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Abstract 

In electrical engineering, power converters, as devices that are able to transform a defined 

current and voltage from an energy source, have a critical role in different fields as renewable 

energy, electric vehicles or aerospace engineering.  

The magnetic components are relevant elements in power converters because determines the 

current filtering and conversion functions and converter efficiency and performance. One of 

the critical parameters that influence in the efficiency of converters are the losses in the 

magnetic components that depends on particular effects as they are the skin, proximity, air-

gap and edge effects. These effects are more relevant in the high frequency ranges where the 

power converters are usually operated. 

The optimization of the power converter requires of the detailed analysis of the magnetic 

component and the involved frequency effects according to the application when particular 

requirements are needed, mostly in the medium and high frequency. 

Transmission, storage and losses of magnetic and electric energy analysis is relevant in this 

context and are determined by the Maxwell´s equations whose resolution is a complex task. 

There are three main methods to solve this equation system: analytical method, finite element 

method analysis and experimental methodology. 

The first method consists on the analytical resolution of the equations with the necessary 

simplifications, being the most common approach the assumption of the magnetic field 

distribution in one or two dimensions to solve the equations system, however this 

simplification does not allow determining the magnetic field into the conductors. 

The second approach uses the Finite Element Method, solving the Maxwell equations in every 

finite element of the component, but is not possible to simulate some complex magnetic 

components because it requires a high computational time, being not useful for power 

electronics designers. 

The third method, based on experimental lab tests, allows to obtain the electrical parameters 

for any magnetic component. Nevertheless, the time cost is also huge and it is only used for 

adjustments in the final stage. 

Most of the power electronics designers and scientists use the analysis of the magnetic 

components based on Finite Element Method doing the available simplification taking into 

account the magnetic field distribution and the symmetry of the magnetic component. 

If the magnetic component has not any symmetric, a 3D model is necessary to determine the 

electromagnetic or thermal parameters for the electrical equivalent circuit and the magnetic 
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component optimization, as well as a detailed study for skin effect and proximity effect, even 

more if the magnetic components work at high frequency. 

In this work, it is proposed a new method based in 3D Finite Element Analysis with a low 

computational time that allows obtaining the electrical equivalent model parameters for 

asymmetric magnetic components from the estimation of winding and core power losses. 
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Resumen  

Dentro del campo de la ingeniería eléctrica, los convertidores electrónicos de potencia, que 

permiten generar una tensión y corriente de unas determinadas características a partir de una 

fuente de energía, juegan un papel crítico en las energías renovables, vehículos eléctricos o la 

ingeniería aeroespacial. 

Los componentes magnéticos constituyen uno de los elementos esenciales en los convertidores 

de potencia determinando el filtrado de corriente, la operación y la eficiencia del convertidor. 

Uno de los parámetros más críticos que influyen en la eficiencia de los convertidores son las 

pérdidas de los componentes magnéticos que dependen de determinados efectos 

electromagnéticos como el efecto pelicular, de proximidad, de entre-hierros y de borde. Estos 

efectos son aún más relevantes en rangos de alta frecuencia, a la que suelen operar 

habitualmente los convertidores electrónicos de potencia. 

La optimización del convertidor de potencia requiere un análisis detallado de los componentes 

magnéticos y de los efectos de frecuencia producidos en función de cada aplicación particular, 

y sus requisitos específicos, principalmente en los rangos de media y alta frecuencia.  

La trasmisión, almacenamiento y pérdidas de energía eléctrica y magnética son relevantes en 

este contexto y están determinadas por las ecuaciones de Maxwell, cuya resolución es 

compleja. Existen tres importantes enfoques para la resolución de estas ecuaciones: métodos 

analíticos, análisis utilizando herramienta de elementos finitos y por realización de ensayos. 

El primero de ellos consiste en la resolución analítica de las ecuaciones, con las necesarias 

simplificaciones, siendo la más habitual el asumir simetrías en las distribuciones de los campos 

magnéticos para poder resolver las ecuaciones de Maxwell en una o dos dimensiones. Como 

desventaja, dicha simplificación no permite determinar la distribución del campo magnético 

dentro de los conductores. 

El segundo enfoque utiliza un método de elementos finitos, resolviendo las ecuaciones de 

Maxwell en cada elemento finito, no siendo posible simular algunos componentes magnéticos 

complejos por precisar un tiempo de simulación sea muy elevado, haciendo que esta solución 

no resulte práctica para los ingenieros de desarrollo. 

El tercer enfoque, basado en la realización de ensayos de laboratorio, permite obtener los 

parámetros eléctrico de cualquier componente magnético. No obstante, el tiempo necesario es 

también alto y sólo es usado para los ajustes finales. 
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La mayoría de los ingenieros electrónicos y científicos usan los análisis basados en elementos 

finitos de los componentes magnéticos realizando las posibles simplificaciones teniendo en 

cuenta la distribución de campo magnético y la simétrica del componente. 

Cuando el componente magnético no presenta ninguna simetría, deben utilizarse modelos 3D 

para la determinación de sus parámetros del circuito eléctrico equivalente y la optimización 

magnética del componente, así como un detallado estudio de los efectos pelicular y de 

proximidad, que son especialmente relevantes cuando el componente trabaja en alta 

frecuencia. 

En este trabajo, se proponer una metodología basada en elementos finitos en 3D con un bajo 

tiempo de simulación que permite obtener los parámetros que del modelo eléctrico equivalente 

para componentes magnéticos asimétricos a partir de la estimación de las pérdidas del 

bobinado y del núcleo.  

  



  VI 

THESIS INDEX 

 
Abstract .............................................................................................................................................................. II 
Resumen ........................................................................................................................................................... IV 

ACKNOWLEDGMENTS ....................................................................................................... 1 

THE LIST OF SYMBOLS ...................................................................................................... 2 
1 Introduction ............................................................................................................................................. 3 

1.1 Magnetic components in power electronics ............................................................... 3 

1.2 Doctoral thesis motivation ........................................................................................... 8 

1.3 Doctoral thesis objectives ............................................................................................ 9 

1.4 Doctoral thesis structure ........................................................................................... 10 

1.5 Doctoral thesis results and original contributions .................................................. 11 
2 Magnetic component modeling ........................................................................................................ 12 

2.1 Basic electromagnetic theory for modeling ............................................................. 13 

2.2 Effects in the model .................................................................................................... 14 
2.2.1 Skin effect ........................................................................................................ 14 
2.2.2 Proximity effect ............................................................................................... 15 
2.2.3 Air-gap effect ................................................................................................... 16 
2.2.4 Edge effect ....................................................................................................... 16 

2.3 Magnetic field distribution ........................................................................................ 17 
2.3.1 1D Magnetic field distribution ......................................................................... 17 
2.3.2 2D Magnetic field distribution ......................................................................... 18 
2.3.3 3D Magnetic field distribution ......................................................................... 19 

2.4 Model based on FEM ................................................................................................. 22 
2.4.1 Ansys Maxwell ................................................................................................ 22 
2.4.2 Model structure ................................................................................................ 24 
2.4.3 Parameter extraction procedure ....................................................................... 27 

2.5 State of art .................................................................................................................. 28 
2.5.1 Summary of the models ................................................................................... 31 

2.6 Computer limitations in 3D modeling ...................................................................... 33 
2.6.1 Simulation Analysis ......................................................................................... 34 
2.6.2 Impact of the geometrical parameters for the FE number ............................... 35 
2.6.3 Impact of the conductor cross-section in simulations ...................................... 36 
2.6.4 Impact on the winding electrical parameters ................................................... 40 
2.6.5 Conclusions ...................................................................................................... 41 



 

   

VII 

3 Proposed electrical equivalent circuit based on 3D FEM ........................................................ 50 

3.1 Electrical equivalent circuit ...................................................................................... 50 
3.1.1 Frequency effect............................................................................................... 50 
3.1.2 General modeling principles ............................................................................ 51 

3.2 Modeling the effects ................................................................................................... 52 
3.2.1 Inductance parameter extraction ...................................................................... 54 
3.2.2 Resistance parameter extraction ...................................................................... 57 
3.2.3 Complete model structure ................................................................................ 58 

3.3 Proposed parameter extraction procedure .............................................................. 60 
3.3.1 Correction factor for resistance depending on the frequency .......................... 61 

3.4 Experimental validation of the parameter extraction from the 3D modeling 
procedure ................................................................................................................................ 74 

3.4.1 Components ..................................................................................................... 75 
3.4.2 Results discussion ............................................................................................ 83 

3.5 Guide to apply the proposed method for power electronics engineers ................. 84 
4 Core power losses analysis based on FEM .................................................................................... 91 

4.1 Core power losses ....................................................................................................... 91 
4.1.1 Core losses definition ....................................................................................... 93 

4.2 Hysteresis losses description ..................................................................................... 93 

4.3 Eddy current losses description ................................................................................ 94 

4.4 Analysis of losses under finite element tools ............................................................ 96 
4.4.1 Analysis of hysteresis losses ............................................................................ 96 
4.4.2 Analysis of Eddy current losses ....................................................................... 98 

4.5 Per unit CPL method ................................................................................................. 99 

4.6 Analysis for toroidal components ........................................................................... 101 
4.6.1 Analysis of hysteresis losses .......................................................................... 102 
4.6.2 Analysis of Eddy current losses ..................................................................... 112 

4.7 Validation of the obtained core losses equation .................................................... 117 
5 Conclusion and next steps ............................................................................................................... 121 

5.1 Major contributions ................................................................................................. 121 

5.2 Minor contributions ................................................................................................. 122 

5.3 Next Steps ................................................................................................................. 123 
6 Publications and Activities ............................................................................................................. 124 

6.1 Publications .............................................................................................................. 124 



  VIII 

6.2 Activities.................................................................................................................... 126 

6.3 Short Curriculum Vitae .......................................................................................... 127 
7 References ............................................................................................................................................. 130 
 
 



 

   

1 

ACKNOWLEDGMENTS 

 
The author wishes to give the thanks to Enrique Romero, Roberto Prieto and Rafael Asensi, 
due to their collaboration and their advice. I have received their unselfish support to finish this 
task. 

 
Also thanks: 

 
To my parents, for all dedication, sacrifice and love. 

 
To my brother, for smiling wherever and whenever. 

 
  



  2 

THE LIST OF SYMBOLS 
μo Vacuum Permeability  
μr Relativity Permeability 
μe Effective Permeability of equivalent toroid of magnetic core of the model component 
Ieff Effective Current 
V Voltage 
Ø Magnetic Flux 
Re Real part of the vector 
Im Imaginary part of the vector 
* The conjugate of the vector 

 Magnetic Field density  

 Electric displacement vector 

 Electric field 

 Magnetic field in the magnetic component 

 Total Current density of the winding 

 Magnetic Moment per unit volume 
S Surface of the magnetic problem 
ɤ Curve which limits the surface S 
γ1 Volts-seconds 
E Stored Energy 
Z Impedance 
Zcc Impedance of the short-circuit test 
Xcc Inductance of the short-circuit test 
Rcc Resistance of the short-circuit test 
R Electrical Resistance 
Reffective Effective resistance of the conductor according to the frequency 
S Surface of the cross-section conductor 
Seffective Effective Surface of the cross-section conductor according to the frequency 
L Magnetic Inductance 
C Capacitance 
le Effective length of the equivalent toroid of the magnetic core of the model component 
σ Electrical conductivity of the material 
ρ Electrical resistivity of the material 
ε Permittivity 
f Frequency 

 Angular frequency 
δ Skin depth for circular sections 
δi Skin depth for polygonal sections 
δsk Depth due to the skin effect 
δcl Depth due to the current loop  effect 
r1 Radius of the circular cross section 

Fpol 
Coefficient to compensate the resistance between the  circular and polygonal cross section due to the current loom 
impact 

AWG American wire gauge 
FE Finite Elements 
FEA Finite Elements Analysis 
FEM Finite Elements Method 
CPU Central Process Unit 
RAM Random Access Memory 
1D 1 dimensions. Problems whose solution depending on 1 geometrical coordinates 
2D 2 dimensions. Problems whose solution depending on 2 geometrical coordinates 
3D 3 dimensions. Problems whose solution depending on 3 geometrical coordinates 
k The correction factor 
kskin The correction factor from the skin effect 
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kprox The correction factor from the proximity effect 
kC Number of combination without repetition  
EQR Comparison between the resistance from the real model and the Polygonal model 
Apol Division between the surface of the circular cross section and the polygonal cross section 
RC Standard Component  
Av Average 
vt Volume of the magnetic component 
vg Volume of the air-gap 
vc Volume of the core 
vw Volume of the windings 
ED Edge length in a square winding 
m Number of the edges in a polygonal cross section 
i Any Component 
N Number of the windings 
n Number of the turns 
a Ratio of turns between primary and secondary 
I Winding Current 
SHL Surface of the hysteresis loop 
Ac Area of the Toroidal surface in the Toroidal component (A=width x height) 
α angle between windings (degree) 
Rm Main Radius=(Rmax-Rmin)/2 
Li Distance between the core and the winding 
AC Alternating current 
DC Direct current 
PCPL Core power Losses 
PHL Hysteresis power Losses 
PECL Eddy Current power Losses 
Br Residual Flux Density 
Bsat Saturation value of the Magnetic field density  
Hc Coercive Field Force 
sin Sinus of the angle 
MEC Magnetic equivalent circuit 
MCEC Magnetic component equivalent circuit 

 





 
 

 

 
 

1 Introduction  

1.1 Magnetic components in power electronics 

Power electronics can be defined as the technology that addresses the conversion and control 

of electrical power with switching mode electronic devices for applications as conversion from 

AC to DC or DC to AC, conversion of an unregulated DC voltage to a regulated DC voltage, 

and conversion of an AC power source from one amplitude and frequency to another 

amplitude and frequency. 

This technology includes applications from circuit theory, control theory, electronics, 

electromagnetics, microprocessors for control, and heat transfer [1]. 

Power electronics engineers need to use magnetic components as an important part of their 

converters whose efficiency is an important specification that determines their success on the 

market. Losses of magnetic components are a critical part that influence greatly the overall 

efficiency, and even the operation capabilities of the converter. 

Magnetic components can be broken down depending the frequency operation and the 

material isolation. According to the frequency [2]:  

 Low frequency is considered to be between 50 and 500 Hz and usually connected to 220 ± 

10% V (AC) single phase in Europe or 120± 10% V (AC) overseas. The typical applications 

are line filtering, motor drives, uninterruptable power supplies, pumping, conveyor 

systems, linear power supplies and electricity metering. 

 Medium (500 Hz – 50 kHz) and High frequency (from 50 kHz up to GHz) applications 

are mobile devices, LED lighting, televisions, computers, communications equipment and 

even some systems in electric cars (energy and powertrain systems). 
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Figure 1. Power Electronics  [3]. 
 

According to the isolation of the magnetic components, systems can be classified in: 

 Non-isolated systems are utilized to reduce noise or store energy, filters and some 

transformers. These components usual work at 400 V (AC) or 415 V in UK and they give 

a 230 V AC output. 

 Isolated components used to prevent human contact, where the primary side is separated 

from the secondary side, the internal windings would have one or more layers of insulation, 

which are usually manufactured with plastic bobbin.  

In summary, the study of power converters is an essential task nowadays in many different 

engineering fields as power supplies, electrochemical processes, heating and lighting control, 

electronic welding, harmonic compensators, high-voltage systems, photovoltaic and fuel cell 

power conversion, high-frequency heating, cell phones charges, electrical vehicles, motor 

drives electronic devices and other fields in AC or DC [2] (Figure 1). 

Power converters can be classified in rectifiers (AC/DC), choppers (DC/DC), inverters 

(DC/CA) and direct converters (CA/CA), as schematically shown in Figure 2. 

There are also another different classifications for power converters depending on the 

commutation type and the application. 
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Figure 2. Power Converters. 
 

Depending on the commutation, two main types are defined: 

 Natural Commutation: the source of the primary voltage makes easy the outage of  

semiconductor devices. In addition, these semiconductors are in conduction state 

switching the same frequency than the voltage input. 

 Forced Commutation: The controlled semiconductors are usually switched at bigger 

frequency than the grid frequency. 

The classification depending on the application could be summarized as: 

 Not Controlled Rectifiers: Devices that transform the AC voltage in DC voltage.  They are 

composed by diodes. 
 Controlled Rectifiers: Devices that transform the AC voltage in DC voltage. They are 

composed by thyristor. They can be reversible structures. 

 AC regulators: Devices that transform the AC voltage in AC voltage with the same 

frequency. 

 Cycle Converters: Devices that transform the AC voltage in AC voltage with different 

frequency. 

 Inverters: Devices that transform the DC voltage in AC voltage 

 Choppers:  Devices that transform the DC voltage in DC variable voltage 
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One of the main factors for any power converter design is the energy efficiency because it could 

highly affect the converter operation. To minimize the converter losses electronic switches are 

used which main features are the following: 

 They work in two different defined states. One is a block state (high impedance) and one 

is a conduction state (low impedance) giving the availability to support high voltage 

when it is blocked and high current when it is in conduction state, 

 They switch from one state to another with the minimal time. 

In addition, magnetic component used in power converters can have the role of providing 

galvanic isolation, energy storage or current filtering. The inductor used in a power converter, 

as in the example of Figure 3, can be modelled by an autoinductance and an associated 

resistance that produces a voltage drop in the winding that is proportional to the conductor 

current and limits the converter efficiency. 

The inductor resistances limit the performance as can be follow in the example of Figure 4, 

where the impact of RL/R index on the power converter efficiency of the power converter, being 

RL the resistance of the inductor and R is the equivalent resistance at the output power 

converter terminals. 

 

 Figure 3. Boost Converter [4]. 

 

Figure 4. Output voltage vs. duty cycle of the boost converter circuit for different inductance parasitic resistance 
values [5]. 
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(a) (b) 

Figure 5. Example of Toroidal Core Inductor (a) Example of Power Converter I [6] (b) Example of Inductive 
Component I. 

 
 

(a) (b) 
Figure 6. Example of EE Core Inductor (a) Example of Power Converter II [7] (b) Example of Inductive 
Component II [8]. 
 
Figure 5 and Figure 6 show real examples of power converters highlighting the inductor 

components. This work will focus on inductors with Toroidal (Figure 5b) and EE (Figure 6b) 

cores because they are the most common in power electronics due to the cooling is easy and 

the losses are not so high due to the core shape. 
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1.2 Doctoral thesis motivation 

An original parameter extraction for the electrical equivalent model of a magnetic component 

that includes the high-low frequency effects (skin effect, proximity effect, interleaving, core 

gap) and other effects that can be only analysed in 3D for non-symmetric magnetic 

components will be proposed. The electrical parameters like resistance and inductance (self 

and mutual ones) are frequency dependent, then, this model represents the frequency 

behaviour of windings in detail. This work is focused in EE and Toroidal cores because they 

are very common in power electronics, however, this research could extend to other magnetic 

components without a great effort. 

For asymmetric magnetic components, a 2D models are not precise enough and the current 

computations limitation do not allow the 3D finite element analysis (FEA) or they are not 

operative for design power engineers. The application of the new methodology to several 

magnetic components is going to demonstrate its usefulness and accuracy covering operation 

frequencies from 1 kHz to 1 GHz being the range of switching frequencies used by power 

electronics converters based on Si, SiC or GaN semiconductors.  

The thesis is based on two previous works where an original parameter extraction procedure 

and deep analysis for all effects in high-low frequency are developed using 2D models. 

  Modelado de Componentes Magnéticos en alta frecuencia mediante la aplicación de la técnica de análisis 

por elementos finitos by Rafael Asensi in 1998. The major original contribution is the winding 

modeling using Finite Element tools proposing an equivalent circuit using parameters 

extracted from the Finite Element Method (FEM). In addition, the parameter extraction 

procedure is universal (valid for every magnetic component) and simple for models in 2D 

[9]- [11]. 

 

 Análisis y Optimización de Componentes Magnéticos Mediante Técnicas de Elementos Finitos by 

Roberto Prieto in 1999. In this work, a study of magnetic components using an original 

methodology by FEM tools to quantify the effects due to the geometrical parameters of the 

magnetic component and different magnetic field distributions is performed. This thesis 

describes the double 2D method, giving an alternative solution between 2D and 3D models 

for asymmetric components) [12]- [15]. 
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1.3 Doctoral thesis objectives 

The main thesis goal is the proposal of an original parameter extraction for the electrical 

equivalent model for inductors that cannot be analysed in 2D or the required CPU time is not 

operative for the optimization of the magnetic component in the design phase by the power 

electronics engineers. The proposed 3D model includes all frequency effects like skin, 

proximity, air-gap, winding interleaving, edge effects that cannot be analysed with 2D models.  

Thus, an electrical equivalent circuit using an original methodology for the parameter 

extraction using 3D FEM will be defined. In the path of this research, some specific objectives 

have been selected to obtain the main purpose: 

1. Understanding of the hardware computer limitations due to the number of finite elements 

used at the FE tool (Maxwell Ansys in this thesis). 

2. Selection of the most operative simplifications on the component model for reducing to the 

CPU time. 

3. Proposal of the new methodology for determining the electrical parameters for the 

equivalent circuit divided in: (1) modelling, (2) simulation and (3) result-processing with 

the correction factor and experimental validated. The electrical parameters determination 

has taken into account the skin and proximity effect as other frequency effects for the 

winding losses 

4. Analysis of the hysteresis and eddy current losses in the inductor core using the per-unit 

method to identify which geometrical parameters of the inductor have more influence in 

the core power losses. 

5. New procedure to determine the core power losses in any inductor based on 3D models 

separating the influence of the hysteresis losses and the eddy current losses and 

presentation of a new equation based on this original procedure for the core power losses 

in saturation or no saturation of the toroidal cores. 
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1.4 Doctoral thesis structure 

In the first chapter, the motivation, structure and main contributions of the thesis are 

presented.  

