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Abstract : The topological and differentiable structures of some natural quotient spaces con-
structed from flat Riemannian tori are studied by means of a cut-and-paste procedure (con-
cretely, H\(Gl+(2,R)/Sl(2, Z)), where H = O+(2,R), CO+(2,R), O(2,R), CO(2,R)). In
the orientation preserving cases, the quotients can be regarded as manifolds with singu-
lar points corresponding to lattices in the square and hexagonal crystal systems. In the
non-orientation preserving ones, the natural structure is a smooth manifold with piecewise
smooth boundary, where the interior points correspond to oblique lattices, the regular points
of the boundary to rectangular and centered rectangular lattices and the edge of the bound-
ary to square and hexagonal ones.
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1. Introduction

It is well-known that any flat Riemannian torus can be regarded as a pla-
nar lattice, i.e., a quotient R2/G where G is a group of translations generated
by two independent elements. On one hand, such lattices are well-known since
long time ago -before Bieberbach’s solution to Hilbert’s 18th problem-, and
they are classified in classical crystallographic systems. On the other, from a
geometrical viewpoint, it is natural to identify some of the tori by several dis-
tinct criteria. Concretely, one can consider the space of all the flat Riemannian
tori up to (oriented or not) isometries or conformal transformations. These
spaces are topological quotients with an obvious geometrical interpretation
and interest. For example, it is known that any Riemmannian torus is glob-
ally conformal to a flat one, and then, the set of all the complex structures (as
Riemann surfaces) on the torus are in natural bijective correspondence with
the quotient set of all the flat Riemannian tori up to oriented conformal trans-
formations [6, Section IV.7]. Nevertheless, even though it is not difficult to
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compute their topological structure, the differentiable structure of these quo-
tients become subtler, because this structure is not transferred to the quotient
in a standard way. Our aim in the present article is to study carefully both,
their topological and differentiable structures, identifying the crystallographic
systems where the structures become singular.

Recall that a topological manifold may contain different differentiable
structures (even though necessarily diffeomorphic in dimensions 2, 3) and,
depending on the problem under study, one may prefer one of them, or regard
the manifold as non-differentiable. For example, the cone C = {(x, y, z) ∈ R3 :
z =

√
(x2 + y2)/3, 0 ≤ x, y < 1}, with its natural topology, is a topological

2-manifold, and it admits a differentiable structure generated by the global
chart (x, y, z) → (x, y). Nevertheless, when C is regarded as a topological
surface of R3, one assumes that the differentiable structure should make the
inclusion i : C → R3 a differentiable embedding and, then, C is regarded as
non-differentiable at the vertex. One can also consider C as being essentially
an orbifold. Let D be the open disk of radius 1 in R2, and consider the action
of the group G = Z2 on D through rotations of 0 or π radians. Now, D/Z2

is naturally an orbifold identifiable to C, being the (class of the) origin its
unique singular point. Recall that an orbifold structure allows to consider
differentiability even at the singular points. Finally, this orbifold can be also
viewed as a quotient space obtained by cutting and gluing, namely, identify-
ing in {(x, y) ∈ D : x ≥ 0} each point (0, y) with (0,−y) —nevertheless, all
the glued points could be also regarded as singular if the quotient space were
identified with a different topological cone C ′ in R3, which makes an angle
(̸= π) along both sides of a generatrix.

The set of all the planar lattices is the quotient manifoldGl+(2,R)/Sl(2,Z).
As Sl(2,Z) is a closed subgroup, the quotient admits a natural structure of
smooth 4-manifold. In Section 2, we reconstruct this manifold by introducing
a chart in an open dense subset; this allows to consider Gl+(2,R)/Sl(2, Z) as
a subset of R4 with some points identified (Section 2.3). Recall that, as the
structure of the quotient is known to be smooth a priori, all these identifica-
tions must be regarded also as smooth.

In Section 3, we wonder when two such lattices represent isometric ori-
ented flat Riemannian tori (resp. conformal oriented flat Riemannian tori;
isometric flat Riemannian tori; conformal flat Riemannian tori). The space
of all these tori is naturally a further quotient GH = H\(Gl+(2,R)/Sl(2, Z))
where H = O+(2,R) (resp, CO+(2,R); O(2,R); CO(2,R)). Computations or
applications of the point set or topological structures of these quotients can



lattices and manifolds 185

be found, for example, in [2], [6], [7], [8], [14]. Quotients GH are particular
cases of orbispaces, in the sense of [3]. Under our approach, the topological
structure of GH is computed by introducing new explicit identifications; then,
one can make natural choices to fix if the identified points either preserve the
differentiable structure or are singular. In fact, GH becomes either an orb-
ifold with two connected parts of singular points (in the orientation-preserving
cases: H = O+(2,R), CO+(2,R)) or a smooth manifold with a (connected)
piecewise smooth boundary (cases H = O(2,R), CO(2,R)). Even more, the
explicit identifications allows to control the crystal systems of the singular,
regular or boundary points. Our results can be summarized then as follows
(by line and plane we mean a smooth manifold diffeomorphic to R and R2,
respectively):

Theorem 1.1. For each one of the groups H in the cases below, the
quotient space GH = H\(Gl(2,R)+/Sl(2, Z)) is a topological n-manifold
(n = 2, 3), eventually with boundary, with the following properties:

• Case H = O+(2,R) (set of all the flat Riemannian tori up to oriented
isometries). GH is homeomorphic to R3 and admits a natural structure
of smooth manifold with singular points distributed in two lines: one
corresponds with the lattices in the square crystal system, and the other
with lattices in the hexagonal one.

• Case H = CO+(2,R) (set of all the flat Riemannian tori up to oriented
conformal diffeomorphisms –or, equivalently, set of all the Riemann sur-
face structures on a torus). GH is homeomorphic to R2 and admits a
natural structure of smooth manifold with two singular points: one is
the class of all the lattices in the square crystal system, and the other
the class of all the lattices in the hexagonal one (Figure 8).

• Case H = O(2,R) (set of all the flat Riemannian tori up to isometries).
GH is homeomorphic to a closed semi-space R0 × R2 of R3, where the
interior points are all the classes of lattices in the oblique crystal system.
It also admits a natural structure of smooth 3-manifold with piecewise
smooth boundary ∂GH such that ∂GH contains:

– Two disjoint singular lines (2-edge): one with classes of lattices
in the square crystal system, and the other with classes in the
hexagonal one.
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– Three disjoint regular planes (1-edge) separated by the singular
lines: one of them contain the classes of lattices in the rectangular
crystal system, and the other two classes in the centered rectangular
one.

• Case H = CO(2,R) (set of all the flat Riemannian tori up to conformal
transformations): GH is homeomorphic to a closed semi-plane R+

0 × R,
where the interior points are all the classes of lattices in the oblique
crystal system. It also admits a natural structure of smooth 2-manifold
with piecewise smooth boundary ∂GH such that ∂GH contains:

– Two singular points (2-edge): one is the class of the lattices in the
square crystal system, and the other in the hexagonal one.

