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A B S T R A C T   

Reinke's edema is one of the most prevalent laryngeal pathologies. Its detection can be addressed by using 
computer-aided diagnosis systems based on features extracted from speech recordings. When extracting acoustic 
features from different voice recordings of a particular subject at a concrete moment, imperfections in technology 
and the very biological variability result in values that are close, but they are not identical. This suggests that the 
within-subject variability must be properly addressed in the statistical methodology. Regularization-based 
regression approaches can be used to reduce the classification errors by favoring the best predictors and 
penalizing the worst ones. Three replication-based regularization approaches for variable selection and classi
fication have been specifically designed and implemented to take into account the underlying within-subject 
variability. In order to illustrate the applicability of these approaches, an experiment has been specifically 
conducted to discriminate Reinke's edema patients (30 subjects) from healthy people (30 subjects) in a hospital 
environment. The features have been extracted from four phonations of the sustained vowel /a/ recorded for 
each subject, leading to a database that has fed the proposed machine learning approaches. The proposed 
replication-based approaches have been proved to be reliable in terms of selected features and predictive ability, 
leading to a stable accuracy rate of 0.89 under a cross-validation framework. Also, a comparison with traditional 
independence-based regularization methods reports a great variability of the latter in terms of selected features 
and accuracy metrics. Therefore, the proposed approaches contribute to fill a gap in the scientific literature on 
statistical approaches considering within-subject variability and can be used to build a robust expert system.   

1. Introduction 

Voice is the main communication tool that human beings have. 
Misuse or overuse of the vocal folds can damage the vocal function. 
Voice disorders may affect anyone, but they are especially relevant for 
voice professionals such as teachers, singers, actors, anchors, coaches, 
lawyers… Voice professionals are prone to suffer from organic voice 
disorders and, because of that, they need to avoid potential risks and, 
eventually, ask for medical care [41]. 

Reinke's edema is one of the most prevalent laryngeal pathologies 
[33]. It is the result of the gelatinous fluid accumulation in the Reinke's 
space, mainly due to vocal abuse and/or heavy tobacco use. It mainly 
affects women, causing progressive hoarse voice with a lower pitch, less 
vocal power and a tendency to fatigue in more intense cases [5]. Direct 
inspection of the larynx through laryngoscopy and videostroboscopy 

(specialized invasive equipment) and/or subjective listening tests to 
evaluate voice quality are two common diagnostic tools used by oto
laryngologists [45]. 

In the last years, acoustic features extracted from voice recordings 
have been considered as a potential biomarker (non-invasive, fast, 
objective, and low cost) to assist in the diagnosis and tracking of voice- 
related diseases. Computer-Aided Diagnosis (CAD) systems have been 
built with this purpose, consisting of an acoustic feature extraction step 
followed by the use of machine learning algorithms. A perspective on 
automatic speech signal analysis for clinical diagnosis and assessment of 
speech disorders is provided by Baghai-Ravary and Beet [1] and Gómez- 
García et al. [13]. These systems have been developed for several dis
eases affecting the voice such as, e.g., vocal fold nodules, vocal fold 
polyps, Reinke's edema, or even neurodegenerative disorders such as 
Parkinson's disease. 
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Diagnosis of Reinke's edema can be addressed by using CAD systems 
based on features extracted from speech recordings. Some authors have 
considered a mix of different pathologies, including Reinke's edema, to 
build a unique pathological class to discriminate diseased subjects from 
healthy ones [6,23,31,58]. Verde et al. [56] focused on Reinke's edema 
and their results were based on a personalized fundamental frequency 
estimation and no other acoustic feature was considered. Features based 
on nonlinear dynamics analysis have not been thoroughly used for 
Reinke's edema diagnosis in the scientific literature. Tavares et al. [51] 
combined entropy measures and cepstral analysis to discriminate 
healthy subjects from people suffering from Reinke's edema. Based on 
energy, zero-crossing rate and signal entropy, Silva Fonseca et al. [48] 
presented a speech disorder classification method that handles coexist
ing pathologies (Reinke's edema and laryngitis) that share the main 
phonic symptom. Phonation of sustained vowels was used in the pre
vious works because they constitute easy to produce tasks, involving 
vocal fold vibration [39]. 

MEEI database, commercialized by Kay Elemetrics, is one of the most 
used voice database for automatic diagnosis research and covers several 
voice pathologies, including Reinke's edema [34]. However, it suffers 
from some disadvantages: the recorded phonations have been performed 
with high quality equipment in an acoustically controlled environment, 
and normal and pathological voices were recorded in different locations. 
Besides, the voice recordings have been selected by experts, which 
allowed for obtaining the best examples of each disease [44]. This has 
provided high accuracies when applying machine learning methods, but 
the results are not transferable to realistic situations where the phona
tions are recorded in medical centers or occupational health and safety 
services. 

Voice databases used for organic disease diagnosis are generally 
based on one single utterance per subject, i.e., acoustic features 
extracted from only one voice recording per subject. However, there 
exists variability between two or more voice recordings from the same 
subject at a particular time, so using only one utterance per subject may 
provide different results depending on the voice recording that has been 
selected. The imperfections in technology and the very biological vari
ability result in values that are similar (but not identical) for recordings 
from a particular subject, rather than for recordings from different in
dividuals. For Parkinson's disease diagnosis, many authors considered 
several replicated voice recordings for each subject, so a collection of 
related features based on consecutive voice recordings for each subject 
are used (see, e.g., Little et al. [29]). Although the existing variability 
among the extracted features from the several voice recordings of each 
subject has been recognized and the experimental design is based on the 
within-subject dependence of the recordings of each individual, tradi
tional machine learning techniques based on independence have been 
usually applied to all the utterances as if they were independent 
[8,29,54]. This means that the considered experimental unit is the ut
terance, and not the subject, so a voting system is used to decide if a 
subject is classified as healthy or having the disease by taking into ac
count the larger number of utterances classified as healthy or diseased 
for each subject. This leads to an artificial increase of the sample size, a 
diffuse criterion to make decisions since one subject can have utterances 
classified as healthy and diseased, and the application of independence- 
based methods to dependent data. 

