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Remarks on Gurarĭı Spaces
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Abstract : We present selected known results and some new observations, involving Gurarĭı
spaces. A Banach space is Gurarĭı if it has certain natural extension property for almost
isometric embeddings of finite-dimensional spaces. Deleting the word “almost”, we get the
notion of a strong Gurarĭı space. There exists a unique (up to isometry) separable Gu-
rarĭı space, however strong Gurarĭı spaces cannot be separable. The structure of the class
of non-separable Gurarĭı spaces seems to be not very well understood. We discuss some
of their properties and state some open questions. In particular, we characterize non-
separable Gurarĭı spaces in terms of skeletons of separable subspaces, we construct a non-
separable Gurarĭı space with a projectional resolution of the identity and we show that no
strong Gurarĭı space can be weakly Lindelöf determined.
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Introduction

The Gurarĭı space, constructed by Gurarĭı [7] in 1965, is the unique sepa-
rable Banach space G satisfying the following condition: Given finite-dimen-
sional Banach spaces X ⊆ Y , given ε > 0, given an isometric linear embedding
f : X → G there exists an injective linear operator g : Y → G extending f and
satisfying ∥g∥ · ∥g−1∥ 6 1 + ε. Almost straight from this definition, it is not
hard to prove that such a space is unique up to isomorphism of norm arbi-
trarily close to one. Surprisingly, it has been unknown for some time whether
the Gurarĭı space is unique up to isometry; it was answered affirmatively by
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Lusky [17] in 1976. His proof used the method of representing matrices, ex-
plored earlier by Lazar and Lindenstrauss [14]. Very recently, Solecki and the
second author [12] have found a simple and elementary proof of the uniqueness
of the Gurarĭı space. We sketch the arguments in Section 2 below.

The defining condition of a Gurarĭı space can clearly be applied to non-
separable spaces, obtaining the notion of a Gurarĭı space. Removing ε from
the definition, one gets the notion of a strong Gurarĭı space. Besides their
existence, not much is known about the structure of strong Gurarĭı spaces.
Few years ago, the second author found, assuming the continuum hypothesis,
a unique Banach space V of density continuum and satisfying the following
stronger property: every isometric embedding f : S → V from a subspace of an
arbitrary fixed separable space T can be extended to an isometric embedding
g : T → V . In fact, this is a special case of a general theory of Fräıssé-Jónsson
limits. Recently, the authors of [3] developed the idea of “generating” Banach
spaces by using pushouts, finding strong Gurarĭı spaces of arbitrarily large
density above the continuum.

In this note we survey the basic properties of the separable Gurarĭı space,
we explain the pushout constructions, and we characterize Gurarĭı spaces in
terms of skeletons of separable spaces. We also show that Banach spaces con-
structed by pushout iterations from finite-dimensional spaces are not universal
for spaces of density ℵ1. More specifically, we show that every copy of c0 is
complemented in such spaces. Finally, we state some questions regarding the
structure of Gurarĭı spaces.

The paper is organized as follows.
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2.1. Isometric uniqueness 242
2.2. A criterion for being Gurarĭı 243
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6. The role of c0 262
7. Final remarks and open problems 264
References 268



remarks on gurarĭı spaces 237

Section 1 contains the basic definitions and an overview of the Pushout
Lemma, crucial for the existence of Gurarĭı spaces. Section 2 has a survey
character. We introduce Gurarĭı spaces, describe two natural constructions,
and sketch the proof of their isometric uniqueness. We also provide a proof
of the result of Wojtaszczyk [20] on 1-complemented subspaces of the Gurarĭı
space. Section 3 studies non-separable Gurarĭı spaces. We characterize them
in terms of skeletons of separable subspaces. As an application, we observe
that no Gurarĭı space is complemented in a C(K) space and we prove that
every Banach space embeds isometrically into a Gurarĭı space of the same
density. We also show that there exists a Gurarĭı space of density ℵ1 and
with a projectional resolution of the identity. Section 4 deals with a natural
generalization of the notion of a strong Gurarĭı space, when the class of finite-
dimensional spaces is replaced by a larger class K. The property is then called
“universal disposition for K”. We review the “pushout construction” which is
the main tool in [3] for constructing spaces of universal disposition for various
classes. Section 5 addresses the structure of strong Gurarĭı spaces. Using the
fact that the Gurarĭı space is not 1-injective for finite-dimensional spaces, we
observe that strong Gurarĭı spaces cannot contain skeletons of 1-complemented
separable subspaces; in particular no weakly compactly generated space can
be a strong Gurarĭı space. We finally show, using some arguments from [2]
that strong Gurarĭı spaces constructed by pushout iterations in [3] have the
property that every copy of c0 is complemented. Section 7 contains some
concluding remarks and some open questions.

1. Preliminaries

We shall use standard notions concerning Banach spaces and linear oper-
ators (all linear operator are, by default, bounded). We shall consider real
Banach spaces, although the result are valid for the complex case, without
any significant changes.

The following well-known notion will be used throughout this paper. Let
X, Y be Banach spaces, ε > 0. A linear operator f : X → Y is an ε-isometric
embedding if

(1 + ε)−1 · ∥x∥ 6 ∥f(x)∥ 6 (1 + ε) · ∥x∥.

holds for every x ∈ X \ {0}. If the above condition holds with strict inequal-
ities, we shall say that f is a strict ε-isometric embedding. An operator f is
an isometric embedding iff it is an ε-isometric embedding with ε = 0. A bijec-
tive (ε-)isometric embedding is called an (ε-)isometry. (The word “isometry”
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always means “linear isometry”.) Two Banach spaces are linearly isometric
if there exists a linear isometry between. Two Banach spaces are almost lin-
early isometric if for every ε > 0 there exists a linear ε-isometry between
them. Two norms on the same Banach space are ε-equivalent if the identity
is an ε-isometry.

We shall need the following simple and standard fact on extending equiv-
alent norms.

Lemma 1.1. Let E ⊆ F be Banach spaces, ε > 0 and let | · |E be a norm
on E that is ε-equivalent to the original norm of E (inherited from F ). Then
there exists a norm | · |F that extends | · |E and is ε-equivalent to the original
norm of F .

Proof. Let ∥ · ∥ be the original norm of F and let S = {φ ∈ E∗ : |φ|E = 1}
be the dual sphere in E∗ with respect to | · |E . Then ∥φ∥ 6 1 + ε for every
φ ∈ S. Given y ∈ F , define

|y|F = sup{ψ(y) : ψ � E ∈ S and ∥ψ∥ 6 1 + ε}.

It is clear that | · |F extends | · |E and is ε-equivalent ∥ · ∥.

We finish this section with the rather well-known, important category-
theoretic property of Banach spaces, crucial for the existence of Gurarĭı spaces.

Lemma 1.2. (The Pushout Lemma) Let Z,X, Y be Banach spaces, let
i : Z → X be an isometric embedding and let f : Z → Y be an ε-isometric
embedding, where ε > 0. Then there exist a Banach space W , an isometric
embedding j : Y → W and an ε-isometric embedding g : X → W for which
the diagram

Y
j // W

Z

f

OO

i
// X

g

OO

commutes. Furthermore, if X, Y are finite-dimensional then so is W .

Proof. For simplicity, let us assume that i is the inclusion Z ⊆ X. Define
W = (X ⊕ Y )/∆, where X ⊕ Y is endowed with the ℓ1 norm and

∆ = {⟨z,−f(z)⟩ : z ∈ Z}.
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Let g and j be the quotients of the canonical embeddings, i.e. g(x) = ⟨x, 0⟩+∆
and j(y) = ⟨0, y⟩ + ∆ for x ∈ X, y ∈ Y . Observe that

∥g(x)∥ = inf
z∈Z

(
∥x+ z∥X + ∥ − f(z)∥Y

)
6 ∥x∥X .

Similarly,

∥j(y)∥ = inf
z∈Z

(
∥z∥X + ∥y − f(z)∥Y

)
6 ∥y∥Y .

It remains to estimate ∥g(x)∥ and ∥j(y)∥ from below.
Fix x ∈ X. Given z ∈ Z, we have

∥x+ z∥X + ∥ − f(z)∥Y > (1 + ε)−1
(
∥x+ z∥X + ∥ − z∥X

)
> (1 + ε)−1∥x∥X .

It follows that ∥g(x)∥ > (1 + ε)−1∥x∥X .
Now fix y ∈ Y . Given z ∈ Z, we have

∥z∥X + ∥y − f(z)∥Y > (1 + ε)−1
(
∥f(z)∥Y + ∥y − f(z)∥Y

)
> ∥y∥Y .

Thus ∥j(y)∥ > ∥y∥Y . This completes the proof.

Note that Lemma 1.1 can be viewed as a special case of the Pushout
Lemma.

We shall use several times the “isometric” version of the Pushout Lemma:
Namely, if f in the statement above is an isometric embedding then so is
g. Note also that the lemma above is valid when “ε-isometric embedding” is
replaced by “linear operator of norm 6 1 + ε”. The proof is the same (see [3]
for more details).

