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Abstract : Given a (complete) metric space X, we denote by Lip(X) the space of real-valued
Lipschitz functions on X and we equip it with the pointwise product. The purpose of this
note is to describe those bijections T : Lip(Y ) → Lip(X) which are “multiplicative ” in the
sense that whenever f, g ∈ Lip(Y ) are such that fg ∈ Lip(Y ) one has T (fg) = T (f)T (g).

The main result of the paper states that if X has no isolated points, then every mul-
tiplicative bijection T : Lip(Y ) → Lip(X) arises as T (f) = f ◦ τ , where τ : X → Y is a
Lipschitz homeomorphism and so it is automatically linear.

We also give a description of the semigroup isomorphisms T : Lip(Y ) → Lip(X) in the
case where the underlying metric spaces are compact.
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1. Introduction

The purpose of this note is to describe the “multiplicative ” bijections
between spaces of Lipschitz functions. Given a metric space X, we denote
by Lip(X) the space of real-valued Lipschitz functions on X and we equip
it with the pointwise product. Our basic reference on spaces of Lipschitz
functions and their relatives is Weaver booklet [14]. We hasten to remark
that the product of two (in general unbounded) Lipschitz functions may fail
to be Lipschitz and so Lip(X) is not a semigroup unless X has finite diameter.

To avoid any possible confusion, let us state the meaning in which the
word “multiplicative ” is used along the paper.

Definition 1. A mapping T : Lip(Y ) → Lip(X) is said to be mul-
tiplicative if whenever f, g ∈ Lip(Y ) are such that fg ∈ Lip(Y ) one has
T (fg) = T (f)T (g).
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Of course, each of the spaces Y and X could be a single point, so that
Lip(Y ) = Lip(X) = R. The simplest multiplicative automorphisms of R
are the “ powers ” t 7→ sign(t)|t|p, with p ∈ R∗. In general, if a : R → R
is an additive bijection, we can define a multiplicative bijection by the for-
mula m(t) = sign(t) exp(a(log |t|)). And, conversely, all multiplicative auto-
morphisms of R arise in this way. As “most ” additive bijections of the line are
nonmeasurable, a certain degree of “ pathological ” behavior seems to be un-
avoidable. In this regard we have, as the main result of the paper, that ifX has
no isolated points, then every multiplicative bijection T : Lip(Y ) → Lip(X)
arises as T (f) = f ◦ τ , where τ : X → Y is a Lipschitz homeomorphism and
so it is automatically linear (Theorem 1).

We also give a description of the semigroup isomorphisms T : Lip(Y ) →
Lip(X) in the case where the underlying metric spaces are compact (Theo-
rem 2) which solves a problem posed in [4].

Both Theorem 1 and Theorem 2 depend on a preliminary representation
result which is the content of Section 2 (Proposition 1).

Background. The study of multiplicative bijections between rings has
a relatively long history. In 1940, Eidelheit proved that any continuous mul-
tiplicative bijection between the algebras of operators of two real Banach
spaces of dimension al least two is automatically linear – and so it arises as
conjugation with a fixed linear homeomorphism between the underlying Ba-
nach spaces [6, Theorem 2 and Theorem 3]. A related result appears in
Martindale’s [10].

As for commutative rings, Milgram’s classical paper [11] contains a de-
scription of the multiplicative bijections between the algebras of continuous
functions on compacta. It turns out that two compact (Hausdorff) spaces are
homeomorphic provided their semigroups of continuous functions are isomor-
phic. The papers [13, 8, 5, 9, 7, 4, 1] contain further developments, general-
izations to noncompact spaces, and reiterations.

Multiplicative bijections between algebras of differentiable and smooth
functions are the subject of [12] and [2]: they are all linear. Finally, [4]
deals with uniformly continuous and Lipschitz functions with values in the
unit interval.

2. A preliminary representation result

It this section T : Lip(Y ) → Lip(X) will be a fixed multiplicative bijection
(in the sense of Definition 1), with X and Y complete metric spaces.
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Lemma 1. The inverse of T is multiplicative.

Proof. We must check that if f, g ∈ Lip(X) are such that fg ∈ Lip(X),
then T−1(f)T−1(g) = T−1(fg). It clearly suffices to check that

uT−1(f)T−1(g) = uT−1(fg)

for every u ∈ Lip(Y ) whose support has finite diameter. Please notice that
the product of any Lipschitz function by such an u is automatically Lipschitz
– actually the support of the product has finite diameter again. But

T
(
uT−1(f)T−1(g)

)
= T (u) T

(
T−1(f)

)
T
(
T−1(g)

)
= T (u) fg = T

(
uT−1(fg)

)
and we are done.

