$S U(2)$ and $S L(2, \mathbb{C})$ Representations of a Class of Torus Knots

Antonio M. Oller-Marcén
Centro Universitario de la Defensa, Ctra. de Huesca s/n, 50090 Zaragoza, Spain
oller@unizar.es

Abstract: Let $K_{m, 2}$ be the torus knot of type ($m, 2$). With the help of the explicit description of the $S L(2, \mathbb{C})$ character variety of this class of torus knots given by the author in a previous work, we study the relationship between the representations over $S U(2)$ and over $S L(2, \mathbb{C})$ of the fundamental group of $S^{3} \backslash K_{m, 2}$. In particular it is shown that the map from the moduli space of irreducible $S U(2)$-representations to the moduli space of $S L(2, \mathbb{C})$-representations is injective.
Key words: Character variety, Representation variety, Torus knot, $S U(2), S L(2, \mathbb{C})$.
AMS Subject Class. (2010): 57M25, 57M27, 20F38.

1. Introduction

Let $K_{m, 2}$ be the torus knot of type $(m, 2)$ with odd m (see [8]) and denote by

$$
H_{m}=\langle x, y \mid \underbrace{x y x y \cdots y x}_{\text {length } m}=\overbrace{y x y x \cdots x y}^{\text {lenght } m}\rangle
$$

the fundamental group of its complement in S^{3}. In [2] the variety of representations $R\left(H_{m}\right)$ and the character variety $X\left(H_{m}\right)$ of H_{m} over $S L(2, \mathbb{C})$ were defined, together with the projection $t: R\left(H_{m}\right) \longrightarrow X\left(H_{m}\right)$ which, in our case, is given by $t(\rho)=(\operatorname{tr} \rho(x), \operatorname{tr} \rho(x y))$. In [7] an explicit geometric description of $X\left(H_{m}\right)$ was given via a refinement of the description obtained using the techniques in [3]. In [5] and [6] the analysis was extended to describe the $S L(2, \mathbb{C})$-character varieties of general torus knots. Finally, in [1] or [4] the space of representations over $S U(2)$, which is clearly a real algebraic subvariety of $R\left(H_{m}\right)$, was studied.

In the previous situation it is natural to be interested in the image under t of the representations over $S U(2)$. In particular this paper is devoted to compute explicitly (using the main result in [7]) $t\left(\tilde{R}\left(H_{m}\right)\right.$), where $\tilde{R}\left(H_{m}\right)$ is the set of non-abelian representations over $S U(2)$. This computation will then be used to study the relationship between representations of H_{m} over $S L(2, \mathbb{C})$ and $S U(2)$.

2. Preliminaries

Let G be any group and $H \leq G L(2, \mathbb{C})$ be a subgroup of matrices. A representation $\rho: G \longrightarrow H$ is just a group homomorphism. We say that two representations ρ and ρ^{\prime} are equivalent if there exists $P \in G L(2, \mathbb{C})$ such that $\rho^{\prime}(g)=P^{-1} \rho(g) P$ for every $g \in G$. A representation ρ is reducible if the elements of $\rho(G)$ share a common eigenvector, otherwise it is irreducible. A representation ρ is abelian if $\rho(G)$ is an abelian subgroup of H. Note that abelian representations are always reducible.

Let $K_{m, 2}$ be the torus knot of type $(m, 2)$. The fundamental group of its complement admits a presentation [8]:

$$
H_{m}=\langle x, y \mid \underbrace{x y x y \cdots y x}_{\text {length } m}=\overbrace{y x y x \cdots x y}^{\text {lenght } m}\rangle
$$

Writing $L_{x}=(x y)^{\frac{m-1}{2}}$, we see that $L_{x} x=y L_{x}$, so x and y are conjugate.
2.1. $S U(2)$-REPRESENTATION SPACES. In this section we will follow the notation in [1]. We also refer to [4] for a good account on this topic. The following well-known lemma will be useful in the sequel.