A word of explanation on the name “Pushout Lemma” is in place. Namely,
the commutative square from the lemma is usually called an amalgamation of
X and Y or, more precisely, of i and f . It turns out however that the amal-
gamation constructed in the proof is the pushout of i and f in the category
of Banach spaces with bounded linear operators. Specifically, given arbitrary
bounded linear operators T : X → V , S : Y → V such that T ◦ i = S ◦f , there
exists a unique linear operator h : W → V satisfying h ◦ g = T and h ◦ j = S.
Finally, the norm of h does not exceed max(∥T∥, ∥S∥).

Recall that a space Y ⊆ X is complemented (more precisely: k-comple-
mented) in X if there exists a projection P : X → X of norm 6 k and such
that Y = imP . Officially, P is a projection if P 2 = P , however we shall say
that a linear operator P : X → Y is a projection if Y ⊆ X and P � Y = idY .
It is clear that both definitions lead to the same concept.

Coming back to the previous remarks, the following property of a pushout
deserves some attention:
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Lemma 1.3. (cf. [3]) Under the assumptions of the Pushout Lemma, if f
is a linear operator of norm 6 1 and i[Z] is k-complemented in X then j[Y ]
is k-complemented in W .

Furthermore, if i and f are inclusions then every bounded projection from
X onto Z extends to a projection from W onto Y , preserving the norm.

Proof. Let P : X → Z be such that P ◦ i = idZ and ∥P∥ 6 k. Define
T = f ◦P and S = idY . Then ∥T∥ 6 k∥f∥ 6 k, T ◦ i = S ◦ f , therefore by the
property of the pushout, there exists a unique operator h : W → Z of norm
6 k, such that h ◦ g = T and h ◦ j = S = idY . In particular, j ◦ h gives a
projection onto j[Y ] ⊆ W . Finally, if i and f are inclusions then h ◦ g = T
translates to h � X = P .

Recall that a finite-dimensional Banach space X is polyhedral if its unit
ball is a polyhedron. In other words, there exist functionals φ0, φ1, . . . , φm−1 ∈
X∗ such that

∥x∥ = max
i<m

|φi(x)|

for every x ∈ X. An infinite-dimensional Banach space is called polyhedral
if each of its finite-dimensional subspaces is polyhedral. Typical examples of
polyhedral Banach spaces are ℓ1(n) and ℓ∞(n), the n-dimensional variants
of ℓ1 and ℓ∞, respectively. The spaces ℓ∞(n) play a special role, due to the
following two facts.

Proposition 1.4. A finite-dimensional Banach space is polyhedral if and
only if it embeds isometrically into ℓ∞(n) for some n ∈ N.

Proof. Let the norm of X be of the form

∥x∥ = max
i<n

|φi(x)|,

where φ0, . . . , φn−1 ∈ X∗. Define e : X → ℓ∞(n) by e(x)(i) = φi(x). It is
clear that e is an isometric embedding.

Conversely, it is obvious that ℓ∞(n) is polyhedral, and every subspace of
a polyhedral space is polyhedral.

Recall that a Banach space X is 1-injective if, given a pair of Banach
spaces E ⊆ F , every bounded linear operator T : E → X extends to a linear
operator T̃ : F → X so that ∥T̃∥ = ∥T∥ holds.
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Proposition 1.5. For every n ∈ N the space ℓ∞(n) is 1-injective.

Proof. Fix T and define Ti(x) = T (x)(i) for x ∈ E. By the Hahn-Banach
Theorem, each Ti extends to a linear functional T̃i, preserving the norm.
Define T̃ (x)(i) = T̃i(x) for x ∈ F . It is clear that T̃ extends T and ∥T̃∥ = ∥T∥.

The proof of the following fact is an easy exercise, noticing that the norm
of the pushout space is the convex hull of two polyhedra.

Lemma 1.6. Let i : Z → X, j : Z → Y be two isometric embeddings of
finite-dimensional polyhedral spaces. Then there exist a polyhedral space W
and isometric embeddings i′ : X →W and j′ : Y →W such that the square

Y
j′ // W

Z

j

OO

i
// X

i′

OO

is commutative. Furthermore, W can be taken to be the space coming from
the Pushout Lemma.

2. The separable Gurarĭı space

This section has a survey character. We introduce the definition of a
Gurarĭı space, show its existence, uniqueness and basic properties.

We start with some general definitions, originally due to Gurarĭı [7].

Definition 2.1. Let K be a class of Banach spaces. A Banach space X is
of (almost) universal disposition for K if for every pair of spaces S ⊆ T , both
in K, for every isometric embedding f : S → X (and for every ε > 0), there ex-
ists an (ε-)isometric embedding g : T → X such that g � S = f . If this holds,
we shall write briefly “X is (almost) UD(K)”. We shall write UD(fin-dim) and
UD(sep) for “universal disposition for finite-dimensional spaces” and “univer-
sal disposition for separable spaces”, respectively.

Definition 2.2. A Banach space is Gurarĭı if it is of almost universal
disposition for finite-dimensional spaces. A strong Gurarĭı space is a Banach
space of universal disposition for finite-dimensional spaces.
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The starting point of our study is the following result.

Theorem 2.3. (Gurarĭı [7]) There exists a separable Gurarĭı space.

We shall present two constructions in Subsection 2.3.

2.1. Isometric uniqueness. A standard back-and-forth argument
shows that every two separable Gurarĭı spaces are almost isometric. Below
we sketch the arguments showing isometric uniqueness.

The following lemmas come from [12]. The proof of the first one is a bit
technical, yet completely elementary. The second lemma follows directly from
the first one, applying the definition of a Gurarĭı space.

Lemma 2.4. Let f : X → Y be a strict ε-isometric embedding of Banach
spaces, ε > 0. Then there exist a Banach space Z and isometric embeddings
g : Y → Z, h : X → Z, such that ∥g ◦ f − h∥ < ε.

Lemma 2.5. Let G be a Gurarĭı space. Then for every pair X,Y of finite-
dimensional Banach spaces such that X ⊆ G, for every ε > 0, for every δ > 0,
for every strict ε-isometric embedding f : X → Y there exists a δ-isometric
embedding j : Y → G such that ∥jf(x)−x∥ < ε∥x∥ for every non-zero x ∈ X.

Theorem 2.6. (Lusky [17]) Every two separable Gurarĭı spaces are lin-
early isometric.

Proof. Let E and F be two separable Gurarĭı spaces. Define inductively
two sequences of linear operators fn : Xn → Yn and gn : Yn → Xn+1 satisfying
the following conditions.

(i) Xn ⊆ E and Yn ⊆ F are finite-dimensional spaces.

(ii) fn and gn are 2−n-isometric embeddings.

(iii) ∥gnfn(x) − x∥ < 2−n∥x∥ for every x ∈ Xn \ {0}.

(iv) ∥fn+1gn(y) − y∥ < 2−n∥y∥ for every y ∈ Yn \ {0}.

We start with X0 = 0 and we take Y0 to be any finite-dimensional subspace
of F . We find g0 by using Lemma 2.5. Having defined fn and gn, we use
Lemma 2.5 both for E and F to find first fn+1 and next gn+1. Note that
we have some freedom to choose the subspaces Xn+1 and Yn+1. Thus, the
inductive construction can be carried out so that

∪
n∈ωXn is dense in E and∪

n∈ω Yn is dense in F .
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Given x ∈ Xn, using (iv) and (ii), we have

∥fn(x) − fn+1gnfn(x)∥ < 2−n∥fn(x)∥ 6 2−n+1.

Similarly, using (ii) and (iii), we get

∥fn+1(x) − fn+1gnfn(x)∥ 6 ∥fn+1∥ · ∥x− gnfn(x)∥ < 2−n+1.

Thus ∥fn(x) − fn+1(x)∥ < 2−n+2. It follows that the sequence {fn}n∈ω is
pointwise convergent. Its limit extends uniquely to an isometry f∞ : E → F .
The same arguments show that {gn}n∈ω pointwise converges to an isometry
g∞ : F → E. Finally, (iii) and (iv) show that g∞ ◦ f∞ = idE and f∞ ◦ g∞ =
idF .

From now on, we can speak about the Gurarĭı space, the unique separable
space of almost universal disposition for finite-dimensional spaces. This space
will always be denoted by G.

The proof above is actually a simplified version of that in [12], where it is
shown that for every strict ε-isometry f between finite-dimensional subspaces
of G there exists a bijective isometry h : G → G such that ∥f − h∥ < ε.

2.2. A criterion for being Gurarĭı. Note that there are continuum
many isometric types of finite-dimensional Banach spaces. Thus, to check that
a given Banach space is Gurarĭı, one needs to show the existence of suitable
extensions of continuum many isometric embeddings. Of course, this can be
relaxed. One way to do it is to consider a natural countable subcategory of
the category of all finite-dimensional Banach spaces.

We need to introduce some notation. Every finite-dimensional Banach
space E is isometric to Rn with some norm ∥ · ∥. We shall say that E is
rational if it is isometric to ⟨Rn, ∥·∥⟩, such that the unit sphere is a polyhedron
whose all vertices have rational coordinates. Equivalently, X is rational if,
up to isometry, X = Rn with a “maximum norm” ∥ · ∥ induced by finitely
many functionals φ0, . . . , φm−1 such that φi[Qn] ⊆ Q for every i < m. More
precisely,

∥x∥ = max
i<m

|φi(x)|

for x ∈ Rn. Typical examples of rational Banach spaces are ℓ1(n) and ℓ∞(n),
the n-dimensional variants of ℓ1 and ℓ∞, respectively. On the other hand, for
1 < p <∞, n > 1, the spaces ℓp(n) are not rational. Of course, every rational
Banach space is polyhedral.
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It is clear that there are (up to isometry) only countably many rational
Banach spaces and for every ε > 0, every finite-dimensional space has an
ε-isometry onto some rational Banach space.