– Three disjoint regular lines (1-edge) separated by the singular
points: one of them contain the classes of lattices in the rectan-
gular crystal system, and the other two classes in the centered
rectangular one (Figure 9).

Finally, it is worth pointing out that analogous results for quotients of Lorentz-
ian tori are much more complicated; in principle, one cannot expect so good
structures for the quotients of flat or conformally related tori. For example,
not all the Lorentzian tori are globally conformally flat [10]. The necessary and
sufficient hypothesis for this property, is the existence of a timelike conformal
vector field K, see [11]. And, even though some similarities occur for the tori
which admit such a K, see [9], the particularities of this case suggest quotients
by other types of structures, [15].

2. A cut-and-paste construction for flat quotient tori

Let Gl(2,R) be the group of regular matrixes 2 × 2. Given a basis B =
{w1, w2} of R2, the lattice generated by B is the commutative subgroup
G(= G(w1, w2)) = {mw1+nw2 : m,n ∈ Z} of R2; this lattice is also generated
by any two independent v1, v2 ∈ G which span a parallelogram of minimum
area. The associated torus is the quotient set TG = R2/G, which inherits the
canonical flat connection and orientation of R2, as well as the usual Rieman-
nian metric and its associated conformal structure. Such planar lattices are
classically classified into five crystallographic groups [1, Ch. 1, pp. 52 – 53]:
oblique (C2), rectangular (D2), centered rectangular (Dc

2), square (D4) and
hexagonal (D6), see Figure 1.
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Figure 1: Bidimensional crystal system.

Given another basis B′ = {w′
1, w

′
2} of R2, the generated lattice and torus

are equal if and only if the transition matrix A for the basis B, B′ belongs
to Sl±(2,Z) (i.e., the group of the 2 × 2 real matrixes with integer coeffi-
cients and determinant ±1, which admits the set Sl(2,Z) of matrixes with
determinant +1 as a normal subgroup). Thus, the set of all such tori is iden-
tifiable to the quotient Gl(2,R)/Sl±(2,Z) = Gl+(2,R)/Sl(2,Z). As Sl(2,Z)
is a closed 0-dimensional Lie subgroup of Gl+(2,R), the quotient inherits nat-
urally a differentiable structure (a smooth one, i.e., C∞) as an homogeneous
4-manifold.

2.1. Canonical representatives for each lattice. Among the
possible generators of the lattice G, a pair of representatives (v1, v2) of each
lattice will be chosen in the following concrete way.

First, take v′1 such that ∥v′1∥ = min{∥x∥ : x ∈ G}, v′1 lies in the closed
upper semiplane and its angle θ′1 with the x-axis is the smallest possible one.
Then, choose v′2 analogously, such that ∥v′2∥=min{∥x∥ : x ∈G\{mv′1 : m∈Z}},
v′2 lies in the closed upper semiplane with smallest angle θ′2 with the x-axis.
Finally, let v1 be the one of the v′i’s with smaller angle with the x-axis and v2
the one with bigger angle. Let θ be the angle between v1 and v2: θ∈]0,π-θ1[.

From now on, given v1 and v2, we will put ri = ∥vi∥, i = 1, 2, and θi will
be the angle between vi and the x-axis, 0 ≤ θ1 < θ2 < π. Vector vi will be



188 r. raḿırez-uclés

identified with (ri, θi), thus, when there are no possibility of confusion, we will
put vi ≡ (ri, θi).

Lemma 2.1. Given a lattice with canonical representatives v1, v2:

(1) ∥v1 + v2∥ ≥ ∥v1∥, ∥v1 + v2∥ > ∥v2∥;

(2) ∥v1 − v2∥ ≥ ∥vi∥, i = 1, 2, and if one of the equalities hold then
(v2)y > (v1)y.

Proof. The equalities ∥v1 ± v2∥ ≥ ∥vi∥ follow from the choice of the vi’s.
Moreover, the angle between v1 ± v2 and the x-axis is smaller than the one
for v2 and then:

(1) The second equality for v1 + v2 cannot holds for the choice of v2.

(2) If one of the equalities holds for v1 − v2, then v1 − v2 must lie in the
open lower semi-plane, that is, (v2)y > (v1)y.

The following result shows that the proven inequalities for canonical rep-
resentatives characterize them.

From now on, d will denote the usual distance on R2, and B(p,R) the open
disc of center p ∈ R2 and radius R > 0.

Proposition 2.2. Consider two vectors vi, i = 1, 2, with angles θi satis-
fying 0 ≤ θ1 < θ2 < π. If the inequalities (1), (2) of Lemma 2.1 hold, then the
lattice G(v1, v2) admits the own vectors v1, v2 as canonical representatives.

Proof. Let M = Max{∥v1∥, ∥v2∥}, and consider the straight line Rm (resp.
Sm) through mv1 (resp. mv2) in the direction v2 (resp. v1), m ∈ Z. Obvi-
ously, no canonical representatives can appear in the lines S0 and R0, except
v1 and v2. By the inequalities in Lemma 2.1, the points Si ∩ Rj cannot
be canonical representatives for i, j ∈ {1,−1}. Even more, they lie outside
B(0,M) (at most, they can lie at the boundary of B(0,M)). As B(0,M) is
convex, B(0,M) ∩ R1 (resp. B(0,M) ∩ R−1) is a (maybe empty) open seg-
ment and its only possible point in G(v1, v2) is v1 (resp. −v1). Analogously,
S±1 ∩ B(0,M) ∩ G(v1, v2) contains at most ±v2, thus, there are canonical
representatives neither on Rm nor on Sm for |m| = 1.

To conclude the proof, let us check that, if M = ∥v1∥, no canonical repre-
sentative can exist at Rm for |m| ≥ 2 (the reasoning for M = ∥v2∥ would be
analogous with Sm). From a straightforward computation (see Lemma 2.3 be-

low) the angle θ = θ2−θ1 satisfies θ ∈ [π3 ,
2π
3 [, and d(R0, R1) = r1 sin θ ≥

√
3
2 r1.
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Figure 2: Limiting curves in Lemma 2.3.

Thus, if u ∈ Rm with |m| > 1, then d(0, u) ≥ d(R0, Rm) = |m|d(R0, R1) ≥
|m|

√
3
2 r1 > r1 = M , and u cannot be a canonical representative.

Summing up, there exists a bijection between lattices and pairs (v1, v2)
with 0≤ θ1 < θ2 < π satisfying inequalities (1), (2) of Lemma 2.1. These
inequalities are characterized in the following lemma, see Figure 2.

Lemma 2.3. Let {v1, v2} be the two canonical representatives of a lattice.

1. Property (1) of Lemma 2.1 is equivalent to:{
(1A) θ ∈]0, min{π − θ1,

2π
3 }[,

(1B) If θ ∈]π2 , min{π − θ1,
2π
3 }[, then − 2r1 cos θ ≤ r2 <

−r1
2 cos θ .

