Compact Hausdorff Pseudoradial Spaces and their Pseudoradial Order*

Stefano Modena, Gino Tironi

Dipartimento di Matematica e Informatica - Università di Trieste, Via Alfonso Valerio 12/1, 34127 Trieste, Italy stefano.modena@sissa.it, tironi@units.it

Received December 21, 2010

Abstract: It is proved that there are compact Hausdorff spaces of any pseudoradial order up to ω_0 included.

Key words: Pseudoradial spaces, pseudoradial order, adjunction spaces. AMS *Subject Class.* (2010): 54A20; 54A25, 54B17.

1. INTRODUCTION

Given an ordinal γ and a set X, a transfinite sequence in X of lenght γ is a map $S : \gamma \longrightarrow X$. It is usually denoted $(x_{\alpha})_{\alpha < \gamma}$. A transfinite sequence $(x_{\alpha})_{\alpha < \gamma}$ in a topological space X converges to a point $x \in X$ (written $x_{\alpha} \rightarrow x$ or $\lim_{\alpha \to \gamma} x_{\alpha} = x$) provided that for each neighborhood U of x there is some $\overline{\alpha} < \gamma$ such that $\{x_{\alpha} \mid \overline{\alpha} \le \alpha < \gamma\} \subseteq U$.

A topological space X is called *pseudoradial* (see [5], [1] or [3]) provided that for each $A \subseteq X$, if A is not closed, then there are a point $x \in \overline{A} \setminus A$ and a transfinite sequence $(x_{\alpha})_{\alpha < \lambda}$ in A such that $x_{\alpha} \to x$.

Following [2] and [6], we define the pseudoradial closure of A in X as the set

 $A = \{x \in X \mid \text{there is a transfinite sequence } (x_{\alpha})_{\alpha < \lambda} \text{ in } A \text{ converging to } x\}.$

By transfinite recursion define

 $\widehat{A}^{(0)} = A;$ $\widehat{A}^{(\alpha+1)} = (\widehat{A}^{(\alpha)})$ for every ordinal $\alpha;$ $\widehat{A}^{(\beta)} = \bigcup_{\alpha < \beta} A^{(\alpha)}$ if β is a limit ordinal.

309

 $^{^{*}\}mbox{Research}$ supported by University of Trieste within the Program: Finanziamento Ricerca d'Ateneo.

The pseudoradial order of a pseudoradial space X is the least ordinal number α such that for each $A \subseteq X$,

$$\widehat{A}^{(\alpha)} = \overline{A}.$$

The pseudoradial order of a pseudoradial space X is denoted by pro(X).

In a previous article ([6]) we proved that there are normal (T_4+T_1) pseudoradial spaces and compact T_1 ones of pseudoradial order given by any ordinal number. Here we exhibit the construction of Hausdorff compact pseudoradial spaces of any pseudoradial order less than or equal to ω_0 .

2. The main construction

For each natural number $n \geq 1$, we construct a compact pseudoradial Hausdorff space G_n such that $\operatorname{pro}(G_n) = n$.

For each j = 0, ..., n - 1, let x(j), y(j) be ordinal numbers. For the sake of convenience x(j) could also assume the value -1, so that we can use the notation (-1, y(j)] for denoting the segment of ordinals [0, y(j)]. Let x = (x(0), ..., x(n-1)), y = (y(0), ..., y(n-1)). We say that x < y if and only if x(j) < y(j) for each j = 0, ..., n - 1. If x < y, let

$$C(x, y) = (x(0), y(0)] \times \dots \times (x(n-1), y(n-1)]$$

be the *n*-dimensional cube with vertexes x, y, where each (x(j), y(j)] has the order topology and C(x, y) has the product topology. If $x = (-1, \ldots, -1)$, we denote C(x, y) by C(y). If $x \le x' < y' \le y$, C(x', y') is both an open and a closed subspace of C(x, y). For each $j = 0, \ldots, n-1$ we denote by

$$E_j = \{y(0)\} \times \cdots \times \{y(j-1)\} \times (x(j), y(j)] \times \{y(j+1)\} \times \cdots \times \{y(n-1)\}$$

the *j*-th edge of the cube C(x, y) and

$$H_{j} = (x(0), y(0)] \times \dots \times (x(j-1), y(j-1)] \times \{y(j)\} \times (x(j+1), y(j+1)] \times \dots \times (x(n-1), y(n-1)]$$

the *j*-th hyperface of the cube C(x, y) (we are interested only in the edges and hyperfaces which y belongs to). Finally let us observe that if $z \in C(x, y)$, then z < y if and only if $z \notin H_j$ for each $j = 0, \ldots, n-1$.

