15. Classification results for Indian Pines image with d ¼ 29 and 50 (left), 100 (center) and 200 (right) samples per class. The upper row displays the classification result
without the background, and the lower row displays the classification result with the background.
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minimum error, while for d ¼ 19 it needs about 1000 iterations to
reach the same error and d ¼ 9 is not able to reduce its error in
1500 iterations, see Fig. 9). However, the time required for each
step when d ¼ 29 is adopted is greater than with d ¼ 19 or
d ¼ 9: each step of d ¼ 29 is 0.08 s slower than the steps of
d ¼ 19 and 0.14 s slower than the steps of d ¼ 9 (see Fig. 10). In
terms of the accuracy/time ratio, the best option is d ¼ 19,
although the best accuracy is achieved by using d ¼ 29 (but its exe-
cution time is larger).

On the other hand, the results obtained for the University of
Pavia dataset are also shown in Table 4. In this case, the patch with
size d ¼ 21 achieves the best accuracy results: 95.08% in 74.66 s,
reaching 1.06 percentage more than d ¼ 15 and 0.95 percentage

more than d ¼ 27. As for the number of iterations, in Fig. 11 we
can see that d ¼ 27 needs less iterations to reach an acceptable
error (between 700–800 iterations) while d ¼ 21 needs around
1000–1100 iterations, which is very similar to d ¼ 15 that also
needs around 1000–1100 iterations to reach a low error. On the
other hand, the time per iteration for each patch size is different,
being the fastest d ¼ 15 (2.15 times faster than d ¼ 21 and 3.79
times faster than d ¼ 27) and the slowest d ¼ 27 (around 1.76
times slower than d ¼ 21), see Fig. 12. With this information at
hand, we can conclude that the best patch size is d ¼ 21, as it
reaches the best result in a fairly reasonable time.

Testing the number of samples per class: At this point, we
tested the accuracy achieved for different patch sizes

Fig. 16. Classification results for the University of Pavia data set with d ¼ 15 and 50 (left), 100 (center) and 200 (right) samples per class. The upper row displays the
classification result without the background, and the lower row displays the classification result with the background.
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(d ¼ 9; d ¼ 19 and d ¼ 29 for Indian Pines and d ¼ 15; d ¼ 21 and
d ¼ 27 for Pavia) with different amounts of training data, in partic-
ular with 50, 100 and 200 samples per class.

The results obtained for the Indian Pines dataset are shown in
Table 5 (with standard deviation). In this case, for each experiment
the parameters of the CNN have been fine tuned, in order to
achieve the best possible accuracy. As we can observe in Figs. 9
and 10, the configuration of the CNN in Table 3 for Indian Pines
presents a marked overfitting problem (that the standard deviation
also seems to indicate). As a result, the dropout percentages have
been modified for the Indian Pines experiment, specifically we
add a 10% dropout in the third convolution layer and raise the

dropout from 10% to 30% on the first fully-connected layer. Also,
for this experiment we have increased the number of iterations
from 1500 to 2500. Thanks to the overfitting reduction, the net-
work is able to converge much faster, drastically reducing the ini-
tial execution times (i.e., being 1.32 times faster with d ¼ 9, 1.57
times faster with d ¼ 19 and 1.66 times faster with d ¼ 29 with
100 samples per class). In addition, stability has been improved
by reducing the standard deviation of each run to 0.01. In Table 5
we can observe that the results with d ¼ 9; d ¼ 19 and d ¼ 29
increase (in terms of accuracy) as more training samples per class
are included, reaching the maximum values with 200 samples per
class. Again, d ¼ 29 reaches the best accuracy results with 200

Fig. 17. Classification results for the University of Pavia data set with d ¼ 21 and 50 (left), 100 (center) and 200 (right) samples per class. The upper row displays the
classification result without the background, and the lower row displays the classification result with the background.
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samples per class, although the results obtained with a patch size
of d ¼ 19 are quite similar to those found using d ¼ 29, just one or
two percentage points below.

In Figs. 13–15 we report the classification maps obtained in
each experiment, without the mirroring of the borders. First, in
Fig. 13 we can see the classified image without background (the
first three images) and with background (the last three), obtained
with a patch size of d ¼ 9 and 50, 100 and 200 samples per class.
When the background is removed, we can see how the pixels of
each class are mixed, in particular near the edges. Also, with back-
ground the results are poorly defined, although these are improved
by adding more training samples in each class.

Secondly, in Fig. 14 we can see the classified images (with and
without background) obtained with a patch size of d ¼ 19 and 50,

100 and 200 samples per class. With better results than with d ¼ 9,
the borders between the classes are better defined in this case, also
in the classification with background. The best result is achieved
with 200 samples per class.

Finally, in Fig. 15 we can observe the obtained classified images
with a patch size of d ¼ 29. First we report the classification images
without background and below them, we show the corresponding
ones with background. With only ground-truth pixels, the first
three images show better defined classes than the previously dis-
played ones with d ¼ 9 and d ¼ 19, being the classification map
obtained with 200 samples per class the most similar to the origi-
nal ground-truth image. Even in the classification with back-
ground, classes appear better defined since the borders between
them are more regular.

Fig. 18. Classification results for the University of Pavia data set with d ¼ 27 and 50 (left), 100 (center) and 200 (right) samples per class. The upper row displays the
classification result without the background, and the lower row displays the classification result with the background.
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On the other hand, the results for the University of Pavia dataset
are shown in Table 6. For each patch size, we can observe that the
accuracy improves as the number of samples per class increases,
reaching the best accuracy results with 200 samples per class. If
we look for the most suitable patch size, we can say that d ¼ 21
with 200 samples per class can be considered the best, with similar
and balanced accuracy data. This is because, after adding more
neighbors to the pixel, the data become more homogeneous.

In Figs. 16–18 we report the classification maps obtained for the
University of Pavia dataset obtained in each experiment. The first
one, Fig. 16 shows the Pavia classification results with a patch size
of d ¼ 15. Here, the accuracy becomes better when the number of
samples per class is increased, although there are many mixed pix-
els in the three cases, especially when the background is added to
the classification. We can observe a poor result on top of the mead-
ows class, and the ones adjacent to the light green bare soil at the
lowest part of the image.

Fig. 16 shows the Pavia classification results with a patch size of
d ¼ 21, which results in better results than d ¼ 15. Pixels appear
better defined, also with background. As expected, the best classi-
fication map is obtained with the maximum number of samples
per class, i.e. 200, where we can see how the worst ranked pixels
in the experiment with d ¼ 15 are now better classified, e.g. the
pixels at the top of the meadows class and the bare soil pixels.

Finally, in Fig. 18 the classification results with patch size
d ¼ 27 are shown. As in the previous cases, the result improves
as more pixels are added to the training set (with 200 samples
per class resulting in the best accuracy results). Although the pixels
at the top of the image are better classified, the CNN finds it more
difficult to classify the pixels of the meadow class in the center of
the image, and the final result is slightly worse than the one
obtained with patch size of d ¼ 21.

4.5. Comparison with other algorithms

In this section we show comparisons of our proposed method
with other existing methods, including a standard MLP and the
1-D, 2-D and 3-D CNNs in Chen et al. (2016). This represents an
exhaustive and complete validation of our method with state-of-
the-art CNNs in the hyperspectral imaging literature. Tables 7
and 8 respectively show the configurations (for both scenes) of
the MLP and CNNs used in experiments for comparison purposes.

Comparison with MLP: For the MLP, the chosen topology is a
single layer feedforward network (SLFN) with three layers: an input
layer which receives a pixel in all its bands, a hidden layer whose
number of nodes is calculated by ðn bandsþ n classesÞ � 23, with a
ReLU as activation function, and an output layer with the number
of nodes equals as the number of classes and a softmax function. So,
the final MLP topology for the Indian Pines hyperspectral data set is
200� 144� 16 and for the University of Pavia data set is
103� 75� 9, both with Adam optimizer (Kingma and Ba, 2014)
and 0.0045 of learning rate. The proposed topologies have been

Table 8
Configuration of the CNNs used in experiments for comparative purposes. These are the 1-D, 2-D and 3-D CNNs configurations described in Chen et al. (2016).

1-D CNN Topologies (Chen et al., 2016)

Hyperspectral datasets Conv. Layers ReLU Pooling

Indian Pines 1� 5 Yes 1� 2
1� 5 Yes 1� 2
1� 4 Yes 1� 2
1� 5 Yes 1� 2
1� 4 Yes 1� 2

University of Pavia 1� 8 Yes 1� 2
1� 7 Yes 1� 2
1� 8 Yes 1� 2

2-D CNN Topologies (Chen et al., 2016)

Hyperspectral datasets Conv. Layers ReLU Pooling Dropout

Indian Pines 32� 4� 4 Yes 2� 2 No
64� 5� 5 Yes 2� 2 50%
128� 4� 4 Yes No 50%

University of Pavia 32� 4� 4 Yes 2� 2 No
64� 5� 5 Yes 2� 2 50%
128� 4� 4 Yes No 50%

3-D CNN Topologies (Chen et al., 2016)

Hyperspectral datasets Conv. Layers ReLU Pooling Dropout

Indian Pines 128� 4� 4� 32 Yes 2� 2 No
192� 5� 5� 32 Yes 2� 2 50%
256� 4� 4� 32 Yes No 50%

University of Pavia 32� 4� 4� 32 Yes 2� 2 No
64� 5� 5� 32 Yes 2� 2 50%
128� 4� 4� 32 Yes No 50%

Table 7
Configuration of the MLP used in experiments for comparative purposes.

MLP Topologies

Hyperspectral datasets Layers

Type N� neurons Activation Function

Indian Pines Input 200 (n� bands) -
Hidden 144 (optimal n�) ReLU
Output 16 (n� classes) Softmax

University of Pavia Input 103 (n� bands) -
Hidden 75 (optimal n�) ReLU
Output 9 (n� classes) Softmax

Common parameters

Batch size Iterations Learning rate Optimizer

100 5000 0.045 AdamOptimizer
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tested with three different numbers of samples per class: 50, 100
and 200, repeating each one five times. Results are shown in
Table 9, where we show the average time and accuracy of each

execution with 5000 iterations and repeated five times. As we
can see, as we add training data the accuracy increases, however
the execution time remains fairly stable.

In Table 10 we can observe in detail the results obtained for
each class of the Indian Pines dataset. After 5000 iterations, we
can see that the best overall accuracy result (84.60%) is obtained
with the maximum number of samples per class, i.e. 200, without
an overwhelming time difference. However, even with 5000 itera-
tions, the MLP is still not able to reach 90% overall accuracy
(although it reaches a 91.66% of average accuracy). If we pay atten-
tion to Fig. 19, we can see how the MLP needs fewer iterations to
reach a low error as the number of samples per class increases in
training, with a very little difference in execution times: each iter-
ation of MLP with 200 samples per class is only 1.01 times slower
than with 50 samples and 1.02 times slower than with 100 sam-
ples per class, as we can see in Fig. 20. Note how the optimizer
in the first second quickly evolves from a very high initial error
to a more reasonable value, given the cost function under which
it is iterating.

Now we can compare the MLP classifier with our proposed CNN
for the Indian Pines scene. We have considered two experiments:
in the first one, we compared the MLP with 100 samples per class
with the proposed CNN with also 100 samples per class and patch
sizes of d ¼ 9; d ¼ 19 and d ¼ 29. Each classifier has been executed
five times with 1500 iterations. In Fig. 21 we can observe the evo-
lution of the error in terms of the number of iterations of the MLP
and the CNN. We can conclude that our CNN needs significantly
less iterations to reach a low error when it uses patches of size
d ¼ 29 and d ¼ 19 (specifically, the CNN reaches an error below

Table 9
Execution times and accuracies obtained by the MLP (with configuration: 200� 144� 16) for the Indian Pines scene and by the MLP (with configuration: 103� 75� 9) for the
University of Pavia scene, using 50, 100 and 200 samples per class. This experiment has been executed using 5000 iterations.

Datasets Samples Time per step Total time Accuracy

average Std. deviation average Std. deviation average Std. deviation

Indian Pines 50 0.0036 0.0002 0.1791 0.0148 74.60 1.60
100 0.0035 0.0001 0.1757 0.0149 79.29 1.35
200 0.0036 0.0002 0.1800 0.0148 82.56 1.23

University of Pavia 50 0.0033 0.0001 0.1672 0.0147 82.79 1.92
100 0.0031 0.0001 0.1550 0.0149 87.16 0.93
200 0.0031 0.0001 0.1530 0.0149 87.76 1.75

Fig. 19. Evolution of the validation error in terms of steps (iterations) with 50, 100 and 200 samples per class for the MLP with the Indian Pines scene. The shadow shows the
standard deviation of the loss for the five executions of each patch (zoom in error interval ½0;1�). This experiment has been executed using 5000 iterations.

Table 10
Classification accuracies (and standard deviation) obtained by MLP with 50, 100 and
200 samples per class for the Indian Pines hyperspectral dataset. This experiment has
been executed using 5000 iterations.

Neural network MLP

Samples per class 50 100 200

Alfalfa 98.26 (2.54) 98.70 (1.06) 97.39 (0.87)
Corn-notill 63.40 (4.60) 71.11 (3.74) 78.36 (4.46)
Corn-min 66.00 (3.58) 82.53 (2.47) 86.17 (3.31)

Corn 86.16 (2.77) 91.31 (2.08) 92.41 (2.28)
Grass/Pasture 90.52 (2.67) 91.88 (2.30) 96.31 (1.27)
Grass/Trees 93.45 (1.35) 95.64 (1.45) 97.73 (0.94)

Grass/pasture-mowed 97.14 (2.67) 97.86 (2.86) 97.86 (2.86)
Hay-windrowed 96.32 (1.47) 97.45 (0.80) 98.62 (0.54)

Oats 99.00 (2.00) 98.00 (4.00) 100.00 (0.00)
Soybeans-notill 75.12 (4.54) 83.87 (2.11) 87.00 (2.33)
Soybeans-min 62.81 (2.86) 62.42 (5.28) 68.99 (3.70)
Soybean-clean 79.39 (1.54) 84.69 (1.13) 87.86 (1.84)

Wheat 98.54 (0.31) 99.22 (0.59) 99.41 (0.37)
Woods 83.65 (4.78) 91.07 (1.55) 94.15 (2.29)

Bldg-Grass-Tree-Drives 74.46 (1.94) 82.75 (2.30) 85.03 (4.89)
Stone-steel towers 98.49 (1.10) 99.35 (0.53) 99.35 (0.53)

Overall Accuracy 75.24 (1.51) 80.34 (1.10) 84.60 (0.71)
Average Accuracy 85.17 (1.21) 89.24 (0.41) 91.66 (0.29)

Kappa 72.18 (1.51) 77.93 (1.10) 82.65 (0.71)

Runtime (sec.) 0.1791 0.1757 0.1800
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0.1 with only 300 iterations when d ¼ 29 and around 700–800 iter-
ations when d ¼ 19) while the MLP barely drops from 0.2 in 1500
iterations. However, in Fig. 22 (in which we show the error evolu-
tion in terms of time in seconds) we can observe that one iteration
of the CNN (with any patch size) is always slower than one itera-
tion of the MLP.

The second comparison between the MLP and our CNN is
reported in Table 12. In this case we used 200 samples per class
for the MLP and CNN, and patches of size d ¼ 9; d ¼ 19 and
d ¼ 29. Table 12 shows that the MLP is the fastest classification
method (all its executions take around 0.17–0.18 s), reaching its
better average and overall accuracy values (91.66% and 84.60%,
respectively) with 200 samples per class. However, these results
are several points lower than the accuracies reached by the pro-
posed CNN with patches of size d ¼ 19 and d ¼ 29. Specifically,
the MLP reaches an overall accuracy around 14 points lower than
the CNN, and an average accuracy around 8 points lower than

the one achieved by the CNN for d ¼ 29. With d ¼ 19, the MLP
reaches an overall accuracy around 11 lower than that achieved
by the CNN and an average accuracy around 7 points lower than
that achieved by the CNN. Only if we compare the MLP with the
CNN and d ¼ 9 the MLP reaches better overall and average accura-
cies: around 3 points better than the overall accuracy achieved by
the CNN and around 1.5 points better than the average accuracy
achieved by the CNN.

The resulting classification maps obtained by the MLP are
shown in Fig. 23, where the classification results without back-
ground (top row) and with background (lower row) are reported.
In both cases, unlike the CNN, the MLP results are not well defined,
with many pixels of different classes appearing mixed in the final
classification. An increase in the number of samples per
class slightly improves the classification results, without reaching
the quality of the classification maps provided by the CNN in
Figs. 13–15.

Fig. 20. Evolution of the validation error in terms of time (seconds) with 50, 100 and 200 samples per class for the MLP with the Indian Pines scene. The shadow shows the
standard deviation of the loss for the five executions of each patch (zoom in error interval ½0;1�). This experiment has been executed using 5000 iterations.

Fig. 21. Evolution of the validation error for the MLP and CNN (with d ¼ 9;d ¼ 19 and d ¼ 29) in terms of steps for the Indian Pines image. The shadow shows the standard
deviation of the loss for each network repeated five times. Zoom in ð0;1Þ. This experiment has been executed using 1500 iterations.
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Also, Table 9 summarizes the experiments conducted using the
MLP classifier with the University of Pavia dataset for 50, 100 and
200 samples per class (all repeated five times, with 5000 iterations
per execution). We can observe that the best accuracy result
(87.76%) is obtained with the maximum number of samples per
class, which is 200, as it was already the case with the Indian Pines

image. The execution times for 50, 100 and 200 samples per class
are very similar too. However, with 5000 iterations the MLP is also
unable to reach 90% accuracy. In Fig. 24 we can see how the error
descends as the MLP iterates, needing less iterations as the number
of samples in the training increases, with a very little difference in
execution times as we can see in Fig. 25. Also, in Table 11 we can

Fig. 22. Evolution of the validation error for the MLP and CNN (with d ¼ 9; d ¼ 19 and d ¼ 29) in terms of time (seconds) for the Indian Pines image. The shadow shows the
standard deviation of the loss for each network repeated five times. Zoom in ð0;1Þ. This experiment has been executed using 1500 iterations.

Fig. 23. Indian Pines classification results achieved by the MLP with 50 (left), 100 (center) and 200 (right) samples per class with 1500 iterations. The upper row displays the
classification result without the background, and the lower row displays the classification result with the background.
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observe the accuracy results for each class obtained after executing
five times the MLP with the Pavia dataset.

Now, we can compare the results obtained by the MLP over the
University of Pavia data set with the results obtained by the con-
sidered CNN architectures. In order to do so, we have performed
two experiments: in the first one we execute the MLP with 100
samples per class and we choose a patch size of d ¼ 15; d ¼ 21
and d ¼ 27 for the CNN, and further execute it with 100 samples
per class too. Each experiment has been run using 1500 iterations.
In Fig. 26 we can see that the MLP needs more iterations than the
CNN to reduce its associated error, without reaching in any case
the error achieved by the CNN, although its iterations are faster
than those of the CNN, as we can observe in Fig. 27, where it is
shown that the execution tine of the MLP takes less than one
second.

The second experiment reports a comparison between the MLP
and the proposed CNN with 200 samples per class for both

Fig. 24. Error evolution for the MLP in terms of steps (iterations) with 50, 100 and 200 samples per class for the University of Pavia data set. The shadow shows the standard
deviation of the loss for the five executions of each patch (zoom in error interval ½0;1�).

Fig. 25. Error evolution for the MLP in terms of time (seconds) with 50, 100 and 200 samples per class for the University of Pavia data set. The shadow shows the standard
deviation of the loss for the five executions of each patch (zoom in error interval ½0;1�).

Table 11
Classification accuracies obtained by MLP with 50, 100 and 200 samples per class for
the University of Pavia dataset.

Neural network MLP

Samples per class 50 100 200
Asphalt 81.29 (1.15) 83.34 (1.18) 84.92 (0.87)
Meadows 82.83 (4.46) 85.44 (2.06) 89.56 (3.75)
Gravel 84.71 (1.79) 85.98 (4.89) 94.68 (1.41)
Trees 91.64 (2.03) 94.77 (0.50) 96.48 (1.54)

Painted metal sheets 99.18 (0.16) 99.38 (0.36) 99.43 (0.30)
Bare Soil 84.87 (3.31) 88.94 (2.89) 90.75 (2.85)
Bitumen 89.35 (3.10) 92.63 (0.18) 93.76 (0.90)

Self-Blocking Bricks 79.57 (2.35) 79.50 (6.26) 63.94 (3.50)
Shadows 99.79 (0.09) 99.54 (0.36) 99.96 (0.05)

Overall Accuracy 84.37 (2.30) 86.68 (0.67) 88.20 (1.50)
Average Accuracy 88.14 (1.05) 89.95 (0.38) 90.39 (0.30)

Kappa 79.87 (2.30) 82.79 (0.67) 84.67 (1.50)

Runtime (sec.) 0.1672 0.1550 0.1530
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classifiers, and patch sizes of d ¼ 15; d ¼ 21 and d ¼ 27 for the
CNN. Table 13 shows that the MLP is the fastest classification
method, even faster than the MLP with Indian Pines (all its execu-
tions take around 0.15–0.16 s), reaching its best average ad overall
values (91% and 89% respectively) with 200 samples per class. But,
again, the CNN reaches better accuracy values, with an average
accuracy of 98% and overall accuracy of 97%, i.e. around 8–9%
points better than MLP due to the inability of the latter architec-
ture to improve its outcome.

In Fig. 28 we can observe the MLP classification maps for the
University of Pavia. The top images show the classification with
ground-truth pixels, whose result improves as more samples are
added in the training. However the classification maps are very
mixed as compared to those obtained by the CNN in Figs. 16–18.
On the other hand, the bottom images show the classification with
the whole background. In this case, the areas of the image are rel-
atively well distinguished (even better when more samples per

class are added), although the number of mixed pixels is greater
than in the CNN experiments with d ¼ 27; d ¼ 21 and d ¼ 15.

Comparison with other convolutional networks: Now we
compare our proposed CNN with other deep architectures, in par-
ticular with the 1-D, 2-D and 3-D CNNs described in Chen et al.
(2016). In this work the authors studied the application of super-
vised CNNs in hyperspectral imaging feature extraction. Three
deep feature extraction architectures based on the CNN were pro-
posed to extract the spectral, spatial, and spectral-spatial features
of hyperspectral imaging, respectively. To address the overfitting
problem caused by the limited number of training samples, the
authors implemented some regularization strategies, including L2
regularization and dropout in the training process. Also, they pro-
posed a virtual sample enhanced method to create training sam-
ples. The main differences between our method and the one
described in Chen et al. (2016) can be summarized in the following
points:

Fig. 27. Error evolution for the MLP and CNN (with d ¼ 15;d ¼ 21 and d ¼ 27) in terms of time (seconds) for the University of Pavia data set. The shadow shows the standard
deviation of the loss for each network repeated five times. Zoom in ð0;1Þ.

Fig. 26. Error evolution for the MLP and CNN (with d ¼ 15;d ¼ 21 and d ¼ 27) in terms of steps for the University of Pavia data set. The shadow shows the standard deviation
of the loss for each network repeated five times. Zoom in ð0;1Þ.
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� Regarding the configuration of the 1-D CNN, we provide a
detailed description in Table 8. For the Indian Pines dataset,
the learning rate of the 1-D CNN is fixed to 0.005 with 700 train-
ing epochs, while for University of Pavia dataset, the learning
rate is fixed to 0.001 with 600 epochs. The datasets are divided
into training and testing sets. For the Indian Pines dataset, 1765
labeled pixels are chosen to create the training set, while for the
University of Pavia dataset, the authors use 3930. This spectral-
CNN receives a normalized pixel vector (1� 200 if it is an Indian
Pines pixel and 1� 103 if it is an University of Pavia pixel) in the
range ½�1;1�. The data suffers a L2 regularization along the CNN
and, at the end of the CNN procedure, the input pixel vector is
converted into a feature vector that is fed to Logistic Regression
(LR) for classification. The authors selected a mini-batch update

strategy, and the cost function is calculated on a mini-batch of
inputs as co ¼ � 1

m

Pm
i¼1½xi logðziÞ þ ð1� xiÞ logð1� ziÞ�, using

mini-batch stochastic gradient descent as optimizer of the 1-D
CNN.

� Regarding the configuration of the 2-D CNN, we provide a
detailed description in Table 8. This spatial-CNN receives,
through a preprocessing with PCA, patches of size 27� 27 nor-
malized in the range ½�0:5;0:5� and grouped in batches of 100.
The output of the CNN is a feature vector of 1� 128 that is sent
to LR for classification. As in the previous 1-D CNN, the input
image is represented by some feature vectors, which capture
the spatial information contained in the neighborhood region
of the input pixel. Then, the learned features are fed to the LR
for classification.

Fig. 28. Classification results achieved by the MLP for the University of Pavia data set with 50, 100 and 200 samples per class with 1500 iterations. The upper row displays the
classification result without the background, and the lower row displays the classification result with the background.
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� Finally, the configuration of the 3-D CNN is shown in Table 8.
This spatial-spectral CNN receives patches of size
27� 27� nbands normalized in range ½�0:5;0:5� and grouped in
batches of 100. In this case, nbands is fixed to 32. The learning rate
is fixed to 0.003 and the training epochs is set to 400. After con-
volutional and pooling layers, the input data is transformed and
fed to LR for classification.

In Table 12 we can see a detailed comparison between the dif-
ferent tested neural networks using Indian Pines dataset. The first

column reports the results obtained by the MLP (trained with 200
samples per class). The second column provides a comparison
between the CNNs in Chen et al. (2016) and our CNN (using the
same number of samples per class as the methods in Chen
et al. (2016)), with patch sizes of d ¼ 9; d ¼ 19 and d ¼ 29. Finally,
in the third column we also report the results obtained by our
proposed CNN (trained with 200 samples per class) for
comparison.

If we focus on analyzing the results provided by the different
implementations of Chen et al. (2016) in the second column, we

Table 12
Classification accuracies obtained by different neural networks tested using the Indian Pines dataset: (1) first column: results obtained by the MLP (trained with 200 samples per
class); (2) second column: comparison between the results obtained by the 1-D CNN, 2-D CNN and 3-D CNN in Chen et al. (2016) and the results obtained by our CNN (trained
with the same number of samples per class as the CNNs in Chen et al. (2016)), using different values of parameter d; (3) third column: results obtained by our CNN (trained with
200 samples per class, using different values of parameter d).

Accuracy table

Neural networks MLP CNNs in Chen et al., 2016 versus the proposed CNN Proposed CNN

SLFN Samples 1-D 2-D 3-D d ¼ 9 d ¼ 19 d ¼ 29 Samples d ¼ 9 d ¼ 19 d ¼ 29 Samples

Alfalfa 97.39 33 89.58 99.65 100.00 100.00 100.00 100.00 30 99.13 99.57 99.13 33
Corn-notill 78.36 200 85.68 90.64 96.34 90.57 94.06 97.17 150 80.48 94.47 98.17 200
Corn-min 86.17 200 87.36 99.11 99.49 97.69 96.43 98.17 150 96.65 98.22 98.92 200

Corn 92.41 181 93.33 100.0 100.00 99.92 100.00 100.00 100 99.66 100.00 100.00 181
Grass/Pasture 96.31 200 96.88 98.48 99.91 98.10 98.72 98.76 150 99.46 99.75 99.71 200
Grass/Trees 97.73 200 98.99 97.95 99.75 99.34 99.67 100.00 150 99.53 98.90 99.40 200

Grass/pasture-mowed 97.86 20 91.67 100.00 100.00 100.00 100.00 100.00 20 100.00 100.00 100.00 20
Hay-windrowed 98.62 200 99.49 100.00 100.00 99.58 99.92 100.00 150 99.67 99.62 100.00 200

Oats 100.00 14 100.00 100.00 100.00 100.00 100.00 100.00 15 100.00 100.00 100.00 14
Soybeans-notill 87.00 200 90.35 95.33 98.72 94.28 97.63 99.14 150 92.43 98.00 98.62 200
Soybeans-min 68.99 200 77.90 78.21 95.52 87.75 92.93 94.59 150 76.42 94.32 96.15 200
Soybean-clean 87.86 200 95.82 99.39 99.47 94.81 97.17 99.06 150 97.74 99.09 99.33 200

Wheat 99.41 143 98.59 100.00 100.00 100.00 100.00 100.00 150 99.71 100.00 99.90 143
Woods 94.15 200 98.55 97.71 99.55 98.09 97.88 99.76 150 97.71 98.85 98.96 200

Bldg-Grass-Tree-Drives 85.03 200 87.41 99.31 99.54 89.79 95.80 98.39 50 99.27 99.90 100.00 200
Stone-steel towers 99.35 75 98.06 99.22 99.34 100.00 99.57 98.92 50 100.00 100.00 100.00 75

Overall Accuracy (OA) 84.60 87.81 89.99 97.56 93.94 96.29 97.87 90.11 97.23 98.37
Average Accuracy (AA) 91.66 93.12 97.19 99.23 96.87 98.11 99.00 96.12 98.79 99.27

Kappa 82.65 85.30 87.95 97.02 93.12 95.78 97.57 88.81 96.85 98.15

Runtime (sec.) 0.1800 457.8 357.0 1675.2 74.47 189.51 158.42 48.21 197.65 405.46
Total samples 2466 1765 2466

Fig. 29. Comparison of the overall accuracy achieved by CNN classifiers with the Indian Pines scene. The horizontal black lines show the overall accuracy results reached by
the 1-D, 2-D and 3-D CNNs in Chen et al. (2016), and the horizontal blue lines show the overall accuracy results obtained by our proposed CNN, implemented with different
values of d and trained with the same number of samples than the CNNs in Chen et al. (2016). The red line (marked as CNN-b in the figure) corresponds to our CNN,
implemented with d ¼ 29 but trained with 50, 100 and 200 samples per class. Above each black and blue line, we report the number of used samples and the overall accuracy
reached (in square brackets). For the red line, we only report the overall accuracy reached (the number of used samples for this line is defined by the x-axis). On the other
hand, the y-axis shows the overall accuracies obtained in the experiments. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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can see that the one with spatial information (2-D CNN) achieves
better results than the one with spectral information (1-D CNN).
Also, we can see that the inclusion of the two sources of informa-
tion (3-D CNN) leads to an overall improvement of the accuracy. In
the same column we can observe that, when using our CNN (with
the same number of samples per class as the methods in Chen et al.
(2016)), the increase in the value of parameter d leads to an
improvement in the obtained classification result. Also, our
method is faster than all the methods reported in Chen et al.
(2016) and comparable in terms of overall accuracy to the best
methods reported in that work. Specifically, our proposed CNN
implemented with d ¼ 29 is 2.89 times faster than the 1-D CNN,
with an overall accuracy that is 10.06 percentage points better;
2.25 times faster than the 2-D CNN, with an overall accuracy
7.88 percentage points better; and 10.57 times faster than the 3-
D CNN, with very similar overall accuracy. Finally, a comparison

between the results in the first and third columns of Table 12 indi-
cate that our proposed CNN can achieve better results in terms of
overall accuracy than the MLP, but the MLP is faster.