A pair of Banach spaces ⟨E,F ⟩ will be called rational if E ⊆ F and, up to
isometry, F = Rn with a rational norm, and E ∩Qn is dense in E. Note that
if ⟨E,F ⟩ is a rational pair then both E and F are rational Banach spaces. It
is clear that there are, up to isometry, only countably many rational pairs of
Banach spaces.

Theorem 2.7. Let X be a Banach space. Then X is Gurarĭı if and only
if it satisfies the following condition.

(G) Given ε > 0, given a rational pair of spaces ⟨E,F ⟩, for every strict ε-
isometric embedding f : E → X there exists an ε-isometric embedding
g : F → X such that

∥g � E − f∥ 6 ε.

Furthermore, in condition (G) it suffices to consider ε from a given set T ⊆
(0,+∞) with inf T = 0.

Proof. Every Gurarĭı space satisfies (G), almost by definition. Assume X
satisfies (G). Fix two finite-dimensional spaces E ⊆ F and fix an isometric
embedding f : E → X. Fix ε > 0. Fix a linear basis B = {e0, . . . , em−1}
in F so that B ∩ E = {e0, . . . , ek−1} is a basis of E (so E is k-dimensional
and F is m-dimensional). Choose δ > 0 small enough. In particular, δ
should have the property that for every linear operators h, g : F → X, if
maxi<m ∥h(ei) − g(ei)∥ < δ then ∥h − g∥ < ε/3. In fact, δ depends on the
norm of F only; a good estimation is ε/(3M), where

M = sup

{∑
i<m

|λi| :
∥∥∥∑
i<m

λiei

∥∥∥ = 1

}
.

Now choose a δ-equivalent norm ∥ · ∥′ on F such that E ⊆ F becomes a
rational pair (in particular, the basis B gives a natural coordinate system in
which all eis have rational coordinates). The operator f becomes a δ-isometric
embedding, therefore by (G) there exists a δ-isometric embedding g : F → X
such that ∥f − g � E∥′ < δ.

Now let h : F → X be the unique linear operator satisfying h(ei) = f(ei)
for i < k and h(ei) = g(ei) for k 6 i < m. Then h � B is δ-close to g � B with
respect to the original norm, therefore ∥h − g∥ < ε/3. Clearly, h � E = f . If



remarks on gurarĭı spaces 245

δ is small enough, we can be sure that g is an ε/3-isometric embedding with
respect to the original norm of F . Finally, assuming that ε < 1, a standard
calculation shows that h is an ε-isometric embedding, being (ε/3)-close to g.

The “furthermore” part obviously follows from the arguments above.

Note that, for a given separable Banach space X, the criterion stated above
can be applied by “testing” countably many almost isometric embeddings,
namely, only those that map rational vectors to a fixed countable dense subset
of X. More precisely, given a dense set D ⊆ X, every strict ε-isometric
embedding f : Rn → X (where Rn is endowed with some rational norm) can be
approximated by strict ε-isometric embeddings g : Rn → X satisfying g[Qn] ⊆
D.

Theorem 2.7 together with Lemma 2.4 provide another natural criterion
for being Gurarĭı.

Theorem 2.8. A Banach space X is Gurarĭı if and only if it satisfies the
following condition.

(F) Given ε, δ > 0, given a rational pair of spaces ⟨E,F ⟩, for every strict
ε-isometric embedding f : E → X there exists a δ-isometric embedding
g : F → X such that ∥f − g � E∥ < ε.

Proof. It is clear that (F) implies (G) and, by Theorem 2.7 this implies that
X is Gurarĭı. It remains to show that every Gurarĭı space satisfies (F). For this
aim, fix a rational pair ⟨E,F ⟩ and a strict ε-isometric embedding f : E → X.
Let Y = f [E]. By Lemma 2.4, there are a finite-dimensional space Z and
isometric embeddings i : E → Z and j : Y → Z such that ∥j ◦ f − i∥ < ε.
Using the Pushout Lemma, we can extend Z so that it also contains F . Since
X is Gurarĭı, there exists a δ-isometric embedding h : Z → X extending j−1.
Finally, g = h � F is as required.

2.3. Two constructions. There are several ways to see the existence
of the Gurarĭı space G. Actually, in Theorem 4.2 below, we shall show the
existence of strong Gurarĭı spaces; in view of Theorem 3.4 below, such spaces
contain many isometric copies of the Gurarĭı space. However, this is a rather
indirect way of showing the existence of G. A direct way is to construct a
certain chain of finite-dimensional spaces. The crucial point is the Pushout
Lemma.
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Theorem 2.9. (Gurarĭı [7], Gevorkjan [6]) The Gurarĭı space exists and
is isometrically universal for all separable Banach spaces.

Proof. Fix a separable Banach space X and fix a countable dense set
D ⊆ X. Fix a rational pair of Banach spaces E ⊆ F , fix a linear basis B in
E consisting of vectors with rational coordinates, and fix ε > 0. Furthermore,
fix a strict ε-isometric embedding f : E → X such that f [B] ⊆ D. Using the
Pushout Lemma, we can find a separable Banach space X ′ ⊇ X such that f
extends to a strict ε-isometric embedding g : F → X ′. Note that there are
only countably many pairs of rational Banach spaces and almost isometric
embeddings as described above. Thus, there exists a separable Banach space
G(X) ⊇ X such that, given a rational pair E ⊆ F , for every ε-isometric
embedding f : E → X there exists an ε-isometric embedding g : F → X such
that g � E is arbitrarily close to f .

Repeat this construction infinitely many times. Namely, let

G = cl

( ∪
n∈ω

Xn

)
,

where X0 = X and Xn+1 = G(Xn) for n ∈ ω. Clearly, G is a separable Banach
space. By Theorem 2.7, G is the Gurarĭı space.

Since the space X was chosen arbitrarily, this also shows that the Gurarĭı
space contains an isometric copy of every separable Banach space.

Next we show how to construct the Gurarĭı space as a “random” or
“generic” Banach space. Uncountable variants, forcing the universe of set
theory to be extended, have been recently studied by Lopez-Abad and Todor-
cevic [16]. Our idea is similar in spirit to that of Gurarĭı from [7], however it
does not use any topological structure on spaces of norms.

Recall that c00 denotes the linear subspace of Rω consisting of all vectors
with finite support. In other words, x ∈ c00 iff x ∈ Rω and x(n) = 0 for all
but finitely many n ∈ ω. Given a finite set S ⊆ ω, we shall identify the vector
space RS with the suitable subset of c00, namely, RS = {x ∈ c00 : x(n) =
0 for every n ∈ ω \ S}.

Let P be the following partially ordered set. An element of P is a pair
p = ⟨Sp, ∥ · ∥p⟩, where Sp ⊆ ω is a finite set and ∥ · ∥p is a norm on RSp ⊆ c00.
We define p 6 q iff Sp ⊆ Sq and ∥ · ∥q extends ∥ · ∥p. Clearly, 6 is a partial
order. Suppose

p0 < p1 < p2 < · · ·
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is a sequence in P such that the chain of sets
∪

n∈ω Spn = ω. Then c00 naturally
becomes a normed space. Let X be the completion of c00 endowed with this
norm. We shall call it the limit of {pn}n∈ω and write X = limn→∞ pn. It
is rather clear that every separable Banach space is of the form limn→∞ pn
for some sequence {pn}n∈ω in P. We are going to show that for a “typical”
sequence in P, its limit is the Gurarĭı space.

Given a partially ordered set P, recall that a subset D ⊆ P is cofinal if
for every p ∈ P there exists d ∈ D with p 6 d. Below is a variant of the
well-known Rasiowa-Sikorski Lemma, which is actually an abstract version of
the Baire Category Theorem.

Lemma 2.10. Let P be a partially ordered set and let D be a countable
family of cofinal subsets of P. Then there exists a sequence

p0 6 p1 6 p2 6 · · ·

such that for each D ∈ D the set {n ∈ ω : pn ∈ D} is infinite.

Proof. Let D = {Dn : n ∈ ω} so that for each D ∈ D the set {n ∈ ω : Dn =
D} is infinite. Using the fact that each Dn is cofinal, construct inductively
{pn}n∈ω so that pn ∈ Dn for n ∈ ω.

A sequence {pn}n∈ω satisfying the assertion of the lemma above is often
called D-generic.

We now define a countable family of open cofinal sets which is good enough
for producing the Gurarĭı space. Namely, fix a rational pair of spaces ⟨E,F ⟩,
fix a positive integer n and fix a rational embedding f : E → c00, that is, an
injective linear operator mapping vectors with rational coordinates to c00∩Qω.
The point is that there are only countably many possibilities for E and f .
Define DE,F,f,n to be the set of all p ∈ P such that n ∈ Sp and p satisfies the
following implication:

If f is a (1/n)-isometric embedding into ⟨RSp , ∥ · ∥p⟩, then there exists
a (1/n)-isometric embedding g : F → ⟨RSp , ∥ · ∥p⟩ such that g � E = f .