The main result of this section is the following.

Proposition 1. There is a uniform homeomorphism τ : X → Y and a
mapping : X → Aut(R) such that

T (f)(x) = tx(f(τ(x))) (f ∈ Lip(Y ) , x ∈ X) . (1)

Proof. An open set is said to be regular if it is the interior of its closure.
The class of all regular open subsets of X is denoted by R(X). The support of
a continuous f : X → R is the closure of the (cozero) set {x ∈ X : f(x) ̸= 0}
and we define Uf as the interior of supp f . Quite clearly, Uf is a regular open
set and each regular open set arises in this way. Indeed, if U ∈ R(X), then
U = Uf , where f(x) = dist(x,U c).

We will consider the order given by inclusion in R(X).

Claim 1. The map T : R(Y ) → R(X) given by T(Uf ) = UT (f) is correctly
defined and it is an order isomorphism. Moreover, given f, g ∈ Lip(Y ) and
U ∈ R(Y ) one has f = g in U if and only if T (f) = T (g) in T(U).

Proof of Claim 1. First, the condition Uf ⊂ Ug can be expressed within
the multiplicative structure of Lip(X). To see this, following Shirota [13], let
us declare f ⊂ g if, whenever h ∈ Lip(X), hg = 0 implies hf = 0. It is easily
seen that, given f, g ∈ Lip(X), one has f ⊂ g if and only if Uf ⊂ Ug. It follows
that, given f, g ∈ Lip(X) one has Uf = Ug if and only if f ⊂ g and g ⊂ f .
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As for the “moreover ” part, let M(Y ) be the set of those h in Lip(Y ) such
that hf ∈ Lip(Y ) for every f ∈ Lip(Y ). Quite clearly, M(Y ) is an algebra
containing every Lipschitz function whose support has finite diameter. First
notice that if U = Uh for some h ∈ M(Y ), one has f = g on U if and only if
fh = gh. For arbitrary U ∈ R(Y ) one has f = g on U if and only if fh = gh
for every h ∈ M(Y ) such that Uh ⊂ U . End of proof of Claim 1.

Given x ∈ X and y ∈ Y we write x ∼ y provided

x =
∩
y∈U

T(U) and y =
∩
x∈V

T−1(V ) ,

where U ∈ R(Y ) and V ∈ R(X). Please note that if x ∼ y and x ∼ y′,
then y = y′. Similarly, if x ∼ y and x′ ∼ y, then x = x′. Write X0 = {x ∈ X :
x ∼ y for some y ∈ Y } and Y0 = {y ∈ Y : x ∼ y for some x ∈ X}.

Claim 2. (Cf. [3, Lemma 6 and the proof of Theorem 3].) X0 and Y0 are
dense in X and Y respectively. The map τ : X0 → Y0 sending each x into the
only y such that x ∼ y is a uniform homeomorphism.

Thus τ extends to a uniform homeomorphism between X and Y we denote
again τ .

Claim 3. Given f ∈ Lip(Y ) and x ∈ X, the value of T (f) at x depends
only on f(τ(x)).

Proof of Claim 3. Suppose f, g ∈ Lip(Y ) agree at y = τ(x) and let us
see that T (f)(x) = T (g)(x). It is possible to find a new Lipschitz function
h having the following property: every neighborhood of y contains an open
set where h agrees with f and another open set where h agrees with g (see
[3, Lemma 3]). It follows that every neighborhood of x contains an open set
where T (h) agrees with T (f) and another open set where T (h) agrees with
T (g) and so T (f)(x) = T (g)(x) = T (h)(x). End of proof of Claim 3.

To complete the proof of the proposition, just take tx : R → R by letting
tx(c) = T (c)(x), where c is treated first as a real number and then as a constant
function on Y .

We can continue our analysis assuming T : Lip(X, d) → Lip(X, d′) has the
form

T (f)(x) = tx(f(x)) (f ∈ Lip(X, d) , x ∈ X) , (2)
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where d and d′ are uniformly equivalent metrics on X, both making it
complete. The general case reduces to this one just taking d′(x, x′) =
d(τ(x), τ(x′)).

Lemma 2. The set of those x ∈ X for which tx is not a positive power is
at most finite and contains only isolated points.

Proof. First, observe that a semigroup automorphism of R is either a pos-
itive power or it maps any neighborhood of the origin into an unbounded
subset of the line [11, Lemma 4.3].

