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de aire fresco.

También tengo que agradecer a la gente del LACE (Politecnico di Torino) la acogida
en mis dos estancias con ellos. A Francesca, Javi, Jorge, Marco, Fran, Rosella, David
etc. Los conocimientos y la experiencia que adquiŕı alĺı contribuyeron a mejorar en
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Cris y Olga por toda la ayuda que me habéis brindado estos años y por los desahogos
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Resumen

Las estructuras periódicas han sido objeto de creciente interés en el ámbito del electro-
magnetismo computacional. Se pueden encontrar estructuras de un elevado número de
elementos desde ámbitos como la nanotecnoloǵıa, por su presencia en metamateriales
con propiedades electromagnéticas exóticas o en aplicaciones biomédicas, hasta agru-
paciones de antenas que logren respuestas de altas prestaciones en sistemas radiantes.

Pese a esta relevancia, el análisis de estas estructuras a través de los métodos ac-
tuales supone un reto considerable. Si atendemos a los métodos más precisos, por
ejemplo basados en ecuación integral de superficie y método de los momentos (SIE-
MoM), el coste computacional resultante es prohibitivo, mientras que otros métodos
solo están pensados para estructuras periódicas infinitas.

Esta tesis doctoral tiene por objetivo principal el desarrollo de un método que per-
mita acelerar el análisis de estructuras periódicas finitas mediante métodos iterativos
de manera eficiente y transparente, manteniendo la precisión de los métodos basados
en SIE-MoM. Para ello, se aprovechan las propiedades que, fruto de las periodici-
dades, aparecen en las matrices de impedancia, dando lugar a un coste equivalente de
O(N log(N)). A su vez, también pretende el desarrollo de métodos de aceleración me-
diante compresión de matrices a través del modelado de la potencia emitida y recibida
por los elementos de dichas estructuras.





Abstract

The periodic structures have been subject of growing interest in the computational
electromagnetics scope. Structures with a large number of elements can be found in a
vast plethora of applications, from nanotechnology, for its presence in metamaterials
with exotic electromagnetic properties or biomedical applications, to arrays of anten-
nas to attain high performance responses in radiating structures.

Despite this relevance, the analysis of this structures through the present methods
suppose a real challenge. If we attend, for example, to the most accurate methods,
based on surface integral equation and method of moments (SIE-MoM), the resulting
computational cost is prohibitive, whereas other methods are only intended for infinite
periodic structures.

This doctoral thesis has as main goal the development of a method intended for
the acceleration of the analysis of finite periodic structures through iterative methods
in an efficient and transparent way, maintaining the precision of methods based on
SIE-MoM. For this, the properties that, as a consequence of the periodicities, appear
in impedance matrix are used, obtaining an equivalence cost of O(N log(N)). It also
pretends the development of acceleration methods through matrix compression using
for it the modeling of the emitted and received powers by the elements of the structures.
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1.1 Motivations of the thesis

One of the main motivations of this thesis becomes from the contact of the research
group with the biomedicine field. Within biomedicine, there are several cases where
large periodic structures are useful for certain applications. Two examples of this that
will be present in this thesis are surface-enhanced Raman spectroscopy (SERS), visible
in Fig. 1.1 substrates or double-helix structures for dichroism applications.

Figure 1.1: Example of the structure of a SERS substrate composed by gold nanospheres.
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In particular, those problems that present some periodic patterns become especially
costly to analyze. This is due to the combination of dense mesh discretization with
the high number of elements that is commonly present in this kind of problems. This
fact causes a limitation on the problem size that most of the current computational
electromagnetics (CEM) frameworks can approach. Some examples of this are finite
elements method (FEM) or integral equations and method of moments. In addition to
this, the fact that the structures are finite imposes a limitation for other methods, i.e.
Floquet harmonics theory.

As a solution to this, the multilevel fast multipole algorithm (MLFMA), with which
the research group posses a strong background and one of the most solid frameworks in
CEM, came into scene. Despite of some stages of the process (aggregation, translation
and dissaggregation), the solutions obtained through its application are very accurate,
providing an efficient level without competitors. This motivated its application for the
new challenges that the research group was facing.

However, in that moment a new open problem was posed, giving place to the
development of this thesis. The physical periodicity of this kind of structures should
be present in some way in the matrix system used to solve them with surface integral
equation-method of moments (SIE-MoM). This thesis was carried out with the goal
of developing an algorithm capable of taking advantage of the periodicity of these
structures to efficiently solve finite periodic problems with SIE-MoM in a transparent
way.

Another feature present in these problems is the separation between elements. In
the scope of CEM is common to find methods that perform the compression of the
interactions between well separated parts of the problem. This is achievable due to the
smaller number of unknowns to compute the far field couplings. In particular, periodic
structures are especially suitable for compression methods, as the element to compress
is always the same, there is an important saving in the computation of the interpolation
and anterpolation matrix applied to perform the compression. This particular property
motivated to the author and the advisers to undertake the development of macrobasis
applicable in a distributed and efficient way.

1.2 Objectives

Therefore, after introducing the motivations of this thesis, the main objectives of this
work are detailed bellow.

� The development of an algorithm to carry out the resolution of periodic and finite
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CEM problems using the SIE-MoM in a transparent and efficient way.

� The development of a new full domain power-decoupled macrobasis for perfect
electric conductors (PEC) and dielectric problems applicable to matrix compres-
sion.

� Application of macrobasis and skeletons for matrix compression to finite periodic
structures for the acceleration of the solver.

� The development of a framework capable of apply the previous methods to other
kind of applications and problems.

1.3 Contribution of the thesis

The main contribution of this thesis is the development of a framework to perform
the electromagnetic analysis of finite periodic problems in an efficient way within the
SIE-MoM developed by the research group where this work was carried out. This can
be described through the following lines:

� Development of an efficient algorithm called slotFFT for finite periodic problems.
The slotFFT algorithm is capable of approach structures with multiple periodic
patterns achieving a computing cost reduction from O(N2) to an equivalent cost
of O(nM logM) in the matrix-vector product (MVP), being n the number of
unknowns of the periodic element, M the number of the elements in the structure
and N = nM . At the same time, the number of elements in the matrix needed to
solve the problem is reduced from (nM)2 to 2pn2M , where p is a natural number
related to the patterns of the periodicity present in the structure.

� Development of full domain power decoupled macrobasis for PEC and dielectric
problems. The main property of these new macrobasis is the capability of prop-
erly describing the radiated power with a small number of basis over the total.
Unlike other methods, like skeletons generated through interpolative decompo-
sition (ID) method, these macrobasis cover the full domain. This supposes a
slightly improvement in the precision in comparison to the referenced method.

� Integration of matrix compression methods (MCM) with slotFFT. In particular,
the macrobasis introduced above and the skeletons method were integrated within
the slotFFT algorithm. Through this, high acceleration rates in the MVP and
memory reduction for large periodic problems are achieved, combined with a
controlled impact over the precision of the solution.



4 Chapter 1. Introduction

� As last contribution, the Huygens’ equivalence theorem is introduced into the
slotFFT framework in order to extend the application of the method to non
periodic distributed structures. Isolating each element of a finite structure by a
periodic array of closed surfaces, imperfect structures and structures composed by
different kind of elements can be analyzed as a periodic problem. An example of
this application is shown in Fig. 1.2, where an array composed of gold nanocubes
is disposed randomly within a periodic array of closed surfaces.

Figure 1.2: Example a structure composed of gold nanocubes disposed randomly whithin a periodic
array of Huygens’ surfaces.

1.4 Structure of the thesis

This document has been structured in six chapters. The first, and present, one, in-
troduces formally the scope of the thesis, the objectives and the contributions of the
work.

The second chapter is a detailed introduction to the CEM core that lies underneath
of the methods used and developed in this work. In particular, the whole SIE-MoM
will be explained.

The third chapter introduces the state-of-the-art of the different approached in
scope of periodic structures. The slotFFT algorithm is fully formulated and analyzed,
and the results attained through its application to problems are reviewed. Then, in a
last section, it is described the Huygens’ equivalence theorem for CEM problems and
its application to approach non-periodic distributed problems as periodic problems.

Chapter forth introduces the application of MCM techniques to CEM problems. It
comprehends a state-of-the-art review on the widespread methods, the formulation of
the full domain power-decoupled macrobasis and its integration into the slotFFT algo-
rithm. This chapter also includes the integration of the skeletons and the ID method
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into slotFFT, carried out during an international research visit in the Politecnico di
Torino. The last part of the chapter shows an study on the efficiency obtained and its
impact over the precision.

The last chapter summarizes the main conclusions and remarks of the developed
work, as well as some future lines and cases of application of the framework.
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Surface Integral Equation-Method
of Moments

Contenido
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This chapter describes the fundamental core that lies underneath every single pro-
cedure implemented within this thesis: surface integral equation-method of moments.
The surface-integral equation-method of moments (SIE-MoM) core used in this thesis
applicable to arbitrary penetrable bodies and its implementation is explained in depth
in [1,2]. This chapter introduces part of that work into this thesis for the sake of con-
sistency and to ease the comprehension of the core methods that are used. The study
of the precision of the SIE-MoM core used in this thesis, as well as its convergence,
can be consulted in [3–5]. Also, some examples of its capability of analyzing large and
complex problems can be consulted in [6–8].

The chapter has been structured in a way that every particular aspect of the frame-
work is well distinguishable from the rest, so they can be found quickly when referenced
in the next chapters. First, MoM is introduced departing from a generic continuous
function to conversion to a matrix system that allows its solving. Then, in the second

7
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section, the formulation for a single arbitrary object is described. This comprehends
the tangential and normal formulations, and their combination.

2.1 Method of moments

The method of moments [9] was first introduced into computational electromagnetics
by R.F. Harrington, and it is one of the most widespread approaches in CEM. In
particular, along with its application to SIE, MoM has been one of the strong work lines
of the researchers that advised this thesis. MoM allows the resolution of continuous
integral equations by transforming them into a finite discrete system of linear equations
solvable through a numeric approach.

Equation (2.1) represents a general problem: g is a known function that induces a
response f, that we want to obtain, and L a functional operator that relates g with its
response f.

L(f) = g (2.1)

In order to solve eq. (2.1), the first step is to approximate f by performing its
expansion into a series composed of N discrete known functions fn multiplied element-
wise by αn unknown complex coefficients, as shown in eq. (2.2).

f '
N∑
n=1

αnfn (2.2)

By replacing eq. (2.2) into eq. (2.1) we obtain eq. (2.3), where αn can be extracted
due to the linearity of L.

N∑
n=1

αnL(fn) ' g (2.3)

In order to be able to solve eq. (2.3), we need to apply it over M points, with
M ≥ N . For this, g is projected over a set of functions wm, called test functions. By
testing eq. (2.3) with this set of functions we obtain a system of M linear equations,
as shown in eq. (2.4).

N∑
n=1

αn〈wm,L(fn)〉 = 〈wm,g〉 (2.4)
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Its application is performed through a symmetric product, defined in eq. (2.5), or
a scalar product, defined in eq. (2.6), where ∗ indicates the conjugated complex. Since
this thesis, as will be stated later, will use real basis functions as basis, both products
are equals.

〈f,g〉 =

∫
S

f · gds (2.5)

〈f,g〉 =

∫
S

f · g∗ds (2.6)

Developing eq. (2.4) into its matrix from we can write it as shown in eq. (2.7),
where Z is called the impedance matrix or MoM matrix, I is the unknowns vector with
the coefficients that weighs fn and V is the vector of excitation, defined in eq. (2.8)
and eq. (2.9).

Z · I = V, (2.7)

Z =


〈w1,L(f1)〉 〈w1,L(f2)〉 · · · 〈w1,L(fN)〉
〈w2,L(f1)〉 〈w2,L(f2)〉 · · · 〈w2,L(fN)〉

...
...

. . .
...

〈wN ,L(f1)〉 〈wN ,L(f2)〉 · · · 〈wN ,L(fN)〉

 (2.8)

I =


α1

α2
...
αN

 ;V =


〈w1,g〉
〈w2,g〉

...
〈wN ,g〉

 (2.9)

Now, the system in eq. (2.8) can be solved by matrix inversion or, as is usual due
to the size of the resulting system in the field, by the use of iterative methods like
generalized minimal residue (GMRES).

In this procedure, the choice of the functions for fn and wn plays a major role
over the precision, the complexity for evaluating some terms or the conditioning of
the impedance matrix. Also, using the same functions basis for fn and wn permits the
application of the Galerkin method, allowing relevant improvements in the computation
time due to the symmetries that appear into the impedance matrix. In the case of of
this work, the fn and wn functions used are RWG basis functions [10], introduced
by Rao, Wilton and Glisson in 1982. The achievable precision of this method is also
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dependent on N . Otherwise informed, the criteria applied to every problem of this
thesis will be a density of 300 RWG basis per square wavelength. This criterion comes
from applying 10 basis per wavelength in a linear approach. Extending this criterion
to a surface we obtain 100 surface basis conformed by squares per square wavelength.
However, as full RWG basis are being used, this is multiplied by 2 as the meshes is
conformed by triangles, and by 1.5 as each triangle is, in a general case, part of 3 basis
shared with the adjacent triangles.

2.2 Surface integral equation formulation

The introduction to the SIE formulation is presented for a single arbitrary-shaped
body composed by an electromagnetic penetrable material. Notice that the temporal
harmonic exp(jωt) will be omitted in the whole development. The notation of the base
problem is shown in Fig. 2.1. Ei1 and Hi1 denote the impinging electric and magnetic
fields respectively from region R1, S is the arbitrary surface separating the two regions
that compose the problem, εi and µi are the relative constitutive parameters of the
material that composes the region Ri, n̂i is the unitary norm to S aiming to region Ri.

Figure 2.1: Arbitrary body used as example for the development for the formulation of the surface
integral equation.

From this, we will develop the field integral equations (FIE), which will be the core
of the resolution process. This can be classified into four different equations, depending
on the boundary conditions and their application:
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1. N-EFIE (Normal Electric Field Integral Equation).