In the second chapter, an introduction for magnetic component modeling using FEM is 

described in detail, with the main frequency effects for understanding why a magnetic 

component should be modelled in 3D. Also the conclusions for the first objective of the thesis 

are shown. Also, computer limitations that avoid all 3D models can be simulated in a FE tool 

will be described. Therefore, several simplifications will have to be introduced only to be 

available the FE simulation achieving the second objective of the thesis. 

In the third one, a parameter extraction for electrical equivalent circuit for the windings (in 

EE and Toroidal core inductors) is presented using 3D FEM, that is divided in model 

simplifications in the pre-modeling phase and use of the correction factor at the post-modeling 

phase for the skin and proximity effect to compensate errors between the real and simplified 

model values obtaining the third objective of the thesis. 

In the fourth chapter, the core power loss model will be set forth. There will be a short 

introduction for two main procedures to predict the core losses: hysteresis model and 

empirical equations. A new method that uses only coil and core geometrical and material 

parameters determine the core power losses and it is used to define the equation for Toroidal 

components to accomplish the fourth and the fifth objective of the thesis. 

In the chapter five, the conclusions will be presented and several future research directions 

will be identified. 

The chapter six is summarized the publications and work related to the thesis. In addition, 

there is a professional curriculum performed in parallel to the thesis’ work.  

The last chapter is dedicated to the references used in this thesis. 
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1.5 Doctoral thesis results and original contributions 

The main result of the thesis is a new methodology for the electrical parameters extraction of 

equivalent model of magnetic component using 3D FEM being published in a journal 

publication (Q4, [see chapter 6, publication B]). The methodology includes in the modeling 

phase some simplifications to reduce the computational limitations (the modification of the 

conductor cross-section from circular to polygonal one and its correlative material 

conductivity adjustment to have the same resistance at DC), enabling to obtain the results 

with the required precision in an acceptable execution time. At the result-processing, a 

correction factor is used for the electrical parameters due to the skin and proximity effects 

have different behavior at high frequency, being published the work focused in skin factor in 

a journal publication (Q3, [see chapter 6, publication D]). 

In order to develop this methodology, the computational limitation for non-symmetric 

components (EE and Toroidal cores) was calculated. The definition of this limitation will 

allow proposing the hexagonal section for the wiring conductor in the windings as the best 

choice in the model simplification according to the executive CPU time. Several conference 

publications are divulgating these conclusions [see chapter 6, publications, F, G, H]. 

Another major original contribution has been the core power losses determination method 

which it does not need any previous analysis or calculus of the magnetic field density (it is 

determined indirectly) into the core as the current models being published in a journal 

publication (Q1, [see chapter 6, publication C]). The proposed model splits the losses by 

nature, hysteresis losses and eddy current losses, helping electronics engineers to take 

decisions for optimizing the inductor component in the design phase according to the 

operational frequency. This method has been used for Toroidal Components giving a final 

equation for them. 

Twelve publications summarize the work of this thesis, where chapter 6 shows the list of 

publications in detail. 

 



 
 

 

2 Magnetic component modeling 

This chapter is dedicated to the introduction of the magnetic modeling based on FEM, 

whereby the laws of Maxwell are presented as well as the frequency effects involved in the 

magnetic components for understanding the complexity to design power electronics. Details 

of the magnetic field distribution will be summarized to understand the allowed 

simplifications to solve the Maxwell´s equations and their advantages and disadvantages for 

specific magnetic components. 

The FEM will be also described, introducing the FEA tool chosen for this thesis. This chapter 

will clarify the state of the art for electrical equivalent circuit and FEM based analyses. At the 

end of the chapter, the computer limitations for 3D models will be presented on the basis of a 

FEM study for asymmetrical components. 
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2.1 Basic electromagnetic theory for modeling  

The laws of Maxwell are a set of coupled partial differential equations which form the basis of 

the electromagnetism and electric circuits because they are the mathematical models that 

determine the electric and magnetic fields that are created by currents, charges and fields 

variations.  The system of equations is:  

Faraday´s law  (1) 

Gauss´s law  (2) 

Gauss´s law for 

magnetism 
 (3) 

Ampère´s circuital 

law 
 (4) 

where  is the electric field,  is the differential vector element of the border of the S and  is 

the curve that limits S,  is the magnetic field density, is the differential vector element of 

area S,  is the electric displacement field and is given by    bring ε the permittivity,  

is the electrical charge density, dv is the differential vector element of volume v  is the 

magnetic field being  where  is the magnetic permeability and  is the current 

density.  

The resolution of the system of equations is tangled in 3D, thus, it needs some simplifications 

in the system of equations that depends on: 

 The symmetry of the magnetic component to use 1D,2D or 3D magnetic field distribution 

in the problem where the laws of Maxwell are applied. 

 The frequency of the problem, being in low frequency the displacement current density 

neglected and if not it is a magnetodynamics problem. 

Whereby, in power electronics field, the only potential simplification depends on the 

symmetry of the magnetic component to solve the system of equations. 

These equations are used to design and to optimize the magnetic component, being involved 

more variables such as material properties, switch technology, device dimensions, application 

specifications, production and process cost among others. 

The component design needs to the mechanical, thermal and electromagnetic modeling with 

the additional performances constraints to achieve the final solution. Therefore, the 
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determination of electrical equivalent circuit can be performed analytically or by mathematical 

approximate resolution of the Maxwell´s equations. As it is known the analytical solutions are 

only available for 1D models, FEM is usually needed for 2D and 3D models. 

2.2 Effects in the model 

To model the magnetic component is complex due to the high-low frequency effects involved 

in the power converters operation.  The understanding of these effects is important to select 

the magnetic field density distribution for the problem and also to obtain an appropriate 

model for the magnetic component. These effects owe to the component geometry and the 

frequency range where the magnetic component works [16,17]. 

The component geometry defines the symmetry selection which can be considered for the 

problem case and thus, the simplifications in the Maxwell´s equations that could be assumed 

to solve the particular problem. 

2.2.1 Skin effect 

This skin effect produces the tendency of the alternating electric current to flow mostly near 

the outer layer of the conductor [18,19]. The electric current flows mainly at the skin of the 

conductor, between the outer surface and a level called the skin depth (Figure 7). The 

influence of the skin effect over the electrical resistance in a conductor is determined by means 

of the skin depth which is defined as the equivalent thickness of a hollow conductor having 

the same resistance at the frequency of interest. Therefore, it causes the effective conduction  

resistance increase. The skin effect is due to opposing eddy currents induced by the changing 

magnetic field resulting from the AC current. This phenomenon is explained by Lenz law 

where the skin depth, δ, is determined by (5) [21]. 

 (5) 

where f is the frequency, μ is the magnetic permeability and σ is the material electric 

conductivity. 
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Figure 7.  Skin effect [18]. 

2.2.2 Proximity effect 

A variable magnetic field will influence the distribution of an electric current flowing within 

an electrical conductor by electromagnetic induction. When an alternating current flows 

through an isolated conductor, it creates an associated alternating magnetic field around it. 

This field will induce eddy currents in adjacent conductors, altering the overall distribution of 

current flowing through them. 

So, in a conductor carrying alternating current, if one or more other conductors are close, such 

as a wound winding, the distribution of current within the first conductor will be constrained 

to smaller regions than if there is only one isolate conductor  [19,20].The resulting current 

crowding is termed the proximity effect (Figure 8) and produces an increase in the effective 

resistance of the circuit, which is greater when the frequency is higher. 

 

  
(a) (b) 

Figure 8.  Proximity effect [21] (a)Direction of current remains same (b) Current flow in opposite direction. 
 

The proximity effect can significantly increase the resistance of adjacent conductors when 

compared to its resistance to a DC current. At higher frequencies, the AC resistance of a 

conductor can easily exceed ten times its DC resistance. 
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2.2.3 Air-gap effect 

The magnetic flux lines can vary when going through different materials due to the value of 

the magnetic permeabilities, and this property is used in the design of the magnetic 

components. One of the most usual cases is an air-gap introduced in the magnetic core (Figure 

9), introducing a discontinuity in the material. It produces a magnetic flux that disperses in 

the closed zone to the air-gap [22] which is a flexible tool for the power engineers to optimize 

the magnetic components reducing the core power losses. 

The disperse flux affects the current distribution of the conductors near the air-gap, this 

phenomenon is very similar to the skin and proximity effect because the current of the 

conductors tries to minimize the energy with its own distribution. 

(a) (b) (c) 
Figure 9. Air-gap effect [23](a) Air-gap core (b) Magnetic field distribution in the magnetic component (c)Zoom 
in the core gap . 

2.2.4 Edge effect 

The edge effect consists in the modification of the flux direction when the core finishes, in 

each winding belonging to the magnetic component, the conductors fill the high of the 

window, and then, the distribution of the field is practically in the same direction, so, when 

the field flow at the up or down of the core window (Figure 10), the field has to change the 

direction and it appears to have a new distribution different the main one [25]. Also, when it 

is winded the primary and secondary in the same split of the component, this effect appears in 

the edge and in the space of the two closed turns of the winding. 
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Figure 10.  Edge gap effect [24]. 

2.3 Magnetic field distribution 

In order to use an adequate model for any magnetic component it is necessary to recognize the 

symmetry of the magnetic field density to know if any of the magnetic field direction can be 

removed in the analysis of the inductive component (Figure 11). There are three different types 

of distributions. 

2.3.1 1D Magnetic field distribution 

This case is when the variation of the magnetic density field is only in one of the potential 

directions, and the field is constant or practically null in the other directions (Figure 11), thus, 

the Maxwell´s equations can be simplified considerably. Examples of these cases are when the 

windings take up all the space of the component window without any interleaving in the 

magnetic core, and when the cylindrical geometry is used in coils.  

This case allows the simplification of the Maxwell’s equations in only one dimension because 

all terms of these equations and their variations from the main direction can be eliminated 

[26,27] and it has the following advantages: 

 Skin and proximity effects are considered. 

 These models which are dependent of the frequency are valid for any waveform because of 

all harmonics are considered. 

 There is no problem of convergence when running the simulations. 

 The models are based directly on the Maxwell’s equations in 1D distribution (only one axis) 

and they are only valid for this case. 
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Faraday´s law  (5) 

Gauss´s law  (6) 

Gauss´s law for 

magnetism 
 (7) 

Ampère´s circuital law  (9) 

where x is the differential where there is variation of the magnetic field and  is the curve or 

line. 

The analyses in only one dimension have disadvantages such as: 

 They are not applicable when there are conductors of different windings in the same split. 

 Air-gap or edge effects are not taken into account. 

The 1D model is based on the transformation of the circular conductors in layers of current, 

therefore, it is necessary that every layer has only one conductor with only one winding. This 

transformation helps also to examine the accuracy and the precision depends on the level of 

filling of the conductors in each layer. In other words, with the increase of separation in a layer, 

there is a decrease in the precision. Figure 11 (a) and Figure 11(d) show the approximations to 

layer the remaining the area to have the same resistance. 

2.3.2 2D Magnetic field distribution 

This case is when the variation of the field is in two different directions, and the field is 

constant or practically null in the third direction (Figure 11 (b) and 11 (e)), then, the magnetic 

component has to have an axial symmetry axis. 

Examples of these cases are when the windings do not take up all the space in the window or 

there is some interleaving among turns. Dr. Roberto Prieto [15] introduced in his thesis a 

double 2D method that is applied in two different directions for these components. 

These models consider all effects in 1D models and others [27-30]. To obtain these models is 

necessary to solve the Maxwell’s equations in 2D and the main advantages of doing that are: 

 The model is capable to reflect every phenomenon produced in the magnetic component if 

it has axial symmetry. 

 Effects like air-gap and edge effects are considered only in 2D. 

The main disadvantages are: 
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 2D models are not accurate for non-axial symmetry components. 

 The models are based directly on the Maxwell’s equations in 2D distribution and they are 

only valid for this case. The next equations are the laws of Maxwell in Cartesian 

Coordinates to show the difficult to solve, even in 2D. 

Faraday´s law  (10) 

Gauss´s law  (11) 

Gauss´s law 

for magnetism 
 (12) 

Ampère´s 

circuital law 
 (13) 

2.3.3 3D Magnetic field distribution 

In the case when there is not any symmetry it is not possible to eliminate any term in 

Maxwell’s equations. The magnetic field distribution in 3D can be due to the geometry of the 

magnetic core or for the winding strategy (Figure 11 (c) and 11 (f)). To obtain these models it 

is necessary to solve the Maxwell’s equations usually by FEA, but this is a problem because it 

needs computing power resources. The main advantages are: 

 The model is capable to reflect every phenomenon produced in the magnetic component. 

 The parameters of the model need to be obtained by the 3D analysis of the Maxwell’s 

equations, through the solutions of the field and energies that consider the 3D effects. 

 It is based on the solutions of the Maxwell’s equations in 3D, so the constrains are not 

similar to those present in the 1D and 2D models. 

 Effects like air-gap and edge effects are considered. 

 They are applied for every magnetic component and winding strategy. 

The main disadvantages are: 

 FEA is needed to solve the model and the time for getting the solution is longer than 2D 

model, requiring significant CPU time for any magnetic component with 3D FEA. 

 At higher frequencies (> 10MHz), the time consuming in FEA is especially long and the error 

increases substantially. 
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1D 2D 3D 

    

(a) (b) (c) 

 
(d) (e) (f) 

Figure 11. Magnetic Field Distribution (a) 1D Model and approximations (b) 2D Model (c) 3D Model 
(d)Example of 1D model, concentration of the windings and approximations (e) Example of 2D model, 
interleaving (f) Example of 3D model, Toroidal Component with non-symmetry winding strategy. 

 
Table 1. Comparison among models 1D/2D/3D 

Model Considerations  Frequency Effects 
Simulation 
Complexity 

Model Design 
 Complexity 

  Skin Proximity Air-
gap Edge Others   

1D All the window is full 
for windings 

√ √ X X X Low Low 

2D Axial symmetry √ √ † † * Medium Low 

3D Any case √ √ √ √ √ High High for 
windings 

*Effects that are only considered in 3D models (i.e.: terminals of the windings) 
†Considered only in 2D 
 

 Although it is possible to use in components with distribution of far field in 2D, the 

precision is very low in the magnetic field distribution it the analysis is performed in 3D. 

 

Table 1 shows a comparison among models in 1D, 2D and 3D. The usual symmetry for different 

magnetic core components used in the analyses is indicated in Table 2. In general, the cores 

with square windings need a 3D model to be studied. 
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Table 2. Symmetry for different magnetic core components 
Denomination Core Winding Strategy Dimensional Analysis Required 

EFD 

 

1 2D 

2 3D 

EP 

 

1 2D 

2 3D 

ETD 

 

1 2D 

2 3D 

POT 

 

1 2D 

2 3D 

PQ 

 

1 2D 

2 3D 

RM 

 

1 2D 

2 3D 

EE 

 

1 1D/2D 

2 3D 

EI 

 

1 1D/2D 

2 3D 

Toroidal 

 

1 3D 

2 3D 

Winding Strategy:  
1: The magnetic component window is fulfilled by turns and there is not interleaving 
2 Any another different winding strategy 1 
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2.4 Model based on FEM 

The thesis is based on the analyses obtained from FEM that it is a computer based power tool 

to solve electric, magnetic, dynamic and thermal problems, also contains experiments and 

other techniques to determine the electromagnetic parameters when modeling a magnetic 

component. Several softwares codes are available in the market for electromagnetic analyses 

being shown in Table 3 several ones from the comparisons in [31] and [32] . 

It is necessary to remark that the work developed in this thesis could be performed in any 3D 

electromagnetic software to obtain the same results. The selected software has been Ansys 

Maxwell because it is the widely used in the interdisciplinary engineering companies. 

Table 3. Electromagnetic FEA 
 
                 Features 
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Maxwell Easy Exist Poor Very Good Good Good Average 
Cedrat Difficult Exist -- Good Average Good Average 

Ansys/Multiphysics Hard No Excellent Very Good Good Very Good Very Good 
Ansys/Workbench Average No Good Bad Poor Poor -- 

Opera Hard No Good Excellent Excellent Very Good Excellent 

2.4.1 Ansys Maxwell  

Maxwell can solve stationary and transient electromagnetic problems in 2D and 3D. In 

addition, it is possible to model materials with non-lineal properties and include hysteresis 

loop data. The process for a FEA is divided in three steps as they are: 

 

1. Modeling: In this phase, the component geometry is configured (Figure 12) as well as the 

boundaries definition which means the establishment of the space limitations, because the 

software cannot simulate infinite regions, therefore, it needs to limit the analysed space 

and constrain the boundaries. For electromagnetic analyses, the boundary conditions are 

the fixations of the magnetic field directions in theses layers (normal, null or 

perpendicular). Also, the specification of the analysis is selected among harmonic, 

transitional or stationary conditions. The material properties for the different components 

used in the model are defined in this step, like conductivity or permeability for the 

electromagnetic analyses. The currents, voltages or a different input must be defined in 

this phase in the component geometry. The last step in this phase is the configuration of 

the mesh. FEA divide the geometry in small regions where the Maxwell´s equations are 
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2. applied which is why this division is named mesh. The greater number of elements the 

mesh has, the more precision the solution has, needing more CPU time. 

3. Simulation: Maxwell solves the model defined in the previous phase according to the 

analysis settings to obtain the convergence which depends on the target error, energy error 

and delta energy defined by the user. According to the mesh and the analyses settings will 

be CPU time to solve the problem or obtain the convergence. More detail about the 

convergence process for Maxwell is located in Appendix II. 

4. Result Processing: After the convergence is performed, the software allows obtaining 

values for some variables as energy, loss and other parameters depending on if the analysis 

has been developed in the frequency or time range. Also, it can use complex scripts to 

determinate specific parameters and produce graphics in 2D and 3D, color pictures of a 

single parameter is available as well. This option allows to obtain the parameters for the 

chosen equivalent circuit as well as any core situation introducing the material data. 

2.4.1.1 Comparison between 2D and 3D in Ansys Maxwell 

To show the different requirements for analysing in 2D and 3D in Ansys Maxwell with the 

same computer, a simple component that allows being analysing in 2D has been simulated in 

3D as well. The component is the one of the simplest components to be simulated being a 

copper square rounded by a ferrite core. If the magnetic energy is calculated from the 2D and 

3D models flowing 1 A through the copper is obtained the results shown in Table 4. It should 

be remarked that the 3D model needs more FE than is shown to achieve an asymptotic value 

of the inductance. This simulation shows the different Finite elements required between 2D 

and 3D models. 

 
Figure 12. Ansys Maxwell environment. 
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Table 4. Comparison between 2D and 3D models 
 Number of required FE Air Inductance (nH/distance) CPU Time* (s) 

2D 382 120 3 

3D 7907 117 68 

*RAM: 4GB 

2.4.2 Model structure 

This section describes the electromagnetic model used in this thesis based on FEM. In order 

to propose a model which depends on the frequency, the impedance has to be determined 

using a frequency sweep, where the real and the imaginary parts are respectively the resistance 

and the inductance for the equivalent circuit. 

The proposed model is formed by the components W (Figure 13) which represent the change 

between voltage and current to magnetic flux and magnetomotive force. Therefore, the core 

model is represented as a hysteresis cycle allocated to the magnetic model side [33-37]. 

The impedance Z11 represents the produced effects when the current only flows through the 

first winding, the impedance Z22 are the effects produced when the current only flows through 

the second winding, the impedance Z12 are when the current flow for both windings.  

Figure 13 shows the position of the capacitors which represent the energy storage in the 

component according to the operation. The values are determined from two different analyses, 

the first one consists of the same voltage between both sides, the second analysis involves the 

voltage if one of the sides is null. For the capacitors, the index 1 means the values from the first 

analysis, the index 2 (offset) are obtained from the second analysis. This thesis is only focused 

in the winding loss and the core loss, so, more details about capacitor determination can be 

found in [13-14].  

The model is useful for estimating the power losses for the winding components, and are as 

follows: 

a) copper losses which are related to the winding resistances,  

b) hysteresis losses due to the magnetic friction inside the core,  

c) eddy current losses due to the induced currents by magnetic fields.  

The copper losses are the only one that are present even for DC current, the other losses are 

null. There are other minor losses such as physical vibration of the windings and the core, the 

electromagnetic radiation and dielectric losses in materials used for insulation. 
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One of the tasks of power engineers is the optimization of the design, which includes the 

minimization of the power losses, covering the selection of the winding strategy analysed in 

chapter 3 and the core design (chapter 4 is focused on this topic). 

The winding strategy depends on the current density whereby a high value leads to compact, 

cheap and inefficient inductors and low values implies usually expensive, efficient and reliable 

designs. In addition, the skin and proximity effects are mainly involved in the current density 

in the windings in AC.  

On the other hand, the core losses, mostly hysteresis and eddy current losses, could vary 

significantly if the core size and its material is not selected properly seeking for the minimal 

value of the magnetic field density into the core. 

Therefore, a good balancing of copper and core losses is needed for the optimization of the 

magnetic component, to be efficient, cheap and successful in the market. However, this 

balancing is complex because they are inversely proportional according to the core size and 

same magnetic flux. 
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Figure 13. Component Model. 
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In addition, the balance between the copper loss and the core loss relies on the peak value of 

the AC component of , ∆B (Figure 14) as defined as from [38] for a simple transformer :  

 (14) 

 (15) 

where n1 is the number of turns of the primary side, Ac is the total surface of the core and V1 is 

the voltage in the primary side, and  denotes the volts-seconds applied to the primary 

winding during the positive portion of the voltage between the time period from t1  to t2 in the 

waveform. 