The replicated measurements must be treated with specifically 
designed methods that address the existing within-subject variability. 
Pérez et al. [43] developed a logistic regression-based classification 
approach that takes into account the underlying within-subject depen
dence based on 6/7 utterances per subject. Later, Naranjo et al. [37] 
addressed this problem with a probit regression based on 3 utterances 
per subject, whereas Naranjo et al. [38] proposed a variable selection 
and classification approach for the same data. All these three approaches 
have been developed in the context of Parkinson's disease diagnosis with 
features extracted from voice recordings. 

In this paper, replication-based Bayesian regularization approaches 

for Reinke's edema diagnosis using acoustic features extracted from 
speech recordings have been developed and implemented. Variable se
lection and classification approaches have been widely addressed by 
Bayesian regularization regression with independent instances (see, e.g., 
van Erp et al. [55]), which aim to shrink small effects to zero while 
maintaining true large effects. However, there is a lack of regularization 
methods able to address within-subject variability. To the best of the 
authors' knowledge, up to now, it has never been demonstrated that 
having into account the within-subject variability provides more stable 
results than the approaches based on independent instances at the same 
time that relevant features are selected and accuracy metrics keep at 
good values. This study contributes to fill a gap in the scientific literature 
on statistical approaches considering replicated data and they can be 
used to build robust CAD systems. The main contributions of this article 
are: 

• Designing and implementing three Bayesian regularization ap
proaches based on replicated measurements.  

• Using Markov Chain Monte Carlo (MCMC) methods to solve the 
increasingly complex models.  

• Conducting an experiment to discriminate subjects suffering from 
Reinke's edema (30 subjects) from healthy people (30 subjects) in a 
hospital environment.  

• Extracting a variety of relevant features based on perturbation, 
cepstral analysis, noise, nonlinear dynamics, and entropies.  

• Proposing and integrating a 95% Bayesian credible interval-based 
technique to determine the most relevant acoustic features.  

• Reporting a robust performance in terms of feature selection and 
predictive capability, leading to an accuracy of 0.89 by using cross- 
validation and 0.93 without it.  

• Reporting the outperformance of the replication-based approach 
based on Ridge regression with respect to the traditional regulari
zation methods based on independent instances, which provide a 
great variability in terms of selected features and accuracy metrics. 

The rest of this paper is structured as follows. Section 2 shows the 
necessary information to collect the dataset, i.e., participants, equip
ment, speech recordings, and feature extraction procedures. In Section 
3, the general Bayesian approach is presented, including the binary 
response model, the way the replications are addressed in the model, the 
prior distributions for the different approaches, the Bayesian analysis, 
and the variable selection method. Section 4 shows the experimental 
settings and results. In Section 5, a discussion is presented, and the 
conclusions can be found in Section 6. 

2. Data collection 

This section provides details on the different aspects related to the 
generation of the acoustic feature database, i.e., the participants, pro
tocol, recording equipment, vocal task, and feature extraction process. 

2.1. Participants 

A total of 60 people participated in the study. Half of them were 
diagnosed as suffering from Reinke's edema and the other half were 
healthy control subjects. The general eligibility criteria for participation 
were to be volunteers, native Spanish speakers, aged from 18 to 65, and 
to properly perform the phonation task in the research protocol. 

The group of people suffering from Reinke's edema comprised 27 
women and 3 men, with mean (standard deviation) age of 47.9 (11.8) 
years. They were recruited among the volunteers who attended the voice 
disorder program at the San Pedro de Alcántara Hospital. Note that there 
is a gender imbalance due to the fact that women are more affected by 
organic vocal-fold pathologies than men (see, e.g., Hunter et al. [21]). 
The gender rate in this study is approximately the same as in people 
attending the voice disorder program at the moment of the recruitment. 
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On the other hand, the healthy control group was selected among people 
with good vocal health status, who had never suffered from any voice 
pathology or used their voices in a professional way. It comprised 26 
women and 4 men, with mean (standard deviation) age of 40.8 (11.2) 
years. 

All the subjects were informed and provided their consent by signing 
an informed consent letter. 

2.2. Protocol and equipment 

The participants were asked to fill out a questionnaire for assessment 
of part of the general and specific eligibility criteria. They provided 
information such as sex, age, smoking habits, use of medication, and 
previous surgical interventions. They also underwent a medical exami
nation consisting of a laryngological evaluation by videostroboscopy 
performed by an otorhinolaryngologist. For the subjects suffering from 
Reinke's edema, it was confirmed that Reinke's edema was the only 
existing voice pathology. 

A portable computer with an external sound card (TASCAM US322) 
and a headband microphone (AKG 520) featuring a cardioid pattern was 
used to record the phonations. The digital recording was performed 
using Audacity software (release 2.0.5). The sampling frequency was 
44.1 kHz and the resolution 16 bits/sample. 

This research protocol was approved by the bioethics committees of 
the San Pedro de Alcántara Hospital and the University of Extremadura. 

2.3. Speech recordings 

The voice recordings were performed in an ordinary diagnostic room 
at San Pedro de Alcántara Hospital. The room was not sound-proof, but a 
certain isolation from the aisles and waiting halls was obtained by reg
ular walls and closed doors. No specific measures for acoustic isolation 
were implemented. 

The participants were asked to perform a sustained voicing of the /a/ 
vowel, at a comfortable pitch and loudness, as constantly as possible. 
This phonation was kept up as long as they could after a deep breath. A 
segment of one second was considered for feature extraction. This pro
cedure was repeated four consecutive times per individual to address the 
within-subject variability after feature extraction. 