Let $G_n = [0, \omega_0] \times [0, \omega_1] \times \cdots \times [0, \omega_{n-1}]$. G_n is a T_2 compact space since it is product of T_2 compact spaces. It was proved in [4] that the product of two pseudoradial T_2 compact spaces is pseudoradial if one of them is radial (i.e. its pseudoradial order is 1). Since for each natural number k the segment of ordinals $[0, \omega_k]$ with the order topology is a compact T_2 radial space, it is easy to see that G_n is a pseudoradial space.

By the next three lemmas we prove that $\operatorname{pro}(G_n) \leq n$, i.e. that for each subspace A of G_n , $\widehat{A}^{(n)} = \overline{A}$.

LEMMA 2.1. As earlier, let n be a natural number, $n \ge 1$ and let x, y be two n-tuples of ordinals, x < y. Let A be a subspace of C(x, y). Assume that for each $j = 0, \ldots, n-1, \hat{A} \cap H_j = \emptyset$. Then $y \notin \overline{A}$.

Proof. If $A = \emptyset$, the proof is trivial. Assume $A \neq \emptyset$. By transfinite recursion we determine an ordinal γ and a sequence $(z_{\alpha})_{\alpha < \gamma}$ in A of lenght γ in the following way. Let $z_0 \in A$. Assume that we have defined $z_{\alpha} \in A$. Since for each $j = 0, \ldots, n-1, z_{\alpha} \notin H_j, z_{\alpha} < y$, so we can consider $C(z_{\alpha}, y)$. If $C(z_{\alpha}, y) \cap A = \emptyset$, let $\gamma = \alpha + 1$ and break the recursion. If not, choose $z_{\alpha+1} \in C(z_{\alpha}, y) \cap A$. Assume now that we have defined z_{α} for each $\alpha < \beta, \beta$ a limit ordinal, and for each $j = 0, \ldots, n-1$, let $\tilde{z}_{\beta}(j) = \sup\{z_{\alpha}(j) \mid \alpha < \beta\}$. Let $\tilde{z}_{\beta} = (\tilde{z}_{\beta}(0), \ldots, \tilde{z}_{\beta}(n-1))$. It is easy to prove that $\tilde{z}_{\beta} = \lim_{\alpha \to \beta} z_{\alpha}$; then $\tilde{z}_{\beta} \in \hat{A}$, so $\tilde{z}_{\beta} \notin H_0 \cup \cdots \cup H_{n-1}$, and so $\tilde{z}_{\beta} < y$. Thus we can consider $C(\tilde{z}_{\beta}, y)$. If $C(\tilde{z}_{\beta}, y) \cap A = \emptyset$, let $\gamma = \beta$ and break the recursion. If not, choose $z_{\beta} \in C(\tilde{z}_{\beta}, y) \cap A$. Then

$$U = \begin{cases} C(z_{\gamma-1}, y) & \text{if } \gamma \text{ is a successor ordinal} \\ C(\tilde{z_{\gamma}}, y) & \text{if } \gamma \text{ is a limit ordinal} \end{cases}$$

is a neighborhood of y in which there are no points of A, so $y \notin \overline{A}$.

LEMMA 2.2. Let x, y be two n-tuples of ordinals. Let A be a subspace of C(x, y). Assume that for each $j = 0, \ldots, n-1$, $\widehat{A}^{(n-1)} \cap E_j = \emptyset$. Then $y \notin \overline{A}$.

Proof. By induction on n. If n = 1 the proof is trivial. If n = 2, then $E_0 = H_0$ and $E_1 = H_1$, so by Lemma 2.1 $y \notin \overline{A}$.

Now let $n \geq 3$ and assume that the lemma is proved for n-1 and let us prove it for n. First let us observe that for each $j = 0, \ldots, n-1, H_j$ is homeomorphic to an (n-1)-dimensional cube, whose edges are the E_k , $k \neq j$. Furthermore E_j, H_j are closed subspaces of C(x, y) and so we can use the closure and pseudoradial closure operators in C(x, y), in E_j and in H_j without ambiguity. Now, for each $j = 0, \ldots, n-1$, let $B_j = \widehat{A} \cap H_j$. First we prove that for each $j = 0, \ldots, n-1$ and for each $k \neq j$, $\widehat{B_j}^{(n-2)} \cap E_k = \emptyset$. If not, $\emptyset \neq \widehat{B_j}^{(n-2)} \cap E_k = (\widehat{A} \cap H_j)^{(n-2)} \cap E_k \subseteq \widehat{A}^{(n-1)} \cap \widehat{H_j}^{(n-2)} \cap E_k = \widehat{A}^{(n-1)} \cap H_j \cap E_k$, but this contradicts the hypothesis. So for each $j = 0, \ldots, n-1$ the hyperface H_j of C(x, y) is homeomorphic to an (n-1)-dimensional hypercube such that in each of its edges there are no points of $\widehat{B_j}^{(n-2)}$. So by inductive assumption, $y \notin \overline{B_j}$. Thus for each $j = 0, \ldots, n-1$, and for each $k \neq j$, there is an ordinal $w_j(k) < y(k)$ such that in

