
E extracta mathematicae Vol. 26, Núm. 1, 153 – 163 (2011)
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Abstract : Let R be a commutative ring and M be an R-module. We associate to M a
graph denoted by, Γ(M) called the torsion graph of M , whose vertices are the non-zero
torsion elements of M and two distinct elements x, y are adjacent if and only if [x : M ][y :
M ]M = 0. We investigate the interplay between module-theoretic properties of M and
graph-theoretic properties of Γ(M). Among other results, we prove that Γ(M) is connected
and diam(Γ(M)) ≤ 3 for a faithful R-module M .
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1. Introduction

The concept of a zero-divisor graph of a commutative ring was introduced
by I. Beck in 1988 [7]. He let all elements of the ring be vertices of the graph
and was interested mainly in colorings. This investigation of colorings of a
commutative ring was then continued by Anderson and Naseer in [4]. In [3],
Anderson and Livingston introduced and studied the zero-divisor graph whose
vertices are the non-zero zero-divisors and where x − y is an edge whenever
xy = 0. The zero-divisor graph of a commutative ring has been studied
extensively by Anderson, Frazier, Lauve, Levy, Livingston and Shapiro, see
[2, 3]. The zero-divisor graph concept has been extended to non-commutative
rings by Redmond in [14]. The zero-divisor graph has also been introduced
and studied for semigroups by DeMeyer and Schneider in [9], and for near-
rings by Cannon et al. in [8].

Let R be a commutative ring with identity and M be a unitary R-module.
In this paper, we will investigate the concept of a torsion-graph for modules
as a natural generalization of the zero-divisor graph for rings, which has been
defined by Ghalandarzadeh and Malakooti Rad in [12]. The residual of Rx by
M , denoted by [x : M ], is the set of elements r ∈ R such that rM ⊆ Rx for
x ∈ M . The annihilator of an R-module M denoted by AnnR(M) is [0 : M ].
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Let T (M) be the set of elements of M such that Ann(m) ̸= 0. It is clear
that if R is an integral domain, then T (M) is a submodule of M , and it is
called torsion submodule of M . If T (M) = 0, then the module M is said
to be torsion-free, and it is called a torsion module if T (M) = M . Here the
torsion graph Γ(M) of M is a simple graph whose vertices are the non-zero
torsion elements of M , and two distinct elements x, y are adjacent if and only
if [x : M ][y : M ]M = 0. Thus, Γ(M) is an empty graph if and only if M
is a torsion-free R-module. In this paper, we will investigate the interplay of
module properties of M in relation to the properties of Γ(M). We believe
that this study helps illuminate the structure of T (M). For example, if M
is a faithful multiplication R-module, we show that M is finite if and only if
Γ(M) is finite. Also, we think that torsion graphs help us study the algebraic
properties of modules using graph-theoretical tools. For x, y ∈ T (M)∗ =
T (M) − {0}, define x ∼ y if [x : M ][y : M ]M = 0 or x = y. The relation ∼
is always reflexive and symmetric, but is usually not transitive. The torsion
graph Γ(M) measures this lack of transitivity in the sense that it is transitive
if and only if Γ(M) is complete.

An R-module M is called a multiplication module if for every submodule
K of M , there exists an ideal I of R such that K = IM (Barnard [6]). A
proper submodule N of M is called a prime submodule of M , if rm ∈ N
(where r ∈ R and m ∈ M) implies that m ∈ N or r ∈ [N : M ].

Recall that a graph is finite if both its vertices set and edge set are finite,
and we use symbol |Γ(M)| to denote the number of vertices in the graph
Γ(M). Also, a graph G is connected if there is a path between any two distinct
vertices. The distance d(x, y) between connected vertices x, y is the length
of a shortest path from x to y (d(x, y) = ∞ if there is no such path). The
diameter of G is the diameter of a connected graph, which is the supremum
of the distances between vertices. The diameter is 0 if the graph consists of
a single vertex. The girth of G, denoted by gr(G), is defined as the length of
the shortest cycle in G (gr(G) = ∞ if G contains no cycles).