Suppose there is a sequence (xn) such that txn is not a positive power.
Passing to a subsequence if necessary we may assume every point in S =
{xn : n ∈ N} is (relatively) isolated. It is easily seen that there is a sequence
(an) of strictly positive numbers in so that, if |tn| ≤ an, then the map sending
each xn to tn is Lipschitz on (S, d) and so ([14, Theorem 1.5.6(a)]) it extends
to a bounded Lipschitz function on (X, d).

Given n ∈ N, pick tn ∈ [−an, an] so that |txn(tn)| > nd′(xn, x1) an let
f ∈ Lip(X, d) such that f(xn) = tn. Obviously, T (f) cannot be Lipschitz on
(X, d′).

As for the second part, let X+ be the set of points in X where tx is a
positive power, so that there is a function p : X+ → (0,∞) such that

T (f)(x) = sign(f(x))|f(x)|p(x) (f ∈ Lip(X, d) , x ∈ X+) . (3)

Notice that p is uniformly continuous on X+. Indeed p(x) = log T (e) is even
d′-Lipschitz on X+. Suppose (xn) is a sequence in X+ converging to x ∈ X.
Then p(xn) converges, say to q ≥ 0. Thus for c > 0 one has

tx(c) = T (c)(x) = lim
n

T (c)(xn) = lim
n

cp(xn) = cq.

It follows that q > 0 and so tx is a positive power.

Lemma 3. The metrics d and d′ are locally Lipschitz equivalent on X.
(And so, in the general case, τ : X → Y is locally a Lipschitz homeomor-
phism.)

Proof. Let x ∈ X. If the identity fails to be Lipschitz in every neighbor-
hood of x, then there exist two sequences (xn) and (yn) converging to x such

that d(xn,yn)
d′(xn,yn)

→ ∞. In particular, x is non-isolated, so there is a neighborhood

of x where T (f) is given by (3).
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By the triangle inequality we can find a sequence (zn) such that d(x,zn)
d′(x,zn)

→
∞ (actually each zn can be chosen to be xn or yn). Now, h0(y) = d(x, y) and
h1(y) = 1+d(x, y) are d-Lipschitz but fail to be d′-Lipschitz. Each T (hi) = hpi
is d′-Lipschitz, and it is straightforward that p cannot be greater than 1 if hp1
is d′-Lipschitz, nor lower or equal if hp0 is, so we have a contradiction and so
d and d′ are locally Lipschitz equivalent.

Lemma 4. If x is a cluster point of X, then p(x) = 1.

Proof. Let x be a cluster point of X. We know that, in a certain neighbor-
hood of x, d and d′ are Lipschitz equivalent and any function is d-Lipschitz
if and only if it is d′-Lipschitz there. Taking f(y) = d(x, y), we have that
T (f)(y) = d(x, y)p(y) must be d′-Lipschitz, hence d-Lipschitz which forces
p(x) ≥ 1. By symmetry, it must be p(x) = 1.

3. Applications

We state now the main results in this note which should be compared to
[4, Theorem 5 and Corollary 2].

Theorem 1. Let T : Lip(Y ) → Lip(X) be a multiplicative bijection,
where X and Y are complete metric spaces. If X (and so Y ) has no iso-
lated points, then T has the form T (f)(x) = f(τ(x)), where τ : X → Y is a
Lipschitz homeomorphism and so it is automatically linear.

Proof. In fact we only need to prove that τ is bi-Lipschitz, but if f ◦ τ is
Lipschitz on X whenever f is Lipschitz on Y , then τ must be Lipschitz. By
symmetry (see Lemma 1) the inverse is also Lipschitz.

The following result solves a problem (number 2) posed in [4].

Theorem 2. Let X and Y be compact metric spaces, τ : X → Y a
Lipschitz homeomorphism, F a finite set of isolated points of X and t : F →
Aut(R) an arbitrary map. Let, further, p : X\F → (0,∞) be a Lipschitz
function such that p(x) = 1 for every cluster point x ∈ X. Then the map
T : Lip(Y ) → Lip(X) given by

T (f)(x) =

sign(f(τ(x))|f(τ(x))|p(x) (x ∈ X\F ) ,

tx(f(τ(x))) (x ∈ F ) ,
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is a semigroup isomorphism. And, conversely, all semigroup isomorphisms
arise in this way.

Proof. The “ conversely ” part has been already proved.