2.4. Feature extraction 

Different types of acoustic features were considered. The idea was to 
measure different aspects of speech degradation caused by the voice 
disorder. 

Two conventional perturbation measures (jitter and shimmer) were 
extracted based on the high values observed in patients with Reinke's 
edema in previous studies [47]. Fundamental frequency and amplitude 
perturbations also produce an impact on the cepstral peak prominence 
(CPP). This measure, originally proposed by Hillenbrand et al. [19], is 
considered more robust than time-domain techniques, since it does not 
require pitch tracking and can be reliably extracted even from highly 
aperiodic signals. For this reason, CPP has been included in the list of 
features. 

Voice roughness is a characteristic symptom of Reinke's edema 
because the swelling alters the elasticity of the vocal folds [7]. Two noise 
measures have been included in the feature set to assess roughness: 
glottal-to-noise excitation (GNE) ratio and the harmonic-to-noise ratio 
(HNR). These noise measures have been considered suitable for the 
detection of voice pathologies [12]. 

According to previous scientific studies, vocal fold pathologies lead 
to changes in vocal tract configuration during phonation. Lee et al. [27] 
pointed out that the reason is related to physiological or psychological 
compensations. Mel-frequency cepstral coefficients (MFCCs) have been 
widely used to characterize the vocal tract configuration in different 
application areas of speech classification, also for the detection of vocal- 

fold disorders [10]. A total of 13 MFCCs were calculated and included in 
the feature set. 

Furthermore, it has been emphasized that nonlinear behaviors play a 
relevant role in the voice production process, especially in the case of 
disordered voices [12,32,53]. Therefore, the classical source-filter the
ory is not sufficient to describe all important aspects of speech that can 
be useful to detect pathologies. Orozco-Arroyave et al. [40] state 
different reasons which lead to a nonlinear speech behavior: nonlinear 
pressure-flow in the glottis, nonlinear stress-strain curves of vocal fold 
tissues, and nonlinearities in vocal fold collisions. These authors also 
consider the compensatory movements mentioned in the previous 
paragraph as nonlinear effects. Based on this nonlinear assumption, 
some authors have proposed acoustic features taken from the field of 
time-series analysis to predict diseases affecting voice [25,30,40]. The 
following ones have been used: Hurst exponent (HURST), correlation 
dimension (D2), permutation (PERMUTATION) and shannon entropy 
(SHANNON), pitch period entropy (PPE), and recurrence period density 
entropy (RPDE). Finally, the zero-crossing rate (ZCR) was also included. 
This adds up to a total of 25 acoustic features extracted from each voice 
sample. The extraction methods were coded in Python. 

Gender is also important in this topic. Yamauchi et al. [59] used 
glottal area waveform analysis based on high-speed digital imaging to 
emphasize the relevant role of gender when deciding whether a vocal 
fold pattern is normal or pathological. Previous studies [26,52] had 
already identified gender differences in vocal fold configuration during 
phonation: in glottal flow, glottal area or contact area waveforms. These 
anatomical and physiological differences have motivated the inclusion 
of the gender label as an additional feature, giving a total number of 26 
features. 

The feature extraction procedure provides a dataset with 240 rows 
(60 subjects × 4 utterances) and 27 columns (number of features plus 
health status). 

3. Methodology 

In the following subsections the methodology is described. Firstly, a 
hierarchical model to deal with binary responses and replicated cova
riables is formulated. This provides a general framework for replication- 
based classifiers. Then, three Bayesian regularization methods are 
considered through their respective prior distributions. Next, the pos
terior distribution is estimated and the posterior predictive probabilities 
are calculated. Finally, a variable selection method based on Bayesian 
credible intervals is proposed to determine the most relevant features. 

3.1. Binary response model 

In order to define the hierarchical model, the first level corresponds 
to the binary response variable. Let Y1, …, Yn be the n independent bi
nary random variables: 

Yi ∼ Bernoulli(θi)

The probabilities θi = P(Yi = 1) are related to two sets of covariates, 
wi and zi by: 

Ψ − 1(θi) = w
′

iβ+ z′

iγ,

where wi = (wi1,…,wiK)′ and zi = (zi1,…,ziH)′ are covariate vectors of 
dimension K and H, respectively. The parameters β and γ are vectors of 
unknown parameters, of dimensions K and H, respectively. Ψ − 1(⋅) is the 
inverse of the cumulative distribution function (cdf) of the normal 
distribution. 

3.2. Introducing replications 

Assume that the covariates zi are exactly known (e.g. sex), but the 
covariates wi are not (acoustic features), instead they have been 
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measured with J replicates. Let xij = (xi1j,…,xiKj)′ be the jth replication 
of the unknown covariate vector wi = (wi1,…,wiK) ′ , j = 1, …, J, and 
assume that they have a linear relationship specified as an additive 
measurement error model (see, e.g. Buonaccorsi [3]), i.e.: 

xikj = wik + εikj,

εikj ∼ Normal
(
0, δ2

k

)
,

where the errors εik are independent of wik, and xikj can be considered as 
surrogates of wik. 

The rationale under this formulation is that the observed replicated 
features can be considered as measurement with errors of the underlying 
real acoustic feature, which is unknown for each individual. This latent 
variable-based structure is the key idea to address the within-subject 
variability. 

3.3. Integrating regularization 

Regularization methods simultaneously perform estimation and 
variable selection. They favor the best predictors and penalize the worst 
ones through parameter regularization. A wide variety of regularization 
methods have been developed (see e.g., Hastie et al. [15] and Hastie 
et al. [16]). The most usual regularization methods are Least Absolute 
Shrinkage and Selection Operator (LASSO), Ridge, and Elastic Net. They 
have been widely used for independent instances, but now they are 
considered for data with dependent nature in a framework that ad
dresses the within-subject variability of replicated measurements, and 
therefore for a different type of statistical design. 