Figure 14 shows a particular example of an inductor to be used in avionic applications whose 

DC/DC converter will work at 10 kHz in VIN/VOUT=450 V/270 V. The light blue line represents 

another constrain to have in the inductor design, the maximum operation temperature, 

PmaxTemp, and the purple line means the minimum number of turns, Nmin, which depends on the 

flux density and the effective area of the core that can be modified by increasing the stacking 

of the core. In addition, there is a quadratic relationship between the winding resistance and 

the number of the turns according to [38].  

There are a number of variables involved in the power losses and many factors to consider the 

relationship among them to estimate the core losses and the copper losses. Also, additional 

requirements such as size, weight, thermal limitation and project budget may have to be 

considered in the design. 

(a) (b) 

Figure 14. (a) Power Loss Optimization [38] (b) Example of Power Loss Optimization for10 kHz in 
VIN/VOUT=450 V/270 V [32]. 
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In conclusion, the calculation of both losses, copper and core, are very important to design and 

optimize the inductor component to be successful in the competitive market and useful for 

the application that it has been designed for. 

2.4.3 Parameter extraction procedure 

The parameter extraction procedure is based on the values of energy and losses obtained from 

FEM in every element using the electrical equivalent circuit from [9]. The Finite Element 

Analysis determines the electromagnetic field in each model region and therefore, any 

electromagnetic variable can be calculated by FEM because the Maxwell´s equations are 

applied in every point of the component. 

A distribution of the energy in the model is needed to use this method because some 

parameters like dispersion and magnetizing inductances are not linked to any part of the 

model (i.e.: all stored energy in the component window is magnetizing energy). 

To explain the procedure for the parameter extraction, it should be highlighted the proposed 

method is based on the superposition theorem which is applied to magnetic fields and current 

densities and not to energies and losses. This theorem requires a linear system; thus, the 

inductor will be considered a linear behaviour component, the only nonlinear part of the 

inductor as far as current is concerned is the core, therefore, a permeability constant value will 

be used for modeling the core in the FE tool. 

The FEA achieves the energy and losses in the magnetic component for different work 

conditions (open circuit and short circuit): 

 

 Open circuit condition 

In this condition, the current flows only by one winding producing copper losses in this 

winding and some losses in the other ones will be produced by the induced currents. In this 

situation, all magnetic energy can be considered magnetizing energy, with the dispersion 

energy neglected. 

 Short circuit condition 

In this condition, the currents flow in each different winding at the same time. The current 

value in any position depends on the many parameters being very complex to determine the 

cause. Therefore, the procedure is only based on open circuit analysis. 
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2.5 State of art 

Electric and electronics engineers are used to work with an electrical equivalent model for 

analysing and optimizing a magnetic component [28,39]. This model can help understand the 

phenomena in high-low frequencies. The review of the existing models will allow identifying 

the advantages and disadvantages from the frequency effects explained previously.  

The model proposed in [40] establishes an analogy between electrical circuits and magnetic 

ones.  In an electrical circuit, when a voltage is applied, it produces a current in the circuit. 

The relationship between both parameters is the resistance. In a magnetic circuit, the 

magnetomotive force is applied producing a magnetic flux, being the relationship between 

these magnitudes, the reluctance. Then, it can be found an electrical equivalent circuit that 

represents the behaviour of the magnetic component and it allows the calculation of  the 

magnetic flux or magnetomotive forces according to the theory of circuits (Figure 15). 

An improved model is used in [41] where the currents are not concentrated in a given point in 

the windings as the previous model, but they spread over the length of the windings [42]. This 

approach is used only for the current models in the low frequency range.  

A different solution is included in [43] based on [44], for  multiwinding transformers at 

industrial frequency (50 Hz) where the magnetizing inductance is neglected and it is not valid 

for air-gap components, but useful for harmonics analysis. 

The described models do not take into account the variation on the effects in the operational 

frequency range of the power converters. The inclusion of the frequency influence needs the 

Maxwell´s equations resolution, and to do so, some simplifications are required to solve them 

One of these simplifications is currently used in practical designs [45] assuming that the 

windings of the magnetic component is a boundless solenoid, which is useful for symmetric 

magnetic component modeling  and appropriate  for high and low frequencies.  

 

 

(a) (b) 
Figure 15.  Magnetic Equivalent Circuit [46](a) the electromagnetic contactor(b) the magnetic circuit. 
 

To model components with more than two windings is also of interest. Modifications in the 

electrical equivalent  circuit from [44] were published in [47,48] with a model that reflect the
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 mutual coupling. Different analytical expressions for  planar configuration [49] and for spiral 

coils [50] were determined in other works. 

Previously, there were experimental methods based on a solenoid working in resonance with 

an auxiliary capacitor [51,52], and also, theoretical methods that obtained different formulas 

which allow calculating the solenoid capacitance depending on its dimensions [53,54]. 

Presently, the modeling of the parasitic capacitances has been analysed in the field of the 

electrical machines in order to understand the transitory stages for a shut-down or electrical 

disconnection [55,56]. 

In the last decades, with the progress of the computational resources, the modeling and 

component simulation has been linked to help in the optimization design. The FEA is an 

adequate tool to calculate the winding parameters [57], but the current hardware 

computational limitations being the Random Access Memory the main constraint to manage 

the Finite Number in a simulation) do not usually allow a 3D simulation for non-symmetric 

inductors. The winding parameters extraction based on 1D or 2D FEM are not adequate to 

achieve the required accuracy due to the complexity of these components. In addition, a 3D 

model is necessary for different reasons such as to analyse of a specific magnetic effect, thermal 

analysis and the determination of the magnetic field distribution into the conductor. 

Different approaches to obtain the electrical parameters have been developed based on FEM 

optimization process [58,59], original methodologies [60] or for particular components [61-

63]. 

Different FEMs were benchmarked in [64]. Firstly, a full 3D nonlinear method in the time 

domain was used, then, the small signal strategy was applied to the 3D model achieving a 

considerable reduction of computational time. In the 3D model, the eddy currents in the 

laminations are fully modeled, in order to avoid 3D model, a 2D model has been also considered 

where the eddy currents have been included adopting a homogenization technique. In this 2D 

case, both nonlinear time domain simulations and small signal strategies have been 

implemented. The results for the described four FEM methods are in a very good agreement, 

proving that the small-signal strategy can be profitably used in order to reduce significantly 

the computational cost. The homogenization technique is based on the technique described 

in [65] that it is based on the lamination 1D model coupled with the FE equations to 

approximate the field distribution. This model is very useful for electrical machines under 

saturation, evaluation of the average torque considering the flux linkage contributions and 

identification of the torque components. This modeling method [65] was published for hybrid 

excitation synchronous machines that is another electrical field where FEM is extensively 
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used due to the complexity of the magnetic field distribution with radial/ axial flux paths using 

magnetic equivalent circuits (MEC). A 3D FE analysis is essential in analyzing a machine with 

radial/ axial flux paths due to the asymmetry in the axial direction. However, a 3D FEM is 

computationally expensive and time consuming, especially during the preliminary design 

stage. For 3D models, a MEC considering saturation and leakage flux distribution was 

designed, and the field analysis was performed. A 2D equivalent FE model via MEC was 

modeled and experimental results have validated this proposal.  

An improved MEC considering the leakage, cross coupling and saturation effects through the 

performance of an integrated 3 degrees of freedom magnetic bearing  analysis (3-DOF MB) is 

developed in [66], and if compared with the conventional magnetic component model, this 

proposal analyses the radial and axial control current fields together. By using this improved 

MEC model, it demonstrates the cross coupling effect between radial and axial directions in 

such integrated 3-DOF MB. The stiffnesses of the radial force is significantly influenced by the 

axial control current, while the stiffnesses of the axial force is independent of the radial control 

current.  

A Quasi 3D FEM was developed  in [67] by exploiting the symmetry and thus reducing the 

original 3D geometry to a 2D cross section. However, it is no longer possible when boundary 

conditions or excitations are not appropriate for the geometrical symmetry applied. To avoid 

a computationally expensive 3D simulation, a quasi 3D FEM has been developed which uses 

tensor-product shape functions combining standard finite elements in the cross-sectional 

plane with harmonic functions to take into account the azimuthal variation of the field. The 

proposed method and its convergence are validated against an analytical model.  All 

calculations are carried out on an underlying 2D mesh which allows considerable reduction in 

computational effort compared to a standard 3D simulation. The spectral discretization 

converges exponentially, whereas the FE discretization converges to a polynomial (Figure 16). 

  
(a) (b) 

Figure 16.  Different steps in the research for the winding loss (a) Quasi-3-D Finite-Element Method for 
Simulating Cylindrical Induction-Heating Devices [71]  (b) Deformation process for the windings [69]. 
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A new model for magnetic flux of multi-winding Toroidal core high frequency Transformers 

using 3D reluctance network model was shown in [68]. This work shows a 3D reluctance 

network that is introduced to model the magnetic flux distribution and estimates the self and 

leakage inductances of multiwinding toroidal core high frequency transformer. The model is 

compared with experimental results to verify the accuracy of the proposal. 

A new step forward was done  in [70], where a novel 3-D hybrid analytical modeling (HAM) 

method proposes integrating a mesh-based 3D MEC model into a 3D Fourier modeling. This 

HAM is capable of predicting the electromagnetic field distributions for Cartesian 3D 

structures. A generalized approach technique is applicable to a wide range of electromagnetic 

devices, such as linear and planar actuators where the 3-D HAM calculates the magnetic field 

distributions and forces with approximately 90% accuracy.  

One of the last important improvements in the field of the FEMs has been the inclusion of the 

deformation transient process during short-circuit faults shown in Figure 16 [64]. A 3D 

geometric simulation is developed based on the actual size parameters of a 500 kV single-

phase two windings transformer. The multi-physic-field coupling technique based on the 

FEM has been employed to calculate the dynamic deformation characteristics of transformer 

winding structures during the transient process. The simulation results indicate that the 

windings can withstand the most severe impacts caused by external shorts-circuits without 

any plastic deformation. Consequently, the winding structure in the middle-height position 

near the ferromagnetic circuit should be checked and strengthened to prevent windings from 

plastic deformation and radial instability. 

Currently, FEM are focused in the thermal analyses of the magnetic components [71] and 

electric equivalent  parameters extraction methods  by using FEMs [72]. 

2.5.1 Summary of the models 

The state of the art concerning the computational limitations to analyze the magnetic 

components using 3D models, pseudo 3D models, hybrid models and analytical solutions is 

described in this section. 

At this point, there is no equivalent circuit (electrical and magnetic) consider all the effects in 

3D without paying a high computational time cost. 

The models presented in section 1.4 are usually applied for determined geometries and they 

are not useful for generic non-symmetric components with the various of topologies and 

working conditions used for inductive components in power converters. 
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In addition, it assumes that the core is not in saturation and it has a linear behaviour, but there 

is no issue because this state for the core is normal for switcher sources and a linear 

permeability can be used in the analysis. 

In consequence, there is not currently a 3D model taking into account all frequency effect 

based on FEA to obtain an electrical equivalent circuit using an operative CPU time for the 

power engineers in the optimization process of the magnetic components. 

 

 

Table 5. Selected research papers dealing with equivalent electrical circuits 
Contribution Year 

 1989 1990 1991 2011 2016 2017 2019 2020 
Proposition of an Equivalent Circuit [28] [39]       
Analogy between Magnetic and Electric 
circuit 

  [40]      

Equivalent circuit valid for harmonics    [38]     
Introduction of parasites capacitances for 
transient analyses 

    [55] [56]   

Addition of the frequency and  Mutual 
Coupling 

     
[42] 
[43] 

  

Different Approach for Planar Coils       [44]  
Different Approach for Spiral Coils       [45]  
Currents not concentrated in a given point        [41] 

 
 
 

Table 6. Selected research papers dealing with FEM analysis of magnetic components from 
2015 

Contribution Year 

 2015 2016 2017 2018 2019 
2D-3D hybrid modeling [70]     
FEM original approaches  [58]    
3D methods for particular magnetic components  [61]  [58]  
Homogenization technique for FEM   [65]   
Quasi 3D Model    [62]  
Thermal analyses     [71] 
Practical parameter extraction     [68] 
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2.6 Computer limitations in 3D modeling 

Not every magnetic component can be solved by 3D FEA because there are some hardware 

computer limitations that cannot allow performing the simulation in 3D or finishing the 

simulation in operative CPU time. One of the solutions for this issue is the use of  2D model 

for simulating the magnetic components, however, non-symmetric components are not valid 

the simulations in 2D [73]. 

A 3D model is necessary for different reasons: analysis of an asymmetric component, study of 

specific magnetic effects, thermal and electromagnetic analyses and determination of the 

magnetic field distribution inside of the winding conductors. The analysis to determine the 

hardware computer limitation can be divided in two branches:  

 Determination of the maximum number of FE managed by the computer resource [74].  

This number will mainly depend on the computer memory. The core processor is a not the 

real limiter, however it has influence in the execution time for running the simulation of the 

magnetic component. 

 Identification of the potential model simplifications to obtain the simulation convergence 

and reducing the computation stress [75]. 

Any simulation process in a FE tool is determined by the convergence criteria (Appendix III) 

that defines the maximum FE number used for the electromagnetic analysis. The convergence, 

in a FEM tool, is usually calculated from the difference of energy between two iterations: after 

one iteration is completed in the simulation, the energy error values are used for determining 

if additional iterations are needed to increase the solution accuracy. 

Thus, the FE number used in the last iteration is available to be known, even the convergence 

has not been achieved. Thus, according to the energy error, it could predict the FE number 

that leads to any magnetic component to achieve the convergence of any magnetic component 

simulation [73,74]. 

In the next sections, two magnetic components are studied in detail by analysing different 

sequences when only one parameter is modified to know the influence of this parameter in the 

values obtained for the different electrical parameters of the magnetic component equivalent 

circuit (MCEC). 
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2.6.1 Simulation Analysis 

This work is focused in the non-symmetric magnetic components that need 3D models to be 

analysed. The selected models for this work are inductors with EE and Toroidal cores because 

they are commonly used for inductive components in power converters and they have no 3D 

symmetry depending in the winding strategy.  Thus, the two inductive components used in 

these studies to analyse the computer limitations are shown in detail in the Table 7 and Table 

8. 

Three different simulation sequences were launched to define the computer limitation and 

model parameters involved in the problem and to predict the FE number needed for a complete 

3D simulation of the magnetic component. 

Table 7. Summary of EE core data 

Core 

Manufacturer:  FerroxCube [76] 

Geometry: EE Core with rectangular 

section 

Geometry specification: EE/42/21/15 

Material: 3C90 

Relativity Permeability:40 

 

First winding 

Diameter of the conductor: AWG 24 

Conductor material: Copper 

Number of turns: 4 

Second winding 

Diameter of the conductor: AWG 18 

Conductor material: Copper 

Number of turns: 4 

 
Table 8. Summary of Toroidal core data 

Core 

Manufacturer:  FerroxCube [76] 

Geometry: Toroidal Core with 

rectangular section 

Geometry specification: C107/65/25 

Material: 3C90 

Relativity Permeability:40 

 

First winding 

Diameter of the conductor: AWG 24 

Conductor material: Copper 

Number of turns: 4 

Second winding 

Diameter of the conductor: AWG 18 

Conductor material: Copper 

Number of turns: 4 
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2.6.2 Impact of the geometrical parameters for the FE number 

The study in this section determine which geometrical and material features could impact in 

the FE number required for obtaining a result with the desired accuracy using a given 

computer resource. The analysis consists on the permutation of these parameters (number of 

winding turns, winding current, core size and air-gap dimension) from the original models 

presented in the previous section to determine the number of FE increase from each parameter 

separately [73,74]. 

The FEM simulation was set up with an estimated error of 1% and 5% with a maximum of 40 

iterations in the simulation. At this stage of the study, any simplification is applied to the 

component. 

It can be concluded from [74] that the main parameter  that determines the increase of the FE 

number is the winding turns in the coil.  

Table 9 shows the increase of the number of FE depending on the windings turns (EE core) 

being the limit for the component model 15 windings because the convergence is not available 

with this number of the windings. Figure 17 shows the evolution of the number of FE vs. CPU 

time.  

Table 10 and Figure 18 show a similar analysis for the Toroidal core inductive components 

using the same computer resource. 

 
Table 9. Summary of FE number required EE Core Component Simulation 
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4 402,806 213,520 15,662 21,703 0.6 0.8 3,742 

5 501,75 260,959 17,120 22,350 0.8 0.2 3,877 

6 607,086 311,380 20,191 22,960 0.5 0.1 5,745 

7 707,113 362,333 21,379 23,100 0.6 0.6 8,285 

8 811,411 406,290 23,193 23,871 0.5 1.0 9,660 

9 912,224 456,616 27,216 23,800 0.5 0.7 11,030 

10 1,021,211 507,418 28,678 24,256 0.4 0.2 12,066 

11 1,119,785 558,969 28,859 24,180 0.5 0.3 13,784 

12 1,227,119 602,976 30,179 24,749 0.38 0.13 16,854 

13 1,329,032 653,364 32,253 24,747 0.4 0.2 19,924 

14 1,436,020 700,197 36,691 24,969 0.4 0.8 26,676 

15 1,531,421 756,312 34,562 24,685 0.3 1.1>1 NOT 

16 1,256,051 652,715 19,135  1 3.8>1 NOT 
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Figure 17. CPU time versus number of turns in EE core. 
 

Table 10. Summary of data corresponding to Toroidal core FEA analysis using Hexagonal 
Section. 

Features Values 

Turns (FE) 4 8 12 16 56 

Total Tetra (FE) 18,248 58,793 52,506 201,498 249,457 

Air  Tetra(FE) 13,148 44,742 37,687 151,655 170,582 

Core Tetra  (FE) 720 4,720 2,008 24,493 15,232 

Winding Average (FE) 5,475 583,188 533,792 792,188 198,884 

Energy Error(%) 0.36714 1.612 0.61018 0.55139 0.02937 

Delta Error(%) 0.43953 1.325 1.411 1.4845 0.18275 

CPU Time (s) 15 71 62 338 618 
 

 

(a) (b) 
Figure 18. (a)CPU time for Toroidal core (turns per winding) FE number evaluation (b) CPU time evaluation. 

2.6.3 Impact of the conductor cross-section in simulations  

This dedicated analysis was developed following the same procedure as in the previous 

section, but the original model contains the simplification assumed in [73], where the 
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conductor cross-section of the windings does not have a circular shape but a polygonal shape 

has been used for the reduction of the number of FE in the component simulation and CPU 

Time saving. 

Table 10 shows the distribution of the FE in the component model depending of the polygonal 

conductor cross-section used in the windings. The number of the FE increases in the air zone 

around of the windings because of the surface approximation technique in Maxwell Ansys 

[77]. The mesh methodology depends on the surface approximation technique for the object 

surfaces. 

To create a finite element mesh, Maxwell tool first divides all true surfaces (the original ones) 

into triangles, these triangulated surfaces are called faceted surfaces because a series of straight 

line segments represents each curved or planar surface (Figure 19). 

For planar surfaces, the triangles lie exactly on the model faces, there is no difference in the 

location or the normal of the true surface and the meshed surface. When an object´s surface is 

non-planar, the faceted triangle faces lie a small distance from the object´s true surface. This 

distance is called the surface division, and it is measured in the model´s units. The surface 

deviation is greater near the triangle centres and less near the triangle vertices. 

The normal direction of a curved surface is different depending on its location, but it is 

constant for each triangle. The angular difference between the normal of the curved surface 

and the corresponding mesh surface is called the normal deviation. The aspect ratio of triangles 

used in planar surfaces is based on the ratio of circumscribed radius to the in-radius of the 

triangle. It is unity for an equilateral triangle and approaches infinity as the triangle becomes 

thinner. This is the reason that polygonal cross-section with more than 24 edges have more 

FE number than circular sections (Figure 20). 

Distance between 
true faceted surface

Normal to faceted 
surface

Normal to true 
surface

 

Figure 19. Approximation Surface in the Meshing [78]. 
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Table 11.Summary of EE core FEA analysis  

 

H
ex

ag
on

 

D
od

ec
ag

on
 

O
ct

ad
ec

ag
on

 

C
ir

cl
e 

P
ol

yg
on

 2
4 

ed
ge

s 

P
ol

yg
on

 3
6 

ed
ge

s 

P
ol

yg
on

 4
8 

ed
ge

s 

Total Tetra (FE) 34,300 160,837 331,428 402,806 504,030 659,629 1,176,051 

Air Tetra (FE) 24,295 100,227 187,004 213,520 257,656 339,744 570,251 

Core Tetra (FE) 5,577 19,857 34,422 15,662 45,563 18,183 26,417 

Winding Average (FE) 5,535 5,094,125 1,375,025 21,703 251,01,375 3,771,275 72,422,875 

Energy Error (%) 0.39065 0.25575 0.22826 0.5937 0.16952 0.67739 0.54051 

Delta Error (%) 0.14453 0.069121 1.4228 0.75958 0.26949 0.94505 1.9237 

CPU Time (s) 43 710 1,695 3,742 3,467 5,781 12,401 

Time Portion 1 16,5 39,4 87 80 134 288 

 

 
Figure 20. Comparison of FE number for different coil cross-section in the case of a EE core . 
 
Figure 20 shows the graph corresponding to the Table 11, showing that the total FE is 

increasing depending on the number of the edges in the conductor cross-section due to the 

major impact in the air zone. This increase is the main reason for the evolution of the total 

number of the FE varying the edges of the polygon. Figure 21 is a similar graph for the CPU 

time required for running each simulation. 

A similar analysis for the Toroidal core component (Table 8) has been done and the results are 

summarised in Table 12, Figure 22 and Figure 23.  As the procedure is similar for the EE core 

component, only the circle and hexagon for the cross-section has been analysed. 
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  Figure 21. Comparison of CPU time among different coil cross-section for EE core . 
 