2. N-MFIE (Normal Magnetic Field Integral Equation).

3. T-EFIE (Tangencial Electric Field Integral Equation).

4. T-MFIE (Tangencial Magnetic Field Integral Equation).

To start with, we depart from the problem in Fig. 2.1, we develop an equivalent
problem, shown in Fig. 2.2, where Ji y Mi are respectively the electric and magnetic
surface current densities over the surface S of region Ri.

Figure 2.2: Representation of the equivalent problem of the example shown in Fig. 2.1.

The equivalent theorem [11] relates both the electric and magnetic surface currents
with the total fields over the regions, as shown in eq. (2.10) and (2.11) respectively.

Mi = −n̂i × Et
i (2.10)

Ji = n̂i ×Ht
i (2.11)

The total Et
i and Ht

i fields can be separated, as shown in eq. (2.12) and eq. (2.12),
into the sum of the incident fields, denoted with superscript i, and the scattered fields,
denoted with superscript s, which depend on the electric and magnetic surface currents.
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Et
i = Ei

i + Es
i (Ji,Mi) (2.12)

Ht
i = Hi

i + Hs
i (Ji,Mi) (2.13)

The scattered fields by the currents can be calculated as shown in eq. (2.14) and
eq. (2.15), where ηi is the intrinsic impedance of the region Ri, that can be calculates
as ηi =

√
µi/εi.

Es
i (Ji,Mi) = −ηiLi(Ji) +Ki(Mi) (2.14)

Hs
i (Ji,Mi) = −Ki(Ji)−

1

ηi
Li(Mi) (2.15)

L(·) and K(·) are the integral operators defined in eq. (2.16) and eq. (2.17) respec-
tively, where r are the observation points, r′ the source points, ki the wavenumber in
region Ri, Gi(r, r

′) the Green function in the region Ri and KPVi the principal value of
integral operator K(·), defined in eq. (2.18).

Li(Xi) = jki

[∫
S

Xi(r
′)Gi(r, r

′)dS ′

+
1

k2i
∇
∫
S

∇′ ·Xi(r
′)Gi(r, r

′)dS ′
]

(2.16)

Ki(Xi) = KPVi +
1

2
n̂i ×Xi (2.17)

KPVi =

∫
S,PV

Xi(r
′)×∇Gi(r, r

′)dS ′ (2.18)

Departing from eq. (2.10) and eq. (2.11) two integral equations can be obtained:
the electric field integral equation (EFIE) and the magnetic field integral equation
(MFIE) respectively. Depending on how the fields are projected over the surface S,
two different kind of formulations can be obtained for both integral equations: tangen-
tial formulation, developed in subsection 2.2.1, and normal formulation, developed in
subsection 2.2.2.
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2.2.1 Tangential formulation

Applying the product by n̂ to both sides of eq. (2.10) and eq. (2.11) over the surface
S we obtain the tangential electric and magnetic integral equations. Developing them,
taking into account eq. (2.12), eq. (2.13), eq. (2.14) and eq. (2.15) and introducing
them into the result of the described product we obtain eq. (2.19) and eq. (2.20).

T-EFIEi : (ηiLi(Ji)−KPVi (Mi))tan +
1

2
n̂i ×Mi = Ei

i,tan (2.19)

T-MFIEi : (KPVi (Ji) +
1

ηi
Li(Mi))tan −

1

2
n̂i × Ji = Hi

i,tan (2.20)

The applied boundary conditions to the problem consider the continuity of the
tangential fields over the surface S, as shown in eq. (2.21) and eq. (2.22), with n̂ =
n̂1 = −n̂2.

n̂× (Ht
1 −Ht

2) = 0 (2.21)

n̂× (Et
1 − Et

2) = 0 (2.22)

The combination of eq. (2.19) and eq. (2.20) for the inner and external regions Ri

is performed as in [12], resulting in eq. (2.23) and eq. (2.24), where ai and di are the
coefficients for the formulation combination, which can be consulted in Table 2.1 for
the widespread combinations.

a1
1

η1
T-EFIE2 + a2

1

η2
T-EFIE2 (2.23)

d1η1T-MFIE1 + d2η2T-MFIE2 (2.24)

Once the tangential integral equations have been developed, the next step is their
discretization, for which will be used the procedure shown in section 2.1. For this, J and
M currents are expanded using eq. (2.2), where αn are complex unknown coefficients.
Developing the rest of process for eq. (2.19) and eq. (2.20) and ordering taking into
account the linearity of the operators we arrive to eq. (2.25) and eq. (2.26), where Jn
and Mm are the expanded J and M currents and m = 1 . . . N .
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T-EFIE12 : a1

N∑
n=1

〈fm,L1(fn)〉 Jn −
a1
η1

N∑
n=1

〈fm,K1(fn)〉Mn

+a2

N∑
n=1

〈fm,L2(fn)〉 Jn −
a2
η2

N∑
n=1

〈fm,K2(fn)〉Mn

+
1

2

(
a1
η1
− a2
η2

) N∑
n=1

〈fm, n̂× fn〉Mn

=

〈
fm, a1

1

η1
Ei

1 − a2
1

η2
Ei

2

〉
(2.25)

T-MFIE12 : d1η1

N∑
n=1

〈fm,K1(fn)〉 Jn + d1

N∑
n=1

〈fm,L1(fn)〉Mn

+d2η2

N∑
n=1

〈fm,K2(fn)〉 Jn + d2

N∑
n=1

〈fm,L2(fn)〉Mn

+
1

2
(d2η2 − d1η1)

N∑
n=1

〈fm, n̂× fn〉Jn

=
〈
fm, d1η1H

i
1 − d2η2Hi

2

〉
(2.26)

2.2.2 Normal formulation

The approach to develop the normal surface integral equations for electric and magnetic
fields is the same described in 2.2.1, but departing from the rotated tagential component
of the fields in Ri over S. This gives place to eq. (2.27) and eq. (2.28). Notice that its
called normal formulation because the product by n̂i appears explicitly, but, despite
this, the boundary conditions are still the the tangential fields, rotated in this case.

N-EFIEi : n̂i × (ηiLi(Ji)−KPVi (Mi))−
1

2
Mi = n̂i × Ei

i (2.27)

N-MFIEi : n̂i × (KPVi (Ji) +
1

ηi
Li(Mi)) +

1

2
Ji = n̂i ×Hi

i (2.28)

Applying the formulation of [12], in a similar way as done in eq. (2.23) and eq.
(2.24), we obtain eq. (2.29) and eq. (2.30).

b1N-MFIE1 + b2N-MFIE2 (2.29)
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−c1N-EFIE1 − c2N-EFIE2 (2.30)

By developing eq. (2.29) and eq. (2.30) as done with eq. (2.23) and eq. (2.24) in
2.2.1 we arrive to the complete expressions for both equations, as shown in eq. (2.31)
and eq. (2.32).

N-MFIE12 : b1

N∑
n=1

〈
fm, n̂×KPV1 (fn)

〉
Jn −

b1
η1

N∑
n=1

〈fm, n̂× L1(fn)〉Mn

−b2
N∑
n=1

〈
fm, n̂×KPV2 (fn)

〉
Jn −

b2
η2

N∑
n=1

〈fm, n̂× L2(fn)〉Mn

+
1

2
(b1 + b2)

N∑
n=1

〈fm, fn〉Jn

=
〈
fm, b1(n̂×Hi

1) + b2(n̂×Hi
2)
〉

(2.31)

N-EFIE12 : −c1η1
N∑
n=1

〈fm, n̂× L1(fn)〉 Jn + c1

N∑
n=1

〈
fm, n̂×KPV1 (fn)

〉
Mn

+c2η2

N∑
n=1

〈fm, n̂× L2(fn)〉 Jn − c2
N∑
n=1

〈
fm, n̂×KPV2 (fn)

〉
Mn

+
1

2
(c1 + c2)

N∑
n=1

〈fm, fn〉Mn

=
〈
fm,−c1(n̂× Ei

1)− c2(n̂× Ei
2)
〉

(2.32)

2.2.3 Combined formulation

The tangential and normal formulations are capable of solving any penetrable problem.
However, each of them has some particular problems like stability or precision, as
was studied in [13] through the application of CTF (combined tangential formulation)
and CNF (combined normal formulation). In order to compensate those problems,
a weighted combination of both formulations can be performed [12], as shown in eq.
(2.33), where i = 1 is external part of the surface Sand i = 2 the internal part.
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2∑
i=1

ai
ηi

T-EFIEi +
2∑
i=1

biN-MFIEi (2.33)

−
2∑
i=1

ciN-EFIEi +
2∑
i=1

diηiT-MFIEi, (2.34)

Equation (2.33) is called electric current (J) combined field integral equation (JC-
FIE), and perfect electric conductors (PEC) can be analyzed through it weighting by
zero the inner region. On the other hand, eq. (2.33) describes the magnetic current
(M) combined field integral equation (MCFIE). The most widespread combination of
the equations above are shown in Table 2.1, where PMCHWT stands for Poggio-Miller-
Chang-Harrington-Wu-Tsai [14].

Formulación ai bi ci di
JMCFIE 1 1 1 1

CTF 1 0 0 1

PMCHWT ηi 0 0 1/ηi
CNF 0 1 1 0

Table 2.1: Values for the coefficients for the JMCFIE, CTF, PMCHWT and CNF formulations.

2.3 Application of the formulation to multiple pen-

etrable objects

In this section the SIE-MoM framework is extended for multiple penetrable objects,
departing from the generic scheme shown in Fig. 2.3. As in the example used in Fig.
2.1, Ri is the region or medium with constitutive parameters εi and µi. The interface
between regions Ri and Rj is denoted as Sij meeting i < j, and the normal unit vector
pointing to region Ri is denoted as n̂ij.

Applying the equivalence theorem, every interface is replaced by equivalent electric
Jij and magnetic Mij currents, which are dependent of the relation shown in equations
(2.35) and (2.36), where Et

i and Ht
i are the total electric and magnetic field respectively

in the region Ri.

n̂ij ×Mij = Et
i (2.35)
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Figure 2.3: Generic example with multiple bodies used for the development of the extension of the
formulation.

−n̂ij × Jij = Ht
i (2.36)

The total fields in Ri can be expressed as the sum of the incident fields and the
scattered fields by the surface equivalent currents, shown in equations (2.37) and (2.38),
where j′ is the index of the adjacent region index to Ri.

Ht
i = Hi

i +
∑
j′

Hs
i (Jij′Mij′) (2.37)

Et
i = Ei

i +
∑
j′

Es
i (Jij′ ,Mij′) (2.38)

The scattered fields Es
i (Jij′ ,Mij′) and Hs

i (Jij′ ,Mij′) can be obtained from eq. (2.39)
and eq. (2.40) respectively, where L(·) and K(·) are the previously defined integral
operators and ηi is the intrinsic impedance of region Ri.

Es
i (Jij′ ,Mij′) = −ηiLi(Jij′) +Ki(Mij′) (2.39)

Hs
i (Jij′ ,Mij′) = −Ki(Jij′)−

1

ηi
Li(Mij′) (2.40)

The equivalent currents Jij and Mij over Sij can be computed based on the total
fields over it, as shown in eq. (2.41) and eq (2.42), being Et

i|Sij
and Ht

i|Sij
the total

electric and magnetic fields in the region Ri. Both equations describe the EFIE and
the MFIE within region Ri.
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EFIEi|Sij
: Mij = −n̂ij × Et

i|Sij
(2.41)

MFIEi|Sij
: Jij = n̂ij ×Ht

i|Sij
(2.42)

By following a similar process as described previously in 2.2.1 and 2.2.2, we can
obtain the set of surface integral equations for both the tangential and the normal
fields. The result of this process is shown in equations (2.43), (2.44), (2.45) and (2.46).

T-EFIEi|Sij
: n̂ij ×Mij +

∑
j′

(
(ηiLi(Jij′)−KPVi (Mij′))tan

−1

2
n̂ij ×Mij′

)
= Ei

i,tan (2.43)

T-MFIEi|Sij
: −n̂ij × Jij +

∑
j′

(
(KPVi (Jij′) +

1

ηi
Li(Mij′))tan

+
1

2
n̂ij × Jij′

)
= Hi

i,tan (2.44)

N-EFIEi|Sij
: −Mij′ + n̂ij ×

∑
j′

(
ηiLi(Jij′)−KPVi (Mij′)

−1

2
n̂ij ×Mij′

)
= n̂ij × Ei

i (2.45)

N-MFIEi|Sij
: Jij + n̂ij ×

∑
j′

(
KPVi (Jij′) +

1

ηi
Li(Mij′)

+
1

2
n̂ij × Jij′

)
= n̂ij ×Hi

i (2.46)

This set of integral equations can be gathered as shown in eq. (2.47) and eq. (2.48),
where the parameters ai, bi, ci and di can be found in Table 2.1.

JCFIEi|Sij
= ai

1

ηi
T-EFIEi + biN-MFIEi (2.47)
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MCFIEi|Sij
= −ciN-EFIEi + diηiT-MFIEi (2.48)

The last step is combining the JCFIE and MCFIE of the regions Ri y Rj in order
to obtain the SIE over Sij, as shown in equations. (2.49) and (2.50).

JCFIEij : ai
∑
j′

(
ηiLi(Jij′)−

1

ηi
KPVi (Mij′)

)
tan

+aj
∑
j′

(
ηjLj(Jjj′)−

1

ηj
KPVi (Mjj′)

)
tan

+bin̂ij ×
∑
j′

(
KPVi (Jij′) +

1

ηi
Li(Mij′)

)
+bjn̂ji ×

∑
j′

(
KPVj (Jjj′) +

1

ηj
Lj(Mjj′)

)
+

1

2

(
ai
ηi

n̂ij ×Mij +
aj
ηi

n̂ji ×Mji + biJij + bjJji

)
= ai

(
Ei
i,tan

)
+ aj

(
Ej
j,tan

)
+ n̂ij ×Hi

i + n̂ji ×Hi
j (2.49)

MCFIEij : −cin̂ij ×
∑
j′

(
ηiLi(Jij′)−KPVi (Mij′)

)
−cjn̂ji ×

∑
j′

(
ηjLj(Jjj′)−KPVj (Mjj′)

)
+di

∑
j′

(
ηiKPVi (Jij′) + Li(Mij′)

)
tan

+dj
∑
j′

(
ηjKPVj (Jjj′) + Lj(Mjj′)

)
tan

+
1

2
(ciMij + cjMji − din̂ij × Jij − djn̂ji × Jji)

= cin̂ij × Ei
i + cin̂ji × Ei

j + diηiH
i
i,tan + djηjH

i
i,tan (2.50)

If we gather the expressions (2.49) and (2.50) by interfaces and apply matrix nota-
tion, it can be expressed as shown in eq. (2.51).
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Zij,ij Zij,kl · · · Zij,pq

Zkl,ij Zkl,kl · · · Zkl,pq
...