Also in Fig. 29 we provide a graphical comparison of the overall
accuracy results obtained by the proposed CNN the CNNs imple-
mented by Chen et al. (2016). The horizontal blue lines in Fig. 29
show the overall accuracy results obtained by our proposed CNN
with different values of d and trained using the same number of
samples than the CNNs in Chen et al. (2016). The red line corre-
sponds to our CNN, implemented with d ¼ 29 but trained with
50, 100 and 200 samples per class. As we can see, the proposed
CNN can reach better overall accuracies than the compared 1-D
and 2-D CNNs. For the 3-D CNN, the results can be comparable in
terms of overall accuracy. However, since our architecture is opti-
mized and executed on a GPU, we can get better results from the
viewpoint of processing time.

Fig. 30. Comparison of the overall accuracy achieved by CNN classifiers with the University of Pavia scene. The horizontal black lines show the overall accuracy results
reached by the 1-D, 2-D and 3-D CNNs in Chen et al. (2016), and the horizontal blue lines show the overall accuracy results obtained by our proposed CNN, implemented with
different values of d and trained with the same number of samples than the CNNs in Chen et al. (2016). The red line (marked as CNN-b in the figure) corresponds to our CNN,
implemented with d ¼ 29 but trained with 50, 100 and 200 samples per class. Above each black and blue line, we report the number of used samples and the overall accuracy
reached (in square brackets). For the red line, we only report the overall accuracy reached (the number of used samples for this line is defined by the x-axis). On the other
hand, the y-axis shows the overall accuracies obtained in the experiments. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 13
Classification accuracies obtained by different neural networks tested using the University of Pavia dataset: (1) first column: results obtained by the MLP (trained with 200
samples per class); (2) second column: comparison between the results obtained by the 1-D CNN, 2-D CNN and 3-D CNN in Chen et al. (2016) and the results obtained by our CNN
(trained with the same number of samples per class as the CNNs in Chen et al. (2016)), using different values of parameter d; (3) third column: results obtained by our CNN
(trained with 200 samples per class, using different values of parameter d).

Accuracy table

Neural networks MLP CNNs in Chen et al., 2016 versus the proposed CNN Proposed CNN

SLFN Samples 1-D 2-D 3-D d ¼ 15 d ¼ 21 d ¼ 23 Samples d ¼ 15 d ¼ 21 d ¼ 27 Samples

Asphalt 84.92 200 92.06 97.11 99.36 97.53 98.80 98.59 548 92.81 95.31 96.31 200
Meadows 89.56 200 92.80 87.66 99.36 98.98 99.46 99.60 540 97.20 98.16 97.54 200
Gravel 94.68 200 83.67 99.69 99.69 98.96 99.59 99.45 392 96.97 97.92 96.84 200
Trees 96.48 200 93.85 98.49 99.63 99.75 99.68 99.57 542 98.62 98.74 97.58 200

Painted metal sheets 99.43 200 98.91 100.00 99.95 99.93 99.78 99.61 256 100.00 100.00 99.65 200
Bare Soil 90.75 200 94.17 98.00 99.96 99.42 99.93 99.84 532 98.57 99.57 99.33 200
Bitumen 93.76 200 92.68 99.89 100.00 98.71 99.88 100.00 375 97.27 99.75 98.90 200

Self-Blocking Bricks 63.94 200 89.09 99.70 99.65 98.58 99.53 99.67 514 96.17 98.20 98.89 200
Shadows 99.96 200 97.84 97.11 99.38 99.87 99.79 99.83 231 99.86 99.82 99.58 200

Overall Accuracy (OA) 88.20 92.28 94.04 99.54 98.87 99.47 99.48 96.83 98.06 97.80
Average Accuracy (AA) 90.39 92.55 97.52 99.66 99.08 99.60 99.57 97.50 98.61 98.29

Kappa 84.67 90.37 92.43 99.41 98.51 99.30 99.32 95.83 97.44 97.09

Runtime (sec.) 0.15 994.80 607.19 2769.00 43.16 94.57 107.56 42.83 74.09 132.68
Total samples 1800 3930 1800
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In Table 13 we report a comparison between the different
tested neural networks using Pavia University data set. The first
column reports the results obtained by the MLP (trained with
200 samples per class). The second column provides a comparison
between the CNNs in Chen et al. (2016) and our CNN (using the
same number of samples per class as the methods in Chen et al.
(2016)), with patch sizes of d ¼ 15; d ¼ 21 and d ¼ 23 (in this case,
due to the number of samples per class used by Chen et al. (2016)
there is not enough memory to run the CNN with d ¼ 27). Finally,
in the third column we also report the results obtained by our pro-
posed CNN (trained with 200 samples per class and with patch
sizes of d ¼ 15; d ¼ 21 and d ¼ 23) for comparison.

Again, we can see in the second column that our method is fas-
ter than all the methods reported in Chen et al. (2016) and compa-
rable in terms of overall accuracy to the best methods reported in
that work. Specifically, our proposed CNN implemented with
d ¼ 23 is 9.25 times faster than the 1-D CNN with an overall accu-
racy that is 7.20 percentage points better; 5.65 times faster than
the 2-D CNN with an overall accuracy that is 5.44 percentage
points better; and 25.74 times faster than the 3-D CNN, with very
similar overall accuracy. A comparison between the results in the
first and third columns of Table 13 again reveals that our proposed
CNN can achieve better results in terms of overall accuracy than
the MLP, but the MLP is faster.

In Fig. 30 we can graphically compare the overall accuracies
obtained by our proposed CNN with those obtained by the 1-D,
2-D and 3-D CNNs reported in Chen et al. (2016). Again, the hori-
zontal blue lines in Fig. 30 show the overall accuracy results
obtained by our proposed CNN, implemented with different values
of d and trained using the same number of samples than the meth-
ods in Chen et al. (2016). The red line corresponds to our CNN
implemented with d ¼ 27 but trained with 50, 100 and 200 sam-
ples per class. As we can see, the proposed CNN can reach overall
accuracies that are better than those achieved by the 1-D and 2-
D CNNs, and comparable to those achieved by the 3-D CNN in
Chen et al. (2016). However, the runtime of our implementation
is considerably smaller, thanks to our GPU implementation of the
network.

5. Conclusions and future work

In this paper, we have developed a new deep 3-D CNN archi-
tecture for spatial-spectral classification of hyperspectral data.
The joint consideration of spectral information together with spa-
tial information provides better classification results than those
reached by traditional neural networks that only include spectral
information. With a proper topology selection and a good election
of parameters, we can obtain high classification accuracies in
acceptable processing times, enforced by the fact that our CNN
has been implemented efficiently using GPUs. Our detailed com-
parison with other 1-D, 2-D and 3-D CNNs in Chen et al. (2016)
(that also include spatial and spectral information simultane-
ously) reveals a good compromise between the classification
results obtained by our newly proposed CNN architecture and
the time needed to obtain these results in the considered com-
puting environments, which is important for practical exploita-
tion of the proposed methodology in real applications. Our
experiments specifically suggest that, with a proper and simple
adaptation, the use of GPUs allows us to realize the full potential
of deep learning techniques for remotely sensed hyperspectral
image classification by naturally and efficiently combining the
spatial and the spectral information contained in these images.
This has also been verified with a classic MLP model used for
comparative purposes in this work. As future work, we will con-
duct additional experiments with other hyperspectral scenes and

also test other high performance computing architectures for effi-
cient implementation.

Acknowledgement

This work has been supported by Ministerio de Educación (Res-
olución de 26 de diciembre de 2014 y de 19 de noviembre de 2015,
de la Secretaría de Estado de Educación, Formación Profesional y
Universidades, por la que se convocan ayudas para la formación
de profesorado universitario, de los subprogramas de Formación
y de Movilidad incluidos en el Programa Estatal de Promoción
del Talento y su Empleabilidad, en el marco del Plan Estatal de
Investigación Científica y Técnica y de Innovación 2013–2016).
This work has also been supported by Junta de Extremadura
(decreto 297/2014, ayudas para la realización de actividades de
investigación y desarrollo tecnológico, de divulgación y de trans-
ferencia de conocimiento por los Grupos de Investigación de Extre-
madura, Ref. GR15005). Last but not least, the authors would like to
take this opportunity to gratefully thank the Editors and the
Anonymous Reviewers for their careful assessment of our manu-
script and for their outstanding comments and suggestions, which
greatly helped us to improve the technical quality and presentation
of our work.

References

Atkinson, P.M., Tatnall, A.R.L., 1997. Introduction neural networks in remote
sensing. Int. J. Remote Sens. 18 (4), 699–709. https://doi.org/10.1080/
014311697218700.

Benediktsson, J.A., Swain, P.H., 1990. Statistical Methods and Neural Network
Approaches for Classification of Data from Multiple Sources (Ph.D. thesis).
Purdue Univ., School of Elect. Eng. West Lafayette, IN.

Benediktsson, J.A., Swain, P.H., Ersoy, O.K., 1993. Conjugate gradient neural
networks in classification of very high dimensional remote sensing data. Int.
J. Remote Sens. 14 (15), 2883–2903.

Bengio, Y., 2009. Learning deep architectures for AI. Mach. Learn. 2 (1), 1–127.
Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., 2007. Greedy layer-wise training

of deep networks. In: Schölkopf, B., Platt, J., Hoffman, T. (Eds.), Advances in
Neural Information Processing Systems 19 (NIPS’06). MIT Press, pp. 153–160.

Bishop, C.M., 1995. Neural Networks for Pattern Recognition. Clarendon Press
<https://books.google.es/books?id=-aAwQO_-rXwC>.

Böhning, D., 1992. Multinomial logistic regression algorithm. Ann. Inst. Stat. Math.
44 (1), 197–200.

Camps-Valls, G., Bruzzone, L., 2005. Kernel-based methods for hyperspectral image
classification. IEEE Trans. Geosci. Remote Sens. 43 (6), 1351–1362.

Chang, C.-I., 2003. Hyperspectral Imaging: Techniques for Spectral Detection and
Classification. Springer, US.

Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P., 2016. Deep feature extraction and
classification of hyperspectral images based on convolutional neural networks.
IEEE Trans. Geosci. Remote Sens. 54 (10), 6232–6251 <http://ieeexplore.ieee.
org/document/7514991/>.

Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y., 2014. Deep learning-based classification
of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7 (6),
2094–2107.

Cheng, G., Han, J., Lu, X., 2017. Remote sensing image scene classification:
benchmark and state of the art. Proc. IEEE (99), 1–19.

Chien, Y., 1974. Pattern classification and scene analysis. IEEE Trans. Autom. Control
19 (4), 462–463.

Cho, K., 2014. Foundations and Advances in Deep Learning (Ph.D. thesis). Aalto
University.

Deng, L., Yu, D., 2014. Deep learning: methods and applications. Found. Trends�

Signal Process. 7 (3–4), 197–387.
Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T., 2014. Discriminative

unsupervised feature learning with convolutional neural networks. In:
Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q.
(Eds.), Advances in Neural Information Processing Systems, vol. 27. Curran
Associates, Inc., pp. 766–774.

Duchi, J., Edu, J.B., Hazan, E., Singer, Y., 2011. Adaptive subgradient methods for
online learning and stochastic optimization⁄. J. Mach. Learn. Res. 12, 2121–
2159.

Fauvel, M., Benediktsson, J.A., Chanussot, J., Sveinsson, J.R., 2008. Spectral and
spatial classification of hyperspectral data using SVMs and morphological
profiles. IEEE Trans. Geosci. Remote Sens. 46 (11), 3804–3814.

Fisher, P., 1997. The pixel: a snare and a delusion. Int. J. Remote Sens. 18 (3), 679–
685.

García, V., Sánchez, J.S., Mollineda, R.A., 2011. Classification of high dimensional and
imbalanced hyperspectral imagery data. In: Proceedings Pattern Recognition

M.E. Paoletti et al. / ISPRS Journal of Photogrammetry and Remote Sensing 145 (2018) 120–147 145



and Image Analysis: 5th Iberian Conference, IbPRIA 2011, Las Palmas de Gran
Canaria, Spain, June 8–10, 2011. Springer, Berlin, Heidelberg, pp. 644–651.

Ghamisi, P., Plaza, J., Chen, Y., Li, J., Plaza, A., 2017. Advanced supervised spectral
classifiers for hyperspectral images: a review. IEEE Geosci. Remote Sens. Mag. 5
(1), 8–32.

Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep
feedforward neural networks. In: Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS10). Society for Artificial
Intelligence and Statistics. pp. 249–256.

Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks. In:
Gordon, Geoffrey J., Dunson, David B. (Ed.), Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics (AISTATS-11).
Journal of Machine Learning Research – Workshop and Conference Proceedings,
pp. 315–323.

Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y., 2014. Generative adversarial nets. In: Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (Eds.), Advances in
Neural Information Processing Systems, vol. 27. Curran Associates, Inc., pp.
2672–2680.

Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale, B.
J., Faust, J.A., Pavri, B.E., Chovit, C.J., Solis, M., Olah, M.R., Williams, O., 1998.
Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS). Remote Sens. Environ. 65 (3), 227–248.

Haut, J.M., Paoletti, M., Plaza, J., Plaza, A., 2017a. Cloud implementation of the k-
means algorithm for hyperspectral image analysis. J. Supercomput. 73 (1), 514–
529. https://doi.org/10.1007/s11227-016-1896-3.

Haut, J.M., Paoletti, M.E., Paz-Gallardo, A., Plaza, J., Plaza, A., 2017b. Cloud
implementation of logistic regression for hyperspectral image classification.
In: Vigo-Aguiar, J. (Ed.), Proceedings of the 17th International Conference on
Computational and Mathematical Methods in Science and Engineering, CMMSE
2017. pp. 1063–2321.

He, H., Garcia, E.A., 2009. Learning from imbalanced data. IEEE Trans. Knowl. Data
Eng. 21 (9), 1263–1284.

He, M., Li, X., Zhang, Y., Zhang, J., Wang, W., 2016. Hyperspectral image classification
based on deep stacking network. In: 2016 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS). pp. 3286–3289.

Hinton, G., Salakhutdinov, R., 2006. Reducing the dimensionality of data with neural
networks. Science 313, 504–507.

Hinton, G.E., Osindero, S., Teh, Y.-W., 2006. A fast learning algorithm for deep belief
nets. Neural Comput. 18 (7), 1527–1554.

Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R., 2012.
Improving neural networks by preventing co-adaptation of feature detectors.
CoRR. Available from: 1207.0580.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9
(8), 1735–1780.

Hu, F., Xia, G.-S., Hu, J., Zhang, L., Foody, G.M., Wang, L., Thenkabail, P.S., 2015a.
Transferring deep convolutional neural networks for the scene classification of
high-resolution remote sensing imagery in surveying, mapping and remote
sensing. Remote Sens. 7 (11), 14680–14707 <http://www.mdpi.com/journal/
remotesensing>.

Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H., 2015b. Deep convolutional neural
networks for hyperspectral image classification. J. Sensors.

Jarrett, K., Kavukcuoglu, K., Ranzato, M.A., Lecun, Y., 2009. What is the best multi-
stage architecture for object recognition? In: ICCV. IEEE, pp. 2146–2153.

Karhunen, J., Raiko, T., Cho, K., 2015. Unsupervised Deep Learning: A Short Review.
Khodadadzadeh, M., Li, J., Plaza, A., Ghassemian, H., Bioucas-Dias, J.M., Li, X., 2014.

Spectral-spatial classification of hyperspectral data using local and global
probabilities for mixed pixel characterization. IEEE Trans. Geosci. Remote Sens.
52 (10), 6298–6314.

Kingma, D.P., Ba, J.L., 2014. ADAM: {A} method for stochastic optimization. CoRR.
Available from: 1412.6980.

Kunkel, B., Blechinger, F., Lutz, R., Doerffer, R., van der Piepen, H., 1988. ROSIS
(Reflective Optics System Imaging Spectrometer) – A candidate instrument for
polar platform missions. In: Seeley, J., Bowyer, S. (Eds.), Optoelectronic
technologies for remote sensing from space. pp. 134–141.

Larochelle, H., Bengio, Y., 2008. Classification using discriminative restricted
boltzmann machines. In: Proceedings of the 25th International Conference on
Machine learning – ICML ’08, pp. 536.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444.
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998a. Gradient-based learning applied

to document recognition. Proc. IEEE.
LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.R., 1998b. Efficient backprop. In: Neural

Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS
Workshop. Springer-Verlag, pp. 9–50.

Li, J., Bioucas-Dias, J.M., Plaza, A., 2010. Semisupervised hyperspectral image
segmentation using multinomial logistic regression with active learning. IEEE
Trans. Geosci. Remote Sens. 48 (11), 4085–4098.

Li, J., Bioucas-Dias, J.M., Plaza, A., 2011. Hyperspectral image segmentation using a
new Bayesian approach with active learning. IEEE Trans. Geosci. Remote Sens.
49 (10), 3947–3960.

Li, M., Zang, S., Zhang, B., Li, S., Wu, C., 2014a. A review of remote sensing image
classification techniques: the role of spatio-contextual information. Eur. J.
Remote Sens. 47, 389–411.

Li, T., Zhang, J., Zhang, Y., 2014b. Classification of hyperspectral image based on deep
belief networks. In: Image Processing (ICIP), 2014 IEEE International Conference
on. pp. 5132–5136.

Li, Y., Zhang, H., Shen, Q., 2017. Spectral-spatial classification of hyperspectral
imagery with 3D convolutional neural network. Remote Sens. 9 (1), 67.

Licciardi, G.A., Del Frate, F., 2011. Pixel unmixing in hyperspectral data by means of
neural networks. IEEE Trans. Geosci. Remote Sens. 49 (11), 4163–4172.

Liu, B., Yu, X., Zhang, P., Tan, X., Yu, A., Xue, Z., 2017. A semi-supervised
convolutional neural network for hyperspectral image classification. Remote
Sens. Lett. 8 (9), 839–848. https://doi.org/10.1080/2150704X.2017.1331053.

Liu, Q., Hang, R., Song, H., Zhu, F., Plaza, J., Plaza, A., 2016. Adaptive Deep Pyramid
Matching for Remote Sensing Scene Classification. CoRR. Available from: 1611.
03589.

Lu, X., Zheng, X., Yuan, Y., 2017. Remote sensing scene classification by
unsupervised representation learning. IEEE Trans. Geosci. Remote Sens. (99),
1–10

Ma, X., Wang, H., Wang, J., 2016. Semisupervised classification for hyperspectral
image based on multi-decision labeling and deep feature learning. ISPRS J.
Photogramm. Remote Sens. 120, 99–107.

Melgani, F., Bruzzone, L., 2004. Classification of hyperspectral remote sensing
images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42 (8).

Midhun, E.M., Nair, S.R., Prabhakar, N., Kumar, S., 2014. Deep model for
classification of hyperspectral image using restricted Boltzmann machine. In:
Proceedings of the 2014 International Conference on Interdisciplinary Advances
in Applied Computing. ACM, New York, NY, USA, pp. 35:1–35:7.

Nair, V., Hinton, G.E., 2010. Rectified linear units improve restricted Boltzmann
machines. In: Fürnkranz, Johannes, Joachims, Thorsten (Eds.), Proceedings of
the 27th International Conference on Machine Learning (ICML-10). Omnipress,
pp. 807–814.

Paoletti, M.E., Haut, J.M., Plaza, J., Plaza, A., 2017. Yinyang K-means clustering for
hyperspectral image analysis. In: Vigo-Aguiar, J. (Ed.), Proceedings of the 17th
International Conference on Computational and Mathematical Methods in
Science and Engineering. Rota, pp. 1625–1636.

Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G.,
Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J.C.,
Trianni, G., 2009. Recent advances in techniques for hyperspectral image
processing. Remote Sens. Environ. 113 (1), S110–S122.

Qian, N., 1999. On the momentum term in gradient descent learning algorithms.
Neural Netw. 12 (1), 145–151.

Rajan, S., Ghosh, J., Crawford, M.M., 2008. An active learning approach to
hyperspectral data classification. IEEE Trans. Geosci. Remote Sens. 46 (4),
1231–1242.

Ranzato, M.A., Poultney, C., Chopra, S., Lecun, Y., 2006. Efficient learning of sparse
representations with an energy-based model. In: Schölkopf, B., Platt, J.,
Hoffman, T. (Eds.), Advances in Neural Information Processing Systems, vol.
19. MIT Press, pp. 1137–1144.

Romero, A., Gatta, C., Camps-Valls, G., 2016. Unsupervised deep feature extraction
for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 54 (3),
1349–1362.

Salakhutdinov, R., Hinton, G., 2009. Deep boltzmann machines. In: 12th
International Conference on Artificial Intelligence and Statistics, pp. 3.

Scholkopf, B., Smola, A.J., 2001. Learning with Kernels:Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA.

Smolensky, P., 1986. Information processing in dynamical systems: foundations of
harmony theory. In: Rumelhart, David E., McLelland, J.L. (Eds.), Parallel
Distributed Processing: Explorations in the Microstructure of Cognition,
Foundations, vol. 1. MIT Press, pp. 194–281 (Chapter 6).

Starck, J.-L., Elad, M., Donoho, D.L., 2005. Image decomposition via the combination
of sparse representations and a variational approach. IEEE Trans. Image Process.
14 (10), 1570–1582.

Tarabalka, Y., Benediktsson, J.A., Chanussot, J., 2009. Spectral-spatial classification of
hyperspectral imagery based on partitional clustering techniques. IEEE Trans.
Geosci. Remote Sens. 47 (8), 2973–2987.

Vetrivel, A., Gerke, M., Kerle, N., Nex, F., Vosselman, G., 2018. Disaster damage
detection through synergistic use of deep learning and 3D point cloud features
derived from very high resolution oblique aerial images, and multiple-kernel-
learning. ISPRS J. Photogramm. Remote Sens. 140, 45–59.

Wu, Q., Diao, W., Dou, F., Sun, X., Zheng, X., Fu, K., Zhao, F., 2016. Shape-based object
extraction in high-resolution remote-sensing images using deep Boltzmann
machine. Int. J. Remote Sens. 37 (24), 6012–6022.

Wu, Z., Wang, Q., Plaza, A., Li, J., Wei, Z., 2015. Real-time implementation of the
sparse multinomial logistic regression for hyperspectral image classification on
GPUs. IEEE Geosci. Remote Sens. Lett. 12 (7), 1456–1460.

Xu, X., Li, J., Huang, X., Dalla Mura, M., Plaza, A., 2016a. Multiple morphological
component analysis based decomposition for remote sensing image
classification. IEEE Trans. Geosci. Remote Sens. 54 (5), 3083–3102.

Xu, X., Lil, f., Plaza, A., 2016b. Fusion of hyperspectral and LiDAR data using
morphological component analysis. In: 2016 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS), pp. 3575–3578.

Yang, H., 1999. A back-propagation neural network for mineralogical mapping from
AVIRIS data. Int. J. Remote Sens. 20 (1), 97–110. https://doi.org/10.1080/
014311699213622.

Yang, J., Zhao, Y., Chan, J.C.W., Yi, C., 2016. Hyperspectral image classification using
two-channel deep convolutional neural network. In: 2016 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), pp. 5079–5082.

Yu, S., Jia, S., Xu, C., 1, 2017. Convolutional neural networks for hyperspectral image
classification. Neurocomputing 219, 88–98.

Yuan, Y., Mou, L., Lu, X., 2015. Scene recognition by manifold regularized deep
learning architecture. IEEE Trans. Neural Netw. Learn. Syst. 26 (10), 2222–2233.

146 M.E. Paoletti et al. / ISPRS Journal of Photogrammetry and Remote Sensing 145 (2018) 120–147



Zeiler, M.D., 2012. ADADELTA: An Adaptive Learning Rate Method. CoRR. Available
from: <1212.5701>.

Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R., June 2010. Deconvolutional
networks. In: 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 2528–2535.

Zhang, H., Li, Y., Zhang, Y., Shen, Q., 2017. Spectral-spatial classification of
hyperspectral imagery using a dual-channel convolutional neural network.
Remote Sens. Lett. 8 (5), 438–447.

Zhang, L., Zhang, L., Du, B., 2016a. Deep learning for remote sensing data advances in
machine learning for remote sensing and geosciences. IEEE Geosci. Remote
Sens. Mag. 4 (2), 22–40 <http://ieeexplore.ieee.org/document/7486259/>.

Zhang, P., Gong, M., Su, L., Liu, J., Li, Z., 2016b. Change detection based on deep
feature representation and mapping transformation for multi-spatial-resolution
remote sensing images. ISPRS J. Photogramm. Remote Sens. 116, 24–41.

Zhao, W., Du, S., 2016a. Learning multiscale and deep representations for classifying
remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 128, 223–239.

Zhao, W., Du, S., 2016b. Spectral-spatial feature extraction for hyperspectral image
classification: a dimension reduction and deep learning approach. IEEE Trans.
Geosci. Remote Sens. 54 (8), 4544–4554.

Zhou, X., Prasad, S., 2017. Active and semisupervised learning with morphological
component analysis for hyperspectral image classification. IEEE Geosci. Remote
Sens. Lett. 14 (8), 1348–1352.

M.E. Paoletti et al. / ISPRS Journal of Photogrammetry and Remote Sensing 145 (2018) 120–147 147



Escuela Politecnica
Av. de la Universidad, S/N, 10003
Caceres, Spain
Phone: 0034927257000. Ext. 51662
Email: aplaza,jplaza{@unex.es}

Dr. Antonio Plaza Miguel y Dr. Javier Plaza Miguel como directores de la tesis titulada ”Procesamiento
eficiente y profundo de imgenes hiperespectrales de la observación remota de la Tierra y aplicaciones en
tareas de clasificación”, certifico el factor de impacto y la categorización de la siguiente publicación, inclu-
ida en la tesis doctoral. Del mismo modo, se especifica la aportación del doctorado. Si necesitas cualquier
información o clarificación, por favor, no dude en contactar conmigo.

Antonio Plaza Miguel PhD. and Javier Plaza Miguel PhD as directors of the Phd thesis titled ”Deep-efficient
processing of remote sensing hyperspectral images and applications in classification tasks.”, certify the
impact factor and the categorization of the following publication, included in the doctoral thesis. In the
same way, the contribution of the doctorate is specified. If you need any further information or clarification,
please do not hesitate contacting me.

Artculo / Paper

Autores/Authors: M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza.
Title: Neighboring Region Dropout for Hyperspectral Image Classification.
Journal: IEEE Geoscience and Remote Sensing Letters.
Other Information: In press, 2020.
DOI: 10.1109/LGRS.2019.2940467.
Impact factor 2018: 3.534. Q1
Abstract: Deep neural networks (DNNs) exhibit great performance in the task of hyperspectral
image (HSI) classification. However, these models are usually overparameterized and require
large amounts of training data in order to properly avoid the curse of dimensionality and the
variability of spectral signatures, thus suffering from overfitting problems when very few training
samples are available, due to poor generalization ability in this particular case. The traditional
regularization dropout (DO) strategy has been shown to be effective in fully connected DNNs but
not in convolutional-based ones. This is mainly due to the way these architectures manage the
spatial information. In this letter, we introduce a new approach to improve the generalization of
convolutional-based models for HSI classification. Specifically, we develop a neighboring region DO
technique that selectively cuts off certain neighboring outputs, creating spatial dropped regions.
Our experimental results with two well-known HSIs reveal that the newly proposed method helps to
achieve better classification accuracy than the traditional DO strategy, with a low computational cost.

Contribución del doctorado: Planteamiento de la hipótesis, desarrollo práctico, análisis y discusión
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Abstract— Deep neural networks (DNNs) exhibit great per-
formance in the task of hyperspectral image (HSI) classification.
However, these models are usually overparameterized and require
large amounts of training data in order to properly avoid the
curse of dimensionality and the variability of spectral signatures,
thus suffering from overfitting problems when very few training
samples are available, due to poor generalization ability in this
particular case. The traditional regularization dropout (DO)
strategy has been shown to be effective in fully connected DNNs
but not in convolutional-based ones. This is mainly due to the
way these architectures manage the spatial information. In this
letter, we introduce a new approach to improve the generalization
of convolutional-based models for HSI classification. Specifically,
we develop a neighboring region DO technique that selectively
cuts off certain neighboring outputs, creating spatial dropped
regions. Our experimental results with two well-known HSIs
reveal that the newly proposed method helps to achieve better
classification accuracy than the traditional DO strategy, with a
low computational cost.

