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1. Introduction

Given an ordinal γ and a set X, a transfinite sequence in X of lenght γ
is a map S : γ −→ X. It is usually denoted (xα)α<γ . A transfinite sequence
(xα)α<γ in a topological space X converges to a point x ∈ X (written xα → x
or limα→γ xα = x) provided that for each neighborhood U of x there is some
α < γ such that {xα | α ≤ α < γ} ⊆ U .

A topological space X is called pseudoradial (see [5], [1] or [3]) provided
that for each A ⊆ X, if A is not closed, then there are a point x ∈ A \A and
a transfinite sequence (xα)α<λ in A such that xα → x.

Following [2] and [6], we define the pseudoradial closure of A in X as the
set

Â = {x ∈ X | there is a transfinite sequence (xα)α<λ in A converging to x}.

By transfinite recursion define

Â(0) = A;

Â(α+1) =
(̂
Â(α)

)
for every ordinal α;

Â(β) =
∪

α<β A
(α) if β is a limit ordinal.
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The pseudoradial order of a pseudoradial space X is the least ordinal
number α such that for each A ⊆ X,

Â(α) = A.

The pseudoradial order of a pseudoradial space X is denoted by pro(X).

In a previous article ([6]) we proved that there are normal (T4+T1) pseudo-
radial spaces and compact T1 ones of pseudoradial order given by any ordinal
number. Here we exhibit the construction of Hausdorff compact pseudoradial
spaces of any pseudoradial order less than or equal to ω0.

2. The main construction

For each natural number n ≥ 1, we construct a compact pseudoradial
Hausdorff space Gn such that pro(Gn) = n.

For each j = 0, . . . , n − 1, let x(j), y(j) be ordinal numbers. For the
sake of convenience x(j) could also assume the value −1, so that we can use
the notation (−1, y(j)] for denoting the segment of ordinals [0, y(j)]. Let
x = (x(0), . . . , x(n − 1)), y = (y(0), . . . , y(n − 1)). We say that x < y if and
only if x(j) < y(j) for each j = 0, . . . , n− 1. If x < y, let

C(x, y) = (x(0), y(0)]× · · · × (x(n− 1), y(n− 1)]

be the n-dimensional cube with vertexes x, y, where each (x(j), y(j)] has the
order topology and C(x, y) has the product topology. If x = (−1, . . . ,−1), we
denote C(x, y) by C(y). If x ≤ x′ < y′ ≤ y, C(x′, y′) is both an open and a
closed subspace of C(x, y). For each j = 0, . . . , n− 1 we denote by

Ej = {y(0)} × · · · × {y(j − 1)} × (x(j), y(j)]× {y(j + 1)} × · · · × {y(n− 1)}

the j-th edge of the cube C(x, y) and

Hj = (x(0), y(0)]× · · · × (x(j − 1), y(j − 1)]× {y(j)}×
× (x(j + 1), y(j + 1)]× · · · × (x(n− 1), y(n− 1)]

the j-th hyperface of the cube C(x, y) (we are interested only in the edges
and hyperfaces which y belongs to). Finally let us observe that if z ∈ C(x, y),
then z < y if and only if z /∈ Hj for each j = 0, . . . , n− 1.

Let Gn = [0, ω0]× [0, ω1]× · · · × [0, ωn−1]. Gn is a T2 compact space since
it is product of T2 compact spaces. It was proved in [4] that the product of
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two pseudoradial T2 compact spaces is pseudoradial if one of them is radial
(i.e. its pseudoradial order is 1). Since for each natural number k the segment
of ordinals [0, ωk] with the order topology is a compact T2 radial space, it is
easy to see that Gn is a pseudoradial space.

By the next three lemmas we prove that pro(Gn) ≤ n, i.e. that for each
subspace A of Gn, Â

(n) = A.

Lemma 2.1. As earlier, let n be a natural number, n ≥ 1 and let x, y be
two n-tuples of ordinals, x < y. Let A be a subspace of C(x, y). Assume that
for each j = 0, . . . , n− 1, Â ∩Hj = ∅. Then y /∈ A.