LEMMA 1. $S U(2) \cong S^{3}$ where, if we see S^{3} as the set of unit quaternions, the isomorphism is given by:

$$
a_{0}+a_{1} i+a_{2} j+a_{3} k \longleftrightarrow\left(\begin{array}{ll}
a_{0}+a_{1} i & a_{2}+a_{3} i \\
a_{2}-a_{3} i & a_{0}-a_{1} i
\end{array}\right)
$$

In particular, $\operatorname{tr} A \in \mathbb{R}$ for every $A \in S U(2)$.
Recall that any element of S^{3} can be written in the form $(P, \varphi)=\cos \frac{\varphi}{2}+$ $\sin \frac{\varphi}{2} P$ with $P^{2}=-1$ being a pure quaternion. Since the group H_{m} is generated by x and y, a representation ρ over $S U(2)$ will be determined by the
images of its generators $\rho(x)=(P, \varphi)$ and $\rho(y)=(Q, \varphi)$, where the angle $\varphi \in[0,2 \pi]$ is the same for $\rho(x)$ and $\rho(y)$ because x and y are conjugate. Moreover, this representation will be non-abelian if $P \neq \pm Q$ and $\varphi \neq 2 k \pi$.

Now, if ψ denotes the unoriented angle between the (oriented) axes P and Q and putting $\tau=\cos \psi, \gamma=\cot \frac{\varphi}{2}$ it can be seen that there exists a bijection between the set

$$
\mathcal{R}\left(H_{m}\right)=\left\{(\tau, \gamma) \in \mathbb{R}^{2} \mid \tau=\cos \psi, \gamma=\cot \frac{\varphi}{2}\right\}
$$

and the set of $S U(2)$-equivalence classes of non-abelian representations of H_{m} over $S U(2)$ [1, p. 104]. Note that $\psi \in(0, \pi)$ hence $\tau \in(-1,1), \gamma \in \mathbb{R}$.

Let us define a family of polynomials in the following recursive way ([1, Lemma 1.2.]):

$$
\begin{gathered}
z_{0}(\tau, \gamma)=1 \\
z_{1}(\tau, \gamma)=\gamma^{2}-2 \tau-1 \\
z_{2}(\tau, \gamma)=\gamma^{4}+\gamma^{2}(-6 \tau-4)+4 \tau^{2}+2 \tau-1 \\
z_{n}(\tau, \gamma)=\left(\gamma^{2}-1-2 \tau\right)\left(z_{n-1}+\left(\gamma^{2}+1\right) z_{n-2}\right)-\left(\gamma^{2}+1\right)^{3} z_{n-3}, n \geq 3
\end{gathered}
$$

Given the group H_{m} with odd m, let $\mathcal{C}\left(H_{m}\right)$ be the plane algebraic curve

$$
\mathcal{C}\left(H_{m}\right)=\left\{(\tau, \gamma) \in \mathbb{R}^{2} \left\lvert\, z_{\frac{m-1}{2}}(\tau, \gamma)=0\right.\right\}
$$

If we consider $D=\left\{(\tau, \gamma) \in \mathbb{R}^{2} \mid-1<\tau<1\right\}$, it can be seen [1, Theorem 1.3.] that $\mathcal{R}\left(H_{m}\right)=\mathcal{C}\left(H_{m}\right) \cap D$.
2.2. $S L(2, \mathbb{C})$-REPRESENTATION AND CHARACTER VARIETIES. Like in the previous section, consider the group H_{m}. Then the set

$$
R\left(H_{m}\right)=\left\{(\rho(x), \rho(y)) \mid \rho \text { is a representation of } H_{m} \text { over } S L(2, \mathbb{C})\right\}
$$

