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Abstract : We give sufficient and necessary conditions, different from that of Dodds-Fremlin,
which characterize compact operators between Banach lattices, relying on semi-compact and
AM-compact operators.
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This note extends some of the results in [2]. Throughout this note, E
and F will be Banach lattices and X will be a Banach space. We refer the
reader to [1, 3] for definitions and notations related to Banach lattices. Recall
that an operator T : E → X is AM-compact if it maps order intervals into
relatively compact sets; an operator T : X → F is semi-compact if T (BX)
is almost order bounded, i.e., for every ε > 0 there exists u ∈ F+ such that
T (BX) ⊂ [−u, u] + εBF . It is clear that the both properties are weaker than
compactness.

Remark 1. Suppose that F is order continuous and 0 ≤ T : E → F . It
is easy to see that if T is semi-compact and T ′ is AM-compact then T is
compact. Indeed, T is L-weakly compact by [3, Proposition 3.6.2], so that T ′

is M-weakly compact by [3, Proposition 3.6.11], hence T ′ (and, therefore, T )
is compact by [3, Proposition 3.7.4] (see [2, Theorem 1(i)] for another proof).

Theorem 2. If every positive operator T : E → F is compact whenever
it is semi-compact and T ′ is AM-compact then one of the following assertions
holds:

1. F is order continuous, or
2. E′ is order continuous and discrete.
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Proof. Suppose that F is not order continuous. It suffices to show that if E′

is not order continuous or not discrete then there exists a positive non-compact
operator T : E → F such that T is semi-compact and T ′ is AM-compact.

Suppose that E′ is not order continuous. By [3, Theorem 2.4.14], E con-
tains a lattice copy of ℓ1, i.e., there is a closed sublattice Y ⊆ E and a
surjective lattice isomorphism V : Y → ℓ1. Put un = V −1 (en). By [3, Propo-
sition 2.3.11], there exists a positive projection P : E → E with RangeP = Y .
Let j : ℓ1 → c0 be the normal inclusion. [3, Theorem 2.4.2] guarantees that
there exist y ∈ F+ and a disjoint normalized sequence (yn) in [0, y]. Define
S : c0 → F via S (en) = yn. Since for every x =

∑∞
i=1 αiei ∈ c0 we have∣∣∣∣∣S

(
n∑

i=1

αiei

)∣∣∣∣∣ =
n∑

i=1

|αi| yi ≤ ( max
i=1,...,n

|αi|)y ≤ ∥x∥∞ y

for all n ≥ 1, it follows that ∥S (x)∥ ≤ ∥y∥ ∥x∥∞, so that S is indeed a bounded
operator from c0 to F .

Put T = SjV P . Then T is not compact as T (un) = yn which has no
convergent subsequences. To see that T is semi-compact, observe that jV P
maps BE into M · Bc0 where M = ∥jV P∥, so that for each x ∈ BE we have
jV P (x) =

∑∞
i=1 αiei with |αi| ≤ M for all i. It follows that

|T (x)| =

∣∣∣∣∣
∞∑
i=1

αiyi

∣∣∣∣∣ ≤
∞∑
i=1

|αi| yi ≤ My.

Then T (BE) ⊆ M [−y, y] and so T is semi-compact. Finally, T ′ is AM-
compact because S′ : F ′ → ℓ1 is positive and order intervals in ℓ1 are compact.
This proves that E′ is order continuous.

We will now show that E′ is discrete. Suppose not. Then it follows from
[4, Theorem 1] that there exist two operators 0 ≤ S ≤ T : E → F such that
T is compact while S is not. However, S is semi-compact by [1, Theorem
5.72(b)] and S′ is AM-compact by [3, Proposition 3.7.2].

Example 3. The converse is false. Indeed, let T : ℓ2 → ℓ∞ be the natural
embedding. Note that ℓ′2 = ℓ2 is discrete and order continuous; T is semi-
compact and T ′ is AM-compact, but, nevertheless, T is not compact.

Theorem 4. The following assertions are equivalent:

1. Every positive operator T : E → F is compact whenever it is AM-
compact and T ′ is semi-compact;
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2. F is finite-dimensional or E′ is order continuous.

Proof. (1) ⇒ (2) Suppose that E′ is not order continuous and dimF =
∞. Let P , V , and (un) be as in the proof of Theorem 2. Since dimF =
∞, it follows from BF ⊆ (BF )

+ − (BF )
+ that (BF )

+ is not compact; fix a
sequence (yn) in (BF )

+ with no convergent subsequences. Define S : ℓ1 → F
via S (en) = yn; S is bounded because ∥S (

∑∞
i=1 αiei)∥ ≤

∑∞
i=1 |αi|. Put

T = SV P . Since order intervals in ℓ1 are compact, the operator V P is
AM-compact, so that T is AM-compact. Being an operator on ℓ∞, (V P )′ is
semi-compact, so that T ′ is semi-compact. However, T (un) = yn, so that T
is not compact.

(2) ⇒ (1) If F is finite-dimensional, (1) holds trivially, while if E′ is order
continuous then the proof is analogous to Remark 1.

Remark 5. A quick glance at the proof reveals that we can replace a Ba-
nach lattice F with a Banach space X in Theorem 4 as long as we remove the
word “positive” from (1).
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