2. Property (2) of Lemma 2.1 is equivalent to:
(2A) θ ∈ [π3 , π − θ1[,

(2B) If θ ∈ [π3 , min{π2 , π − θ1}[, then 2r1 cos θ ≤ r2 ≤ r1
2 cos θ ,

satisfying also: if 2r1 cos θ = r2, then θ1 <
π
3 and π

3 ≤ θ < π−θ1
2 ,

if r2 =
r1

2 cos θ , then θ1 < θ < π
2 .

Proof. 1. First, let r = ∥v1 + v2∥. As r2 = r21 + r22 + 2r1r2 cos θ, the two
conditions in Property (1) (i.e., r2 ≥ r21 and r2 > r22) are equivalent to:
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{
r2 + 2r1 cos θ ≥ 0,

r1 + 2r2 cos θ > 0.
(1)

Thus, we will prove the equivalence between (1) and (1A), (1B).
(1) ⇒ (1A), (1B). Obviously, θ < π − θ1. If cos θ ≥ 0 then θ ∈]0, π2 ] and

(1A), (1B) hold trivially. If cos θ < 0, then from (1) we have r2 ≥ −2r1 cos θ
and −r1

2 cos θ > r2. Thus, (1B) holds and:

−2 cos θ <
−1

2 cos θ
(2)

Therefore, cos2 θ < 1
4 , that is θ ∈]π2 ,min{π − θ1,

2π
3 }[.

(1A), (1B) ⇒ (1). When θ ∈]0, π2 ] inequalities (1) hold trivially. When
(1A), (1B) hold with θ ∈]π2 ,min{π− θ1,

2π
3 }[, (2) clearly holds. Thus, the two

inequalities in (1B) make sense, and each one of them implies one in (1).

2. Putting r = ∥v1 − v2∥, the inequalities for ∥v1 − v2∥ ≥ ∥vi∥ are equivalent
to {

r2 − 2r1 cos θ ≥ 0,

r1 − 2r2 cos θ ≥ 0.
(3)

Then, the proof of (2A) and the inequalities of (2B) are analogous to the
previous case, taking into account that, now, (3) holds trivially if cos θ ≤ 0,
that is, θ ∈ [π2 , π − θ1[.

For the discussion of the equalities, let v1, v2 be two vectors with 0 ≤ θ1 <
θ2 < π satisfying Lemma 2.3(2B). Clearly it is enough to prove:

(a) If r2 = 2r1 cos θ, then: (v2)y > (v1)y ⇔ θ1 <
π
3 and π

3 ≤ θ < π−θ1
2 ,

(b) If r2 =
r1

2 cos θ , then: (v2)y > (v1)y ⇔ θ1 < θ < π
2 .

For (a) as (vi)y = ri sin θi, if r2 = 2r1 cos θ, inequality (v2)y > (v1)y is equiva-
lent to:

2r1 cos θ sin(θ + θ1) > r1 sin θ1. (4)

Putting cos θ = t, t ∈]0, 12 ], using 0 ≤ sin θ =
√
1− t2 and expanding (4):

4t4 − 4t2 + sin2 θ1 < 0. (5)

It is straightforward to check that inequalities θ1 < π
3 ,

π
3 ≤ θ < π−θ1

2 imply
(5). Thus, the required implication to the left in (a) is obtained. For the
converse, recall that the possible positive roots for the equality in (5) are
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t = cos θ =
√

1−cos θ1
2 = sin θ1

2 and cos θ =
√

1+cos θ1
2 = cos θ1

2 . As t ∈]0, 12 ],
and inequality (5) does not hold for t = 0, this inequality will hold only
if at least one of the roots lies in the interval ]0, 12 [. But this cannot hold

for the second root, because the condition cos θ1
2 < 1

2 implies θ1 > 2π
3 , in

contradiction with θ + θ1 < π.
Therefore, the first root will lie in the interval. The condition sin θ1

2 < 1
2

implies θ1 <
π
3 . Moreover, in this case the possible solution of the equality in

(5) would be t ∈] sin θ1
2 ,

1
2 ] or, equally,

π
3 ≤ θ < π−θ1

2 , as required.
For (b), if r2 =

r1
2 cos θ , inequality (v2)y > (v1)y is equivalent to:

r1
2 cos θ

sin(θ + θ1) > r1 sin θ1.

Again, the implication to the left in (b) is then straightforward. For the
converse, expanding the inequality, sin(θ − θ1) > 0. Thus, θ > θ1 and, as
θ < π

2 is obvious, the required inequalities are obtained.

2.2. Point set identification. Notice that, from Lemma 2.3 (1A),
(2A), necessarily θ ∈ [π3 ,min{π−θ1,

2π
3 }[, and as θ2 = θ1+θ < π we have θ1 <

2π
3 . Fixed v1, the possible values for θ and r2 are delimitated by (1A), (1B),
(2A), (2B) and, thus, r1, θ1 fix a region Rr1,θ1 of the plane for the possible
values of v2, represented by θ and r2. In order to discuss systematically all
the possible cases, let us introduce the following definition.

Definition 2.4. For each v1 ≡ (r1, θ1) with r1 ∈ R+ and θ1 ∈ [0, 2π3 [
define Rr1,θ1 as the set containing the vectors v2 ≡ (r2, θ2) such that r2 > 0
and θ2 = θ1 + θ satisfy:

For 0 ≤ θ1 <
π
3 , alternatively



π
3 ≤ θ < π−θ1

2 and 2r1 cos θ ≤ r2 ≤ r1
2 cos θ ,

π−θ1
2 ≤ θ < π

2 and 2r1 cos θ < r2 ≤ r1
2 cos θ ,

θ = π
2 and r2 ∈ R+,

π
2 < θ < 2π

3 and − 2r1 cos θ ≤ r2 <
−r1

2 cos θ .

For π
3 ≤ θ1 <

π
2 , alternatively



π
3 < θ ≤ θ1 and 2r1 cos θ < r2 <

r1
2 cos θ ,

θ1 < θ < π
2 and 2r1 cos θ < r2 ≤ r1

2 cos θ ,

θ = π
2 and r2 ∈ R+,

π
2 < θ < π−θ1 and − 2r1 cos θ ≤ r2<

−r1
2 cos θ .

For π
2 ≤ θ1 <

2π
3 : π

3 < θ < π − θ1 and 2r1 cos θ < r2 <
r1

2 cos θ .
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Figure 3: Regions Rr1,θ1 in Definition 2.4.

The different cases for the sets Rr1,θ1 are depicted in Figure 3.

Proposition 2.5. The map from the set of all the flat Riemannian torus
Gl+(2,R)/Sl(2,Z) to the set X = {(r1, θ1, r2, θ2) : r1 ∈ R+ , θ1 ∈ [0, 2π3 [ and
(r2, θ2) ∈ Rr1,θ1} which assigns to each torus TG the value of (r1, θ1, r2, θ2)
corresponding to the canonical representatives of the lattice G, is a point
bijection.