As for the other part, we may and do assume F is empty and τ is the iden-
tity on X and we must prove that if p : X → R+ is a Lipschitz function whose
value at every cluster point is 1, then f 7→ sign(f)|f |p defines a semigroup
isomorphism of LipX. By symmetry, it suffices to check that sign(f)|f |p is
Lipschitz if f is.

Observe that a continuous function g is locally Lipschitz provided |g| is and
that, by compactness, locally Lipschitz functions on X are Lipschitz. Hence
we may assume f to be nonnegative.

Suppose fp fails to be Lipschitz. Then there is a point x and a sequence
(xn) converging to x such that

f(xn)
p(xn) − f(x)p(x)

d(xn, x)
−→ ∞ (n → ∞) .

But p(x) = 1 and quite clearly, f(x) = 0, so one actually has

f(xn)
p(xn)

d(xn, x)
−→ ∞ (n → ∞) .

However, the logarithm of the above expression is bounded since

p(xn) log f(xn)− log d(xn, x)

≤ p(xn) log(Λ(f)d(xn, x))− log d(xn, x)

≤ ∥p∥∞| log Λ(f)|+ p(xn) log d(xn, x)− log d(xn, x)

≤ ∥p∥∞| log Λ(f)|+ |p(xn)− 1|| log d(xn, x)|

≤ ∥p∥∞| log Λ(f)|+ Λ(p) d(xn, x) | log d(xn, x)|

and t log t → 0 as t → 0+.

Let us present another application of the results proved in Section 2.

Corollary 1. Let T : Lip(Y ) → Lip(X) be a multiplicative bijection.
If Y has finite diameter, then so X does and τ is a Lipschitz homeomorphism.
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Proof. Clearly, LipY is a semigroup if and only if Y has finite diameter,
and the same applies to X. On the other hand, LipY is a semigroup if and
only if LipX is, by Lemma 1 and so X has finite diameter. According to
Lemma 2 we may and do assume tx is a positive power for every x ∈ X
and therefore T preserves order in both directions and the main result of [3]
applies.

We close with a counterexample showing that most of the hypotheses ap-
pearing in our statements are really necessary.

Example 1. Two complete metric spaces X and Y which are not Lips-
chitz homeomorphic, yet there is a multiplicative bijection between Lip(Y )
and Lip(X).

Proof. Set X = {4n : n ∈ N} and Y = {2n : n ∈ N} endowed with their
standard metrics. These spaces are not Lipschitz homeomorphic. Indeed, let
τ : Y → X be any injective mapping. The set S = {n ∈ N : τ(2n) ≥ 4n}
is infinite. If n ∈ S is large enough one has τ(2n) − τ(2) ≥ 4n − τ(2), which
makes an estimate of the form |τ(2n)− τ(2)| ≤ L|2n − 2| impossible.

However, the formula T (f)(4n) = (f(2n))2 sign(f(2n)) defines a multi-
plicative bijection between Lip(Y ) and Lip(X). Quite clearly, T defines
a semigroup isomorphism between RY and RX whose inverse is given by
T−1(g)(2n) = sign g(4n)

√
|g(4n)| and so the point is to check that T restricts

to a bijection between LipY and LipX.
For Z = X,Y we consider the space Z0 obtained by adding the point 0 to

Z. If f is any function on Z we extend it to a function f0 on Z0 just taking
f0(0) = 0. Obviously f0 is Lipschitz on Z0 provided f ∈ LipZ.

Let f ∈ Lip(Y ) and let L a Lipschitz constant for f0. Let us check that
T (f) is Lipschitz on X. Working separately with the positive and negative
parts of f we may and do assume f ≥ 0. We have∣∣T (f)(4n)− T (f)(4m)

∣∣
|4n − 4m|

=

∣∣(f(2n))2 − (f(2m))2
∣∣

|(2n)2 − (2m)2|

=
|(f(2n)− f(2m))(f(2n) + f(2m))|

|(2n − 2m)(2n + 2m)|

≤ Lf
|f(2n) + f(2m)|

2n + 2m
≤ L

L2n + L2m

2n + 2m
= L2

and L2 is a Lipschitz constant for T (f).
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For g ∈ Lip(X), take a Lipschitz constant K for g0. If m < n, then∣∣T−1(g)(2n)− T−1(g)(2m)
∣∣

|2n − 2m|
≤

√
|g(4n)|+

√
|g(4m)|

2n − 2m
≤

√
K4n +

√
K4m

2n − 2m

≤
√
K4n +

√
K4(n−1)

2n − 2n−1
≤

√
K

2n + 2n−1

2n−1
= 3

√
K

and 3
√
K is a Lipschitz constant for T−1(g).
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