Proof. If A = ∅, the proof is trivial. Assume A ̸= ∅. By transfinite
recursion we determine an ordinal γ and a sequence (zα)α<γ in A of lenght
γ in the following way. Let z0 ∈ A. Assume that we have defined zα ∈ A.
Since for each j = 0, . . . , n− 1, zα /∈ Hj , zα < y, so we can consider C(zα, y).
If C(zα, y) ∩ A = ∅, let γ = α + 1 and break the recursion. If not, choose
zα+1 ∈ C(zα, y) ∩ A. Assume now that we have defined zα for each α < β, β
a limit ordinal, and for each j = 0, . . . , n− 1, let z̃β(j) = sup{zα(j) | α < β}.
Let z̃β = (z̃β(0), . . . , z̃β(n − 1)). It is easy to prove that z̃β = limα→β zα;

then z̃β ∈ Â, so z̃β /∈ H0 ∪ · · · ∪Hn−1, and so z̃β < y. Thus we can consider
C(z̃β , y). If C(z̃β , y)∩A = ∅, let γ = β and break the recursion. If not, choose
zβ ∈ C(z̃β , y) ∩A. Then

U =

{
C(zγ−1, y) if γ is a successor ordinal

C(z̃γ , y) if γ is a limit ordinal

is a neighborhood of y in which there are no points of A, so y /∈ A.

Lemma 2.2. Let x, y be two n-tuples of ordinals. Let A be a subspace of
C(x, y). Assume that for each j = 0, . . . , n− 1, Â(n−1) ∩Ej = ∅. Then y /∈ A.

Proof. By induction on n. If n = 1 the proof is trivial. If n = 2, then
E0 = H0 and E1 = H1, so by Lemma 2.1 y /∈ A.

Now let n ≥ 3 and assume that the lemma is proved for n − 1 and let
us prove it for n. First let us observe that for each j = 0, . . . , n − 1, Hj

is homeomorphic to an (n − 1)-dimensional cube, whose edges are the Ek,
k ̸= j. Furthermore Ej , Hj are closed subspaces of C(x, y) and so we can
use the closure and pseudoradial closure operators in C(x, y), in Ej and in Hj

without ambiguity.
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Now, for each j = 0, . . . , n − 1, let Bj = Â ∩ Hj . First we prove that

for each j = 0, . . . , n − 1 and for each k ̸= j, B̂j
(n−2)

∩ Ek = ∅. If not, ∅ ̸=

B̂j
(n−2)

∩Ek =
̂

(Â ∩Hj)
(n−2)

∩Ek ⊆ Â(n−1)∩Ĥj
(n−2)

∩Ek = Â(n−1)∩Hj∩Ek,
but this contradicts the hypothesis. So for each j = 0, . . . , n−1 the hyperface
Hj of C(x, y) is homeomorphic to an (n−1)-dimensional hypercube such that

in each of its edges there are no points of B̂j
(n−2)

. So by inductive assumption,
y /∈ Bj . Thus for each j = 0, . . . , n− 1, and for each k ̸= j, there is an ordinal
wj(k) < y(k) such that in

(wj(0), y(0)]× · · · × (wj(j − 1), y(j − 1)]× {y(j)}×
× (wj(j + 1), y(j + 1)]× · · · × (wj(n− 1), y(n− 1)]

there are no points of Bj = Â ∩Hj . Let

w(0) = max{wj(0) | j = 0, . . . , n− 1} < y(0)
. . .

w(n− 1) = max{wj(n− 1) | j = 0, . . . , n− 1} < y(n− 1)

and let w = (w(0), . . . , w(n−1)). Thus C(w, y) is an n-dimensional hypercube
such that in each of its hyperfaces there are no points of Â. So by Lemma 2.1
y /∈ A.

Lemma 2.3. Let y be an n-tuple of ordinals. Let A be a subspace of C(y)
and y ∈ A. Then y ∈ Â(n).

Proof. By contradiction assume that y /∈ Â(n). Then there is x =
(x(0), . . . , x(n − 1)) such that in each edge Ej of the cube C(x, y) there are

no points of Â(n−1). By Lemma 2.2, y /∈ A ∩ C(x, y) and so y /∈ A.

By the next lemma we prove that pro(Gn) ≥ n, i.e. that there is a subspace
A of Gn such that Â(k) $ A for each k = 0, . . . , n− 1.

Lemma 2.4. Let A = [0, ω0) × · · · × [0, ωn−1) ⊆ Gn. Then for each k =
0, . . . , n,

Â(k) = {(x(0), . . . , x(n− 1)) | x(j) = ωj for at most k indices}.