Proof. As we have seen, θ1 ∈ [0, 2π3 [ and θ ∈ [π3 ,min{π − θ1,
2π
3 }[. Lemma

2.3 (1A) , (1B) suggest to distinguish the two possible values of min{π−θ1, 2π3 },
that is, when inequality θ1 < π

3 holds or not. Moreover, (2B) suggests to
distinguish when θ1 <

π
2 holds.

In the case 0 ≤ θ1 <
π
3 , from (1A), (2A), θ ∈ [π/3, 2π/3[ and we distinguish

the subcases:

(a) π
3 ≤ θ < π−θ1

2 . By Lemma 2.3(2B) we have 2r1 cos θ ≤ r2 ≤ r1
2 cos θ .

Notice that both equalities may hold, because θ < π−θ1
2 and θ > θ1.
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(b) π−θ1
2 ≤ θ < π

2 . By the same Lemma, the same inequalities hold but
the first strictly because of (2B), that is: 2r1 cos θ < r2 ≤ r1

2 cos θ .

(c) θ = π
2 . There is no restriction for r2.

(d) π
2 < θ < 2π

3 . By 2.3(1B), inequality −2r1 cos θ ≤ r2 < −r1
2 cos θ is ob-

tained.

In the case π
3 ≤ θ1 < π

2 , again (1A), (2A) imply θ ∈ [π/3, 2π/3[, but now
(2B) does not permit θ = π/3. That is, θ ∈]π/3, 2π/3[, and we distinguish
the subcases:

(a’) π
3 < θ ≤ θ1. By Lemma 2.3(2B) we have 2r1 cos θ ≤ r2 ≤ r1

2 cos θ , but
none of the equalities can hold, because otherwise the contradiction θ1 < π

3
or θ1 < θ is yielded.

(b’) θ1 < θ < π
2 . By Lemma 2.3(2B) we have 2r1 cos θ ≤ r2 ≤ r1

2 cos θ , but,
as in previous case, the first equality cannot hold (the second one can).

(c’) θ = π
2 . There is no restriction for r2.

(d’) π
2 < θ < π − θ1. As π − θ1 ≤ 2π

3 , Lemma 2.3(1B) yields the required
inequalities.

In the case π
2 ≤ θ1 < 2π

3 , reasoning as in previous case for θ1, necessarily
θ ∈]π3 ,

2π
3 [. Even more, as θ + θ1 < π, one has θ < π

2 and the restrictions for
(r2, θ2) lie under (2B).

2.3. Manifold structure: identifications. Up to now, the bijec-
tion between the quotient set Gl+(2,R)/Sl(2,Z) and X has been defined at
a point-set level. In order to obtain a homeomorphism, a topology will be
defined in X by enlarging it with the points in the boundary (endowed with
the natural topology), and identifying suitable boundary points.

More precisely, let
◦
Rr1,θ1 be the interior in R2 of Rr1,θ1 , and let

◦
X={

(v1, v2) ≡ (r1, θ1, r2, θ2) : r1 > 0, θ1 ∈]0, 2π3 [, (r2, θ2) ∈
◦
Rr1,θ1

}
. Let X̄

be its closure in (R+ × R)2, endowed with its natural topology. Our aims

are: (1) to define four identifications between points in ∂X = X̄\
◦
X, which

determine a relation of equivalence, (2) to show that each class of equiva-
lence contains one and only one representative in X, and (3) to prove that the
quotient topological space X̃ = X̄/ ∼ is homeomorphic to Gl+(2,R)/Sl(2,Z).



194 r. raḿırez-uclés

Figure 4: Identification I, representatives (v1, v2) are identified
with the canonical ones (v̄1, v̄2), being v̄1 = −v2 and v̄2 = v1.

Next, identify a pair (v1, v2) ∈ (∂X)\X with (v̄1, v̄2) ∈ ∂X (which may
or not lie in X) according to the following rules (we use still vi ≡ (ri, θi),
v̄i ≡ (r̄i, θ̄i), θ = θ2 − θ1, θ̄ = θ̄2 − θ̄1):

I. If θ2 = π (and, thus, by Definition 2.4, θ1 ≥ π
3 , see Figure 2):

(r1, θ1, r2, π) ∼ (r2, 0, r1, θ1).

This identification is suggested because v2 in a canonical representative
cannot lie in the negative x-semiaxis and, then, it can be replaced by
−v2. But, as −v2 lies in the positive x-semiaxis, it will be ordered before
v1, i.e., v̄1 = −v2, v̄2 = v1, being θ̄ = π − θ.

In order to check that v̄2 ∈ R̄r̄1,0 ((v̄1, v̄2) ∈ X̄) and discuss when it
belongs to Rr̄1,0 ((v̄1, v̄2) ∈ X), consider the following cases for (v1, v2)
according to Definition 2.4:

(a) π
3 ≤ θ1 < π

2 and −2r1 cos(π − θ1) ≤ r2 ≤ −r1
2 cos(π−θ1)

, that is,

2r1 cos θ1 ≤ r2 ≤ r1
2 cos θ1

(Figure 2). As r̄1 = r2, r̄2 = r1, θ̄ = θ1,

necessarily π
3 ≤ θ̄ < π

2 and 2r̄1 cos θ̄ ≤ r̄2 ≤ r̄1
2 cos θ̄

. Thus, v̄2 ∈ Rr̄1,0.

(b) If π
2 ≤ θ1 ≤ 2π

3 and 2r1 cos(π− θ1) ≤ r2 ≤ r1
2 cos(π−θ1)

(Figure 3), one

has analogously v̄2 ∈ R̄r̄1,0 and, if the inequality 2r1 cos(π − θ1) ≤ r2
holds strictly, then v̄2 ∈ Rr̄1,0.
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Figure 5: Identification II, (v̄1 = v1, v̄2 = v1 + v2).

II. If r2 =
−r1

2 cos θ (and, thus, as limit cases of the strict inequality r2 <
−r1

2 cos θ
in Definition 2.4, necessarily θ1 < π

2 and π
2 < θ ≤ min{π − θ1,

2π
3 },

Figure 3):

(r1, θ1,
−r1

2 cos θ
, θ1 + θ) ∼ (r1, θ1,

−r1
2 cos θ

, θ1 + π − θ).

This identification is suggested because, for such (non canonical) rep-
resentatives (v1, v2), one has ∥v1 + v2∥ = ∥v2∥ and, then, one can take

instead v̄1 = v1, v̄2 = v1 + v2. In this case ∥v2∥ = −∥v1∥
2 cos θ . Even more,

cos θ̄ = v̄1v̄2
∥v̄1∥∥v̄2∥ = v1(v1+v2)

∥v1∥∥v1+v2∥ = ∥v1∥
∥v2∥ + cos θ = ∥v1∥

−∥v1∥
2 cos θ

+ cos θ = − cos θ,

and, therefore, θ̄ = π − θ.