...
. . .

...
Zpq,ij Zpq,kl · · · Zpq,pq




I ij
I kl
...

I pq

 =


V ij

V kl
...

V pq

 (2.51)

In this expression, each sub-block Zij,i′j′ corresponds to the coupling of interface
Si′j′ over Sij, and are defined as in eq. (2.52), where vectors I ij and V ij are defined
in (2.53), being J ij[n] = Jn and M ij[n] = Mn. Notice that when there is no shared
medium between interface, all the elements of the coupling sub-block between them
are equal to zero, as is usual in many CEM problems.

Zij,i′j′ =

[
Z1J
ij,i′j′ Z1M

ij,i′j′

Z2J
ij,i′j′ Z2M

ij,i′j′

]
(2.52)

I ij =

[
J ij

M ij

]
;V ij =

[
V 1

ij

V 2
ij

]
(2.53)

Expressions (2.54) and (2.55) show the definition of V 1
ij and V 2

ij, where bm =

〈fm, a1η1 Ei
1 − a2

η2
Ei

2〉 and cm = 〈fm, d1η1Hi
1 − d2η2Hi

2〉.

V 1
ij = bijm + b′ijm (2.54)

V 2
ij = cijm + c′ijm (2.55)
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This chapter focuses on the efficient analysis of periodic structures. The first section
introduces the problems that appear when CEM analysis is carried for this kind of
structures, followed by a review of the most relevant techniques used to tackle periodic
problems. In section two slotFFT algorithm, the core method developed in this thesis,
is introduced. Single and double sampling formulations of the algorithm are developed,
including a mean computing time of the MVP comparisons for the straight approach
and for both versions of the algorithm. The third section shows the remarkable results
obtained used this method, from the first results obtained at the beginning of the
thesis to a replicated case with biomedical applications. The fourth and fifth sections
introduce two extensions of slotFFT for especial cases in the limits of the thesis.

21
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3.1 Introduction

Computational electromagnetic analysis is a vast field of research with many topics.
From the ships and planes communication systems or the modern 5G antennas to the
cutting-edge applications of electromagnetism within biotechnology, even in the now
not-so-science fiction apps of metamatelaries like invisibility, periodic structures are
very common. Periodic structures present many interesting properties with a vast
plethora of applications: they can be frequency selective, achieve chiral behavior,
achieve extreme field concentrations or allow special radiation patterns, to mention
few examples.

However, when it comes to CEM, periodic structures become a major issue. The
large size of the structures combined with the large number of elements that compose
them and the mesh densities to properly analyze the problems give place to prohibitive
computational needs. In terms of memory, it is easy to pose impedance matrix with
few hundreds of gigabytes of RAM memory, making the analysis impossible without
specific computational infrastructure that is not available for everyone. At the same
time, the extreme number of unknowns that composes the problems is also translated
into a large number of operations to attain the solution, hence very long computational
times even with iterative methods like generalized minimal residual method (GMRES).
As a response to these kind problems, several methods are available to perform the
CEM analysis.

The Floquet’s harmonic theory [15–19] is based on expansion series, intended for
compute the electromagnetic behavior of infinite arrays. However, most of the real
world systems cannot be approximated as infinite structures. Due to this inconvenient,
there are Floquet based methods capable of approach finite periodic structures. This
comes with a cost, as the approximation does not properly take inot account important
effects like stationary waves or edge-effects, which are relevant in the system response.

Despite its complexity to implement, the multilevel fast miltipole algorithm (MLFMA)
[20–29] is a widespread method to approach finite periodic problems due to its high
efficiency. It is based on the discretization of the surface integral equations and for
solving problems uses iterative solvers as well as it integrates other methods to achieve
higher accelerations of the solving stage. In order to accelerate the MVP, the MLFMA
relies on a multipolar expansion of the Green’s function, and performs the aggregation,
translation and dissaggregation processes, which limit the precision attainable. This
precision limit depends on parameters like the number of multipoles that make the
computational cost to scale but allowing to get closer the the precision of SIE-MoM.
Due to its implementation, the MLFMA achieves a high efficiency, with an equivalent
cost of O(N log(N)) (where N is the problem number of unknowns). In addition to
this, the MLFMA does not take advantage of the periodicity of the problem, as is
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intended for arbitrary geometries.

Another approach, intended for the fast computation of the MVP, is the precor-
rected fast Fourier transform (p-FFT) [30–35]. The p-FFT method performs the trans-
formation of a general problem into an uniform three dimension grid scheme and com-
putes in a different way the near and the far couplings. By carry out this, the result
must pass through a precorrection stage in order to compensate precision losses. The
CG-FFT method [36] is a similar procedure also intended for accelerating a three di-
mensional uniform grid using the FFT.

Besides the applications of the FFT in non periodic problems, it has been applied
for some kind of specific periodic problems without any precision loss. Some particular
antenna arrays present a multilevel block-Toeplitz impedance matrix when solve using
MoM, which allow the application of the FFT to accelerate the solving process [37–39].
The FFT based approach proposed in [40, 41] offers a fast solver for antenna array,
whereas the techniques proposed in [37–41] approach the periodicity of the composites,
achieving in both cases an acceleration without precision loss.

At last, a different approach has been applied to greatly simplify ensembles of
elements that are periodic or that present some kind of periodicity in three dimensions
for both cases. The homogeneization methods [42, 43] builds an equivalent problem,
creating a body with shape similar to the original problem which encloses it. By
calculating specific constitutive properties for the equivalent problem, these methods
greatly reduce the number of unknowns that compose it, but at the cost of precision
in the solution obtained.

3.2 SlotFFT Algorithm

When dealing with finite periodic problems using the SIE-MoM, the periodical patterns
of the structures are translated into the impedance matrix. This can be appreciated
in Fig. 3.1, where the impedance matrix of a linear array of three elements is shown
using a logarithmic representation to magnify the patterns. In particular, part of the
self-coupling sub-matrix are remarked in order to ease the appreciation.

Though the extraction of set of elements from the MoM impedance matrix by
sampling it, the MVP can be carried out with a low number of operations using the
FFT in comparison with the straight MVP. We have named this new approach slotFFT
algorithm.

This section introduces two different versions of this algorithm, as it evolved during
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Figure 3.1: Logarithmic representation of an impedance matrix of the periodic linear array with
periodic features remarked.

the development of this thesis. The first version of slotFFT [44] performs a single
sampling of the MoM impedance matrix, hence the name, whereas the second version
perform a double sampling, increasing considerably the efficiency attainable in the
MVP.

3.2.1 Single sampling SlotFFT approach

For the sake of simplicity, the formulation is only introduced for 1D arrays. A generic
linear array of M elements is considered, shown in Fig. 3.2, where every element of the
array is identically described with RWG basis functions, giving place to n unknowns per
element and a total number of unknown of N for the whole problem, being N = nM .

Figure 3.2: Generic periodic linear array with M bodies.

The generic impedance matrix of a problem of this nature is shown in eq. (3.1),
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where submatrix Zi,j contains n × n coefficients which describe the coupling between
of the source basis functions of element j over the test basis functions of element i.

Z =



Z1,1 Z1,2 Z1,3 Z1,4 · · · Z1,M

Z2,1 Z2,2 Z2,3 Z2,4 · · · Z2,M

Z3,1 Z3,2 Z3,3 Z3,4 · · · Z3,M
...

...
...

...
. . .

...
ZM,1 ZM,2 ZM,3 ZM,4 · · · ZM,M


{N×N}

, (3.1)

As all the elements of the array are identically discretized, and taking into account
the symmetries between identical relative positions, we can set the identities shown in
equations (3.2)-(3.4).

Zi,i = Z1,1 (3.2)

Zi,j = Z1,j−i+1 if j > i (3.3)

Zi,j = Zi−j+1,1 if j < i (3.4)

Introducing eqs. (3.2)-(3.4) into eq. (3.1), we can see that Z presents the structure
of a block Toeplitz Matrix, as shown in eq. (3.5).

Z =



Z1,1 Z1,2 Z1,3 Z1,4 · · · Z1,M

Z2,1 Z1,1 Z1,2 Z1,3 · · · Z1,M−1
Z3,1 Z2,1 Z1,1 Z1,2 · · · Z1,M−1

...
...

...
...

. . .
...

ZM,1 ZM−1,1 ZM−2,1 ZM−3,1 · · · Z1,1


{N×N}

(3.5)

In order to simplify the expressions we can set Zk as stated in eq. (3.6).

Zk ≡ Zi,j where k = j − i, −M + 1 < k < M − 1 (3.6)

By replacing eq. (3.6) into eqs. (3.2)-(3.4) the expressions can be written as in
eqs.(3.8)-(3.9) .
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Z0 ≡ Z1,1 (3.7)

Zj−i ≡ Z1,j−i+1 if j > i (3.8)

Zj−i = Z−(i−j) ≡ Zi−j+1,1 if j < i (3.9)

If we apply these set of equations to eq. (3.5), we can express Z as shown in eq.
(3.10).

Z =



Z0 Z1 Z2 Z3 · · · ZM−1

Z−1 Z0 Z1 Z2 · · · ZM−2

Z−2 Z−1 Z0 Z1 · · · ZM−3

...
...

...
...

. . .
...

Z−(M−1) Z−(M−2) Z−(M−3) Z−(M−4) · · · Z0


{N×N}

(3.10)

From this expression the similitude with a Toeplitz matrix can be quickly appre-
ciated. If that were the case, the MVP of Z with a vector could be computed in an
efficient way using the FFT, reducing the cost of the MVP from O(N2) to O(N logN).
However, Z is a block-Toeplitz matrix, which makes necessary the application of a pro-
cess to decompose Z in a set of sub-matrix able to be compute through the stated
procedure using FFT, being this process of decomposition the core of the slotFFT
method.

To model each one of the block rows in eq. (3.10) using the notation introduced in
eq. (3.6), a block row matrix Ri of n×N elements can be posed, meeting the expression
in eq. (3.11).

Ri ≡
{

Z1−i Z2−i Z3−i · · · ZM−i } 0 < i ≤M (3.11)

Replacing in Z the sets of block row matrix, it can be expressed as in eq. (3.12).

Z =



R1

R2

R3
...

RM


{N×N}

(3.12)
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From this, a special matrix R of n× (2N −n) elements can be posed, that contains
all the unique elements in Z, as shown in eq. (3.13). As it is written, it can be
appreciated that each Ri can be extracted from R.

R ≡
{

Z−(M−1) Z−(M−2) · · · Z−1 Z0 Z1 Z2 · · · ZM−1 } (3.13)

All Ri can be extracted from R, meeting 0 < i ≤ M , taking the columns from
N − in + 1 to 2N − in. Using MatLab notation this can be performed through the
expression Ri = R(:, (N − in+ 1) : (2N − in)).

Departing from eq. (3.13) a matrix Zk N × N can be expressed as shown in eq.
(3.14), where 0 < k ≤ n. In general i − j − k + N + 1 are greater than 0. However,
there will be too few elements out of the range of R. These elements can be filled with
any value. Notice that this can be done because due to the way slotFFT approach the
MVP in its final stage, these elements do not introduce any effect into the solution.

{Zk}i,j ≡ {R}k,i−j−k+N+1 (3.14)

It can be appreciated that every k + in row of Zk corresponds to the same k + in
row of Z, as shown in eq. (3.15). Furthermore, each row of Zk can be obtained by
shifting the precedent row, as shown in eq. (3.16), which implies that each Zk is a
Toeplitz matrix.

{Zk}k+in,j = {Z{k+in,j 0 ≤ i < M, 1 ≤ j ≤ N (3.15)

{Zk}i,j = {Zk}i−1,j−1 1 < i, j ≤ N (3.16)

We define Sk, which will be named the sampling matrix, whose elements {S}k can
be seen in eq. (3.17), where ṅ is a multiple of n.

{Sk}i,j =

{
1 if i = j and i = k + ṅ
0 elsewhere

}
(3.17)

This matrix presents a diagonal composed by ones with a periodic distribution
dependent on M . An example for M = 3, n = 3 and k = 2 can be found in eq. (3.18).
Also the properties shown bellow eq. (3.18) can be defined.
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0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0


(3.18)

� Product of two sampling matrix:

SkSl =

{
Sk k = l
0N×N k 6= l

(3.19)

� The sum of the complete set of Sk is the identity matrix:

I =
n∑
k=1

Sk (3.20)

Then, any matrix A can be written as:

A = IA =
n∑
k=1

SkA (3.21)

� The Sk operator gives the same result when it is applied to Z and to Zk:

SkZ = SkZk (3.22)

Summing over k in Eq. (3.22) we obtain the expression shown in eq. (3.23).

n∑
k=1

SkZ =
n∑
k=1

SkZk (3.23)

If we replace (3.21) into (3.23), S can be obtained from the sampled Zk matrices,
as shown in eq. (3.24).

Z =
n∑
k=1

SkZk (3.24)
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Departing from eq. (3.24), the product of the impedance matrix Z by a vector can
be expressed as shown in eq. (3.25).

Zx =
n∑
k=1

[Sk (Zkx)] (3.25)

The computational cost of eq. (3.25) by the MVP of Zkx, as the product by Sk
has no cost due to the implementation in the codes. As stated previously, Zk is a
Toeplitz matrix, making possible to compute the MVP through the FFT with a cost
of O(N logN). As n MVP must be carried to compute all the elements, the final cost
to carry out the MVP of Zx is O(nN logN).