Claim 2.11. The set DEF,f,n is cofinal in P.

Proof. Fix p ∈ P. Suppose that f is a (1/n)-isometric embedding into
⟨RSp , ∥ · ∥p⟩ (otherwise clearly p ∈ DE,F,f,n). Using the Pushout Lemma,
find a finite-dimensional Banach space W extending ⟨RSp , ∥ · ∥p⟩ and a (1/n)-
isometric embedding g : F → W such that g � F = f . We may assume that
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W = ⟨RT , ∥ · ∥W ⟩ for some T ⊇ Sp, where the norm ∥ · ∥W extends ∥ · ∥p.
Let q = ⟨T, ∥ · ∥W ⟩ ∈ P. Clearly, p 6 q. Finally, q ∈ DE,F,f,n because f is a
(1/n)-isometric embedding into ⟨RT , ∥ · ∥W ⟩ and g extends f .

Let D consist of all sets of the form DE,F,f,n as above. Then D is countable,
therefore applying Lemma 2.10 we obtain a D-generic sequence {pn}n∈ω.

Theorem 2.12. Let D be as above and let {pn}n∈ω be a D-generic se-
quence. Then the space limn→∞ pn is Gurarĭı.

Proof. Let X = limn→∞ pn. Notice that
∪

n∈ω Spn = ω. Fix a positive
integer k, fix a rational pair of spaces ⟨E,F ⟩ and fix a 1/(k + 1)-isometric
embedding f : E → X. We can modify f in such a way that it remains to
be a (1/k)-isometric embedding, while at the same time f [E] ⊆ c00, and it
maps rational vectors into c00 ∩Qω. Now DE,F,f,k ∈ D therefore there exists
n ∈ ω such that pn ∈ DE,F,f,k and RSpn contains the range of f . By the
definition of DE,F,f,k, f extends to a (1/k)-isometric embedding g : F → X.
By Theorem 2.7, this shows that X is Gurarĭı.

Let us remark that some modifications of the poset P still give the Gurarĭı
space. For instance, we can consider only polyhedral norms for ∥ · ∥p, because
the Pushout Lemma holds for this class. We shall use this observation later.

2.4. Schauder bases and Lindenstrauss spaces. We now present
the proof that the Gurarĭı space has a monotone Schauder basis. This fact
has already been noticed by Gurarĭı in [7].

Recall that a Schauder basis in a separable Banach space X is a sequence
{en}n∈ω of non-zero vectors of X, such that for every x ∈ X there exist
uniquely determined scalars {λn}n∈ω satisfying

x =
∑
n∈N

λnen.

The series above is supposed to converge in the norm. Given a Schauder basis
{en}n∈ω, one always has the associated canonical projections

PN

(∑
n∈N

λnen

)
=

∑
n<N

λnen.

Note that each PN is a projection and PNPM = Pmin(N,M) for every N,M ∈
N. By the Banach-Steinhaus principle, supN∈N ∥PN∥ < +∞. The basis is
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monotone if ∥PN∥ 6 1 for each N ∈ N. We shall consider monotone Schauder
bases only. It turns out that the existence of a monotone Schauder basis can
be deduced from the canonical projections:

Proposition 2.13. (Mazur) Let X be a Banach space and let {Pn}n∈ω
be a sequence of norm one projections such that P0 = 0, dim(Pn+1X/PnX) 6
1,

∪
n∈N PnX is dense in X, and PnPm = Pmin(n,m) for every n,m ∈ N. Then

there exists a monotone Schauder basis {en}n∈ω in X such that {Pn}n∈ω is
the sequence of canonical projections associated to {en}n∈ω.

Proof. Let us first prove that limn→∞ Pnx = x for every x ∈ X. For this
aim, fix x ∈ SX and ε > 0. Find n0 such that ∥x − y∥ < ε/2 for some
y ∈ Pn0X. Given n > n0, we have

∥Pnx− x∥ 6 ∥Pnx− y∥ + ∥y − x∥ < ∥Pn(x− y)∥ + ε/2 < ε.

Now let φn be such that Pn+1x− Pnx = φn(x)en for some en ∈ SX . Here we
use the fact that Pn+1X = PnX ⊕ Ren for some en ∈ kerPn ∩ SX . Finally,
given x ∈ X, we have

x = lim
n→∞

Pnx = lim
N→∞

∑
n<N

(Pn+1 − Pn)x = lim
N→∞

∑
n<N

φn(x)en.

Finally, if 0 =
∑

n∈N λnen then, by easy induction, we show that λn = 0 for
every n ∈ N. This shows that {en}n∈ω is a Schauder basis. Clearly, Pns are
the canonical projections, therefore the basis is monotone.

We now recall an important class of Banach spaces, containing the Gurarĭı
space:

Definition 2.14. A Banach space X is called a Lindenstrauss space if
X∗ is linearly isometric to L1(µ) for some measure µ.

It turns out that among separable Banach spaces the class of Lindenstrauss
spaces coincides with π∞1 spaces of Michael & Pe lczyński [18]: A Banach space
X is π∞1 if it contains a directed family F such that

∪
F is dense in X and

each F ∈ F is linearly isometric to some ℓ∞(n). Recall that a family F is
directed if for every A,B ∈ F there is C ∈ F such that A ∪ B ⊆ C. The
following characterization combines results of Michael & Pe lczyński [18] and
Lazar & Lindenstrauss [15].
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Theorem 2.15. For a separable Banach spaceX, the following conditions
are equivalent:

(a) X is Lindenstrauss.

(b) X is π∞1 .

(c) X is the completion of the union of a chain E1 ⊆ E2 ⊆ · · · , where
each En is linearly isometric to ℓ∞(n). (The chain is finite in case X is
finite-dimensional.)

The implication (b) =⇒ (c), due to Michael & Pe lczyński, follows from an
interesting geometric property of ℓ∞(n) spaces: Given E ⊆ ℓ∞(l) isometric to
ℓ∞(k) for some k < l, there exists a space F isometric to ℓ∞(k + 1) and such
that E ⊆ F ⊆ ℓ∞(l) (see [18, Lemma 3.2]).

The basic infinite-dimensional example of a Lindenstrauss space is c0; other
examples are C(K) spaces with K compact metric.

Theorem 2.15 combined with Proposition 2.13 gives the following

Corollary 2.16. (Gurarĭı [8], Michael & Pe lczyński [18]) Every separa-
ble Lindenstrauss space has a monotone Schauder basis.

Theorem 2.17. (Gurarĭı [7]) The Gurarĭı space is Lindenstrauss.

Proof. Let P be the partially ordered set defined before Theorem 2.12.
Define P0 to be the set of all p ∈ P such that the norm ∥ · ∥p is polyhedral.
It is easy to verify that, with the same family D of cofinal sets, the limit of
a D-generic sequence is Gurarĭı. In fact, the only difference is in using the
polyhedral variant of the Pushout Lemma, namely, Lemma 1.6. Now add to
the family D the following set:

E =
{
p ∈ P0 : ⟨RSp , ∥ · ∥p⟩ is linearly isometric to some ℓ∞(n)

}
.

Since all the norms ∥·∥p are polyhedral, the set E is cofinal in P0. The limit of
a (D∪{E})-generic sequence is necessarily a π∞1 space; since such a sequence
is also D-generic, its limit is the Gurarĭı space.

It has been proved by Lazar & Lindenstrauss [14] that if X is a separable
space such thatX∗ is isometric to a non-separable L1(µ) space thenX contains
an isometric copy of C(2N), where 2N is the Cantor set. In particular, such
a space X contains an isometric copy of every separable Banach space. This
gives another (rather indirect) proof of isometric universality of the Gurarĭı
space.
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Theorem 2.18. (Wojtaszczyk [20]) Every separable Lindenstrauss space
is isometric to a 1-complemented subspace of G.

Proof. Fix a separable Lindenstrauss space X and let {Xn}n∈ω be a chain
of spaces such that X0 = {0},

∪
n∈NXn is dense in X, and each Xn is linearly

isometric to ℓ∞(n) (see Theorem 2.15). In case X is finite-dimensional, we
put Xn = X = ℓ∞(dimX).

Let us look back at the simple proof of Lemma 2.10, where a D-generic
sequence was constructed in the poset P defined just before Theorem 2.12 and
D is the same countable collection of cofinal sets. For convenience, we shall
write U(p) for the Banach space ⟨RSp , ∥ · ∥p⟩, where p ∈ P.

We claim that there exists a D-cofinal sequence {pn}n∈ω together with
isometric embeddings in : Xn → U(pn) and norm one operators Pn : U(pn) →
Xn such that Pn ◦ in = idXn , in+1 extends in and Pn+1 extends Pn for each
n ∈ N. Recall that D was enumerated as {Dn}n∈ω, so that each D ∈ D
occurs infinitely many times. Suppose pn, in and Pn have been defined. Using
the Pushout Lemma, find q > pn and an isometric embedding j : Xn+1 →
U(q) extending in. The property of the pushout gives a norm one projection
Q : U(q) → Xn+1 extending Pn (see Lemma 1.3).