In order to check v̄2 ∈ ∂Rr̄1,θ̄1
notice just that v̄2 is symmetric in re-

spect to the axis θ = π
2 for v2 in the domain R̄r1,θ1 , and ∂Rr̄1,θ̄1

is also
symmetric in respect to this axis. To discuss when v̄2 ∈ Rr̄1,θ̄1

recall:

(a) If 0 ≤ θ1 <
π
3 clearly v̄2 ∈ Rr̄1,θ̄1

,

and

(b) If π
3 ≤ θ1 < π

2 , then
π
2 < θ ≤ π − θ1, thus, θ1 ≤ π − θ < π

2 , i.e.,
θ1 ≤ θ̄ < π

2 . Now, when θ̄ > θ1, we have v̄2 ∈ Rr̄1,θ̄1
, otherwise (θ̄ = θ1)

this does not hold.
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Figure 6: Identification III, (v̄1 = v1 − v2, v̄2 = v2).

III. For r2 = 2r1 cos θ (and, thus, either 0 ≤ θ1 < π
3 with π−θ1

2 ≤ θ < π
2 , or

π
3 ≤ θ1 < π

2 with π
3 ≤ θ < π

2 , or
π
2 ≤ θ1 ≤ 2π

3 with π
3 ≤ θ ≤ π − θ1; see

Figure 3):

(r1, θ1, 2r1 cos θ, θ1 + θ) ∼ (r1, θ1 + 2θ − π, 2r1 cos θ, θ1 + θ).

This is suggested because, in this case, ∥v1 − v2∥ = ∥v1∥ and we can

take v̄1 = v1 − v2, v̄2 = v2. In this case, cos θ̄ = v̄1v̄2
∥v̄1∥∥v̄2∥ = (v1−v2)v2

∥v1−v2∥∥v2∥ =

cos θ− ∥v2∥
∥v1∥ = cos θ− 2∥v1∥ cos θ

∥v1∥ = − cos θ, and, therefore, θ̄ = π−θ. Even

more, θ̄1 = θ̄2 − θ̄ = θ2 − (π − θ) = θ1 + θ − π + θ = θ1 + 2θ − π.

In order to check v̄2 ∈ ∂Rr̄1,θ̄1
, notice that, when π

3 < θ < π−θ1 (θ2 < π),
necessarily v̄2 ∈ ∂Rr̄1,θ̄1

∩ Rr̄1,θ̄1
. In fact, as ∥v̄1 + v̄2∥ = ∥v1∥ = ∥v̄1∥,

one has r̄2 = r2 = 2r1 cos θ = −2r1 cos θ̄ = −2r̄1 cos θ̄. Otherwise, in the
limit cases θ = π−θ1, or θ = π

3 clearly v̄2 ∈ ∂Rr̄1,θ̄1
and does not belong

to Rr̄1,θ̄1
.

IV. For r2 = r1
2 cos θ (and, thus, either π

3 ≤ θ1 < π
2 with π

3 ≤ θ ≤ θ1 or
π
2 ≤ θ1 ≤ 2π

3 with π
3 ≤ θ ≤ π − θ1; see Figure 3):

(r1, θ1,
r1

2 cos θ
, θ1 + θ) ∼ (

r1
2 cos θ

, θ1 − θ, r1, θ1).
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Figure 7: Identification IV, (v̄1 = v1 − v2, v̄2 = v1).

This is suggested because ∥v1−v2∥ = ∥v2∥ and we can take v̄1 = v1−v2,

v̄2 = v1. In this case cos θ̄ = v̄1v̄2
∥v̄1∥∥v̄2∥ = (v1−v2)v1

∥v1−v2∥∥v1∥ = ∥v1∥
∥v2∥ − cos θ =

∥v1∥
∥v1∥
2 cos θ

− cos θ = cos θ. Therefore, θ̄ = θ, and θ̄1 = θ̄2 − θ̄ = θ1 − θ.

Notice that, in this case, the point E = (r1,
π
3 , r1,

2π
3 ) is identifiable

with EIV = (r1, 0, r1,
π
3 ) if E is regarded on the left-hand side of the

identification, and with E′
IV = (r1,

2π
3 , r1, π) if E is on the right-hand

one. (This property only happens in this case.)

To check v̄2 ∈ ∂Rr̄1,θ̄1
, notice that ∥v̄1 − v̄2∥ = ∥ − v2∥ = ∥v̄1∥. Thus,

r2 =
r1

2 cos θ and r̄2 = r1 = 2r2 cos θ = 2r̄1 cos θ̄, and the result follows.

To discuss when v̄2 ∈ Rr̄1,θ̄1
:

(a) When π
3 ≤ θ1 <

π
2 and π

3 ≤ θ ≤ θ1, necessarily, θ̄1 = θ1 − θ < π
6 and

π
3 ≤ θ̄ < π

2 . Thus, v̄2 ∈ Rr̄1,θ̄1
if θ̄ < π−θ̄1

2 (or, equally, if θ < π − θ1).

(b) When π
2 ≤ θ1 ≤ 2π

3 and π
3 ≤ θ ≤ π − θ1, necessarily θ̄1 ≤ π

3 and
π
3 ≤ θ̄ ≤ π

2 . In this case, θ̄ ≤ π−θ̄1
2 , and v̄2 ∈ Rr̄1,θ̄1

, if the inequality is
strict.

The four identifications above induce a relation of equivalence in X̄, by
assuming that the identifications are transitive. We will say that P,Q ∈ X̄ are
directly related if they are identified through one of the four identifications;
otherwise, P and Q maybe related through a chain P = P1 ∼ P2 ∼ · · · ∼
Pl−1 ∼ Pl = Q, l ≥ 3. As we will see in Lemma 2.7, no chains with length
l > 3 will be necessary.
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Our aim is to show that any class has one and only one element of X.

Lemma 2.6. Each element of (∂X)\X is identified with at least one ele-
ment of X.

Proof. Looking at the discussion on where lies v̄2 in each case, when θ2 < π
and θ ̸= π

3 one has directly v̄2 ∈ Rr̄1,θ̄1
, that is, (v̄1, v̄2) ∈ X.

When θ2 = π, the point (v̄1, v̄2) obtained after applying either I, II, III, or
IV does not belong to X, but then the further identification II, IV, I and III,
respectively, matches (v̄1, v̄2) with a point in X.

When θ = π
3 , identification III matches (v1, v2) with a point (v̄1, v̄2) ∈ ∂X.

Then, identification II matches (v̄1, v̄2) with a point in X.

Lemma 2.7. Each class of equivalence contains at most one element of X.