Proof. By induction on k. For k = 0 the proof is trivial. Assume that the
lemma is proved for k − 1 and let us prove it for k.
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“⊆” Let x ∈ Â(k). Assume x(j) = ωj for more than k indices. We can
assume without restriction x = (ω0, . . . , ωk−1, ωk, x(k+1), . . . , x(n−1)). Since
x ∈ Â(k), there is a sequence (xα)α<λ of lenght λ in Â(k−1) such that xα → x.
First assume λ ≤ ωk−1. Let γ = sup{xα(k) | α < λ}. Since λ ≤ ωk−1, then γ
is strictly less than ωk and so xα cannot converge to x. Now assume λ ≥ ωk.
Let h ∈ {0, . . . , k − 1}. Since xα → x, for each γ < ωh there is α(h, γ) < λ
such that for each α > α(h, γ), xα(h) > γ. Let αh = sup{α(h, γ) | γ < ωh}
and α = max{αh | h = 0, . . . , k − 1}. Since λ ≥ ωk, αh < ωk for each h and
so α < ωk. Then for each α > α, xα(h) = ωh for each h = 0, . . . , k − 1. Then
by inductive assumption xα /∈ Â(k−1), a contradiction.

“⊇” Let x = (x(0), . . . , x(n−1)) such that x(j) = ωj for at most k indices.

If x(j) = ωj for at most k − 1 indices, by inductive assumption x ∈ Â(k−1).
So assume x(j) = ωj for exactly k indices. We can assume without restriction
that x = (ω0, . . . , ωk−1, x(k), . . . , x(n−1)) and x(k) ̸= ωk, . . . , x(n−1) ̸= ωn−1.
For each α < ωk−1, let xα = (ω0, . . . , ωk−2, α, x(k), . . . , x(n−1)). By inductive
assumption xα ∈ Â(k−1). Clearly xα → x and so x ∈ Â(k).

Theorem 2.5. Gn = [0, ω0] × [0, ω1] × · · · × [0, ωn−1] is a compact pseu-
doradial Hausdorff space and pro(Gn) = n.

Proof. Clearly Gn is a T2 compact space since it is product of T2 compact
spaces. We have already observed that Gn is a pseudoradial space. In order
to prove that pro(Gn) = n it suffices to prove that:

(i) for each A ⊆ Gn, Â(n) = A;

(ii) there exists A ⊆ Gn such that for each k < n, Â(k) $ A.

Let us prove the first claim. Let A ⊆ Gn. Let y ∈ A. Since C(y) is both
an open and a closed subspace of Gn, x ∈ A ∩ C(y). Thus, by Lemma 2.3,

x ∈ ̂A ∩ C(y)
(n)

and so x ∈ Â(n).
Let us prove the second claim. Let A be as in Lemma 2.4 and let x =

(ω0, . . . , ωn−1). Clearly x ∈ A, but by Lemma 2.4, x /∈ Â(k), for each k =
0, . . . , n− 1.

3. A space of order ω0

LetX be the disjoint topological sum of the spacesGn, n < ω0, constructed
in the previous section. Let Gω be the one-point compactification of X, i.e.
Gω = X ∪ {∞}.
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Remark 3.1. Let us observe that:

(i) ∞ /∈ X;

(ii) a basic neighborhood of ∞ has the form Gω \ K, where K is a
compact subspace of X;

(iii) if K is a compact subspace of X, then there is n < ω0 such that
K ⊆

∪
1≤k≤nGk.

Theorem 3.2. Gω is a compact Hausdorff pseudoradial space and its
pseudoradial order is ω0.

Proof. Clearly Gω is a compact Hausdorff space. In order to prove that
Gω is pseudoradial and pro(Gω) = ω0 it suffices to prove that:

(i) for each A ⊆ Gω, Â(ω0) = A;

(ii) for each n < ω0, there exists A ⊆ Gω such that Â(n) $ A.

Let us prove the first claim. Let A ⊆ Gω and let x ∈ A \ A. If x = ∞,
then for each n < ω0,

Un = (Gω \
∪

1≤k≤n

Gk)

is a neighborhood of ∞ and so there is xn ∈ A ∩ Un. It follows immediately
from Remark 3.1 that xn → ∞. So ∞ ∈ Â ⊆ Â(ω0). If x ̸= ∞, then there is
n < ω0 such that x ∈ Gn. Since Gn is a compact open subspace of Gω and
pro(Gn) = n, then x ∈ Â(n) ⊆ Â(ω0).

The second claim is an easy consequence of the fact that for each n < ω0

the space Gn is a compact open subspace of Gω and its pseudoradial order
is n.
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