Index Terms— Convolutional neural networks (CNNs),
dropout (DO), hyperspectral images (HSIs), regularization.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) comprise big cubes
of adjacent spectral bands, where each pixel records

the electromagnetic interaction between the incident solar
radiation and the observed objects in a spectral signature that
can be considered unique for each material on the surface of
the earth. This allows a detailed characterization of observed
areas and enables their successful exploitation on a wide range
of applications [1].

The huge amount of information contained in HSI data
cubes has been exploited by a large variety of spectral,
spatial, and spectral–spatial classification methods, offering
models with good performance in the task of understanding
those features and relationship contained in the image.
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Traditionally, the following three kinds of methods have been
established depending on the training procedure.

1) Unsupervised methods do not need to be trained, as they
do not use labeled samples to fine-tune the model,
being quite popular some clustering method such as
k-means [2], linear discriminant analysis (LDA) [3], or
probabilistic latent semantic analysis (PLSA) [4].

2) Supervised methods split the available data into labeled
and unlabeled samples in order to perform the train-
ing and the inference steps. Some widely used super-
vised classifiers are the multinomial logistic regression
(MLR) [5] or the support vector machine (SVM) [6].

3) Semisupervised methods apply different strategies
to include unlabeled data, such as active learning
approaches [7], or to expand the training set, using, for
instance, generative adversarial networks (GANs) [8].

With the release of large and complex HSI data sets,
the development of new classification algorithms is required in
order to properly interpret the acquired data. Deep learning and
convolutional-based approaches have been successfully used
for this purpose, reaching excellent performance due to their
inherent ability for exploiting different spectral and spatial fea-
tures through deep and hierarchical architectures made up of
stacked feature extractors [9], [10]. However, the performance
of these methods for HSI classification is bounded by the high
dimensionality of the data, the limited number of available
labeled samples, and, generally, the low spatial resolution of
HSIs, leading to the curse of dimensionality (Hughes effect),
overfitting, and data variability problems [1].

Deep neural networks (DNNs), in general, and convolu-
tional neural networks (CNNs) [11], in particular, can be seen
as approximators of the form f : X → Y that solve an
optimization function subject to a loss expression L. In this
sense, supervised DNNs are mapping problems where, given
an HSI data set, find the corresponding labels by tuning a
parameterized model M(X , θ) = Y , whose parameters θ
(distributed among the layers’ stack) should minimize the error
between the predicted and the expected outputs. Recent works
claim that the deeper the M, the better the accuracy that
can be achieved [12]. This has a direct effect on the number
of parameters, imposing severe restrictions on the amount of
employed training samples, apart from the data degradation
factor that is directly related to the increase of the model’s
depth. In this regard, several data augmenting and regulariza-
tion techniques have been explored to avoid these problems.
Focusing on the first ones, some works propose to increase
the training set by applying slight spectral modifications and

1545-598X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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spatial transformations to the available data [13], although
these approaches are very time-consuming (simpler methods,
such as the addition of random noise, do not take into account
the spatial characteristics of the image). Haut et al. [14]
introduced random occlusion (RO) as a new data augmenting
method that drops certain areas on the CNN’s inputs, main-
taining the spatial consistency between the dropped zones.
Although this approach exhibits good performance, it is not
robust to network parameters, in the sense that relations
between the weights of adjacent layers are not encouraged.
On the other hand, regularization methods such as dropout
(DO) [15] are able to strengthen the model, enforcing indepen-
dence between adjacent layer weights by setting to zero some
randomly selected neural activations during the training stage.
In this context, DO is widely used due to its simplicity and
low computational cost [9], being effective particularly on the
fully connected layers of the CNN’s architecture. However, its
performance with convolutional layers is not that impressive,
due to its random feature clipping, which does not take into
account spatial implications. In fact, the effects of DO on
a convolutional’s output imitate the traditional “salt&pepper”
noise, while feature maps remain spatially correlated. In the
end, the extracted information is still propagated to the fol-
lowing layers [16].

In this context, inspired by the original DO mechanism and
the RO data augmenting approach, this letter introduces the
neighboring region DO (NRDO), a new spatially correlated
DO mechanism in which random neighboring kernel’s activa-
tions are dropped, creating occluded areas on the convolutional
layers’ output volumes that maintain spatial consistency while
avoiding a significant increase in computational complex-
ity [16]. The remainder of this letter is organized as follows.
Section II describes the proposed method. Section III discusses
the performance of the proposed NRDO using two HSIs,
demonstrating its accuracy. Section IV concludes with some
remarks and hints at plausible future research lines.

II. METHODOLOGY

Let us define X ∈ Rn1×n2×nbands as a HSI cube, where
n1 × n2 are the spatial components and nbands is the number
of spectral bands. Each HSI pixel can be represented as a
spectral vector xi, j ∈ Rnbands . An end-to-end spatial 2-DCNN
model normally performs a preprocessing step, encoding the
spectral information into one band by using, for instance,
principal component analysis (PCA) and extracts, for each 1-D
pixel xi, j , a neighboring window pi, j ∈ Rd×d×1 of d × d
spatial dimensions, with xi, j being the central pixel. During
the training stage, pairs of patches and labels {pi, j , yi, j } are
used to create the training set, where yi, j ∈ Rnclasses represents
the label of the (i, j)th patch’s central pixel in one-hot
encoding way. These patches are fed to the 2-DCNN, which
applies a hierarchical stack of feature extraction (FE) stages
to obtain different levels of data representation, until reaching
an abstract representation at the end, that encodes the more
descriptive features and internal nonlinear data relationship,
which are employed by the final classifier layers to produce a
classification output.

Each FE-stage is usually composed by a set of different
layers, being the convolutional layer the major responsable
for the extraction. Each layer l defines K (l) filters, with

k(l) × k(l) neurons each. In this sense, the kernel defined
by the lth layer computes the operation over the input with
sliding-step s, being overlapped on local areas. At the end,
the kernel performs the linear convolution (∗) between the
weights of the neurons W(l), the input data volume X(l−1), and
the bias b(l), obtaining an output volume X(l) ∈ Rn(l)×n(l)×K (l)

of K feature maps with n(l) × n(l) extracted features

X(l) = H(W(l) ∗ X(l−1) + b(l))K (l)×k(l)×k(l) . (1)

After the FE-stage performed by the convolutional layer,
a nonlinear activation function H(·) is applied to the output
volume in order to extract the nonlinear features and rela-
tionship contained into the volume. In our case, we apply
the well-known rectified linear unit (ReLU) function. Also,
a downsampling operation (implemented by max or average
pooling) is applied in order to reduce the spatial dimensions
and summarize the obtained features.

From (1), it can be observed that the outputs of previous
layers are refined by the following ones, i.e., the CNN’s
neurons are, in fact, working in a cooperative way [15], [17].
Although this hierarchical mechanism is appealing during
the training stage, introduce weak links between the neurons
of adjacent layers, and hampering the inference step [9].
In this context, traditional DO [15] is applied between the
activation and pooling layers as a regularization method to
avoid overfitting and provide some independence between
adjacent layers’ neurons, by setting to zero some randomly
selected neural activations. This improves the backpropagation
procedure, where neurons should be adjusted in an individual
way, instead of establishing trivial dependencies with other
neurons. The main motivation behind this approach is to force
the layer’s neurons to extract more robust and discriminatory
features on their own. Mathematically, we can break down
(1) in order to focus on the (i, j)th extracted feature of
convolutional layer l in its zth filter (with z = {1, . . . , K (l)}),
to which a gating 0-1 Bernoulli variable is applied as the DO
regularization term δ

(l)
i, j , following a probability percentage p(l)

which is fixed to the lth layer [18]:

δ
(l)
i, j = Bernoulli(p(l)) (2a)

x (l)z
i, j = H

⎛
⎝δ

(l)
i, j

k(l)∑

î=1

k(l)∑

ĵ=1

(
w

(l)
î, ĵ

x (l−1)

(is+î),( j s+ ĵ)

)
+ b(l)

⎞
⎠

z

. (2b)

Fig. 1 provides a graphical illustration of how the DO
regularization method works, using a synthetic feature map
given in Fig. 1(a). As it can be observed in Fig. 1(b) and (c),
the DO injects random noise to the feature maps in order to
disentangle the behavior of adjacent layers’ neurons. However,
this noise is not structured, which makes it not completely
effective in the task of removing semantic information of the
feature map, where nearby features still contain related spatial
information.

To overcome the limitations of the traditional DO strategy,
we propose to inject spatial-structured noise at every feature
map by dropping the output of neighboring neural activations,
obtaining full-dropped spatial regions on the output feature
maps that effectively remove spatial-correlated information.
In this sense, the amount of neural activations γ (l) that will be
dropped, coupled with the surrounding window’s spatial size
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Fig. 1. Visualization of the original DO and the proposed NRDO performance
over a feature map of size 17× 17. The first row shows (a) original feature
map and the feature maps obtained after dropping isolated samples using a DO
of (b) p(l) = 20% and (c) p(l) = 40%. The second row shows the feature map
obtained after applying NRDO by configuring the dropping percentage and
the dropping windows size to (d) p(l) = 20% and d(l) = 3, (e) p(l) = 20%
and d(l) = 5, and (f) p(l) = 20% with d(l) = 10.

d(l) (that will be set to zero), must be defined at each layer l.
Following the DO method, for each position (i, j) of the input
feature map X(l−1), our NRDO applies the gating variable δ

(l)
i, j ,

obtained by the Bernoulli distribution with probability γ (l).
In addition, for the zero variables δ

(l)
i, j , a spatial square patch

centered on (i, j) is obtained as a zero-mask with dimensions
d(l) × d(l). Finally, this mask is overlapped and applied over
the input volume X(l−1), dropping the corresponding window
in all the K filters of the lth layer. However, instead of setting
a direct dropping probability, γ (l) is obtained as a correction
of the traditional DO percentage p(l), the dropping window’s
size d(l), and the spatial dimension of the obtained feature map
X(l) ∈ Rn(l)×n(l)×K (l)

by the lth convolutional layer. In this
context, γ (l) is obtained as

γ (l) = p(l)

(d(l))2

(n(l))2

(n(l) − d(l) + 1)2 . (3)

It is recommened that d(l) is not be greater than n(l). In fact,
(3) makes an approximation between the desired amount of
dropped data, indicated by the known p(l), and the dropped
neighborhood for each zero variable δ

(l)
i, j , to make an equitable

balance between the pixels and their surrounding windows to
be dropped and the desired amount of spatial-structured noise
to be injected.

Algorithm 1 gives a general overview of the proposed
NRDO method, which is applied between the convolutional
and nonlinear activation layers, following the scheme given
in (2). An interesting aspect is the computation of the win-
dow to be dropped. As some HSI data sets are character-
ized by their low spatial resolution, our strategy can help
in this particular case since the dropped neighborhoods are
adapted to the feature map’s margins, taking advantage of
all the available features as we can observe in Fig. 1(d)–(f),
where the dropped neighborhoods have been adjusted to the
feature’s edges. Moreover, these dropped windows can be
also spatially overlapped, as it can be observed in Fig. 1(f),

Algorithm 1 NRDO

1: procedure NRDO(X(l) ∈ Rn(l)×n(l)×K (l)
: obtained feature

map from l-th layer, p(l): dropping percentage, d(l): drop-
ping window’s size)

2: γ (l) = p(l)

(d(l))2

(
n(l)

)2

(n(l)−d(l)+1)2 � Dropping probability

3: M = Ones(n(l), n(l), K (l)) � Initializing mask
4: for i, j in n(l) do

5: if
(
δ
(l)
i, j = Bernoulli(γ (l))

)
== 0 then

6: M = Dropped_Window_on_M(i, j, d(l)) �
For each zero δ

(l)
i, j , a zeroed square window d(l) × d(l) is

set on the mask M with the center on the (i, j) position
7: end if
8: end for
9: X̂(l) =M · X(l)

return X̂(l)

10: end procedure

TABLE I

ARCHITECTURAL DETAILS OF THE PROPOSED MODEL

where two dropped regions that are slightly overlapped can be
appreciated.

On the other hand, the application of a rigorous NRDO with
a fixed value of p(l) can negatively affect the performance
of the network, while the implementation of a soft NRDO
may not provide the desired robustness. In order to overcome
the limitations, our model is trained with a p(l) whose value
increases linearly and progressively through the epochs [16],
from zero probability to the maximum indicated value of
p(l), with the goal of progressively adapting the performance,
extracting more robust and independent features at each epoch.

III. EXPERIMENTS

A. Experimental Configuration and Data Sets

In order to test the performance of the proposed regulariza-
tion technique, a deep 2-DCNN model has been implemented
for HSI classification. Inspired by previous works in [14],
the proposed network is composed of four convolutional layers
and two fully connected layers. Focusing on the convolu-
tional layers, the second and third layers implement one
of the two available dropping mechanism, DO or NRDO,
for comparative purposes. Table I describes the details of
the configuration of the network, which has been executed
on a hardware environment composed by a sixth-generation
Intel Core i7-6700K processor with 8M of Cache and up
to 4.20 GHz (four cores/eight way multi-task processing),
an ASUS Z170 progamming motherboard, a GPU NVIDIA
GeForce GTX 1080 with 8-GB GDDR5X of video memory
and 10 Gbps of memory frequency, 40 GB of DDR4 RAM
with a serial speed of 2400 MHz and a Toshiba DT01ACA
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TABLE II

COMPARISON BETWEEN DO AND NRDO, WITH DIFFERENT PERCENTAGES OF p(l) AND SETTING d(l) = 3

TABLE III

OBTAINED OA RESULTS FOR EACH CONSIDERED CLASSIFIER

HDD with 7200RPM and 2 TB of storage capacity. In addition,
and in order to efficiently implement the proposed approach,
it has been parallelized over the GPU using CUDA language
over Pytorch framework. Finally, all the codes and examples
presented in this letter are available online.1 The proposed
method has been tested over two widely used HSI data
sets. The first one is the AVIRIS’s Indian Pines (IP) scene,
which has 145 × 145 samples with low spatial resolution
of 20mpp and 200 spectral bands in the wavelength range from
0.4 to 2.5 μm. It was captured over an agricultural and forest
area and its ground truth is composed of 16 different classes.
The second one is the ROSIS’s University of Pavia (UP) scene,
which contains 610 × 340 samples with higher (1.3 mpp)
spatial resolution and 113 spectral bands in the wavelength
range from 0.43 to 0.86 μm. It was captured over an urban
area and its ground truth is composed of nine different classes.

B. Experimental Results and Discussion

1) Comparison Between Dropout and Neighboring Region
Dropout: First, experiment compares the performance of the
2-DCNN model with regularization method, considering the
original nonspatially structured DO and the proposed NRDO.
Each model has been trained over IP and UP with 1%, 3%,
5%, 10%, 15%, and 20% of randomly selected samples, input
patch size of 11 × 11, and different dropping percentages
(p(l) = {20%, 40%, 80%}), fixing the dropping window’s
size to d(l) = 3 in the case of NRDO. Table II shows
the obtained results. Focusing on DO, this strategy is highly

1https://github.com/mhaut/DeepNRD

beneficial when the scene is spectrally mixed and contains few
regular spatial structures (as it is the case with the IP scene).
Moreover, the bigger p(l), the larger the overall accuracy (OA)
improvement. However, with the UP scene, the effectiveness
of DO is appreciably lower than with the IP scene (in fact, only
in the case of p(l) = 80%, the OA values rise by more than
1% point for small training sets), even reducing the overall
performance with limited training samples (1% of IP and 3%
of UP employing p(l) = 20%). In this sense, the proposed
method exhibits a more consistent behavior with both data
sets, being able to outperform the results obtained by DO and
significantly improving the results obtained by the original
2-DCNN without regularization method and exhibiting a lower
standard deviation. The effectiveness of this method is visibly
high in IP and UP, in particular, when small training sets
are considered, reaching the best OA performances when
p(l) = 80%. It must be noted that, since NRDO occludes entire
windows, it prevents the model from seeing all the complete
features of the input data, forcing the network to look for more
robust parameters.

2) Comparison Between Neighboring Region Dropout and
Several Classifiers: Second, experiment performs a compar-
ison between the proposal NRDO, with p(l) = 40% and
d(l) = 3, and six different classifiers: 1) random forest
(RF); 2) SVM with radial basis function; 3) shallow multi-
layer perceptron (MLP); 4) basic and kernel extreme learning
machines (ELM and K-ELM); 5) spectral 1-DCNN; and 6)
spatial 2-DCNN. In addition, four 2-DCNN models have been
considered: without data augmenting or DO methods (original
data), with RO [14], with p(l) = 80% of DO, and with
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Fig. 2. Classification maps of IP, being (a) simulated RGB composition of
the scene, (b) ground truth, and from (c) to (f), the obtained classification
maps corresponding to the 2-DCNN models of Table III. (a) RGB. (b) GT.
(c) 2-DCNN (92.43%). (d) 2-DCNN-RO% (96.96%). (e) 2-DCNN-DO%
(97.90%). (f) 2-DCNN-NRDO% (98.49%).

Fig. 3. Evolution of the (Left) loss and (Right) OA as a function of the
number of training epochs when using the 2-DCNN with and without DO
and NRDO regularization methods and RO data augmenting method, over IP
data set, with 10% of training data and setting p(l) = 80% and d(l) = 3%.

p(l) = 80% of NRDO. Table III reveals that spatial models
are able to greatly outperform spectral methods, reaching
90% and 99% of OA when classifying IP and UP scenes,
respectively. Focusing in spatial models, the proposed NRDO
is able to reduce the overfitting problem when lower training
percentages are employed, achieving the best result in all
the experiments. This suggests that neurons are able to learn
independently while retaining a spatial context, so the final
classification becomes more robust. Fig. 2 shows classification
maps obtained by the spatial classifiers. It can be seen that
the proposed method is able to correctly classify even the
smallest and more complex classes, thus providing a more
detailed map. Finally, Fig. 3 shows the evolution of the loss
and OA with increasing epochs obtained by the 2-DCNN
without any data augmenting/regularization method, and with
RO, DO, and NRDO. Looking at the raw model, the loss
grows as the epochs increase, indicating a clear overfitting
problem. Although the RO decreases the loss faster than DO,
it also suffers the overfitting in the final epochs. However,
the proposed method is able to achieve lower and stable loss
scores than DO and RO. This is also observed in the evolution
of OA, where the NRDO enables a better tuning of the result.

IV. CONCLUSION

This letter evaluates a spatial-structured regularization tech-
nique for HSI data classification, which is based on ran-
domly drop squared-windows of the convolutional-extracted
feature maps, retaining the spatial consistency and allowing

a strongest, deep and independent learning of the layer’s neu-
rons. Obtained results demonstrate that not only the proposed
approach efficiently deals with the overfitting problem when
low training data are available but is also able to reach a
better performance than other compared techniques. Moreover,
as the proposal improves the performance of the convolutional
layer, it can be effectively used in more complex models,
such as ResNets and DenseNets. Finally, since the approach
is not restricted to spatial classifiers, in the future, we plan to
incorporate it to spatial–spectral models too.

REFERENCES

[1] M. E. Paoletti et al., “Capsule networks for hyperspectral image
classification,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 4,
pp. 2145–2160, Apr. 2019.

[2] J. Haut, M. Paoletti, J. Plaza, and A. Plaza, “Cloud implementation of the
K-means algorithm for hyperspectral image analysis,” J. Supercomput.,
vol. 73, no. 1, pp. 514–529, 2017.

[3] R. Bahmanyar, D. Espinoza-Molina, and M. Datcu, “Multisensor earth
observation image classification based on a multimodal latent Dirichlet
allocation model,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 3,
pp. 459–463, Mar. 2018.

[4] R. Fernandez-Beltran, J. M. Haut, M. E. Paoletti, J. Plaza, A. Plaza,
and F. Pla, “Remote sensing image fusion using hierarchical multimodal
probabilistic latent semantic analysis,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 11, no. 12, pp. 4982–4993, Dec. 2018.

[5] M. Khodadadzadeh, J. Li, A. Plaza, and J. M. Bioucas-Dias,
“A subspace-based multinomial logistic regression for hyperspectral
image classification,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 12,
pp. 2105–2109, Dec. 2014.

[6] Z. Shao, L. Zhang, X. Zhou, and L. Ding, “A novel hierarchi-
cal semisupervised SVM for classification of hyperspectral images,”
IEEE Geosci. Remote Sens. Lett., vol. 11, no. 9, pp. 1609–1613,
Sep. 2014.

[7] J. M. Haut, M. E. Paoletti, J. Plaza, J. Li, and A. Plaza, “Active learning
with convolutional neural networks for hyperspectral image classification
using a new Bayesian approach,” IEEE Trans. Geosci. Remote Sens.,
vol. 56, no. 11, pp. 6440–6461, Nov. 2018.

[8] L. Zhu, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Generative
adversarial networks for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 56, no. 9, pp. 5046–5063, Sep. 2018.

[9] M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, “A new deep
convolutional neural network for fast hyperspectral image classification,”
ISPRS J. Photogram. Remote Sens., vol. 145, Part A, pp. 120–147.

[10] L. Zhang, Q. Zhang, B. Du, X. Huang, Y. Y. Tang, and D. Tao, “Simul-
taneous spectral-spatial feature selection and extraction for hyperspectral
images,” IEEE Trans. Cybern., vol. 48, no. 1, pp. 16–28, Jan. 2018.

[11] L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sensing data:
A technical tutorial on the state of the Art,” IEEE Geosci. Remote Sens.
Mag., vol. 4, no. 2, pp. 22–40, Jun. 2016.

[12] M. E. Paoletti, J. M. Haut, R. Fernandez-Beltran, J. Plaza, A. J. Plaza,
and F. Pla, “Deep pyramidal residual networks for spectral–spatial
hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 57, no. 2, pp. 740–754, Feb. 2019.

[13] W. Li, C. Chen, M. Zhang, H. Li, and Q. Du, “Data augmentation
for hyperspectral image classification with deep CNN,” IEEE Geosci.
Remote Sens. Lett., vol. 16, no. 4, pp. 593–597, Apr. 2019.

[14] J. M. Haut, M. E. Paoletti, J. Plaza, J. Li, and A. Plaza, “Hyperspectral
image classification using random occlusion data augmentation,” IEEE
Geosci. Remote Sens. Lett., to be published.

[15] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[16] G. Ghiasi, T.-Y. Lin, and Q. V. Le, “Dropblock: A regularization method
for convolutional networks,” in Proc. Adv. Neural Inf. Process. Syst.,
2018, pp. 10750–10760.

[17] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by preventing
co-adaptation of feature detectors,” Jul. 2012, arXiv:1207.0580.
[Online]. Available:https://arxiv.org/abs/1207.0580

[18] P. Baldi and P. J. Sadowski, “Understanding dropout,” in Proc. Adv.
Neural Inf. Process. Syst., 2013, pp. 2814–2822.

Authorized licensed use limited to: Juan Mario Haut. Downloaded on April 24,2020 at 13:37:01 UTC from IEEE Xplore.  Restrictions apply. 





Escuela Politecnica
Av. de la Universidad, S/N, 10003
Caceres, Spain
Phone: 0034927257000. Ext. 51662
Email: aplaza,jplaza{@unex.es}

Dr. Antonio Plaza Miguel y Dr. Javier Plaza Miguel como directores de la tesis titulada ”Procesamiento
eficiente y profundo de imgenes hiperespectrales de la observación remota de la Tierra y aplicaciones en
tareas de clasificación”, certifico el factor de impacto y la categorización de la siguiente publicación, inclu-
ida en la tesis doctoral. Del mismo modo, se especifica la aportación del doctorado. Si necesitas cualquier
información o clarificación, por favor, no dude en contactar conmigo.

Antonio Plaza Miguel PhD. and Javier Plaza Miguel PhD as directors of the Phd thesis titled ”Deep-efficient
processing of remote sensing hyperspectral images and applications in classification tasks.”, certify the
impact factor and the categorization of the following publication, included in the doctoral thesis. In the
same way, the contribution of the doctorate is specified. If you need any further information or clarification,
please do not hesitate contacting me.

Artculo / Paper

Autores/Authors: J. M. Haut, M. E. Paoletti, J. Plaza, A. Plaza and J. Li
Title: Visual Attention-Driven Hyperspectral Image Classification.
Journal: IEEE Transactions on Geoscience and Remote Sensing.
Other Information: vol. 57, no. 10, pp. 8065-8080, October 2019.
DOI: 10.1109/TGRS.2019.2918080.
Impact factor 2018: 5.630. Q1
Abstract: Deep neural networks (DNNs), including convolutional neural networks (CNNs) and
residual networks (ResNets) models, are able to learn abstract representations from the input
data by considering a deep hierarchy of layers that perform advanced feature extraction. The
combination of these models with visual attention techniques can assist with the identification of
the most representative parts of the data from a visual standpoint, obtained through more detailed
filtering of the features extracted by the operational layers of the network. This is of significant
interest for analyzing remotely sensed hyperspectral images (HSIs), characterized by their very high
spectral dimensionality. However, few efforts have been conducted in the literature in order to
adapt visual attention methods to remotely sensed HSI data analysis. In this paper, we introduce
a new visual attention-driven technique for the HSI classification. Specifically, we incorporate
attention mechanisms to a ResNet in order to better characterize the spectral-spatial information
contained in the data. Our newly proposed method calculates a mask that is applied to the features
obtained by the network in order to identify the most desirable ones for classification purposes.
Our experiments, conducted using four widely used HSI data sets, reveal that the proposed deep
attention model provides competitive advantages in terms of classification accuracy when compared
to other state-of-the-art methods.

Contribución del doctorado: Planteamiento de la hipótesis, desarrollo práctico, análisis y discusión
de los resultados, elaboración y escritura del manuscrito.

Firma / Signature
Mayo / May, 2020

Antonio Plaza Miguel Javier Plaza Miguel





IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 10, OCTOBER 2019 8065

Visual Attention-Driven Hyperspectral
Image Classification

Juan Mario Haut , Student Member, IEEE, Mercedes E. Paoletti , Student Member, IEEE,
Javier Plaza , Senior Member, IEEE, Antonio Plaza , Fellow, IEEE,

and Jun Li , Senior Member, IEEE

Abstract— Deep neural networks (DNNs), including convolu-
tional neural networks (CNNs) and residual networks (ResNets)
models, are able to learn abstract representations from the input
data by considering a deep hierarchy of layers that perform
advanced feature extraction. The combination of these models
with visual attention techniques can assist with the identification
of the most representative parts of the data from a visual
standpoint, obtained through more detailed filtering of the
features extracted by the operational layers of the network. This
is of significant interest for analyzing remotely sensed hyper-
spectral images (HSIs), characterized by their very high spectral
dimensionality. However, few efforts have been conducted in the
literature in order to adapt visual attention methods to remotely
sensed HSI data analysis. In this paper, we introduce a new visual
attention-driven technique for the HSI classification. Specifically,
we incorporate attention mechanisms to a ResNet in order to
better characterize the spectral–spatial information contained in
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spectral image (HSI) classification, residual neural networks,
visual attention.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) classification is a very
active research field in remote sensing and earth obser-

vation [1], [2]. This is due to the excellent characterization
that HSI instruments can provide for large areas on the
surface of the earth. HSI data are often collected by imaging
spectrometers mounted on aerial or satellite platforms and
comprise hundreds of images at different (continuous and
narrow) wavelengths, usually from the visible to the near-
infrared regions of the electromagnetic spectrum. As a result,
high-dimensional data cubes are obtained, in which each pixel
captures the emitted, reflected, and transmitted light over the
observed land cover materials. Each pixel (vector) in the
data cube can be interpreted as a spectral signature or fin-
gerprint that uniquely characterizes the observed materials
of the target area [3]. Such data cubes provide a wealth of
spectral and spatial information, a property that is very useful
for monitoring the surface of the earth [4], [5] in a wide
range of applications, such as precision agriculture [6]–[8],
environmental and natural resources management [9],
surveillance [10]–[12], and others [13].

HSI classification has been usually tackled as an opti-
mization problem, trying to assign each pixel of the scene
to a certain land cover class by adapting traditional image
analysis methods to HSI data [14]. For instance, standard
machine learning methods assume that the HSI data cube
is a collection of spectral vectors with no spatial arrange-
ment, exploiting only the spectral information to discriminate
and classify the pixels. Several unsupervised and supervised
spectral-based approaches have been applied to interpret the
HSI data, including k-means clustering [15], k-nearest neigh-
bors (KNNs) [16], support vector machines (SVMs) [17], [18]
and other kernel-based methods [19], [20], logistic regression
(LR) [21], or random forest (RF) [22], among many others.
However, the classification of HSI data involves certain diffi-
culties not to be found in other kinds of image data (in addition
to the huge amount of information contained in HSI data
cubes [2]). Specifically, traditional supervised classification
approaches are largely affected by the curse of dimensional-
ity [23], which may hamper the accuracy of the classifier when
the number of available labeled training samples is limited in

0196-2892 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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relation to the (high) dimensionality of the data. This is also
due to the high cost and effort involved in expert annotation
of labeled data, a fact that can result in an undercomplete
training process that is prone to overfitting (this is also known
as the Hughes phenomenon [24]). Moreover, HSI data sets
present high intraclass variability and interclass similarity,
resulting from atmospheric interferers, spectral variability, and
the configuration of the sensor. These aspects bring additional
difficulties when characterizing the data and call for new
techniques that can better exploit the rich spatial and spectral
information contained in HSI scenes.