It must be taken into account that the Zk matrices are not computed, meaning that
no cost is introduced. Also, there is an important saving in terms of computation and
storage in Z, as the stored matrix is R, shown in eq. (3.13), which needs n× (2N −n)
elements in memory. From this, it can be appreciated that n domains the costs of
the method. In Fig. 3.3 is shown the result of running the simple sampling slotFFT
algorithm in a computing cluster composed by 4 Intel Xeon E7-4820 at 2.00GHz (eight
cores each one, 32 cores in all), with 512GB of RAM memory. The structures used to
perform the simulation are 1D, 2D and 3D periodic ensembles of gold nanospheres of
radius 100nm and 180nm separation between surfaces, using 240 unknowns for each
element and modifying the number of spheres, M , from just 75 to 40000. The analysis
performed using as excitation an impinging planewave with λ = 540nm.

(a) Memory usage. (b) MVP computing time.

Figure 3.3: Comparison of the memory and computing time needed with MoM and single slotFFT
method for 1, 2 and 3 dimensional patterns.
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Fig. 3.3(a) shows the memory cost of the storage of the MoM impedance matrix
and the slotFFT using periodic structures in 1D, 2D and 3D uniform grids. As it
can be expected from eq. (3.13), the needs of storage are reduced significantly. In
Fig. 3.3(b) the mean MVP computing cost for the same structure is shown. The
comparison of the MVP computing time was carried out without parallelization to
avoid possible performance bias. The time saving derived from the reduction of the
number of operations from O(N2) to O(nN logN) can be observed. The fluctuation in
times that can be observed in the MVP mean times for slotFFT can be explained due
to the different factorization of the FFT for each example. Also possible fluctuations
are expectable depending on the FFT algorithm implementation.

3.2.2 Double sampling SlotFFT approach

In a similar development that in 3.2.1, this section introduces the formulation for the
double sampling version of slotFFT. For this the reduced sampling matrix (Sk)i,j of
n× nM elements is introduced in eq. (3.26), a sampled version of Sk matrix shown in
eq. (3.17), with 0 < k ≤ n . Notice that the k index is used in this equation, but in the
following development it will be named l or r depending the side where it is applied,
as there are two sampling matrices in the development.

(Sk)i,j =

{
1 for j = (i− 1)n+ k

0 otherwise
(3.26)

An example of this matrix is shown in eq. (3.27), in particular for a case with
n = 3, M = 3 and k = 2.

0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0

 (3.27)

This matrix Sk, multiplied by its transpose, results in the sampling matrix of the
same index, as shown in eq. (3.28).

S
T

kSk = Sk (3.28)

Also is convenient describe other two properties as will be used in the development
of the formulation. The first one, shown in eq. (3.29) (also used in the development of
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the single sampling slotFFT), states that the sum of the product of a matrix Z by the
complete set of sampling matrices results in the same matrix Z.

Z =
n∑
l=1

SlZ (3.29)

The second property, shown in eq. (3.30), is the extension of the first one to vectors,
stating that the sum of the product of a vector x by the complete set of sampling
matrices results in the same vector x.

x =
n∑
l=1

Slx (3.30)

Departing from the property shown in eq. (3.29), the formulation of the problem
is developed starting with eq. (3.31).

Zx =
n∑
l=1

SlZx (3.31)

Introducing eq. (3.30) into eq. eq. (3.31) to slot the x vector we obtain eq. (3.32).

Zx =
n∑
l=1

SlZ

(
n∑
r=1

Srx

)
(3.32)

The next step is decomposing the Sl and Sr matrices into products of their sub-
sampling matrices by applying the property introduced in eq. (3.28), which results in
eq. (3.33).

Zx =
n∑
l=1

S
T

l SlZ

(
n∑
r=1

S
T

r Srx

)
(3.33)

Introducing the term SlZ into the summatory over r we arrive to the expression
eq. (3.34).

Zx =
n∑
l=1

S
T

l

n∑
r=1

SlZS
T

r Srx (3.34)
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In order to simplify the expression, an auxiliary matrix zlr is stated as shown in eq.
(3.35). Notice that zlr is a Toeplitz matrix of M ×M elements. For the same purpose,
also an auxiliary vector xr is expressed as shows eq. (3.36).

zlr = SlZS
T

r (3.35)

xr = Srx (3.36)

Introducing equations (3.35) and (3.36) into eq. (3.34) results in equation (3.37).

Zx =
n∑
l=1

S
T

l

n∑
r=1

zlrxr (3.37)

As zlr is a Toeplitz matrix, its product with xr can be performed using the FFT to
reduce the overall cost. However, due to the double sampling in this case the overall
cost is reduced from O(N2) to O(N logM) instead of O(nN logN). In Fig. 3.4 can be
seen the comparison of the mean MVP for MoM, single sampling slotFFT and double
sampling slotFFT in the same conditions performed for Fig. 3.3(b). Apart from the
increment in the efficiency for the double sampling version, it can also be noticed
an improvement in the stability of the curve, which presents almost no fluctuations
compared with the single sampling version. This is due to the size of the FFTs, which
are smaller by a factor of n compared to the single sampling version, which reduces
memory accesses and the complexity of the FFT factorization.

Figure 3.4: Comparison of the computing time needed with MoM and single and double sampling
versions of the slotFFT method for one dimensional pattern.
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3.3 Application to finite periodic structures

This section presents the results from applying slotFFT to some generic and specific
problems, covering several fields of application. All the simulations were performed in
the same computing cluster of the previous section, composed by 4 Intel Xeon E7-4820
at 2.00GHz (eight cores each one, 32 cores in all) and with 512GB of RAM memory,
but without restrictions to the parallelization tools.

The first example presented corresponds to a large 3D cube-shaped array of di-
electric spheres, used to test the simple sampling version of slotFFT applied to large
structures and its stability. The structure is composed of 20×20×20 spheres of λ/2
of diameter, separated by 6λ/10 between centers in the 3 dimensions. Each sphere is
identically modeled with 270 RWG basis functions for the electric currents and other
270 basis for the magnetic currents, which leads to a total number of unknowns for the
complete structure of N = 4.32 million and 298.6GB of RAM memory to storage the
slotFFT impedance matrix. The problem was carried out under a normal impinging
plane wave at θ = 0◦ with a wavelength of 780nm. The total computing time was 11
hours of CPU time to achieve a relative residual under 10−4 using JMCFIE formulation.

Figure 3.5: Representation of the surface electric and magnetic currents obtained through the CEM
analysis of a cube-shaped array of dielectric spheres (εr = 3 and µr = 1) of λ/2 diameter and a
separation of 6λ/10 between centers for an incident plane wave (θ = 0◦) with 780nm of wavelength.

Despite of the regular and expectable distribution of the electric and magnetic
surface currents, only easily appreciable in the external elements of the structure, the
radar cross section (RCS) was computed to look for anomalies, shown in Fig. 3.6.
This is way is easy to validate the method without needing other approaches, as the
problems that my be introduced by indexation errors of the implementation would give



34 Chapter 3. Efficient analysis of finite periodic structures

place to asymmetrical diagrams, which are not observable in the result obtained.

Figure 3.6: Representation of the scattering cross section at λ = 780nm obtained through the com-
putation of the currents shown in Fig. 3.5.

As example of application to 2D structure, a plane-shaped composed of nano-
spheres is proposed. The structure disposes of the proper characteristics of a surface-
enhancement Raman spectroscopy (SERS) substrate [45–47]. In particular, the sub-
strate is composed of 200×200 nanospheres made of gold (εr = −9.3866−j1.5293) with
55nm of diameter separated by 56nm between centers suspended in water (εr = 1.7689),
shown in Fig. 3.7. The analysis required nearly 10 million unknowns to properly ad-
dress the problem, illuminated by two perpendicular plane waves at a wavelength of
600nm. The simulation used 32 hours of CPU to perform the analysis using the simple
sampling implementation of slotFFT and JMCFIE formulation.

The purpose of this analysis, published in [44], was to prove the effects that appear
in large structures. Due to the limitations of computational resources, as well as the
limitations of some commercial CEM software, often this kind of structure is studied
departing from infinite structures or, on the other hand, using small ensembles, which
may hide important effects common in a real scenario. This plays an important role in
these kind of applications, as the SERS intensity distribution may present stationary
wave-patterns effects.
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Figure 3.7: Representation of a SERS substrate composed by 200×200 gold nanospheres.

The results shown were computed applying no Raman shift [47], using for it the
expression shown in eq. (3.38), where E is the total electric field in the presence of the
SERS substrate and Ei the field of the incident plane wave.

SERS enhancement ≈ |E(ωin)|4|Ei(ωin)|−4, (3.38)

In Fig. 3.8(a) it can be observed the SERS enhancement obtained after smoothing
with a 2D Gaussian filter, which simulated the effect of the lenses used to observed and
measure the effect. As can be appreciated in the color axis of the representation, the
SERS representation is saturated to ease the observation of the the effects present in the
structure. A stationary wave pattern can be seen over the structure at the analyzed
frequency, as well as a remarkable the edge-effect in the borders of the substrate,
demonstrating how recommendable is to avoid approximations in the simulations of
this kind of structures. Figure 3.8(b) shows the field represented without filtering, as
could be measured with gauge. The hotspots, points with high field concentration,
between nanospheres can be easily appreciated, with peaks of 1.0824 · 105 arbitrary
units. Notice that the SERS magnitude is also saturated to remark the hotspots.

The following result belongs to a comparison of the precision of two homogeneization
methods versus the method of moments, also published in [44]. This kind of methods
consists in approaching a complex 3D grid of elements with a size minor than the
incident wavelength as an homogeneous solid body with an intermediate permittivity.
For the case of study two different homogeneization methods were used. The first one
is the Maxwell-Garnett formula [43], shown in eq. (3.39), and the Bruggeman rule [43],
shown in eq. (3.40), where εeff is the resulting permittivity, ε1 is the permittivity of
the elements, ε2 the permittivity of the sorrounding medium and q is the fraction of
volume of the inclusions over the total space, which in our case is equal to 1/8.



36 Chapter 3. Efficient analysis of finite periodic structures

(a) Representation of the SERS intensity ob-
tained filtered by a Gaussian mask.

(b) Detail of the region marked showing the
hotspots between adjacent nanospheres.

Figure 3.8: Representation of the SERS intensity computed for the substrate shown in Fig. 3.7.

εeff = ε2 + 3qε2
ε1 − ε2

ε1 + 2ε2 − q(ε1 − ε2)
(3.39)

(1− q) ε2 − εeff
ε2 + 2εeff

+ q
ε1 − εeff
ε1 + 2εeff

= 0 (3.40)

The example analyzed at 550nm of wavelength is a cube-shaped metastructure,
partially represented in red color in Fig. 3.9. It is composed of 110 × 110 × 110
nanocubes of λ/10 side, with εr = 3 and µr = 1 and a separation of λ/5 between
centers distributed in a uniform 3D grid. The constitutive properties of the dielectric
material of the nanocubes is εr = 3 and µr = 1 and the nanocubes are suspended in
vacuum medium. The structure analyzed with the simple sampling version of slotFFT
and JMCFIE formulation possesses 48 million of unknowns.

In Fig. 3.9 can be seen the resulting RCS of the structure, obtained for an incident
plane wave (θ = 0o). The same example is analyzed through the MLFMA algorithm
[26], using equivalent homogeneous structures with 12.1µm with εr = 1.1579 and εr =
1.1638, obtained with the Maxwell-Garnett and Bruggeman homogenization formulas
respectively. Using the appropriated mesh density, the equivalent problem needed 1.7
million unknowns.

In order to compare the results, the RMS error is calculated using the expression
η(~xref , ~xapprox) = ‖~xref − ~xapprox‖/‖~xref‖, where ~xref is the reference signal obtained
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Figure 3.9: Representation of the RCS at λ = 550nm of a cube-shaped array of dielectric nanocubes
with ε = 3 of λ/10 side and a separation of λ/5 between centers obtained using the method of mo-
ments accelerated with slotFFT compared to the Maxwell-Garnett and Bruggerman homogeneization
methods.

with slotFFT, ~xapprox is the signal obtained through the homogeization method, and
‖~x‖ is the euclidean norm of vector ~x. The obtained RCS for both homogeneization for-
mulas provide accurate results for general purposes, attaining a RMS error η = 0.0211
when the Maxwell-Garnett formula is used and η = 0.0623 with Bruggeman. However,
it can be appreciated the differences at 30 degrees from the principal directions between
the electromagnetic scattering of the two homogeneous cubes and response of the real
large periodic composite object obtained with slotFFT algorithm.

The next example, analyzed with the double sampling version of slotFFT, is a peri-
odic helical structure [48], whose periodicity is not based only on translations, but also
in rotations. Despite this, it can be analyzed by slotFFT without any modifications in
the code. It id compose by 90 gold nanorods of 550nm disposed in 15 spirals distributed
as shown in Fig. 3.10, which shows the electric and magnetic surface currents distri-
bution of the problem at a wavelength of 600nm. Each nanorod is modeled with 1209
RWG basis functions for each electric and magnetic surface currents, which results in
a total number of unknowns of N = 218K. The electromagnetic analysis was carried
at 31 different wavelengths from 400nm to 900nm. Each example was analyzed using
as excitation an impinging plane wave with θ = 0◦ and vertical polarization. The total
computing time for the example was 9 hours of CPU time to achieve a tolerance lower
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than 10−6 using JMCFIE formulation with the double sampling version of slotFFT.

Figure 3.10: Representation of the surface electric and magnetic currents obtained through the CEM
analysis of a simple helix for an incident plane wave (θ = 0◦) with 600nm of wavelength.

The resulting currents were used to compute the scattering, absorption and extinc-
tion cross sections in the analyzed range, shown in Fig. 3.11. The convergence was not
regular at all the frequencies analyzed, as there were some of them where the structure
resulted to be resonating, slowing down the resolution.

The last example introduced is a double helical structure composed of 2×60 gold
nanorods of 25nm of length, represented in Fig 3.12. The purpose of the analysis was
to compute the circular dichroism [49–53] of the structure, which has application in
biomedical field to detect specific diseases. The structure analyzed is a bigger approx-
imate replication of the structure shown in Figure S10. of the SI Appendix of [53].
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Figure 3.11: Scattering, absorption and extinction cross sections of the helical structure of Fig. 3.10
in the optical range for incident plane waves (θ = 0◦).