In section 2, we give many examples and we show that Γ(M) is always
connected with diam(Γ(M)) ≤ 3 if M is a faithful R-module.

Throughout the paper, for N ⊆ M , we let N∗ = N − {0}. As usual,
the rings of integers and integers modulo n will be denoted by Z and Zn,
respectively. We use the symbol (x, y) or x + y to denote the elements of
M = M1 ⊕M2. Also, we use the symbol (M)R to denote M as an R-module.

Nil(M) :=
∩

N∈Spec(M)

N ,
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where Spec(M) is a set of the prime submodules of M , and finally, let

D(M) :=
{
m ∈ M : [m : M ][m′ : M ]M = 0 for some non-zero m′ ∈ M

}
.

To avoid trivialities when Γ(M) is empty, we will assume implicitly when
necessary that M is not torsion-free.

2. Properties of Γ(M)

In this section, we show that if M is faithful then Γ(M) is connected and
has small diameter and girth.

Example 2.1. (a) Let M = M1 ⊕M2 be an R-module, where M1 is a
torsion-free module. So T (M)∗ = {(0,m2) : m2 ∈ T (M2)

∗} and [(0,m2) :
M ] = 0. Hence Γ(M) is a complete graph. Below are the torsion graphs for
several modules. Note that these examples show that non-isomorphic modules
may have the same torsion graph.s
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(b) By part (a) above, all connected graphs with less than four vertices
may be regarded as Γ(M). Of the eleven graphs with four vertices, only six
graphs are connected. Of these six graphs, only the following three graphs
may be realized as Γ(M), when M is a faithful multiplication R-module, by
[3, Example 2.1], there are three Γ(R).
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It is clear that every ring R is a multiplication R-module. We next explain
a proof that the graph G with vertices {a, b, c, d} and edges a − b, b − c,
c− d cannot be realized as Γ(M). Suppose that there is a ring R and faithful
multiplication R-module M with T (M)∗ = {a, b, c, d} together with only the
above torsion relations. Observe that

[a : M ][b : M ]M = 0 = [b : M ][c : M ]M ,

so
[b : M ]a = 0 = [b : M ]c

and [b : M ][a + c : M ]M = 0. Hence a + c ∈ T (M)∗ and so a + c must be
either a, b, c or d. If a + c = a or a + c = c, then a = 0 or c = 0 and we
have a contradiction. Also, if a + c = d, then [d : M ][b : M ]M = 0, which
is a contradiction. Therefore, a + c = b is the only possibility. Similarly,
b + d = c. Hence b = a + c = a + b + d; so [a : M ][d : M ]M = 0, which is a
contradiction. The proofs for the other two non-realizable connected graphs
on four vertices are similar.

Theorem 2.2. If M is a multiplication R-module, then Γ(M) can not be
an n-gon for n ≥ 5.

Proof. Let G be the graph with vertices {a1, a2, . . . , an} and Γ(M) be a
graph with edges

{a1 − a2, a2 − a3, . . . , an−2 − an−1, an−1 − an, an − a1} .

Since
[a1 : M ][a2 : M ]M = 0 = [a1 : M ][an : M ]M ,

it follows that [a1 : M ][a2 + an : M ]M = 0. Thus, a2 + an must be either
a1, a2, . . . , an−1 or an. A simple check yields that a2 + an = a1 is the only
possibility. Similarly, a1 + an−1 = an. Hence

an = a1 + an−1 = a2 + an + an−1 ;

so [a3 : M ][an−1 : M ]M = 0, is a contradiction. Consequently Γ(M) can not
be an n-gon for n ≥ 5.
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An r-partite graph is one whose vertex set can be partitioned into r subsets
so that no edge has both ends in any one subset. A complete r-partite graph
is one in which each vertex is joined to every vertex that is in another subset.
The complete bipartite graph (i.e., 2-partite graph) with vertex sets having m
and n elements, respectively, will be denoted by Km,n. A complete bipartite
graph of the form K1,n is called a star graph.

Example 2.3. Let M1 be a multiplication torsion-free R1-module and M2

be a multiplication torsion-free R2-module, thenM = M1×M2 is R = R1×R2

module with multiplication

R×M −→ M , (r1, r2)(m1,m2) = (r1m1, r2m2) .