is (see [2]) a well-defined affine algebraic set, up to canonical isomorphism.
Recall that given a representation $\rho: H_{m} \longrightarrow S L(2, \mathbb{C})$ its character $\chi_{\rho}: H_{m} \longrightarrow \mathbb{C}$ is defined by $\chi_{\rho}(g)=\operatorname{tr} \rho(g)$. Note that two equivalent representations ρ and ρ^{\prime} have the same character, and the converse is also true if either ρ or ρ^{\prime} is irreducible [2, Prop. 1.5.2.]. Now, choose any $g \in H_{m}$ and define $t_{g}: R\left(H_{m}\right) \longrightarrow \mathbb{C}$ by $t_{g}(\rho)=\chi_{\rho}(g)$. Let T denote the ring generated by $\left\{t_{g} \mid g \in H_{m}\right\}$, then ([2, Prop. 1.4.1.]) T is a finitely generated ring and using the well-known identities $(A, B \in S L(2, \mathbb{C}))$:

$$
\operatorname{tr} A=\operatorname{tr} A^{-1}, \quad \operatorname{tr} A B=\operatorname{tr} B A, \quad \operatorname{tr} A B=\operatorname{tr} A \operatorname{tr} B-\operatorname{tr} A B^{-1}
$$

it can be shown [3, Cor. 4.1.2.] that T is generated by the set $\left\{t_{x}, t_{x y}\right\}$. Note that x and y being conjugate, $t_{x}=t_{y}$.

Now define the map $t: R\left(H_{m}\right) \longrightarrow \mathbb{C}^{2}$ by $t(\rho)=\left(t_{x}(\rho), t_{x y}(\rho)\right)$. Put $X\left(H_{m}\right)=t\left(R\left(H_{m}\right)\right)$, then $X\left(H_{m}\right)$ is an algebraic variety which is well-defined up to canonical isomorphism [2, Cor 1.4.5.] and which is called the character variety of the group H_{m} in $S L(2, \mathbb{C})$. Note that $X\left(H_{m}\right)$ is the set of all characters χ_{ρ} of representations $\rho \in R\left(H_{m}\right)$.

We are now interested in giving a more explicit description of $X\left(H_{m}\right)$ (see $[3,7]$ for details). Let us start by recursively defining a family of polynomials $\left\{q_{n}\right\}_{n \geq 1}$:

$$
\begin{gathered}
q_{1}(T)=T-2, \\
q_{2}(T)=T+2, \\
\prod_{1 \neq d \mid n} q_{d}\left(X+\frac{1}{X}\right)=\frac{X^{n-1}+X^{n-2}+\cdots+X+1}{X^{\frac{n-1}{2}}} \text { if } n \geq 3 \text { is odd, } \\
\prod_{1,2 \neq d \mid n} q_{d}\left(X+\frac{1}{X}\right)=\frac{X^{n-2}+X^{n-4}+\cdots+X^{2}+1}{X^{\frac{n-2}{2}}} \text { if } n \geq 4 \text { is even. }
\end{gathered}
$$

Observe that if we denote by $\left\{c_{n}\right\}_{n \geq 1}$ the family of cyclotomic polynomials, then for $n \geq 3$ it holds that

$$
c_{n}(X)=X^{\frac{\varphi(n)}{2}} q_{n}\left(X+\frac{1}{X}\right) .
$$

With this we have the following description.
Proposition 1. ([7], Cor. 4.3.)

$$
X\left(H_{m}\right) \cong\left\{(X, Z) \in \mathbb{C}^{2} \mid\left(X^{2}-Z-2\right) \prod_{1 \neq d \mid n} q_{d}^{*}(Z)=0\right\}
$$

where $q_{d}^{*}(Z)=(-1)^{\operatorname{deg} q_{d}} q_{d}(-Z)$.

3. Computing $t\left(\tilde{R}\left(H_{m}\right)\right)$

Let $\rho: H_{m} \longrightarrow S U(2)$ be a non-abelian representation given by

$$
\left\{\begin{array}{l}
\rho(x)=(P, \varphi)=\cos \frac{\varphi}{2}+P \sin \frac{\varphi}{2} \\
\rho(y)=(Q, \varphi)=\cos \frac{\varphi}{2}+Q \sin \frac{\varphi}{2}
\end{array}\right.
$$

where $P=a i+b j+c k$ and $Q=a^{\prime} i+b^{\prime} j+c^{\prime} k$ are pure unit quaternions such that $P^{2}=Q^{2}=-1, P \neq \pm Q$ and $\varphi \in(0,2 \pi)$. By some straightforward computations we obtain that

$$
\rho(x y)=\rho(x) \rho(y)=\cos ^{2} \frac{\varphi}{2}-\langle P, Q\rangle \sin ^{2} \frac{\varphi}{2}+(P+Q) \sin \frac{\varphi}{2} \cos \frac{\varphi}{2}
$$