Table 12. Summary of Toroidal core FEA analysis  

 
 Hexagon Circle 

Total Tetra (FE)  18,248 435,685 

Air Tetra (FE)  13,148 249,649 

Core Tetra  (FE)  720 13,091 

Winding Average (FE)  5,475 21,618,125 

Energy Error (%)  0.3671 0.13631 

Delta Error (%)  0.4395 0.39149 

CPU Time (s)  15 1.030 

Total Time (s)  18 1.062 
 

 
  Figure 22. Comparison of FE number for different coil cross-section (Toroidal core case).  
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Figure 23. Comparison of CPU time for different coil cross-section (Toroidal core case). 
 

As Figure 22 and Figure 23 show, the conductor cross-section changes can increase the FE 

numbers in the simulation up to the impossibility of  the simulation completion. In addition, 

it can be concluded that the results indicate that the hexagonal section is the best choice as a 

simplification according to the FE number and the CPU time saving. Another result obtained 

from this study is that there is not any simulation than can manage more than 1,600,000 FE for 

4 Gb RAM computer (Appendix IV). 

2.6.4 Impact on the winding electrical parameters   

This section is devoted to analyse the evolution of the resistance and inductance values for 

different models varying the conductor cross-section used for simulation of the two 

considered inductive components (EE and Toroidal cores) when the winding turns are varied 

shown from Figure 24 to -Figure 31. 

The analyses are focused in the main parameters for the electrical equivalent circuit [9] for an 

inductive component. These parameters are the resistance (R) and the inductance (L) of the 

windings. The values of the parameters when the conductor cross-sections are different in low 

frequency due to the conductor areas are different as well. In high frequency, these differences 

are bigger because of the different influence of the skin and proximity effects in circular and 

polygonal sections. Thus, the geometrical simplifications applied to the component are not 

adequate for the electrical parameter extraction. The figures demonstrate that there is an 

additional step to calculate the AC resistance from a model that uses a polygonal cross-section 

for the windings. This logic from this sequence analysis is due to the difficulty to achieve the 

complete simulation of complex geometries. For this reason, it is necessary to know which 
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component simplifications are more useful to achieve the convergence or which elements of 

the component produces bigger increments in the FE in the model. This analysis starts with 

one winding till it reaches the number of the windings where the computational limitation is 

achieved for the analysed components (EE and Toroidal core) to determine the difference of 

results for the different electrical parameters in DC and in AC and to investigate its influence 

on the error obtained with the simplified model. 

2.6.5 Conclusions 

According to the analyses developed in this chapter, some simplifications are needed in the 

magnetic component model to be able to run the simulation in a 3D FE tool.  

As it has been demonstrated (Table 9-Table 12), the FE of the magnetic component depends 

on the air zone finite element that are created around the windings. Therefore, the most critical 

design aspect for the CPU Time is the conductor cross sections for the windings. Also, the 

analyses sequence has confirmed a linear relationship between the required CPU time and the 

FE number [74], being the most effective cross section the hexagonal one. 

The hexagonal section for the conductors has different value for the electrical parameters 

(resistance and inductance) in low frequency because the conductor area and the distance 

between conductors are different (this variable is very sensible for the inductance calculation). 

At high frequency, the skin and proximity effects have different impacts in circular and 

polygonal sections and the difference between these values are bigger. 

In conclusion, the hexagonal section for windings is the most operative choice for design 

engineers, however, a correction factor is needed to achieve the same results using circular 

cross-sections. This correction factor will be determined in the following chapter as an 

original contribution from this work. 
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EE core. First winding (1 turn) and Second Winding  (1 turn) 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 24. EE transformer. 1 winding (a) Resistance of  first winding (R1, AWG 24) (b) Inductance of first 
winding (R1, AWG 24) (c) Resistance of  second  winding   (R1, AWG 18) (d) (b) Inductance of second winding 
(R1, AWG 18) (e) Resistance R12, working as transformer equivalent circuit [9] (f) Inductance L12, working as 
transformer equivalent circuit [9]. 
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EE core. First winding (2 turn) and Second Winding  (2 turn) 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 25. EE transformer. 2 windings (a) Resistance of  first winding (R1, AWG 24) (b) Inductance of first 
winding (R1, AWG 24) (c) Resistance of  second  winding   (R1, AWG 18) (d) (b) Inductance of second winding 
(R1, AWG 18) (e) Resistance R12, working as transformer equivalent circuit [9] (f) Inductance L12, working as 
transformer equivalent circuit [9]. 
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EE core. First winding (4 turns) and Second Winding  (4 turns) 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 26. EE transformer 4 windings (a) Resistance of  first winding (R1, AWG 24) (b) Inductance of first 
winding (R1, AWG 24) (c) Resistance of  second  winding   (R1, AWG 18) (d) (b) Inductance of second winding 
(R1, AWG 18) (e) Resistance R12, working as transformer equivalent circuit [9] (f) Inductance L12, working as 
transformer equivalent circuit [9]. 
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EE core. First winding (8 turns) and Second Winding  (8 turns) 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 27. EE transformer 8 windings (a) Resistance of  first winding (R1, AWG 24) (b) Inductance of first 
winding (R1, AWG 24) (c) Resistance of  second  winding   (R1, AWG 18) (d) (b) Inductance of second winding 
(R1, AWG 18) (e) Resistance R12, working as transformer equivalent circuit [9] (f) Inductance L12, working as 
transformer equivalent circuit [9]. 
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Toroidal core. First winding (1 turn) and Second Winding  (1 turn) 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 28. Toroidal core. 1 winding (a) Resistance of  first winding (R1, AWG 24) (b) Inductance of first winding 
(R1, AWG 24) (c) Resistance of  second  winding   (R1, AWG 18) (d) (b) Inductance of second winding (R1, AWG 
18) (e) Resistance R12, working as transformer equivalent circuit [9] (f) Inductance L12, working as transformer 
equivalent circuit [9]. 
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Toroidal core. First winding (2 turns) and Second Winding  (2 turns) 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 29. Toroidal core. 2 windings (a) Resistance of  first winding (R1, AWG 24) (b) Inductance of first 
winding (R1, AWG 24) (c) Resistance of  second  winding   (R1, AWG 18) (d) (b) Inductance of second winding 
(R1, AWG 18) (e) Resistance R12, working as transformer equivalent circuit [9] (f) Inductance L12, working as 
transformer equivalent circuit [9]. 
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Toroidal core. First winding (3 turns) and Second Winding  (3 turns) 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 30. Toroidal core. 3 windings (a) Resistance of  first winding (R1, AWG 24) (b) Inductance of first 
winding (R1, AWG 24) (c) Resistance of  second  winding   (R1, AWG 18) (d) (b) Inductance of second winding 
(R1, AWG 18) (e) Resistance R12, working as transformer equivalent circuit [9] (f) Inductance L12, working as 
transformer equivalent circuit [9]. 
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Toroidal core. First winding (4 turns) and Second Winding  (4 turns) 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 31. Toroidal core. 4 windings (a) Resistance of  first winding (R1, AWG 24) (b) Inductance of first winding 
(R1, AWG 24) (c) Resistance of  second  winding   (R1, AWG 18) (d) (b) Inductance of second winding (R1, AWG 
18) (e) Resistance R12, working as transformer equivalent circuit [9] (f) Inductance L12, working as transformer 
equivalent circuit [9]. 



 

 
 

3 Proposed electrical equivalent circuit based on 3D 
FEM  

This chapter presents the new electrical parameters extraction procedure based on the 3D 

FEM. The principles and limitations of the model are described as well as the methodology to 

obtain the procedure and the original correction factor used in the result-processing. At the 

end of the chapter, the experimental validation is shown for several magnetic components as 

well as a guide to use this proposed procedure for power engineers. 

3.1 Electrical equivalent circuit 

The proposed MCEC is adequate for any of magnetic component (transformers, inductors, 

non-gapped and gapped ceres) and takes into account frequency and geometry effects such as 

skin, proximity, interleaving and edge effects. The impedances in this model represent not only 

the self-terms, but also all mutual terms shared between the windings. The parameters of these 

self and mutual impedances are frequency dependent, and thus the model represents the 

frequency behaviour of windings in detail.  Also these parameters determine the efficiency of 

the inductive component and operation capabilities of the power converters (as in the voltage 

boost factor) which define their performance. In addition, the procedure based on 3D FEM 

needs a very low computer resources compared with the current mainframes. 

3.1.1 Frequency effect 

The fact that frequency affects the behaviour of magnetic components is widely known. The 

analysis of magnetic components may become quite difficult since the component depends on 

the operation frequency and the geometrical model parameters. 
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For some components, it is possible to use 1D and 2D models due to the magnetic field density 

symmetry and the equations can be derived for parasitic components, losses, and energies 

[9,12]. 

However, as explained in Chapter 2, complicated geometries imply that it becomes almost 

impossible to derive analytical equations that describe the behaviour of the components. Also, 

due to the computer limitations a 3D FEA is not available without simplifications in the 

original model. Despite this issue, a systematic methodology for generating a 3D model for a 

magnetic component by means of a FEA tool is needed. The original proposed methodology 

takes into account the frequency dependency of the electrical parameters as well as the 

frequency effects only studied in a 3D model. As the parameters of the model are frequency 

dependent, the model is valid to work with non-sinusoidal currents, applying superposition 

to the Fourier’s terms of the current, and then the behaviour of the components working with 

these currents can be represented if no core saturation is presented and the superposition 

theorem can be applied as it is explained in the following section. 

3.1.2 General modeling principles 

The main principle, which the equivalent circuit is based on, is the linear behaviour of the 

system. This assumption is very important to determine the limitations and the advantages of 

the proposed model. 

One of the most important advantages is the use of the superposition theorem for deriving the 

values of the electrical parameters extracted from FEA. This theorem is applied to magnetic 

fields and current densities and it is not possible to apply it to energies and losses. The only 

nonlinear piece of a magnetic component as far as current is concerned is the core of the 

magnetic component because of the saturation status of the material. 

A constant value of permeability has been used in the FEA simulations in order to apply this 

theorem. This model is accurate in the linear core behaviour zone, if nonlinear core behaviour 

appears, the model for windings is not correct because the field distribution changes [9]. This 

is not an important issue because the power converters usually work in the linear zone and 

additionally, the following chapter is dedicated to the core losses analysis in non-saturation 

and saturation cases. 
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3.2 Modeling the effects  

Let us consider an N winding magnetic component where all the windings are wound around 

a common core in the axial section of this component. Figure 32 shows an example with three 

windings to be easier to explain the model. The classical coupled inductor theory says that the 

average flux per turn of winding, , is given by: 

 (16) 

where  is the core flux (it is shared by all the windings) and is the flux induced 

in winding k by winding m circulating across the air, not through the core, the possibility being 

that k equals m (self-induced flux). The voltage of winding k may be determined using (17) as  

shown is Figure 32. If equation (16) is used in (17) and the relationship (18) is considered, the 

voltage of winding k is given by (19), and there are k equations like this, one per winding in the 

magnetic component [9]. 

 (17) 

 (18) 

 (19) 
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Figure 32. Magnetic Component and references.
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Figure 33. Magnetic Effects Model. 
 
In this situation, the voltage is created by the mutual flux circulating by the core and N voltages 

created by the currents of the N windings that can be represented by means of a set of coupled 

inductors, one per winding of the magnetic component. The circuit in Figure 33 represents 

these equations. 

The model which is presented in this chapter is a modification from the classical one where 

the inductance Lm1 accounts for the mutual flux across the gap and the core, but not the mutual 

flux circulating through the air. It is very important to mention that self-inductances Lkk and 

mutual inductances Lkm account for the effects of the leakage flux as well as the mutual flux 

circulating through the air [9].  

An atypical assumption that simplifies the implantation of the magnetic component model in 

electrical simulators is to use only a kind of dotted terminal:  

 Black dots represent the terminals of the windings. 

 White dots represent the terminals for the ideal transformer. 
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3.2.1 Inductance parameter extraction 

This model is based in the fundamental concept that a classical flux-based analysis is not 

adequate to determine the electrical parameters. Firstly, it is not clear what is the method to 

calculate the self and mutual fluxes in a turn built with a conductor in which the diameter is 

not null like any real situation. Secondly, as windings may have a very complex geometry, the 

calculations of fluxes are not an easy task.  The procedure for model parameters is derived from 

handling energies because it is easier than handling fluxes. However, commercial FEMs are 

used to calculated fields. The parameter extraction method proposed in this section is based 

on energies calculated from the fields resulting by FEA. 

As fields weaken outside the magnetic component, the zero vector potential boundary 

condition is imposed in a prism that encloses the component and a region of space surrounding 

the magnetic component, whose size depends on the component size (between 5 and 10 times 

the component length). 

If current  is flowing in winding k, and the rest of the windings have no net 

current, a magnetic field 

 appears in every point of 

the magnetic component. It is a vector whose components in X, Y, Z axes are sinusoids of 

pulsating angular frequency . In other words, it is a vector depending on the time and the 

coordinates, x, y, z.   

The magnetic component is working in the sinusoidal regime, and then phasors can be defined 

for the electromagnetic magnitudes: ,  and . The total magnetic induction (20) and 

magnetic field (21) in any point of the component applying superposition are determined by: 

 (20) 

 (21) 

 and are the contributors of the winding k,   and are the resulting vectors. Peak 

values have been used to define the phasors. Thus, the average energy stored in the component 

(except the core and the core gap) and all space around it may be determined by [9]: 

 (J) (22) 
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where “*” the conjugate vector and vt the volume of the magnetic component without the core. 

If equations (20) and (21) are introduced in (22), the average energy stored in the entire 

component (except the core and the core gap) and all space around it is obtained in (23). 

 

where “Re” means the real part of the vector. 

This formula is composed of two kinds of terms. One term depends only on the fields created 

by the current of one winding i. The second one depends on the fields produced by two 

different windings (i and j). 

The next equation represents the average energy that is stored in the equivalent circuit 

represented in Figure 36 (core energy is not included). 

 

This equation has two different terms. One depends on the presence of a single current in the 

magnetic component (winding i) and the other one depends on the simultaneous presence of 

two currents (windings i and j). In order to obtain an equivalent circuit of the magnetic 

component, the equivalent terms of both expressions of the average energy must be equal 

according to [9]. Thus, Lii and Lij should be defined as: 

 (25) 

If a current  is injected in winding k,  the core inductance referring to winding k, named 

Lmk, can be defined:  

 (26) 

The integration volume (vc+vg) is the volume occupied by the magnetic core (vc) and the core 

gap (vg). In the case of gap into the model, it can be necessary to divide the inductance Lmk into 

two inductances, one for the core and another for the gap. In order to split the inductance, the 

energies stored in the core and the gaps are used.  
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(a) (b) 
Figure 34. Analogy between the flux path by the core and gap and electrical circuit (a) Magnetic circuit (b) 
Electrical circuit. 

  

(a) (b) 
Figure 35.Air gap (a) EE core (b) Toroidal core. 
 
If the duality theorem between electricity and magnetism is applied, the circuit of Figure 34 

represents the core and gap effects in the circuit referring to winding k. Inductance Lmk is 

replaced with Lck and Lgk. 

If a current  is injected in winding k, it results in the core and gap stored 

energies (Wc and Wg). Then, the core energy, Wc, is calculated as indicated in (27), the integral 

being calculated in the core (volume vc). The gap energy, Wg, is calculated in the gap volume vg   

using (28). 

 (27) 

 (28) 

The gap in the last equation is a prism which represents the perfect gap which is the portion 

of air between both core halves (Figure 35). The fringing field of the gap (spread field outside 

of the gap) has an important impact in long gaps. Thus, it is included in this assessment in (27) 

-(28). WT is the total energy stored in the core and the gap and it is calculated as: 

 (29) 

Based on [9], the expressions of the core and gap inductances can be obtained as: 
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 (30) 

 (31) 

The previous calculations allow deriving a traditional gapped component model. One 

inductance representing the core effect and another representing the gap effect appear in the 

equivalent circuit, and their values can be calculated by equation (30) and (31). If the gap is 

not presented, then equation (29) can be used to calculate Lmk, WT being equal to Wc. Wg is zero 

and the result (32) gives the confirmation that this procedure is valid for transformers as well 

following [19]. 

 (32) 

3.2.2 Resistance parameter extraction 

The procedure used to obtain the model structure for resistances (Figure 36) is similar to the 

previous one used for inductances. The expression of the losses as a function of the current 

density in the windings is derived, and, in addition, a circuit is synthesised from them. 

If a current ik is injected in winding k, and the other windings have zero net current, a current 

density distribution ij appears in every point of the component.  Windings k has current 

density affected by skin effect and winding j≠k has current density caused by proximity effect. 

When all windings have net current, the current density in a point, can be determined by: 

 (33) 

 It is the sum of the current density induced by each of the N windings of the magnetic 

component. Equation (34) represents the average power losses in the windings. The integral 

is calculated in the volume of the conductors. Using equations (33) and (34), produces (35). 

 (34) 

 (35) 

where  the volume of the windings. There are two terms in the expression. The first term 

depends on the existence of current in a unique winding i. The second one depends on the  
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Figure 36. Resistive effects model in windings. 
existence of current different windings (i and j). The equivalent circuit represents this 

assumption. The power losses of this set of coupled resistances depend on individual currents 

acting independently and simultaneously. 

The average losses are calculated by means of: 

 

From (34), (35) and (36) it can be obtained that: 

 (37) 

3.2.3 Complete model structure  

Once the equivalent circuits for energy storage and power losses have been obtained from [9], 

they are merged into a single equivalent circuit that represents both effects (Figure 37) The 

expressions of the operational impedances Zii(s) and Zij(s) are: 

Zii (s)=Rii (s)+Lii (s) (38) 

Zij (s)=Rij (s)+Lij (s) (39) 
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Figure 37. Multiwinding magnetic component model. 
 
According to [9]: 

 Zii(s) represents the magnetic energy and power losses when the net current is only 

flowing though winding. Therefore, this impedance takes into consideration: the energy 

(except the core and gap) when current is flowing through winding, the losses in winding 

(skin effect), and the power losses induced in windings (proximity effect). 

 Zij(s) represents the contribution to the magnetic energy and the power losses caused by 

the simultaneous conduction of net current through windings. 

The energy and the losses in the windings when the current is flowing simultaneously through 

two windings are not the addition of those calculated when current is flowing though each 

winding independently. These losses could be higher due to the addition of ampere turns in a 

particular winding zone or lower because of the compensation of ampere turns (i.e.: 

interleaving). 

This model is a very important contribution of this work. Because the impedances are shared 

by all the windings, this idea was used in the past by [44], but not for any magnetic component 

topology and operation frequency, for which it is adequate because the contribution from 

every winding on power losses depends on each current. 
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3.3 Proposed parameter extraction procedure 

As it was explained previously, not every component can be modelled in the 3D FE tool. In 

[73] and [74] , the relationship between the computer features and number of elements used 

in a FEA was obtained. According to [74,75], the main factor to determine this value in a 3D 

simulation is the conductor cross-section for the windings.  

This parameter extraction procedure is based on 3D FEA divided in three steps: 

1. Modeling. 

2.  Component simulation. 

3.  Result-processing.  

At the modeling phase, the component is designed in three dimensions and the conductor 

cross-sections are modified from circular to polygonal to reduce the FE number to achieve the 

convergence in the FE tool as well as reducing the CPU time. This modification involves that 

the conductor surface and the distance between conductors are not exactly the same in that 

the real component producing different values in the winding resistance and inductance. 

One contribution of this thesis is the adjustment of the material properties for the conductors, 

following (40 and 41) to have the same resistance and inductance values in DC. 

 (40) 

 (41) 

where Scircular is the circular cross-section and the Spolygon is the area of the polygonal cross 

section. The component using the polygonal model applying the material properties from (40) 

and (41) in the modeling phase will be name the polygonal model. As this model has much 

smaller FE number than the original one, the simulation can be completed and the CPU time 

reduces drastically.  

After the simulation, in the result-processing stage, the parameter extraction is according to 

the magnetic-electrical equivalent circuit shown in Figure 33 and Figure36 [9]. The resistance 

and inductance for the windings are calculated by script using: 

 (42) 

 (43) 
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This methodology is focused on inductive components used in power electronics converters 

where some frequency effects are very relevant for the winding modeling like skin and 

proximity effect.   

These frequency effects have different behaviour for circular and polygonal cross-section.  

Therefore, a correction factor is needed to obtain the same value for the winding resistance 

using both cross-sections and its corresponding material properties. 

The impact of the frequency in inductances in this procedure using polygonal instead of 

circular sections for this methodology is negligible as demonstrated in [79-82]. 

3.3.1 Correction factor for resistance depending on the frequency 

As demonstrated in the Chapter 2, the polygonal model is not enough to determine the 

electrical parameters in AC, and it is only valid for DC, it is necessary to calculate a correction 

factor depending on the frequency which is applied on the extracted resistance from the 

polygonal model to achieve accurate results for the resistance. 

·  (44) 

The correction factor is divided in two coefficients corresponding to the skin and proximity 

effects that depend on the frequency. 

 (45) 

A dedicated analysis sequence has been performed to calculate this correction factor. This 

study consists of the comparison between the resistance from the real component and the 

resistance from the polygonal model. The comparison between both resistances is named EQR 

and defined in (46). 

 (46) 

The correction factor also depends on the polygonal cross-section used in the simulation. A 

new term is introduced in the study to involve the polygonal section dependency named Apol, 

described in (47) and presented in Table 13 and  

Table 14 for the polygonal sections used and the corresponding conductivity.   