Γ(M) is a complete bipartite graph (i.e., Γ(M) may be partitioned into two
disjoint vertex sets

V1 = {(m1, 0) : m1 ∈ M∗
1 } , V2 = {(0,m2) : m2 ∈ M∗

2 }

and two vertices x and y are adjacent if and only if they are in distinct vertex
sets), with |Γ(M)| = |M1|+ |M2| − 2. Here are two specific examples:
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We know that Γ(M) may be infinite(i.e., R-module M has infinite torsion
elements). But an interesting case occurs when Γ(M) is finite, because in a
finite case a drawing of the graph is possible. First, we focus one’s attention
on the infinite graphs and later in this article we will consider the interesting
case of finite graphs, and the next theorem shows that Γ(M) is finite (except
when Γ(M) is empty) if and only if M is finite.

Theorem 2.4. Let R be a commutative ring and M be a faithful multi-
plication R-module. Then Γ(M) is finite if and only if either M is finite or
M is a torsion free R-module. If 1 ≤ |Γ(M)| < ∞, then M is finite and not
torsion-free.
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Proof. Suppose that Γ(M)(= T (M)∗) is finite and nonempty. Then there
exists x ∈ T (M)∗ such that rx = 0 for some r ∈ R. Let N := [x : M ]M and
let 0 ̸= s ∈ [x : M ]; we know rn = 0 for all n ∈ N . Hence N ⊆ T (M)∗ is
finite and sm ∈ N for all m ∈ M . If M is infinite, then there is a n ∈ N
with H = {m ∈ M : sm = n} infinite. For all distinct elements m1,m2 ∈ H,
s(m1 −m2) = 0. So m1 −m2 ∈ T (M)∗ is infinite, is a contradiction. Thus,
M must be finite.

The following example shows that the multiplication condition is not su-
perfluous.

Example 2.5. Let M = Z ⊕ Z3 as Z-module. Clearly M is not a finite
multiplication module, but T (M)∗ = {(0, 1̄), (0, 2̄)} and so Γ(M) is finite.

Example 2.1 (a), gives several R-modules with diam(Γ(M)) = 0, 1 or 2. In
R = Z2⊕Z4, the path (0̄, 1̄)−(1̄, 0̄)−(0̄, 2̄)−(1̄, 2̄) shows that diam(Γ(RR)) =
3. Now we next show that the torsion graphs of faithful R-modules are all
connected with diameter ≤ 3.

Theorem 2.6. Let R be a commutative ring and M be a faithful R-
module. Then Γ(M) is connected and diam(Γ(M)) ≤ 3. Moreover, if Γ(M)
contains a cycle, then gr(Γ(M)) ≤ 7.

Proof. Let x, y ∈ T (M)∗ be two distinct elements. If [x : M ] or [y : M ]
or [x : M ][y : M ] is zero, then d(x, y) = 1. Therefore, we suppose that
[x : M ][y : M ] is nonzero, so there is a non-zero element α ∈ [x : M ][y : M ].

If [x : M ]2 = [y : M ]2 = 0, then there exists m ∈ M such that αm ∈
T (M)∗, and hence x − αm − y is a path of length 2; thus, d(x, y) = 2. Now
suppose that [x : M ]2 = 0 and [y : M ]2 ̸= 0, since y ∈ T (M)∗, sy = 0 for
some 0 ̸= s ∈ R. Now we consider the case [x : M ] Ann(y) = 0. In this case
sm0 ∈ T (M)∗ for some m0 ∈ M and so x − sm0 − y is a path of length 2.
In the other case, if [x : M ] Ann(y) ̸= 0, then m1 := α1tm ∈ T (M)∗ for some
non-zero elements α1 ∈ [x : M ], t ∈ Ann(y), m ∈ M and x−m1 − y is a path
of length 2. A similar argument holds if [x : M ]2 ̸= 0, [y : M ]2 = 0. Thus, we
may assume that [x : M ]2, [y : M ]2 and [x : M ][y : M ] are all nonzero.