And making use of Lemma 1 we get $\operatorname{tr} \rho(x)=\operatorname{tr} \rho(y)=2 \cos \frac{\varphi}{2}$ and $\operatorname{tr} \rho(x y)=$ $2 \cos ^{2} \frac{\varphi}{2}-2\langle P, Q\rangle \sin ^{2} \frac{\varphi}{2}$.

Recalling the notation from Section 2, the previous paragraph leads to:

$$
\begin{gathered}
\tau=\cos \psi=\langle P, Q\rangle \\
\gamma=\cot \frac{\varphi}{2} \\
X=\operatorname{tr} \rho(x)=\operatorname{tr} \rho(y)=2 \cos \frac{\varphi}{2} \\
Z=\operatorname{tr} \rho(x y)=2 \cos ^{2} \frac{\varphi}{2}-2\langle P, Q\rangle \sin ^{2} \frac{\varphi}{2}
\end{gathered}
$$

Now, some simple computations give:

$$
\begin{gathered}
\gamma^{2}=\frac{X^{2}}{4-X^{2}}, \quad \tau=\frac{X^{2}-2 Z}{4-X^{2}} \\
X^{2}=\frac{4 \gamma^{2}}{1+\gamma^{2}}, \quad Z=\frac{2 \gamma^{2}(1-\tau)-2 \tau\left(1+\gamma^{2}\right)}{1+\gamma^{2}}
\end{gathered}
$$

If we put $\omega=\gamma^{2}$, a close look at its definition shows that we can write $z_{n}(\tau, \gamma)$ as a polynomial in the variables (τ, ω). As a consequence we can consider the rational function $\tilde{z}_{n}(X, Z)=z_{n}(\tau(X, Z), \omega(X, Z)) \in \mathbb{Z}(X, Z)$ which allows us to define the polynomial $\hat{z}_{n}(X, Z)=\left(4-X^{2}\right)^{n} \tilde{z}_{n}(X, Z) \in$ $\mathbb{Z}[X, Z]$. This polynomial defines a real plane algebraic curve $V_{n}=\{(X, Z) \in$ $\left.\mathbb{R}^{2} \mid \hat{z}_{n}(X, Z)=0\right\}$. In particular, given the group H_{m} we will define $V\left(H_{m}\right)=$ $V_{\frac{m-1}{2}}$.

In Proposition 1 we defined the $S L(2, \mathbb{C})$ character variety of H_{m} as the complex algebraic curve

$$
X\left(H_{m}\right)=\left\{(X, Z) \in \mathbb{C}^{2} \mid\left(X^{2}-Z-2\right) \prod_{1 \neq d \mid m} q_{d}(-Z)=0\right\} \subset \mathbb{C}^{2}
$$

Observe that we can see $X\left(H_{m}\right) \subset \mathbb{R}^{4}$ as a real affine algebraic set and consequently, if we define $X_{\mathbb{R}}\left(H_{m}\right)=X\left(H_{m}\right) \cap\{\operatorname{Im} X=\operatorname{Im} Z=0\}$, then

$$
X_{\mathbb{R}}\left(H_{m}\right)=\left\{(X, Z) \in \mathbb{R}^{2} \mid\left(X^{2}-Z-2\right) \prod_{1 \neq d \mid m} q_{d}(-Z)=0\right\} \subset \mathbb{R}^{2}
$$

is a real plane algebraic curve.
Now we will se that $V\left(H_{m}\right) \subset X_{\mathbb{R}}\left(H_{m}\right)$. This is essentially proved in the following proposition.