In typical Bayesian regression, the prior distribution for the regres
sion parameters is normal. When regularization methods are considered, 
different prior distributions are used. LASSO is one of the most 
commonly used penalized regression methods (see Park and Casella 
[42]). The prior distribution for the regression parameters βk is based on 
the proposal of Genkin et al. [9], i.e., a Laplace distribution is consid
ered, i.e.: 

βk ∼ Laplace
(
0, λ− 1

1

)
,

with mean 0 and variance 2/λ1
2, for k=1,…, K. 

The Laplace pdf is proportional to: 

p(βk)∝exp{ − λ1|βk|},

and it can be represented as a scale mixture of normal distributions with 
independent exponentially distributed variances, i.e.: 

p(βk) =

∫ ∞

0
p(βk|τk)p(τk)dτk,

where 

βk ∣τ2
k ∼ Normal

(
0, τ2

k

)
,

τ2
k ∼ Exp

(
λ2

1

/
2
)
,

being the exponential distribution parameterized so the mean is 2/λ1
2. 

Ridge regression is another regularization model (Hoerl and Kennard 
[20]). In this case, the prior distribution for the regression parameters βk 
is: 

βk ∼ Normal
(
0, λ− 1

2

)
,

i.e., its pdf is proportional to: 

p(βk)∝exp
{

λ2

2
β2

k

}

The prior distribution restricts the regression parameters (with high 
probability) to a sphere of radius determined by λ2. 

Finally, the Elastic Net method combines LASSO and Ridge regula
rization methods [60]. The prior distribution for the regression 

parameters βk is: 

p(βk)∝exp
{

− λ1|βk| −
λ2

2
β2

k

}

By using latent variables, it is possible to obtain a scale mixture of 
normal distributions representation: 

βk ∣ σ2
βk
∼ Normal

(
0, σ2

βk

)
,

σ2
βk
=

(
τ− 2

k + λ2
)− 1

,

τ2
k ∼ Exp

(
λ2

1

/
2
)

3.4. Exploring the posterior distribution 

Firstly, the prior distributions are presented. The prior distributions 
for the regression parameters related to the acoustic features βk, k = 1, 
…, K, have been defined in Section 3.3. Besides, normal distributions are 
assumed for the regression parameters related to the exactly known 
covariates, i.e. γh ~ Normal(ch,Ch), for h = 1, …, H, where c = (c1,…,cH) 
and C = (C1,…,CH) are fixed values. Inverse Gamma distributions are 
considered for variances δk

2, i.e., δk
2 ~ InvGamma(sk, rk), where Sk and rk 

are the shape and rate parameters, respectively. 
Normal distributions are considered for the latent variables, i.e., wik 

~ Normal(μk, τk
2). For the hyperparameters of the latent variables, the 

prior distributions are defined as μk ~ Normal(mk,vk
2) and τk

2 ~ 
InvGamma(uk, tk). The hyperparameters of the regularization methods, 
λ1

2 and λ2, can be fixed values, but they may have hyperprior distribu
tions, e.g., λ1

2 ~ Gamma(a1,d1) and λ2 ~ Gamma(a2,d2). 
The binary hierarchical model with replications defined in Sections 

3.1 and 3.2 results in the likelihood function, considering the observed 
and the latent variables, given by: 

L
(
β, γ, δ2, μ, τ2 |y,x, z,w

)

= p(y|z,w, β, γ)p
(
x|w, δ2)p

(
w|μ, τ2)

=
∏n

i=1

{

p(yi|zi,wi, β, γ)

[
∏K

k=1

{
∏J

j=1
p
(
xikj|wik, δ2

k

)
}

p
(
wik|μk, τ2

k

)
]} (1) 

The joint posterior distribution is obtained by using the likelihood 
function (1) and the prior distributions previously defined, and it is 
given by: 

p
(
β, γ, δ2, μ, τ2 |y,x, z,w

)

∝L
(
β, γ, δ2, μ, τ2 |y,x, z,w

)
p(β)p(γ)p

(
δ2)p(μ)p

(
τ2)p(λ)

(2) 

A Markov Chain Monte Carlo (MCMC) algorithm has been imple
mented in JAGS1 through the R platform2 to estimate the posterior 
distribution. The source code and instructions that allow to run the 
approach for a simulation-based dataset can be found in the GitHub 
repository through the link https://github.com/lizbethna/ClassificaRe 
plicaRegulariza.git. 

Other Monte Carlo approaches could be applied. For instance, par
ticle filtering could be considered [11]. It deals with targets that are 
influenced by the proximity and/or behavior of other targets. Also, 
Hamiltonian Monte Carlo methods can be used. They utilize techniques 
from differential geometry to generate transitions spanning the full 
marginal variance [2] or the No-U-Turn sampler, which is an adaptive 
form of Hamiltonian Monte Carlo sampling [4]. 

3.5. Determining the most relevant features 

After the chain has converged, a random sample for each parameter 
from the posterior distribution is obtained. Based on the estimated 

1 http://mcmc-jags.sourceforge.net/http://mcmc-jags.sourceforge.net/  
2 https://cran.r-project.org/https://cran.r-project.org/ 
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posterior densities for the regression parameters, a variable selection 
method based on Bayesian credible intervals is proposed here. For the 
estimated posterior density of each parameter, this method considers a 
95% Bayesian credible interval, being the lower interval limit the 2.5% 
percentile and the upper one the 97.5% percentile (see, e.g., Hespanhol 
et al. [18]). The features related to the regression parameters that do not 
contain 0 in the Bayesian credible interval are selected as relevant fea
tures, given the important contribution for predicting the response. 
Then, the approach is applied to these features to provide accuracy rate, 
sensitivity, specificity, and AUC-ROC (Area Under the Curve Receiver 
Operating Characteristic). 