 (47) 

As the conductivity has been modified using (40), the skin depth is also modified according to 

the used cross section (Table 15). 
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Table 13. Conductor cross-sections 

 Circular Diamond 
Square into 

Circle 
Square outside 

Circle Hexagon 

 
     

Apol 1 1.5708 1.5708 0.7854 1.2092 

Conductivity 
(σpol) (S/m) 
from (26) 

58000000 91106186 91106186 45553093 70133575 

 
Table 14. Data for the starting point 

 (R1) (R2) 
Material Copper Copper 

American Wire Gauge AWG18 AWG24 
Conductor radius (mm) 1.02 0.510 

Turns 1 1 
 

Table 15. Skin depths (m) for different conductor cross-sections 
Cross-section shape 

equivalent conductance variable) frequency f (KHz) 
  0.001 48.39 537.67 1,209 

Circular 
σ(Cu)= 58000000 S·m δ 6.64E-02 3.02E-04 9.06E-05 6.04E-05 

Hexagonal 
σ1(Cu)= 70133575 S·m δ1 6.04E-02 2.75E-04 8.24E-05 5.49E-05 

Octagonal 
σ2(Cu)= 64421802 S·m δ2 6.30E-02 2.86E-04 8.59E-05 5.73E-05 

Dodecagonal 
σ3(Cu)= 60737457 S·m δ3 6.49E-02 2.95E-04 8.85E-05 5.90E-05 

  
  

(a) (b) 
Figure 38. EQR for a single wire alone and single circular coil with hexagonal cross-section (a) R1(AWG18) and 
R2 (AWG24). Single wire alone; (b) R1(AWG18) and R2 (AWG24). Single circular coil. 
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(a) (b) 

  
  

(c) (d) 

  
  

(e) (f) 
Figure 39. EQR for different cases of single square coil with hexagonal cross-section (a) Ferrite core (3C90); (b) 
Air core; (c) 4A driven in both conductors; (d) Square edge 20 mm; (e) R1=AWG18 and R3=AWG12 (f) Square 
edge 5 mm. 
 
Firstly, three simple cases have been evaluated to understand the skin effect for different 

polygonal cross-sections. These cases are a single wire alone, a single circular coil and a single 

square coil for different cross-sections. Also, the cases have been developed for two different 

conductors (R1→AWG18 and R2→AWG24). 

Figure 38 and Figure 39 show the evolution of EQR versus frequency for different cases as 

examples. The single wire alone is only impacted for the skin effect. The proximity effect is 

only defined strictly for more than one conductor; so, there is loop current effect in circular 

and square coils. 
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Figure 38 (a) shows the EQR for a single wire alone, which depends on the current and 

conductor diameter. The EQR for a circular coil is plotted in Figure 38 (b), where there is an 

additional parameter to be included, the coil diameter. The case for square coils has more 

impact from the current loop effect. Some examples are shown in Figure 39 where the EQR 

tendency is in agreement with the theoretical assessment from [83]. 

3.3.1.1 Skin effect study 

In this section, a theoretical assessment will be developed, supported by FEA results for three 

different cases: a single wire alone, a circular coil and a square coil to determine the skin effect 

by itself in the effective resistance. 

1) Single wire alone 

The effective resistance for a wire (circular cross section) in DC is given by  

 (48) 

However, in AC the resistance increases because the current density becomes distributed 

within a conductor, being largest near the surface of the conductor, and decreasing with 

greater depths in the conductor. 

The skin depth, δ, determines the net surface used by the current depending on the frequency  

 (49) 

and the real surface used by the current in this situation defined in (50) being the surface of 

the circular crown with thickness δ. Therefore, the effective resistance in AC for a single wire 

alone, using the last equations, is given by (51). 

 (50) 

 (51) 

where ω is the angular frequency of the sinusoidal current of the conductor, μ is the conductor 

material permeability, σ is the wiring material conductivity, and r1 is the radius of the surface 

used by the current according to the frequency f. 

As the material properties are modified when polygonal sections are used in the FE tool, the 

skin depth, δi, has different values per each polygonal section due to the conductivity used 

having been adjusted according to Table 15. It approaches as a mathematical estimation that 

the real surface is decreasing in a circular shape whatever cross-section is used in the  
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Figure 40. Current density obtained from FEA for a single wire alone for different cross-section shapes. 

 

simulation removing the computational effect for the meshing, mainly in high frequencies 

according to the analysis sequences developed (Figure 40). 

Table 15 also shows the frequencies used in the analysis sequence, where these operation 

frequencies are in the range corresponding to the switching frequencies normally used for 

operating power converters based on Si, SiC or GaN semiconductors. The conductors have 

been selected so that skin depth ranges from one conductor to another are multiples. The net 

surfaces used by the current in the polygonal models depend on the cross-section and they are: 

 Hexagonal section: 

 (52) 

 Octagonal section: 

 (53) 

 Dodecagonal section: 

 (54) 

 
 
 



66 
Chapter 3. Proposed electrical equivalent circuit based on 3D FEM 

Table 16. Effective Conduction Area for polygonal cross-sections related to the circular ones 
Polygon Apol Simplified Apol 

Hexagon   

Octagon   

Dodecagon   

 

  
(a) (b) 

Figure 41 (a)Circular cross -sections (b)Polygonal cross-section (hexagon example) and the effective 
conduction area (filled in orange). 
 
Table 16 summarises the Apol (47) in AC for the different polygonal sections used in the study 

and the potential simplification for the mathematical expressions due to the terms of the 

second order. 

Using the values of Table 16 to calculate EQR and introducing δi (skin factor for polygonal 

sections), the equation (55) is obtained.  

 (55) 

In addition, Figure 40 show the FEM results of the current density for different cross-sections 

at the selected frequencies demonstrating the decrease of the net surface in circular shape used 

by the current. Figure 41 represents the skin depth for the polygonal sections (a hexagonal 

section as an example) according to the FEM results.  

Analysing this effect in detail, Figure 42 shows the mathematical approach for an hexagonal 

section where rA is the circular border for the net surface used if a circular cross-section is 

considered and rB corresponds to the polygonal cross-section. 
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Figure 43 and Figure 44 show the FEM results for high and low frequencies and the different 

cross-sections, showing the impact on the skin depth δi,. Even the material properties have 

been modified according to the cross–section to have the same DC resistance (Table 16).  

If Ampère’s law is applied in the circular and the polygonal cross sections, equations (56) and 

(57) are obtained BA and BB being the peak values of the magnetic field density. 

(56) 

(57) 

These values of the magnetic field density can be normalised as Bpolygonal/Bcircular and these are 

compared with the obtained values for Apol, (Table 17), confirming that equation (57) is valid. 

In other words, the ration between BB and BA gives exactly the value of Apol. 

 (58) 

Hence, the skin factor of the polygonal model can be assumed as: 

   (59) 

 

 

Figure 42. Skin depth in polygonal section. 
 

  
(a) (b) 

Figure 43. Magnetic Field Density AWG18 in circular section (a)0.001kHz (b) 1209 kHz. 
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(a) (b) 

Figure 44. Magnetic Field Density AWG18 in hexagonal section (a)0.001kHz (b) 1209 kHz. 
 

Table 17. Normalisation of the magnetic field density (B) 
 

Cross-Section 
R3=0.185 

(AWG14) 
R1=0.285 
(AWG18) 

R2=0.55 
(AWG24) 

R4=0.725 
(AWG29) 

Avg** Apol (0 Hz) 

BA Circular 2.8 mT 3.6 mT 7.1 mT 1.4 mT   

BB Hexagonal 3.4 mT 4.3 mT 8.3 mT 1.7 mT   

BB / BA Normalisation*  1.2143 1.1944 1.1690 1.1972 1.19 1.20 

BB Octagonal 3.1 mT 4.0 mT 7.8 mT 1.5 mT   

BB / BA Normalisation* 1.1071 1.1111 1.0986 1.0563 1.09 1.11 

BB Dodecagonal 2.9 mT 3.8 mT 7.4 mT 1.49 mT   

BB / BA Normalisation* 1.0357 1.0556 1.0423 1.0423 1.04 1.04 

*Normalisation= division between the B value in the polygonal section and the circular one (BB / BA). 
**Avg=Normalisation average 
 
2) Single circular coil 

The resistance from one single wire alone (only skin effect) has been determined and 

normalised to one metre, named Rwire in this work. The difference between Rcoil (resistances 

obtained for the singular circular coils normalised to one metre as well) and Rwire is the 

resistance due to the impact of the current loop effect exclusively named Rcl..One example is 

shown in Figure 44. 

 (60) 

 

 

 

 

 

 

 

 

 



69 
                                                                                                Proposed parameter extraction procedure 
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Figure 45. Magnetic field and current density in a single coil (AWG24) with rm=3mm. 
 

  
(a) (b) 

Figure 46. Net surfaces for skin and proximity effect (a)Real situation (b) Mathematical approach. 
 
But the nature of this effect is different from the skin effect and there is not any circular 

effective area flowing by the current, in spite of the behaviour of this effect producing a not 

circular surface used by the current. As a mathematical approach, it could define the proximity 

depth, δlc, in order to calculate the equivalent surface of the conductor to obtain an equivalent 

Rl. (Figure 46). 

Applying a similar strategy as in the previous section for the skin effect, the effective area in a 

single circular coil can be calculated by: 

 (61) 

where A is the net surface used by the winding current and δsk is the skin depth for a single 

wire alone. Developing the mathematical expression, A can be obtained as: 

 (62) 

Applying the general law of Ampère, that was used for a single wire alone in the previous 

section.  

 (63) 
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and using the net surface produced by these effects in this mathematical approach, (64) is 

obtained where the second order terms can be removed to simplify the expression as in (65). 

 (64) 

 (65) 

For a particular operational frequency, the total depth produced by the skin effect and the 

current loop effect can be determined by (66). In addition, the FEM results confirm that the 

resistance from the current loop effect Rcl=(Rcoil-Rwire) is very similar to the resistance calculated 

using the depth from the current loop effect (67). 

 (66) 

 (67) 

The objective of this mathematical approach is to provide a quick method to calculate the 

corresponding skin and the current loop effects separately.  

The comparison between the Rcl for circular and different polygonal sections has been 

performed and corresponding analyses for Rcl between the circular cross section and whatever 

polygonal sections have been developed as well.  

The comparison analysis of the Rcl between the circular and polygonal sections has been 

performed, resulting a new coefficient, Fpol, that could be defined to obtain the resistance due 

to the current loop effect if the FEM uses a polygonal cross section. 

The coefficient Fpol depends on the conductor diameter and it is close to one for most of the 

cases. Thus, the influence of the current loop effect using any polygonal section is similar using 

FEM analyses. Therefore, the current loop depth for a polygonal section can be calculated: 

 (68) 

where r1 is the radius of the original circular cross section that contains the polygonal cross 

section used in the problem, δcpl is the depth corresponding to the current loop effect using the 

polygonal cross section and δskp is the skin depth for the polygonal section. 

3) Single square coil 

This case has been analysed by permuting different parameters indicated in Table 18, 

determining the isolated influence of the skin and the current loop effects, obtaining a 

difference for the current loop effect producing a greater repercussion for the edge effect of the 
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square. The EQR obtained from a mathematical regression from the developed permutations 

(Table 18) is: 

 (69) 

giving the next equation for the skin depth for a single square alone:  

 (70) 

where r1 is the radius of the circular section that contains the polygon and f is the frequency. 

Table 18 Parameters used in permutations for case III (*See. Figure 47) 
Nro Parameter Values 

1 Conductor cross-section Circular, Diamond, Square into Circle, Square outside Circle, Hexagon 
2 Conductor dimension AWG29, AWG24, AWG18, AWG14 
3a Edge length ED1* Standard, +5mm, +10mm, +15mm, +20mm, 
3b Edge length ED2* Standard, +5mm, +10mm, +15mm, +20mm, 
4 Core Material Vacuum, 3C90, 3C98,3F4,4F11 

 

  
(a) (b) (c) 

Figure 47. Description of the three analysed cases Notes: (a) A single wire alone (case I); (b) A single circular 
coil (case II); (c) A single square coil (case III) 

3.3.1.2 Proximity effect study 

There are two well-known methods for calculating high-frequency winding losses in round-

wire windings. The methods from Ferreira [84] and Dowell [85] give significantly different 

results at high frequency and they have substantial errors, exceeding 60%. The Ferreira 

method, which is based on the exact Bessel-function solution for the eddy current in an 

isolated conducting cylinder subjected to a time varying magnetic field, is found to be most 

accurate for loosely packed-windings, whereas the Dowell method, which approximates 

winding layers comprising multiple turns of round wire with a rectangular conducting sheet, 

is most accurate for closely packed-windings. 

The proximity effect will be analysed in detail for the square coils, the ones used in the EE and 

Toroidal cores which are the magnetic components for this research using polygonal cross-

sections. Based on [84] the skin effect and proximity effect can be calculated separately due to 

the orthogonality existing between them. 

A square shaped winding having different number of coil turns (1 turn to 14 turns), has been 

studied (Figure 47) permuting all the geometrical parameters used in the last case (Table 18). 

ED1 

ED2 
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By excluding the influence of the skin effect, calculated in the previous section, one may obtain 

for the proximity effect: 

 (71) 

where kC is a number of combinations without repetition , where l represents the number 

of edges of the polygonal cross-section and n is the number of the turns in the winding. The 

factor kC takes into account various cross-section area chosen for studied conductors in FEA 

using the real model or the polygonal model. 

Table 19 shows the value of kC depending on the polygonal shape used for the winding cross-

sections in the polygonal model. The results for different calculated cases are graphically 

presented in Figure 48. The solid lines show calculated values using FEA and the dashed lines 

represent their regression. The regression has allowed determining kc which is the value that 

defines the area used for the conductors, At, if the windings are modelled with circular or 

polygonal cross-sections in the FEM (Figure 49). 

Table 19. Definition of kC   depending on the edges in the polygon 

l 4 6 8 10 12 18 

kC 6 15 28 45 66 153 
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(a) (b) 

  
(c) (d) 

Figure 48. EQR for different cases of single square coil with hexagonal cross-section (a) 2 conductors in primary 
(R1) and 2 conductors in secondary (R2); (b) 4 conductors in primary (R1) and 4 conductors in secondary (R2); 
(c) 8 conductors in primary (R1) and 8 conductors in secondary (R2); (d) 14 conductors in primary (R1) and 14 
conductors in secondary (R2.) 
 

 

Figure 49. Different Areas. Proximity Effect.
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3.4 Experimental validation of the parameter extraction from the 

3D modeling procedure 

The validation of the new methodology has been performed with experimental measurements 

for 4 different non-symmetric inductive components that will be described in this section.  

The impedance analyser (Keysight Technologies 4294A), showed in Figure 50, is the 

electronic device, and it has a four terminal-pair configuration for the measurements of 

impedance parameters over the temperature range of 0 to 40ºC with a basic impedance 

accuracy of +/-0.08% from 40Hz to 110 MHz. 

This analyser used for the tests has an equivalent circuit whose corresponding equations are 

indicated in (72-75). Figure 51 shows the typical equivalent circuit from the analyser with the 

resistances of the short-circuits and non-load current. 

 (72) 

 (73) 

The equivalent circuit for the analyser is different from the equivalent circuit used in the 

parameter extraction procedure using FEA based on energies. Therefore, the simplest way to 

validate the results is to use (22) and (23) to transform the experimental measurements in 

comparable parameters with the parameters extracted from the FEM based method: 

 Open Circuit Test: 

 (74) 

 Short Circuit Test (example of 2 windings); 

 (75) 

Here Z01 and Zcc1 are the parameters from the traditional equivalent circuit and a is the turn 

ratio.  Thus, values from (74) and (75) are comparable to the values obtained from the proposed 

method ( · ). 

 

Figure 50. Analyser 4294A (Keysight Technologies)
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a) (b) 
 

Figure 51. (a) Electrical Scheme (b)Equivalent circuit  

3.4.1 Components 

This section describes the components that have been used in the experimental validation, 

two are EE cores and two others are Toroidal cores. 

3.4.1.1 Component I 

Component I is an EE core transformer that is made with 3C90 material with the 

characteristics shown in Table 20 and Figure 52 for simulated and tested model. This 

component cannot be simulated with Ansys Maxwell in a common PC with 4 Gb of RAM due 

to its complex geometry, comprising a high number of circular conductors. The geometric 

model was simplified using a hexagonal conductor shape as explained previously in this 

chapter and the polygonal model needed a bit more than 3.12 min to converge. The 

methodology proposed in this thesis was used to calculate the winding resistances. Figure 53 

shows the comparison between the measurement resistance and the estimated resistance for 

the primary and secondary windings. 

Table 20. Summary of Component I data 

Core 

Reference EE.42.21.15 
Material 3C90 

μr 500 
Bmax (mT) 435 

Hmax (A/m) 250 

Windings: Primary 
Material Copper 

Turns 25 
Conductor AWG18 

Windows: Secondary 
Material Copper 

Turns 15 
Conductor AWG24 

 
Table 21. FEA data for Component I 

 FE Number CPU Time (m) 
Original model Unable Unable 

Polygonal model 23572 3,12 
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(a) (b) (c) 

Figure 52. FEM and tested Model. Component I (a) Primary; (b) Secondary; (c) Tested Model.  

(a) (b) (c) 

  
(d) (e) 

Figure 53. FEM and tested Model. Component II (a)FEA calculations (R11) of Component I, (b) FEA 
calculations (R22) of Component I, (c) FEA calculations (R12) of Component I, (d) Estimated and Measured Rcc 
of Component I, (e) Estimated and Measured Lcc of Component I.  

3.4.1.2 Component II 

Component II is a Toroidal one (3F4 material) two-winding transformer as shown in Figure 

54. The windings are indicated in Table 22. Once again, the high number of turns did not 

allow the simulation in an Ansys Maxwell with 4 Gb RAM either. 

The geometry was simplified using the polygonal model (hexagonal conductors), and only 

21,046 elements were needed by FEA, which allowed us to obtain the coefficients needed to 

estimate the power losses of the detailed component with the circular conductors (Table 23). 

The experimental results and the estimated calculations of the winding resistances are shown 

in Figure 55.  
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Table 22. Summary of Component II data 

Core 

Reference C107.65.25 
Material 3F4 

μr 1700 
Bmax (mT) 407 

Hmax (A/m) 1000 

Windings: Primary 
Material Copper 

Turns 20 
Conductor AWG18 

Windows: Secondary 
Material Copper 

Turns 20 
Conductor AWG24 

 
Table 23. FEA data for Component II 

 FE Number CPU Time (m) 
Original model Unable Unable 

Polygonal model 21046 9.58 

 

  
(a) (b) 

Figure 54.FEM and tested Model. Component II (a)FEM model; (b) Tested Model. 

(a) (b) (c) 

  
(d) (e) 

Figure 55. Comparison between experimental values and polygonal model (a) FEA calculations (R11) of 
Component II, (b) FEA calculations (R22) of Component II, (c) FEA calculations (R12) of Component II, (d) 
Estimated and Measured Rcc of Component II, (e) Estimated and Measured Lcc of Component II.  
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3.4.1.3 Component III 

Component III is a three-winding transformer with an EE.18.4.10.R core (3F4 material) shown 

in Figure 56 as the simulated and tested model/ The details of the windings are indicated in 

Table 24. This component has been chosen for two reasons: 

 Three windings occupy all the core columns 

 It can be simulated with Ansys Maxwell with all its geometric complexity (no polygonal 

simplifications) which allows us to check the advantages of using this proposed 

methodology. 

The simulation of the detailed model needed 662635 elements and converged in 59.89 minutes 

and the polygonal model (hexagonal conductors) needed just 34672 elements (5% of the 

detailed simulation) and converged in 3.3 minutes of CPU time (6% of the detailed 

simulation). Figure 57 shows the calculated results and, detailed simulation, only the 

polygonal model simulation and resistance calculated with the polygonal model and the 

correction factor. The experimental validation is indicated in Figure 57(e), where the sort 

circuit resistances are represented. Figure 58 shows the same study for the inductance with 

the experimental validation. 

  
(a) (b) 

Figure 56. FEM and tested Model. Component III (a) FEM model; (b) Tested Model.   

Table 24. Summary of Component III data 

Core 

Reference C107.65.25 
Material 3F4 

μr 1700 
Bmax (mT) 407 

Hmax (A/m) 1000 

Windings: Primary 
Material Copper 

Turns 4 
Conductor AWG18 

Windows: Secondary 
Material Copper 

Turns 3 
Conductor AWG24 

Windows: Terciary 
Material Copper 

Turns 4 
Conductor AWG24 

Table 25. FEA data for Component III 
 FE Number CPU Time (m) 

Original model 662635 59.89 
Polygonal model 34672 (5%) 3.3 (>6%) 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) 

Figure 57. Comparison between experimental values and polygonal model (a) FEA calculations (R11) of 
Component III, (b) FEA calculations (R22) of Component III, (c) FEA calculations (R12) of Component III. (d) 
FEA calculations (R12) of Component III (e) FEA calculations (R13) of Component III (f) FEA calculations 
(R23) of Component III (g) Estimated and Measured Rcc of Component III. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) 

Figure 58. Comparison between experimental values and polygonal model (a) FEA calculations (L11) of 
Component III, (b) FEA calculations (L22) of Component III, (c) FEA calculations (L12) of Component III, (d) 
FEA calculations (L12) of Component III, (e) FEA calculations (L13) of Component III, (f) FEA calculations 
(L23) of Component III, (g) Estimated and Measured Lcc of Component III. 
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3.4.1.4 Component IV 

Component IV is a TX25.15.10 (3C90 material) and its properties are indicated in Table 26 for 

the coil configuration. The model component is presented on Figure 59(a), and the tested one 

is displayed in Figure 59 (b).  To contrast the simulated values from the real component, the 

polygonal one and the results using the correction factor from the values of the polygonal 

model are shown on Figure 60 as well as the validation for the resistance and the inductance. 

The simulation of the original model has 445331 elements and was performed in 111.23 min and 

the polygonal model has 5595 (<2%) elements and was in 1.96 (<2%) min (CPU time) as shown 

in Table 28. 

  
(a) (b) 

Figure 59. FEM and tested Model. Component IV (a) FEM model; (b) Tested Model.   

