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Abstract: We give sufficient and necessary conditions, different from that of Dodds-Fremlin,
which characterize compact operators between Banach lattices, relying on semi-compact and
AM-compact operators.
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This note extends some of the results in [2]. Throughout this note, FE
and F' will be Banach lattices and X will be a Banach space. We refer the
reader to [1, 3] for definitions and notations related to Banach lattices. Recall
that an operator T' : F — X is AM-compact if it maps order intervals into
relatively compact sets; an operator T': X — F' is semi-compact if T'(Bx)
is almost order bounded, i.e., for every € > 0 there exists u € F'" such that
T(Bx) C [—u,u] +eBp . It is clear that the both properties are weaker than
compactness.

Remark 1. Suppose that F' is order continuous and 0 < 7T : E — F. It
is easy to see that if T is semi-compact and 7" is AM-compact then T is
compact. Indeed, T is L-weakly compact by [3, Proposition 3.6.2], so that T’
is M-weakly compact by [3, Proposition 3.6.11], hence 7" (and, therefore, T')
is compact by [3, Proposition 3.7.4] (see [2, Theorem 1(i)] for another proof).

THEOREM 2. If every positive operator T : & — F' is compact whenever
it is semi-compact and T is AM-compact then one of the following assertions
holds:

1. F' is order continuous, or

2. E' is order continuous and discrete.
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Proof. Suppose that F is not order continuous. It suffices to show that if F’
is not order continuous or not discrete then there exists a positive non-compact
operator T : E — I such that T is semi-compact and 7" is AM-compact.

Suppose that E’ is not order continuous. By [3, Theorem 2.4.14], E con-
tains a lattice copy of ¢, i.e., there is a closed sublattice Y C E and a
surjective lattice isomorphism V : Y — ¢;. Put u, = V! (e,,). By [3, Propo-
sition 2.3.11], there exists a positive projection P : F — E with Range P =Y.
Let j : 1 — ¢o be the normal inclusion. [3, Theorem 2.4.2] guarantees that
there exist y € F'* and a disjoint normalized sequence (y,,) in [0, y]. Define
S:co— F via S (ep) = yy. Since for every =) .2, ase; € ¢ we have

n n
‘S (Z a)‘ =" laily: < ( max Jail)y < all v
i=1 i=1

for all n > 1, it follows that ||.S (z)|| < ||y| |x]|», so that S is indeed a bounded
operator from ¢y to F.

Put T = SjVP. Then T is not compact as T (u,) = y, which has no
convergent subsequences. To see that 7' is semi-compact, observe that jV P
maps Bg into M - B, where M = ||jV P||, so that for each x € Bg we have
JVP (x) = 2, aje; with |ay| < M for all 4. It follows that

o0
g QY
i=1

Then T (Bg) € M [—y,y] and so T is semi-compact. Finally, 77 is AM-
compact because S’ : F/ — /1 is positive and order intervals in /1 are compact.
This proves that E’ is order continuous.

We will now show that E’ is discrete. Suppose not. Then it follows from
[4, Theorem 1] that there exist two operators 0 < S < T : E — F such that
T is compact while S is not. However, S is semi-compact by [1, Theorem
5.72(b)] and S” is AM-compact by [3, Proposition 3.7.2].

T (z)] =

oo
< leilys < My.
=1

ExXAMPLE 3. The converse is false. Indeed, let T" : /o — £, be the natural
embedding. Note that ¢, = ¢ is discrete and order continuous; 7' is semi-
compact and T" is AM-compact, but, nevertheless, T' is not compact.

THEOREM 4. The following assertions are equivalent:

1. Every positive operator T : E — F is compact whenever it is AM-
compact and T' is semi-compact;
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2. F is finite-dimensional or E’ is order continuous.

Proof. (1) = (2) Suppose that E’ is not order continuous and dim F =
oco. Let P, V, and (u,) be as in the proof of Theorem 2. Since dim F' =
00, it follows from Bp C (Bp)t — (Bp)" that (Bp)' is not compact; fix a
sequence (y,) in (Bp)T with no convergent subsequences. Define S : {1 — F
via S(en) = yn; S is bounded because [|S (D2 cie;)|| < 0.2, lag|. Put
T = SVP. Since order intervals in ¢; are compact, the operator VP is
AM-compact, so that T is AM-compact. Being an operator on fo,, (VP)’ is
semi-compact, so that 7" is semi-compact. However, T (u,) = yn, so that T
is not compact.

(2) = (1) If F is finite-dimensional, (1) holds trivially, while if E’ is order
continuous then the proof is analogous to Remark 1.

Remark 5. A quick glance at the proof reveals that we can replace a Ba-
nach lattice F' with a Banach space X in Theorem 4 as long as we remove the
word “positive” from (1).
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