To address some of the aforementioned issues, several deep
neural network (DNN) models have been developed in the lit-
erature [25]. These flexible architectures, composed by a stack
of layers, allow multiple techniques to include and process
not only the spectral signatures but also the spatial-contextual
information contained in the captured scenes. Based on the
idea that spatially adjacent pixels often belong to the same
class, these classifiers take advantage of the spatial information
to reduce sample variability. In fact, it is well-known that the
extraction of spectral–spatial features is very useful to improve
the classification process, helping to reduce label uncertainty
and intraclass variance. As a result, joint spectral–spatial meth-
ods can often perform better than purely spectral- or spatial-
based ones. However, in deep learning (DL) methods,
there is a problem of how to fuse the spectral and spatial
information. Focusing on stacked autoencoders (SAEs) [26]
and deep belief networks (DBNs) [27], we can find several
techniques that concatenate the spectral signatures and the
spatial information extracted from neighboring pixels by tak-
ing advantage of simple dimensionality reduction methods,
such as the principal component analysis (PCA) [28]–[31]
or more sophisticated methods, such as superpixels [32],
guided filtering [33], or morphological profiles [34], [35],
among others. Traditional fully connected architectures admit
vector inputs, so the spatial structure is usually lost. In this
sense, convolutional neural networks (CNNs) [36] are the
powerful tool for the analysis of HSI images due to their
capacity to accurately characterize both the spectral-
and spatial-contextual information contained in HSI data
cubes [37], being able to effectively extract the features with
a high-level of abstraction from the raw data and achieving
excellent classification results [38].

However, DL-based models are not totally immune to the
curse of dimensionality and the Hughes phenomenon. In fact,
CNNs tend to quickly overfit when a few labeled samples
are available. To overcome this limitation, several techniques
have been developed, including: 1) semisupervised and active
learning (AL) techniques [39], able to deal with overfitting
when very few training samples are available; 2) residual learn-
ing [e.g., using residual networks (ResNets)] [40], [41] and
dense connections [e.g., using dense networks (DenseNets)]
[42], [43], which can alleviate the loss of information and
vanishing gradient problems of very deep and complex archi-
tectures; and 3) the development of new information routing
techniques, such as capsule modules [e.g., using capsule
networks (CapsNets)] [44], [45]. Despite these advances,
CNN-based models still present the main limitation when

dealing with HSI data. In fact, they can be hindered by the
mode operation of their own convolution filters that treat
the input content completely equally, while probably not all
spectral–spatial information provided by the input hyperspec-
tral pixels are equally interesting, informative, relevant, and/or
predictive for classification purposes [46].

In the area of computer vision, several efforts are now
being made to improve DL techniques, overcoming the equal
treatment of the convolution kernel by incorporating visual
attention mechanisms. The goal of these techniques is to
explore, in detail, the objects or regions that stand out in a
given scene [47], as opposed to convolutional methods, whose
kernels treat equally the whole content in the image. The
main idea is to simulate the human behavior, as we try to
understand an image by selecting a subset of features that
contain the most relevant characteristics instead of treating
the full scene equally. In fact, the human brain focuses on the
most valuable and informative stimulus perceived by the eyes,
ignoring other irrelevant information. Such visual attention
mechanisms are based on two kinds of components [48]:
1) bottom-up (stimulus-driven) components that are tra-
ditionally related with automatic/involuntary processing of
salient visual features in raw sensory information and are
performed in a feedforward way and 2) top-down (goal-
oriented) components that modulate bottom-up component
behavior through voluntary attention to certain characteristics,
objects, or regions in the space. The study of these com-
ponents, together with their characteristics, has resulted in a
great variety of attention-driven techniques [49], turning visual
attention into a hot research topic.

In the remote sensing literature, several attention-driven
techniques have been developed for detecting salient
regions [50]–[56] and target objects [57]–[60]. However, their
application to HSI data has been quite sparse [61], [62].
Although the adaptation of visual attention techniques to deep
models is demonstrating excellent performance in several clas-
sification tasks [63]–[65], there is still room for contributions
in the area of HSI classification.

In this paper, we develop a new spectral–spatial visual
attention-driven technique for HSI classification. Our newly
developed technique combines the use of advanced visual
attention mechanisms with powerful feature extraction
approaches based on DNNs for spectral–spatial HSI classi-
fication. As a case study, we introduce visual attention mech-
anisms in the ResNet architecture (A-ResNet). The translation
of a visual attention working mode to DNNs for HSI data
processing allows to increase the sensitivity of the network
to those features that contain the most important and useful
information for classification purposes. In this regard, the main
innovative contributions of our work can be summarized as
follows.

1) The development, for the first time in the literature,
of a visual attention-driven mechanism (incorporated
into an A-ResNet) for spatial–spectral HSI classification.
This is done by introducing a dual data-path attentional
module as the basic building module, considering both
bottom-up and top-down visual factors to improve the
feature extraction capability of the network.
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2) A detailed comparison between our attention-driven
model and traditional pixel-based machine learning and
spectral–spatial DL-based techniques for HSI classifica-
tion, demonstrating that the proposed model is able to
outperform the current state-of-the-art classifiers.

3) A study of how the performance of the considered classi-
fiers is affected by perturbations in the data, introducing
controlled noise in the samples. To this end, four well-
known and publicly available HSIs are considered in our
experiments: Indian Pines (IP), University of Pavia (UP),
Salinas Valley (SV), and University of Houston (UH).

The remainder of this paper is organized as follows.
In section II, we introduce the basic principles of CNNs and
the ResNet model. Section III describes, in detail, our newly
proposed A-ResNet methodology. Section IV discusses our
experimental results. Finally, Section V concludes this paper
with some remarks and hints at plausible future research lines.

II. RELATED WORK

A. Convolutional Neural Networks

DNNs are characterized by a hierarchical structure com-
posed by a deep stack of processing layers, placed one after
the other. Such deep structure allows these models to learn
representations of the original input data with multiple levels
of abstraction, from the most concise ones (at the first layers)
to the most abstract ones (at the end of the architecture). Such
multilevel representations of the data allow for a powerful
mechanism of feature extraction, in which each layer is able
to discover (or reinforce) different relations, distributions, and
structures in the data, supported by features extracted by
previous layers. In this sense, the architecture of CNNs is
based on receptive fields and follows the behavior of neurons
in the primary visual cortex of a biological brain [66], [67].
These models have become a state of the art in remote sensing
data analysis, outperforming many algorithms [68]. CNNs are
typically composed of two main parts: 1) the feature extractor
net, and 2) the classifier.

The feature extractor is composed by several kinds of
n-dimensional blocks or layers, depending on how the infor-
mation is used and how it is processed by these blocks.
An HSI data set X can be seen as a collection of spectral
vectors X ∈ R(n1·n2)×nbands , where n1 ·n2 denotes the number of
spectral pixels in the scene and nbands is the number of spectral
bands. Each pixel in the scene is given by xi ∈ Rnbands =
[xi,1, xi,2, . . . xi,nbands ]. CNN models composed by 1-D blocks
process only the spectral information in the data and are also
known as spectral-based CNNs. These models exhibit similar
disadvantages as traditional pixel-based processing methods.
On the contrary, if we apply a spectral dimension reduction
technique over X, for example, PCA [69], [70], and retain only
the first PC, the HSI can be treated as a 2-D matrix of spatial
information X ∈ Rn1×n2 , where n1×n2 denotes the number of
rows and columns in the scene. Traditional CNNs employ 2-D
blocks to process the spatial information contained in the input
data, which, in RGB data, corresponds with the whole image.
However, to process the HSI X using both spatial and spectral
information, we need to extract, for each pixel xi, j ∈ Rnbands ,

a neighborhood window or spatial patch pi, j ∈ Rd×d , which
comprises the set of d × d pixels that surround the central
sample xi, j . The usual way to perform the classification is
to assign the label yi, j of the central pixel xi, j to the entire
patch pi, j . Although such a spatial-based classification strategy
can achieve good results, the loss of significant spectral infor-
mation is often critical in many applications [37], [38]. A third
way to classify the HSI scene X is to exploit the spatial-
contextual information together with the full or filtered spectra,
retaining the full spectral information from the original bands
(or a significant percentage of it, by means of an appropriate
number of principal components) and creating spectral–spatial
patches or data subcubes pi, j ∈ Rd×d×nchannels . In this sense,
the spectral–spatial CNN model allows to treat the data in
3-D fashion by combining both sources of information (spatial
and spectral) in a most natural and simple way, by considering
3-D subblocks extracted from the input data cube.

Using spectral–spatial patches as inputs, the feature extrac-
tor net of the spectral–spatial CNN model hierarchically
applies three kinds of operations: 1) convolution; 2) nonlinear
activation; and 3) donwsampling by pooling. The convo-
lutional layer is the main processing block, composed by
K filters defined by their receptive field. In this sense, regard-
ing the dimension of the filters, the CNN can be understood as
1-D, 2-D, or 3-D depending on whether its receptive field is
of dimensions K×q , K ×k×k, or K ×k×k×q , respectively,
being q and k the spectral and spatial components of the kernel
(in this context, the proposed model implements a spectral–
spatial convolutional-based model with 2-D kernels). In fact,
the convolutional layer can be interpreted as a sliding-window
method, where the windows/kernels of the block slide over
the spatial and spectral dimensions of the input volume using
a stride s(l)

X(l) =W(l) ∗ X(l−1) + b(l) (1)

where X(l) is the output volume of the lth layer, composed
by K feature maps and obtained as the convolution (∗) of the
input volume X(l−1) and the layer weights W(l) and biases b(l).
More specifically, each feature of X(l) in (1) is obtained as
follows:

x (l)z
i, j = (W(l) ∗ X(l−1) + b(l))i, j

=
k(l)−1∑

î=0

k(l)−1∑

ĵ=0

(
x(l−1)

(i·s(l)+î),( j ·s(l)+ ĵ)
· w(l)

î, ĵ

)+ b(l) (2)

where x (l)z
i, j ∈ R is the (i, j)th element of the zth feature map

of X(l) (with z = 0, 1, . . . , K (l)−1 and K (l) being the number
of filters of the layer), x(l−1)

i, j ∈ RK (l−1)
is the (i, j)th element

of the input volume X(l−1), w(l)
î, ĵ

is the (î, ĵ)th weight of the

layer weights W(l), b(l) denotes the biases, and s(l) is the
stride, being k(l) × k(l) the receptive field of the lth layer.
Fig. 1 presents a graphical visualization of the operations
conducted by (1) and (2).

Convolutional blocks extract the features contained in the
input volume by applying a linear dot product. In order to
learn nonlinear relationships present in the data, a nonlinear
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Fig. 1. Visualization of a convolutional layer operation with 2-D kernel.
Unlike fully connected layers, the lth convolutional block presents local
connectivity to small regions of the whole input volume, that is, the zth
filter’s weights W(l) are applied over windows of the input volume X(l−1) ∈
Rn(l−1)

1 ×n(l−1)
2 ×K (l−1)

defined by the receptive field of size k(l)×k(l), taking
into account the full depth K (l−1) of the input data (highlighted as green and

yellow patches), slipped by a stride determined by s(l). It can be observed
that the zth kernel produces, for each region, a scalar value (represented as
a smaller rectangle) that is allocated into the zth feature map, giving, as a

result, an output volume X(l) ∈ Rn(l)
1 ×n(l)

2 ×K (l)
that comprises K (l) feature

maps of n(l)
1 × n(l)

2 features each.

activation function is adopted before sending the resulting out-
put volume to the following layer X(l) = H(X(l)), being H(·)
usually implemented by the rectified linear unit (ReLU) [71].
In addition, with the aim of reducing the spatial dimensions of
the output volume and also to summarize the obtained features
and obtain a certain invariability to geometric transformations,
a nonlinear subsampling strategy is implemented by the pool-
ing layer. In fact, the pooling layer applies a sample-based
discretization process, selecting from small windows of the
input volume those values that satisfy the selection criteria,
being the max-pooling one of the most widely used methods
for this purpose. It simply slides a spatial kernel k×k over the
input volume, selecting the maximum value for each region,
as the following equation indicates:

pool(l)z
i, j = max

(a,b)∈Ri, j

x (l)z
a,b (3)

where pool(l)z
i, j represents the (i, j)th output value of the

pooling associated with the zth feature map and x (l)z
a,b denotes

the (a, b)th element contained by the pooling region
Ri, j that encapsulates a spatial receptive field around the
position (i, j) [72].

At the end of the feature extractor net, a final output X(l) is
obtained that contains an abstract representation of the original
input data. Usually, this output is flattened in order to allow the
classifier to perform the final categorization of the input data.
Normally, the classifier is implemented by one or more fully
connected layers of a multilayer perceptron (MLP), creating
an end-to-end structure.

B. Residual Neural Networks

CNNs present several problems when processing HSI data.
In particular, they tend to overfit when very few labeled
samples are available to perform the training procedure, and

Fig. 2. Graphic visualization of a standard residual unit. The final output
volume is obtained as the aggregation of the original input volume X(l−1)

and the resulting output volume of the hidden stack of layers, G(X(l−1)),
where G(·) refers to the convolutions, normalizations, pooling steps, and
activation functions applied along the stack over the input data. As a result,
the architecture reinforces the learning process of the entire model by reusing
previous information in the following layers: X(l) = G(X(l−1))+X(l−1) .

they also can suffer from loss of information when deep
structures are implemented. To overcome the first problem,
several strategies have been developed in the literature, such
as the use of data regularization and dropout techniques, data
augmenting, or semisupervised and AL approaches. However,
the loss of information is produced by the vanishing gradi-
ent problem [73]. In this case, for very deep architectures,
the errors become quite hard to propagate back correctly,
and the gradient signal tends to zero [74]. Several strategies
have also been developed to deal with this problem, such as
data normalization techniques [75] or new optimizer/activation
functions [76], [77]. However, the accuracy of deep CNNs still
can saturate due to the complexity of the mapping function
of the convolutional blocks and the hard learning of these
functions [78]. In this sense, the architectural modifications
introduced by ResNets can improve the learning process of
convolutional layers by learning small residuals and adding
them to the input volume of each layer, instead of transforming
the whole input volume directly. In order to differentiate the
CNN and ResNet models, we note that the main building block
of a CNN is composed by the convolutional layer and the
nonlinear activation function, so (1) with H(·) can be rewritten
as

X(l) = H(W(l) ∗ X(l−1) + b(l))

simplifying X(l) = H(X(l−1)) (4)

Equation (4) indicates that the CNN hierarchically extracts
the features, processing them by the successive layers that
compose the architecture. Instead of that, the ResNet uses the
residual unit as a building block [79] and is composed by a
stack of several layers, normally convolutional layers stacked
with ReLUs and batch-normalization layers, and with two
types of connections allowing different kinds of data streams
(see Fig. 2).

1) The traditional forward connection that connects the
current layer with the previous and the following ones,
extracting from the original input volume X(l−1) a repre-
sentation G(X(l−1),W(l),B(l)), where G(·) approximates
the residual function referring to those operations that
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Fig. 3. Standard architecture of the proposed network with the network’s head, composed by a convolutional layer C(1) that presents the input volume
data X, to the network’s body, composed by the residual attention module, A(2) , whose output is finally vectored through an average pooling and sent to the
network’s tail, composed by one fully connected layer that performs the final classification. Two branches, trunk and mask, compose the attentional module:
the trunk branch (upper path), composed by t residual blocks that perform feature extraction from the data, and the mask branch (bottom path), composed
by a symmetrical downsampler–upsampler structure, in which r residual blocks are allocated (in between each downsampling/upsampling step) to extract
information from the current scale, adding a shortcut connection to link the downsampling step (/2) with its corresponding upsampling (×2) counterpart to
combine both kinds of data (instead of the bottleneck part, where only 2 ·r residual blocks are stacked one after the other), and followed by a sigmoid function
to prepare the mask, which is applied over the trunk feature data. The resulting output is sent to a final group of p residual blocks located at the end of the
module.

are applied over the input data by all the stacked layers
of the residual unit, which depends on the weight
matrices W(l) = {W(i)}N−1

i=0 of the N convolutional
layers associated with the lth residual unit, and the
corresponding biases B(l) = {b(i)}N−1

i=0 .
2) The shortcut connection that communicates the original

input volume with the end of the residual unit, per-
forming an identity mapping that allows to reuse the
previous information to reinforce the learning of the
residual block.

At the end, residual learning is introduced into (1) as

X(l) = G(X(l−1),W(l),B(l))+ X(l−1)

simplifying: X(l) = G(X(l−1))+ X(l−1) (5)

where the previous features are exploited once again by the
next unit, which reinforces the learning and allows the gradient
to be transmitted.

III. ATTENTIONAL RESIDUAL NETWORK FOR

HYPERSPECTRAL IMAGE CLASSIFICATION

The combination of convolutional kernels and residual
connections makes the ResNet a very powerful and efficient
model for image analysis, in general, and for HSI processing,
in particular. Based on this architecture, this section develops a
new architecture for HSI classification that incorporates visual
attention mechanisms in order to extract more discriminatory
features, improving the model performance and enhancing its
accuracy. In this sense, analogous to the original ResNet,
the proposed spectral–spatial A-ResNet for HSI classifica-
tion adopts a basic building block, called attentional mod-
ule [65], that contains two data paths or branches: 1) the trunk
branch and 2) the mask branch. Fig. 3 presents the overall
architecture of the proposed attentional neural network for
HSI data classification. Focusing on the attentional module,
the specifications of each part are discussed in detail in the
following.
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A. Attentional Module→ Trunk Branch

The attentional module can be denoted as A(l), with
l being the number of layers, and receives the volume X(l−1) as
input data, which is forward-propagated through two different
paths, being the trunk branch the simplest and easiest one
to implement. It is composed by t residual blocks, which
are stacked one by one, performing a feature extraction and
processing task. These residual blocks can be implemented fol-
lowing previous works, such as the basic residual block and its
bottleneck implementation [78], the wide residual block [80],
and the pyramidal residual block and its bottleneck
variation [41], [81], among other complex structures [79],
[82], [83]. The obtained features can be denoted as X(ltrunk) =
trunk(X(l−1)) and contain the high-level data representation
of the module. At this point, and following visual attention
principles, the next step is to single out the most rele-
vant features from all of the available information contained
into X(ltrunk), masking the least interesting parts for the learning
procedure. In this sense, an attention mask X(lmask) must be
calculated and applied over the processed features of the trunk
branch.

B. Attentional Module→ Mask Branch

As mentioned earlier, the input module X(l−1) is propagated
through two paths, with the mask branch being in charge of
calculating and applying the attention mask X(lmask) over the
output features obtained by the trunk branch, X(ltrunk). In fact,
its goal is to obtain a weight matrix with the same dimensions
of X(ltrunk), which softly weights the trunk’s output features to
highlight the most important ones, simulating the elementwise
soft attention mechanism.

In order to obtain the final X(lmask), the mask branch applies
a network architecture over X(l−1). It is based on a spa-
tial downsampler–upsampler structure with r residual blocks,
allocated between each pair of downsampling/upsampling
steps and with skip connections between each downsampling
step and its upsampling counterpart (similar to the hour-
glass network [84]), following the anatomical connections
of cortical processing [85], where feedforward connections
transform the input into fast behavioral responses, whereas
skip/feedback connections modulate these responses using
perceptual context or attention. Moreover, each sampling step
(coupled with its corresponding r residual blocks) provides
semantic information about the input data, from low-level
cues (edges, color, and intensity) to high-level cues that,
coupled with the forward connections (aimed at collecting
global information from the data) and skip connections (which
allow to combine multiscale data taking into account global
information and original features) simulate the bottom-up and
the top-down attention selections of the visual cortex [86].
In this sense, the downsampler–upsampler structure stacks as
many downsampling/upsampling steps as possible, until the
smallest feasible spatial resolution of the data is reached.

In the attention module A(l), the naive application of the
attentional mask over the trunk features in the spatial–spectral
domain gives the following output:

X(l) = X(lmask) · X(ltrunk). (6)

However, (6) presents several limitations. Considering the
mask X(lmask) as a collection of values in the range [0, 1], its
application over trunk features may degrade them in deeper
layers. Also, if the mask contains in most of its elements a
value that is equal or close to 0, it may disregard relevant
features of the trunk branch. In order to overcome these
problems, (6) is reformulated as follows:

X(l) = (1+ X(lmask)) ·X(ltrunk). (7)

In this case, (7) allows propagating the characteristics
extracted from the trunk branch, where the mask branch sup-
presses the least significant features to facilitate the detection
of important features. The combination of both allows to single
out the salient features.

Finally, the masked output volume is passed through a tail
composed by p residual blocks that perform a final feature
extraction step, taking into account the features that have been
highlighted in the previous phase.

C. Proposed Network Topology

The proposed network for spectral–spatial HSI data clas-
sification has been developed to work with 3-D subcubes
pi, jRd×d×nchannels extracted around each spectral pixel xi, j

of the original scene, taking d = 11 as the spatial height
and width dimensions [40]. These input patches are passed
through the network, which is composed by the network’s
head, attentional body, and classification tail (see Fig. 3) in
order to extract relevant features and perform their corre-
sponding classification. The head of the network is given by a
convolutional layer C(1) with batch-normalization and ReLU,
which prepares the data to be processed by the rest of the
network, followed by one or several attentional modules,
depending on the complexity of the problem. As mentioned
earlier, the lth attentional module A(l) is, in turn, composed
by several residual blocks ∗R(l)

i (see Fig. 3):
1) t residual blocks, denoted as (t)R(l)

i , with i = 1, . . . , t ,
for extracting features in the trunk branch;

2) r(2DU) residual blocks, denoted as (m) R(l)
i , being DU

the number of down sampling/upsampling steps for
processing multiscale data and obtain the attention
module mask. For instance, in Fig. 3, with DU = 2
downsampling/upsampling steps, there are 4r residual
blocks

3) p residual blocks denoted as p R(l)
i with i = 1, . . . , p,

located at the end of the module for postprocessing the
filtered data.

In total, the attention module is composed by t+r(2DU)+ p
residual blocks, being t = 2, r = 1, and p = 1, while
DU depends on the spatial size of the input volume. The
residual block architecture of the trunk branch is composed by
three subblocks of convolutional layers, batch-normalization,
and ReLU (see Fig. 4), whose kernels are defined in Table I,
creating a spectral-bottleneck architecture in order to better
analyze the spectral–spatial domains [87], while the residual
blocks of the mask and the ending of the module follow the
simple residual unit designed in [78]. Kernels are defined
in Table I. As we can observe, each kernel performs a
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Fig. 4. (Top) Graphic visualization of the architecture of the internal residual
blocks that conform the trunk branch of the attentional module and (Bottom)
those that conform the mask branch. Convolutional details are given in Table I.

TABLE I

BASIC ARCHITECTURE OF THE RESIDUAL BLOCKS OF THE TRUNK

AND MASK BRANCHES, WHERE KMIDDLE = K INPUT /2

convolution operation using windows of size 3 × 3, with
padding p = 1. In this context, the output of the attention
module, X(l), maintains the same spatial–spectral dimensions
as the input, X(l−1), in the sense that all its residual blocks
keep the volume dimensions constant. This allows us to add a
lot of flexibility to the model, which is able to stack modules
one after another (as plug-&-play structures). In order to avoid
the overfitting problem caused by a large number of parameters
that must be trained, we propose a simple architecture with one
attentional module. Details can be found on Table II.

Furthermore, the network has been optimized using the
Adam optimizer [76] with 300 epochs, where the learning
rate decays half of its value on epochs 50, 100, and 200,
using a batch size of 100. Also, nchannels = 40 principal
components have been considered as the input spectral bands,
being d = 11.

IV. EXPERIMENTAL RESULTS

A. Experimental Configuration

With the aim of testing the performance of the proposed
attentional network for spectral–spatial HSI classification,
a battery of experiments has been performed on a desktop

TABLE II

TOPOLOGY OF THE PROPOSED ATTENTION NETWORK, WHERE nCHANNELS

INDICATES THE NUMBER OF CONSIDERED SPECTRAL BANDS

computer equipped with a sixth-generation Intel Core
i7-6700K processor, with 8M of cache, the clock speed
of 4.20 GHz, and four cores/eight-way multitask processing.
From the point of view of memory, it is equipped with 40 GB
of DDR4 RAM, with a serial speed of 2400 MHz, and a
Toshiba DT01ACA HDD with 7200 rpm and 2 TB of storage
capacity. Also, it is equipped with a graphics processing unit
(GPU) NVIDIA GeForce GTX 1080 with 8-GB GDDR5X
of video memory and 10 Gb/s of memory frequency, and an
ASUS Z170 programming motherboard. The operating system
is Ubuntu 18.04. In order to efficiently implement the proposed
approach, our models have been parallelized on the available
GPU using Pytorch.

B. Hyperspectral Data Sets

Four public and widely used HSI data sets have been
considered in our experiments: IP, UP, SV, and the Kennedy
Space Center (KSC). Table III shows, for each data set, its
corresponding ground-truth with the number of samples per
class. In the following, we summarize the characteristics of
each data set.

1) IP data set was collected by the Airborne Visible
InfraRed Imaging Spectrometer (AVIRIS) [88] in 1992,
over an agricultural area in Northwestern Indiana
using 145 × 145 pixels with a spatial resolution
of 20 meters/pixel (m/p) and 224 spectral bands in the
wavelength range from 0.4 to 2.5 μm. After deleting
24 bands due to water absorption and null values, a total
of 200 spectral bands are considered for experimental
purposes. The ground-truth is divided into 16 different
classes (see Table III).

2) UP data set was collected by the reflective optics system
imaging spectrometer (ROSIS) [89] in 2002, over the
Engineering School at the UP, Northern Italy, using
610 × 340 pixels with a spatial resolution of 1.3 m/p
and 103 spectral bands in the wavelength range from
0.43 to 0.86 μm. The ground-truth is divided into nine
different classes (see Table III).
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TABLE III

NUMBER OF SAMPLES OF THE IP, UP, SV, AND UH DATA SETS

3) SV data set was collected by the AVIRIS sensor in 1998,
over an agricultural field in Salinas Valley, CA, USA,
using 512 × 217 spectral samples with 224 spectral
bands (20 of them were discarded due to water absorp-
tion and noise). The ground-truth contains 16 classes
(see Table III).

4) UH data set [90] provides an interesting benchmark, first
presented by the IEEE Geoscience and Remote Sensing
Society Image Analysis and the Data Fusion Technical
Committee during the 2013 data fusion contest [91].
It was gathered by the Compact Airborne Spectrographic
Imager (CASI) in June 2012, over the campus of the
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University of Houston and the neighboring urban area,
forming a data cube of dimensions 349× 1905× 144,
with a spatial resolution of 2.5 m and spectral infor-
mation captured in the range from 0.38 to 1.05 μm,
containing 15 ground-truth classes divided in two cate-
gories: training (top UH map in Table III) and testing
(bottom UH map in Table III).

C. Results and Discussion

In order to test the performance of proposed attention-
guided network for spectral–spatial HSI data classification,
four main experiments have been carried out.

1) Our first experiment performs a comparison between
the proposed attention-driven network and seven dif-
ferent and widely used HSI classifiers available in the
literature: 1) RF; 2) multinomial LR (MLR); 3) SVM;
4) MLP; 5) spectral CNN (CNN1D); 6) spatial CNN
(CNN2D); and 7) spectral–spatial ResNet. In this con-
text, the four HSI data sets described in Section IV-B
have been used. We extracted patches of size
11 × 11 × 40. For the IP scene, we used 15% of the
available labeled data per class for training (and the
rest of the available labeled data for testing). For the
UP and SV scenes, we used 10% of the available labeled
data for training. Finally, for the UH scene, we used the
available (fixed) training set (see Table III).

2) Our second experiment expands the initial comparison
carried out in the first experiment using different
classifiers and particularly focusing on different
spectral–spatial methods carried out on the UP data
set with the fixed training set adopted in [92]. In this
case, the following classifiers have been considered:
1) Markov random field combined with the Gaussian
class-conditional model (MRF-Gauss); 2) contextual
SVM (CSVM) [93]; 3) CNN with extinction profiles
(EP-CNN) [94]; 4) CNN with a previously applied
PCA; 5) CNN with extended morphological profiles
(EMP-CNN); and 6) CNN with Gabor filter
(Gabor-CNN). Focusing on convolutional models,
the EP-CNN is fed by patches of size 27× 27× nbands,
while the proposed attentional model, PCA-CNN,
EMP-CNN, and Gabor-CNN employ the input patches
of size 27× 27× 3.

3) Our third experiment performs a comparison between
the original spectral–spatial ResNet and the proposed
A-ResNet, evaluating the evolution of the overall accu-
racy (OA) of both classifiers when different training
ratios are considered for the IP, UP, and SV scenes.
In particular, 5%, 10%, and 15% ratios have been
considered for the IP scene, and 1%, 5%, and 10%
ratios have been considered for the UP and SV scenes.
Again, the input patches have been extracted with a size
of 11× 11× 40.

4) Finally, our fourth experiment analyzes, in detail,
the performance of the proposed network as compared
with the original ResNet model in the presence of
noisy data. In this case, several levels of noise have

been tested with noise being modeled as a normal
distribution with μ = 0 and σ = {0.10, 0.20, 0.40,
0.80, 1.60, 3.20, 6.40}.

In order to carry out the aforementioned comparisons, some
widely used measures have been considered, including the OA
and average accuracy (AA), the kappa coefficient (K), and the
execution times (in seconds).

1) Experiment 1 (Comparison Between the Standard HSI
Classifiers and the Proposed Methods): First experiment
performs a comparison between the proposed network and
some of the most well-known HSI classifiers available in
the literature. These methods can be divided into spectral-
based ones (RF, MLR, SVM, MLP, and CNN1D), spatial
classifiers (CNN2D), and spectral–spatial classifiers (ResNet
and A-ResNet). For all the spectral–spatial methods, the input
patch size has been set to 11×11×40. In order to perform a fair
comparison, the ResNet has been implemented with the basic
architecture of the proposed network in Table II, where the
ResNet is composed by the same network’s head and tail, and
the same architecture of the trunk branch inside the network’s
body.