 
Table 26. Summary of Component IV data 

Core 

Reference Tx25.15.10 
Material 3C90 

μr 5500 
Bmax (mT) 435 

Hmax (A/m) 250 

Windings: Primary 
Material Copper 

Turns 7 
Conductor AWG18 

Windows: Secondary 
Material Copper 

Turns 5 
Conductor AWG24 

 
Table 27.  FEA data for Component IV 

 FE Number CPU Time (m) 
Original model 445331 111,23 

Polygonal model 5595 (<2%) 1.96 (<2%) 
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(a)  (b)  

  
(c)  (d)  

  
(e) (f) 

  
(g) (h) 

Figure 60. Comparison between experimental values and polygonal model a) FEA calculations (R11) of 
Component IV, (b) FEA calculations (R22) of Component IV, (c) FEA calculations (R12) of Component IV, (d) 
Estimated Rcc of Component IV, (e) FEA calculations (L11) of Component IV, (f) FEA calculations (L22) of 
Component IV, (g) FEA calculations (L12) of Component IV, (h) Estimated Lcc of Component IV.  
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3.4.2 Results discussion 

The errors produced depending on the frequency are shown in Table 28, which summarises 

the error for each  of the studied components. The effect of the winding edge and the terminal 

connection has been removed to determinate the error between the proposed method and the 

performed experimental values. The analyser´s measurements are similar to the simulation 

results obtained with the proposed method for all tested components up to low-medium 

frequencies (~500 kHz). The biggest error 8.7 % at 1.2 GHz for case II, and even in this case the 

error is much lower than that the obtained with other known methods [59] applied to multi-

winding components, that is close to 25 %. In addition, the frequency range is far away for the 

operation frequency for the interest of this research. 

For the four components, the FE number is reduced about 95 % from the circular to the 

hexagonal model, requiring a negligible computational time as compared to initial simulation 

using the model without simplifications. Graphically at the figures, the error seems bigger 

because of the scaling to better show the tendency, but errors in Table 28 for the cases are 

lower than 5% for all the frequency range. 

The values corresponding to the core magnetic field density (Figure 61) for components I, II, 

III and IV respectively) obtained with the simplified model are very similar to those obtained 

with the simulation run without any simplification, but requiring much less CPU simulation 

time. The extrapolated thermal analysis will be also valid using the simplified proposed 

method. In addition, Figure 58 and 60 allow concluding that a correction factor is required for 

the resistive parameter but no for the inductive parameter. 

Therefore, one of the major original contributions from this thesis is the new proposed 

methodology to simulate magnetic components in 3D and the parameter extraction and 

applying the correction factor that has been validated even for 1 GHz. 

Table 28. Summary of the Resistance Errors (%) 

Error (%)   f (kHz) 
    0.001 5.38 21.51 48.39 537.68 1,209.78 

Case I R1 1.42 1.29 2.37 3.80 5.1 5.7 
  R2 3.42 2.75 1.84 3.06 4.7 5.2 

Case II R1 1.16 1.42 1.29 1.44 7.2 7.4 
  R2 2.09 2.55 2.31 2.59 7.6 8.7 

Case III R1 1.64 1.92 1.78 1.40 3.2 4.1 
  R2 2.22 2.59 2.55 1.91 1.35 4.2 
  R3 1.64 1.92 1.78 1.40 3.2 4.1 

Case IV R1 0.63 0.74 0.75 0.76 0.40 0.23 
  R2 1.19 1.33 1.53 1.64 0.70 0.56 
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(a) (b) 

  
(c) (d) 

Figure 61. Magnetic field density from FEM (a) Component I (b) Component II (c) Component III (d) 
Component IV. 

3.5 Guide to apply the proposed method for power electronics 

engineers  

In the last section, the developed study by using 3D FEM has been validated to propose the 

original procedure to model components in 3D in an operative CPU time to be useful in the 

optimisation process to minimise the winding losses and determine parameters of the 

equivalent electrical circuit for an inductor or transformer.  

This section presents a guide of the procedure to model any magnetic component in 3D in 

Ansys Maxwell using an example to make easier the understanding. The example selected is 

an inductor (EE core 42.21.15 with 3C90 material) with 2 windings. 

Steps: 

1. Open the Ansys Maxwell in the 3D drawing tool in the Eddy Current Solver 

2. Draw the Component in three dimensions without any simplifications at this point. The 

exact geometry of the example is shown in Figure 62 in three dimensions in the software 

itself or imported from another application. 
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Core:  
EE.42.21.15 material: 3C90 

 Distances: 
L1=1.47 mm 
L2=1.90 mm 
L3=1.96mm 

 
Windings:  
Primary: 16 turns (AWG18)    
Secondary: 15 turns  (AWG24) 

 
 
 

Figure 62. Geometry of the example. 
3. Assign the boundaries for the problem. The recommended boundary is a cube over 5 

times bigger than the maximum edge of the core keeping the component at the centre of 

the cube (Figure 63), defining in the border the tangential field as null. 

 

Figure 63. Boundary definition. 
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(a) (b) 

Figure 64. Modification of the winding cross-section (a) Circular (b) Hexagonal. 
4. Modify the cross-section of the windings from the circular to hexagonal to reduce the 

CPU time for the simulation (Figure 64). 

5. Define of the material properties in the settings of the software (Figure 65) per each 

material of the simulation as air/vacuum, 3C90 and copper. Note that in this step, as the 

hexagonal section has been introduced, the material properties of the copper have to be 

adjusted according the equations explained in the chapter.  For this example, the 

conductivity and the permeability to be introduced are defined in (77) and (78). 

 (77) 

 (78) 
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Figure 65. Definition of the material properties 
 
6. Introduce the current in the winding. This step is divided in two sub-steps, the first one 

being the definition of the current value in the windings being able to define any 

waveform shape (Figure 66 a). The second step is the introduction of the current in a 

specific cross-section of the winding to select the orientation of the current (Figure 66 

b). 

 

 

(a) (b) 
Figure 66. Introduction of the winding current (a) Definition of the value of the current (b) Winding section to 
introduce the current. 
 
7. Configure the mesh automatically. The mesh configuration could be one of the most 

difficult tasks in the simulation process. However, this action is outside of the thesis 

topic. 

8. The Solver setup step is used to defined the energy error of 2%, 25 maximum number of 
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steps and step refinement of 20%, Also, the frequency sweep has to be defined for the 

simulation or the frequency operation point of the interest.  

 
Figure 67. Solver Setup. 
 

In the case that the inductor has more than one winding, it is necessary to create a 

component named SourceForMesh with all the windings working at the same time in 

order to extrapolate this mesh of this component in the other simulations analyses in 

open circuit status to have a common mesh for not introducing additional computation 

errors. For this example, there will be the SourceForMesh to create the common mesh 

and Setup1 for analysis for the primary and Setup2 for the secondary. 

9. Simulation phase. At this point, the problem is ready to start the simulation, so the 

software allows checking the geometry and, settings, and the simulation could be 

started. In the proposed case the CPU time is 3.47 min for the primary and 4.12 min for 

the secondary. 

10. Result-processing is the step to calculate the L and the R of the windings. For this reason 

is necessary to calculate a map of  , and  in the volume enclosed by the boundaries. 

Lij and Rij, in this case, are R11, R22, R12 and L11, L22, L12 being determined by two scripts 

programmed in JAVA to export the results in txt.files or xlxs.files. The L and R obtained 

are the electrical parameters from the polygonal model. These scrips are shown in 

Appendix IV. 

 (79) 
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 (80) 

The results for the electrical parameters have been obtained in the frequency operation points 

where they have been defined in the frequency sweep in the solver setup. For example, if the 

analysis has been performed for 3 frequency points: 1kHz, 10kHz and 250kHz, the results are 

the following with the scripts (Table 29). 

Table 29. Summary of the Electrical Parameters from Scripts 
f1=1 kHz f2=10 kHz f3=250 kHz 

), 76.8 mΩ ), 79.75mΩ ), 170.16mΩ 

), 19.19mΩ ), 23.25mΩ ), 130.25mΩ 

), 95.66mΩ ), 96.09mΩ ), 155.99mΩ 

 
To obtain the correct values, the correction factor has to be applied following the equations 

(81) -(83): 

 (81) 

 (82) 

 (83) 

The example used the hexagonal section and two conductors (AWG18 and AWG24), 

whereby the corrections factors are indicated in Table 30 and 31. 

Table 30. Correction factor for AWG18 
 r=AWG18 f1=0.001kHz f2=10 kHz f3=250 kHz 

kskin 1.000894 1.0089 1.2504 

kprox 1.000149 1.00149 1.03795 

 1.001013 1.0104 1.2883 

 
Table 31. Correction factor for AWG24 

r=AWG24 f1=0.001kHz f2=10 kHz f3=250 kHz 

kskin 1.00641 1.00642 1.17369 

kprox 1.000107 1.001068 1.027 

 1.0006 1.00749 1.2007 

The final results are, L from the polygonal model and R from the polygonal model multiplied 

by the correction factor k are shown in Table 30 and 31 that they are shown in Table 32. 
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Table 32. Numerical Results of the electrical parameters for the example 
f1=1 kHz f2=10 kHz f3=250 kHz 

), 
76.9 mΩ 

), 
80.58 mΩ 

), 
219.23 mΩ 

), 
19.21 mΩ 

), 
23.25 mΩ 

), 
156.4 mΩ 

), 
95.72 mΩ 

), 
96.81 mΩ 

), 
187.3 mΩ 

 



 

 
 

4 Core power losses analysis based on FEM 

This chapter is dedicated to the core power losses, describing the original per-unit method for 

the core losses determination and the application for the toroidal cores obtaining an analytical 

equation for hysteresis and eddy current losses valid for any frequency range. This section 

finishes with the validation of this method and the particular equation with benchmarking 

with other methods according to the corresponding frequency range. 

4.1 Core power losses  

Losses in magnetic cores have been studied because of their particular significance for the 

component design. Physicists study the characteristics in magnetic materials, while design 

engineers in power electronics model the core power losses (CPL). Nevertheless, there is a gap 

between the power losses calculation theories, particularly those focused in the material 

characteristics, and engineering applications. In consequence the devices designed cannot 

fully use the material capabilities.  

One set of models is based on the Steinmetz equation where the three coefficients are 

determined by fitting the losses model to the measurement data, this model assumes purely 

sinusoidal flux densities. An extension of Steinmetz equation[86] was presented by Jordan in 

[87] which it is described an iron losses model where the static hysteresis losses (HL) and 

dynamic eddy current losses (ECL) were separated. Pry and Bean added the excess losses [88], 

subsequently, Bertotti developed a  new theory to calculate the losses by introducing the 

concept of magnetic objects into the component, which led to the model with excess losses in 

terms of the active magnetic objects and the domain wall motion [89,90]. The linear 

magnetization, rotational magnetization and higher harmonics were added afterwards with 

iron losses separation, being established in [91,92]. 
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In the last decades, the Steinmetz equation has been continuously improved. As in [93] where 

the Modified Steinmetz equation was presented for arbitrary waveforms and the Generalized 

Steinmetz equation [94] presenting the idea of the instantaneous iron losses as a single valued 

function of the flux density. The improved Generalized Steinmetz equation in [95] was 

developed to avoid the limitation existing in the third higher harmonic. In [96], a new equation 

named the “improved-improved generalised equation” for rectangular shapes voltages was 

presented. To obtain a higher accuracy, hysteresis models by Preisach and Jiles-Atherton were 

developed [35,97]. An improvement for the model of Preisach was presented in [98] including 

a dynamic part divided in two sections, establishing the maximum and minimum values of the  

flux density according to the material. A new hysteresis model based on an energy approach 

where the magnetic dissipation from the macroscopic point of view was represented by a 

friction-like force was introduced in [99] and some important advances for nonlinear 

behaviour of the magnetic cores was done in [100]. A new model which describes this 

switching behaviour implemented in Matlab is in [101]. Analysis for non-sinusoidal signals for 

specific components has been developed in the last few years [102-107]. 

The referenced gap is produced because engineers usually design devices based on models 

with different parameters than physicists use. However, these models are typically only 

appropriate for a defined frequency range. The practical disadvantage of most of these methods 

is that require additional measurements for a given material.  

The empirical and losses separation models are preferable and best suited for fast and rough 

iron losses determination. The complex HL models are more adequate for an exact iron losses 

calculation, but they need more information about the material or make material 

measurements as well as the flux density waveforms information. Another huge issue is the 

integration into FE tools. The proposed methodology gives an original equation to determine 

the CPL for components used in switched mode power supplies (normally in non-saturation 

state) for any signal based 3D FE analyses. 

Ansys Maxwell, in Transient Solver allows studying the CPL including the real hysteresis loop 

data [76] in the FE tool as an input (not just a material permeability coefficient).This FEM 

with an energy error of 2% and a standard mesh [77] has been selected to analyse the 

asymmetric components in 3D for different core material and operations, ranging from 1 kHz 

to 1 GHz achieving a final equation for the CPL for any Toroidal core component. 

This chapter outlines a deep 3D analysis of the core power losses for magnetic components to 

achieve a quick losses model defined only by geometric and material parameters (winding 

current is included) to estimate the CPL without any anterior simulation or test. The proposed 
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model has been validated with experimental results and methods in the frequency range where 

they are valid giving a very quick process to calculate the CPL with the same accuracy of the 

current models. 

The proposed methodology also opens a new path to analyse the core losses for other different 

cores used in inductive components of power converters where they are 3D modelled to be 

analysed as needed. This methodology could use models in 1D or 2D as well. But, 3D models 

are used in this study to contemplate all the effects in magnetic components that appears in 

high-low frequency ranges. 

4.1.1 Core losses definition 

The CPL is mainly classified into three types: HL, ECL and excess losses (Pex): 

 (84) 

Different theories have been developed to include the excess losses. Some studies based on the 

statistical losses theory derived the excess losses from the flux density change due to the 

motion of randomly distributed domain walls. On the other hand, in a different approach, 

excess losses are attributed to the peculiar nature of nonlinear electromagnetic field diffusion 

in the lamination. However, in this work, the excess losses have been considered negligible, 

considering only the hysteresis and eddy current losses.  

4.2 Hysteresis losses description 

When a ferromagnetic material is located in a magnetic field, it is magnetized by induction. If 

the intensity of the magnetic field is varied, the magnetic flux density  in the ferromagnetic 

material does not change linearly with . The susceptibility and the permeability of the 

material are not constants but vary with the magnetic field and it is also dependent on the 

magnetic field variations suffered by the material (Figure 68). 

The magnetization remaining in the material when the magnetizing field is reduced to zero is 

called the residual magnetism. The capacity of retaining residual magnetism is called the 

retentivity of the material.  The residual magnetism of a material can be wiped off by applying 

a magnetizing force in the opposite direction. The value of magnetizing force required to wipe 

of its residual magnetism is called corrosive force. 
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 Figure 68. Hysteresis loop [108]. 
 
Thus, if  reaches the maximum value and returns to the zero, the materials domains that 

were  increased in size and orientation to the magnetic field, struggle to recover the initial 

state, however, just several ones are available to get back to the initial orientation. The 

reasoning for this is that the hysteresis is a loop and causes difficulty to move the wall domains 

according to the magnetic field. So, in the first magnetization the material, the curve follows 

one path but afterwards, when  is increased or decreased, the material follows a different 

curve because of this phenomenon of the magnetic hysteresis. 

4.3 Eddy current losses description 

Eddy currents (also called Foucault currents) are loops of electrical current induced within 

conductors by a changing magnetic field in the conductor as stated by Faraday's law. They can 

be induced within nearby stationary conductors by a time-varying magnetic field created by 

an AC electromagnet or by relative motion between a magnet and a nearby conductor. The 

magnitude of the current in a given loop is proportional to the strength of the magnetic field, 

the enclosed area and the rate of change of flux, and is inversely proportional to the resistivity 

of the material. 

An eddy current creates a magnetic field that opposes the change in the magnetic field that 

created it, and thus eddy currents react back on the source of the magnetic field according to 

the Lenz's law. This effect is employed in eddy current brakes which are used to stop rotating 

power tools quickly when they are turned off.  

The current flowing through the resistance of the conductor also dissipates energy as heat in 

the material, thus eddy currents are a cause of energy losses in alternating current (AC) 

inductors, transformers, electric motors and generators, and other AC machinery. 
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Figure 69. Eddy Current loop [109]. 
 
This requires special construction such as laminated magnetic cores or ferrite cores to 

minimize them. Eddy currents can be also used to heat objects in induction heating furnaces 

and equipment, and to detect cracks and flaws in metal parts. 

A magnet induces circular electric currents in a metal sheet moving past it. Figure 69 shows a 

metal sheet moving to the right under a stationary magnet.  

The magnetic field density  of the magnet's north pole N passes down through the sheet. 

Since the metal is moving, the magnetic flux through the sheet is changing. At the part of the 

sheet under the leading edge of the magnet (left side) the magnetic field through the sheet is 

increasing as it gets closer to the magnet. From induction defined by Faraday's law, a circular 

electric field appears in the sheet in a counterclockwise direction around the magnetic field 

lines. This field induces a counterclockwise flow of electric current in the sheet that are called 

eddy currents. At the trailing edge of the magnet the magnetic field through the sheet is 

decreasing, inducing a second eddy current in a clockwise direction in the sheet (Figure 69). 

Due to Ampere's circuital law, each of these circular currents creates a counter magnetic field 

which due to Lenz's law opposes the change in magnetic field which caused it, exerting a drag 

force on the sheet. At the leading edge of the magnet by the right-hand rule the 

counterclockwise current creates a magnetic field pointed up, opposing the magnet's field, 

causing a repulsive force between the sheet and the leading edge of the magnet. In contrast, at 

the trailing edge the clockwise current causes a magnetic field pointed down, in the same 

direction as the magnet's field, creating an attractive force between the sheet and the trailing 

edge of the magnet. Both forces oppose the motion of the sheet. The kinetic energy which is 

consumed overcoming this drag force is dissipated as heat by the currents flowing through the 

resistance of the metal, so the metal gets warm under the magnet. 
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(a) (b) 

Figure 70. Eddy Current Solver Vs Transient Solver (a) Eddy Current Solver (b) Transient Solver. 

4.4 Analysis of losses under finite element tools 

The FE analysis has been performed by Ansys Maxwell with 3D models to include all effects 

involved in low and high frequency. The FEA’s have been solved by transient solutions in order 

to be able to introduce the hysteresis loop data in the software (Figure 70).  

The eddy current solver only allows introducing a linear permeability of the material, and in 

transient solver instead is possible to introduce the material loop data, thus, the coercivity of 

the material is considered in the FEM.  

The component modelled in the FEA software is divided in number of elements (mesh) where 

the Maxwell´s equations are determined using a complex relative permeability that causes 

that  field to lag behind the  field similar to a behaviour of a non- linear system. In addition, 

the characteristics of the magnetic materials are represented with their main parameters: 

residual flux density Br, coercive field force Hc, and the maximum energy product (BH)max.   

Therefore, the magnetic material is a magnetic source similar to the electric source in the 

electric circuit. According to the frequency and the magnetic field density of a point in the 

mesh, a fitting curve is developed to determine the (B, H) point used from the hysteresis loop 

to calculate the system of equations of Maxwell. Hence, the three dimensional vectors   

are determined in each point of the mesh and with the Maxwell´s equations,  is calculated as 

well. 

4.4.1 Analysis of hysteresis losses 

The total HL of a component can be calculated by integrating the HL density over a proper 

volume. Considering a unit volume of core material, starting from point 1 (Figure 71), H is zero 

and is increased to Hmax,. The energy absorbed by the unit volume is: 
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 (85) 

This amount of energy represents the area in figure 71, if H is decreased from Hmax to 0, the 

path taken by the B-H characteristic is from point 2 to the point 3. The energy is represented 

in Figure 71 (c). 

 (86) 

This energy input is negative since  is positive, but since  is negative, W2 represents the 

energy given up a unit volume of the core. If  is now taken from zero to -Hmax, the path 3-5 is 

traced. The energy put into the core material is represented by the area in Figure 71 (d). 

 

 

Figure 71. Hysteresis loop and energy absorbed [110]. 
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 (87) 

If  is negative and B is negative, the energy is positive. If  is now increased from –Hmax, 

the cores gives up an amount of energy represented by the shaded areas in Figure 71 (e). 

 (88) 

If is negative and B is positive, the absorbed energy is negative. This means that the core 

gives up energy. If the sum of the 4 values of energy is taken with due regard for the signs, 

whether positive or negative, the total energy is presented by the area of the total hysteresis 

loop. Thus, for a core having a volume, and a uniform flux density B thought the entire volume, 

the energy losses are: 

 (89) 

 (90) 

where v is the total volume, in the case of the flux undergoing a cyclic variation at a frequency 

f, there are hysteresis loops per second, and the power is: 

 (91) 

Following this equation and translating to the Maxwell Calculator, the magnetic hysteresis 

losses density (pHL) is given by the following expression: 

 (J/m3) (92) 

The hysteresis losses under Finite elements tool are given by: 

 (J)                                                    (93) 

where  is the magnetic flux density,  is the complex conjugate of the magnetic field and 

 is the angular frequency. 

4.4.2 Analysis of Eddy current losses 

These losses arise from the fact that the core itself is composed of conducting material, so that 

the voltage induced in it by the varying flux produces circulating currents in the material. ECL 

depends upon the rate of change of flux as well as the resistance of the path.  It is reasonable 

to expect these losses to vary as the square of both the maximum flux density and frequency
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if the core is solid and made up from ferromagnetic materials, and it effectively acts as a single 

short circuited turn. Induced eddy currents therefore circulate within the core in a plane 

normal to the flux, and cause resistive heating of the core material [77]. 