$$(w_j(0), y(0)] \times \cdots \times (w_j(j-1), y(j-1)] \times \{y(j)\} \times (w_j(j+1), y(j+1)] \times \cdots \times (w_j(n-1), y(n-1)]$$

there are no points of $B_j = \widehat{A} \cap H_j$. Let

$$w(0) = \max\{w_j(0) \mid j = 0, \dots, n-1\} < y(0)$$

...
$$w(n-1) = \max\{w_j(n-1) \mid j = 0, \dots, n-1\} < y(n-1)$$

and let $w = (w(0), \ldots, w(n-1))$. Thus C(w, y) is an *n*-dimensional hypercube such that in each of its hyperfaces there are no points of \widehat{A} . So by Lemma 2.1 $y \notin \overline{A}$.

LEMMA 2.3. Let y be an n-tuple of ordinals. Let A be a subspace of C(y) and $y \in \overline{A}$. Then $y \in \widehat{A}^{(n)}$.

Proof. By contradiction assume that $y \notin \widehat{A}^{(n)}$. Then there is $x = (x(0), \ldots, x(n-1))$ such that in each edge E_j of the cube C(x, y) there are no points of $\widehat{A}^{(n-1)}$. By Lemma 2.2, $y \notin \overline{A \cap C(x, y)}$ and so $y \notin \overline{A}$.

By the next lemma we prove that $\operatorname{pro}(G_n) \ge n$, i.e. that there is a subspace A of G_n such that $\widehat{A}^{(k)} \subsetneq \overline{A}$ for each $k = 0, \ldots, n-1$.

LEMMA 2.4. Let $A = [0, \omega_0) \times \cdots \times [0, \omega_{n-1}) \subseteq G_n$. Then for each $k = 0, \ldots, n$,

$$\widehat{A}^{(k)} = \{ (x(0), \dots, x(n-1)) \mid x(j) = \omega_j \text{ for at most } k \text{ indices} \}.$$

Proof. By induction on k. For k = 0 the proof is trivial. Assume that the lemma is proved for k - 1 and let us prove it for k.

" \subseteq " Let $x \in \widehat{A}^{(k)}$. Assume $x(j) = \omega_j$ for more than k indices. We can assume without restriction $x = (\omega_0, \ldots, \omega_{k-1}, \omega_k, x(k+1), \ldots, x(n-1))$. Since $x \in \widehat{A}^{(k)}$, there is a sequence $(x_{\alpha})_{\alpha < \lambda}$ of lenght λ in $\widehat{A}^{(k-1)}$ such that $x_{\alpha} \to x$. First assume $\lambda \leq \omega_{k-1}$. Let $\overline{\gamma} = \sup\{x_{\alpha}(k) \mid \alpha < \lambda\}$. Since $\lambda \leq \omega_{k-1}$, then $\overline{\gamma}$ is strictly less than ω_k and so x_{α} cannot converge to x. Now assume $\lambda \geq \omega_k$. Let $h \in \{0, \ldots, k-1\}$. Since $x_{\alpha} \to x$, for each $\gamma < \omega_h$ there is $\alpha(h, \gamma) < \lambda$ such that for each $\alpha > \alpha(h, \gamma), x_{\alpha}(h) > \gamma$. Let $\overline{\alpha}_h = \sup\{\alpha(h, \gamma) \mid \gamma < \omega_h\}$ and $\overline{\alpha} = \max\{\alpha_h \mid h = 0, \ldots, k-1\}$. Since $\lambda \geq \omega_k, \overline{\alpha}_h < \omega_k$ for each h and so $\overline{\alpha} < \omega_k$. Then for each $\alpha > \overline{\alpha}, x_{\alpha}(h) = \omega_h$ for each $h = 0, \ldots, k-1$. Then by inductive assumption $x_{\alpha} \notin \widehat{A}^{(k-1)}$, a contradiction.

" \supseteq " Let $x = (x(0), \ldots, x(n-1))$ such that $x(j) = \omega_j$ for at most k indices. If $x(j) = \omega_j$ for at most k-1 indices, by inductive assumption $x \in \widehat{A}^{(k-1)}$. So assume $x(j) = \omega_j$ for exactly k indices. We can assume without restriction that $x = (\omega_0, \ldots, \omega_{k-1}, x(k), \ldots, x(n-1))$ and $x(k) \neq \omega_k, \ldots, x(n-1) \neq \omega_{n-1}$. For each $\alpha < \omega_{k-1}$, let $x_{\alpha} = (\omega_0, \ldots, \omega_{k-2}, \alpha, x(k), \ldots, x(n-1))$. By inductive assumption $x_{\alpha} \in \widehat{A}^{(k-1)}$. Clearly $x_{\alpha} \to x$ and so $x \in \widehat{A}^{(k)}$.