The structure, modeled with half-million unknowns, was analyzed at 45 wavelengths
from 400nm to 1200nm, performing at each one two analyses using right and left-hand
circular polarized planewaves impinging with θ = 0◦. The analysis took a mean time
of 10 hours per wavelength using JMCFIE formulation. The circular dichroism is
computed using the expression in eq. (3.41), where ECSLH is the extinction cross
section resulting from the left-handed excitation and ECSRH the resulting from the
right-handed excitation.

C.D. =
ECSLH − ECSRH
ECSLH + ECSRH

(3.41)

Figure 3.13 shows the resulting circular dichroism (left), obtained from the extinc-
tion cross sections for each polarization (right).
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Figure 3.12: Representation of a double helical structure composed by 2x60 gold nanorods of 25nm
of length.

Figure 3.13: Representation of the circular dichroism (left) and the extinction cross section (right)
of the double helical structure shown in Fig. 3.12 for normal incidence (θ = 180◦) from 400nm to
1200nm.
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3.4 Extension to aperiodic element-wise materials

structures

In the expressions developed in 2.3 it can be observed that the coupling sub-blocks in
expression (2.51) are only dependent on the constitutive parameters of the common
medium. In the case of finite periodic structures, this met for the coupling between
all elements, with the exception of the self-coupling sub-block, which depends on the
constitutive properties of the inner and the external mediums.

Due to this, slotFFT can be extended to structures with geometrical periodic-
ity composed by homogeneous elements with different materials as, for example, the
structure shown in Fig. 3.14.

Figure 3.14: Analyzed periodic array, composed by 20×20 dielectric spheres composed of multiple
materials distributed arbitrarily(gold, silver, copper and silica) of λ diameter separated by 2λ.

To carry out this, the process is simple. When setting the impedance matrix for the
method, the self-coupling sub-block is set entirely to zero to remove its contribution
to the solution. Then, after the main MVP has been carried out with slotFFT, the
contribution of the self-coupling is computed individually for each element and added
to the solution. Despite of this, the impact over the computing time is negligible, as
shown in Fig. 3.15, where the slotFFT version for this kind of problem does not differ
from the standard version for structures of only one material.

As example of this capability, the structure shown in Fig. 3.14, presented at [54],
was analyzed. For this the excitation was a vertically polarized incident planewave
with λ =550nm an θ = 0◦, using PMCHWT formulation. The spheres, of λ diameter
and separated by 2λ between centers, have been modeled with n =2160 basis functions,
making a total of N =864K unknowns for the complete structure. The distribution
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was generated randomly using the following materials: golf (εr = −5.9310− j2.0971),
silver (εr = −12.9374 − j0.4287), copper (εr = −5.6549 − j5.1989) and silica (εr =
2.1756− j2.36e− 7).

Figure 3.15: MVP computing times for MoM, double slotFFT and double slotFFT for aperiodic
element-wise material structures.

The obtained RCS is shown in Fig. 3.16, where, as could be expected from the
random distribution of the materials, appear several asymmetries.

This is just an example in the limits if the scope of the thesis, which opens the
possibility of applying the method for approaching specific problems and even for op-
timization processes, i.e. optimization of discrete dielectric lenses [55]. Despite of this
capability of analyzing finite periodic structures with multiple constitutive parameters,
the method is still limited to structures composed by geometrically identical elements.
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Figure 3.16: Representation of the RCS at λ = 550nm (εr = −5.9310 − j2.0971 for gold, εr =
−12.9374 − j0.4287 for silver, εr = −5.6549 − j5.1989 for cooper and εr = 2.1756 − j2.36e − 7 for
silica) obtained for the structure shown in Fig. 3.14.

3.5 Extension to roughly finite periodic structures

Up until now, all the structures shown in this documents have been perfect periodic
structures. This is, all the elements were identically modeled and perfectly distributed
in uniform grids or according to certain patterns described by translations and rota-
tions. However, this is not close to reality, as due to the fabrication processes, i.e. based
on wet chemistry processes or lithography [52], small imperfections, displacements or
rotations in the elements and their distribution into the structure are common. Also,
there are special structures, i.e. metasurfaces or reflectarrays, that do not tend to
present these problems but, instead, are composed of geometrically different elements,
which makes impossible to treat them with slotFFT.

In order to address such kind of problems, several possibilities were considered. In
particular one of the possible approaches was the application of the Huygens’ equiv-
alence theorem. This theorem was the core of the project developed in the second
research visit performed in Autumn 2019, held by the Laboratory of Advanced Com-
putational Electromagnetics (LACE), which was focused on its application to local
mesh refinement techniques [56]. The theorem states that the fields inside or outside
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of a close surface, named Huygens’ surface (HS), can be described by equivalent sur-
face currents determined by the tangential components of the fields on the surface.
This is illustrated in figures 3.17(a) and 3.17(b), which represents the application of
the theorem to isolate a local problem from the surroundings and the inverse process
respectively, where Ei and Hi are incident electric and magnetic fields respectively,
Es and Hs are scattered electric and magnetic fields respectively, S is the HS used to
apply the theorem, and εi and µi the constitutive parameters of region Ri.

(a) Isolating the local problem from the medium.

(b) Isolating the medium from the local problem.

Figure 3.17: Representation of the application of the Huygens’ equivalence theorem.

The surface electric and magnetic currents on the HS JHs and MHs are given by
equations (3.42) and (3.43), where HHs and EHs are the magnetic and electric fields
on the Huygens’ surface S and n̂ the normal to S. HHs and EHs can have any origin,
i.e. they can be generated by external sources to S, i.e. an impinging planewave, or
internal to S, i.e. an antenna.

Js = n̂×HHs (3.42)

Ms = EHs × n̂ (3.43)
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In order to analyze non-periodic problems with the integration of Huygens’ equiva-
lence theorem into slotFFT,the process described next is applied to perform the MVP,
as illustrated in Fig. 3.18. This figure represents the steps needed to compute the
transmission from one element to another through multiple HS. The HS enclose the
individual elements, isolating them form the surrounding (external) medium R1. In
this way, the original problem can be solved using slotFFT as long as the HS surfaces
are chosen properly, posing a perfectly periodic collection of equivalent surfaces with
no contact between them. The MVP can be then computed as follows:

1. First, the fields generated by the electric and magnetic surface currents Ji and
Mi of body i are computed on its corresponding HS Si. Then, using equations
(3.42) and (3.43) the electric and magnetic surface currents JHsi and MHsi are
computed on Si.

2. The transmission between all the HS is performed using the couplings between
them. This is carried out with slotFFT. In the case of multiple elements this step
aggregates the radiation of all HS Si on receiving HS Sj, with 1 ≤ i ≤M , being
M the number of elements in the structure, except for i = j.

3. Using again expressions (3.42) and (3.43) the electric and magnetic fields over
the HS Sj are converted into equivalent surface electric and magnetic currents
JHsj and MHsj . Then, the JHsj and MHsj are used to calculate the incoming
radiation into the receiving element j.

In addition to these steps, the self-coupling of each element must be carried out sepa-
rately (in the same way that is performed in 3.4).

Figure 3.18: Representation of the steps to approach a generic problem with two bodies enclosed by
Huygens’ surfaces.
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3.5.1 Validation and application

The first step was to test the proposed framework and its possible impact on the
solution. For this, an array of 5×5 PEC cubes with λ/2 of side and a separation of
1.65λ between centers was used. Each cube is modeled with 460 basis functions. The
structure was illuminated by an impinging planewave with θ = 0◦. The Huygens’
surfaces used were spheres with 1.4λ diameter modeled with 1800 basis functions.
Notice that, in order to work properly, the separation must be enough to avoid the
contact between the enclosing Huygens’ surfaces.

In Fig. 3.19 the obtained surface electric currents distribution is shown for the
solution with slotFFT and slotFFT with the integrated Huygens’ surfaces. The RMS
error introduced by the Huygens’ surfaces for the currents was η =0.00486 (η =0.00216
and η =0.04848 for magnitude and phase). The RCS computed from the solution is
shown in Fig. 3.20. It can be seen how both curves fit perfectly. The RMS error
introduced on the RCS is η =0.001. In view of these results the well behavior of the
integration of the Huygens’ surfaces with slotFFT is confirmed.

(a) straight procedure.

(b) with Huygen’s surface.

Figure 3.19: Surface electric currents distribution for the validation example of the integration on the
Huygen’s equivalence theorem compared to the straight approach.

With the framework validated, the method was ready to be applied to a non-
periodic structure. For this case, a randomly generated 10×10 was generated, as shown
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Figure 3.20: Comparison of the scattering diagrams obtained from the currents shown in Fig. 3.19
using the straight and the Huygen’s equivalence theorem procedure.

in Fig. 3.21. The displacements and rotations are carried out in such a way that the
elements are always kept within the limits of the Huygens surface. The elements that
compose the structure are the same PEC cubes that in the validation example, as well
as the Huygens’ surfaces and their distribution and the excitation of the problem. The
obtained surface electric currents are represented in Fig. 3.22, and the RCS associated
is presented in Fig. 3.23.

It must be taken into account that the approach is not as efficient as slotFFT applied
to pure periodic structures, as it needs an important number of additional operations.
However, this is a first proof of concept, revealing that this procedure brings new
possibilities, such as the introduction of small defects in the a priori periodic structures,
or the use of different elements, transforming non-periodic into periodic problems which
can be directly addressed by slotFFT.
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Figure 3.21: Structure composed by quasi-arbitrary distributed PEC cubes of 0.6λ of side and the
associated periodic array of Huygen’s surfaces.
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Figure 3.22: Surface electric currents distribution obtained for the structure shown in Fig. 3.21 using
the Huygens’ equivalence theorem for its analysis as a periodic structure with slotFFT.

Figure 3.23: Scattering diagram obtained from the currents shown in Fig. 3.22.
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This chapter is focused on the integration of matrix compression methods (MCM)
into the slotFFT method in order to increase the acceleration achievable with limited
precision loss. The first section introduces why CEM problems are suitable for MCM
application and provides a review of the main methods withing the state-of-the-art of
MCM applicable to CEM problems. In the second section a novel kind of full-domain
macrobasis, applicable to PEC and dielectric problems, are introduced as part of work
developed in this thesis. The next chapter introduces the skeleton decomposition,
which was the topic that the first research visit performed during the thesis focused
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on. The fourth chapter introduces how is performed the matrix compression within
slotFFT algorithm and how some basic problems of the process are avoided. At last,
some results are introduced in the fifth section with an analysis of the impact over the
precision of the MCM. Among these results some especial cases of application are also
shown to prove the potential of the complete framework.

4.1 Introduction

The procedure to solve scattering problems through SIE-MoM gives place to prohibitive
needs in terms of CPU time and memory to compute and store the MoM impedance
matrix when large structures are tackled. This also derives in high computing times
to perform the MVP when the problem is solved through iterative solvers. This is
especially noticeable in the case of large structures with high level of details, which
increases the mesh density to properly model the currents behavior, hence the number
of basis functions needed rises drastically. Despite this, when the problem is solved,
the influence of the basis of those high detail parts are only noticeable in the coupling
between near elements of the structure, whereas in the coupling with distant parts the
small details do not contribute with the same significance. This is due to the rank-
deficient property of the sub-matrices that model the coupling between well-separated
bodies, derived from the nature of the Green’s function. In the case of finite periodic
structures, most of the coupling sub-matrices of the MoM present noticeable low rank,
which makes this kind of problem especially suitable for the application of MCM.

One of the most widespread method to deal with the low-rank property of the CEM
problems is named characteristic basis functions method (CBFM) [57–61], which has
particular applications to periodic structures [62,63].In order to approach the problem,
the CBFM manipulated the MoM impedance matrix. From this, a first set of primary
macrobasis is generated for the self-coupling interactions, and a secondary and higher
order set of macrobasis is computed specifically for the rest of the interactions. Due to
this procedure, CBFM achieves a high reduction over the total number of unknowns,
hence the computational resources are reduced.

The adaptive cross approximation (ACA) algorithm [64–69] is another widespread
method proposed originally in [70], and can integrate the CBFM for other purposes [71].
This algorithm uses the rank deficient property of the MoM coupling sub-matrices when
the coupled source and test basis functions clusters are well separated to perform ma-
trix compression taking into account a set tolerance. The synthetic functions approach
(SFX) [72,73] is similar to the CBFM but, it generates the macrobasis functions from
each domain introducing field considerations and domain boundaries, and unions be-
tween adjacent domains (when connected) to properly address the problem, instead
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of manipulating the matrix and using overlapping regions between domains as CBFM
does.

A different approach to compress the MoM impedance matrix in contrast to the
methods above is to discard the basis functions that posses a low contribution to
the solution. For this, a process to identify what are named dominant basis can be
performed. The equivalent source approximation, introduced in [74], and its nested
version [75–77], perform this process. To perform the MoM impedance matrix, it
departs from the capability of describing the fields generated over a closed surface
from the possible sources within it, by equivalent sources over the closed surface. By
doing this, the number of equivalent sources used to describe the inner sources can be
smaller, reducing the number of unknowns needed to model the problem.

Another method to get rid of the basis functions with low contribution to the
far field consists in generating the skeletons of the structure through interpolative
decomposition (ID) [78–81]. This method is introduced briefly in section 4.3, as was
fully integrated in the slotFFT algorithm during the research visit performed in 2018
at the Politecnico di Torino.

In addition to these methods, the full-domain power decoupled macrobasis devel-
oped in this thesis, presented in several conferences [82–87], can be efficiently applied
to CEM periodic problems. As will be introduced in section 4.2 theses macrobasis are
independent of the position of the elements of the structure and the applied excitation,
which permits the application of the method with a negligible additional computational
cost.