(J) (94) 

Where  is the current density,  is the complex conjugate of the current density and σcore 

isthe conductivity in the core. For the surfaces, the eddy current losses are defined according 

to [51] by: 

J) (95) 

Where  is the tangential component of the  on the boundary, Sl, and is the complex 

conjugate tangential component of  on the boundary. These losses must be calculated for 

each surface of the core. In the case of the Toroidal core, there are 4 surfaces (Top, down, 

inner circular and outer circular ones)  

Thus, the total eddy current losses are defined by: 

 (96) 

4.5 Per unit CPL method 

The analysis of the CPL has been performed with the original methodology based on the 

concept named per-unit CPL: 

 (97) 

where PCL is the CPL of any core model in a particular frequency and PCL,RC  is the CPL for the 

Reference Component (RC) at the same frequency. 

The original methodology consists on the following steps: 

1. Selection of the inductor to be studied for optimization (type of core). 

2. Selection of the RC (with the same core of the inductor to be studied). 

3. Assortment of the materials for the core, calculating the area in the hysteresis loops by a 

polynomial regression. 

4. Division of the CPL in hysteresis losses (HL) and eddy current losses (EDL) 

independently. 

5. 3D FEM analysis by scripts using (92) to determine the HLs of the RC with the different 

core materials to confirm that the pCL for the different materials has a constant value along 

the frequency range. 
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6. As the per-unit HLs are constants, it is possible that they were plotted versus per-unit 

loop hysteresis surfaces. This gives the opportunity to perform a mathematical equivalence 

between per-unit hysteresis losses and per-unit loop surfaces  

7. A group of geometrical parameters from the core geometry and winding strategy are 

selected. 

8. For each parameter selected in step 7, a parametrical 3D FEM analysis using the RC 

permuting only this parameter in each analysis. After each analysis series, the per-unit HLs 

are not depend on the frequency. This fact is the key for this research because the CPL are 

frequency dependent, however the per-unit losses are not. Therefore, a mathematical 

regression is developed by means of exponential equation using the per-unit parameter as 

the coefficient. The exponential is used for two reasons: 

a. the exponential equation gives the unit in DC, in concordance with the proposed 

method where the per-unit values for the RC correspond to the unit. 

b. one of the targets is the easiness of the equation to be used by power engineers for the 

optimization of the inductor. If another mathematical expression has been used, the 

final equation would have been more complex.  

9. When a mathematical expression is obtained to determine the influence of each parameter 

independently, a final equation for estimate the HL can be used for the superposition 

theorem. 

10. This equation is referenced for the RC in per-unit losses, so the final step is to link the 

equation obtained in step 9 with an equation of HL in function of frequency and this fact 

is possible because in step 5, the HL(f) was obtained from FEM.    

11. The same steps from 5 to 10 have followed for ECL to propose the equation for ECL using 

(95). 

12. The CPL for the component to be studied is the sum of HL (step 10) and ECL (step 11). 

Any magnetic component could be studied by this method with the unique condition to select 

a RC according to the core of the inductor of interest. Additionally, the RC could have any 

winding strategy because the results will be obtained by normalisation and the coefficients of 

the equations will be referenced to the losses of the RC, but the final number for CPL will be 

the same independent of the RC selected for the study. 

When the equation has been obtained, the power electronics engineer obtains the HL and ECL 

for the magnetic component independently achieving: 
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 The information of the HL and ECL, so the power engineers can make decisions easily for 

the optimization of the design. 

 The final equation can be used repeatedly, so the optimization process is faster than the 

current methods to calculate the core losses.  

4.6 Analysis for toroidal components 

Following the previous explained method, the final equation for Toroidal components has 

been determined, thus, a RC for Toroidal components must be selected for the study.  

A Toroidal component C107.65.25 (see dimensions in [26]) with 1 winding (4 turns with 1˚ of 

lateral distance) and 3C90 core material for HL study and the same component with 1 winding 

(3 turns with 1˚ of lateral distance) and a core made with 3F3 core material (Table 35) are 

selected for the ECL study.  

In both cases, the winding disposition compels the use of a ·3D model because the 

magnetic field density is not axial symmetric (Figure 72) due to the winding strategy 

which produces the asymmetry in the magnetic field density. A 2D model does not have 

enough accuracy to determine  ,a 3D model needs to be precise in the core losses 

calculation by FEM (Figure 73). 

Table 33 shows the dimensions of the Toroidal core for the RC and Table 34 contains the skin 

effect information for the wiring, AWG24 and AWG18, being relevant that the radius has been 

selected because the skin effect is the double of another. 

 
 

(a) (b) 
Figure 72. The Reference Component (RC) (a) Component in Pre-modeling (b) Results in result-processing.  

 
Table 33 RC for Toroidal Core 

Model C. 107.65.25 

Minor Radius (R) 43 mm 

Main Radius (r) 64 mm 

Height 25 mm 

Width (R-r) 21 mm 

C107.65.25 winding 
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Table 34 Skin Effect Information 
 AWG24(r=1.02mm) AWG18(r=0.510mm) 

KHz δ r/δ r/δ 
0.001 0.0236601 0.00379006 0.00738064 
5.37 0.0003227 0.27789185 0.54115781 

21.50 0.0001613 0.55582246 1.08239111 
48.39 0.0001076 0.83373584 1.62359085 
537.67 3.227E-05 2.77912005 5.41197063 
1,209 2.151E-05 4.16868094 8.11795762 

 

  
(a) (b) 

  
(c) (d) 

Figure 73. Toroidal Core Magnetic Field Density (a) Standard View (b) Top view (c) Lateral View (d) 3D view. 

4.6.1 Analysis of hysteresis losses 

The per-unit CPL has been used for the HL study using several analysis sequences. The 

analysis consists of a comparison of the HL defined previously between RC and other different 

components only varying a given parameter to investigate the parametric influence in the HL. 

The first parameter in the analysis sequence is the core material. See Table 35 that summarizes 

the materials used in the sequence, and their different permeabilities, coercivities and 

hysteresis loop areas, covering the range used in power electronics converters. 

The results of the per-unit CPL (Table 36), varying the core material is plotted in Figure 74, 

giving that the per-unit CPL does not depend on the frequency for any of the analysed core 

materials.  

Figure 75 demonstrates that HL is proportional to the hysteresis loop surface as the theory 

predicts (84), verifying that the scripts of the FEA tool have been properly used. 
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 (98) 

where Si is the surface of the hysteresis cycle for the component “i” and SRC is for the RC. 

Table 35. Hysteresis Data for different materials 
Code  Material B(mT) H(A/m) μr Bmax(mT) Hmax(A/m) W(mJ/m3) pHL 

1  3F3 152 18 4000 410 250 429055,5 1.05 
2  3C98 138 17 5000 450 275 426047,6 1.02 
3  3C90 160 19 5500 435 250 423669,4 1.00 
4  4A11 110 32 850 325 1000 43083,0 0.31 
5  3F4 155 66 1700 407 1000 30928,1 0.18 

 
Table 36. Per-unit Hysteresis pHL (21) for different materials 

Code 
Frequency (kHz) 

0.001 5 80 500 800 1000 
1 1.05 1.05 1.06 1.09 1.10 1.10 
2 1.02 1.02 1.02 1.01 1 1 
3 1 1 1 1 1 1 
4 0.32 0.32 0.32 0.34 0.37 0.37 
5 0.18 0.18 0.18 0.20 0.21 0.21 

 
Figure 74. Relationship between frequency and Per-unit HL. 

 
Figure 75. Per-unit hysteresis surface vs Per-unit HL. 
 
The hysteresis loop areas were calculated from [77] with approximations using a polynomial 

regression. The small discrepancies with materials 4A11 and 3F4 are because their hysteresis 

loops are narrow and the polynomial approximations with a larger grade are needed 

(Appendix V). 
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The hysteresis loop data from [76]  is for 25˚C, but (98) is also valid for different temperatures. 

The loop area Si for a different temperature can be calculated following the manufacturer 

instructions and the RC remains constant SRC for 25ºC and the CPL is calculated using (98) 

at the new temperature. 

If the HL is plotted versus frequency, the power trendlines are similar except for the exponent. 

(Figure 76). Thus, there is a relationship between PHL,i and frequency that could be represented 

mathematically with an exponent according to the core material of the magnetic component. 

 
Figure 76. Relationship between frequency and power core losses (HL) per material. 
 
The equation (99) defines the HL with the parameters obtained in the first analysis sequence. 

These data have been obtained using the RC (Table 35). If another RC would have been used, 

the relationships and conclusions would have been similar, however for the RC used, the 

power HL is given by: 

 (99) 

where PHL,i is the HL at 0 Hz, SRC is the surface of the hysteresis cycle for the RC and the Si is 

the hysteresis cycle for other material in this work. 

4.6.1.1 Core volume influence 

The core volume is calculated following equation (100) for Toroidal Cores and the volume can 

be modified through height, width and radius independently (Figure 77).   

 (100) 
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Figure 77. Volume for a Toroidal component. 
 

 

Table 37 Volume variations from core height 
Core Height(mm) 25 (RC) 24 23 22 
Volume (mm3) 17.647 16.942 16.2361 15.5301 

 
Table 38 Volume variations from core width 

Width(mm) 21 (RC) 20 19 18 
Volume (mm3) 17.6479 16.807 15.961 15.1268 

 
Table 39 Per-unit HL vs Volume  

 Frequency (kHz) 
Volume (mm3) 500 133.33 80 57.14 

17.647 1 1 1 1 
16.942 0.98 0.97 0.97 0.97 
17.6479 0.97 0.97 0.97 0.97 
16.2361 0.94 0.93 0.93 0.93 
15.5301 0.89 0.90 0.90 0.90 
15.961 0.91 0.91 0.91 0.91 

15.1268 0.87 0.87 0.87 0.86 

 

where Rm is the average radius of the Toroidal core and Ac is the surface area of the cross section 

(Ac=w·H) shown in Figure 77. According to our work, this step consists of determining the 

influence of the parameter and the Core Volume, only varying the height or the width (Figure 

78 (a)). The permutations have been described in tables Table 37, Table 38 and Table 39. As 

the per-unit HL is not dependent of the frequency, Figure 78 (b) is plotted giving the 

relationship between Per-unit HL and the per-unit Volume defined by (101). 

 (101) 

Where vi is the volume of the Toroidal Core for component i and VRC is the volume for the RC. 

Another sequence consists on the main radius permutation for the Toroidal Core component 

having a constant cross-section (Table 39). Equations (102) and (103) define the results 
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showed in Figure 79 where there are two different scenarios (non-saturation state and 

saturation state). 

 (102) 

 (103) 

The first one, when the core is not saturated, the correlation follows (102). The second one, 

when the core is in saturation ( ) is according to (103). Then, the Per-unit HL in the 

range (0.9 < vi/vRC < 1.1) is similar with core saturation and non-saturation. The exponents used 

were obtained from mathematical regressions. 

 
 

(a) (b) 

Figure 78. Relationship between Per-unit and Core Volume Per-unit HL vs Frequency (b) Per-unit HL vs Per-
unit Volume. 

 
Figure 79. Relationship between Per-unit HL vs Per-unit Volume modifying the Main Radius. 

 
Table 40 Per-unit HL vs Volume modifying the Main Radius 

Main Radius(mm) 50 45 43* 42 41 40 35 
Volume (mm3) 19.955 17.97 17.647 17.318 16.988 16.658 15.009 

 

Saturation Status 
 

 

No Saturation Status 
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4.6.1.2 Coil parametrical analysis 

4.6.1.2.1    Winding current influence 

In this study, the Per-unit HL are constant in the practical current range for the components 

used in power electronics. If the current is in this range, the Per-unit HL is not dependent of 

the frequency and, it is possible to establish a relationship between the per-unit HL and per-

unit current (Figure 80).  

 (104) 

where Ii is the current for the component “i” and IRC is the current for the RC. In theory, with 

the FEA tool, it is able to determine the case when the current is outside of the regular winding 

current values (probably with the core in saturation), then, the relationship follows:  

 (105) 

 
These assumptions have been checked with other materials, different winding geometries and 

configurations in addition to these ones. As in the previous sequences, the exponents have 

been obtained from mathematical regressions (Appendix VI). 

4.6.1.2.2    Turn number influence 

This analysis sequence modifies the number of turns in the winding (The RC has 4 turns).  

The same geometrical parameters for the windings were applied. The effects from the winding 

geometrical configuration are analysed further in next analyses sequences. As other sequences, 

the Per-unit HL is uniform during the frequency range and this consequence allows us to give 

the following relationship if the per-unit HL increase is compared with the increase of the 

number of the turns (Figure 81): 

 
Figure 80. Relationship between Per-unit HL vs Frequency for different currents flowing through the windings. 
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Figure 81. Relationship between Per-unit HL vs Frequency for different number of turns. 
 

 (106) 

where ni is the number of turns for the component i and nRC is the number of turns for the RC. 

4.6.1.2.3    Multiple windings 

These analyses have been developed based on the RC (inductive component with only one 

winding), however there are inductors in the market with several windings and there are 

toroidal components working as a transformer. These potential cases have been studied in this 

section. In order to develop this analysis, an additional winding is added to the RC.  

The additional winding has 4 turns (diameter AWG18) with the same lateral distance as the 

former winding (diameter AWG24).  AWG18 has been chosen because the skin effect is 

double that of AWG24. The simulation under FEA was performed under open circuit 

condition. Thus, the component works as an inductive component, however, the effect of 

copper wiring around the winding that is working could be analysed in this sequence. Figure 

82 shows the studied configurations (the diameters in the different cases have been modified 

as well as for other sequences). The relationship between the Per-unit HL and the frequency 

is defined for the three cases (inductive component, only current from the 1˚ winding and only 

current from the 2˚ winding). The influence of having copper wires without current is 

negligible from the core losses point of view. The sway of the winding configuration in the HL 

is about 5% compared with material, volume and other parameters (Figure 83), so the per-unit 

HL is able to define by (107) that means that there is no  additional effect to include not used 

copper in the model. 

 (107) 
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(a) (b) (c) 
Figure 82. Analysed windings’ configurations. 

 
Figure 83.  Per-unit HL for multiple windings. 
 
4.6.1.2.4    Winding configuration 

Another important set of analyses sequences were studied for other possible winding 

configurations. The winding cross-section size has an impact on the HL in the case that the 

diameter of the inductive components is very large. This is due to the fact that some magnetic 

field density is spread into the wires instead of the core. Nevertheless, the effect is negligible 

for diameters used for regular manufactured magnetic components. In addition, if the diameter 

is less than 2.4 times the d1 (RC), this effect is non-existent. The winding position at the 

Toroidal Core is expected not to have any effect in the HL (Figure 84). The lateral distance 

between windings has a minimal effect to take account (the analysis have been developed with 

a constant lateral distance between turns in the winding) being the effect ruled by (108).  

 (108) 

where α means the angle in degrees between windings (Figure 84). 
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(a) (b) (c) 

Figure 84. (a) Global View (b) Definion of  (c)Per-unit HL vs Lateral Distance (˚). 

 

Figure 85. Winding Configuration. 
Table 41. Per-unit HL changing the winding geometry 

f (kHz) 
Per-unit vertical distance (23) 

1,00 1,03 1,05 1,10 1,13 1,17 1,21 1,28 1,7 3,37 

5.7 1,00 1,01 1,01 1,01 0,99 1,03 1,02 1,01 1,0 1,02 

80 1,00 1,01 1,01 1,01 0,99 1,03 1,02 1,01 1,0 1,02 

133.3 1,00 1,01 1,01 1,01 0,99 1,03 1,02 1,01 1,0 1,02 

500 1,00 1,02 0,99 1,00 0,98 1,01 1,00 1,00 0,9 1,00 

AVERAGE 1,00 1,01 1,01 1,01 0,99 1,03 1,02 1,01 1,0 1,02 

 
Table 42. Per-unit HL changing the winding geometry with different diameters 

Radius L1+L3 = L2+L4 
1.60 2.00 2.20 2.60 3.00 

0.285 1.00 1.00 0.98 1.00 0.99 
0.385 0.99 1.01 1.00 1.02 1.00 
0.485 1.00 0.98 1.00 0.97 0.99 

 

Figure 85 shows a lateral view of the winding, where the black item is the toroidal core, the 

red line is the turn position, and where L1, L2, L3 and L4 are the distances between the winding 

edge and the toroidal core. w1 and w2 are the turn edge dimensions for this example. In the 

market, the manufacturers build the inductors using the same distances for L and w, but FEA 

is able to use different measurements for L1, L2, L3 and L4 as well as w1 and w2. So, the 4 lateral 

distances for the winding configuration (vertical or horizontal between the turn edges and the 

core, Figure 85) could be modified independently with different values in the same winding. 
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An important conclusion of this analysis sequence is that the Per-unit HL is similar if the sum 

of the vertical distances (L1+L3) has the same value for all potential configurations. A similar 

conclusion is achieved for horizontal distances (L2+L4). The results of the per-unit HL are 

indicated in Table 41 according to the frequency. 

This conclusion is due to the fact that the magnetic field density does not suffer a significant 

variation inside the core. Table 42 summarizes the per-unit HL results for similar analysis 

sequences with different coil diameters showing that they are very similar.  

In summary, the winding configuration for Toroidal components has not impact on the HL. 

The main factors are the core material, core volume, the coil current and number of turns in 

the windings. 

4.6.1.3 Hysteresis losses equation 

The determination of the mathematical influence of various parameter on HL has been 

analysed by means of parametrical analyses. This analysis is based on 3D FEM isolating the 

specific parameter in the sequences. Thus, the relationship between PHL,i and PHL,RC per each 

involved parameter has been established by mathematical regressions after checking that Per-

unit analysis does not depend on frequency. Since the influence of each parameter has been 

separately determined, the magnetic field density with FEM tool, it is possible to add every 

influence in only one equation where the correlations obtained from the per-unit method 

allows defining an algorithm to estimate the HL for Toroidal Components. 

For non-saturated inductive components, with a constant lateral distance between windings, 

the hysteresis losses can be defined using (109) and (110). 

 (109) 

 (110) 

 is the HL of the inductive component,  is the angle between turns (degree) in the 

winding, n is the number of the turns, I is the winding current and v is core volume. 

The previous equations are only valid for inductors with one winding. In the case where the 

magnetic component has more than one winding, applying the superposition theorem, 

equations (111) and (112) are obtained to determine HL. 

The superposition theorem can be applied to magnetic fields and current but it is not applied 

to energies or losses because of non-linarites. From a current perspective, the main non-linear 

part of a magnetic component is the core. However, in this case, the theorem for the magnetic 
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field, based on [9], is used for toroidal components in non-saturation state and per winding. 

 (111) 

 (112) 

where j is the winding of the magnetic component i in the sum. 

In the case of core saturation, the correlations defined in the previous analyses sequences allow 

defining a mathematical algorithm to estimate the hysteresis core losses. This approach is the 

same as the case without saturation, but taking into account (103) and (105) in the process. 

4.6.2 Analysis of Eddy current losses 

To estimate the ECL, several analysis sequences have been launched using the per-unit 

methodology with each parameter being similar than in the HL analysis.  

The only difference in this study is that the RC has been modified, with this study using a 

Toroidal Component C107.65.25 with 1 winding (3 turns with 1˚ of lateral distance) made with 

3F3 core material to consolidate the posterior validation using different material to confirm 

the not impact of RC selection. 

The first analysis done in the HL was the influence of the material, to confirm if the Per-unit 

Method is available. In ECL case, it needs a similar confirmation for the Per-unit ECL to 

demonstrate that does not depend on the frequency. The modification of the RC allows 

confirming that the conclusions will be similar with different a RC. 

The first parameter for the analysis sequences is the core material (Table 43).  

Table 43. Data of the different materials used in the core 
Code  Material B(mT) H(A/m) μr Bmax (mT) Hmax (A/m) σ(1/ρ)(Ωm) 

1  3F3 152 18 4000 410 250 0,50000 
2  3C98 138 17 5000 450 275 0,10000 
3  3C90 160 18,5 5500 435 250 0,10000 
4  3F4 155 66 1700 407 1000 0,10000 
5  4A11 110 32 850 325 1000 0,00001 
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Figure 86. Per-unit Values vs Material.  
 

 
 

Figure 87. Per-unit ECL vs Material Code. 
 
Table 43 shows the material data for the cores used in the analysis. The results of the Per-unit 

ECL modifying the material have been plotted in Figure 86 versus different characteristics 

showing that there is a clear relation between the conductivity and the per-unit ECL while 

there is not a defined correlation with other parameters. 

The equation (112) has been proposed to find a correlation between the per-unit ECL and other 

equivalent values. This result was obtained by focusing on achieving a good enough and quick 

approximation (Figure 87) with an accuracy lower than 5% in most of the cases. It is however 

very complex to obtain an equation for a range of materials because the nature of the eddy 

currents is material specific. As such, we have continued with this proposal because it is valid 

(~10%) for all of the materials analysed, and it is very fast to obtain the values from the core 

manufacturer sheet. The ease of determining these parameters gives the equation an advantage 

over other more accurate equations. 

 (113) 

where σi is the conductivity of the material i and σRC is the conductivity for the RC.  
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4.6.2.1 Core volume influence 

As explained in the section II, the ECL is divided into internal core losses and the more 

significant component surfaces losses.   

Moreover, the ECL inside the component are insignificant compared to the surfaces losses. 

Thus, it will only be necessary to run the volume modification sequence for one of the 

dimensions because the eddy current for the boundary losses are proportional to the 

boundaries surfaces. The per-unit ECL (for core volume) is invariable during the frequency 

range as usual in this research for the Per-unit ECL (Figure 88). The per-unit ECL has been 

plotted versus the Per-unit volume, in Figure 89. Eq. (114) defines the correlation between 

them. 

 (114) 

 
If other analysis sequences to modify the core volume would have developed like in the HL 

analysis, the same conclusion would have been achieved. The nature of the HL is different than 

ECL because the HL is linked to the hysteresis loop surface area and the ECL is linked to the 

component surface area. This assumption is valid not only for Toroidal components; but it can 

be generalized for any magnetic component in power electronics. 