The details about the concrete practical implementation considering 
cross-validation frameworks for variable selection and accuracy metrics 
are provided in the experimental setting subsection of the results 
section. 

4. Results 

4.1. Experimental settings 

The replication-based Bayesian regularization approaches in Section 
3 are applied to the dataset described in Section 2. The response variable 
Y takes values Y=0 for healthy subjects and Y=1 for people suffering 
from Reinke's edema, whereas the 25 acoustic variables have been 
individually normalized to have mean 0 and standard deviation 1, and 
the variable sex Z takes values Z = 0 for men and Z = 1 for women. 

The MCMC sampling is applied using the following hyperparameters 
for the prior distributions. For the regression parameters of the cova
riates exactly known γh ~ Normal(0,0.01), for h = 1, …, H. For the latent 
variables in the replications, wik ~ Normal(μk,τk

2), where μk ~ Normal 
(0,1), τk

2 ~ InverseGamma(1,1), and δk
2 ~ InverseGamma(0.01,0.01), 

for k = 1, …, K. For the parameters in the regularization methods, λ1
2 ~ 

Gamma(1,1) and λ2 ~ Gamma(1,1). 
A total of 30,000 iterations with a burn-in of 10,000 and a thinning 

period of 10 generated values are used, providing a sample of length 
2000. With these specifications, the chains generated by using the 
MCMC sampling algorithm seem to have converged. Bayesian Output 
Analysis (BOA) package was used to perform the convergence analysis 
[49]. The previous specifications are enough to provide evidence of 
convergence for all parameters in the three regularization approaches. 

Posterior predictive probabilities are obtained for the accuracy 
metrics. The used metrics are accuracy rate ((TP + TN)/n), sensitivity 
(TP/(TP + FN)), specificity (TN/(TN + FP)), where TP = True Positive; 
TN = True Negative; FP = False Positive; FN = False Negative. AUC-ROC 
is also considered. 

A stratified cross-validation framework is considered. Specifically, 
the dataset is randomly split into a training subset composed of 75% of 
the control subjects (3 men and 20 women healthy) and 75% of the 
people with Reinke's edema (2 men and 20 women with Reinke's edema) 
for each iteration. The remaining individuals constitute the testing 
subset, 25% of healthy people (1 man and 6 women) and 25% with 
Reinke's edema (1 man and 7 women). This framework is applied for 
variable selection and, later, for evaluating accuracy metrics by using 
the selected variables in an independent way, i.e., in each one of the 
iterations, the partitions are independent. In the first case, the model 
parameters are determined using the training subset, and the 95% 
Bayesian credible intervals (built as specified in the Section 3.5) for the 
model parameters are computed using the testing subset. This procedure 
is independently repeated 100 times. Then, the variables associated to 
parameters having more than one non-null 95% credible intervals out of 
the 100 iterations are selected. This leads to one only set of selected 
features for the whole cross-validation process. In the second case, once 
the variables have been selected, the model parameters are determined 
using the training subset, and the accuracy metrics are computed using 
the testing subset. This procedure is repeated 100 times and the accuracy 
metrics are then averaged. Each regularization approach has been 

trained independently. Note that the second stage has been introduced 
to test if the concrete set of acoustic features performs well in an inde
pendent cross-validation framework. In practical applications, the first 
stage is applied to select the features, then the classification of the new 
subjects is done by applying the proposed approach with the selected 
features without cross-validation. 

Three scenarios have been independently considered for each regu
larization approach, all of them start with the 25 acoustic features plus 
gender:  

1. All the features were used by training and testing with the whole 
dataset, and later the previously described cross-validation scheme 
was performed.  

2. Common principal components (CPCs) [22] were used to reduce the 
dimension of the variable space and, then, the approaches were 
applied to the selected CPCs under the defined cross-validation 
scheme. 

3. The 95% Bayesian credible interval-based approach defined in Sec
tion 3.5 was applied to provide the most relevant features based on 
the previously defined cross-validation framework for variable se
lection. Then, the approaches are applied to the selected features 
under the defined cross-validation framework for accuracy metrics. 

Finally, an analogous Bayesian credible interval-based approach is 
applied for the corresponding Bayesian regularization approaches based 
on independent instances (LASSO, Ridge, and Elastic Net). These 
methods are designed to be applied to individual instances, i.e., each 
subject is represented by a feature vector extracted from a single voice 
recording. Since the database consists of four replications of the sus
tained /a/ phonation for each subject, four independent cases are 
considered. The first one uses the first feature vector of each subject, the 
second case considers the second feature vector of each subject and so 
on, i.e., the cases are R1, R2, R3 and R4, where Rj means that only the Jth 
replication for each individual is used. This leads to four independent 
experiments with independence-based regularization approaches. The 
same cross-validation framework for variable selection and accuracy 
metrics as those defined for the replication-based approaches are used 
for comparison purposes. Fig. 1 summarizes the experiment capturing 
within-subject variability and the four experiments based on indepen
dent instances, which do not capture the within-subject variability. 

Next subsection shows the experimental results obtained for the 
three scenarios based on replications, and for the four cases of inde
pendent instances as well as the comparison among them. 

4.2. Experimental results 

4.2.1. Replication-based approaches 
Firstly, all the acoustic features plus gender were considered by 

training and testing with the whole dataset, i.e., all the subjects were 
considered for training and all of them for testing. No differences were 
found for accuracy rate, sensitivity and specificity, with the three ap
proaches providing the same value of 0.9333 for these three metrics. 
AUC-ROC results were very close, larger than 0.98. Specifically, 0.9944 
for LASSO, 0.9933 for Ridge, and 0.9844 for Elastic Net. 