Proposition 2. For every $n \geq 1$,

$$
\hat{z}_{n}(X, Z)=4^{n} \prod_{1 \neq d \mid 2 n+1} q_{d}^{*}(Z) .
$$

Proof. We will proceed by induction on n. The cases $n=1,2,3$ can be easily verified by direct computations. Now, if $n \geq 4$ we have that

$$
z_{n}(\tau, \gamma)=\left(\gamma^{2}-1-2 \tau\right)\left(z_{n-1}+\left(\gamma^{2}+1\right) z_{n-2}\right)-\left(\gamma^{2}+1\right)^{3} z_{n-3}
$$

and putting $\gamma^{2}=\frac{X^{2}}{4-X^{2}}$ and $\tau=\frac{X^{2}-2 Z}{4-X^{2}}$ this recurrence relation becomes:

$$
\hat{z}_{n}(X, Z)=4^{n}(Z-1)\left(\prod_{1 \neq d \mid 2 n-1} q_{d}^{*}(Z)+\prod_{1 \neq d \mid 2 n-3} q_{d}^{*}(Z)\right)-4^{n} \prod_{1 \neq d \mid 2 n-5} q_{d}^{*}(Z)
$$

Finally, recalling the definition of the polynomials $\left\{q_{d}\right\}$ and setting $Z=W+\frac{1}{W}$ we get:

$$
\begin{gathered}
Z-1=\frac{W^{2}-W+1}{W} \\
\prod_{1 \neq d \mid 2 n-1} q_{d}^{*}\left(W+\frac{1}{W}\right)=\frac{\sum_{i=0}^{2 n-2}(-1)^{i} W^{2 n-2-i}}{W^{n-1}}, \\
\prod_{1 \neq d \mid 2 n-3} q_{d}^{*}\left(W+\frac{1}{W}\right)=\frac{\sum_{i=0}^{2 n-4}(-1)^{i} W^{2 n-4-i}}{W^{n-2}}, \\
\prod_{1 \neq d \mid 2 n-5} q_{d}^{*}\left(W+\frac{1}{W}\right)=\frac{\sum_{i=0}^{2 n-6}(-1)^{i} W^{2 n-6-i}}{W^{n-3}}
\end{gathered}
$$

Now it is enough to substitute and operate in the previous relation to get the result.

Remark 1. Observe that if two polynomials coincide over values of the form $a+\frac{1}{a}$, then they must be equal.

Corollary 1. If $m \geq 1$ is odd,

$$
\begin{aligned}
V\left(H_{m}\right) & =\left\{(X, Z) \in \mathbb{R}^{2} \left\lvert\, \hat{z}_{\frac{m-1}{2}}(X, Z)=0\right.\right\}= \\
& =\left\{(X, Z) \in \mathbb{R}^{2} \mid \prod_{1 \neq d \mid m} q_{d}(-Z)=0\right\} \subset X_{\mathbb{R}}\left(H_{m}\right)
\end{aligned}
$$

is an algebraic subvariety. In particular, it consists of $\frac{m-1}{2}$ straight lines.

Proof. It is a clear consequence of the previous proposition. For the last assertion note that each q_{d} has $\frac{\varphi(d)}{2}$ distinct real roots.

Let us now define the following subsets of \mathbb{R}^{2} :

$$
\begin{gathered}
E^{+}=\left\{(a, b) \in \mathbb{R}^{2} \mid 0 \leq a<2,-2<b<a^{2}+2\right\} \\
E^{-}=\left\{(a, b) \in \mathbb{R}^{2} \mid-2<a \leq 0,-2<b<a^{2}+2\right\}
\end{gathered}
$$

and put $E=E^{+} \cup E^{-}$. The following lemma is easy to prove.

Lemma 2. Recall that $D=\{(\tau, \gamma) \mid \tau \in(-1,1), \gamma \in \mathbb{R}\}$. The applications $f^{+}: D \longrightarrow E^{+}$and $f^{-}: D \longrightarrow E^{-}$given by:

$$
\begin{aligned}
& f^{+}(\tau, \gamma)=\left(+\sqrt{\frac{4 \gamma^{2}}{1+\gamma^{2}}}, \frac{2 \gamma^{2}(1-\tau)-2 \tau\left(1+\gamma^{2}\right)}{1+\gamma^{2}}\right) \\
& f^{-}(\tau, \gamma)=\left(-\sqrt{\frac{4 \gamma^{2}}{1+\gamma^{2}}}, \frac{2 \gamma^{2}(1-\tau)-2 \tau\left(1+\gamma^{2}\right)}{1+\gamma^{2}}\right)
\end{aligned}
$$

are well-defined and surjective.