Proof. The proof is carried out by discussing exhaustively the number and
type of the elements at each class. Consider a point (v1, v2) ∈ ∂X which is
directly related to n = 0, . . . , 4 points, and discuss the cases:

A
III−→ AIII

IV ↘ ↗ I

AIV

B
IV−→ BIV

II ↘ ↗ I

BII

L
III−→ LIII

IV ↘ ↗ II

LIV

T
III−→ TIII

I ↓ ↓ I

TI
II−→ T′

EIII

I ↗ ↑ III ↘ II

E′
IV

IV−→ E
IV−→ EIV

III ↘ ↓ II ↗ I

EII
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• n = 4. The four identifications are not applicable to any point of X̄ at
the same time. However, the point E = (r1,

π
3 , r1,

2π
3 ), for any r1 > 0,

is directly identified with four points [E] = {E,EII , EIII , EIV , E
′
IV },

being EII = (r1,
π
3 , r1, π), EIII = (r1, 0, r1,

2π
3 ), EIV = (r1, 0, r1,

π
3 ) and

E′
IV = (r1,

2π
3 , r1, π). These are the unique classes with four elements,

and the unique representative of [E] in X is EIV .

• n = 3. No point is directly related with three points exactly.

• n = 2. There are four possible classes, three of them with three elements
each one, and the other class with four elements:

– [A] = {A,AIII , AIV }, where A =
(
r1, θ1, 2r1 cos(

π−θ1
2 ), π+θ1

2

)
with

θ1 < π
3 . Here AIII and AIV are the points obtained by the iden-

tifications III, IV, resp., and the unique element in X is AIII =(
r1, 0, 2r1 cos(

π−θ1
2 ), π+θ1

2

)
.

– [B] = {B,BII , BIV }, where B =
(
r1, θ1,

r1
2 cos θ1

, 2θ1
)
with π

3 < θ1 <
π
2 . Here, BII , BIV are obtained by means of II, IV, and the unique
element in X is BIV =

(
r1

2 cos θ1
, 0, r1, θ1

)
.

– [L] = {L,LIII , LIV }, where L = (r1, θ1, r1, θ1 +
π
3 ) with θ1 > π

3 .
Here, LIII and LIV are obtained by means of III, IV, and the
unique element in X is LIV = (r1, θ1 − π

3 , r1, θ1).

– [T ] = {T, TI , T
′, TIII}, where T = (r1, θ1, 2r1 cos(π − θ1), π) with

π
2 < θ1 < 2π

3 . Here, TI and TIII are obtained by means of I, III,
and the unique element in X is T ′ = (2r1 cos(π − θ1), 0, r1, θ1).

• n = 1. The class contains two points P, P ′, one of them in X (because
each class contains at least one element of X by Lemma 2.6, and no
direct relation identifies two points of X). Notice that if P is directly
related only to P ′, then P ′ cannot be directly related to more than one
point, otherwise, it would lie in previous cases.

• n = 0. Obviously the class contains a unique point P , which satisfies
P ∈ X\∂X.

Let X̂ be the quotient set of X̄ by the relation of equivalence ∼, endowed
with the quotient topology. Given (v1, v2) ∈ X̄, its class will be denoted
[(v1, v2)] ∈ X̂.

Proposition 2.8. The map F : Gl+(2,R)/Sl(2,Z) −→ X̂ which maps
each lattice to the class of its canonical representatives, is a homeomorphism.
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Proof. For the continuity of F , consider the following diagram, where π+, π̂
denote the canonical projections:

X̄
π+ ↙ ↘ π̂

Gl+(2,R)/Sl(2,Z) F−→ X̂

F is continuous if and only if so is F ◦π+, and this holds because the diagram
is commutative, that is, this composition is equal to π̂.

Analogously, for the continuity of F−1, notice the following commutative
diagram:

Gl+(2,R) i←− X̄
π+ ↓ F̄−1 ↙ ↘ π̂

Gl+(2,R)/Sl(2,Z) F−1

←− X̂

where i is the canonical inclusion. Now, F−1 is continuous if and only if so is
F̄−1 = F−1 ◦ π̂ = π+ ◦ i -this last composition continuous, as required.

Remark 2.9. AsGl+(2,R)/Sl(2,Z) has a natural structure of smooth man-
ifold, F induces a differentiable structure on X̂. Such structure will be re-
garded as the canonical differentiable structure of X̂. Nevertheless, recall that
the cut and paste construction of X̂ also permits to construct such a structure
“by hand” in an obvious way.

3. Manifolds of classes of Riemannian tori

We will study the structure of quotient spacesGH=H\(Gl+(2,R)/Sl(2,Z))
where H is each of the following subgroups of Gl(2,R):

O(2,R) = {A ∈ Gl(2,R) : AAt = I2},
O+(2,R) = O(2,R) ∩Gl+(2,R),
CO(2,R) = {A ∈ Gl(2,R) : AAt = aI2, a > 0},

CO+(2,R) = CO(2,R) ∩Gl+(2,R).

(I2 denotes the identity matrix 2×2). Such quotients will admit natural struc-
tures of either orbifolds or smooth manifolds with piecewise smooth boundary.
For the former, the reader can look at abundant literature, as the recent ar-
ticles [4], [5] and references therein. Nevertheless, for our purposes, more
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simple and intuitive references, as classical Thurston’s notes [13] (where the
name “orbifold” is introduced) or the seminal paper by Satake [12] (where
they are defined for the first time with the name “V-manifolds”) are enough.
For the latter, we introduce some notation. Consider the closed quadrant
Dn = {(x1, . . . , xn) : 0 ≤ xi, for all i} ⊂ Rn with the induced topology. A
(paracompact, Hausdorff) topological manifold with boundary M is a smooth
manifold with piecewise smooth boundary if it is endowed with a maximal
atlas A with charts defined between open subsets ϕα : Wα ⊂ M → Uα ⊂ Dn

and all the possible changes of charts ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ)

are smooth in the ordinary sense. For such a manifold, ∂kM ⊂M , is defined
as the set which contains all the points p ∈M such that exactly k coordinates
of ϕα(p) vanish (for one chart ϕα and, then, for any chart around p). For
k = 1, . . . , n, ∂kM is called the k−edge of M ; for k = 0, the open set ∂0M ,
also denoted Ṁ , is called the interior (or set of smooth points) of M .

The following straightforward result will be used:

Lemma 3.1. Let A, B be topological spaces. Let ∼A, ∼B be relations
of equivalence in A, B, resp. Consider the quotient sets Â = A/ ∼A, B̂ =
B/ ∼B with canonical projections πA, πB resp. Assume that f : A −→ B is
continuous. If there exists a map f̂ : Â −→ B̂ which makes commutative the
diagram (i.e., if x ∼A y implies f(x) ∼B f(y)):

A
f−→ B

πA ↓ ↓ πB
Â

f̂−→ B̂,

then f̂ is unique and continuous. Even more, if f is a homeomorphism (resp.
onto), then f̂ is a homeomorphism (resp. onto).

3.1. Case H = O+(2,R). In this case, two lattices are identified if and
only if there exists an orientation-preserving isometry between the correspond-
ing flat Riemannian tori. Our first aim is to prove:

Proposition 3.2. If H = O+(2,R), then GH is homeomorphic to R3.