If Ann(x) ̸⊆ Ann(y) and Ann(y) ̸⊆ Ann(x), then there are non-zero el-
ements r, s ∈ R such that rx = 0, ry ̸= 0 and sx ̸= 0, sy = 0; hence
ry, sx ∈ T (M)∗. Now if ry ̸= sx, then x − ry − sx − y is a path of length
3. In the other case, if ry = sx, then x − ry − y is a path of length
2. Therefore, d(x, y) ≤ 3. Thus, we may assume that Ann(x) ⊆ Ann(y)
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or Ann(y) ⊆ Ann(x), if Ann(x) ⊆ Ann(y), then rm ∈ T (M)∗ for some
r ∈ Ann(x), m ∈ M and x − rm − y is a path of length 2. A similar ar-
gument holds if Ann(y) ⊆ Ann(x). Hence d(x, y) ≤ 3; thus, diam(Γ(M)) ≤ 3.
The “moreover ” statement follows from [10, Proposition 1.3].

The following example shows that the faithful condition is not superfluous.

Example 2.7. LetM = Z2⊕Z3 as Z-module; then Γ(M) is not connected.

s s s
s s

Anderson and Livingston [3], proved that if Γ(R) contains a cycle, then
gr(R) ≤ 7. They also proved that gr(R) ≤ 4 when R is Artinian. The
following theorem shows that gr(R) ≤ 4 for any commutative rings.

Theorem 2.8. Let M be a multiplication R-module. If Γ(M) contains a
cycle, then gr(Γ(M) ≤ 4.

Proof. Let
m0 −m1 −m2 − · · · −mn −m0

be the shortest cycle of T (M) for n > 4. If

[m1 : M ][mn−1 : M ]M = 0 ,

then Γ(M) contains a cycle

m1 −m2 − · · · −mn−1 ,

which is a contradiction. So there exist non-zero elements α ∈ [m1 : M ],
β ∈ [mn−1 : M ] and m ∈ M such that αβm ∈ V (Γ(M)). If αβm ̸= m0

and αβm ̸= mn, then Γ(M) contains a cycle m0 − αβm − mn − m0 is a
contradiction. Therefore,

αβm = m0 or αβm = mn .

So, without loss of generality, assume αβm = m0; thus [m0 : M ]m0 = 0.
Now we show that Rm0 = {0,m0} ⊂ Rm1. If there exists a non-zero element
x ∈ Rm0 such that x ̸= m0, then m0 − m1 − x − m0 is a cycle of length 3,
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which is a contradiction. Hence, there exists y ∈ Rm1 such that y ̸= 0 and
y ̸= m1. By a routine argument we obtain y ̸= m0 and y ̸= m2; therefore,
m0 − m1 − m2 − y − m0 is a cycle of length 4, which is a contradiction.
Consequently, gr(Γ(M) ≤ 4.

Theorem 2.9. Let M be a multiplication R-module. Then there is a
vertex of Γ(M) which is adjacent to every other vertex if and only if either
M = M1 ⊕M2 is a faithful R-module, where M1 and M2 are two submodules
of M such that M1 has only two elements, M2 is finitely generated with
T (M) = {(x, 0), (0,m2) : x ∈ M1, m2 ∈ M2}, or T (M) = IM , where I is
an annihilator ideal of R (and hence if T (M) ̸= M , then T (M) is a prime
submodule).

Proof. (=⇒) Suppose that T (M) ̸= IM for all annihilator ideal I of
R and let x ∈ T (M)∗ be adjacent to every other vertex. Since T (M) ̸=
Ann(x)M , we have x ̸∈ Ann(x)M . We divide the proof of the theorem into 6
claims, which are of some interest in their own right.

Claim 1 : N = Ann(x)M is a prime submodule of M . It is clear that N ̸=
M , let rm ∈ N and m ̸∈ N for non-zero elements m ∈ M , r ∈ R, therefore,
r[m : M ][x : M ]M = 0, so rkx = 0 for all k ∈ [m : M ], hence r ∈ Ann(kx).
But there is k ∈ [m : M ] such that kx ∈ T (M)∗, so Ann(kx)M ⊆ Ann(x)M .
Thus, rM ⊆ N and r ∈ [N : M ]. Therefore, N is a prime submodule and as
a consequence [N : M ] is a prime ideal.