4.2 Full-domain power decoupled macrobasis

This section departs from the work developed in the PhD thesis of Gloria Gajardo [88],
which focused on the applications on acceleration and compression of transformations
based on the electromagnetic radiation in PEC structures. In the case of dielectric
problems, the surface electric and magnetic currents could be modeled separately with
that framework. In this thesis a novel approach is developed, which is derived from the
energy conservation theorem in electromagnetics. The macrobasis obtained in through
the developed method in this thesis combines both surface electric and magnetic cur-
rents.
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4.2.1 Definitions and formulation

A body suspended in an homogeneous medium without losses, with constitutive prop-
erties ε1 and µ1, radiates power generated its scattered fields, or by its currents in the
case of an antenna. This radiated power can be calculated using eq. (4.1), where S is
a closed surface enclosing the body, E and H are the harmonic electric and magnetic
field radiated by the body, i.e. the scattered fields, and the superscript ∗ denotes con-
jugate complex. Figure 4.1 shows a generic representation of this for a problem of an
homogeneous arbitrary object with constitutive properties ε2 and µ2.

Pr =
1

2

{

S

< (E×H∗) · ds = < (Pe) (4.1)

The term Pe, expressed in eq. (4.2), is the complex radiated power.

Pe =
1

2

{

S

(E×H∗) · ds (4.2)

Based on the conservation of energy theorem, Pe can be expressed as in eq. (4.3),
where V represents the volume enclosed by S and J and M are the electric and magnetic
currents inside the volume.

Pe =
{

S

(E×H∗) · ds

= −
y

V

(H∗ ·M + E · J∗) dv − jω
y

V

(
µ |H|2 + ε |E|2

)
dv (4.3)

Based on the Huygens’ theorem an equivalent problem can be posed, where the
object is replace by surface electric and magnetic currents over the surface that encloses
the object, also shown in Fig. 4.1. Under this conditions, J and M in eq. (4.3) are
surface density current functions over the surface S. Theses equivalent electric and
magnetic currents can be calculated by the Huygens’ theorem as J = ~n1 × H and
M = −~n1 ×E. In the equivalent problem the first volume integral in the right part of
eq. (4.3) only takes values at the surface S ′ of the body and then it can be expressed
as in eq. (4.4). It must be taken into account that in the left part of this expression
J and M denote volumetric current densities, whereas in the right part denote surface
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Figure 4.1: Radiation of an object as a result of electric and magnetic currents in the interior. Equiv-
alent problem for an homogeneous object.

current densities.
y

V

(H∗ ·M + E · J∗) dv =
{

S′

(H∗ ·M + E · J∗) ds′. (4.4)

By replacing the integral in (4.4) in (4.3), we obtain the expression shown in eq. (4.5).

Pe =
{

S

(E×H∗) · ds

= −
{

S′

(H∗ ·M + E · J∗) ds′ − jω
y

V

(
µ1 |H|2 + ε1 |E|2

)
dv (4.5)

As the medium 1 is lossless (=(ε1) = =(µ1) = 0) then expression eq. (4.6) is met,
and eq. (4.1) can be rewritten as shown in eq. (4.7).
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)
dv

}
= 0 (4.6)
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1

2
<

{
−

{
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(H∗ ·M + E · J∗) ds′
}

(4.7)

The electric and magnetic fields, E and H respectively, due to the scattering of the
body can be calculated from the electric and magnetic currents using the expressions
shown in eq. (4.8) and eq. (4.9), where X represents to J or M, r represents the
observation point, PV represents the principal value of integral, and G1 is the Green
function in the medium 1. Notice that the operators are expressed in a more detailed
than introduced in chapter 2.2.
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E = K(M)− η1L(J) (4.8)

H = −K(J)− 1

η1
L(M) (4.9)

with L(X) and K(X) are defined as:

L(X) = −j 1

2k1
n̂i∇′ ·X + jk1

{

S′

XG1(r, r
′)ds′ +

1

k21
∇

{

S′,PV

∇′ ·XG1(r, r
′)ds′


= −j 1

2k1
n̂i∇′ ·X + L0(X) (4.10)

K(X) =
1

2
n̂i ×X +

{

S′,PV

X×∇G1(r, r
′)ds′

= In̂i
(X) +K0(X) (4.11)

where L0(X), K0(X) and In̂i
(X) can be obtained respectively from the following ex-

pressions.

L0(X) = jk1

{

S′

XG1(r, r
′)ds′ +

1

k21
∇

{

S′,PV

∇′ ·XG1(r, r
′)ds′

 (4.12)

K0(X) =
{

S′,PV

X×∇G1(r, r
′)ds′ (4.13)

In̂i
(X) =

1

2
n̂i ×X (4.14)

Substituting eqs. (4.8) and (4.9) into eq. (4.7) we obtain the expression shown in
eq. (4.15).

Pr =
1

2
<

{
−

{

S′

((
−K (J)− 1

η
L (M)

)∗
·M + (−ηL (J) +K (M)) · J∗

)
ds′

}
(4.15)
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In order to simplify the expressions, eq. (4.15) is splitted into equations (4.16)-
(4.19).

P (1)
r =

η

2
<

{
{

S′

L (J) · J∗ds′
}

(4.16)

P (2)
r =

1

2η
<

{
{

S′

L∗ (M) ·Mds′

}
(4.17)

P (3)
r =

1

2
<

{
{

S′

K∗ (J) ·Mds′

}
(4.18)

P (4)
r = −1

2
<

{
{

S′

K (M) · J∗ds′
}

(4.19)

It can be noticed that L operator in equations (4.16)-(4.17) can be substituted by
L0, as the currents are orthogonal to n̂, the normal vector to surface S, so the scalar
product only takes values from L0. Also, using the property <φ∗ = <φ, terms P

(2)
r

and P
(3)
r , eq. (4.17) and eq. (4.18) can be expressed taking the complex conjugate to

the right part of the dot product. Applying both changes we arrive to the following
expressions:

P (1)
r =

η

2
<

{
{

S′

L0 (J) · J∗ds′
}

(4.20)

P (2)
r =

1

2η
<

{
{

S′

L0 (M) ·M∗ds′

}
(4.21)

P (3)
r =

1

2
<

{
{

S′

K (J) ·M∗ds′

}
(4.22)

P (4)
r = −1

2
<

{
{

S′

K (M) · J∗ds′
}

(4.23)

If MoM is applied to discretize the electric and magnetic currents, J and M can be
expressed as a sum of N basis functions with coefficients Ji and Mi, with i = 1 . . . N ,
as shown in equations (4.24) and (4.25).

J(r′) =
N∑
i=1

Jifi(r
′) (4.24)
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M(r′) =
N∑
i=1

Mifi(r
′) (4.25)

Then, the first term of the real radiated power P
(1)
r can be expressed as in eq.

(4.26).

P (1)
r =

η

2
<

{
{

S′

L0

(
N∑
i=1

Jifi(r
′)

)
·

(
N∑
j=1

Jjfj(r
′)

)∗
ds′

}

=
η

2
<

{
N∑
i=1

Ji

N∑
j=1

J∗j

{

S′

L0 (fi(r
′)) · f∗j (r′)ds′

}

=
η

2
<

{
N∑
j=1

J∗j

N∑
i=1

Ji
{

S′

L0 (fi(r
′)) · f∗j (r′)ds′

}
(4.26)

This can be expressed in matrix notation as shown in eq. (4.27), where J =
{Ji}i=1...N and Q(1) the N ×N matrix, defined in eq. (4.28).

P (1)
r = <{JHQ(1)J} (4.27)

Q
(1)
i,j =

η

2

{

S′

L0 (fi(r
′)) · f∗j (r′)ds′ (4.28)

Following the same procedure, the other terms can be obtained as shown in equa-
tions bellow:

P (1)
r = <{JHQ(1)J} = <{JHAJ} (4.29)

P (2)
r = <{MHQ(2)M} = <{MHBM} = <{MH A

η2
M} (4.30)

P (3)
r = <{MHQ(3)J} = <{MHCJ} (4.31)

P (4)
r = <{JHQ(4)M} = <{JHDM} = <{JH(−C)M} (4.32)

Where Q(i) are defined as:
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Q
(1)
i,j =

η

2

{

S′

L0 (fi(r
′)) · f∗j (r′)ds′ (4.33)

Q(2) =
1

η2
Q(1) (4.34)

Q
(3)
i,j =

1

2

{

S′

K (fi(r
′)) · f∗j (r′)ds′ (4.35)

Q(4) = −Q(3) (4.36)

Introducing the property <φ =
1

2
(φ+ φ∗) we can obtain

Pr = P (1)
r + P (2)

r + P (3)
r + P (4)

r =

=
1

2

{
JHAJ + JHAHJ +MHBM +MHBHM+

+MHCJ + JHCHM + JH(−C)M +MH(−CH)J
}

=
1

2

{
JH(A + AH)J +MH(B + BH)M+

+MH(C−CH)J + JH(−C + CH)M
}

= JHARJ +MHAR

η2
M +MHCIJ − JHCIM (4.37)

where AR = A + AH and CI = C−CH . Considering the 2N × 1 column vector

I =

[
J
M

]
= [J1, J2, . . . , JN ,M1,M2, . . . ,MN ]T

where (·)T denotes transposed, we define the 2N × 2N matrix

G =

 AR −CI

CI 1

η2
AR

 =

 AR (CI)
H

CI 1

η2
AR

 (4.38)

where (·)H denotes hermitic and the elements of AR and CI are:

ARi,j = η<

{
{

S′

L0 (fi(r
′)) · f∗j (r′)ds′

}
(4.39)

CI
i,j =

1

2

[
{

S′

K (fi(r
′)) · f∗j (r′)ds′ −

{

S′

K∗ (fj(r
′)) · fi(r′)ds′

]
. (4.40)
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It must be taken into account that despite of L0 operator being symmetric when
Galerkin ponderation it is used, the K operator does not satisfy that same property.
In particular, in eq. (4.11), the K0 operator is symmetric, shown in eq. (4.41), but the
In̂i

operator is antisymmetric, as shown in eq. (4.42).

{

S′

K0 (fi(r
′)) · f∗j (r′)ds′ =

{

S′

K0 (fj(r
′)) · f∗i (r′)ds′ (4.41)

{

S′

In̂i
(fi(r

′)) · f∗j (r′)ds′ = −
{

S′

In̂i
(fj(r

′)) · f∗i (r′)ds′ (4.42)

Based on this, the elements of CI can be calculated as expressed in eq. (4.43),
where the first term in the right part of the equation is pure imaginary and the second
term is pure real. This real part only takes values in a few elements, where the original
base are overlapped.

CI
i,j = j=

{
{

S′

K0 (fi(r
′)) · f∗j (r′)ds′

}
+

{

S′

In̂i
(fi(r

′)) · f∗j (r′)ds′ (4.43)

It is important to notice that the second term of CI
i,j in eq. (4.43) is a real term.

Because of this property the total contribution to the total real radiated power is zero,
resulting:

[
JHMH

] [ 0 <{CI}
−<{CI} 0

] [
J
M

]
= −MH<{CI}J + JH<{CI}M (4.44)

= −MH<{CI}J +
((
JH<{CI}M

)H)H
= (4.45)

−MH<{CI}J +
(
MH (<{CI})T J

)∗
= −MH<{CI}J −

(
MH<{CI}J

)∗
(4.46)

Finally, the scattered power by the body enclosed by S can be expressed as in eq.
(4.47), where G is a 2N×2N matrix that describes the electromagnetic power radiated
by the body.

Pr = IHGI (4.47)

This matrix is hermitian and positive semidefinite. Since AR is real and symmetric
as consequence of the properties of L, G meets that GH = G. Altough the demon-
stration of the semidefinite positive property is not trivial, is easy to prove due that
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power is a positive physical magnitude, due this, radiated power can be expressed as
eq. (4.47).

4.2.2 Macrobasis generation

Applying a singular value decomposition (SVD) over G results in decomposition of G
shown in eq. (4.48), where where U and V are unitary 2N × 2N matrices and Σ is a
real positive diagonal matrix, Σ = diag{σ1, σ2, . . . , σ2N}.

G = UΣVH (4.48)

Since G is hermitian, U and V are orthonormal and is met U = V. Then, eq.
(4.48) can be expressed as in eq. (4.49).

G = UΣUH (4.49)

Using the decomposition of eq. (4.49) in (4.47), the radiated power by the scattered
fields can be obtained as expressed in eq. (4.50).

Pr = IHGI = IHUΣUHI (4.50)

Now, a new set of basis functions as the combination of the vector I can be expressed
as I = UĪ. This new set of basis functions are macrobasis functions, and is composed
by the columns of U. Introducing this into eq. (4.50), results in eq. (4.51).

Pr = IHGI = ĪHUHUΣUHUĪ (4.51)

Using the orthonormal property of the SVD for the U and V matrices, i.e. U−1 =
UH , the expression (4.52) is obtained, which represents the power radiated by the
macrobasis given by Ī.

Pr = ĪHΣĪ (4.52)

From equation (4.52) derives the following important properties:
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� The power radiated by the ith-macrobase is σi, i.e. if

Īj =

{
1, if j = i

0, otherwise

the power radiated by the body is σi.

� The radiated power by base i is the ith-term of diagonal matrix Σ multiplied by
the square magnitude of this basis Īi, i.e. |Īi|2σi

Pr = ĪHΣĪ =
2N∑
i=1

σi|Īi|2 =
2N∑
i=1

{Pr}i (4.53)

� As the macrobasis functions are generated by SVD, the set is shorted by power
radiated in decreasing order:

σ1 ≥ σ2 ≥ σ3 ≥ . . . ≥ σ2N−1 ≥ σ2N

� The set of macrobasis functions are completely independent of the excitation of
the problem, as well as the constitutive properties of the body. By contrast,
the set presents dependence on the geometry, the frequency and the constitutive
parameter of the lossless outer medium.

In addition to the above, matrix G, and therefore matrix Σ, are, in general, very ill
conditioned, hence

σi � σ1 beyond certain m < i

in consequence, only few macrobasis concentrate the total radiated power by the
object. The rest of the set do not contribute significantly to the radiated energy and
can be removed for radiation purposes. However, despite of not being relevant for the
radiated energy, these macrobasis have play an important role in the reactive fields,
which enforces to take them into account for the self-coupling or the near-field area.