The obtained results are reported in Tables IV–VII, where
the corresponding average and standard deviation values
(obtained after five Monte Carlo runs) are also displayed.
Focusing on the obtained OA values, we can observe that
spatial and spectral–spatial methods are, in general, able
to outperform pixel-based methods (RF, MLR, SVM, MLP,
and CNN1D), being residual based models (i.e., ResNet and
A-Resnet) able to outperform the results obtained by
the CNN2D. Focusing on the ResNet and the proposed
A-Resnet, the performance of the latter is better than the per-
formance of the former, being able to reach higher OA values
than the original ResNet, in particular, in the classification of
the IP and SV scenes. Another interesting aspect is the AA,
which is higher in the proposed A-ResNet than in the original
ResNet, indicating that, on average, the high OA achieved
is not due to peaks in, say, very well ranked classes, but
to a generally better rank for all classes. This is also sup-
ported by the smaller standard deviation values exhibited by
our A-ResNet. In particular, we can highlight the good perfor-
mance of the proposed model in small classes, (for instance,
Alfalfa and Oats in the IP scene or Lettuce romaine 6wk in the
SV scene), where the A-ResNet is able to reach better accuracy
values than the basic ResNet. Focusing on SV and UH scenes
(in Tables VI and VII, respectively), the obtained OA values
may lead us to think that both ResNet and A-ResNet exhibit
similar behavior. However, the standard deviation of A-ResNet
is significantly smaller, indicating more robust and stable
results (as the AA scores also suggest).

In addition, some of the obtained classification maps are
shown in Figs. 5–7. It can be observed that the classification
maps obtained by pixel-based classifiers show salt-and-pepper
noise in almost the full IP data set and in some classes
of SV, particularly Vinyard-untrained and Grapes-untrained.
In the UP scene, the RF missclassifies a large amount of
pixels in the Bare Soil class, for instance. In contrast, spectral–
spatial methods greatly reduce these effects, with ResNet and
A-ResNet being able to obtain classification maps that are
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TABLE IV

CLASSIFICATION RESULTS FOR IP DATA SET USING 15% OF THE AVAILABLE LABELED DATA

TABLE V

CLASSIFICATION RESULTS FOR UP DATA SET USING 10% OF THE AVAILABLE LABELED DATA

TABLE VI

CLASSIFICATION RESULTS FOR SV DATA SET USING 10% OF THE AVAILABLE LABELED DATA

close to the original ground-truth. In addition, if we compare
the original ResNet to our A-ResNet, we can see that the
classification maps produced by the latter exhibit borders
between classes that are more sharply defined and clean than

those obtained by the original ResNet (for instance, in the
SV scene, the A-ResNet provides a better separation between
the Fallow-rough-plow field and the Vinyard-vertical-trellis
and Grapes-untrained classes).
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TABLE VII

CLASSIFICATION RESULTS FOR UH DATA SET

Fig. 5. Classification maps provided for the IP data set by different methods (see Table IV). (a) RF (75.31%). (b) MLR (77.76%). (c) SVM (84.48%).
(d) MLP (83.50%). (e) CNN1D (84.02%). (f) CNN2D (92.69%). (g) ResNet (95.94%). (h) A-ResNet (98.75%).

Fig. 6. Classification maps provided for the UP data set by different methods (see Table V). (a) RF (89.37%). (b) MLR (89.73%). (c) SVM (94.10%).
(d) MLP (94.04%). (e) CNN1D (94.61%). (f) CNN2D (98.27%). (g) ResNet (99.39%). (h) A-ResNet (99.86%).

2) Experiment 2 (Comparison Between the Advanced
Spectral–Spatial HSI Classifiers and the Proposed Method):
In order to focus, in more detail, on spectral–spatial clas-
sifiers, this experiment compares the proposed attentional
model with several spectral–spatial methods discussed in [92].
In this context, the proposed A-Resnet has been adapted to
receive the same input data as PCA-CNN, EMP-CNN, and
Gabor-CNN, extracting from a fixed training set available for
the UP scene [92] the same patches with size 27× 27× 3.

The obtained results can be observed in Table VIII. Focus-
ing on the methods described in [92], it is interesting to note
that the convolution-based ones are able to reach the highest
OA scores, being Gabor-CNN the best one in [92] (thanks to
the ability of the Gabor filter to extract and encode highly
discriminant spatial features). However, the A-ResNet is able
to outperform the OA values of the methods reported in [92],

exhibiting 92.06% OA, which is around 0.44% points higher
than the Gabor-CNN.

3) Experiment 3 (Evolution of Overall Accuracy of ResNet
and A-Resnet When Different Training Ratios Are Considered):
Focusing on residual models, the original ResNet and the
proposed A-ResNet, this experiment studies the behavior of
both models when different amounts of labeled data are avail-
able to perform the training step. The IP, UP, and SV scenes
have been considered, training the models with 5%, 10%,
and 15% of the available labeled samples for the IP scene,
and 1%, 5%, and 10% of the available labeled samples for the
UP and SV scenes, respectively.

The obtained results are graphically displayed in Fig. 8.
We can observe that, when few training samples are used
(5% for IP and 1% for UP and SV, respectively), the proposed
A-ResNet model is able to reach the best OA values with the
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Fig. 7. Classification maps provided for the SV data set by different methods (see Table VI). (a) RF (90.12%). (b) MLR (92.35%). (c) SVM (93.67%).
(d) MLP (93.73%). (e) CNN1D (95.01%). (f) CNN2D (97.94%). (g) ResNet (98.92%). (h) A-ResNet (99.85%).

TABLE VIII

CLASSIFICATION RESULTS FOR UP DATA SET WITH THE FIXED TRAINING SET USED IN [92]

Fig. 8. Evolution of the OA (Y-axis) for the ResNet and the proposed model (A-ResNet) when classifying (a) IP, (b) UP, and (c) SV hyperspectral scenes
using different training ratios.

lowest standard deviation, suggesting that the proposed method
is able to better address the problem of overfitting when few
training samples are provided to the network, obtaining robust
results. As we feed more samples to the network, the accuracy
gap between the original ResNet and the proposed A-ResNet
becomes smaller although the deviation of the attentional
network is always much smaller than that of the standard
ResNet. This indicates that the proposed method is able
to improve the standard ResNet when few training samples
are employed, achieving, at least, the same result when a
reasonable amount of training samples are used [see Fig. 8(c),
obtained using 10% of the available labeled samples for the
SV scene].

4) Experiment 4 (Comparison Between the Basic ResNet
and the Proposed Method): Motivated by the previous exper-
iment, the fourth experiment studies, in more detail, the
behavior of the basic ResNet and the proposed model
A-ResNet. The goal of this experiment is to validate the per-
formance and robustness of the proposed method with respect
to ResNet when the test data are corrupted. In remote sensing,
it is desirable to generate models that process data in a robust
manner, for instance, training and testing the classifier model
with data obtained at different temporal acquisitions, or after
different captures of the same area. These situations introduce
certain disturbances or changes in the training and testing data
to which the models must be able to respond in a reliable
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TABLE IX

OA OF ResNET AND THE PROPOSED MODEL (A-ResNeT) OVER THE IP, UP, AND SV DATA SETS
WHEN DIFFERENT NORMAL RANDOM PERTURBATIONS ARE INSERTED INTO THE DATA

Fig. 9. Degradation of the OA (Y-axis) of ResNet and the proposed model A-ResNet for (a) IP, (b) UP, (c) SV, and (d) KSC, comparing the accuracy reached
with the original data (σ = 0) and the accuracy reached with perturbed data, being σ = {0.01, 0.02, 0.03, 0.04, 0.05} (X-axis).

manner. As a result, this experiment evaluates how Resnet and
A-ResNet behave when they have to deal with perturbed data.

In order to simulate perturbed data, the original IP, UP, and
SV data sets have been modified through a random normal
distribution with mean μ = 0 and seven different standard
deviation values σ = {0.10, 0.20, 0.40, 0.80, 1.60, 3.20, 6.40}.
Neural models have been trained over the original data sets
using 15% of the available labeled samples from IP and 10%
of the available labeled samples from UP and SV. Again,
patches of 11 × 11 × 40 have been employed as the input
data. The obtained results are given in Table IX.

With slight disturbances (σ = 0.10), we can observe that
the ResNet exhibits a small decay of OA values in compar-
ison with the case that no perturbations are present in the
IP (−0.89) and UP (−0.1) data sets, while in the SV data
set, the difference is very small (−0.02), as we can observe
in Fig. 9. In turn, the A-ResNet is not significantly affected
by the introduced perturbations. For instance, in the IP scene,
it is even able to outperform the ResNet in terms of OA,
being 0.09% points better when noise is not included.

However, as the noise level increases, we can see how
the OA of the standard ResNet decreases significantly,
in particular, from σ = 1.6. Therefore, the features extracted
by the standard ResNet from these data sets are not rel-
evant or generic enough to be applied in scenarios with
perturbations. Instead of that, the performance of the proposed
models remains more stable. For instance, for the IP data set,
the A-ResNet exhibits a degradation of 2.37% points, while
the ResNet exhibits a degradation of 12.97 points. Also, in the
experiments with the UP and SV scenes, the ResNet is more
affected than the A-ResNet although the gap between the
two seems smaller. However, with greater σ values, the gap
becomes larger. This behavior can be also observed for the rest
of σ values (see Fig. 9); ResNet reaches the lowest OA and
exhibits the worse degradation of performance with perturbed
data, while the proposed model maintains a high OA and

significantly lower degradation.
The OA values in Table IX and the degradation performance

in Fig. 9 indicate that the proposed model is more robust to
perturbations in the data, achieving high OA values. Also, it is
able to extract more discriminative features from the original
training data in comparison with ResNet, being the A-ResNet
the most robust architecture for all data sets (even in the
presence of significant distortions).

V. CONCLUSION

In this paper, a new model for spatial–spectral HSI classi-
fication has been proposed by combining a DL architecture
(ResNet) and visual attention techniques. The filtering system
introduced by the visual attention model, following bottom-
up and top-down visual selections, allows for postprocessing
of the extracted data, enhancing the quality of the feature
extraction process as well as obtaining more representative
and significant features, leading to a more precise and robust
classification of HSI data.

Our experimental comparisons have been conducted using
four publicly available HSI data sets, evaluating the proposed
visual attention-driven model (A-ResNet) versus seven stan-
dard machine learning and DL classifiers and six advanced
spectral–spatial methods, revealing that the proposed networks
exhibit competitive results when compared to state-of-the-
art techniques, such as CNNs (combined with different tech-
niques) and ResNets. Also, a deeper comparison between the
ResNet and the proposed model with different amounts of
training data and perturbed data revealed that our newly pro-
posed model is able to extract more relevant, discriminative,
and complete features from HSI scenes, exhibiting robustness
to network degradation when very limited training samples
and/or highly disturbed data are considered.

As future work, we intend to improve the parameter opti-
mization mechanism of the proposed network (particularly
when very few labeled samples are available) in order to
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reduce the effect of overfitting. Also, we are planning to
combine additional visual attention techniques with other deep
models, with the aim of enhancing the quality of the extracted
features and the final classification results.
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Abstract— Advances in deep learning (DL) have allowed for the
development of more complex and powerful neural architectures.
The adoption of deep convolutional-based architectures with
residual learning [residual networks (ResNets)] has reached
the state-of-the-art performance in hyperspectral image (HSI)
classification. Traditionally, ResNets have been considered as
stacks of discrete layers, where each one obtains a hidden state
of the input data. This formulation must deal with very deep
networks, which suffer from an important data degradation as
they become deeper. Moreover, these complex models exhibit
significant requirements in terms of memory due to the amount of
parameters that need to be fine tuned. This leads to inadequate
generalization and loss of accuracy. In order to address these
issues, this article redesigns the ResNet as a continuous-time
evolving model, where hidden representations (or states) are
obtained with respect to time (understood as the depth of the
network) through the evaluation of an ordinary differential equa-
tion (ODE), which is combined with a deep neural architecture.
Our experimental results, conducted with four well-known HSI
data sets, indicate that redefining deep networks as continuous
systems through ODEs offers flexibility when processing and
classifying these kinds of remotely sensed data, achieving sig-
nificant performance even when a very few training samples are
available.

Index Terms— Deep learning (DL), hyperspectral images
(HSIs), ordinary differential equations (ODEs), residual
networks (ResNets).

Manuscript received March 14, 2019; revised August 10, 2019; accepted
October 13, 2019. Date of publication November 6, 2019; date of cur-
rent version February 26, 2020. This work was supported in part by
the Ministerio de Educación (Resolución de 26 de diciembre de 2014 y
de 19 de noviembre de 2015, de la Secretaría de Estado de Educación,
Formación Profesional y Universidades, por la que se convocan ayudas
para la formación de profesorado universitario, de los subprogramas de
Formación y de Movilidad incluidos en el Programa Estatal de Promoción
del Talento y su Empleabilidad, and en el marco del Plan Estatal de
Investigación Científica y Técnica y de Innovación 2013–2016), in part by
the Junta de Extremadura (Decreto 14/2018, de 6 de febrero, por el que
se establecen las bases reguladoras de las ayudas para la realización de
actividades de investigación y desarrollo tecnológico, and de divulgación
y de transferencia de conocimiento por los Grupos de Investigación de
Extremadura) under Grant GR18060, in part by the European Union’s Horizon
2020 Research and Innovation Programme under Grant 734541 (EOXPO-
SURE), and in part by Ministerio de Economía y Empresa (MINECO)
Project under Grant TIN2015-63646-C5-5-R. (Corresponding author:
Mercedes E. Paoletti.)

The authors are with the Hyperspectral Computing Laboratory,
Department of Technology of Computers and Communications,
Escuela Politécnica, University of Extremadura, 10003 Cáceres, Spain
(e-mail: mpaoletti@unex.es; juanmariohaut@unex.es; jplaza@unex.es;
aplaza@unex.es).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2019.2948031

I. INTRODUCTION

REMOTE sensing techniques have been widely employed
for detecting, measuring, and monitoring the physical

behavior and/or characteristics of large areas of the earth
through the acquisition and measurement of radiation emitted
or reflected by the terrestrial materials that comprise the
observed surfaces, which are captured by specific sensors
located on airborne or spaceborne platforms [1]. The inter-
pretation of the obtained measurements can be beneficial to
human activity [2], [3]. There is a wide range of remote
sensing data, where each one exhibits different spatial and
spectral properties depending on the type of employed sensor
and measured radiation. Moreover, current earth observation
missions are already collecting an extremely large volume
of remotely sensed data from satellites and airborne sys-
tems [4]. Hyperspectral images (HSIs) are collected by passive
spectrometers that measure the reflected solar radiation from
the observed areas, creating huge data cubes comprised of
hundreds of narrow and continuous spectral wavelengths. As a
result, an HSI given by X ∈ Rn1×n2×nbands is comprised of
two spatial components that determine the image’s width and
height (n1×n2) and one spectral component that indicates the
number of channels or spectral bands (nbands). As a result, each
pixel of X can be interpreted as a detailed spectral signature or
spectral vector xi ∈ Rnbands = {xi,1, . . . , xi,nbands }, which allows
for an accurate characterization of the surface materials [5].
This has attracted the attention of many researchers who
employ HSIs into a wide range of applications, including
precision agriculture [6], environment and natural resources’
management [7], mineralogy [8], forestry [9], disaster moni-
toring [10], urban planning [11], and defense applications [12],
among others.

A large variety of algorithms have been developed to
process and extract useful information from HSI data cubes.
In this regard, HSI classification methods can greatly ben-
efit from the rich spectral information contained in each
pixel xi . In fact, the classification of these images aims
to assign a single category (or label) to each pixel in the
image. In mathematical fashion, the goal of a classifier is to
approximate a mapping function of the form f (·, θ), which
depends on parameter θ , to map the pixels in the original HSI
X ⊂ Rnsamples to those labels contained in a set of categories
Y ⊂ N, i.e., f : X → Y . In the particular case of HSI
classification, the procedure consists of mapping each pixel
xi in X ≡ {x1, . . . , xnsamples} (with nsamples = n1 · n2) to

0196-2892 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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a unique numerical label of nclasses possible classes yi =
{1, . . . , nclasses} extracted from the set Y ≡ {y1, . . . , ynsamples},
creating pairs of {xi , yi }nsamples

i=1 for each spectral pixel.
Traditional HSI classification methods are based on the

analysis of the each pixel xi independently, without con-
sidering spatial information, for instance, unsupervised clus-
tering techniques, such as k-means [13], and supervised or
semisupervised methods, such as the widely used support
vector machine (SVM) [14] or multinomial logistic regression
(MLR) [15], among others [16], [17]. Artificial neural net-
works (ANNs) [18], [19] have acquired great popularity due
to their flexibility concerning learning modes (unsupervised,
supervised, and semisupervised) and available architectures
(shallow, deep, fully, or local connected). Moreover, ANNs
work as universal approximators [20], [21], being able to
extract representative features and to discover nonlinear rela-
tionships from the input data.

Advances in deep learning (DL) [22], [23] have allowed
for the implementation of deeper and more complex ANNs,
known as deep neural networks (DNNs). These networks are
comprised of groups of neurons organized into a hierarchy
of multiple nonlinear layers, which are stacked one by one.
As a result, DNNs are comprised of one input and one output
layer with several hidden layers in-between them. The original
data go through the hierarchy of layers, where a different
level of data representation is obtained at each layer. These
representations are comprised of highly expressive features
that encode complex patterns and nonlinear relationships in
the data. At the end of the network, highly abstract and
discriminative information is obtained, which can be employed
to enhance classification tasks. In the following, we briefly
review some recent DL works in the literature (focusing on
those based on convolutional and residual architectures for HSI
data classification), and then, we discuss some shortcomings
and limitations of these works and the solutions adopted in
this article.

A. Recent Trends in DL for HSI Classification

DNNs traditionally follow a biological neural model, imple-
menting a fully connected (FC) topology where all the neurons
in a layer are totally connected with all the neurons of the
previous and following layers, as in the multilayer perceptron
(MLP). In this way, each neuron applies a dot product between
the outputs of previous neurons and the connection weights,
simulating synaptic weights. The obtained result is filtered by
a threshold function, also known as nonlinear activation func-
tion, which encodes the nonlinearities of the data and triggers
(or not) the activation of a given neuron. In fact, the DNN
approaches adopt the same strategy as traditional pixelwise
classifiers. For HSI data, they take as input the spectral pixels
of the HSI data cube [18]. In this regard, spectral-based DNNs
are quite sensitive to variations in the spectral signatures.
It should be noted that HSI data are characterized by their
high intraclass variability and interclass similarity (due to per-
turbations and disturbances in the data collection process at the
spectrometer, atmospheric conditions, and so on). Also, HSI
data normally exhibit low spatial resolution, which means that

a single pixel often contains multiple materials, resulting in
mixed spectral signatures. These shortcomings, coupled with
the curse of dimensionality and the Hughes phenomenon [24]
(which establishes the need for a reasonable balance between
the number of training samples and the number of spectral
bands in order to ensure a reliable classification [25], [26]),
are important challenges to deploy the full potential of HSI
technology with traditional pixel-based DNN approaches.

A significant evolution in DL techniques was the adaptation
of biological visual cortex neurons into DNN architectures,
with the implementation of convolutional neural networks
(CNNs) [22]. Inspired by the local receptive field of such
visual cortex neurons (activated or not in the presence of
certain types of visual stimuli), CNN-based models rely on
the application of a sliding n-dimensional kernel on the input
data of each layer. This allows for the exploitation of the visual
properties of an image, learning features at certain positions
of such an image and applying these features as filters to
the rest of the image in order to obtain a feature-activation
map [27], [28]. In this sense, the contextualization provided
by the spatial components n1 × n2 of the HSI data cube
X can greatly reduce the variability of spectral samples by
interpreting the data surrounding the pixels as belonging to the
same class, which reinforces the information contained in the
target pixel, reducing also the well-known “salt and pepper”
noise of spectral classifiers.

CNN models exhibit excellent performance in HSI data
classification through the development of a wide range of
architectures from traditional spectral-based ones (CNN1D) to
spatial (CNN2D) and spectral–spatial (CNN3D) models. For
instance, Hu et al. [29] implemented a five-layer CNN1D to
classify HSI data in the spectral domain, and Yue et al. [30]
developed a CNN3D to classify HSI data taking into account
spectral–spatial information. Zhao and Du [31] exploited a
CNN2D model as a highly confident spatial feature extractor.
Chen et al. [32] reviewed CNN1D, CNN2D, and CNN3D
models for deep HSI feature extraction (FE) and classifica-
tion. In order to enhance the classification results, several
improvements have been added to the CNN architecture. For
instance, Yu et al. [33] implemented a three-layer CNN2D
model with 1× 1 kernels inspired by the network-in-network
(NIN) model [34] in order to overcome the presence of highly
correlated bands in the HSI data cube. He et al. [35] combined
the information contained in HSI-extracted covariances with a
CNN2D model. Paoletti et al. [36] presented a faster end-to-
end CNN3D that improved the classification accuracy, taking
into account the full spectral signatures contained in HSI data.

Despite the aforementioned results, CNN models still face
certain limitations related to the intrinsic characteristics of
HSI data and the (high) number of parameters and the depth
of the network. In particular, CNNs need a large amount of
training data to properly adjust their weights [37]. They also
require some variability in the data in order to extract more
features [28]. Although HSI data often exhibit a wide variety
of samples, very limited labeled data are often available due
to their high cost, which, in the end, hampers the FE process
and leads to overadjustment (overfitting) in the convolutional
model’s parameters.
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In addition, the implementation of very deep CNN models
through the stacking of successive layers has proved to be
inefficient itself [38], since a significant degradation can be
observed in both the forward propagation of the data and
the backpropagation of the gradient signal through the layers
(vanishing gradient problem) [39], [40]. To overcome these
issues, the residual learning aims to facilitate data reusability
through identity functions implemented by skip or residual
connections. Residual networks (ResNets) [38] and other
residual-based architectures (such as highway networks [41],
DenseNets [42], or ResNets of Resnets (RoRs) [43]) have
emerged as the current state-of-the-art in image process-
ing [44], allowing for the development of highly complex and
deep architectures, using hundreds to thousands of layers [45].
These techniques, aimed at enhancing the propagation of data
through the network, have been successfully adopted in several
HSI classification works [46]–[48].

However, ResNets exhibit some shortcomings in terms of
architecture optimization. In fact, residual-based models for
HSI classification are quite sensitive to minor architectural
changes, in particular, the selection of an appropriate kernel
size has a significant impact on the final classification accuracy
due to the low spatial resolution of HSI data cubes [47].
In contrast, at certain levels of depth, adding more or less
layers to the network does not impact the classification result
significantly [48]. In turn, this obviously affects the number of
parameters that must be stored and trained. The understanding
of the optimal number of parameters required by a certain
architecture (the number of layers, kernel sizes, and so on) is
quite critical, but it is often hand-crafted and adjusted by trial
and error.

B. Rethinking the ResNet Model for HSI Classification

DNNs (in general) and ResNets (in particular) have been
interpreted as a discrete sequence of L stacked layers, where
each one applies its transformation to the input data until
reaching a final classification decision, which is performed by
the last layer. This implies that the ResNet model is evaluated
at fixed intervals of “time,” defined by the layer depth. Also,
assuming that each layer has the same number of neurons
nneurons (which can be interpreted as the kernel’s size in the
convolutional architecture), the number of trainable parameters
depends directly on L, so the complexity of the network (and
its memory consumption) grows linearly with the O(L) order,
which could have an impact on the model’s overfitting. Under
the same assumption, the computational time of the inference
stage also depends on L.

The aforementioned implications provide an idea of the
importance of the model’s depth. As a result, the selection of
L must be carefully done. In fact, the main goal of this paper
is focused on two important aspects: 1) checking the effects of
the depth when L →∞ and 2) analyzing strategies to provide
the network with constant and low memory cost (in terms of
the number of parameters). In this context, the FE function
applied by each residual unit can be interpreted as the explicit
Euler discretization of a continuous-time transformation
[49], [50]. Following this interpretation, the entire ResNet

model can be described through an ordinary differential equa-
tion (ODE) [51], [52], whose evaluation at different times will
determine the model’s solution [53], [54].

With the aforementioned ideas in mind, the main contribu-
tion of this article is to redefine the traditional architecture
of the ResNet model (in the context of HSI data classifi-
cation) by means of a continuous-time vision using ODEs,
developing a residual-based DNN with a significantly reduced
number of trainable parameters (thus effectively dealing with
overfitting issues) and constant and low memory cost. These
are important advantages in the area of HSI classification.
More specifically, this article proposes, for the first time in the
literature, the implementation of a continuous-depth ResNet
with a parameterized spectral–spatial ODE in order to perform
HSI data classification.

The remainder of this article is organized as follows.
Section II introduces our newly developed model (called
hereinafter ODEnet). Section III validates the newly pro-
posed model by providing a detailed discussion of the results
obtained using four widely used HSI data sets. Finally,
Section IV concludes this article with some remarks and hints
at plausible future research lines.

II. METHODOLOGY

A. Residual Units as Discrete Steps of Blocks

DNN architectures are stacks of L hidden blocks [55]
F1–FL , where each one Fl is given by the following mapping
function:

X(l) = Fl(X(l−1), W(l), b(l)) (1)

where X(l−1) and X(l) are the input and output data, respec-
tively, and W(l) and b(l) are the weights and biases of the
lth mapping function Fl . In order to address the classification
problem f : X → Y , the DNN model assigns a classification
map Y ∈ Rnsamples to the given input X ∈ Rnsamples×nbands by
applying L sequential operations defined by (1). In this sense,
the classification function f (·, θ) can be reinterpreted as the
concatenation of the processing at each layer processing as
follows:

Y = f (X, θ) = F̂(FL(FL−1(· · · F1(X) · · · ))) (2)

where X is the original input data, Fl(·) is the mapping
function performed by the lth network’s block, and F̂(·) is
the final classification layer, while θ comprises the network’s
parameters [49]. In this regard, instead of considering the
classification mapping as a global problem, the DNN model
splits it into L mapping functions Fl , where the goal of the
classification is to learn the parameters of each Fl that better
minimize the convex loss function given by the following:

E = 1

nsamples

nsamples∑

i=1

� f (Xi , θ)− Xi �2 . (3)

If we focus on convolutional-based models, the data trans-
formation defined by (1) is tailored in an FE stage defined by
a kernel operation [36], which allows to easily combine the
spatial–contextual information with the spectral information.
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In this context, the CNN maintains the original 3-D data
structure, adding a lot of flexibility to the model and a natural
way to include the spectral–spatial information. Moreover,
the internal structure of the CNN’s layers and their operations
(based on local receptive fields) have promoted it as a highly
accurate feature extractor.

Two main parts can be observed in an end-to-end CNN
classifier network: 1) the FE stack, which obtains high-level
representations of the input data (also feature maps) and is
usually comprised of a hierarchy of convolutional, nonlinear,
and subsampling layers, among others and 2) the FC classifier,
which actually labels the data from the previously obtained
feature maps and is implemented as a standard MLP.

Focusing on the FE stack, it is usually adopted to implement
an architecture of several hierarchically stacked extraction and
detection stages, where the lth stage defines the lth mapping
function Fl , following the notation of (1). Moreover, each Fl

is usually comprised of: 1) the convolutional layer; 2) the
nonlinear layer; 3) the normalization layer; and 4) the pooling
layer, as (4) shows, although both the order and the type of
layers may vary from one CNN architecture to another (even
from one stage to another)

A(l) = (W(l) ∗k×k×q X(l−1))+ b(l) (4a)

Â(l) = A(l) −mean[A(l)]√
var[A(l)] + �

· γ + β (4b)

Ã(l) = H(Â(l)) (4c)

X(l) = Pk×k(Ã(l)). (4d)

The convolutional layer performs the basic FE task of the
model. The spectral–spatial convolutional layer of the Fl

mapping function is comprised of a group of K filters with
W(l) ∈ Rk×k×q weights and b(l) biases, being k × k × q
the local receptive field of the layer. In consequence, each
layer creates a linear kernel that slides (following a stride s)
and overlaps the input data, convolving (∗) its filters on local
patches of the data, as (4a) indicates. As a result, the obtained
output volume is comprised of K feature maps.

After the convolutional layer, it is common to include a
batch normalization layer, which imposes a Gaussian distrib-
ution on the obtained feature maps with the aim of preventing
the data degradation and vanishing gradient problems (mainly
due to the covariance shift that the data suffers). Equation (4b)
gives the regularization expression, where � is a parameter that
allows a certain numerical stability and γ and β are learnable
parameters.

Following the normalization layer, a nonlinear layer H(·)
defined by (4c) is introduced in order to extract the activation
maps from the convolutional output volume. In fact, this layer
embeds a nonlinear activation function, which encodes the
detector stage of the network [56], learning the nonlinear
representations and relationships inside the data. Many acti-
vation functions can be selected, such as the tanh, sigmoid,
or rectified linear unit (ReLU) [57], which allows a faster
training of the model due to its high computational efficiency.

Finally, the extraction and detection stage ends with the
pooling layer Pk×k(·) given by (4d), which performs a
downsampling strategy with the aim of reducing the spatial

Fig. 1. Graphical representation of the lth residual unit architecture, Fl ,
comprised of two FE and detection stages. Each stage is comprised of
normalization, nonlinear, and convolutional layers. The application of these
stages gives, as a result, the output volume G(X(l−1)), to which an identity
mapping is added at the end of the residual unit, obtaining the final residual
output volume X(l) = X(l−1) + G(X(l−1)).

dimensions of the output volume by applying, for instance,
a max, average, or sum operation on the spatial receptive field
of dimensions k × k.

Based on the CNN architecture, the success of the ResNet
model lies in the skip and residual connections, in which
grouped operation layers (i.e., convolutional, pooling, and
normalizing layers) and nonlinear activation functions com-
prise of the basic blocks for data mapping [47], as shown
in Fig. 1. These residual units allow for the development of
deeper architectures, where the inputs and outputs of each
unit are connected through a residual connection, performing
an additional identity mapping that allows to propagate the
information from previous blocks to the rest of the network.
In this context, for the lth residual unit, the FE and detection
stages given by (4) can be reformulated as follows:

A(l) = X(l−1) + G(W(l), X(l−1),B(l)) (5a)

X(l) = H(A(l)) (5b)

where G(·) comprises all the operations applied over the
residual unit’s input data, i.e., all the convolutions, poolings,
normalizations, and activations applied over X(l), being W(l)

and B(l) the weights and biases of the layers involved in the
residual block, respectively. Moreover, the additive residual
mapping function added to G(·) allows to recycle the features
obtained at the previous level of abstraction.