Now, using the fact that Dn+1 is cofinal, find pn+1 ∈ Dn+1 so that pn+1 >
q. Finally, in+1 = j, treated as an embedding into U(pn+1) and Pn+1 is any
extension of Q preserving the norm, which exists because Xn+1 is linearly
isometric to some ℓ∞(m).

This finishes the inductive construction. By Theorem 2.12, we know that
limn→∞ pn = G and taking the pointwise limits of in and Pn we obtain an
isometric embedding i : X → G and a norm one operator P : G → X such
that P ◦ i = idX . This shows that i[X] is 1-complemented in G.

3. Non-separable Gurarĭı spaces

In this section we give a characterization of Gurarĭı spaces in terms of
skeletons.

Let X be a Banach space. A family F of closed linear subspaces of X will
be called a skeleton in X if the following conditions are satisfied.

(1) Each F ∈ F is separable.

(2)
∪

F = X.

(3) F is directed, i.e. for every F0, F1 ∈ F there is G ∈ F such that
F0 ∪ F1 ⊆ G.



252 j. garbulińska, w. kubís

(4) cl(
∪

n∈ω Fn) ∈ F , whenever {Fn}n∈ω is a countable chain in F .

The notion of a skeleton makes sense for non-separable Banach spaces, since
F = {X} is a skeleton if X is separable. Actually, notice that if F is a
skeleton in X then for every separable subset S ⊆ X there exists F ∈ F
satisfying S ⊆ F . The significance of skeletons lies in the following well-known
property.

Proposition 3.1. Let F and G be skeletons in a fixed Banach space X.
Then F ∩ G is again a skeleton in X.

Proof. It is clear that F ∩G satisfies (1) and (4). In order to prove (2) and
(3) it suffices to show that for every separable subspace S ⊆ X there exists
H ∈ F ∩ G such that S ⊆ H.

Fix a separable set S ⊆ X. By the remark above, there exists F0 ∈ F
such that S ⊆ F0. Similarly, there exists G0 ∈ G such that F0 ⊆ G0. By
induction, we construct two increasing sequences {Fn}n∈ω and {Gn}n∈ω in F
and G respectively, so that Fn ⊆ Gn ⊆ Fn+1 holds for every n ∈ ω. Finally,
notice that H = cl(

∪
n∈ω Fn) = cl(

∪
n∈ω Gn) belongs to both F and G.

We now turn to the announced characterization of Gurarĭı spaces in terms
of skeletons.

Lemma 3.2. Let X be a Gurarĭı space and let S ⊆ X be a countable set.
Then there exists a subspace Y ⊆ X linearly isometric to G and such that
S ⊆ Y .

Proof. This is a standard closing-off argument. The criterion for being
Gurarĭı (Theorem 2.7) actually requires checking countably many almost iso-
metric embeddings. The first step is to show that given a separable subspace
Z ⊆ X there exists a separable space E(Z) (not uniquely determined) such
that Z ⊆ E(Z) ⊆ X and the following condition is satisfied.

(†) For every rational pair of spaces ⟨E,F ⟩, for every ε > 0, for every
strict ε-isometric embedding f : E → Z there exists a strict ε-isometric
embedding g : F → E(Z) such that ∥f − g � E∥ < ε.

Once we have proved this, we construct a chain of separable spaces Z0 ⊆ Z1 ⊆
· · · ⊆ X such that S ⊆ Z0, and Zn+1 = E(Zn) for every n ∈ N. Then, using
Theorem 2.7, we conclude that the space Y = cl(

∪
n∈ω Zn) is Gurarĭı, because

of condition (†). It remains to show the existence of E(Z) satisfying (†).
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Fix Z and fix a countable dense subset D of Z. Let A consist of all
quadruples of the form ⟨E,F, f, ε⟩, where E ⊆ F is a rational pair of (finite-
dimensional) spaces, ε > 0 is a rational number, and f : E → Z is a strict
ε-isometric embedding such that f [B] ⊆ D, where B is a fixed linear basis of
E consisting of vectors with rational coordinates. These assumptions ensure
us that A is countable.

Using the fact that X is Gurarĭı, given q = ⟨E,F, f, ε⟩, we know that there
exists a strict ε-isometric embedding g : F → X such that ∥f − g � E∥ < ε.
Denote by Rq the range of g. Finally, take E(Z) to be the closure of the union
Z ∪

∪
q∈ARq. It is clear that (†) is satisfied.

Lemma 3.3. Let {Xn}n∈ω be a chain of subspaces of a Banach space X
such that X = cl(

∪
n∈ωXn) and each Xn is linearly isometric to G. Then X

is linearly isometric to the Gurarĭı space G.

Proof. Fix finite-dimensional spaces E ⊆ F and an isometric embedding
f : E → X. Fix ε > 0. Choose a linear map g : E → X that is ε-close to f
so that it is a strict ε-isometric embedding and g[E] ⊆ Xn for some n ∈ ω.
Now, using the property of the Gurarĭı space Xn, there exists an extension
h : F → Xn of g, that is also a strict ε-isometric embedding. Finally, h � E is
ε-close to f . By Theorem 2.7, this shows that X is Gurarĭı.

Theorem 3.4. Let X be a Banach space. The following properties are
equivalent.

(a) X is a Gurarĭı space.

(b) X has a skeleton consisting of subspaces isometric to the Gurarĭı space
G.

(c) There exists a directed family G of spaces isometric to G, such that∪
G = X.

Proof. (a) =⇒ (c) Let G be the family of all subspaces of X that are
isometric to G. By Lemma 3.2,

∪
G = X and G is directed. In fact, this

follows from a stronger property of G: every separable subset is covered by an
element of G.

(c) =⇒ (b) Let G be as in (c) and let F be the family of all subspaces of
X that are isometric to G. We claim that F is a skeleton. Condition (1) is
obvious, (2) follows from the property of G and (4) follows from Lemma 3.3.
In order to show (3), it suffices to prove that every countable subset of X is
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covered by an element of F . Fix D = {dn : n ∈ ω} ⊆ X and, using direct-
edness, construct inductively G0 ⊆ G1 ⊆ · · · in G so that dn ∈ Gn. Then
F = cl(

∪
n∈ω Gn) is an element of F and D ⊆ F .

(b) =⇒ (a) Fix two finite-dimensional spaces A ⊆ B and an isometric
embedding f : A→ X. Then f [A] is finite-dimensional, therefore there exists
F ∈ F such that f [A] ⊆ F . Since F is the Gurarĭı space, given any ε > 0, f
can be extended to an ε-isometry g : B → F .

The following corollary improves [3, Thm. 6.1], where the same was shown
for Banach spaces of universal disposition for separable spaces.

Corollary 3.5. No complemented subspace of a C(K) space (or, more
generally, an M-space) can be Gurarĭı.

Proof. Suppose X ⊆ C(K) is a Gurarĭı space and P : C(K) → X is a
projection. Let F be a skeleton in C(K) consisting of spaces of continuous
functions over some metric compacta. By Theorem 3.4, X has a skeleton G
such that each G ∈ G is isometric to the Gurarĭı space G. A standard closing-
off argument (see the proof of [3, Thm. 6.1]) shows that there are F ∈ F and
G ∈ G such that PF = G. The final contradiction comes from [3, Cor. 5.4],
saying that the Gurarĭı space is not complemented in any C(K) space.

The arguments above can be repeated when C(K) spaces are replaced by
M-spaces (see the comments in Sections 5,6 of [3]).

It should be noted that Corollary 3.5 can actually be derived from [3,
Thm. 6.1], using another result from [3] saying that ultraproducts of Gu-
rarĭı spaces are UD(sep), while ultraproducts of C(K) spaces are again C(K)
spaces. However, our argument using skeletons is elementary and perhaps
more illustrative.

Theorem 3.6. Every Banach space embeds isometrically into a Gurarĭı
space of the same density.

Proof. We use induction on the density of the space. The statement is
true for separable spaces, so fix a cardinal κ > ℵ0 and suppose the statement
holds for Banach spaces of density < κ.

Fix a Banach space X of density κ. Then X is the completion of the
union of a chain {Xα}α<κ starting from a separable space X0 and such that
dens (Xα) < κ for every α < κ. We may assume that this chain is continuous,
i.e., Xδ is the closure of

∪
ξ<δXξ, whenever δ is a limit ordinal. We construct
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a sequence of isometric embeddings fα : Xα → Gα, where each Gα is a Gurarĭı
space of density < κ, and Gα ⊆ Gβ , fβ � Gα = fα whenever α < β.

Suppose Gα and fα have been constructed for α < η. If η is a limit ordinal,
we take Gη to be the completion of

∪
ξ<η Gξ. By Theorem 3.4, we know that

Gη is a Gurarĭı space. The embedding fη is uniquely determined.

Now suppose η = β + 1. Using the Pushout Lemma, we find a space
W ⊇ Gβ so that fβ extends to an isometric embedding j : Xβ+1 → W . Note
that dens (W ) < κ. Using the inductive hypothesis, there exists a Gurarĭı
space Gβ+1 ⊇W such that dens (Gβ+1) = dens (W ). We define fβ+1 = j.

Finally, the sequence {fα}α<κ determines an isometric embedding of X
intoG = cl(

∪
α<κGα). Clearly, dens (G) = κ andG is Gurarĭı by Theorem 3.4.