In Fig. 4.2 are represented, for the J and M surface currents, some of the firsts
macrobasis computed for a sphere of 2λ of diameter suspended in the free space. It can
be appreciated that the representations resembles the radiating modes of the sphere.
Also, related to the radiating modes, it can be observe how as the macrobase index in-
creases also increases the variability of the macrobase over the body, which is consistent
with the reactivity related to the higher index macrobasis.
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Figure 4.2: Representation of several low-order macrobasis computed for a dielectric sphere of 2λ of
diameter for both electric and magnetic surface currents.

4.2.3 Macrobasis representativeness

As stated, due to the characteristics of the macrobasis, in combination with the process
of its generation through SVD, the contribution of the basis decreases as the index in-
creases. This can be seen in Fig. 4.3, where the power of each macrobase is represented
for multiple geometries by σ2

i . It can be observed how for all cases the power quickly
decreases with the index i. To show the relevancy of the firsts macrobasis over the
total, in fig. 4.5 the accumulated power of the firsts i macrobasis over the total power
is represented, showing how, in the four cases, the total power is concentrated by the
5% of the macrobasis. Solving these cases of study excited with an incident planewave
of λ =550nm to obtain the current distributions with the macrobasis gives place to Fig.
4.4. In this figure it can be appreciated that the dominance of the firsts macrobasis is
met.
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Figure 4.3: Representation of the power of each macrobasis (σ2
i ) for multiple geometries made of gold

at 550nm.

Figure 4.4: Representation of the total power emitted by the first i macrobasis pondered by its
corresponding coefficients over the total for multiple geometries made of gold at 550nm.
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Figure 4.5: Representation of the total power emitted by the first i macrobasis over the total for
multiple geometries made of gold at 550nm.

This dominance permits to describe the radiated fields with only few macrobasis,
which may make possible to cast aside the high order macrobasis over the 5% of the
total as they are not representative for the solution.

Another way to represent the dominance of the low order macrobasis is to use
them to compute the scattered field by an object. For this, a sphere made of gold
at 550nm of wavelength was solved using SIE-MoM to obtain the external surface
current distributions for J and M , using a fraction of the total macrobasis to model
the radiation for each case. Figure 4.6 compares the RCS obtained with all the basis
and the same case using a 5%, 2.5%, 2% and 1% of the total macrobasis functions to
compute the RCS. As it can be observed, for for the two firsts cases there is almost
no visible difference between the result in comparison to the complete set of functions.
However, it can be appreciated that in the cases of the 2% and 1% setups starts to
appear differences, even asymmetries, in the diagram. This would prove that, when
the low order macrobasis start to be removed, the total power radiated by the object
is no longer properly described.

The last approach to study this phenomenon, through a small practical problem,
was to carry out a similar procedure as the previous with a novel method of invisibi-
lization proposed in [89]. This method consist in optimizing through SIE-MoM a filler
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Figure 4.6: Comparison of the normalized RCS of a sphere of 2λ of diameter made of gold εr =
−8.00 − j1.66 at 550nm using different number of macrobasis functions per square wavelength. In
blue the RCS with all the basis, in red the resulting RCS partially using the set of macrobasis.

for hollow objects with a set of layers of homogeneous materials with specific constitu-
tive parameters and thicknesses. The purpose of doing this is to reduce the scattering
cross section of the object so it becomes invisible. In particular, the case of a hollow
sphere of λ/2 of diameter was studied and an thickness of 0.05λ. The sphere is made of
silica (εr = 2.1756− j2.36 · 10−7 in the optical regime [90]). The resulting constitutive
parameters and thicknesses used for the invisible filler of three layers are εr1 =10.39,
µr1 =9.20, εr2 =-13.50, µr2 =-7.48, εr3 =4.96, µr3 =4.30 from the most external layer
to the central one, with thicknesses of t1 =0.0598λ and t2 =0.0698λ. Figure 4.7(a)
shows a comparison of the coefficients obtained for both cases for the external interface
(in contact with the medium where the object is suspended). In the left the complete
range is represented, where it can be appreciated that both cases are similar in the
whole range except in the origin. In the right, the coefficients of the first macrobasis
are represented in order to have a better visualization of them.
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(a) Power emitted by macrobasis. (b) Object.

Figure 4.7: Representation of the invisibilized object and comparison of the power emitted by the
macrobasis of the object and the object invisibilized.

It can be appreciated that in the case of the firsts macrobasis there is a relevant re-
duction in the power emitted, which agrees with what was expected from the statement
on the radiation dominance, as the invisibilized object presents presents less radiated
power dependent on these macrobasis. In Fig. 4.8 the scattering diagrams for both
cases, where is can observed that, in effect, the scattering cross section is minor in the
case that presents the lower contribution of the first macrobasis.

Figure 4.8: Comparison of the RCS for hollow sphere made of silica with λ/2 of diameter and the
same sphere with a multilayer dielectric filler for invisibilizating it.
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Finally, to prove the behavior of the macrobasis in the near-field, two cases were
studied. In particular, the RCS was computed for two arrays of 3×3 gold spheres of 2λ
of diameter. The solution was carried with SIE-MoM for the reference and using SIE-
MoM with the firsts macrobasis for the near coupling in radiation between elements.
The first one, shown in Fig. 4.9(a), has a separation of 4λ between the centers of the
spheres, and the second one, shown in Fig. 4.9(b), a separation of 2.5λ. In both cases
it can be appreciated the agreement of both curves, which implies that even in the near
field with close distances, where the high order macrobasis has a relevant contribution
to the reactive field, the low order macrobasis still work.

(a) 4λ of separation between centers.

(b) 2.5λ of separation between centers.

Figure 4.9: Comparison of the normalized RCS of arrays of 3×3 spheres of 2λ of diameter with
different separations made of gold (εr = −8.00 − j1.66) at 550nm obtained with complete SIE-MoM
and SIE-MoM with a partial set of macrobasis.
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4.3 Skeletonization scheme

The work performed with the skeletonization scheme shown in this thesis was per-
formed in Autumn of 2018, in a research visit at the Politecnico di Torino held by
the Laboratory of Advanced Computational Electromagnetics (LACE). The base code
used for the skeletons generation and ID were developed by Mario Echeverri in his PhD
Thesis [91].

The skeletonization scheme is based on the identification of the dominant basis
functions over the radiation of a discretized body. For this, the method departs from
a matrix Zs, which contains the components of the electric field generated by each
base function. To perform the testing for the sampling of the field process a Dirac
deltas vector is used. Then, the electric field is calculated over a proxy surface [92]
that encloses the object, which typically is shaped as a cube or a sphere [93, 94]. As
result of this process Zs contains 3Q× n elements, being Q the number of points used
to sample the electric field over the proxy surface. In Fig. 4.10 a representation of the
Zs matrix obtained for a cube is shown. By playing attention some rows of the matrix
stands out over the rest, which generate higher levels of electric field over the proxy
surface, i.e. rows #3, #8, #12, #15 and #17.

Figure 4.10: Representation of the Zs matrix for a cube with 18 RWG basis.
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Once Zs is obtained the next step is to use it as input for the ID method [79]
with a tolerance. This tolerance works as a threshold for the error allowed, being
the difference between the electric field contribution of all the basis compared to the
dominant ones (the magnetic field can be used too). Based on the data in Zs, which
is rank deficient, and the tolerance, the ID method identify the dominant basis and
then generates the skeletons, this is U and V interpolation and anterpolation matrices
respectively, which permit to extract the dominant basis from Z, and a list with the
indexes of the dominant basis. Due to reciprocity, is meet that V = UT . In Fig.
4.11 is shown the setup to apply ID to a nanorod made of gold at λ =550nm using a
proxy surface with 180 points (left) and the dominant basis identified by interpolative
method with a tolerance of 0.001, achieving a compression rate (CR) of 87.6%

Figure 4.11: Representation of a nanorod and its associated proxy surface with 180 points (left) and
its dominant basis after applying the skeletonization process with a tolerance of 0.001, achieving a
compression rate of 87.6%.

Then, the complete problem can be decomposed as shown in in Fig. 4.12, where
Z is a dense matrix, U and V T are the interpolative and anterpolative matrices, ZNF
is the full ranks sub-blocks of Z for the near-field, and ZFF is the full rank sampled
version of Z for the far-field.

Figure 4.12: Representation of the matrices of the skeleton scheme generated by the interpolative
decomposition.
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4.4 Integration of matrix compression methods into

slotFFT

In this section we explain the way that the matrix compression methods are integrated
in the slotFFT algorithm, and the requirements that must be met for it. The integration
described is valid for both versions of slotFFT. Prior to the description how this is done,
it must be taken into account that slotFFT deal with the zi,j sub-blocks that describes
the coupling between elements with the same relative position of Z separately.

If a method is able to compress a sub-block zi,j with independence of the other
coupling sub-blocks then is suitable to be integrated into slotFFT. This is due to the
fact that compression is performed directly to the zi,j sub-blocks before being handled
by slotFFT in the same way as an uncompressed sub-block would be processed. In spite
of this, other methods that make use of especial features like junctions, overlapping
regions or similar approaches may be integrable, but some modifications may be needed
to be developed into slotFFT.

In general terms, all methods capable of performing the matrix compression as
shown in eq. (4.54) are integrable into slotFFT algorithm, where z̃i,j is the compressed
coupling sub-block between elements i,j, zi,j is the coupling sub-block between elements
i,j which is going to be compressed and U and V the interpolation and anterpolation
matrices respectively, which are completely independent of any combination of i,j.

z̃i,j = Uzi,jV (4.54)

It must be taken into account that due to the limitation for these methods com-
pressing the emission and reception for the near field, the self-coupling sub-block never
is compressed. In order to perform this in the integration, the coefficients associated
to this sub-block are set to zero in the matrix used by slotFFT. Then, it is stored
separately, so its contribution is computed for each element and added to the solution
at the end of the MVP. If the example is especially dense, i.e. a SERS substrate,
the same can be performed for additional sub-blocks. However, doing this operation
for additional sub-blocks ends in a relevant reduction of the speed-up achievable due
to the increment of the operations and memory accesses. In the case of this thesis,
the compression methods that were integrated (as two separated approaches) are the
macrobasis described in 4.2, applied to PEC and dielectric problems, and the skele-
tons scheme introduced in 4.3, applied only to PEC problems, in both cases leaving
uncompressed only the self-coupling sub-block.

In the case of the macrobasis, the method has been applied for transmission and
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reception. This approach has proven to work well when using the PMCHWT formula-
tion, but has presented precision problems with other formulations.

One of the possible causes considered is that the macrobasis are developed for
radiating, which may cause that the reception is not properly addressed by the method.
The other reason may be related the terms n̂ × J and n̂ ×M which are nullified by
the PMCHWT formulation, which may have impact over the precision of the other
methods when using macrobasis for the reception. The exact reason for this has not
been figured out during the thesis, which make it an open problem.

4.5 Application and results

The first structure analyzed, using macrobasis and skeletons with PMCHWT formula-
tion, was a canonical plane-shaped array, shown in Fig. 4.13. The structure is composed
by 20×20 PEC spheres of λ/6 radius and separated between centers by 2/3λ. A total
of 270 RWG basis functions were used to model the electric surface currents, giving
place to 108K unknowns for the complete problem. The excitation applied was a linear
polarized planewave impinging with θ = 180◦ and φ = 0◦.

Figure 4.13: Analyzed periodic array, composed by 20×20 PEC spheres of λ/6 radius separated by
2λ/3.

The firsts results corresponds to the application of the skeletons, using a spherical
proxy surface with 180 points for sampling the electric fields and tolerances of 0.1, 0.01
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and 0.001 as input for the ID method. These tolerances, combined with the proxy
surface used, resulted in CR of 94.07%, 85.90% and 73.50% respectively. It must be
taken into account that the CR makes reference to the percentage of basis removed
versus the total. As the compression is being performed for emission and reception, the
resulting matrix size reduction is 100(1− (1−CR/100)2)%. As result of the resolution
of the problem, the RCS diagrams shown in Fig. 4.14 were obtained. In the three
cases the solutions almost overlap the reference RCS obtained with slotFFT without
any compression applied.

Figure 4.14: Comparison of the scattering diagrams of the proposed setups for the structure shown
in Fig. 4.13 using skeletons with the scattering obtained through uncompressed slotFFT.

In Table 4.1 are presented the achieved speed-ups for the three cases, together
with the corresponding RMS error over the surface electric currents and the RCS. The
definition of the RMS error η(~xref , ~xapprox) is shown in (4.55), where ~xref is the reference
signal obtained with slotFFT, ~xapprox is the signal obtained through the compression
method, and ‖~x‖ is the euclidean norm of vector ~x. As could be expected, the speed-up
presents a direct relation to the compression rate. However, the RMS error, despite of
being acceptable, is increased quickly with the compression.

η(~xref , ~xapprox) =
‖~xref − ~xapprox‖
‖~xref‖

(4.55)
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Table 4.1: Comparison of the speed-up solving the problem through GMRES and error introduced by
compression through skeletons in the superficial electric currents and in the RCS for a PEC problem.

Compression rate (%) Speed-Up η(J) η(RCS)
73.50 10.22 9.197E-04 9.372E-06
85.90 17.83 2.728E-03 4.316E-05
94.07 23.58 2.133E-02 6.531E-03

The following results were calculated performing compression through macrobasis.
The CR used were taken from the ones computed by ID in the previous example in
order to compare both methods afterwards, adding an additional value equal to 97.50%
to take the method to its limits. The resulting RCS is shown in Fig. 4.15. As in the
previous case, all curves show a good agreement with the reference solution, even the
case with CR=97.5%, which only differs clearly in lobes with lowest levels and without
introducing any asymmetry into the diagram.

Figure 4.15: Comparison of the scattering diagrams of the proposed setups for the structure shown
in Fig. 4.13 using macrobasis with the scattering obtained through uncompressed slotFFT.

Table 4.2 presents the achieved speed-ups achieved for the three cases, together
with the corresponding RMS error over the electric currents and the RCS. According
to the RCS diagram, the RMS errors in all the cases are acceptable, being the highest
the corresponding with the RCS for the CR=97.5%, which is still under a 5%.
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Table 4.2: Comparison of the speed-up solving the problem through GMRES and error introduced
by compression through macrobasis in the superficial electric currents and in the RCS for a PEC
problem.