In the proof, a concrete homeomorphism with R3 is constructed and, thus
one could induce in GH a differentiable structure diffeomorphic to R3. Never-
theless, the constructive cut-and-paste procedure plus the natural requirement
on independence of the structure from the choice of canonical representatives,
makes the orbifold structure asserted in Theorem 1.1 apparent.
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In order to prove Proposition 3.2, consider the set

Y + = {(r1, 0, r2, θ2) : r1 ∈ R+, (r2, θ2) ∈ Rr1,0} ⊂ X̄

and its closure Ȳ + in X̄. Consider the map ᾱ+ : X̄ −→ Ȳ +

ᾱ+(v1, v2) =
(
M−θ1(v1),M−θ1(v2)

)
, (6)

where M−θ1 is the rotation of angle −θ1 in R2. This map, ᾱ+ can be seen
as a quotient projection on the topological space Ȳ + (i.e., Ȳ + can be seen
as the topological space obtained by identifying the points in X̄ with the
same image). In fact, ᾱ+ is continuous, onto and, if A ⊂ Ȳ + satisfies that
(ᾱ+)−1(A) is open in X̄, then A is open in Ȳ +.

Next, our aim is to define a relation of equivalence on Ȳ + such that the
quotient set Ŷ + will be identified canonically with GH . Consider the relation
of equivalence in Ȳ + determined by the following identifications (each one
justified because two canonical representatives identified by I, II, III or IV in
X̄, must have the same image by ᾱ+ in Ŷ +):

I’. For any (r1, 0, r2, θ) ∈ Ȳ +:

(r1, 0, r2, θ) ∼ (r2, 0, r1, π − θ).

Justification: in the identification I, if (r1, θ1, r2, π) ∼ (r2, 0, r1, θ1), then

ᾱ+(r1, θ1, r2, π) = (r1, 0, r2, π − θ1)

must be identified with

ᾱ+(r2, 0, r1, θ1) = (r2, 0, r1, θ1).

II’. For r2 =
−r1

2 cos θ ,
π
2 < θ ≤ 2π

3 :(
r1, 0,

−r1
2 cos θ

, θ
)
∼

(
r1, 0,

−r1
2 cos θ

, π − θ
)
.

Justification: in II, if (r1, θ1,
−r1

2 cos θ , θ1 + θ) ∼ (r1, θ1,
−r1

2 cos θ , θ1 + π − θ),
then

ᾱ+
(
r1, θ1,

−r1
2 cos θ

, θ1 + θ
)
=

(
r1, 0,

−r1
2 cos θ

, θ
)

must be identified with

ᾱ+
(
r1, θ1,

−r1
2 cos θ

, θ1 + π − θ
)
=

(
r1, 0,

−r1
2 cos θ

, π − θ
)
.
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One could also consider the natural identifications:

III’. For r2 = 2r1 cos θ,
π
3 ≤ θ < π

2 :

(r1, 0, 2r1 cos θ, θ) ∼ (r1, 0, 2r1 cos θ, π − θ).

IV’. For r2 =
r1

2 cos θ ,
π
3 ≤ θ < π

2 :(
r1, 0,

r1
2 cos θ

, θ
)
∼

( r1
2 cos θ

, 0, r1, θ
)
.

Nevertheless, III’ and IV’ can be obtained as suitable compositions of I’ and
II”; so, only I’ and II”are truly relevant now.

The quotient set of Ȳ + by the identifications I’and II’ (and then IV’, III’)
will be denoted Ŷ +.

Lemma 3.3. The map α̂+ : X̂ −→ Ŷ +, which makes commutative the
diagram

X̄
ᾱ+

−→ Ȳ +

πX ↓ ↓ πY +

X̂
α̂+

−→ Ŷ +

is a quotient projection on the topological space Ŷ + (i.e., α̂+ is onto and
Â ⊂ Ŷ + is open if and only if (α̂+)−1(Â) is open).

Proof. Notice that α̂+ must be defined as α̂+[(v1, v2)] = [ᾱ+(v1, v2)], and
this definition is consistent by the definition of identifications I’, II’, III’, IV’.
Thus, the result follows from Lemma 3.1 and the fact that ᾱ+ is a quotient
projection.

Our following result shows that Ŷ + is canonically identifiable to GH .

Lemma 3.4. Let F̂+ : GH −→ Ŷ + be the unique map which makes com-
mutative the following diagram:

Gl+(2,R)/Sl(2,Z) F−→ X̂
↘ π ↙ α̂+

GH
F̂+

−→ Ŷ +

Then, F̂+ is a homeomorphism.
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Proof. In order to obtain a commutative diagram, we must define F̂+[R] =
[(α̂+ ◦ F )(R)], and prove that this is well-defined, i.e., if R1 ∼H R2 then
[α̂+[F (R1)]] = [α̂+[F (R2)]].

If R1 ∼H R2, we can assume α̂+ ◦F (R1) = [(v1, v2)] with v1 = (r1, 0), v2 =
(r2, θ), r2 ≥ r1, and α̂+ ◦ F (R2) = [(v̄1, v̄2)], with v̄1 = (r̄1, 0), v̄2 = (r̄2, β),
r̄2 ≥ r̄1 (by taking the appropriately rotated representatives of the class, and
using eventually identification I’). Let R̄i the lattice generated by α̂+ ◦F (Ri),
i = 1, 2. As {r1, r2} is invariant by rotations, necessarily r̄i = ri, i = 1, 2
and, thus v̄1 = v1. By the definition of α̂+, one also has that an appropriate
rotation of R̄1 will yield R̄2.

In the case r̄2 = r2 > r1, as both, (v1, v2) and (v1, v̄2) are canonical
representatives of the lattices they generate, necessarily ∥v∥ > r1 for all v ∈ R̄i,
v ̸= ±v1, i = 1, 2. Thus, if R̄1 is obtained from a rotation of R̄2, then
necessarily both lattices are equal, i.e., either β = θ or r2 = r1

2 cos θ and β =

π − θ. Then, by the identification II’, F̂+ is well-defined.
If r̄2 = r1 and β ̸∈ {π3 ,

2π
3 }, again ∥v∥ > r1 for all v ∈ R̄2, v ̸= {±v1,±v̄2}

(recall the proof of Proposition 2.2). Thus, if R̄1 is obtained from a rotation
of R̄2, then either both lattices are equal or β = π − θ. By using I’, F̂+ is
again well-defined.

Finally, if r̄2 = r1 and β ∈ {π3 ,
2π
3 }, then F̂+ would be well defined by

identifications I’ or II’.
Once F̂+ is proven to exist, Lemma 3.1 yields that it’s a homeomor-

phism.

From Lemma 3.4, the proof of Proposition 3.2 will be completed by proving
that Ŷ + is homeomorphic to R3. In fact, we will give a canonical homeomor-
phism to the following quotient set Û+, which easily turns out homeomorphic
to R+ × R2 (and then to R3) and admits the required structure of orbifold
(see Figure 8).