Following (2), the ResNet defines each mapping function Fl

through (5). In this context, the neural model can be interpreted
as a discrete sequence of L hidden units or mapping functions,
dividing the classification process into L steps, so that each
Fl defines a hidden state of the process, which becomes more
manageable, with simple and detailed steps that allow for a
more accurate final classification. However, this implies that
the quality of the model depends on its trainable parameters,
and the number of trainable parameters depends directly on L.
This has two main implications. On the one hand, the memory
consumption grows linearly [with O(L) order] and there is
an increment of training data that the model must assume in
order to properly learn the network’s parameters, avoiding the
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overfitting problem. On the other hand, although the residual
connections alleviate the aforementioned problem, each new
unit that is added to the model introduces a small error
[38], [58], which may hinder the model’s overall performance.
These issues are particularly critical when dealing with highly
variable HSI data sets.

B. Residual Units as Discrete Steps of ODEs

Our goal is to develop a residual model with constant
and low memory cost through a significant reduction of
the number of trainable parameters. We follow the premise
of traditional optimization models: solving a lot of small
steps is often better than solving fewer and more complex
ones [50]. In this sense and following (2), we propose to
implement an ResNet model for HSI data classification in
which the forward problem is comprised of infinitesimal steps,
i.e., L → ∞ [54]. Each of these steps performs (5),
which describes an explicit Euler discretization step of the
ODE [51], [52]. Below, the mathematical relationship between
ResNet models and ODEs is described in detail.

We focus on the first-order ODE expressions. Following
Euler’s solving method, any first-order ODE can be expressed
as an initial value problem (IVP) of the form:

dz(t)
dt
= f (t, z(t), θ), with z(t0) = z0 (6)

where ti is an independent variable defined in terms of time
in an observation interval {0, ..., T }, f (z(t), t, θ) is a known
and continuous function with parameter θ , and z(t) is the
unknown function that must be approximated, with initial state
z0 at time t0. In fact, the goal of any ODE function is to
recover the closest and most accurate value zi of the unknown
function z(ti ) at each observation point ti .

From a geometric point of view, knowing z(t0) = z0,
an approximation of z(ti ) = zi in any step ti can be performed
by drawing the tangent line from previous-known points as
follows:

z1 ≈ z0 + f (t0, z0, θ)(t1 − t0) (7a)

zi ≈ zi−1 + f (ti−1, zi−1, θ)(ti − ti−1) (7b)

zT ≈ zT−1 + f (tT−1, zT−1, θ)(tT − tT−1). (7c)

Generalizing the discrete steps defined above, it can be stated
that any z(ti ) can be approximated by (7b). Assuming that the
i th observation point is connected to the first one (following
the relation ti = t0 + α · i , where α is a step-size), the Euler
discretization method claims that each point ti is related to
the immediately preceding one, ti−1, through the step-size α
as follows: ti = ti−1 + α. Including this relationship in (7b),
Euler’s method gives a solution for z(ti ) as

zi = zi−1 + f (ti−1, zi−1, θ) · (��ti−1 + α −��ti−1) (8a)

zi = zi−1 + α · f (ti−1, zi−1, θ). (8b)

At this point, it is easy to observe the relationship between
the ResNet model and the first-order ODE. Focusing on (5),
we can simplify it into a more condensed form

X(l) = X(l−1) + G(X(l−1), θl). (9)

The similarities between (8b) and (9) are evident. In fact,
(9) defines an explicit Euler discretization step of the first-
order ODE, where the step size is set to α = 1 and the known
function is implemented by the extraction and detection
stages G(·) of the residual unit, being parameterized by the
weights and biases of the layers that comprise the residual
unit θl = (W(l),B(l)). In other words, the ODE function is,
in fact, a CNN.

Following this intuition, we can replace the discrete
block-by-block performance of a ResNet model by a
continuous-time ODE function. In particular, we assume a
residual model with L → ∞ equal residual units. In this
sense, each mapping function Fl has to perform the same
extraction and detection stages in G(·), so each unit has the
same number of parameters θ and works in the same feature
space F1, . . . , FL ∈ Rn̂1×n̂2×n̂3 , where n̂1 × n̂2 × n̂3 are the
spatial–spectral dimensions of the feature maps.

In this way, the successive transformations given by (2),
F1, . . . , FL , can be interpreted as the continuous mapping
function F(t) evaluated at different times (with a relationship
between layers and time). So, at the i th observation time,
we can obtain F(ti ) = Xi . As a result, the residual model
can be reformulated as the ODE in (10b), which gives the
discretization step of Euler’s method and the expression of
the first-order ODE

Xi = Xi−1 + G(ti−1, Xi−1, θ) (10a)

where
dF(t)

dt
= G(t, F(t), θ), with F(t0) = X0. (10b)

As it can be observed, the ODE is implemented by the
neural network defined by G(·) and parameterized by θ .

C. Proposed ODEnet for HSI Classification

We propose, for the first time in the literature, to reinterpret
the ResNet model (for HSI data classification) as a continuous
transformation given by the first-order ODE described in
(10b). Fig. 2 gives a general overview of the proposed ODEnet,
which receives as input the HSI data cube with dimensions
X ∈ Rd×d×nbands . In fact, the model is fed with hyperspectral
patches cropped from the original HSI cube, comprised of
d × d pixels and nbands spectral bands, where the label
corresponds to the central pixel of the patch. Also, in order
to take advantage of border pixels, a mechanism for mirroring
the image edges has been implemented [36].

The proposed network architecture is divided into the FE
layers and the final classification layers. Focusing on the FE
layers, they are grouped into three categories: 1) FE head;
2) FE body; and 3) FE tail. The FE head performs a downsam-
pling of the data, reducing noise, and cleaning the information
contained in the input. It is comprised of a convolutional layer
F1 and a residual unit F2. F1 prepares the input data, extracting
the initial features from the HSI cube, which are fundamental
to the performance of the rest of the layers. During the training
process, these features will become more and more robust and
discriminative, being decisive for the final classification. F2
has been implemented following the preactivation architecture
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Fig. 2. Architecture of the proposed ODEnet for HSI data classification.
The feature extractor part is comprised of three well-differentiated parts: 1) a
preprocessing step that filters the spatial–spectral noise and extracts low-level
feature representations; 2) the ODE solver that evaluates the function G(·)
defined by a neural network; and 3) the ODE solver’s output, after being
refined, is employed to perform the final classification, implemented by two
FC layers.

proposed in [45], performing data downsampling, and it is
comprised of two FE and detection stages with normalization,
nonlinear, and convolutional layers, adding a convolutional
layer on the skip connection to maintain the data shape.

The obtained features are sent to the FE body, which is
implemented by a continuous-time ResNet. In this context,
the ODE implemented by (10b) has been parameterized by
a CNN model. As Fig. 2 shows, this model follows the
preactivation architecture [45] and has three stages, where
each one is comprised of normalization, nonlinear, and con-
volutional layers (stages 1 and 2), and a normalization layer
(stage 3). This ODE is solved from some initial time t0 to
some ending time tT , creating an integration time interval
[0, T ]. Furthermore, during each forward pass, the traditional
discrete-layer execution of the model is eventually replaced
by L̂ evaluations of (10b), performed by a black-box solver in
the interval [0, T ], which receives as the initial condition X0
the output of F2, the known function G(·) and its parameters
θ , in addition to the integration time interval, and a tolerance
threshold of the estimated error, tol

F(tT ) = XT = ODEsolver(X0,G, θ, [t0, tT ], tol). (11)

Equation (11) can be performed by any off-the-shelf ODE
solver. There is a great variety of methods for this purpose,
grouped in different categories depending on their internal
characteristics and working modes [59], being some of the
methods framed within the most well-known Runge–Kutta
family, which are as follows.

1) Forward Euler: This is the most popular numerical
explicit method for solving the first-order ODEs. It is
also the simplest method to implement, where the new
states are obtained through previously known ones by
the intersection of tangent lines, as (8) shows. Given
the first-order ODE of (6) and using α as the step size,
the approximation error of Euler’s discretization method
will be proportional to O(α2).

2) Explicit Midpoint Method also Known as the Modified
Euler method: Given (6), the evaluations are made

at α/2, so this method determines the value z(ti ) = zi

as the following approximation:

zi = zi−1 + α · f
(

ti−1 + α

2
, zi−1 + α

2
· k1

)
(13a)

k1 = f (ti−1, zi−1) (13b)

This method reduces the estimation error when Euler’s
step size is too high and the tangent needs to be
elongated to find the intersection point.

3) Fourth-Order Runge–Kutta (RK4) Method: This is the
most widely used method of the Runge–Kutta family.
Inspired by the midpoint method, the basic idea is that,
given two equidistant points ti = ti−1 + α, the function
z(ti ) = zi can be approximated as the sum of the
previously known value and the weighted average of s
slopes [60]

zi = zi−1 +
s∑

n=1

bn, kn (14a)

k1 = α f (ti−1, zi−1) (14b)

kn = α f

(
ti−1 + cnα, zi−1 +

n−1∑

n̂=1

an,n̂kn̂

)
(14c)

where an,n̂ , bn , and cn are weighted coefficients. In this
sense, given (6), the RK4 method determines the value
at ti as an approximation of the previously known zi−1
and the weighted average of four increments: (k1+2k2+
2k3+k4)/6, which are calculated on certain points of the
slope defined by f (z(t), t, θ), in particular, the starting,
ending, and midpoints [61]

zi = zi−1 · 1

6
(k1 + 2 · k2 + 2 · k3 + k4) (15a)

k1 = α f (ti−1, zi−1) (15b)

k2 = α f

(
ti−1 + α

2
, zi−1 + k1

2

)
(15c)

k3 = α f

(
ti−1 + α

2
, zi−1 + k2

2

)
(15d)

k4 = α f (ti−1 + α, zi−1 + k3) . (15e)

Following (15), the approximation error is proportional
to O(α4), being more precise than the two previous
methods.

4) Dormand-Prince Method (DOPRI5): This is an explicit
and adaptive Runge–Kutta method to calculate the
fourth- and fifth-order solutions. In fact, following (14),
it calculates seven slopes: k1–k7, which are employed
to calculate two approximations of z(ti ) = zi by two
different linear combinations. Equation (12a), as shown
at the bottom of the next page, gives the first approxi-
mation, with O(α4) order, while (12b) gives the second
approximation, with O(α5) order. An interesting aspect
of the DOPRI5 solver is its ability to adapt the step size
α to keep the estimated error |ẑi−zi | below a predefined
threshold. The updating of the optimal step size αopt is
obtained as

s =
(

tol · α
2|ẑi − zi |

) 1
5

(16a)

αopt = s · α (16b)
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TABLE I

PROPOSED NETWORK TOPOLOGY

where tol defines the tolerance level, which provides
robustness and reliability to the model.

In addition to obtaining the corresponding state XT = F(tT )
at tT (forward-propagation), the ODEsolver should optimize
the network’s parameters associated with the differential equa-
tion G(t, F(t), θ) by backpropagating the internal error signal
Eode(·) defined by the following expression:

Eode(F(tT )) = E

(
F(t0)+

∫ tT

t0
G(t, F(t), θ)dt

)
. (17)

This optimization can be implemented by two methods:
1) traditional integration through a Runge–Kutta integrator,
for instance, or 2) employing the adjoint method [54], [62].
The first one directly integrates the operations of the forward
pass and still presents an important memory requirement in
the sense that, for L̂ evaluations, the memory cost grows to
the order of O(L̂). However, the adjoint method allows to
optimize the parameters of G(·) while significantly reducing
their management, keeping constant the memory cost in the
order O(1) [54].

Finally, the FE-layers end with the FE tail, which receives
XT , the estimated output of the ODEsolver at evaluation
time tT , and performs a final processing. This entails an
FE and detection stages, denoted as F3, which comprises
normalization, nonlinear, and average pooling layers. The
obtained feature maps are then reshaped and sent to the
classifier, which has been implemented as an MLP with two
FC layers: F4 and F5, where the last one produces the final
classification.

Table I gives the topology details of the proposed ODEnet.
Moreover, our ODEnet model has been trained by the sto-
chastic gradient descend (SGD) optimizer to minimize the
classification loss given by (3), with input patches of 11× 11,
using 160 epochs and 0.1 as the learning rate, taking into
account a momentum of 0.9 and learning rate decay, and a
batch size of 128, while the ODEsolver is implemented via
the DOPRI5 solver with a tolerance fixed to tol = 1e− 3 and
an integration time interval of [0, 1], which directly controls
the number of evaluations L̂ of the model by obtaining the
optimal step size α.

zi = zi−1 + 35k1

384
+��0k2 + 500k3

1113

125k4

192
− 2187k5

6784
+ 11k6

84
+��0k7 (12a)

ẑi = zi−1 + 5179k1

57600
+��0k2 + 7571k3

16695

393k4

640
− 92097k5

339200
+ 187k6

2100
+ k7

40
(12b)

k1 = α f (ti−1, zi−1) (12c)

k2 = α f

(
ti−1 + α

5
, zi−1 + k1

5

)
(12d)

k3 = α f

(
ti−1 + 3α

10
, zi−1 + 3k1

40
+ 9k2

40

)
(12e)

k4 = α f

(
ti−1 + 4α

5
, zi−1 + 44k1

45
− 56k2

15
+ 32k3

9

)
(12f)

k5 = α f

(
ti−1 + 8α

9
, zi−1 + 19372k1

6561
− 25360k2

2187
+ 64448k3

6561
− 212k4

729

)
(12g)

k6 = α f

(
ti−1 + α, zi−1 + 9017k1

3168
− 355k2

33
− 46732k3

5247
+ 49k4

176
− 5103k5

18656

)
(12h)

k7 = α f

(
ti−1 + α, zi−1 + 35k1

384
+��0k2 + 500k3

1113

125k4

192
− 2187k5

6784
+ 11k6

84

)
(12i)
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Fig. 3. Number of available labeled samples in the IP, UP, SV, and KSC HSI data sets.

III. EXPERIMENTAL RESULTS

A. Experimental Environment

In order to study the performance of the proposed ODEnet
for HSI classification, an implementation has been developed
and tested on a hardware environment with a sixth-generation
Intel Core i7-6700 K processor with 8M of Cache and up
to 4.20 GHz (four cores/eight-way multitask processing),
installed over an ASUS Z170 pro-gaming motherboard. The
available memory is 40 GB of DDR4 RAM with serial speed
of 2400 MHz and a Toshiba DT01ACA HDD with 7200 RPM
and 2 TB of storage capacity. Also, a graphic processing
unit (GPU) NVIDIA GeForce GTX 1080 with 8-GB GDDR5X
of video memory and 10 Gb/s of memory frequency is
available. In order to provide an efficient implementation,
the proposed model has been parallelized over the GPU using
CUDA 9.0 and cuDNN 7.1.1 language over the Pytorch
framework, with Ubuntu 18.04.1× 64 as the operating system.

B. Hyperspectral Data Sets

Fig. 3 presents the four real HSI data sets that have
been considered in our experiments: Indian Pines (IP), Sali-
nas Valley (SV), and Kennedy Space Center (KSC) scenes,
acquired by the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) sensor [5], and the University of Pavia (UP)
scene, captured by the Reflective Optics System Imaging

Spectrometer (ROSIS) sensor [63]. A detailed description of
these images is provided in the following.

1) The IP scene comprises an area with different agri-
cultural fields in Northwestern Indiana, USA, imaged
during a flying campaign of the AVIRIS sensor in 1992.
The scene contains 145× 145 samples, where each one
comprises 20 m, and the spectral information consists
of 200 bands in the wavelength range from 0.4 to
2.5 μm, after removing 24 noisy and corrupted bands.
As it can be observed in Fig. 3, the ground truth of the
IP scene contains a total of 16 different classes.

2) The UP image was acquired in 2001 by the ROSIS
sensor over the UP, Northern Italy, capturing an urban
area of 610 × 340 pixels, where each one comprises
1.3 m, and with spectral (103 bands, after elimination
of noisy and corrupted bands) in the wavelength range
from 0.43 to 0.86 μm. The number of different classes
contained in the UP scene is nine.

3) The SV image was captured during a flying campaign
of the AVIRIS sensor in 1998 over the agricultural
area described as SV in CA, USA. The data com-
prise 512 × 217 pixels with the spatial resolution of
3.7 m/pixel and 200 spectral bands in the range from
0.4 to 2.5 μm (200 bands, after elimination of the
noisiest bands). The available ground truth for the SV
scene contains 16 classes.
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4) Finally, the KSC scene was also gathered by the AVIRIS
instrument in 1996 over the KSC in FL, USA. In this
scene, 512 × 614 pixels were obtained with the spatial
resolution of 20 m/pixel. The data comprises 176 spec-
tral bands in the range from 0.4 to 2.5 μm after the
removal of noisy bands. The available ground truth for
this scene comprises 13 different classes.

C. Experimental Setting

To evaluate the classification performance of the proposed
ODEnet for HSI classification, three widely used quantitative
metrics have been considered: the overall accuracy (OA),
average accuracy (AA), and Kappa coefficient. Moreover,
the number of model’s parameters and execution times has
also been measured to determine the volume of data to be
trained and the computational cost. In this regard, with the aim
of providing a complete and detailed experimentation, several
experiments have been carried out, which are as follows.

1) Our first experiment evaluates the performance of the
proposed ODEnet by implementing it with different
ODEsolvers, in particular, forward Euler (EULER),
explicit midpoint (MIDPOINT), RK4, and DOPRI5. For
this experiment, the IP data set has been considered,
selecting randomly 10% of the available labeled samples
for training and using the remaining 90% of the samples
for testing, setting the tolerance threshold to tol = 1e−3.
Each experiment has been executed ten times, and the
average and standard deviations have been reported.

2) Our second experiment focuses on the DOPRI5 solver
due to its ability to adapt the step size α, adapting,
in turn, the number of evaluations L̂ contained in the
defined integration time interval [t0, tT ] to the com-
plexity of the function, as opposed to the EULER,
MIDPOINT, and RK4 methods that set a fixed size
for α, making the same number of evaluations in each
step. In this regard, our second experiment analyzes the
behavior of the DOPRI5 solver with different tolerance
thresholds, in particular: tol = {1e − 1, 1e − 2, 1e − 3
1e − 4, 1e − 5}. For this purpose, the OA values,
the number of evaluations during the forward and back-
ward steps, and the training execution times have been
measured. Again, in this experiment, we randomly select
10% of the available labeled samples of the IP data set
for training and use the remaining 90% for testing. Each
experiment is executed ten times and the average and
standard deviations are reported.

3) Once the model’s behavior has been evaluated with
different solvers and tolerance levels, our third exper-
iment performs several comparisons between the pro-
posed ODEnet and the traditional ResNet model for
spectral–spatial HSI data classification. In this context,
this experiment compares the robustness of the models,
analyzing their performance based on the amount of
available training data, the number of parameters used
by each model, and the evolution of the accuracy in
each epoch. For a fair comparison, the ResNet has been
implemented in the same way as the ODEnet, using the

topology in Table I, and changing the ODEsolver by six
residual units comprised of exactly the same stages as
the proposed ODEnet’s FE body, but adding the corre-
sponding residual connections. Moreover, the proposed
ODEnet has been implemented with the DOPRI5 solver,
employing Runge–Kutta integration and adjoint methods
and a tolerance threshold of 1e− 3. These models have
been tested with all the available scenes. For the IP
and KSC scenes, we have randomly selected 5%, 10%,
and 15% of the available labeled samples for training
and used the remaining samples for testing. The fact
that we consider larger training percentages for these
two images is due to the low spatial resolution and
highly mixed nature of these scenes, which exhibit high
intraclass variability. In turn, for the UP and SV scenes
(which exhibit much larger spatial resolution), we have
randomly selected 1%, 5%, and 10% of the available
labeled samples for training, using the remaining sam-
ples for testing. In all the cases, we have executed
each experiment ten times and the average and standard
deviations are reported.

4) The fourth experiment compares the behavior of the
proposed ODEnet models and the ResNet depending on
different network configurations, in particular, the spatial
windows’ size of the network’s input data and the depth
of the convolutional filters. In this sense, the proposed
models have been implemented with DOPRI5 during
the forward pass, while employing both Runge–Kutta
integrator and the adjoint method during the backward
step. For each experiment, the 10% of IP and KSC and
the 5% of UP and SV data sets have been considered to
perform the training of the models.
Regarding the first experiment, it compares the perfor-
mance of the neural models when different amounts of
spatial information confirm the network’s input data.
In this context, different window sizes have been con-
sidered, in particular input patches of 5 × 5, 7 × 7,
9× 9, 11× 11, 13× 13, and 15× 15 pixels have been
tested. Separately, the second experiment compares the
networks’ behavior when the number of convolutional
filters grows. In this regard, convolutional layers have
been implemented with 8, 16, 32, 64, and 128 filters.

5) Our last experiment conducts a comparison of the pro-
posed ODEnet with other widely used HSI classifiers.
In this context, eight different classification methods
have been selected to conduct the experimental valida-
tion. Specifically, three pixelwise classifiers (MLR, SVM
with radial basis function kernel, and MLP), one deep
spatial classifier (CNN2D), and three spectral–spatial
deep architectures (CNN3D, ResNet, and the proposed
ODEnet) have been considered. In this experiment,
we have randomly selected 15% of the available labeled
data from the IP and KSC scenes and used the remaining
85% of the labeled data for testing. Considering the
higher spatial resolution of the UP and SV scenes,
we have randomly selected 10% of the available labeled
samples for these scenes and used the remaining 90%
for testing. As in the previous experiments, we repeated
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Fig. 4. OA values (and corresponding standard deviations) obtained by the
proposed method (implemented with four different solvers with Runge–Kutta
integration and adjoint methods) for the IP scene.

each experiment ten times and report the average and
standard deviations. Moreover, for the spatial (CNN2D)
and the spectral–spatial (CNN3D, ResNet, and ODEnet)
methods, the original HSI scene has been cropped into
patches of 11×11. In the case of the CNN2D, principal
component analysis (PCA) has been used to reduce
the number of spectral bands to a single principal
component. All the hyperparameters of the considered
methods have been optimally fixed to obtain the best
possible performance for each method.

D. Experiment 1: Testing Different ODEsolvers

The performance of the proposed ODEnet depends on
two main aspects: 1) the solver that performs the forward
evaluation and 2) the backpropagation method that implements
the reverse-mode differentiation. In this experiment, the fixed-
α solvers: EULER, MIDPOINT, and RK4, and the adaptive
solver: DOPRI5 have been compared using the IP data set,
testing each one with Runge–Kutta integration (simply referred
to ODEnet hereinafter) and the adjoint method (ODEnetAdj
hereinafter).

Fig. 4 gives the obtained OA results and the standard
deviations for each considered model. As a general comment,
it should be noted that all methods achieve an OA greater
than 94% with small differences between them. Specifically,
the difference between the implementation of each solver with
Runge–Kutta integration and adjoint method is very small,
achieving very similar results.

If we compare the fixed-α solvers (EULER, MIDPOINT,
and RK4) with the adaptive DOPRI5 solver, it can be observed
that DOPRI5 reaches the best OA values for both back-
propagation methods, Runge–Kutta integration, and adjoint,
exceeding 95% OA with very low standard deviation, due to
its capability of adapting the evaluations to the problem’s com-
plexity. Furthermore, MIDPOINT and RK4 exhibit the worse
OA scores when implemented using Runge–Kutta integration
and adjoint methods, respectively. In particular, the MID-
POINT method implemented with Runge–Kutta integration
exhibits the highest standard deviation, because the adopted
approximation strategy performed by calculating the midpoint

of the slope is not the most appropriate for complex data such
as HSI scenes.

E. Experiment 2: Testing Different Tolerance Thresholds for
DOPRI5 Solver

The DOPRI5 solver is able to adapt the step size α that
controls the number of evaluation points (L̂) carried out
inside the integration time interval [t0, tT ], providing a flexible
mechanism to adapt the ODE resolution to the complexity of
the considered HSI data. In this sense, five different values for
the tolerance threshold have been considered: {1e− 1, 1e− 2,
1e− 3 1e − 4, 1e − 5}.

Fig. 5 shows the obtained results, comparing the obtained
OA values [see Fig. 5(a)], the training runtimes [see Fig. 5(b)],
and the number of evaluations performed during the forward
and backward steps (for each tolerance value) [see Fig. 5(c)].
If we focus on Fig. 5(a), it can be observed that the tolerance
threshold does not have a relevant impact on the OA values
in the sense that the differences are very small and the slight
variations are mainly due to the random procedure used for
the selection of training samples.

However, if we focus on Fig. 5(b), it can be clearly
observed that, for lower tolerances, the execution times grad-
ually increase, being the implementations with DOPRI5 and
adjoint method the slowest ones. This is due to the number
of evaluations L̂ that need to be carried out both in the
forward evaluations and the backward propagation. To further
investigate this issue, Fig. 5(c) focuses on the DOPRI5 solver
implementation with the adjoint method. In general, the num-
ber of forward and backward evaluations, in this case, is high
in the early epochs with the aim of adjusting them to minimize
the approximation error, descending abruptly until the number
becomes stable in subsequent epochs. In addition, for lower
tolerances, it can be observed that the number of evaluations is
higher than the tolerance values of 1e−1 and 1e−2, where the
difference is minimal. With the aforementioned observations in
mind, we consider a tolerance of 1e−3 as a good choice, in the
sense that it provides a good balance between performance
and training times, together with a sufficiently high number
of evaluations.

F. Experiment 3: Comparing ODEnet With ResNet

In this experiment, we illustrate the benefit of implementing
a ResNet-inspired model as a continuous function defined
by an ODE. Fig. 6 shows the OA evolution of the pro-
posed ODEnet when different amounts of training samples
are available. In general, the proposed method, implemented
either with DOPRI5 and Runge–Kutta integrator (ODEnet) or
with the adjoint method (ODEnetAdj), exhibits the best OA
results for all the considered HSI scenes, regardless of the
training percentage employed. The differences between our
ODEnet/ODEnetAdj models and the ResNet become particu-
larly evident when a very few training samples are available
with the proposed models exhibiting the most robust results.
Again, the observable differences between the Runge–Kutta
integrator and the adjoint method are quite small, being the
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Fig. 5. Performance of ODEnet (on the IP scene) with the DOPRI5 solver, using Runge–Kutta integration and adjoint methods, considering different tolerance
values. Specifically, we analyze the impact on (a) OA, (b) training runtimes, and (c) number of evaluations per epoch during the forward and backward steps
of the DOPRI5 solver implemented with the adjoint method.

Fig. 6. Evolution of the OA reached by ResNet (blue), the proposed ODEnet with the DOPRI5 solver and Runge–Kutta integration (orange), and the proposed
ODEnet with the DOPRI5 solver and adjoint method (green), considering different amounts of training data. We report the results obtained for (a) IP, (b) UP,
(c) SV, and (d) KSC scenes.

Fig. 7. Evolution of the OA reached by ResNet (blue), the proposed ODEnet with the DOPRI5 solver and Runge–Kutta integration (orange), and the proposed
ODEnet with the DOPRI5 solver and adjoint method (green) at different epochs. We report the results obtained for (a) IP, (b) UP, (c) SV, and (d) KSC scenes.

adjoint method better for KSC and SV scenes with low training
percentages.

The aforementioned results clearly illustrate the impact that
the overfitting of learnable parameters has on the ResNet
model, which needs more training data to achieve the same
performance as our ODEnet models. Moreover, Fig. 7 shows
that this overfitting problem happens at early epochs of the
classifiers. Specifically, it can be observed in this figure how
the OA obtained by ODEnet increases faster than that achieved
by ResNet in the earliest epochs, in particular when complex
scenes (such as IP and KSC) are classified.

These observed benefits confirm the following introspec-
tions: the ability of the DOPRI5 solver to adapt the model’s
learning to the complexity of the problem and the significant
reduction that can be achieved in terms of the required number
of parameters. The latter important benefit is quantitatively

TABLE II

NUMBER OF TRAINABLE PARAMETERS FOR THE STANDARD RESNET

MODEL AND THE PROPOSED METHOD IMPLEMENTED WITH DOPRI5
SOLVER AND RUNGE–KUTTA INTEGRATION (ODENET)

AND WITH THE ADJOINT METHOD (ODENETADJ)

measured in Table II, where the number of required model
parameters is displayed for each HSI data set. Specifically,
the proposed ODEnet and ODEnetAdj models are able to
overcome the performance of the traditional ResNet model by
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Fig. 8. Evolution of the OA reached by ResNet (blue), the proposed ODEnet the with DOPRI5 solver and Runge–Kutta integration (orange), and the proposed
ODEnet with the DOPRI5 solver and adjoint method (green), considering different spatial window sizes. We report the results obtained for (a) IP, (b) UP,
(c) SV, and (d) KSC scenes.

Fig. 9. Evolution of the OA reached by ResNet (blue), the proposed ODEnet with the DOPRI5 solver and Runge–Kutta integration (orange), and the proposed
ODEnet with the DOPRI5 solver and adjoint method (green), considering different numbers of filters in each block. We report the results obtained for (a) IP,
(b) UP, (c) SV, and (d) KSC scenes.

Fig. 10. Classification maps obtained for the IP scene by different classifiers (see Table III). Note that the overall classification accuracies are shown in
brackets and the best result is highlighted in bold font. (a) MLR (78.19%). (b) SVM (83.63%). (c) MLP (84.03%). (d) CNN2D (87.16%). (e) CNN3D
(95.45%). (f) ResNet (96.55%). (g) ODEnet (97.61%). (h) ODEnetAdj (97.55%).