Figure 1: $V\left(H_{5}\right) \cap E$

Example 1. In Figure 1 we can see the intersection between the region E, limited by the lines $x=-2, x=2, y=-2$ and $y=x^{2}+2$, and the curve $V\left(H_{5}\right)$ which is given (due to Corollary 1) by $y^{2}-y-1=0$ and consists of 2 horizontal straight lines.

Recall that the set of non-abelian representations of H_{m} over $S U(2)$ was bijective to $\mathcal{R}\left(H_{m}\right)=\mathcal{C}\left(H_{m}\right) \cap D$. Thus, it makes sense to study the restrictions $\left.f^{ \pm}\right|_{\mathcal{R}\left(H_{m}\right)}$.

Lemma 3. $\left.f^{\sigma}\right|_{\mathcal{R}\left(H_{m}\right)}: \mathcal{R}\left(H_{m}\right) \longrightarrow V\left(H_{m}\right) \cap E^{\sigma}$ is surjective for $\sigma= \pm$.
Proof. We will focus on the case $\sigma=+$, the other one being analogous. Let us assume that $\left(\tau_{0}, \gamma_{0}\right) \in \mathcal{R}\left(H_{m}\right)$ and put $\left(X_{0}, Z_{0}\right)=f^{+}\left(\tau_{0}, \gamma_{0}\right)$. By the previous lemma, and since $\left(\tau_{0}, \gamma_{0}\right) \in \mathcal{R}\left(H_{m}\right)=\mathcal{C}\left(H_{m}\right) \cap D$, it is clear that $\left(X_{0}, Z_{0}\right) \in E^{+}$. Moreover,

$$
0=z_{\frac{m-1}{2}}\left(\tau_{0}, \gamma_{0}\right)=\tilde{z}_{\frac{m-1}{2}}\left(X_{0}, Z_{0}\right)=\frac{\hat{z}_{\frac{m-1}{2}}\left(X_{0}, Z_{0}\right)}{\left(4-X_{0}^{2}\right)^{\frac{m-1}{2}}}
$$

with $X_{0} \neq 2$, so $\left(X_{0}, Z_{0}\right) \in V\left(H_{m}\right)$ and we have that $f^{+}\left(\mathcal{R}\left(H_{m}\right)\right) \subseteq V\left(H_{m}\right) \cap$ E^{+}.

Now, let $\left(X_{0}, Z_{0}\right) \in V\left(H_{m}\right) \cap E^{+}$. Since f^{+}is surjective we can choose $\left(\tau_{0}, \gamma_{0}\right) \in D$ such that $f^{+}\left(\tau_{0}, \gamma_{0}\right)=\left(X_{0}, Z_{0}\right)$. On the other hand,

$$
0=\hat{z}_{\frac{m-1}{2}}\left(X_{0}, Z_{0}\right)=\left(4-X_{0}^{2}\right)^{\frac{m-1}{2}} \tilde{z}_{\frac{m-1}{2}}\left(X_{0}, Z_{0}\right)=z_{\frac{m-1}{2}}\left(\tau_{0}, \gamma_{0}\right)
$$

so $\left(\tau_{0}, \gamma_{0}\right) \in \mathcal{C}\left(H_{m}\right)$ and surjectivity follows.
Remark 2. Let $\left(\tau_{0}, \gamma_{0}\right) \in \mathcal{C}\left(H_{m}\right) \cap D$ be a point such that $f^{\sigma}\left(\tau_{0}, \gamma_{0}\right)=$ $\left(X_{0}, Z_{0}\right)$. Then the point $\left(\tau_{0}, \gamma_{0}\right)$ determines the equivalence class of a nonabelian representation ρ of H_{m} over $S U(2)$. Clearly we have that $t(\rho)=$ $\left(X_{0}, Z_{0}\right)$, where $t: R\left(H_{m}\right) \longrightarrow X\left(H_{m}\right)$ is the projection defined in Section 1.