It seems that there are many non-isomorphic Gurarĭı spaces of density ℵ1.
We show that some of them have many projections. Recall that a projectional
resolution of the identity (briefly: PRI) in a Banach space is a transfinite
sequence of norm one projections {Pα}α<ω1 whose images are separable, form
a continuous chain covering the space, and PαPβ = Pmin{α,β} holds for every
α, β < ω1. The notion of a PRI is usually defined for arbitrary non-separable
Banach spaces, see [4] and [5] for more information. It seems that PRI is the
main tool for proving certain properties of a non-separable Banach space by
transfinite induction. For example, every Banach space of density ℵ1 with a
PRI admits a bounded one-to-one linear operator into c0(ω1) (see, e.g., [10,
Cor. 17.5]).

Theorem 3.7. There exists a Gurarĭı space E of density ℵ1 that has a
projectional resolution of the identity.

Proof. First of all, there exists a norm one projection Q : G → G such that
kerQ is non-trivial. This follows immediately from the proof of Theorem 2.18,
where we can at the first step ensure that the embedding of G into G is not
the identity.

We now construct a continuous chain of separable spaces {Gα}α<ω1 with
the following properties.

(i) Each Gα is linearly isometric to G.

(ii) For each α < ω1 there exists a projection Qα+1
α : Gα+1 → Gα, isometric

to Q.
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Property (ii) ensures us that the chain is strictly increasing and its union
Gω1 =

∪
α<ω1

Gα is indeed of density ℵ1.

By Theorem 3.4, Gω1 is a Gurarĭı space and by [13] (see also [10, Thm.
17.5]) it has a projectional resolution of the identity.

Note that there are Banach spaces of density ℵ1, not embeddable into any
Banach space with a PRI (e.g., spaces with uncomplemented copies of c0,
see Section 6 below). Thus, by Theorems 3.6 and 3.7, there are at least two
non-isomorphic Gurarĭı spaces of density ℵ1.

4. Spaces of universal disposition for larger classes

In this section we discuss spaces of UD(D<κ), where D<κ is the class of
Banach spaces of density < κ. If κ = ℵ0, let D<κ be the class of all finite-
dimensional Banach spaces.

Recall that a Banach space is isometrically universal for a class K of spaces,
if it contains an isometric copy of every space from K. The following general
fact is well-known, we state it for the sake of completeness. A special case
(for κ = ℵ0) is contained in [7].

Proposition 4.1. Assume κ is an infinite regular cardinal.

(0) Let U be a Banach space of UD(D<κ). Then for every pair of spaces
X ⊆ Y such that dens (X) < κ and dens (Y ) 6 κ, every isometric
embedding f : X → U extends to an isometric embedding g : Y → U .

(1) Every Banach space of UD(D<κ) is isometrically universal for the class
of Banach spaces of density 6 κ.

(2) Let U , V be two Banach spaces of UD(D<κ) and of density κ. Then
every linear isometry f : X → Y such that X ⊆ U , Y ⊆ V and X,Y ∈
D<κ, extends to a bijective linear isometry h : U → V . In particular, U
and V are linearly isometric.

Proof. Let U be a Banach space of UD(D<κ) and fix Banach spaces X ⊆ Y
as in (0). Fix an isometric embedding f : X → U . Choose a continuous chain
{Xα}α<κ of closed subspaces of Y so that X0 = X, Xα ∈ D<κ and

∪
α<κXα

is dense in Y . Recall that a “continuous chain” means that Xδ is the closure
of

∪
ξ<δXξ for every limit ordinal δ < κ. Using the definition of universal

disposition, construct inductively a sequence of linear isometric embeddings
fα : Xα → U so that f0 = f and fβ � Xα = fα whenever α < β. At limit steps



remarks on gurarĭı spaces 257

we use the continuity of the chain. The unique map fκ : X → U satisfying
fκ � Xα = fα for α < κ is an isometric embedding extending f . This shows
both (0) and (1), since we may take X = 0.

The proof of (2) is a standard back-and-forth argument. Namely, let
{Uα}α<κ and {Vα}α<κ be continuous chains of closed subspaces of U and V re-
spectively, such that Uα, Vα are of density< κ for α < κ and U = cl(

∪
α<κ Uα),

V = cl(
∪

α<κ Vα) (note that the closure is irrelevant if κ > ℵ0). Furthermore,
we assume that U0 = X and V0 = Y . Construct inductively isometric embed-
dings fξ : Uα(ξ) → Vβ(ξ) and gξ : Vβ(ξ) → Uα(ξ+1) so that f0 = f , gξ ◦ fξ is the
inclusion Uα(ξ) ⊆ Uα(ξ+1), and fξ+1 ◦ gξ is the inclusion Vβ(ξ) ⊆ Vβ(ξ+1) for
each ξ < κ. The limit steps make no trouble because of the continuity of both
chains. The regularity of κ is used for the fact that every subspace of U (or V ,
respectively) of density < κ is contained in some Uα (or Vβ , respectively). The
“limit” operators fκ : U → V and gκ : V → U are bijective linear isometries
because fκ ◦gκ = idV and gκ ◦fκ = idU . Finally, note that fκ extends f , which
completes the proof of (2).

Given cardinal numbers µ, κ, by µ<κ we denote the supremum of all
cardinals µλ where λ < κ. The next result is a special case of more general
constructions, known in model theory (see, e.g., Jónsson [9]). For Banach
spaces this can be found in [3] and [11].

Theorem 4.2. Let µ be a cardinal and let κ be an uncountable cardinal.
Let X be a Banach space of density 6 µ. Then there exists a Banach space
Y ⊇ X of density µ<κ that is of universal disposition for spaces of density
< κ.

Proof. The space Y will be constructed by using The Pushout Lemma.
So, we need to compute first, how many “possibilities” we have. The idea
is that we first want to extend X to a bigger Banach space Z(X) such that
every isometric embedding f : E → F with E ⊆ X and F of density < κ is
realized in Z(X), that is, there exists an isometric embedding g : F → Z(X)
such that g(f(x)) = x for x ∈ E.

Given an isometric embedding f : E → F such that E ⊆ X, let P (X, f)
be the resulting Banach space of the pushout of f and the inclusion E ⊆ X.
Clearly, the density of P (X, f) is the maximum of dens (X) and dens (F ).

Observe that there are at most µ<κ closed subspaces of X of density < κ.
This follows from the fact that the cardinality of X is 6 µℵ0 . Now, given two
spaces E and F of density λ < κ, the cardinality of the set of all isometric



258 j. garbulińska, w. kubís

embeddings of E into F cannot exceed λλ = 2λ 6 µλ. Finally, note that there
are at most 2<κ isometric types of Banach spaces of density < κ. Here we use
the fact that κ is uncountable and therefore 2<κ > c.

It follows that there is a family F of cardinality 6 µ<κ consisting of iso-
metric embeddings f : E → F with E ⊆ X, the density of F is < κ and
every isometric embedding g : G → H satisfying these conditions is isometric
to some element of F . Write F = {fξ}ξ<λ, where λ = |F|. Construct induc-
tively a continuous chain of Banach spaces {Xξ}ξ<λ, starting with X0 = X
and setting Xξ+1 = P (Xξ, fξ). Let Z(X) = Xλ, the completion of the union
of {Xα}α<λ.

Note that every isometry from a subspace of X of density < κ into a
space of density < κ is realized in Z(X), because we have taken care of all
possibilities. Furthermore, observe that for µ1 = dens (Z(X)) we have that
µ<κ
1 = µ<κ. This follows from the fact that µ1 6 µ<κ and (µ<κ)<κ = µ<κ.

By the remark above, we can repeat this procedure up to µ<κ many times,
not enlarging the density. That is, we construct a continuous chain of Banach
spaces {Zα}α<θ, where θ = µ<κ, Z0 = X and Zα+1 = Z(Zα) for α < θ. We
claim that the resulting Banach space Y =

∪
α<θ Zα is of universal disposition

for spaces of density < κ. Its density is exactly µ<κ. The only thing is to
check that the cofinality of θ is > κ. In fact, a well known fact from cardinal
arithmetic says that θcf(θ) > θ. On the other hand, θλ = θ for every θ < κ.
Thus, indeed, the cofinality of θ is > κ and therefore every subspace of Y that
is of density < κ is actually contained in some Zα. This completes the proof.

Since c<ℵ1 = cℵ0 = c, we obtain the following corollary, without extra
assumptions on cardinal arithmetic.

Corollary 4.3. ([3]) There exists a Banach space of density c which is
of universal disposition for separable Banach spaces.

The arguments from the last part of the proof of Theorem 4.2 show that
the construction could be somewhat optimized. Namely, since we know that
µ<κ has cofinality > κ and clearly µ<κ > 2<κ > κ, we conclude that either
µ<κ = κ and κ is a regular cardinal, or else µ<κ > κ+ and κ+ is always a
regular cardinal. Thus, the space Y can be constructed as the union of a
continuous chain of length either κ (if κ is regular) or κ+ (if κ is singular).
On the other hand, it is not clear whether taking the shorter chain we really
obtain a different Banach space.
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The theorem above does not say anything about uniqueness. The only
known fact, coming from the general Fräıssé-Jónsson theory, is as follows.