 

 

Figure 88. Per-unit ECL vs Frequency for different Core Volumes (in mm3). 
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Figure 89. Per-unit ECL vs Per-unit Core Volume. 

4.6.2.2 Winding current influence 

Following the same process used to obtain for the HL, the influence of winding current and 

turns number parameters are analysed by running sequences. The per-unit ECL is constant with 

the frequency in both sequences again. Figure 90 corresponds to the coil current series and 

Figure 91 conforms to the winding number series obtaining the following relationships: 

 (115) 

 (116) 

 
Figure 90. Per-unit ECL vs Per-unit Current. 
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Figure 91. Per-unit ECL vs turn number. 

4.6.2.3 Winding position influence 

The lateral distance between windings sequence performed considers the same lateral 

distance between them, this being the general assumption in the manufacturing design. 

In this sequence, several lateral distances were checked, the Per-unit ECL has a permanent value 

during the frequency range analysed. There are several configurations which are not usual for 

power converters, but they are analysed by FEA to achieve a mathematical correlation.  

The main factor that impacts for the ECL are the current loops created due to the magnetic 

field. The winding position, as expected, does not modify the magnetic field inside the core 

significantly, in consequence, the value of the per-unit ECL is not influenced by this parameter 

modification. Even the correlation, it is equal to the HL analysis (Figure 92):  

 (117) 

 
Figure 92. Per-unit ECL vs. winding lateral distance. 
 

177  
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4.6.2.4 Eddy current losses equation 

The relationship between PECL,i and PECL,RC for each involved parameter has been analysed, as 

the HL analysis was performed, obtaining an equation to estimate the ECL for Toroidal 

Components using the known effect of each parameter. Following the same considerations for 

the HL and using the superposition theorem with the same limitations. 

Considering a constant lateral distance between windings and non-saturation status, the eddy 

current losses can be defined as: 

 (118) 

 (119) 

where PECL,i the EDL of the inductive component,  is the angle between turns (degree) in the 

winding, n is the number of the turns, I is the winding current and v is core volume. 

The superposition theorem is used similarly to the HL analysis; this theorem is able to apply 

to magnetic fields and current densities [9]. Thus, if the Toroidal core component has more 

than one winding, the ECL are defined as: 

v (120) 

 (121) 

Where j is the winding of the magnetic component and i is in the sum.  

In the case of core saturation, the correlations defined in the previous analyses sequences allow 

defining a mathematical algorithm to estimate the hysteresis core losses. This is the same 

method defined for the case without saturation, but using the same equations as in HL. 

4.7 Validation of the obtained core losses equation 

Component I (Table 44) core losses were obtained with the proposed methodology using (111) 

and (120). The results were compared with: 

a. the experimental measurements made in [111],  

b. an analytical assessment different from the Steinmetz equation presented in [112], and 

c. the CPL of Component I calculated with Ansys Maxwell using the scripts where the actual 

material was simulated and a total of 435635 FE were used.  

Our results are in  good agreement with the experimental results [111]  for 400 to 700 kHz as 

shown in Figure 93. The results from 100 to 300 kHz match the mathematical results from [112] 
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in an acceptable way. Finally, differences between the simulations and the proposed equations 

(99) and (108) are under 5%. 

The analysis of Component II has been done using Ansys PExprt [113] (Table 45) and 

compared with the results obtained using the proposed expressions. As shown in Figure 94 

the results obtained using the proposed equations (99) and (108) agree with the results 

obtained from Ansys PExprt. It is important to note that the core material is not in the list 

included in Table 35 and Table 43 used to obtain our equations (Table 44 shows the material 

features for 3C92). For the Component II, Ansys PExprt has been used instead of Ansys 

Maxwell to globalize the results for other FEMs. This tool is used as Maxwell for analysis of 

multi-winding transformers, inductors and flyback components. Additionally, this tool is able 

to optimize the design determining the core size, shape and air-gap and winding strategy for 

a given power converter topology. 

 

 

 

Table 44. Data of 3C92 (Component II) 
Code  Material B(mT) H(A/m) μr Bmax(mT) Hmax(A/m) W(mJ/m3) pHL 

1  3F3 152 18 4000 410 250 429055.5 1.05 
2  3C98 138 17 5000 450 275 426047.6 1.02 
3  3C90 160 19 5500 435 250 423669.4 1.00 
4  4A11 110 32 850 325 1000 43083.0 0.31 
5  3F4 155 66 1700 407 1000 30928.1 0.18 
  3C92 143 18.5 5000 475 250 213616.92 0.51 

 
Table 45. Component data I 

VALIDATION COMPONENT I (using ANSYS) 

Core 
Denomination C107.65.25 
Material 3F3 

Winding 

Turns 3 
Winding Configuration Lateral distance 4˚ 
Winding Current (A) 1  
Winding Conductor Material Copper 
Winding Conductor gauge AWG18 
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Figure 93. FEM and experimental values for the Component I. 
 
Component I has been modelled in Ansys Maxwell with a 3D model because the winding 

strategy produces an inaccurate result using 2D modeling methods. As it was explained at the 

beginning of the chapter, the current CPL calculations are only valid in limited frequency 

range and the benchmarking has been developed using methods which are accurate in a variety 

of ranges. The results obtained from the equations confirming that this proposed method is a 

good approach. 

Table 46. Component data II 
VALIDATION COMPONENT II (using PExprt) 

Core 
Denomination TX.10/6/4 
Material 3C92 

Winding 

Turns 5 
Winding Configuration Lateral distance 72˚ 
Winding Current (A) 1  
Winding Conductor Material Copper 
Winding Conductor gauge AWG13 
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Figure 94. FEM and experimental values for the Component II. 
 
The component II has been validated with PExprt where the Steinmetz equation is used for 

the CPL determination, this is the reason for the frequency range used for this validation. As 

it is said this validation is very useful because the material core is outside of the material list 

used on the methodology demonstrated that all material can be used with the proposed 

method as well as other FEMs



 
 

 

 
 

5 Conclusion and next steps 

The optimization of a power converters depends on the different interdisciplinary constrains 

such as the product cost and energy efficiency imposed by the market and the dimension 

(weight and volume) requirements. Some of this constraints are closely related with the 

magnetic components inside the power converters, due to losses that have on the required 

volume due to the thermal conditions to survive in the environment. However, the main 

requisite for the magnetic component is the efficiency given by the electrical parameters. This 

is the reason which there are several equivalent circuits in the art to determine these 

parameters being more and more important to predict the power losses of the inductive 

component, factor that could be limit even the capabilities operations of the power converter. 

The FEM was introduced in the electrical and electronic engineering to earn precision in these 

parameter calculations, nevertheless some 3D models are needed because there are some high 

frequency effects that cannot be analyzed with 2D models and the magnetic field distributions 

due to the core geometries and/or winding strategies are asymmetric. Currently, the computer 

limitations do not to allow simulating complex magnetic components in 3D or the needed 

CPU time is not operative for the design engineers for an optimization process.  

Thus, the accuracy to determine the losses of the magnetic component is crucial for the design 

as well as the CPU time to be operative for the optimization process. Then, a 3D equivalent 

model based on 3D FEM is interesting if the FEA is quick and accurate.  

5.1 Major contributions 

As it has been explained in the thesis, the power losses determination is a complex task 

divided in the calculation of the winding losses and the core losses of a magnetic component.  

Thence, the first major contribution is equivalent circuit based on energies validated for 3D 

FEM models where an original method to simplify the component in the FEM process 
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achieving more than 95% CPU time saved and obtaining the electrical parameters as the 

winding resistance and inductance with similar accuracy by material adjustments in the FEM 

and the novel correction factor which has been split in two terms according to the skin and 

the proximity effects. 

This contribution has been validated experimentally with an error about 5% for any magnetic 

component from 1 kHz to 1 GHz being the only limitation that the core has to be in non-

saturation because the superposition theorem was used being not an issue because it is the 

regular state in operation conditions for the power converters. 

The core losses determination is another complex hard for the power engineers being 

fundamental the determination of the magnetic field density in the core, thus, a precise 

magnetic field density map of the core is imperative to obtain an accurate value of the losses.  

An original method using 3D FEM has been proposed in this work by the pioneer per-unit 

method allowing analysing the influence of each parameter in the losses of the core. 

This new methodology gives the process to analyse the hysteresis and eddy current losses 

separately giving a final equation for each kind of core. This methodology has been used for 

Toroidal Components because these ones are very common in power electronics and the 

determination of the losses need of a 3D FEM model because of the winding strategy defining 

the core power losses for Toroidal components without needing any magnetic field 

calculation, only material data from the manufacturer sheet and the geometry of the winding 

strategy. 

5.2 Minor contributions 

In the process to achieve the major contributions of this thesis, other minor contributions for 

the art have been obtained as: 

 The computer limitations definition that have been explained to understand the reasons to 

be able to use FEM in 3D or 2D depending of the symmetric of the magnetic component 

and the simplifications could be used for reducing the computing time when analyzing the 

magnetic field produced in the magnetic component. Also it has been described the 

relationship between the computer capacity and the FEs used in the software simulation. 

 A quality electromagnetic analysis been performed to the magnetic component in this 

thesis to have an accuracy magnetic field produced into and outside of the magnetic 

component and the windings. It has been presented the incidence of geometrical variations 

of the magnetic component for resistance, inductance and core losses for the inductive 

component by parametrical analyses. 
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5.3 Next Steps 

The next research line of this work will be to improve and spread the per-unit method to other 

magnetic components with different cores to define the equation for the power losses. 

An original idea to spread this new 3D model for other magnetic components would be to 

identify a geometrical coefficient in the presented equations depending of the core geometry. 

This will mean that depending of the magnetic component was analysed, the geometrical 

coefficient was used in the same equations and procedures presented in this thesis. 

Furthermore, this model could be used for any magnetic component to reduce the simulation 

times and saving money for the design engineers in power electronics. 

Another advantage of this proposal would be that we could use this model to test new 1D/2D 

models for other magnetic components without using testing or 3D real simulations. 
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6 Publications and Activities 

Description of the activities, seminars and publications developed in this Doctoral Thesis. 
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Paper-D J. R. González-Teodoro, E. Romero-Cadaval, 

R. Asensi and V. Kindl. “Determination of 
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Seminar C Análisis electromagnéticos en 3 dimensiones Universidad de Sevilla 
22.10.2019 

Seminar D Magnetic Component Modeling based on 3D FEM Universidad de Extremadura 
WEBINAR 

 SEMINARS 

Seminar 1 Use of Oscilloscope to get experimental results to 
compare with Maxwell.  

Princeton University, New 
NJ (USA), 18.10.2017 

Seminar 2  Asymmetric Distribution of Toroidal Eddy Current 
ATEC to explain AVDE load in JET and ITER. 
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conversion 

Centro de Electrónica 
Industrial. Politécnica de 

Madrid, 18/10/2019 
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2237, June 2018. doi: 10.1109/TPS.2018.2795750 

Paper-7 N. D. Atnafu, A. Brooks, D. Cai, J. Dellas, S. Gerhardt, J. Menard, M. Ono, G. Labik, P. 
Titus and J. R. González-Teodoro, “NSTX-U In-Vessel Control Coils’ Design 
Concept," in IEEE Transactions on Plasma Science, vol. 46, no. 5, pp. 1528-1533, May 
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ARTICLE-1 J.R. González Teodoro, C. Vázquez-Rodriguez and G. Jimenez Varas, “¿Deberían 
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ARTICLE-2 Santiago Cambero and J.R. González Teodoro, “Como sobreviviremos en 2030” 
Digital Journal The conversation, 5 mayo 2019. Republicado en ABC. 
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APPENDIX II  
The convergence criteria in Ansys Maxwell [77] 

The maximum energy error is defined as: 

 

Where “i” and “j”cover all matrix entries.  

The following fields show how close the solution is to meeting the convergence -criteria entered under: 

 

 Target Error: Displays the target change in the S-parameters — the delta S you would like to achieve 

for the solution, entered via the Setup Solution. 

 Energy Error: Displays the maximum change in the S-parameters from the most recent solution and 

the previous solution. 

 Delta Energy: Displays the change in the total energy over the last two passes. 

 

When the Delta energy falls below the target error value, Maxwell stops the adaptive solution process, even if 

the specific number of adaptive passes has been not reached. After a solution is completed, use the energy error 

value to determine if additional passes are need to increase the accuracy the solution, if the value of energy error 

is still declining from pass to pass, additional passes may increase the accuracy the solution. So, with these 

definitions, it is possible to understand that the FE numbers that is known is the last pass that the program has 

been able to manage, and the software has stopped when the program has increased the FE numbers to try to 

improve the accuracy 
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APPENDIX III  
Computer Resource using to calculate the computer limitations 

 

There are two main computing data for this research: software and hardware. 

-Software:  Maxwell Ansoft. 

-Hardware: 2 computers have been used: 

1. - Inter Core TM i7 920 @ 267 GHz (32, 00 GB) 

2. - AMD APU with Radeom TM HD graphics 1.65 GHz (4, 00 GB) 

 

The only relevance data for the hardware is the RAM memory from the point of view of the finite element number 

processed by the computer. Other computer features are used defines the process speed for the simulation. 

 

Maximum FE number by computer 

 

A simple analysis has been developed to demonstrate that there is an evident computational limitation 

depending of the hardware used in the FE analysis. The limitation is due to FE number needed in the simulation 

using 4 GB. The convergence is not successful is the FE needed for the complete simulation exceed the maximum 

FE number managed by the compute RAM. 

The example to demonstrate this evidence is the simulation of a transformer component (EE.42.21.15) with two 

different windings using the same hardware: 

First winding  AWG 18 

Second winding AWG 24 

As it explains, the principal factor to define the FE in a simulation of an inductive component or transformer 

with EE or Toroidal core is the cross-section wiring for the windings [74]. 

The analysis consists on the simulation of the same core adding the maximum number of windings, using 

different cross-sections. 
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Original Model (Circular cross-section in the winding) 

The following picture represents the increase of FE number when the turns for the winding are increased using a 

circular cross-section is issued in the component model. 

 

The limitation is 15 turns in each side with 1531421 tetras. 

 

Polygonal Model (Polygonal cross-section ,18 edges) 

The following picture represents the increase of FE number when the turns for the winding are increased for 

this sequence. 

 

The maximal model was one with: 46 turns (AWG 18) or 24 (AWG24) with 1,604,918 tetras. 
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Polygonal Model (Polygonal cross-section, hexagonal section) 

A model with 42 turns (AWG 18) or 20 (AWG24) was not been able to manage the computer with 1,421,500 

tetras. 

 

The RAM is the main feature to define the maximum number of the FE that it is processed in the analysis. The 

maximum number of windings in the model depends on the FE number of the model according to the convergence 

criteria using a regular mesh and energy error of 2%. 

 

Conductor Cross Section Maximum Fe 

Circular 1,531,421 

Polygonal 18 edges 1,604,918 

Polygonal 6 edges 1,421,500 
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APPENDIX IV  
Scripts used in Ansys Maxwell for electrical parameter extraction procedure 

 
To read the data: 
 
' -------------------------------------------- 
' Maxwell Vbs created by PExprt(TM) Version 7.1.0.4 
' © 2012 UPM-SAS IP, Inc. 
' -------------------------------------------- 
Dim oAnsoftApp 
Dim oDesktop 
Dim oProject 
Dim oDesign 
Dim oEditor 
Dim oModule 
Dim f, frq(5) 
Dim w1, w2, ip(1, 1) 
Set oAnsoftApp = CreateObject("AnsoftMaxwell.MaxwellScriptInterface") 
Set oDesktop = oAnsoftApp.GetAppDesktop() 
Set oProject = oDesktop.SetActiveProject("P") 
 
frq(0) = "1.0Hz" 
frq(1) = "5376.0Hz" 
frq(2) = "21507.0Hz" 
frq(3) = "48391.0Hz" 
frq(4) = "537678.0Hz" 
frq(5) = "1209776.0Hz" 
 
For w1 = 0 To 1 
  For w2 = 0 To 1 
    If w1 = w2 Then 
      ip(w1, w2) = "1A" 
    Else 
      ip(w1, w2) = "0A" 
    End If 
  Next 
Next 
 
For f = 0 To 5 
  For w1 = 0 To 1 
    Set oDesign = oProject.SetActiveDesign("Setup" + CStr(w1 + 1)) 
    Set oModule = oDesign.GetModule("FieldsReporter") 
 
    oModule.EnterQty "J" 
    oModule.CalculatorWrite "J" + CStr(w1 + 1) + "_" + CStr(f + 1) + ".reg", _ 
      Array("Solution:=", "Setup" + CStr(w1 + 1) + " : LastAdaptive"), _ 
      Array("Freq:=", frq(f), _ 
        "Ipeak1:=", ip(w1, 0), _ 
        "Ipeak2:=", ip(w1, 1), _ 
        "Phase:=", "0deg") 
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    oModule.EnterQty "H" 
    oModule.CalculatorWrite "H" + CStr(w1 + 1) + "_" + CStr(f + 1) + ".reg", _ 
      Array("Solution:=", "Setup" + CStr(w1 + 1) + " : LastAdaptive"), _ 
      Array("Freq:=", frq(f), _ 
        "Ipeak1:=", ip(w1, 0), _ 
        "Ipeak2:=", ip(w1, 1), _ 
        "Phase:=", "0deg") 
  Next 
Next 
 
To process the data for introducing in the Excelsheet to continue the calculations: 
 
--------------------------------------------- 
' Maxwell Vbs created by PExprt Version 7.0.20 
' Copyright UPM-SAS IP, Inc. 1992-2010 
' --------------------------------------------- 
Dim oAnsoftApp 
Dim oDesktop 
Dim oProject 
Dim oDesign 
Dim oEditor 
Dim oModule 
Dim f, frq(5) 
Dim w1, w2 
Set oAnsoftApp = CreateObject("AnsoftMaxwell.MaxwellScriptInterface") 
Set oDesktop = oAnsoftApp.GetAppDesktop() 
oDesktop.RestoreWindow 
Set oProject = oDesktop.SetActiveProject("Project2") 
Set oDesign = oProject.SetActiveDesign("SourceForMesh") 
Set oModule = oDesign.GetModule("FieldsReporter") 
 
 
frq(0) = 1.0 
frq(1) = 5376.0 
frq(2) = 21507.0 
frq(3) = 48391.0 
frq(4) = 537678.0 
frq(5) = 1209776.0 
 
For f = 0 To 5 
  For w1 = 0 To 1 
    For w2 = w1 To 1 
      oModule.CalculatorRead "J" + CStr(w1 + 1) + "_" + CStr(f + 1) + ".reg", _ 
        "Mesh : LastAdaptive", "Fields", _ 
        Array("Freq:=", "1MHz", _ 
          "Ipeak1:=", "1A", _ 
          "Ipeak2:=", "1A", _ 
          "Phase:=", "0deg") 
      oModule.CalculatorRead "J" + CStr(w2 + 1) + "_" + CStr(f + 1) + ".reg", _ 
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        "Mesh : LastAdaptive", "Fields", _ 
        Array("Freq:=", "1MHz", _ 
          "Ipeak1:=", "1A", _ 
          "Ipeak2:=", "1A", _ 
          "Phase:=", "0deg") 
      oModule.ClcMaterial "Conductivity (cond)", "div" 
      oModule.CalcOp "Conj" 
      oModule.CalcOp "Dot" 
      oModule.CalcOp "Real" 
      oModule.EnterVol "AllObjects" 
      oModule.CalcOp "Integrate" 
      oModule.ClcEval "Mesh : LastAdaptive", _ 
        Array("Freq:=", "1MHz", _ 
          "Ipeak1:=", "1A", _ 
          "Ipeak2:=", "1A", _ 
          "Phase:=", "0deg") 
      oModule.CalculatorWrite "R" + CStr(w1 + 1) + "_" + CStr(w2 + 1) + "_" + CStr(f + 1) + ".reg", 
_ 
        Array("Solution:=", "Mesh : LastAdaptive"), _ 
        Array("Freq:=", "1MHz", _ 
          "Ipeak1:=", "1A", _ 
          "Ipeak2:=", "1A", _ 
          "Phase:=", "0deg") 
      oModule.CalcStack "clear" 
    Next 
  Next 
Next 
 
For f = 0 To 5 
  For w1 = 0 To 1 
    For w2 = w1 To 1 
      oModule.CalculatorRead "H" + CStr(w1 + 1) + "_" + CStr(f + 1) + ".reg", _ 
        "Mesh : LastAdaptive", "Fields", _ 
        Array("Freq:=", "1MHz", _ 
          "Ipeak1:=", "1A", _ 
          "Ipeak2:=", "1A", _ 
          "Phase:=", "0deg") 
      oModule.ClcMaterial "Permeability (mu)", "mult" 
      oModule.CalculatorRead "H" + CStr(w2 + 1) + "_" + CStr(f + 1) + ".reg", _ 
        "Mesh : LastAdaptive", "Fields", _ 
        Array("Freq:=", "1MHz", _ 
          "Ipeak1:=", "1A", _ 
          "Ipeak2:=", "1A", _ 
          "Phase:=", "0deg") 
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APPENDIX V  
 

Surface Calculation for Hysteresis loop 
 
The data of the hysteresis loop cycles for the material used in the thesis are from the 

Ferroxcube datasheet [76]. The areas of the hysteresis loop have been calculated with 

polynomial grade 6 in Excel and performing the according integrals. 
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APPENDIX VI  
Current Impact in HL analysis 

The analysis sequences depending on the coil current. The pictures showed represent the 

behaviour of the HL when the core is saturated. The correlation of HL with core saturated is 

similar even the current is increased. 

 
Fig. Appendix VI.1 Current 10 A 

 
Fig. Appendix VI.2 Current 20 A 
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