THEOREM 2.5. $G_n = [0, \omega_0] \times [0, \omega_1] \times \cdots \times [0, \omega_{n-1}]$ is a compact pseudoradial Hausdorff space and $\operatorname{pro}(G_n) = n$.

Proof. Clearly G_n is a T_2 compact space since it is product of T_2 compact spaces. We have already observed that G_n is a pseudoradial space. In order to prove that $pro(G_n) = n$ it suffices to prove that:

- (i) for each $A \subseteq G_n$, $\widehat{A}^{(n)} = \overline{A}$;
- (ii) there exists $A \subseteq G_n$ such that for each k < n, $\widehat{A}^{(k)} \subsetneq \overline{A}$.

Let us prove the first claim. Let $A \subseteq G_n$. Let $y \in \overline{A}$. Since C(y) is both an open and a closed subspace of G_n , $x \in \overline{A \cap C(y)}$. Thus, by Lemma 2.3, $x \in A \cap \widehat{C(y)}^{(n)}$ and so $x \in \widehat{A}^{(n)}$.

Let us prove the second claim. Let A be as in Lemma 2.4 and let $x = (\omega_0, \ldots, \omega_{n-1})$. Clearly $x \in \overline{A}$, but by Lemma 2.4, $x \notin \widehat{A}^{(k)}$, for each $k = 0, \ldots, n-1$.

3. A space of order ω_0

Let X be the disjoint topological sum of the spaces G_n , $n < \omega_0$, constructed in the previous section. Let G_{ω} be the one-point compactification of X, i.e. $G_{\omega} = X \cup \{\infty\}.$ Remark 3.1. Let us observe that:

- (i) $\infty \notin X$;
- (ii) a basic neighborhood of ∞ has the form $G_{\omega} \setminus K$, where K is a compact subspace of X;
- (iii) if K is a compact subspace of X, then there is $n < \omega_0$ such that $K \subseteq \bigcup_{1 \le k \le n} G_k$.

THEOREM 3.2. G_{ω} is a compact Hausdorff pseudoradial space and its pseudoradial order is ω_0 .

Proof. Clearly G_{ω} is a compact Hausdorff space. In order to prove that G_{ω} is pseudoradial and $\operatorname{pro}(G_{\omega}) = \omega_0$ it suffices to prove that:

- (i) for each $A \subseteq G_{\omega}$, $\widehat{A}^{(\omega_0)} = \overline{A}$;
- (ii) for each $n < \omega_0$, there exists $A \subseteq G_\omega$ such that $\widehat{A}^{(n)} \subsetneq \overline{A}$.

Let us prove the first claim. Let $A \subseteq G_{\omega}$ and let $x \in \overline{A} \setminus A$. If $x = \infty$, then for each $n < \omega_0$,

$$U_n = (G_\omega \setminus \bigcup_{1 \le k \le n} G_k)$$

is a neighborhood of ∞ and so there is $x_n \in A \cap U_n$. It follows immediately from Remark 3.1 that $x_n \to \infty$. So $\infty \in \widehat{A} \subseteq \widehat{A}^{(\omega_0)}$. If $x \neq \infty$, then there is $n < \omega_0$ such that $x \in G_n$. Since G_n is a compact open subspace of G_ω and $\operatorname{pro}(G_n) = n$, then $x \in \widehat{A}^{(n)} \subseteq \widehat{A}^{(\omega_0)}$.

The second claim is an easy consequence of the fact that for each $n < \omega_0$ the space G_n is a compact open subspace of G_ω and its pseudoradial order is n.

References

- A.V. ARHANGEL'SKII, The structure and classification of topological spaces and cardinal invariants, Uspekhi Mat. Nauk 33 (1978), 29-84.
- [2] A.V. ARHANGEL'SKIĬ, R. ISLER, G. TIRONI, On pseudo-radial spaces, Comment. Math. Univ. Carolinae 27 (1986), 137–156.
- [3] A. BELLA, G. TIRONI, d-4 Pseudoradial spaces, in "Encyclopedia of General Topology", Elsevier, 2003, 165–168.
- [4] Z. FROLÍK, G. TIRONI, Products of chain-net spaces, Riv. Mat. Pura Appl. 5 (1989), 7–11.

- [5] H. HERRLICH, Quotienten geordneter Räume und Folgenkonvergenz, Fund. Math. 61 (1967), 79-81.
- [6] S. MODENA, G. TIRONI, Pseudoradial order of pseudoradial spaces, Math. Pannon. 21/2 (2010), 159–175.