The approaches were applied to all 26 variables with the defined 
cross-validation scheme for accuracy metrics, and the results are shown 
in Table 1. The accuracy rates, sensitivities, and specificities are around 
0.79, 0.81, and 0.76, respectively, for the three regularization models. 
The best result was obtained by Elastic Net with an accuracy rate of 
0.7927, a sensitivity of 0.8150, and a specificity of 0.7671. The AUC- 
ROC measures are very close and around 0.88. In general, the differ
ences are very small, so in this scenario very similar results are obtained 
for the three regularization methods. 

The second scenario considers CPCs. Specifically, 75% of the total 
variability is obtained with eight CPCs. The three regularization 
methods with the defined cross-validation scheme were applied to these 
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eight CPCs and the results are shown in Table 2. It can be observed how 
the loss of information provided lower accuracy rates, being now close 
to 0.76. The same happens for sensitivity, and specificity, which are 
around 0.73, and 0.80, respectively. In summary, the accuracy metrics 
have decreased, but they are still very similar for the three regulariza
tion approaches. 

The third scenario considers the variable selection based on Bayesian 
credible intervals that has been previously described. Each replication- 
based regularization approach selects its own feature set under the 
defined cross-validation framework for variable selection. Table 3 shows 
the features selected for the three approaches. Note that LASSO selects 7 
features, Ridge 7, and Elastic Net 5. Note that CPP, MFCC4, MFCC7, 
MFCC10, and SHANNON are selected by the three approaches. 

Once the feature sets have been defined for each method, the regu
larization approaches are applied with the defined cross-validation 
scheme for evaluating accuracy metrics. The results are presented in 
Table 4. It can be observed how the best performance is provided by 
Ridge regression for the four accuracy metrics. The accuracy rate is 
0.8893, larger than the ones corresponding to LASSO and Elastic Net, 
which are 0.8240 and 0.8253, respectively. 

Table 5 shows the posterior estimations for the model parameters of 
the three considered replication-based regularization approaches. These 
are the mean and standard deviation of the parameter estimates ob
tained from the 100 iterations in the cross-validation framework. Note 

that standard deviations for intercept parameters, and parameters 
associated to GNE and sex are higher than the absolute value of the 
estimate itself. Therefore, the estimations of these three parameters 

Fig. 1. Graphical scheme of the experiment capturing within-subject variability (top) and the four experiments based on independent instances (bottom).  

Table 1 
Means and standard deviations of accuracy rate, sensitivity, specificity, and 
AUC-ROC by using the replication-based regularization models with all the 
features under the defined cross-validation scheme for accuracy metrics (Sce
nario 1).   

LASSO Ridge Elastic Net 

Accuracy rate 0.78733 (0.08352) 0.78533 (0.08128) 0.79267 (0.08254) 
Sensitivity 0.80625 (0.13574) 0.80250 (0.13551) 0.81500 (0.13702) 
Specificity 0.76571 (0.13548) 0.76571 (0.13548) 0.76714 (0.13568) 
AUC-ROC 0.88553 (0.06604) 0.88553 (0.06643) 0.88642 (0.06717)  

Table 2 
Means and standard deviations of accuracy rate, sensitivity, specificity, and 
AUC-ROC by using the replication-based regularization models with eight CPCs 
under the defined cross-validation scheme for accuracy metrics (Scenario 2).   

LASSO Ridge Elastic Net 

Accuracy rate 0.76466 (0.09776) 0.76600 (0.09639) 0.76733 (0.10005) 
Sensitivity 0.72875 (0.12818) 0.73125 (0.12609) 0.73000 (0.13614) 
Specificity 0.80571 (0.14574) 0.80571 (0.14574) 0.81000 (0.14649) 
AUC-ROC 0.85410 (0.08973) 0.85464 (0.08977) 0.85625 (0.10005)  

Table 3 
Acoustic features selected by considering the 
replication-based regularization approaches under the 
defined cross-validation framework for variable se
lection (Scenario 3). 

Table 4 
Means and standard deviations of accuracy rate, sensitivity, specificity, and 
AUC-ROC by using the replication-based regularization models considering the 
selected features under the defined cross-validation framework for accuracy 
metrics (Scenario 3).   

LASSO Ridge Elastic Net 

Accuracy rate 0.82400 (0.09064) 0.88933 (0.07104) 0.82533 (0.07971) 
Sensitivity 0.84375 (0.13690) 0.90750 (0.09504) 0.82125 (0.13560) 
Specificity 0.80142 (0.14198) 0.86857 (0.12463) 0.83000 (0.13111) 
AUC-ROC 0.92232 (0.05568) 0.95500 (0.04450) 0.92160 (0.05930)  
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come from dispersed values. 

4.2.2. Independence-based approaches 
Now the traditional independence-based regularization approaches 

LASSO, Ridge, and Elastic Net are applied to the four cases R1, R2, R3 and 
R4, where Rj means that only the jth replication for each individual is 
used. Each case is treated independently of the others, so each case 
contain independent instances. 

An analogous Bayesian credible interval-based approach is applied 
and the features are independently selected for each case. The cross- 
validation framework defined in Section 4.1 has been also applied in 
this case. Table 6 shows the selected features for the three traditional 
regularization-based methods in the four cases. Within each method, the 
selected features are different for each dataset. There are important 

differences in the chosen features and in the number of them. The four 
cases select between 8 and 10 features for LASSO, with only 4 common 
features. For Ridge, between 7 and 10 features are selected, with 5 
common features. Finally, for Elastic Net, there are between 5 and 9 
features selected with only 3 of them common. This shows a great 
variability in number and kind of features within each method for the 
different cases constituted by the individual replications. 