Fig. 11. Classification maps obtained for the UP scene by different classifiers (see Table IV). Note that the overall classification accuracies are shown
in brackets and the best result is highlighted in bold font. (a) MLR (89.89%). (b) SVM (94.40%). (c) MLP (94.39%). (d) CNN2D (96.02%). (e) CNN3D
(99.02%). (f) ResNet (99.54%). (g) ODEnet (99.67%). (h) ODEnetAdj (99.69%).

using less than half of its training parameters, avoiding quite
effectively the overfitting problem.

G. Experiment 4: Testing Different Network Configurations

In this experiment, we report the results obtained by
the proposed ODEnet considering different configurations of
the model, in particular, the initial amount of information
employed by the ODEnet, ODEnetAdj, and ResNet by testing

different spatial sizes of the models’ input data patch, and the
number of features extracted and processed by the convolu-
tional layers.

On the one hand, Fig. 8 shows the obtained results in terms
of OA considering input patches comprised of 5 × 5, 7 × 7,
9×9, 11×11, 13×13, and 15×15 pixels. As we can observe,
the proposed models exhibit very similar behaviors, being able
to outperform the accuracy reached by the ResNet in every
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Fig. 12. Classification maps obtained for the SV scene by different classifiers (see Table V). Note that the overall classification accuracies are shown
in brackets and the best result is highlighted in bold font. (a) MLR (92.37%). (b) SVM (93.65%). (c) MLP (93.15%). (d) CNN2D (95.27%). (e) CNN3D
(98.45%). (f) ResNet (99.28%). (g) ODEnet (99.42%). (h) ODEnetAdj (99.41%).

Fig. 13. Classification maps obtained for the KSC scene by different classifiers (see Table VI). Note that the overall classification accuracies are shown
in brackets and the best result is highlighted in bold font. (a) MLR (92.74%). (b) SVM (92.92%). (c) MLP (90.22%). (d) CNN2D (66.04%). (e) CNN3D
(98.10%). (f) ResNet (98.39%). (g) ODEnet (99.24%). (h) ODEnetAdj (99.03%).

TABLE III

CLASSIFICATION RESULTS OBTAINED BY DIFFERENT METHODS FOR THE IP DATA SET, USING 15% OF THE
AVAILABLE LABELED DATA FOR TRAINING AND 11× 11 INPUT SPATIAL PATCH SIZE

scene, in particular when the spatial windows are very small.
Moreover, the improvement in the OA’s values increases as the
spatial windows’ size increases. However, while the difference,
in terms of accuracy, between small spatial windows is very
pronounced (for instance, between windows of 5 × 5 and
9 × 9 pixels, there are approximately ten percentage points
of improvement in IP and KSC and four percentage points
in UP and SV), between bigger windows, the difference is
noticeably smaller (for instance, between windows of 11× 11
and 15 × 15). In this sense, as the amount of information

to be processed increases with the dimensions of the input
data patch, increasing also both memory requirements and
computation times, we consider paths of 11× 11 pixels as an
optimal input data size, with a good ratio between performance
and computing time.

On the other hand, Fig. 9 shows the obtained results in
terms of OA too, considering input patches of 11 × 11 and
convolutional layers with 8, 16, 32, 64, and 128 filters.
As we can observe for each data set, the OA increases
its value as more filters are added. In particular, the best
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TABLE IV

CLASSIFICATION RESULTS OBTAINED BY DIFFERENT METHODS FOR THE UP DATA SET, USING 10% OF THE
AVAILABLE LABELED DATA FOR TRAINING AND 11× 11 INPUT SPATIAL PATCH SIZE

TABLE V

CLASSIFICATION RESULTS OBTAINED BY DIFFERENT METHODS FOR THE SV DATA SET, USING 10% OF THE

AVAILABLE LABELED DATA FOR TRAINING AND 11× 11 INPUT SPATIAL PATCH SIZE

OA is reached with 64 filters, remaining quite similar with
128 filters. Actually, the OA is improved very slightly with
128 filters; however, the computational cost of this network’s
configuration is considerably higher than with 64 filters. For
this reason, we consider 64 to be the optimum number of filters
for each convolutional layer.

H. Experiment 5: Testing Different HSI Classifiers

Our final experiment compares our proposed ODEnet mod-
els with some widely used classifiers available in the HSI clas-
sification literature. Fig. 10 (IP), Fig. 11 (UP), Fig. 12 (SV),
and Fig. 13 (KSC) show the classification maps obtained by
each considered method, while Table III (IP), Table IV (UP),
Table V (SV), and Table VI (KSC) give the individual class
accuracies and the global OA, AA, and Kappa values obtained
by each classifier with the corresponding standard deviations,
respectively, including also the obtained runtimes of each
experiment.

As a general comment, the improvement introduced by
spatial and spectral–spatial models over pixelwise classifiers
is remarkable. For instance, CNN2D introduces around 2%
points of improvement in OA when compared to the most
accurate spectral model, i.e., the SVM (for UP and SV)
and the MLP (for IP), with an exception in the KSC scene,
in which the spatial information appears to be not enough
discriminatory to carry out an accurate classification, as we
can observe in Table VI and the corresponding classification
maps in Fig. 13. The limitations of pixelwise and spatial-based
classifiers can be easily overcome by spectral–spatial classi-
fiers, where the combination of spectral and spatial–contextual
information is able to significantly reduce the uncertainty
and data variability of HSI pixels, as it can be observed on
complex data sets, such as IP (see Table III) and, particularly,
KSC (see Table VI). This results in better classification maps,
where the “salt and pepper” classification noise is practically
removed. However, it is interesting to focus on the classifica-
tion maps produced by the spatial–spectral CNN3D classifier
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TABLE VI

CLASSIFICATION RESULTS OBTAINED BY DIFFERENT METHODS FOR THE KSC DATA SET, USING 15% OF THE
AVAILABLE LABELED DATA FOR TRAINING AND 11× 11 INPUT SPATIAL PATCH SIZE

(for instance in Figs. 11 and 13), where multiple patches have
been wrongly labeled, obtaining visually noisy classification
maps. This can be observed in the lower leftmost corner of
the KSC scene (see Fig. 13), where the vast majority of
pixels have been missclassified as Salt-marsh. These defi-
ciencies are highlighted by the differences between the OA
and AA values, where the AA is several percentual points
lower, indicating the existence of an overfitting problem (see
Tables III and VI).

Adding residual learning via ResNet can improve the accu-
racy results, reducing the gap between the OA and AA on
some HSI data sets, such as UP (see Table IV), SV (see
Table V), and KSC (see Table VI), and improving the visual
appearance of the corresponding classification maps. However,
this gap between the OA and AA scores cannot be reduced
by ResNet in the IP scene (in fact, for this scene, the gap
becomes larger). In turn, the proposed ODEnet models are
able to reach very similar OA, AA, and Kappa values in all
the cases, exhibiting very good consistency in terms of model
performance with higher robustness on the obtained results.
As we can observe, the proposed method is able to reach the
best accuracy scores in all the considered data sets, visually
clean classification maps, where the number of missclassified
patches is drastically reduced.

If we now focus on the execution times reported in Table III
(IP), Table IV (UP), Table V (SV), and Table VI (KSC), it can
be observed that pixelwise methods are faster than spatial
and spectral–spatial ones, being SVM the fastest classifier.
The computational cost of the proposed ODEnet model is
higher when compared to the other deep models (CNN2D,
CNN3D, and ResNet), mainly due to the great optimization
performed by the frameworks in which these classifiers have
been implemented. In this regard, it is necessary to conduct
an effort to optimize the code of the ODEsolver in order
to provide a more efficient version, although (as shown in
our second experiment) the use of higher tolerance values
allows for a significant reduction of computation times.

IV. CONCLUSION AND FUTURE WORK

This article proposes, for the first time in the literature,
a redefinition of the traditional discrete-layer ResNet model as
a continuous-time evolving model through the implementation
of an ODE parameterized by a neural network with the aim
of improving the classification of remotely sensed HSI data
by producing better and more robust feature representations.

The obtained experimental results, conducted using four
widely used HSI data sets, demonstrate the significant benefits
and improvements introduced by the proposed method, which
are able to reach consistently higher accuracy values in com-
parison with the traditional ResNet model, at the same time it
significantly reduces the number of parameters that need to be
used and fine-tuned, providing a highly efficient mechanism
to address the problems of overfitting and data degradation
in very deep networks. Moreover, the integration of adaptive
solvers, such as DOPRI5, offers great flexibility when process-
ing and classifying complex HSI scenes, allowing the model
to obtain highly refined features for classification purposes.

Encouraged by the good results obtained in terms of model’s
accuracy, in the future, we will develop an optimized and par-
allelized implementation of the proposed ODEnet, exploring
other solver algorithms in order to reduce the computational
complexity.
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Abstract— Convolutional neural networks (CNNs) have
recently exhibited an excellent performance in hyperspectral
image classification tasks. However, the straightforward CNN-
based network architecture still finds obstacles when effectively
exploiting the relationships between hyperspectral imaging (HSI)
features in the spectral–spatial domain, which is a key factor
to deal with the high level of complexity present in remotely
sensed HSI data. Despite the fact that deeper architectures
try to mitigate these limitations, they also find challenges with
the convergence of the network parameters, which eventually
limit the classification performance under highly demanding
scenarios. In this paper, we propose a new CNN architecture
based on spectral–spatial capsule networks in order to achieve a
highly accurate classification of HSIs while significantly reducing
the network design complexity. Specifically, based on Hinton’s
capsule networks, we develop a CNN model extension that
redefines the concept of capsule units to become spectral–
spatial units specialized in classifying remotely sensed HSI data.
The proposed model is composed by several building blocks,
called spectral–spatial capsules, which are able to learn HSI
spectral–spatial features considering their corresponding spatial
positions in the scene, their associated spectral signatures, and
also their possible transformations. Our experiments, conducted
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using five well-known HSI data sets and several state-of-the-
art classification methods, reveal that our HSI classification
approach based on spectral–spatial capsules is able to provide
competitive advantages in terms of both classification accuracy
and computational time.

Index Terms— Capsule networks (CapsNets), convolutional
neural networks (CNNs), hyperspectral imaging (HSI).

I. INTRODUCTION

THE constant development of spectral imaging acquisition
technologies, together with the increasing availability of

remote sensing platforms, provides plenty of opportunities to
manage the detailed spectral–spatial information of the earth’s
surface [1]–[3]. As a result, the classification of remotely
sensed hyperspectral images has become one of the most
active research fields within the remote sensing community,
because it is able to provide highly relevant information for a
wide range of earth monitoring applications, such as ecological
science [4], [5], precision agriculture [6], [7], and surveillance
services [8], among others.

Many different classification paradigms have been success-
fully adopted by the remote sensing community in order to
build effective hyperspectral imaging (HSI) classifiers [9],
[10]. In particular, some of the most noteworthy approaches
rely on support vector machines (SVMs) [11], k-means clus-
tering [12], Gaussian process [13], random forest (RF) [14],
extreme learning machines [15], and deep neural network
classifiers [16]. Despite all the extensive research work con-
ducted in the aforementioned areas, the complex nature of HSI
data still makes the classification problem a very challenging
one and also motivates the development of more powerful
and accurate classification schemes [17]. Basically, there are
two main aspects that HSI classification models need to deal
with: 1) high data complexity and 2) limited amount of
labeled data for training purposes. On the one hand, the high
spectral resolution of HSI imaging sensors (typically with
hundreds of spectral bands) generates unavoidable signal per-
turbations as well as spectral redundancies that eventually limit
the resulting classification performance. On the other hand,
the availability of labeled HSI data for training is usually rather
limited, because obtaining accurate ground-truth information
is expensive as well as time-consuming. This contrasts with
the requirement of large amounts of training sets in order to
mitigate the so-called Hughes effect [1].

Among all the different HSI classification methodologies
presented in the literature, deep learning-based strategies
deserve special attention, because they have exhibited particu-
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larly relevant performance over HSI data due to their potential
to effectively characterize spectral–spatial features [18], [19].
From regular stacked autoencoders (SAEs) [16], through
sparse autoencoders [20], to deep belief networks [21], sev-
eral kinds of deep learning models have been proposed
and successfully adopted to classify HSI data. However, the
2-D nature of all these early models typically generates an
important spatial information loss, which eventually leads
to a limited classification performance (especially under the
most challenging scenarios) [22]. Precisely, the most recent
approaches try to relieve this constraint by managing the HSI
data as a whole 3-D volume in order to capture features rep-
resenting the spectral–spatial domain. For instance, this is the
case of the spatial-updated deep autoencoder presented in [23],
which improves the regular SAE approach by integrating
contextual information. Nonetheless, one of the most relevant
improvements was achieved when convolutional neural net-
works (CNNs) were successfully adapted by Chen et al. [24]
to classify remotely sensed HSI data, achieving the current
state-of-the-art performance.

Since Chen et al. [24] adopted the CNN approach for HSI
classification purposes, different CNN-based extensions have
also been proposed in the literature to learn enhanced spectral–
spatial features. For instance, Li et al. [25] propose the use of
pixel-pair features under a CNN-based classification scheme
in order to increase the number of training samples and, hence,
the resulting classification performance. Zhao and Du [26]
also propose a classification approach that merges CNN-based
spatial features and the spectral information uncovered by
the balanced local discriminant embedding algorithm. Other
important works make use of several independent CNN-based
architectures to combine spectral and spatial features, such as
[28] and [29]. Despite the fact that all these methods have
shown to obtain certain performance benefits, they still strug-
gle at facing the two aforementioned issues when dealing with
remotely sensed HSI data, that is, the high data complexity and
the limited availability of training samples, mainly because
they fuse different data components using independent CNN-
based procedures. In this sense, the work presented in [29]
defines a novel CNN architecture, which is able to jointly
uncover improved spectral–spatial features that are useful to
classify HSI data.

In general, CNNs have exhibited a good performance in
HSI classification due to the fact that convolutional filters
provide an excellent tool to detect relevant spectral–spatial
features present in the data. That is, initial convolutional
layers are able to learn simple HSI features, while deeper
layers combine these low-level characteristics to obtain higher
level data representations. However, under this straightforward
CNN-based scheme, the capability of exploiting the relation-
ships between features detected at different positions within
the image is rather limited. Although the insertion of pooling
layers and the gradual reduction of the filters’ spatial size allow
detecting higher order features in a larger region of the HSI
input image (by achieving translation invariance), the internal
data representation of a regular CNN does not take into
account the existing hierarchies between simple and complex
features. Note that the pooling operation is based on down-

sampling the feature space size to a manageable level and,
logically, this introduces an unavoidable loss of information;
specifically, pooling methods are unable to capture information
about the positional data, which may be a key factor when
classifying HSI data. As a result, CNNs may exhibit poor
performance if the input data present rotations, tilts, or any
other orientation changes, being incapable of identifying the
position of one object relative to another in the scene because
they cannot model properly and accurately such spatial rela-
tionships. Several methods have been implemented in order
to encode the invariances and symmetries that exist in the
data, including the transformation of the original input samples
during the training phase via data augmenting [24], [30].
However, this method fails to capture local equivariances in
the data and does not ensure equivariance at every layer within
the CNN [31].

Another way to address this problem is to conduct architec-
ture improvements, e.g., by developing deeper networks with a
large number of filters. Even though this practice can improve
the resulting performance, it requires a significant amount
of data to obtain good generalization coupling, which may
become an important limitation in some specific scenarios. The
rationale behind this effect is based on the vanishing gradient
problem [32], which can result in poor propagation of acti-
vations and gradients in deep CNNs that ultimately degrades
the classification performance. In this sense, the improvements
brought to CNN filters (kernels) via the development of resid-
ual connections [33]–[35] (ResNet) and dense skip connec-
tions [36], [37] (DenseNet) open new and interesting paths to
uncover highly discriminative spectral–spatial features present
in HSI data. On the one hand, the ResNet defines a CNN
extension based on processing blocks (residual units [38]),
used as fundamental structural entities to allow learning rel-
evant spectral–spatial HSI features from substantially deeper
layers. On the other hand, the DenseNet defines an architecture
in which each layer concatenates all feature maps coming
from the preceding layers as input. Another potential way of
encoding complex properties present in the HSI data is defined
by Sabour et al. [39], where they introduced the concept of
capsule networks (CapsNets) to encode the data relationships
into an activity vector (rather than a scalar) whose length and
orientation represent the estimated probability that the object
is present and the object’s pose parameters, respectively.

With the aforementioned ideas in mind, in this paper,
we develop a new CNN architecture based on Hinton’s
CapsNets [39] that achieves highly accurate HSI classifica-
tion results while significantly reducing the complexity of
the network. Specifically, the HSI classification model pro-
posed in this paper is composed by several building blocks,
called spectral–spatial capsules, which are able to learn HSI
spectral–spatial features considering their corresponding phys-
ical positions, their associated spectral signatures, and also
their possible transformations. That is, each capsule estimates
the probability that a specific spectral–spatial feature is present
within the input HSI data and, besides, it provides a set of
instantiation parameters that model the transformations suf-
fered by the observed spectral–spatial feature with respect to
its corresponding canonical spectral and spatial counterparts.
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As a result, the proposed network is able to characterize the
HSI input data at a higher abstraction level, which eventually
allows us to substantially reduce the number of convolutional
layers and the inherent model complexity. The proposed
network architecture has been accelerated with graphics
processing units (GPUs) to further optimize performance. Our
experimental results, obtained over five well-known HSI data
sets, reveal that the proposed approach exhibits potential to
extract highly discriminative spectral–spatial features with a
limited amount of training data, providing competitive perfor-
mance advantages over the spectral–spatial CNN classifier and
other relevant state-of-the-art classification methods.

The remainder of this paper is organized as follows.
Section II discusses some advantages and limitations of
CNNs for HSI classification which motivate the development
of our new approach. Section III describes the proposed
method. Section IV validates the proposed model by per-
forming comparisons with other state-of-the-art HSI classifi-
cation approaches over five well-known HSI data sets. Finally,
Section V concludes this paper with some remarks and hints
at plausible future research lines.

II. ADVANTAGES AND LIMITATIONS OF

CNNS FOR HSI CLASSIFICATION

Let us denote by X ∈ RH×W×C an HSI data cube, where H
is the height, W is the width, and C is the number of spectral
bands. Each hyperspectral pixel in X is a vector of C spectral
measures, forming a unique spectral signature for each land-
cover material. In deep learning methods, X can be represented
as a vector of H · W elements, where each pixel is denoted
as xt ∈ RC or as a matrix of H ×W dimensions, where each
pixel is described as xi, j ∈ RC , being i = 1, 2, . . . , H , j =
1, 2, . . . , W and k = 1, 2, . . . , H ·W . The relationship between
both representations can be expressed as t = (i − 1) ·W + j .
This is an interesting point, because traditional standard neural
networks are pixelwise methods that understand the HSI data
cube as a list of spectral vectors, for which they define
complex, nonlinear hypotheses of parameters W (weights)
and B (biases) by applying one or more layers of feature
detectors in order to produce the corresponding scalar outputs
that summarize the activities of these layers [40].

In this sense, these models assume that each xt contains
the pure spectral signature of the captured surface material,
disregarding the information from surrounding pixels and com-
puting the pixels in isolated fashion [29], [41], [42]. This fact
may limit the performance of the classifiers, which becomes
strongly dependent on the number (Nlabeled) and quality of
the available labeled samples that compose the training data
set Dtrain = {xt , yt }Nlabeled

t=1 , where yt is the corresponding
category of sample xt . However, hyperspectral pixels are
often highly mixed, introducing high intraclass variability and
interclass similarity into X that is very difficult to avoid, which
often results in characteristic interferences in the obtained
classification results (see Fig. 1). Specifically, the CNN model
can work as a traditional pixelwise method, taking each
pixel xt as an input feature and applying spectral processing
(i.e., the so-called 1-D CNN model [24], [29], [42]). However,
the 1-D CNN cannot always manage the complexity of spectral

Fig. 1. Characteristic introduced in the classification results obtained by
CNN models. Here, we show the examples of (Left) “salt and pepper”
noise (1-D CNN), (Center) misclassified patches (2-D-CNN), and (Right)
mixed regions (3-D CNN). The examples correspond to an area of an HSI
scene collected over the SV in California, which will be described in detail
in Section IV.

features, introducing “salt and pepper” noise in the obtained
classification [see Fig. 1 (left)]. In this sense, it is desirable
to incorporate spatial information, i.e., by processing the 2-D
regions of X, usually centered on pixel xi, j , as input features
(i.e., the 2-D CNN model, which exploits the idea that adjacent
pixels are intimately related and often belonging to the same
class). Combining the information contained in such spatial
patches with the spectral signatures (i.e., the 3-D CNN model)
can reduce the intraclass variability and improve the final
performance. In fact, the potential of CNNs lies in the model
architecture, composed by several layers that can be grouped
in two well-separated categories: 1) the feature extractor net,
composed by a stack of layers of artificial neurons (i.e., a con-
volutional layer followed by a nonlinear function and, often,
by a subsampling or pooling layer) and 2) the classifier, which
can be implemented as a stack of fully connected layers,
forming a multilayer perceptron (MLP) or alternatively given
by some known technique, such as an SVM or LR classifier.
The first one obtains high-level representations (feature maps),
and the second one actually labels the data.

Focusing on the feature extractor net, the convolutional layer
is the key block of the CNN. Instead of feedforward neural
networks such as the MLP, where the group of neurons that
compose the lth layer is fully connected with the neurons of
the l − 1th and l + 1th layers, the lth convolutional layer is
composed by a filter or kernel. The idea behind kernels is
related with the statistical properties of images, considered as
a stationary source of pixels, where data features are equally
distributed into X in relation to positions [43], suggesting
that learned features at one position of X can be applied to
others into X too, allowing to use the same features at all
locations of X. This fact is translated in a convolutional layer
by applying its kernel (also called learned feature detector)
anywhere in X in order to obtain a different feature-activation
scalar value at each position in the data. In this sense, the lth
layer’s kernel is connected and applied over small regions
(whose size is defined by the local receptive field) of the
input data, called input volume X(l) (which can be the output
volume of the previous layer, i.e., X(l) = O(l−1), or the
original input image, i.e., X(l) = X), via local connections and
tied weights. This allows reducing the number of connections
between layers and, hence, the number of parameters that need
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to be learned and fine-tuned in the entire CNN. In addition,
this architecture assumes that elements (such as pixels in an
HSI data cube) that are spatially close often belong to the same
class, and they collaborate in the task of forming a specific fea-
ture of interest, providing additional and valuable information
to the classification task and reducing the label uncertainty
and intraclass variability due to a better characterization of
contextual features. In essence, each kernel of the lth layer
computes the dot product (·) between its own weights W(l)

and a predefined region of the provided input volume to which
it is connected as follows:

o(l)z
i, j,t = (X(l) ∗W(l))i, j,t

=
k−1∑

î=0

k−1∑

ĵ=0

q−1∑

t̂=0

x (l)
(i·s+î),( j ·s+ ĵ),(t ·s+t̂)

· w(l)
î, ĵ ,t̂
+ b(l) (1)

where o(l)z
i, j,t corresponds to the (i, j, t) element of the zth

feature map that composes the output volume O(l) of the lth
convolutional layer, x (l)

i, j,t is the (i, j, t) element of the input

volume X(l), w
(l)
î, ĵ ,t̂

is the (î , ĵ, t̂) weight of W(l), b(l) is the
bias, and finally, s and k × k× q are the stride and the kernel
size of layer l, respectively. As a result, the obtained O(l) will
be an array of scalar values composed by K 1-, 2- or 3-D
feature maps depending on the kernel’s dimension.

One mechanism to avoid the degradation that the model
can suffer because of the vanishing gradient problem is based
on adding a batch normalization layer after the convolutional
layer. This kind of layer reduces the covariance shift by means
of which the hidden unit values shift around, allowing a more
independent learning process. It regularizes and speeds up the
training process, imposing a Gaussian distribution on each
batch of feature maps as follows:

BN(O(l)) = O(l) −mean[O(l)]√
Var [O(l)] + �

· γ + β (2)

where γ and β are learnable parameter vectors and � is a
parameter for numerical stability.

As convolution layers define a linear operation of element-
wise matrix multiplication and addition, a detector stage [19]
needs to be added after the convolutional and batch nor-
malization layers in order to learn nonlinear representations,
composed by a nonlinear activation function O(l) = f

(
O(l)

)
,

where f(·) defines an elementwise function such as the sig-
moid, the tanh, or the widely used rectified linear unit (ReLU)
[44]–[46], which computes f(O(l)) = max(0, O(l)), allowing
the network to train faster due to its computational efficiency,
which also helps to alleviate the vanishing gradient problem
without introducing significant differences in the accuracy
compared with other activation functions such as the sigmoid.
In this sense, the volume O(l) will host the neural activations,
which is usually interpreted as the likelihood of detecting a
certain feature. Those layers closer to the input of the network
commonly learn and detect simple features, whereas those
layers closer to the output of the CNN combine the previous
simple features to learn and detect more complex ones, until
combining and learning highly abstract features to produce the
final classification.

Finally, following the nonlinear activation layers, a down-
sampling strategy is normally implemented in order to reduce
and summarize the dimensionality of each feature map con-
tained in the output volume O(l) applying a max, aver-
age, or sum operation (among other recent methods, such
as mixed pooling [47], stochastic pooling [48], or wavelet
pooling [49]) over a neighborhood window [50]. Nonlinear
downsampling works independently of the volume’s depth,
resizing it spatially. For instance, the well-known max pooling
examines a window of the output volume O(l), taking the max-
imum activation into the region. This working mode reduces
the number of parameters, which helps to control overfitting,
and provides the network with some kind of invariance to
small distortions and transformations that are present in the
training data (particularly translation invariance).

Although pooling provides an efficient and simple tool for
detecting whether a certain feature is present in any region
of the volume O(l) (looking at the neural activations values),
it also implies a certain loss of spatial information concerning
the features, which can hamper the classification performance.
This effect may lead the CNN model to disregard how different
features in the volume O(l) are related to each other, a piece of
information that can be very useful for the final classification
results. In such cases, it is common to observe in HSI
images that several wrongly classified patches appear near
to or even inside well-defined classes, as we can observe in
the center and right of Fig. 1, where patches belonging to an
agricultural field (e.g., the grapes-untrained class in yellow) are
misclassified into another class (e.g., the vineyard-untrained
class in blue) and vice versa. These misclassifications are
observed in both kinds of models, 2-D CNNs and 3-D CNNs,
which indicate that the incorporation of spatial information
cannot fully address these problems. This situation could be
solved by looking at the logical spatial relationship between
both land-cover materials: it seems obvious that in the case
of crop fields, these are arranged in geometric forms, defining
clear frontiers between one crop and another. In the case of
urban environments, we can also consider how the elements
are spatially organized, for example, roads could be better
defined by assuming that parked cars, sidewalks, ornamental
vegetation, and buildings will be normally be placed on both
sides of the road and not inside. Precisely, the exploitation of
this kind of high-level spatial information is one of our main
motivations to introduce a new CNN model for HSI remote
sensing data classification based on capsules [39], which
presents the potential to intelligently exploit both spectral and
spatial features from HSI data.

III. PROPOSED METHOD

The neural network architecture that we introduce in this
paper is based on a new convolutional model inspired by the
working mode of capsules, with the objective of efficiently
preserving the spatial–spectral details of the features present
in HSI data cubes and taking advantage from the information
obtained at the neuron outputs, which contain vectors of
instantiation parameters instead of the classical scalar out-
puts. In addition, in order to provide accurate classification
results, our proposal exploits both the spectral and the spatial
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Fig. 2. Proposed neural network architecture. The neural model is composed by an encoder network (in blue) and a decoder network (in green).

information contained into the data cube X, implementing a
3-D model.

At this point, we emphasize that CNN models have been
traditionally employed for remote sensing scene classification
in which the full image X represents a target. This assumes
that the CNN model is fed with a full normalized image
prior in order to perform data classification. In our context,
we focus on an HSI data cube X ∈ RH×W×C , which can be
understood as a collection of H×W pixel vectors, where each
pixel xi, j ∈ RC contains the spectral signature of a specific
land-cover class (usually highly mixed within the image).
That is, each xi, j represents a target. Our newly proposed
neural network model exploits spectral–spatial information,
extracting 3-D neighboring blocks around each xi, j (called
patches and denoted by pi, j ∈ Rd×d×C ), where d×d is the size
of the spatial patch and C is the number of spectral channels.
These patches are labeled with the same category as the central
pixel xi, j and sent to the model as the input data, following a
border mirroring strategy described in detail in [29].

The proposed architecture is shown in Fig. 2, where two
main parts are clearly differentiated. The HSI data introduced
into the model are first processed by an encoder network
composed by three layers, which works as a feature extractor
and classifier. Then, the resulting processed data is introduced
into a decoder network, which improves the classification by
performing data reconstruction. In the following, we provide
the specific details of both parts.

A. Encoder Network

Let us first focus on the encoder network, which is located
at the beginning of the neural model. This network aims at
extracting those relevant features from the HSI data that will
help in the classification tasks, providing the most accurate and
useful information that increases the reliability of the network.
It is composed by three kinds of layers.

1) First Layer: The first layer, denoted as L(1), is composed
by a classical convolutional layer, which receives the patches
pi, j ∈ Rd×d×C extracted from the original HSI data cube
as input features. Its goal is to arrange the HSI data into
features that are fed to the subsequent capsule layers, applying
a convolution filter of size k(1)× k(1)× q(1) (being q(1) = C ,
i.e., it takes into account all the pixel spectrum), followed
by a batch normalization step and using the ReLU activation
function to obtain an output volume O(1) ∈ RH (1)×W (1)×K (1)

,
composed by K (1) feature maps (or channels) of size H (1)×
W (1). This first layer of the encoder prepares the data to obtain
the activity vectors of highest capsule-based layers.