Claim 2 : [x : M ]M = [x : M ]2M . If [x : M ]M ̸= [x : M ]2M , then
x ̸∈ [x : M ]2M , so x ̸= αx for all α ∈ [x : M ]. Since αx = 0 or αx ∈ T (M)∗

and [αx : M ][x : M ]M = 0, hence α3M = 0, therefore, α3 ∈ Ann(x). Since
N is a prime submodule, αM ⊆ N , thus, x ∈ N , which is a contradiction.
Therefore, [x : M ]M = [x : M ]2M .

Claim 3 : M = Rx ⊕ Ann(x)M . Since [x : M ]M = [x : M ]2M , we have
Rx = [x : M ]x. We know that Rx is a weakly cancellation R-module and so
R = [x : M ] + Ann(x). A simple check yields M = Rx ⊕ Ann(x)M . Hence,
we may assume that M = Rx⊕M2 with (x, 0) adjacent to every other vertex.

Claim 4 : Rx = {0, x}. Let c ∈ Rx, then (c, 0) ∈ T (M)∗ and [(c, 0) :
M ][(x, 0) : M ]M = 0 and hence [(c, 0) : M ]x = 0, so c = 0.

Claim 5 : M2 is finitely generated. We claim thatD(M2) = 0. IfD(M2) ̸=
0, then there is a 0 ̸= m2 ∈ M2, such that

[m2 : M2][m
′
2 : M2]M2 = 0
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for some 0 ̸= m′
2 ∈ M2. Thus, (x,m′

2) ∈ T (M)∗ which is adjacent to (x, 0);
therefore, x = 0, which is a contradiction, consequently D(M2) = 0. Let
st ∈ Ann(M2) for s, t ∈ R. So stM2 = 0 hence

[sM2 : M2][tM2 : M2]M2 = 0 .

Since D(M2) = 0 we have sM2 = tM2 = 0. Thus, Ann(M2) is prime ideal of
R. Hence M2 is a faithful R

Ann(M2)
-module and R

Ann(M2)
is an integral domain

and by [1, p. 572], M2 is a finitely generated R
Ann(M2)

-module, and so M2 is a
finitely generated R-module.

Claim 6 : M is a faithful module. Now suppose that 0 ̸= r ∈ Ann(x) ∩
Ann(m2) for some m2 ∈ M2, hence [(x, 0) : M ][(x,m2) : M ]M = 0 and
[x : M ]2M = 0, is a contradiction. Therefore, Ann(x) ∩ Ann(M2) = 0. So M
is a faithful module and T (M) = {(x, 0), (0,m2) : x ∈ M1, m2 ∈ M2}.

(⇐=) If M = M1 ⊕ M2, where M1 has only two elements {0, x} and
T (M) = {(x, 0), (0,m2) : m2 ∈ M2}, then (x, 0) is adjacent to every other
vertex. And if T (M) = Ann(x)M for some non-zero x ∈ M , then x is adjacent
to every other vertex.

If R is reduced, M is a faithful multiplication R-module and Γ(M) has
a vertex adjacent to every other vertex, then M must have the form M =
M1 ⊕M2 where M1 has only two elements and M2 is finitely generated.

Let Spec(M) = {N < M : N is a prime submodule} and Max(M) =
{H < M : H is a maximal submodule }, by [11, Theorem 2.5], for a multi-
plication R-module M , H ∈ Max(M) if and only if M ̸= H = QM for some
maximal ideal Q of R.

Corollary 2.10. LetM be a finite multiplication R-module. Then there
is a vertex of Γ(M) that is adjacent to every other vertex if and only if either
M = M1 ⊕M2 is a faithful R-module, where M1, M2 are two submodules of
M such that M1 has only two elements and M2 is simple, or R is a local ring
(and hence |Max(M)| = 1).