Theorem 4.4. Let κ be an uncountable cardinal satisfying κ<κ = κ.
Then there exists a unique, up to isometry, Banach space Vκ of density κ
and of universal disposition for Banach spaces of density < κ. Furthermore,
every isometry between subspaces of Vκ of density < κ extends to a bijective
isometry of Vκ.

Proof. The existence of Vκ is an application of Theorem 4.2 with µ = κ.
The second statement and the uniqueness of Vκ follow from Proposition 4.1(2).

Note that Theorem 4.2 shows the existence of strong Gurarĭı spaces. In
fact, all spaces that are UD(D<κ) are strong Gurarĭı, but on the other hand
one can construct a strong Gurarĭı space using pushouts with finite-dimensional
spaces only. As proved in [3], such a space is not UD(sep). We explain the
details in Section 6, showing that it is even not universal for spaces of density
ℵ1.

Note that the “pushout construction” can be continued “forever”. In
other words, there is no upper bound for the density of a strong Gurarĭı
space. In fact, a well-known property of infinite cardinals is that if µ<κ = µ
then (µ+)<κ = µ+, therefore one can use Theorem 4.2 to construct spaces of
UD(D<κ) that are of densities µ+, µ++, and so on. The problem of existence
arises when one reaches a limit cardinal, however it can always be “skipped”,
replaced by its successor.

In view of the recent results of Avilés and Brech [2], a strong Gurarĭı space
of density c constructed by pushouts is in some sense unique, as long as c is a
regular cardinal.

5. On the structure of strong Gurarĭı spaces

The following had already been observed by Gurarĭı. The proof comes
from his work [7].

Proposition 5.1. No separable Banach space can be a strong Gurarĭı
space.

Proof. Suppose U is a separable strong Gurarĭı space. For every two points
a, b on the unit sphere of U there exists a unique linear isometry f : Xa → Xb
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satisfying f(a) = b, where Xa, Xb are linear spans of {a} and {b} respectively.
Applying Proposition 4.1(2), we conclude that for every two points a, b on the
unit sphere of U there exists a bijective isometry h of U such that h(a) = b.

Now, using a theorem of Mazur on the existence of smooth points on the
unit sphere in every separable Banach space, we deduce that every point on
the unit sphere of U is smooth. Recall that p ∈ SU is smooth if there exists
only one functional φ ∈ U∗ such that ∥φ∥ = 1 = φ(p).

Finally, we get a contradiction by applying Proposition 4.1(1) which says
that every separable Banach space is isometric to a subspace of U ; in particular
the unit sphere of U must contain non-smooth points. Note that a point that
is non-smooth in a subspace of U cannot be smooth in U , by the Hahn-Banach
extension theorem.

A Banach space X is called transitive if for every a, b in the unit sphere
of X there exists a bijective isometry h : X → X such that h(a) = b. The
argument above shows that a transitive separable space must be smooth. This
is closely related to Mazur’s rotation problem: Does there exist a separable
transitive Banach space, different from the Hilbert space? According to our
knowledge, this problem is still open.

Recall that a Banach space X is 1-injective for finite-dimensional spaces
if for every pair E ⊆ F of finite-dimensional spaces, every bounded linear
operator f : E → X extends to an operator g : F → X with ∥g∥ = ∥f∥.

Proposition 5.2. The Gurarĭı space is not 1-injective for finite-dimen-
sional Banach spaces.

Proof. According to [21, Example 6.2], there exists a Banach space E =
C(K), where K is a metric compact space, that is not 1-injective for finite-
dimensional Banach spaces. Every C(K) space is a π∞1 space (see [18]), there-
fore by Theorem 2.18 the space E is 1-complemented in the Gurarĭı space G.
Finally, if G were 1-injective for finite-dimensional spaces, then so would be
E, a contradiction.

The following negative result is in contrast to Theorem 3.7.

Theorem 5.3. Let E be a non-separable strong Gurarĭı space and let G
be a skeleton in E. Then there exists G ∈ G that is not 1-complemented in
E.

Proof. Suppose G is a skeleton in E such that eachG ∈ G is 1-complemented
in E. By Theorem 3.4 and Proposition 3.1, we may assume that each member
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of G is linearly isometric to the Gurarĭı space G. We now claim that G is
1-injective for finite-dimensional spaces, which in view of Proposition 5.2 is a
contradiction.

Fix finite-dimensional spaces X ⊆ Y and fix an operator f : X → E with
∥f∥ 6 1. By the Pushout Lemma, there are a finite-dimensional space W ,
an isometric embedding j : f [X] → W and a linear operator g : Y → W such
that ∥g∥ 6 1 and g � X = j ◦ f . There exists G ∈ G such that f [X] ⊆ G. Let
P : E → E be a projection such that ∥P∥ = 1 and P [E] = G. Using the fact
that E is a strong Gurarĭı space, we find an isometric embedding k : W → E
such that k◦j is the inclusion f [X] ⊆ E. The operator P ◦k◦g is an extension
of f and has norm 6 1.

Note that exactly the same proof shows that G is not a strong Gurarĭı
space. This argument does not use Mazur’s theorem on the existence of
smooth points.

Recall that a Banach space is weakly Lindelöf determined if its dual has
a weak star continuous one-to-one linear operator into some Σ-product of the
real lines, i.e., a linear topological space of the form

Σ(Γ) =
{
x ∈ RΓ : |{γ : x(γ) ̸= 0}| 6 ℵ0

}
,

endowed with the product topology. This class of Banach spaces contains
all weakly compactly generated (in particular, all reflexive) spaces. It is well
known (see, e.g., [10, Ch. 19]) that a weakly Lindelöf determined Banach
space always contains a skeleton of 1-complemented subspaces and this does
not depend on the norm of the space (i.e. it holds after any renorming). Thus,
Theorem 5.3 gives the following

Corollary 5.4. No strong Gurarĭı space can be weakly Lindelöf deter-
mined.

One can go further and conclude that no strong Gurarĭı space has a mono-
tone (transfinite) Schauder basis (see, e.g., [16] for the definition and results
on transfinite Schauder bases). The reason is again that such a space has a
skeleton of 1-complemented spaces (with standard monotone Schauder bases).
This property, however, is not preserved after renormings and indeed it is not
clear whether there exists a strong Gurarĭı space with any transfinite Schauder
basis, or more generally, isomorphic to a space with a projectional resolution
of the identity.
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6. The role of c0

A well known theorem of Sobczyk [19] says that c0 is complemented in
every separable Banach space. More precisely, for every isometric embedding
i : c0 → X with X separable, there exists a linear operator T : X → c0 satis-
fying T ◦ i = idc0 and ∥T∥ 6 2 (see, e.g., the proof of Sobczyk’s theorem in
[10, Thm. 17.2]). We are going to prove the same for the class of “pushout
generated” Banach spaces that includes some strong Gurarĭı spaces (see [3] or
remarks after the proof of Theorem 4.4 above). As a consequence, we answer
Problem 1 from [3].

The next fact explains why complementability of c0 forces the space not
to be of universal disposition for Banach spaces of density 6 ℵ1. For this aim
we need to know the fact that Sobczyk’s theorem fails for Banach spaces of
density ℵ1 (regardless of the validity of the continuum hypothesis).

Recall that a family A of infinite subsets of N is almost disjoint if A∩B is
finite for every A ̸= B in A. There is a natural locally compact topology on
N ∪ A whose base consists of all the singletons of N and all sets of the form
{A}∪ (A\F ) with F ⊆ N finite. Let KA be the one-point compactification of
this space. In the literature, spaces of the form KA are often called Mrówka
compacta, although they were considered first by Alexandroff and Urysohn
[1]. Notice that C(KA) has a natural isometric copy of c0; the standard basis
consists of all characteristic functions of the singletons of N. This copy of c0
is not complemented in C(KA), unless A is countable. For the proof, see [10,
Cor. 17.4]. Clearly, A can be taken so that |A| = ℵ1 and therefore c0 is not
complemented in some Banach space of density ℵ1.

Proposition 6.1. Let X be a Banach space of UD(sep). Then no copy
of c0 can be complemented in X.

Proof. Let Z = C(KA) for some almost disjoint family A of cardinality ℵ1

and consider c0 as the canonical non-complemented copy of Z. Let E ⊆ X be
isomorphic to c0 and let f : c0 → E be an isomorphism. Using Lemma 1.1,
find an equivalent norm on Z such that f becomes an isometry. By Proposi-
tion 4.1(0), there is an isometry g : Z → X such that g � c0 = f . It is now
clear that E cannot be complemented in g[Z] ⊆ X, therefore it cannot be
complemented in X.

We are now going to show that Sobczyk’s theorem holds in a class of
Banach spaces containing strong Gurarĭı spaces of arbitrarily large density.
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Definition 6.2. Let POfd denote the class of all Banach spaces that can
be obtained as the limit (i.e. the completion of the union) of a transfinite
chain {Xα}α<ϱ such that X0 is separable, Xδ = cl(

∪
ξ<δXξ) for every limit

ordinal δ < ϱ and for each α < ϱ, the space Xα+1 comes from the pushout
square

Xα
⊆ // Xα+1

Eα

jα

OO

⊆
// Fα

OO

where Eα ⊆ Fα are finite-dimensional spaces and jα is an isometric embedding.
More specifically, we shall write X ∈ POfd(Y ) if X is the limit of a chain as
above, in which Y = X0.