We are now in the conditions to prove the main result of the paper.
Theorem 1. $t\left(\tilde{R}\left(H_{m}\right)\right)=V\left(H_{m}\right) \cap E$.
Proof. If $\rho \in \tilde{R}\left(H_{m}\right)$, let $\left(\tau_{0}, \gamma_{0}\right) \in \mathcal{R}\left(H_{m}\right)$ be the point given by the identification between $\mathcal{R}\left(H_{m}\right)$ and the set of $S U(2)$-equivalence classes of elements of $\tilde{R}\left(H_{m}\right)$ (recall Section 2.1). If we put $\left(X_{0}, Z_{0}\right)=t(\rho)$ we have already seen that $\left(X_{0}, Z_{0}\right)=f^{\sigma}\left(\tau_{0}, \gamma_{0}\right)$ with $\sigma= \pm$ and it is enough to apply the previous lemma.

Conversely, if $\left(X_{0}, Z_{0}\right) \in V\left(H_{m}\right) \cap E$ we choose $\left(\tau_{0}, \gamma_{0}\right) \in\left(f^{\sigma}\right)^{-1}\left(X_{0}, Z_{0}\right)$ with $\sigma= \pm$ (recall that $E=E^{+} \cup E^{-}$) and the result follows from the remark above.

We can give an interpretation of the previous result in terms of representations.

Corollary 2. Let $\rho: H_{m} \longrightarrow S L(2, \mathbb{C})$ be an irreducible representation such that $(\operatorname{tr} \rho(x), \operatorname{tr\rho }(x y)) \in X_{\mathbb{R}}\left(H_{m}\right) \cap E$. Then, there exists a representation $\rho^{\prime}: H_{m} \longrightarrow S U(2)$ such that ρ and ρ^{\prime} are equivalent.

Proof. If ρ is irreducible, then $t(\rho) \in V\left(H_{m}\right)$. Thus, $t(\rho) \in V\left(H_{m}\right) \cap E=$ $t\left(\tilde{R}\left(H_{m}\right)\right)$ and there exists $\rho^{\prime} \in \tilde{R}\left(H_{m}\right)$ such that $t(\rho)=t\left(\rho^{\prime}\right)$ and in these conditions ρ and ρ^{\prime} are equivalent due to [2, Prop. 1.5.2.].

Acknowledgements

The author wishes to thank the referee for his/her useful comments.

References

[1] G. Burde, $\operatorname{SU}(2)$-representation spaces for two-bridge knot groups, Math. Ann. 288 (1) (1990), 103-119.
[2] M. Culler, P.B. Shalen, Varieties of group representations and splittings of 3-manifolds, Ann. of Math. (2) 117 (1) (1983), 109-146.
[3] F. González-Acu, J.M. Montesinos-Amilibia, On the character variety of group representations in SL(2, C) and PSL(2, C), Math. Z. 214 (4) (1993), 627-652.
[4] E.P.Klassen, Representations of knot groups in SU(2), Trans. Amer. Math. Soc. 326 (2) (1991), 795-828.
[5] J. Martín-Morales, A.M. Oller-Marcén, Combinatorial aspects of the character variety of a family of one-relator groups, Topology Appl. 156 (14) (2009), 2376-2389.
[6] V. Muñoz, The SL(2, ©)-character varieties of torus knots, Rev. Mat. Complut. 22 (2) (2009), 489-497.
[7] A.M. Oller-Marcén, The SL(2, © character variety of a class of torus knots, Extracta Math. 23 (2) (2008), 163-172.
[8] D. Rolfsen, "Knots and Links", volume 7 of Mathematics Lecture Series. Publish or Perish Inc., Houston, TX, 1990 (Corrected reprint of the 1976 original).