2) Second Layer: The second layer L(2) (called primary
capsule layer) can be understood as a matryoshka doll, where
L(2) is composed by K (2) convolutional capsules, which in
turn are composed by Z (2) convolutional neurons or units
with kernel size k(2) × k(2) × q(2) [being q(2) = K (1)]. The
working mode is similar to CNN kernels; in fact, the mth
capsule will apply its Z (2) units over a region of the volume
O(1), obtaining as a result the output vector u(2)

m ∈ RZ (2) =
[u(2)

m,1, u(2)
m,2, . . . , u(2)

m,Z (2)]. These output vectors provide a data
structure that is more versatile when storing additional details
about the features, such as their orientation, pose, or size
(in addition to their likelihood), allowing to preserve more
detailed information about the spatial relationships observed in
the HSI data than standard CNN models. In fact, each element
of u(2)

m represents different properties of the same entity [51].
Here, the concept of entity can be understood as the target
object or the object’s part of interest (in the HSI domain,
the land-cover type) and its associated properties, expressed
as the instantiation parameters. In this sense, capsules can
be interpreted in the opposite way as rendering in computer
graphics, where given an object and its instantiation parame-
ters (such as the pose and the orientation), an image X is
obtained by applying rendering. In our context, the scenario
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Fig. 3. Given an input image X with several objects, such as buildings with
different shapes, the output of each capsule will be an activity vector whose
length and orientation give the likelihood of the object and its instantiation
parameters. In this sense, each capsule is in charge of finding some specific
object in X, instead of calculating a feature map (as in the traditional CNN).
In this example, focused on an urban area in the UP scene that will be
described later in experiments, the network has 48 capsules, where the black
ones try to find buildings with circular shape and the red ones try to find
buildings with rectangular shapes.

is opposite since, given the image X, the capsule works as an
“inverse rendering” unit whose aim is to detect the object and
extract the vector of instantiation parameters, called activity
vector (see Fig. 3).

In the end, the second layer is performing an inverse
rendering process, extracting the lowest level of multidimen-
sional entities present in the HSI data and grouping them
into a 4-D output composed by K (2) feature maps of size
W (2)×H (2), where each element is the activity vector obtained
by each capsule of dimension Z (2). An important aspect is
that these groups of neurons allow the mth capsule not only
to detect a feature but also to learn and detect its variants,
providing the network with equivariance properties. In that
way, the orientation of the mth capsule’s activity vector u(l)

m

in any layer L(l) represents the instantiation parameters, while
its length represents the probability that the feature that the
capsule is looking for is indeed contained and exists in the
input data. In order to properly represent such properties,
the length of activity vectors is often scaled down via a
nonlinear squashing function expressed by (3), which can be
understood as the nonlinear activation function of the network
model instead of the classical ReLU or sigmoid, for instance,
until reaching a magnitude between 0 and 1, leaving their
orientation unchanged

ũ(l)
m =

∥∥u(l)
m
∥∥2

1+ ∥∥u(l)
m
∥∥2 ·

u(l)
m∥∥u(l)
m
∥∥ . (3)

3) Third Layer: After computing the outputs of the primary
capsule layer and applying the nonlinear squashing function
of (3) over each u(l)

m , the model connects the K (2) capsules in
layer L(2) to every capsule in the third layer of the encoder,
L(3), denoted as dense capsule layer. In this case, L(3) is
composed by nclasses capsules, which groups Z (3) dense units
each one, being nclasses the number of different land-cover
categories present in the original HSI data cube. For each class,
we thus obtain its corresponding activity vector, whose module
will encode the probability of each input patch of belonging
to that class. In this sense, a special mechanism has been
implemented between layers L(2) and L(3), known as routing
by agreement [39], which connects the current dense capsule
layer with the previous primary capsule layer. Its goal is to

design a better learning process in comparison with traditional
pooling methods, not only routing the information between
capsules but also capturing part–whole data relationships by
reinforcing connections (also understood as contributions) of
those capsules allocated at different layers that obtain a high
grade of agreement or similarity, while avoiding or deleting the
weakest connections. In the following, we provide the details
of this mechanism.

The nth capsule in the current layer L(l) takes as the input
data all the output vectors of the K (l−1) capsules located at
the previous layer L(l−1), obtaining for each one a prediction
vector û(l)

m , with m = 1, 2, . . . , K (l−1), calculated as the
weighted multiplication between the mth capsule’s output

ũ(l−1)
m and the corresponding weights W(l)

m,n (understood as
a transformation matrix) that connect the mth capsule in layer
L(l−1) with the nth capsule in layer L(l), as shown in the
following equations:

û(l)
n|m =W(l)

m,n ũ(l−1)
m + B(l)

n (4)

where B(l)
n are the biases of capsule n. This equation can be

interpreted as a transformation where the output volume from
the previous primary capsule layer is transformed into K (l)

vectors of Z (l) items by applying the transformation matrix
W(l)

m,n between the mth capsule in layer L(l−1) and the nth
capsule in layer L(l).

Moreover, the obtained prediction vectors can be interpreted
as the vote of each capsule of L(l−1) in the output of the
nth capsule of L(l), i.e., we can observe each û(l)

n|m as a prior
prediction of capsule m about the output activity vector of
capsule n. This processing allows that capsules at inferior
levels can make predictions for capsules at superior levels,
increasing the abstraction of the features at each layer. At the
end, when multiple predictions agree at different levels, con-
nections between them are strengthened, producing that one
higher level capsule will become active for a more complex
and abstract feature. This idea of “agreement” is reinforced
by introducing, for each prediction vector û(l)

n|m , a dynamic

routing element known as coupling coefficient c(l)
m,n , which

relates capsules m and n by calculating the final input s(l)
n

of capsule n as the weighted sum of the previous outputs of
the K (l−1) convolutional capsules in the L(l−1)th layer

s(l)
n =

K (l−1)∑

m

c(l)
m,n û(l)

n|m (5)

which must be squashed by (3) in order to obtain the final
activity vector v(l)

n , whose length represents the probability
that the feature target is contained into the data and must be
between 0 and 1

v(l)
n =

∥∥s(l)
n
∥∥2

1+ ∥∥s(l)
n
∥∥2 ·

s(l)
n∥∥s(l)
n
∥∥ . (6)

Focusing again on coupling coefficients, c(l)
m,n measures the

probability that capsule m activates capsule n, and thus, all the
coupling coefficients of capsule m must sum 1. This parameter
is initialized with equal probability for all connections between
capsule m in L(l−1) and the K (l) capsules in L(l), and it is
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Fig. 4. Dynamic routing between capsules: the inferior-layer capsule activity
vector is the current input vector ũ(l−1)

m of the higher layer capsule n. After a
matrix transformation given by (4), ũ(l−1)

m is transformed into the prediction
vector û(l)

n|m . The weighted sum [see (5)] of all the prediction vectors gives as

a result the input capsule data s(l)n which, after passing through the activation
function given by (6), gives the nth capsule activity vector v(l)

n .

obtained by the routing softmax expressed by the following
equation:

c(l)
m,n =

exp (bm,n)
∑K (l)

i exp (bm,i )
with

K (l)∑

i

c(l)
m,i = 1 (7)

where bm,n denotes the log prior probability that capsule m
will activate capsule n, that is, the degree of relationship
between both capsules, a measure that is initialized to zero
and then refined in each iteration of the network model as
follows:

(i)bm,n ←(i−1) bm,n +(i−1) am,n

= (i−1)bm,n +(i−1)
(
v(l)

n · û(l)
n|m

)

= (i−1)bm,n +(i−1)
(∣∣v(l)

n

∣∣∣∣û(l)
n|m

∣∣ cos(θ)
)

(8)

where (i) and (i − 1) are the current and previous iterations
and (i−1)am,n is the degree of agreement between the prior
prediction or vote û(l)

n|m and the final output v(l)
n , obtained

at iteration (i − 1). When û(l)
n|m and v(l)

n are in agreement,
we can observe that cos(θ) = cos(0) = 1, and thus, am,n =
|v(l)

n ||û(l)
n|m | from a geometrical viewpoint. During the training

phase, the network model learns not only the transformation
matrices W(l)

m,n , encoding the part–whole relationships of the
data, but also the coupling coefficients c(l)

m,n for each pair
of capsules m and n in layers L(l−1) and L(l), respectively.
Conceptually, this means that capsules of one layer can make
predictions over capsules of the superior layer, grouping those
capsules with similar results via dynamic routing in order
to obtain clearer outputs, i.e., reinforcing their connections,
whereas connections between capsules whose predictions are
not related are reduced. Fig. 4 shows a graphical illustration
of the dynamic routing process.

We highlight at this point that the main goal of layer L(3)

is to obtain as many activity vectors v(l)
i as the number of

objects or land-cover classes present in the image, in such a
way that l = 3 and i = 1, 2, . . . , nclasses). In this sense, for
each input data set, the proposed neural network obtains a
collection of nclasses activity vectors, where each v(l)

i is the
capsule for class i , being �v(l)

i � the probability of belonging
to class i . The goodness of the network’s output with regard
to the desired output can be calculated by the loss function

Lmargin =
nclasses∑

i

(
Ti max

(
0, α+ − ∥∥v(l)

i

∥∥)2

+ λ(1− Ti ) max
(
0,
∥∥v(l)

i

∥∥− α−
)2) (9)

where Ti is set to 1 if class i is present in the data and
0 otherwise. We can observe two well-differentiated parts
(addends) in (9). The first one is “activated” when the asso-
ciated class i is present in the scene (setting Ti = 1), while
the second one is “activated” in the opposite case, that is,
when the associated class i is not present (setting Ti = 0).
In addition, parameters α+ and α− work as boundaries, forcing
the length of the activity vector �v(l)

i � (i.e., the probability)
in (9) to lie into a small interval of values in order to
avoid maximizing or collapsing the loss. In particular, these
boundaries force v(l)

i to have a length in the range [0.9, 1] if
the associated class is present (α+ = 0.9) and in the range
[0, 0.1] in the opposite case. Moreover, λ = 0.5 works as
a regularization parameter to stop the learning, shrinking the
impact of those activity vectors whose corresponding classes
are not present. This expression can be extended in order to
improve the final classification accuracy by adding a typical
reconstruction loss Lrecon = �X−X��, where X is the original-
desired output data and X� is the network’s reconstructed-
obtained output data. This reconstruction is performed by
the second part of the proposed network, the decoder net, with
the aim of improving the fine-tuning process of the parameters
employed in the proposed network.

B. Decoder Network

The decoder network is composed by several fully con-
nected layers that use the output activity vectors of the dense
capsule layer to reconstruct the input image, encouraging the
capsules to encode the most relevant instantiation parameters
of the input data. At the end, the proposed model optimizes
the loss function given by (10) employing the Adam opti-
mizer [52] with a learning rate equal to 0.001 and 100 training
epochs

Lfinal = Lmargin + θ Lrecon (10)

where θ is a regularization factor to balance the weight
between both loss measures that has been fixed to θ =
0.0005 ·C after a grid search in order to assign an appropriate
weight to the reconstruction loss. Finally, Table I summarizes
the layers that compose the proposed model, indicating their
configuration parameters, which have been demonstrated a
good performance with tested HSI data sets.
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Fig. 5. Number of available samples in the IP, UP, and SV HSI data sets.

IV. EXPERIMENTAL RESULTS

A. Hyperspectral Data Sets
Five real hyperspectral data sets have been considered in

our experiments (see Fig. 5). These are the Indian Pines (IP),
Salinas Valley (SV), Kennedy Space Center (KSC), and the
full version of the IP scene, referred hereinafter as the big
IP scene (BIP), all captured by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor [53], and the Univer-
sity of Pavia (UP) image, acquired by the Reflective Optics
System Imaging Spectrometer (ROSIS) sensor [54]. In the

following, we provide a description of the aforementioned
data sets.

1) IP: The IP data set covers an area comprising different
agricultural fields in Northwestern Indiana, USA, and
it was gathered by the AVIRIS sensor in 1992. This
image contains 145×145 pixels with a spatial resolution
of 20 m/pixel (mpp) and 224 spectral bands in the
wavelength range from 400 to 2500 nm. In our experi-
ments, 4 null bands and other 20 bands corrupted by the
atmospheric water absorption effect have been removed.
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TABLE I

SUMMARY OF THE PARAMETERS IN EACH LAYER OF
THE TOPOLOGY OF THE PROPOSED NETWORK

The IP data set contains a total of 16 mutually exclusive
ground-truth classes.

2) SV: The SV image was captured in 1998 by the AVIRIS
sensor over the SV, CA, USA. The data comprise
512 × 217 pixels with a spatial resolution of 3.7 mpp.
As for the IP data set, the water absorption
bands, i.e., channels from 108th to 112th and from
154th to 167th, together with the 224th band, have been
discarded. A total of 16 classes are included in the SV
ground-truth data.

3) KSC: The KSC image was also collected by the AVIRIS
instrument (1996) over the KSC in Florida, USA. After
removing the noisy bands, the KSC scene contains
176 bands (ranging from 400 to 2500 nm) with 512×614
pixels (20-mpp spatial resolution) and 13 ground-truth
classes.

4) UP: The UP data set was gathered by the ROSIS
sensor (in 2001) over the UP, Northern Italy. This image
contains 103 spectral bands (from 0.43 to 0.86 μm) after
several noise-corrupted bands have been discarded, and
it comprises 610×340 pixels with 1.3-mpp spatial reso-
lution. The available ground-truth contains nine different
class labels.

5) BIP: The BIP image comprises the full flight line of
the IP data set captured by the AVIRIS sensor in 1992.
This image contains 2678 × 614 pixels (20 mpp) and
220 spectral bands ranging from 400 to 2500 nm. The
available ground-truth information consists of 58 land-
cover categories (some of them spectrally very similar)
according to the information provided in Table V. This
data set is one of the most challenging scenes pub-
licly available to conduct HSI classification due to its
considerable size, the very high number of classes,
and the imbalanced nature of such classes with very
different numbers of available samples. We emphasize
that some classes in the BIP scene have more than 104

pixels, but others only contain several tens of samples,
which poses important challenges for HSI classifiers.
As a consequence of the memory restrictions and the
large size of this scene, we have reduced the number

of spectral bands after applying principal component
analysis (PCA)—we retain the first 120 components
after PCA. Although fewer PCA components can explain
the variance in the original scene, we have decided to
retain a large number of components to illustrate the
performance of methods in a challenging scenario from
a computational viewpoint.

B. Experimental Settings

A total of eight different classification methods have been
selected to conduct the experimental validation in this paper.
Specifically, the SVM with radial basis function kernel [55],
the RF classifier, the MLP as well as a deep MLP version with
four layers, the 2-D CNN, the 3-D CNN [24], the spectral–
spatial residual network (SSRN) [34], and the deep fast
CNN (DFCNN) [29] have been compared with the proposed
approach. Note that the SVM, RF, and MLP are spectral
classifiers, while the 2-D CNN is a spatial-based technique
and the SSRN and DFCNN (together with the proposed
approach) are all spectral–spatial methods. In the case of the
2-D CNN, the PCA has been used to reduce the number
of HSI bands to a single principal component. In addition,
all the hyperparameters of the considered methods have been
optimally fixed for the experiments.

Regarding the considered classification assessment protocol,
three widely used quantitative metrics have been considered
to evaluate the classification accuracy: overall accuracy (OA),
average accuracy (AA), and kappa coefficient. All the experi-
ments have been conducted in a hardware environment consist-
ing of a 6th Generation Intel Core i7-6700K processor with 8M
of Cache and up to 4.20 GHz (four cores/eight way multitask
processing), 40 GB of DDR4 RAM with a serial speed
of 2400 MHz, an NVIDIA GeForce GTX 1080 GPU with
8-GB GDDR5X of video memory and 10 Gb/s of memory
frequency, a Toshiba DT01ACA HDD with 7200 RPM and
2 TB of capacity, and an ASUS Z170 pro-gaming mother-
board. Regarding our software environment, it is composed
by Ubuntu 16.04.4 x64 as an operating system, CUDA 9 and
cuDNN 7.0.5, PyTorch framework [56], and Python 3.5.2 as
the programing language.

C. Experiments and Discussion

1) Experiment 1: Our first experiment pursues to validate
the performance of the proposed approach with respect to
some of the most well-known HSI classification techniques
available in the literature. Tables II–V provide a quantitative
classification assessment using the IP, UP, SV, and BIP data
sets, considering the SVM, RF, MLP, 2-D CNN, and 3-D CNN
classifiers together with the proposed approach. In Tables II–V,
class results and global metrics are arranged in rows, whereas
the considered classifiers are presented in columns. In all these
experiments, 15% of the available labeled samples have been
used for training, and a spatial size of 11 × 11 pixels for
the input patches was considered for 2-D CNN, 3-D CNN,
and the proposed method. It should also be mentioned that
each table contains the corresponding average and standard
deviation values after five Monte Carlo runs.
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TABLE II

CLASSIFICATION RESULTS FOR THE IP DATA SET USING 15% OF
THE AVAILABLE LABELED DATA FOR TRAINING

AND 11 × 11 INPUT PATCH SIZE

TABLE III

CLASSIFICATION RESULTS FOR THE UP DATA SET USING 15% OF

THE AVAILABLE LABELED DATA FOR TRAINING

AND 11 × 11 INPUT PATCH SIZE

TABLE IV

CLASSIFICATION RESULTS FOR THE SV DATA SET USING 15% OF
THE AVAILABLE LABELED DATA FOR TRAINING

AND 11 × 11 INPUT PATCH SIZE

From the results reported in Tables II–V, it is possible
to observe that the proposed approach reaches a consistent
performance improvement with respect to SVM, RF, MLP,
2-D CNN, and 3-D CNN classification methods, in global
sense and also for the individual classes of the IP, UP, SV,
and BIP data sets. Among all the competitors considered in
this initial experiment, the spectral–spatial classifier 3-D CNN
obtains the second best result. This is expected, as this method
also involves joint spectral–spatial features, which provide
more useful information to classify HSI data than the single
spectral or spatial features considered by SVM, RF, MLP, and
2-D CNN classifiers. Nonetheless, the proposed approach is

TABLE V

CLASSIFICATION RESULTS FOR THE BIP DATA SET USING 15% OF
THE AVAILABLE LABELED DATA FOR TRAINING

AND 11× 11 INPUT PATCH SIZE

able to consistently outperform the 3-D CNN with an average
improvement of +1.93, +3.84, and +2.46 for OA, AA,
and kappa metrics, respectively. Among all these quantitative
results, the experimental comparison conducted over the BIP
scene deserves special attention because of the complexity of
this data set. As it can be observed in Table V, the proposed
approach obtains the best classification result in all the BIP
classes except for Grass/Pasture-mowed and Orchard where
it obtains the second best result despite the reduced number
of samples of these two classes. Nonetheless, the proposed
method achieves a remarkable precision improvement for other
small classes, such as Grass-runway and BareSoil, while also
maintaining an important quantitative gain with respect to the
other HSI classifiers.

For illustrative purposes, Figs. 6–8 present some of the
classification maps corresponding to the experiments reported
in Tables II–IV. As it is possible to qualitatively observe in
these figures, the classification results obtained by the SVM,
RF, and MLP techniques tend to be rather noisy, mainly
because these methods only consider the spectral information
contained in the HSI data. In addition, the 2-D CNN tends to
introduce some artifacts in class boundaries. This is due to the
fact that it only considers the spatial information to provide a
pixel prediction, which makes the method quite sensitive to the
spatial size of the input patches. Regarding the classification
maps produced by the spectral–spatial classifiers, we can
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Fig. 6. Classification maps for the IP data set. (a) Simulated RGB composition of the scene. (b) Ground-truth classification map. (c)–(h) Classification maps
corresponding to Table II [SVM (86.24%), RF (78.55%), MLP (85.27%), 2-D CNN (83.59%), 3-D CNN (97.81%), and proposed (99.45%), respectively].
Note that the overall classification accuracies are shown in brackets and the best result is highlighted in bold font.

Fig. 7. Classification maps for the UP data set. (a) Simulated RGB composition of the scene. (b) Ground-truth classification map. (c)–(h) Classification maps
corresponding to Table III [SVM (95.20%), RF (92.03%), MLP (94.82%), 2-D CNN (94.77%), 3-D CNN (98.54%), and proposed (99.95%), respectively].
Note that the overall classification accuracies are shown in brackets and the best result is highlighted in bold font.

Fig. 8. Classification maps for the SV data set. (a) Simulated RGB composition of the scene. (b) Ground-truth classification map. (c)–(h) Classification maps
corresponding to Table IV [SVM (94.15%), RF (90.76%), MLP (93.87%), 2-D CNN (92.31%), 3-D CNN (97.44%), and proposed (99.81%), respectively].
Note that the overall classification accuracies are shown in brackets and the best result is highlighted in bold font.

observe that the 3-D CNN generates better results than the
SVM, RF, MLP, and 2-D CNN in terms of class consistency.
However, the proposed approach produces better results in
terms of border delineation and OA. For instance, we can see
that the classification map produced by the proposed approach
[see Fig. 7(h)] exhibits less misclassified pixels than the
corresponding map generated by the 3-D CNN [see Fig. 7(g)].
Another important observation is related to the generalization
capability of the proposed approach. Specifically, if we look
at the unlabeled image areas (i.e., those that are not covered
by the ground truth), the proposed method appears to provide
more consistent classification results (with less potential out-
liers and artifacts) in those areas than the other considered
methods.

2) Experiment 2: In a second experiment, we conduct a
specific comparison between the proposed approach and two
recent state-of-the-art spectral–spatial HSI classification net-
works, i.e., SSRN [34] and DFCNN [29]. Table VI compares
the proposed approach with the SSRN when considering
multiple spatial sizes for the input patches, i.e., 5× 5, 7× 7,
9 × 9, and 11 × 11, using the IP, KSC, and UP data sets.
Note that the tested spatial sizes are presented in rows and
the considered data sets are arranged in columns to show
the average OA result and also the corresponding standard
deviation in brackets (after five Monte Carlo runs). In this
experiment, we have selected 20% of the available labeled
data for the IP and KSC scenes and 10% of the available
labeled data for the UP scene.
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TABLE VI

OVERALL ACCURACY (%) ACHIEVED BY THE SSRN METHOD [34] AND
THE PROPOSED APPROACH WHEN CONSIDERING DIFFERENT

SPATIAL SIZES FOR THE INPUT PATCHES

TABLE VII

QUANTITATIVE COMPARISON OF THE 3-D CNN [24], DFCNN [29], AND
THE PROPOSED APPROACH WITH THE IP DATA SET USING

DIFFERENT SPATIAL SIZES FOR THE INPUT PATCHES

From the results reported in Table VI, the proposed network
architecture consistently outperforms the SSRN for most tested
configurations. More specifically, the average OA improve-
ments achieved by the proposed approach are +2.12, +0.51,
+0.39, and +0.45 for 5× 5, 7× 7, 9× 9, and 11× 11 input
spatial sizes, and +2.12, +0.25, and +0.23 for the IP, KSC,
and UP data sets, respectively. In addition, it is also possible
to observe that the standard deviation in the experiments with
the proposed method is substantially lower than that in the
experiments with the SSRN. This fact, together with the higher
OA results, indicates that the proposed architecture is able
to effectively reduce the uncertainty when classifying HSI
data. The proposed architecture aims at learning spectral–
spatial features considering their spatial locations, their spec-
tral signatures, and also their possible transformations in a
more efficient way in comparison with SSRN. Precisely, this
is the fact that enhances the generalization ability of the
network, because the corresponding spectral–spatial features
are complemented with important information about character-
istic data transformations as a set of instantiation parameters,
which eventually allows characterizing the HSI data at a higher
abstraction level.

In addition, Tables VII and VIII give an experimental
comparison among the 3-D CNN [24], DFCNN, [29] and
the proposed approach using the IP and UP data sets and
considering multiple input spatial sizes. In particular, the first
column shows the class labels, the second row indicates the
number of training samples, and the last three rows provide the
OA results for 3-D CNN, DFCNN, and the proposed approach,
respectively, with different spatial sizes.

Some important observations can be made from
Tables VII and VIII. In general, in these tables, it is
possible to see that larger spatial sizes for the input patches

TABLE VIII

QUANTITATIVE COMPARISON OF THE 3-D CNN [24], DFCNN [29], AND
THE PROPOSED APPROACH WITH THE UP DATA SET USING

DIFFERENT SPATIAL SIZES FOR THE INPUT PATCHES

Fig. 9. Classification maps obtained by (Left) DFCNN [29] and (Right)
proposed approach for the UP data set. A visual comparison of both maps
indicates that the proposed method provides better class delineation and
definition of urban features, for instance, in classes such as self-blocking
bricks (blue) or bitumen (dark green), containing both circular and rectangular
urban features.

generally result in higher accuracy values (the larger the input
size, the more spatial information is considered to complement
the spectral data). However, it can also be observed that
the proposed approach requires substantially smaller input
patches to generate similar or even better accuracy results
than the other methods. Precisely, this point reinforces
the aforementioned observations concerning the higher
generalization capability of the proposed approach. In the
case of the IP data set, 3-D CNN and DFCNN obtain an OA
of 97.56 and 97.87 using 27 × 27 and 29 × 29 input spatial
patches, respectively. In turn, the proposed network is able to
achieve a remarkable performance improvement, reaching a
98.69 value, using only a 9× 9 input spatial patch. A similar
trend can also be observed in the experiments with the UP
data set. This suggests that the proposed approach is able
to uncover more descriptive features than the 3-D CNN and
DFCNN techniques.

For illustrative purposes, Fig. 9 shows the classification
maps obtained by the DFCNN [29] and the proposed approach
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Fig. 10. Evolution of the test accuracy (in %) of (Left) proposed approach
(y-axis) versus epochs and (Right) computational time in seconds for the
experiments with the IP, UP, and SV data sets.

for the UP data set. A visual comparison of both maps
indicates that the proposed method provides better class delin-
eation and definition of urban features. Specifically, class
boundaries are noticeably more precise and defined. This is
particularly the case for classes representing typically urban
features, such as self-blocking bricks (in blue), which appears
better delineated in the classification map provided by the
proposed approach. In addition, the bitumen class (in dark
green) contains circular and rectangular urban features that
appear better delineated in the map produced by the proposed
approach than in the one produced by the DFCNN. In addition,
the classification results obtained by the proposed approach
over unlabeled image areas appear more visually consistent
and with better delineated features, which also suggests the
higher generalization ability of the proposed network.

3) Experiment 3: In a final experiment, we evaluate the
convergence of the proposed network architecture. In this
context, it is important to note that the proposed network
architecture makes use of several innovative building blocks
that are able to estimate the probability that a specific spectral–
spatial feature occurs in the input HSI data and also its
corresponding instantiation parameters, that is, the potential
transformations suffered by the corresponding constituent fea-
ture on the observable input data. As a result, the HSI features
can be intrinsically managed at a higher abstraction level
throughout the network, because traditional convolutional fea-
tures are decomposed into canonical spectral–spatial features
and their possible transformations, which eventually leads to
a significant reduction of the architecture complexity and,
therefore, to a good model convergence. To illustrate this point,
Fig. 10 displays the evolution of the proposed approach test
accuracy per epoch (left) and computational time in seconds
(right). As it can be seen in Fig. 10, the proposed network
only requires a reduced number of epochs and a very short
time to reach almost optimal performance, which highlights
the remarkably fast convergence of the proposed architecture.

In summary, the experiments reported in this section sug-
gest that the proposed approach provides the quantitative
and qualitative advantages over traditional HSI classifiers
(see Tables II–IV and Figs. 6–8) and also over some of
the most relevant state-of-the-art spectral–spatial classification
techniques, i.e., 3-D CNN [24], SSRN [34], and DFCNN [29]
(see Tables VI–VIII and Figs. 9 and 10). The proposed method
is able to achieve the best global performance in all the consid-
ered experimental scenarios, exhibiting relevant performance

improvements when considering reduced input patch spatial
sizes. The proposed approach seems to provide the most robust
behavior with different input patch spatial sizes, which sug-
gests that it is able to generalize more discriminative features
to effectively classify HSI data. Unlike other established deep
learning models such as 3-D CNN, SSRN, and DFCNN,
the constituent units of the proposed architecture (capsules)
are designed to uncover canonical spectral–spatial features
and their corresponding instantiation parameters, which allow
characterizing the HSI data at a higher abstraction level while
reducing the overfitting phenomenon inherent to complex and
deep networks.

V. CONCLUSION

In this paper, a new deep learning architecture based on
the concept of capsules is presented to effectively classify
remotely sensed HSI data. Specifically, the proposed network
is composed by a set of spectral–spatial capsule units that
characterize the input data at a higher abstraction level by
expressing the HSI features as a collection of canonical
spectral–spatial patterns and their corresponding instantiation
parameters. In this way, the features uncovered by the net-
work become more informative, which eventually leads to
a reduction of the architecture complexity and, therefore,
to a more accurate model convergence. The experimental
comparisons conducted in this paper, which consider five well-
known HSI data sets and eight established methods, reveal that
the proposed approach exhibits competitive advantages with
respect to state-of-the-art classification methods.

An important characteristic of the proposed approach is its
potential to deal with the inherent complexity of HSI data
sets generated by their high spectral resolution. In general,
experimental results have shown that the proposed model is
able to extract a more relevant and complete information
about HSI data cubes by managing spectral–spatial features
at a higher abstraction level. Specifically, the spectral–spatial
capsule units model the different transformations present in
the HSI domain by means of a neuron hierarchy which
disentangle the spectral–spatial canonical features from the
data transformation parameters. Therefore, the activation of
higher level spectral–spatial features can be conducted by
agreement between lower level features in order to intrinsically
model complex connections to better characterize the HSI data,
obtaining consistently high classification performance with a
limited amount of training data.
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