As mentioned before, it has been proved in [3] that the class POfd contains
strong Gurarĭı spaces (see the proof of Theorem 4.2 and comments in the end
of Section 4).

Before proving our result, we need the following lemma, which can be
easily deduced from a variant of [2, Lemma 20] involving finite-dimensional
spaces.

Lemma 6.3. Let Z be a separable subspace of a space X ∈ POfd. Then
there exists a separable space Y ⊆ X such that Z ⊆ Y and X ∈ POfd(Y ).

Theorem 6.4. Let X ∈ POfd. Then every copy of c0 is complemented
in X.

Proof. Let C ⊆ X be isometric to c0. By Lemma 6.3, we may assume
that C ⊆ X0 for some separable space X0 such that X = cl(

∪
ξ<ϱXξ), where

the chain {Xξ}ξ<ϱ satisfies the conditions in Definition 6.2. By Sobczyk’s
theorem, there exists a projection P : X0 → C with ∥P∥ 6 2.

Set P0 = P . We now construct inductively projections Pα : Xα → C so
that Pβ extends Pα whenever β > α and ∥Pα∥ = ∥P∥ for every α. Suppose
Pξ have been constructed for ξ < α. If α is a limit ordinal, we define Pα to
be the pointwise limit of {Pξn}n∈ω, where ξ0 < ξ1 < · · · < α converges to α.
Here we have used the fact that Xα is the closure of

∪
n∈ωXξn .
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Now suppose α = η + 1 and fix a pushout square

Xη
⊆ // Xα

E

j

OO

⊆
// F

k

OO

defining Xα, with finite-dimensional spaces E,F . Using the fact that c0 is
1-injective for finite-dimensional spaces, we find a linear operator T : F → C
satisfying T � E = Pη ◦ j and ∥T∥ = ∥Pη ◦ j∥ = ∥Pη∥. By the pushout
property, there exists a unique operator Pα : Xα → C satisfying Pα � Xη = Pη,
Pα ◦ k = T and ∥Pα∥ = ∥Pη∥.

Finally, P = limξ<ϱ Pξ is the required projection.

It has been shown in [3] (with almost the same arguments) that if X ∈
POfd(Y ), where Y is linearly isometric to c0, then Y is 1-complemented in
X.

Corollary 6.5. Let X ∈ POfd. Then X cannot contain any isomorphic
copy of C(KA), where A is an almost disjoint family of infinite subsets N and
|A| = ℵ1.

This answers Problem 1 from [3]: There exist strong Gurarĭı spaces (of
arbitrarily large density) that are not universal for Banach spaces of density
ℵ1.

7. Final remarks and open problems

Below we collect some open questions; some of them are motivated by the
results described in previous sections.

Minimal density. It is not clear what the minimal density of a strong
Gurarĭı space is. The only known bound is the continuum. A more concrete
question is:

Question 7.1. Does there exist, without extra set-theoretic assumptions,
a strong Gurarĭı space of density ℵ1?

Question 7.2. Assuming c < ℵω, does there exist a strong Gurarĭı space
of density ℵω?
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Note that ℵω is the smallest singular cardinal and it has cofinality ω;
therefore always c ̸= ℵω.

Schauder bases. A Banach space with a PRI and of density ℵ1 has
a countably 1-norming Markushevich basis (see, e.g., [10, Section 17.8]). A
Markushevich basis can be viewed as a natural “non-separable” generalization
of Schauder bases, although, contrary to Schauder bases, it exists in every
separable Banach space. Theorem 3.7 motivates the following

Question 7.3. Does there exist a Gurarĭı space of density ℵ1 with a
monotone transfinite Schauder basis?

Note that by Theorem 5.3 such a space cannot be strong Gurarĭı. Let
us mention that some of the “generic” Banach spaces constructed in [16] are
Gurarĭı, although none of them has a transfinite Schauder basis.

Question 7.4. Does there exist a strong Gurarĭı space, isomorphic to a
Banach space with a PRI?

Question 7.5. Does there exist a non-separable weakly Lindelöf deter-
mined (or better: weakly compactly generated) Gurarĭı space?

Again, this cannot be a strong Gurarĭı space. Note that every weakly
Lindelöf determined Banach space has a countably 1-norming Markushevich
basis.

Renormings. Recall that a norm ∥·∥ is rotund if ∥x+y∥ = 2∥x∥ = 2∥y∥
implies x = y. A rotund renorming is an equivalent norm that is rotund.
Many non-separable Banach spaces have rotund renormings, for a general
treatment we refer to the book [4]. A result of Zizler [22] says that the existence
of a renorming stronger than rotund (namely: locally uniformly rotund) is
preserved by a PRI. In particular, every Banach space of density ℵ1 and with
a PRI has a rotund renorming. In view of Theorem 3.7, there exist non-
separable Gurarĭı spaces admitting a rotund renorming. This suggests:

Question 7.6. Does there exist a strong Gurarĭı space with a rotund
renorming?

A typical example of a Banach space with no rotund renorming is ℓ∞/c0
(see [4]). Unfortunately, this space has density c and the following interesting
question, due to Antonio Avilés, seems to be open.
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Question 7.7. Does there exist, without extra set-theoretic assumptions,
a Banach space X of density exactly ℵ1 and with no rotund renorming?

A positive answer to this question would yield a simple and direct proof
of the following result.

Theorem 7.8. No Banach space of universal disposition for separable
spaces can have a rotund renorming.

Indeed, a space of UD(sep) contains copies of all Banach spaces of density
ℵ1, so all of them would have to admit rotund renormings. Assuming CH,
this gives a contradiction. Still, the statement above is a theorem. For readers
familiar with the technique of forcing, we sketch a “metamathematical” proof,
involving absoluteness.

Proof. Suppose the statement above is not a theorem, i.e. it is not a
consequence of the usual axioms of set theory. By Gödel’s completeness, there
exists a model of set theory V that contains a Banach space X of UD(sep) with
rotund renorming. There exists an extension W of V (obtained by forcing)
such that W is a model of set theory in which the continuum hypothesis holds
and, moreover, for every function φ : ω → S in W if S ∈ V then φ ∈ V. The
last property of W implies that X is a Banach space in W and it is of UD(sep).
The latter fact is because W does not contain “new” separable Banach spaces.
Finally, X still has a rotund renorming, since this property is preserved. This
leads to a contradiction, since in W the space X contains a copy of ℓ∞/c0.

Ultra-homogeneity. Let K be a class of Banach spaces. We say that a
Banach space X is homogeneous with respect to K if every bijective isometry
between two subspaces of X that are in class K extends to an isometry of
X onto itself. If K contains all 1-dimensional subspaces of X, homogeneity
implies transitivity. In fact, the difficulty of Mazur’s problem on rotations
exhibits the fact that so far the Hilbert space is the only known example of a
separable Banach space homogeneous for finite-dimensional spaces. Now let
K = D<κ, the class of all Banach spaces of density< κ. Proposition 4.1(2) says
that every space of UD(K) and of density κ is homogeneous with respect to K.
On the other hand, in view of the results of [2], there exist (arbitrarily large)
Banach spaces of UD(sep) that are homogeneous with respect to separable
subspaces. It is not clear what happens with strong Gurarĭı spaces.
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Question 7.9. Does there exist a strong Gurarĭı space, homogeneous
with respect to finite-dimensional subspaces and not of universal disposition
for separable spaces?

Question 7.10. Does there exist a strong Gurarĭı space that is not ho-
mogeneous for finite-dimensional spaces?

In fact, we do not know the answer to a more general question:

Question 7.11. Does there exist a Banach space of UD(D<κ) that is not
homogeneous with respect to D<κ?

We finish with the following problem whose solution may lead to a better
understanding of Mazur’s rotation problem.

Problem 7.12. Find a class K of finite-dimensional Banach spaces with
the following properties:

(i) K is hereditary (i.e. X ⊆ Y ∈ K implies X ∈ K).

(ii) All spaces in K are smooth.

(iii) For each n ∈ N, K contains a space of dimension n.

(iv) K has the amalgamation property. That is, given isometric embeddings
i : Z → X, j : Z → Y with X,Y ∈ K, there exist W ∈ K and isometric
embeddings i′ : X →W , j′ : Y →W satisfying j′ ◦ j = i′ ◦ i.

(v) K is not dense (with respect to the Banach-Mazur distance) in the class
of all finite-dimensional Banach spaces.

(vi) K is not the class of Euclidean spaces.

Actually, it is desirable to replace condition (vi) by a formally stronger
one: K contains a chain {Xn}n∈ω such that the completion of

∪
n∈ωXn is not

isomorphic to the Hilbert space.

Having such a class K, one would be able to construct a Banach space
GK satisfying the definition of the Gurarĭı space for finite-dimensional spaces
from class K only. If the class K had an additional property that GK remains
smooth (which does not follow from condition (ii)), Gurarĭı’s argument would
not be applicable for showing that GK is not transitive. In any case, GK

would be a new Banach space “almost” homogeneous with respect to its finite-
dimensional subspaces and not isomorphic to the Hilbert space.
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[7] V.I. Gurarĭı, Spaces of universal placement, isotropic spaces and a problem

of Mazur on rotations of Banach spaces (in Russian), Sibirsk. Mat. Ž. 7
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