Proof. (=⇒) Let M be a finite multiplication R-module. By Theorem
2.9, either M = M1⊕M2 or T (M) = IM where I is an annihilator ideal of R.
Let M = M1⊕M2, so M2 is finite, hence M2 is an Artinian R-module, also by
[11, Theorem 2.2 and Corollary 2.9], M2 is cyclic, so M2

∼= R
Ann(M2)

. Similar to

the proof of Theorem 2.9, Ann(M2) is a prime ideal. Thus, R
Ann(M2)

is a finite

integral domain and so is a field and so Ann(M2) is a maximal ideal of R;
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therefore, M2 is a simple R-module. Now assume M ̸= M1⊕M2. By Theorem
2.9, T (M) = Ann(x)M for some x ∈ M . Let M = {m1,m2, . . . ,mn}, so M is
an Artinian multiplication R-module and by [11, Corollary 2.9], M is cyclic;
thus, M = Ry for some y ∈ M . Let s ∈ R be a non-unit element, and sM =
{sm1, sm2, . . . , smn}. If smi = smj for some i ̸= j, then s ∈ Ann(mi −mj).
But mi−mj ∈ M = Ry and there is a 0 ̸= t ∈ R such that sty = 0; therefore,
sy ∈ T (M). If smi ̸= smj for all i ̸= j, then sM = M , so Rsy = Ry. Hence
sy ∈ T (M) = Ann(x)M . We know s ∈ Ann(x) since Ry is weakly cancellation
R-module. By [5, Proposition 1.6], R is a local ring with only maximal ideal
Ann(x) so |Max(M)| = 1.

(⇐=) Let R be a local ring, M = Ry for some y ∈ M , and s ∈ R be a
non-unit, with a similar argument as above sy ∈ T (M); hence s ∈ Z(M), so
Z(M) is a maximal ideal and by [13, Theorem 82], Z(M) = Ann(x) for some
x ∈ M . Therefore, Ann(x)M = T (M). Consequently, by Theorem 2.9, there
is a vertex of Γ(M) which is adjacent to every other vertex.

Let M be a multiplication R-module; we next determine when Γ(M) is a
complete graph (i.e., any two vertices are adjacent). By definition, Γ(M) is
complete if and only if [x : M ][y : M ]M = 0 for all distinct x, y ∈ T (M)∗.
Except for the case when M = M1 ⊕ M2, with M1,M2 having only two
elements, the proof of our next theorem shows that we must also have [x :
M ]2M = 0 for all x ∈ T (M), when Γ(M) is complete. So except for the
mentioned case, Nil(M) is detected by complete graphs, because T (M) =
Nil(M).

Theorem 2.11. Let M be a multiplication R-module. Then Γ(M) is
complete if and only if, either M = M1⊕M2 is faithful, with submodules M1,
M2 having only two elements, or [x : M ][y : M ]M = 0 for all x, y ∈ T (M).

Proof. (⇐=) By definition.
(=⇒) Suppose that Γ(M) is connected, but assume there is x ∈ T (M)

with [x : M ]2M ̸= 0, so x ̸∈ Ann(x)M and by Theorem 2.9, M = M1 ⊕M2

where M1 has only two elements. Similar to the proof of Theorem 2.9, [(0, y) :
M ]2M = [(0, y) : M ]M for all y ∈ T (M). Therefore,

Ry ⊆ [(0, y) : M ]y ⊆ (Ann(M1) ∩ [y : M2])y ⊆ [y : M2]y .

Hence Ry = [y : M2]y and y = sy for some s ∈ [y : M2]. Let m2 ∈ M2, so

[y : M2][(1− s)m2 : M2]M2 = 0
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and similar to the proof of Theorem 2.9, D(M2) = 0, thus, y = 0 or m2 =
sm2 ∈ Ry. Hence M2 = Ry. On the other hand, (0,m2) ∈ T (M) for all
y ̸= m2 ∈ M2 and

[(0,m2) : M ][(0, y) : M ]M = 0 ,

therefore, m2 = 0 and Ry has only two elements.

Corollary 2.12. Let M be a finite multiplication R-module. If Γ(M)
is complete, then either M = M1 ⊕M2, where M1,M2 are two submodules of
M such that M1,M2 has only two elements or R is a local ring (and hence
|Max(M)| = 1).
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