Lemma 3.5.The space Ŷ + is canonically homeomorphic to Û+= Ū+/∼I′,II′

where Ū+= {(r1, 0, r2, θ) ∈ Ȳ + : r2 ≥ r1} and I’, II’ are the restrictions of the
identifications defined above.

Proof. The map d̂+ : Ŷ + −→ Û+ defined by:

d̂+
(
[(r1, 0, r2, θ)]

)
=

{
(r1, 0, r2, θ) if r2 ≥ r1,

(r2, 0, r1, π − θ) if r2 < r1,

is a homeomorphism. In fact, it is well-defined by identifications I’, II’, III’,
IV’, continuous by I ′, and its inverse can be seen as a natural inclusion.
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3.2. Case H = CO+(2,R). In this case, two lattices are identified if
and only if there exists an orientation-preserving conformal transformation
between the corresponding flat Riemannian tori or, equivalently, if and only if
the associated Riemann surfaces are equal (see [6, Sect. IV.7]). As in the pre-
vious case, the constructive procedure of the homeomorphism for the following
proposition not only yields the result, but the orbifold structure asserted in
Theorem 1.1. Even though the procedure in this case is analogous to the pre-
vious case with one identification more, we sketch it for its interest (compare
with [6, p. 198, Theorem]).

Proposition 3.6. If H = CO+(2,R), then GH is homeomorphic to R2.

Put Y +
1 = {(1, 0, r2, θ2) ∈ Y +} and denote by Ȳ +

1 its closure in X̄. Consider
the map ᾱ+

1 : X̄ −→ Ȳ +
1

ᾱ+
1 (v1, v2) =

1

r1
ᾱ+(v1, v2). (7)

Again, this map, ᾱ+
1 can be seen as a quotient projection on the topological

space Ȳ +
1 obtained by identifying the points in X̄ with the same image.

Reasoning as in the previous case, the relation of equivalence in Ȳ +
1 is

defined by the identifications:

I’. For (1, 0, r2, θ) ∈ Ȳ +
1 :

(1, 0, r2, θ) ∼
(
1, 0,

1

r2
, π − θ

)
.

II’. For r2 =
−1

2 cos θ ,
π
2 < θ ≤ 2π

3 :(
1, 0,

−1
2 cos θ

, θ
)
∼

(
1, 0,

1

2 cos θ
, π − θ

)
.

Let Ŷ +
1 be the corresponding quotient set Ȳ +

1 . Reasoning as in Lemma 3.3,
the map α̂+

1 : X̂ −→ Ŷ +
1 is a quotient projection on the topological space Ŷ +

1

and, by similar arguments as in the previous case:

Lemma 3.7. The unique map F̂+
1 : GH −→ Ŷ +

1 which makes commutative
the diagram:

Gl+(2,R)/Sl(2,Z) F−→ X̂
↘ π ↙ α̂+

1

GH
F̂+
1−→ Ŷ +

1

is a homeomorphism.
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Figure 8: The points in Û+ ≡ Ŷ + ≡ GH , H = O+(2,R) for
fixed r1 (if r1=1 the set is Û+

1 ≡ Ŷ +
1 ≡ GH , H = CO+(2,R)).

The curves with arrows of the same type in the left picture are
identified yielding topologically the right picture.

Let U+
1 = {(1, 0, r2, θ) ∈ Ȳ +

1 : r2 ≥ 1} and let Û+
1 be its quotient by

identifications I’, II’. Now, one has (Figure 8):

Lemma 3.8. The space Ŷ +
1 is canonically homeomorphic to Û+

1 .

3.3. Cases H = O(2,R), H = CO(2,R). In the present subsection, we
study what happens if the restriction on orientation-preserving for the iden-
tifications, is removed in the two previous cases. Essentially, the new non-
orientation preserving identifications make a topological distinction between
the classes corresponding to the “generic” oblique crystal system, which be-
come a topological manifold, and the classes of the other four crystal systems,
which will lie in the boundary of such manifold. But, from the viewpoint
of differentiability, a further distinction appears naturally: the classes corre-
sponding to the rectangular (centered or not) system are distributed in smooth
connected parts of the boundary, and the classes of the square and hexagonal
systems belong to the edge of the boundary.

For the case H = O(2,R) our aim is to prove:
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Proposition 3.9. If H = O(2,R), then GH is homeomorphic to Ū , de-
fined as the closure in Ȳ + of:

U =
{
(r1, 0, r2, θ) ∈ Y + : r2 ≥ r1, θ ≤ π

2

}
The concrete homeomorphism in the proof becomes natural for all the identi-
fications and, as Ū is a subset of R3, its required topological and differentiable
structure becomes obvious.

Let Y = {(r1, 0, r2, θ) ∈ Y + : θ ≤ π
2 } and Ȳ its closure in Ȳ +. Consider

the map ᾱ : X̄ −→ Ȳ

ᾱ(v1, v2) = L ◦ ᾱ+(v1, v2), (8)

where L : Ȳ + −→ Ȳ is defined by:

L(r1, 0, r2, θ) =

{
r1, 0, r2, θ) if θ ≤ π

2 ,

(r1, 0, r2, π − θ) if θ > π
2 .

Again ᾱ can be seen as a quotient projection on the topological space
Ȳ . By applying the arguments in previous cases, consider the relation of
equivalence in Ȳ induced by the following identification:

I’. For (r1, 0, r2, θ) ∈ Ȳ :

(r1, 0, r2, θ) ∼ (r2, 0, r1, θ).

(The identifications corresponding to II’, III’ and IV’ would not add new
conditions). Let Ŷ be the quotient set of Ȳ under identification I’. Reasoning
as in Lemma 3.3, the map α̂ : X̂ −→ Ŷ is a quotient projection on the
topological space Ŷ and as in Lemma 3.4:

Lemma 3.10. The unique map F̂ : GH −→ Ŷ which makes commutative
the following diagram is a homeomorphism:

Gl+(2,R)/Sl(2,Z) F−→ X̂
↘ π ↙ α̂

GH
F̂−→ Ŷ

Thus, the result follows applying the arguments of Lemma 3.5 to L ◦ d̂+ :
Ŷ −→ Ū in order to obtain:



208 r. raḿırez-uclés

Figure 9: The points in Ū ≡ GH , H = O(2,R) for fixed r1 (if
r1 = 1 the set is Ū1 ≡ GH , H = CO(2,R)).

Lemma 3.11. The space Ŷ is homeomorphic to Ū .

Finally, following analogous steps to previous cases, it is easy to check that
the result for H = CO(2,R) relies on the proof of:

Proposition 3.12. If H = CO(2,R), then GH is homeomorphic to Ū1,
defined as the closure in Ȳ + of

U1 =
{
(1, 0, r2, θ) ∈ Y + : r2 ≥ 1, θ ≤ π

2

}
.
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