Compression rate (%) Speed-Up η(J) η(RCS)
73.50 10.97 7.929E-04 9.022E-06
85.90 18.17 2.535E-03 2.815E-05
94.07 24.99 1.176E-02 1.106E-03
97.50 26.06 2.386E-02 4.416E-02

The following representation, shown in Fig. 4.16, corresponds to a comparison
of the previous RCS diagrams obtained with the skeleton compression (SK) and the
macrobasis method (MB).

The Table 4.3 shows a direct comparison of the speed-ups and the RMS error over
the surface electric currents and the RCS. Notice that the differences in the speed-up
correspond to fluctuation of the machine, as the number of operations required in the
MVP for both cases is the same. It can be appreciated that the macrobasis introduces
a lower RMS error for the same CR than the skeletons, being this specially noticeable
in the RCS.

This can be explained by the fundamentals of the macrobasis functions and its
generation, as the macrobasis used are which contribute the most over the total ra-
diation. Also, it must be taken into account that, despite of the compression, every
macrobase has a complete set of pondered RWG basis functions in contrast to the
skeletons, which completely removes individual basis from the problem. Whereas the
amount of information removed may be the same, the sense of that information differs,
as the macrobasis method has a physical sense.

Table 4.3: Comparison of the speed-up solving the problem through GMRES and error introduced by
compression through macrobasis and skeletons in the superficial electric currents and in the RCS for
a PEC problem.

Method) Compression rate (%) Speed-Up η(J) η(RCS)
MB 85.90 18.17 2.535E-03 2.815E-05
SK 85.90 17.83 2.728E-03 4.316E-05
MB 94.07 24.99 1.176E-02 1.106E-03
SK 94.07 23.58 2.133E-02 6.531E-03
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Figure 4.16: Comparison of the scattering diagrams of the proposed setups for the structure shown in
Fig. 4.13 using macrobasis and skeletons with the scattering obtained through uncompressed slotFFT.

The next example corresponds to a plane-shaped array composed by 25×25 gold
spheres, presented at [84], which it shown in Fig. 4.17. The spheres, with a diam-
eter of λ and a separation between centers of 2λ, are modeled with n =2160 basis
functions, resulting in a total of N =1.35 million unknowns for the complete problem,
which was analyzed at λ =550nm. The problem, which due to the frequency and the
material presents plasmonic behavior, was analyzed using 5 basis/λ2, 10 basis/λ2 and
30 basis/λ2, which correspond to 98.3%, 96.7% and 90.0% CR.

The resulting RCS from the analysis can be seen in Fig. 4.18. It can be appreciated
that the effect of the plasmonic behavior has a relevant impact over the solution in
comparison to the previous results. However, the agreement for the main lobes is
acceptable, specially for the 30 basis/λ2 case. In Table 4.4 can be found the RMS
errors introduced by the compression over the currents and the RCS. As expected
from the RCS representation, the RMS error is higher than in the case of the PEC
structure. However, it must be taken into account that plasmonic structures are a
rough kind of problems in general, so this level of error is expectable as we are dealing
with this behavior with a compression method that removes the reactive behavior of
the elements (the high order macrobasis) without introducing additional uncompressed
coupling sub-block to compensate that deficiency.
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Figure 4.17: Analyzed periodic array, composed by 25×25 gold spheres of λ diameter separated by
2λ.

Figure 4.18: Comparison of the scattering diagrams of the proposed setups for the structure shown
in Fig. 4.17 using macrobasis with the scattering obtained through uncompressed slotFFT analyzed
at λ=550nm (εr = −5.9310− j2.0971).
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Table 4.4: Comparison of the speed-up solving the structure shown in Fig. 4.18 through GMRES
and error introduced by compression through macrobasis in the superficial electric currents and in the
RCS for a plasmonic problem.

Compression rate (%) η(I) η(RCS)
90.0 2.88e-01 1.04e-01
96.7 3.62e-01 2.24e-01
98.3 3.84e-01 2.57e-01

At last, the method was applied to the structure shown un Fig. 3.14, analyzed pre-
viously with the double sampling version of slotFFT without performing compression.
The setup was the same, but applying a CR of 90%. The obtained RCS is shown in
Fig. 4.19. As it can be seen the agreement is relatively closed, being especially good at
the main lobe, where the RMS error introduced is lower than 0,05. On the other hand,
the speed-up achieved was a factor of x60. This achievable speed-up, represented in
Fig. 4.20 through the mean MVP time for two CR levels in comparison to the un-
compressed MVP, combined with possibility of improving the error through a slight
increment of the macrobasis used, creates the potential for applying slotFFT combined
with macrobasis for optimization problems.

Figure 4.19: Representation of the RCS at λ = 550nm (εr = −5.9310 − j2.0971 for gold, εr =
−12.9374 − j0.4287 for silver, εr = −5.6549 − j5.1989 for cooper and εr = 2.1756 − j2.36e − 7 for
silica) for the uncompressed system and applying a 90% compression rate using macrobasis obtained
for the structure shown in Fig. 3.14.
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Figure 4.20: MVP computing times for MoM, double sampling slotFFT, double sampling slotFFT
for aperiodic element-wise material structures and its compressed versions using 90% and 97.5%
compression rates.

4.6 Application of matrix compression for precon-

ditioning periodic problems

This section introduces the use of the introduced framework of the double sampling
slotFFT algorithm with compression as a preconditioner. The application of the frame-
work for this purpose was inspired by the application of a limited precision MLFMA
as preconditioner [95].

In order to use the integration of slotFFT with matrix compression as preconditioner
an auxiliary compressed version of Z is stored. The computational cost for the coupling
sub-blocks for the preconditioner is null, as it is carried out for the main solver. At the
same time, the additional memory required is negligible, as the minimal compression
rate used for each sub-block reduces the maximum size of them to a 1% of the original
size.

Once the setup for the main and the inner solver is finished, the scheme for the
framework is the following:

� A main GMRES solver, which computes the MVP with slotFFT using the un-
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compressed Z and preconditioned with an internal solver.

� An internal GMRES solver which computes the MVP with slotFFT using the
compressed Z and the uncompressed self-coupling sub-block.

� A block-jacobi preconditioner to improve the convergence of the internal GMRES.

The configuration for the internal solver lies only on the compression level applied.
The range of values for this parameter when applied as preconditioner goes from 1% up
to a 10% of the total macrobasis. As example of the effectiveness of this preconditioning
framework we present the analysis of a canonical structure, shown in Fig. 4.21. The
analysis was carried out in a cluster with 4x Intel Xeon E7-8880 v2 processor (15 cores
each) and 1TB of RAM memory.

Figure 4.21: Representation of a canonical structure composed of 20×20 spheres of λ diameter and a
separation of 2λ between centers.

The structure is surrounded by air and is composed by 20× 20 silica spheres (εr =
2.1756− j2.3600 · 10−7), with λ of diameter and a separation between centers equals to
2λ. The discretization used 1080 unknowns per sphere to properly model the surface
electric and magnetic currents. The setup of the preconditioner for this structure used
a 5% of the total macrobasis.

In Fig. 4.22 can be seen how the convergence is improved, going from a total of 83
iterations down to 4 to attain the same residual. This improvement, in terms of total
wall-clock time, translates approximately into an x11 speed-up in the solving time with
respect to the block-jacobi preconditioning (which used approximately 7 hours for the
iterative solver).
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(a) convergence vs. number of iterations. (b) convergence vs. wall-clock time.

Figure 4.22: Evolution of the convergence vs. number of iterations of the iterative solution of the
structure shown in Fig. 4.21 made of silica (εr = 2.1756− j2.36e− 7 at 550nm) preconditioned with
a block-jacobi preconditioner (in blue) vs. matrix-compressed preconditioner (in red).

As second example for this application SERS substrate suspended in water was
analyzed at λ = 550nm shown in Fig. 4.23. Each nanosphere is discretized with
270 RWG basis for the electric and magnetic surface currents, and its made of gold
(εr = 5.9310− j2.0971 at λ =550nm).

This particular structure is challenging for the matrix compression method used due
to the proximity between elements. As stated for the structure shown in Fig. 4.17, the
problem is caused by the reactive fields, modeled by the high order macrobasis that are
not considered in the compressed system. However, as we are not aiming for an exact
solution in the inner solver but an approximated one to accelerate the convergence of
the main solver, these effects can be ignored in the preconditioning process, as they will
be taken into account in the main solver. Despite this, it is recommended to properly
set-up the preconditioner, as in other case it may cause stagnation problems to the
main solver.

The setup of the preconditioner for this second case is equal to the first example,
but using a 10% of the total macrobasis to avoid stagnation (incapability to improve
the residual for several iterations) in the GMRES solver. The improvement in the
convergence is shown in Fig. 4.24, reducing the total number of iterations from 79 to
13, whereas in terms of total wall-clock time, the improvement gives place to a speed-up
equal to x2.4.
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Figure 4.23: Representation of a SERS substrate composed of 20×20 gold nano-spheres (εr =
−5.9310− j2.0971 at 550nm) of 55nm of diameter and a separation of 57nm between centers.

(a) convergence vs. number of iterations. (b) convergence vs. wall-clock time.

Figure 4.24: Evolution of the convergence vs. number of iterations of the iterative solution of the
structure shown in Fig. 4.23 made of gold (εr = −5.9310−j2.0971) preconditioned with a block-jacobi
preconditioner (in blue) vs. matrix-compressed preconditioner (in red).



Chapter 5

Conclusion and future lines

5.1 Conclusion

The work developed in this thesis can be classified into two main lines.First, a novel
method (namely slotFFT) has been devised and implemented for the accurate analysis
of finite periodic structures. Secondly, a novel set of macrobasis was proposed for the
compression of radiation problems.

The core method of this thesis is slotFFT, which has been developed in two different
versions (single and double sampling). The method has proven to be an efficient
approach to analyze periodic structures maintaining the precision of the SIE-MoM
reference method, which lies underneath the algorithm, but reducing the computational
cost of exactly performing the MVP from ON2 to ON log(M).

The method has been applied to several problems in different disciplines in which
there is a demand to analyze finite periodic structures quickly and with methods ca-
pable of the analysis of large finite problems with methods capable of approaching the
problem without approximations. This This is the case of SERS substrates made up of
periodical assemblies of nanoparticles, where global effects usually appear hybridizing
the nanoparticle modes. A different example was the comparison of the ensemble of
nanocubes with the equivalent homogeneized version with the Maxwell-Garnett and
Bruggeman formulas, where some differences could be seen.

Also some applications in the limits of the thesis were studied, extending the algo-
rithm with negligible costs and simple code modifications to especial cases. In particu-
lar, the method was firstly extended to periodic structures with aperiodic element-wise

83
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materials. This extension enables the application of slotFFT to approach particu-
lar optimization problems, like discrete dielectric lenses. The second extension of the
method was based on the the Huygens’ equivalence theorem, enabling the analysis of
non periodic structures by introducing a periodic array of Huygens’ surfaces enclos-
ing the elements of the structure. This last extension paves the way to the analysis
of some appealing problems: metamaterials, metasurfaces, reflectarrays, transmitar-
rays, etc. Furthermore, it allows to introduce fabrication defects in order to properly
characterize structures through an approach closer to reality.

The second part of the thesis was devoted to the development of a novel set of
macrobasis based on the conservation of the energy theorem. The complete develop-
ment proves the ease of its implementation with existing SIE-MoM codes. This new
set of macrobasis has proven to be extremely effective describing the radiation of the
bodies in lossless mediums through the low order macrobasis, being able to describe
closely the radiation using up to a 2% of the total degrees of freedom. This was tested
in different ways. In particular, the most novel was the application of the method to
compare the differences between and object and its invisibilized version using a mul-
tilayer dielectric filler. In particular, it could be observed that that in the case of the
low order macrobasis associated to the object were radiating less in the case with the
filler in contrast to the empty object.

In the third part, two matrix compression methods were integrated into slotFFT.
The first one was the mentioned set of macrobasis functions, and the second one was
the skeleton decomposition, which was integrated in a joint activity with the Labora-
tory of Advance Communications and Electromagnetics (LACE) of the Politecnico di
Torino. In the problems studied, it was observed that, when applied to reception, the
macrobasis compression presented precision problems for all the tested integral equa-
tion formulations, with the exception of PMCHWT. This problem has not been solved
in the thesis and is still open.

The examples analyzed proved that slotFFT in addition to matrix compression
methods (MCM) can achieve high speed-ups with controlled impact over the precision
with the methods integrated. Despite this, the macrobasis shown a slightly better
result over the precision. At last, the integrated framework of slotFFT and MCM
was applied as a preconditioner for finite periodic structures, achieving speed-ups via
convergence even when applied to rough problems with plasmonic effects.
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5.2 Future lines

There are four lines of work to be tackled in the near future. The first one is the
integration of the developed framework into M-Cube, the CEM library of the research
group. This could have potential when combined with other consolidated methods, like
the domain decomposition method, to deal with large dense structures in a different
approach.

The second line of work is the optimization of the codes for roughly periodic prob-
lems, which shows potential to approach new kind of problems that are at its peak,
like metamaterials or new kind or quasi-periodic antennas. In its current stage, the
method is valid and can approach several new kind of structures, but due to the current
implementation is still inefficient in terms of computing time, as the computation of the
local part enclosed by each Huygens’ surface takes an important number of additional
operations.

The resulting open problem when using macrobasis to perform matrix compres-
sion in reception conforms an additional line of work. Despite of being intended for
radiating, the fact that the developed set of macrobasis works in both radiation and
reception aims in the direction of some problem related to the SIE-MoM core for other
formulations. A deeper study on the possible causes of this issue is need in order to ex-
tend the method to other formulations to compensate the limitations that PMCHWT
formulations present of specific problems.

At last, the fourth line is the application of the developed framework for the opti-
mization of discrete periodic problems, as shown in section 3.4. The analysis of this
kind of problems with enough precision require the use of high performance computers,
as the problem itself is large and usually are required many individuals in the popula-
tion for the optimization algorithm in order to attain good results. The combination
of slotFFT with the MCM developed allows to perform this kind of processes with
affordable computers.
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