The variability in the feature selection considering the four cases is 
translated into the accuracy metrics. The defined cross-validation 
scheme is independently applied to each case with their selected fea
tures and the results are shown in Table 7. In LASSO approach, accuracy 
rates ranging from 0.8100 to 0.8580 are obtained for the different cases. 
Ridge approach provides accuracy rates ranging from 0.8160 to 0.8720, 
whereas accuracy rates for Elastic Net approach range from 0.8326 to 
0.8560. Different results are also obtained for sensitivities, specificities, 
and AUC-ROC through the four cases. 

With this experiment, it has been shown how different results for the 
selected variables and the accuracy metrics are obtained, depending on 
the concrete voice recording for each subject being considered. For the 
first time, it has been demonstrated that having into account the within- 
subject variability provides more stable results at the same time that 
relevant features are selected and accuracy metrics keep at good values. 

5. Discussion 

Bayesian independence-based regularization regression methods 
have been widely used in many contexts (see, e.g., Kadoya et al. [24]). 
These methods are based on independent instances as input data. When 
there exists a dependent nature among some instances, methods that are 
able to properly address this dependency are demanded. Imperfections 
in technology and the very biological variability result in acoustic fea
tures that are not identical for one specific individual in a particular 
recording time. This leads to the concept of replication that tries to 
address the within-subject variability underlying the experimental 
design. The recording of only one phonation per individual introduces 
lack of confidence in the process, because if other phonations had been 
performed, different feature vectors representing the subject would have 
been obtained and, therefore, the results would have been different. 
Using independence-based approaches has been the common way to 
address automatic detection of laryngeal pathologies from speech re
cordings in the scientific literature [23,31,56]. 

Table 5 
Means and standard deviations of the parameters for the replication-based 
regularization models considering the selected features under the defined 
cross-validation scheme (Scenario 3).  

Parameters LASSO Ridge Elastic Net 

β0 Intercept 0.26411 (1.19126) − 0.23393 
(0.99422) 

− 0.46030 
(0.62526) 

β1 GNE 1.39850 (1.41908) – – 
β5 CPP 8.52840 (5.00575) 9.85189 (5.67987) 2.21863 (0.60491) 
β7 MFCC2 – 8.84516 (5.11999) – 
β9 MFCC4 − 2.72866 

(2.37346) 
− 5.54057 
(3.08061) 

− 1.16507 
(0.53925) 

β12 MFCC7 4.21886 (2.65877) 5.20452 (2.54884) 1.56190 (0.47818) 
β15 MFCC10 − 5.81843 

(4.36594) 
− 6.46859 
(4.24449) 

− 1.94313 
(0.70239) 

β22 RPDE − 3.38629 
(2.21472) 

− 8.18662 
(4.04477) 

– 

β23 

SHANNON 
− 2.19405 
(1.42865) 

− 3.67750 
(2.58735) 

− 1.09540 
(0.32860) 

γ Sex 0.10964 (1.16550) 0.23033 (1.11815) 0.59197 (0.60488) 
λ1 0.59822 (0.13337) – 0.65412 (0.06362) 
λ2 – 0.18626 (0.07188) 0.39791 (0.09816)  

Table 6 
Acoustic features selected by considering the traditional independence-based 
regularization approaches in the four cases under the defined cross- 
validation framework for variable selection. 

Table 7 
Means and standard deviations of accuracy rate, sensitivity, specificity, and 
AUC-ROC by using the traditional independence-based regularization ap
proaches in the four cases under the defined cross-validation scheme.   

LASSO Ridge Elastic Net 

R1 

Accuracy rate 0.85800 (0.08614) 0.87200 (0.08022) 0.85600 (0.08135) 
Sensitivity 0.83875 (0.13680) 0.85875 (0.12264) 0.83875 (0.12346) 
Specificity 0.88000 (0.11614) 0.88714 (0.11175) 0.87571 (0.12786) 
AUC-ROC 0.92696 (0.06097) 0.94035 (0.05128) 0.92785 (0.05484)  

R2 

Accuracy rate 0.83333 (0.08658) 0.83600 (0.08602) 0.84066 (0.08781) 
Sensitivity 0.85000 (0.13176) 0.85375 (0.13301) 0.86000 (0.13328) 
Specificity 0.81428 (0.14285) 0.81571 (0.14683) 0.81857 (0.14900) 
AUC-ROC 0.91964 (0.06104) 0.92071 (0.06050) 0.92375 (0.05753)  

R3 

Accuracy rate 0.81000 (0.08958) 0.81600 (0.08995) 0.83266 (0.08554) 
Sensitivity 0.83000 (0.12997) 0.81250 (0.13588) 0.85125 (0.12897) 
Specificity 0.78714 (0.13993) 0.82000 (0.14303) 0.81142 (0.14050) 
AUC-ROC 0.91910 (0.05740) 0.93482 (0.05191) 0.94500 (0.04826)  

R4 

Accuracy rate 0.84800 (0.07875) 0.83533 (0.07896) 0.83866 (0.06974) 
Sensitivity 0.87625 (0.11581) 0.86875 (0.11148) 0.85000 (0.10952) 
Specificity 0.81571 (0.12728) 0.79714 (0.13187) 0.82571 (0.12934) 
AUC-ROC 0.92839 (0.05369) 0.93196 (0.05297) 0.91303 (0.07204)  
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Three regularization-based approaches have been implemented and 
applied to detect Reinke's edema based on features extracted from 
replicated voice recordings. The existing within-subject variability for 
each subject has been statistically addressed by considering that the 
replicated observations from a feature are measurements with errors of 
the real underlying feature, which is unknown. In this way, the observed 
replicated features act as surrogates. This idea allows to build hierar
chical models based on latent variables that are handled with Bayesian 
methodology. Due to the way that the models have been designed, 
MCMC methods can be used to generate from the posterior predictive 
distribution. 

The three replication-based regularization approaches (LASSO, 
Ridge, and Elastic Net) consist of variable selection and classification. A 
total of 26 variables have been considered (25 acoustic features plus 
gender). Each one provides information that may be useful for voice 
disorder detection. However, there are many variables to feed the 
classifiers, some of them highly correlated. This may produce a multi
collinearity problem and overfitting. To avoid this, two variable selec
tion approaches have been considered. The first one uses CPCs [22]. 
Note that this is not a conventional principal component analysis, since 
CPC analysis allows to properly consider the replicated measurements, 
because the extracted features display a correlation structure that is 
stable throughout the replications. This kind of analysis has been widely 
used in other contexts (see, e.g., [28]). However, it has the disadvantage 
that none of the CPCs is a feature itself, so no interpretation can be 
obtained in terms of the disease's effects. The second variable selection 
approach has been specifically proposed for this problem and it is based 
on Bayesian credible intervals. Relevant features are obtained from 
those whose regression parameter estimations do not contain 0. This 
variable selection method within a cross-validation scheme has provided 
the selection of relevant features related to the malfunctioning of the 
voice production system under Reinke's edema. Note that the second 
stage under the defined cross-validation framework is independently 
applied to the selected features from the first stage to test if this concrete 
set of selected features works well for metric performance. This step is 
not necessary for realtime applications, once the selected variables have 
been tested. 

An analysis of selected features from the experiments based on 
Bayesian credible intervals reveals that the following five features are 
selected in the three considered replication-based approaches: CPP, 
MFCC4, MFCC7, MFCC10 and SHANNON. In the case of the method 
providing the best accuracy metric results, Ridge, two additional fea
tures (MFCC2 and RPDE) have been also selected to complete a seven- 
feature set. However, when considering the independence-based coun
terparts applied to the four datasets (each one composed by only one of 
the four replicated feature vectors for each individual) a great variability 
of selected features is obtained depending on the voice recording 
considered, ranging from 5 to 10 features per experiment and a total of 
15 different features out of the 25 available acoustic features. This 
contrasts with the previously reported results for feature selection with 
replication-based regularization approaches. 

The selected features provide information about how the voice 
production system is failing under Reinke's edema disease. CPP, ob
tained from the cepstrum of a sound, has shown promising results as an 
acoustic biomarker of dysphonia [17]. High CPP values correspond to a 
well-defined harmonic structure, whereas periodicity perturbations 
(either in amplitude or frequency) lead to a lower amplitude of the 
cepstral peak. Reinke's edema produces an alteration of vocal-fold vi
bration patterns which has been quantified by means of CPP. The 
important role played by MFCCs (with three coefficients selected in the 
three cases, or even four in the case of Ridge method) may be related to 
the fact that Reinke's edema patients may produce compensatory 
articulatory changes in response to altered vocal-fold vibration. These 
compensatory movements modify the resonance properties of the vocal 
tract. The selection of SHANNON feature lines up with previous results 
in the literature showing that entropy measures produce higher values in 

people with vocal-fold disorders in comparison to healthy ones Sca
lassara et al. [46]. Pathological speech is characterized by an increase in 
the signal unpredictability that can be quantified by the use of entropy 
measures. Finally, RPDE also uses the concept of entropy, in this case, to 
measure the uncertainty in pitch period estimation. Some physiological 
aspects of this pathology, such as vocal-fold asymmetry, make it difficult 
for these patients to maintain a stable vocal fold oscillation. These 
physiological aspects of Reinke's edema have been shown through the 
use of high-speed digital imaging and videostroboscopy by Watanabe 
et al. [57]. 

From an accuracy metric perspective, the application of the 
independence-based regularization approaches has also provided a great 
variability within each regularization method, attaining the best accu
racy rate with Ridge regression for the dataset with the first voice re
cordings (R1). This has shown that different results can be obtained 
depending on the voice recording considered for each individual. In 
contrast, the replication-based regularization approaches have provided 
a reduced number of features, and greater agreement regarding selected 
features among the three methods, at the same time that good accuracy 
metrics have been obtained. The best approach has been obtained with 
Ridge regression, providing an accuracy rate of 0.8893, sensitivity 
0.9075, specificity 0.8686, and AUC-ROC 0.9550 (see Table 4). All the 
four metrics outperform those obtained with the independence-based 
regularization approaches (see Table 7). Even more, the other compa
rable approach for variable selection and classification that considers 
replications, that was developed for Parkinson's disease detection [38], 
provides worse results in this context. Specifically, when applying that 
methodology to this dataset with the same cross-validation scheme, 
lower accuracy metrics were obtained, specifically, an accuracy rate of 
0.8120, sensitivity of 0.80375, specificity of 0.82142, and AUC-ROC of 
0.8750. Finally, it is remarkable that the combination of selecting a 
reduced number of relevant features, good accuracy metrics and a 
rigorous statistical basis make the replication-based regularization ap
proaches worthwhile. 

In certain related contexts such as in Parkinson's disease detection by 
voice recordings, it has become usual to use features extracted from 
replicated recordings of each subject as if they were independent (see, e. 
g., Little et al. [29] and Hariharan et al. [14], and references therein). 
This means that the experimental unit becomes the phonation and not 
the subject. Given the fact that each subject has several consecutive 
feature vectors (each one coming from a phonation), which are depen
dent, a voting-based system is usually established to decide if a subject is 
classified as healthy or diseased after applying an independence-based 
classifier to each phonation. In our case, this increases the sample size 
from 60 subjects (30 healthy and 30 suffering from Reinke's edema) to 
240 feature vectors, which are not all independent. This artificial in
crease of the sample size may or may not provide better accuracy rates, 
but it provides incoherent results. Specifically, applying a voting system 
based on independence-based Ridge regularization regression, it is ob
tained that, for the 30 healthy subjects, 12 of them (40%) had in
coherences in their own voice recording classification (not all the voice 
recordings were assigned to the healthy group), whereas for the 30 
people suffering from Reinke's edema 11 of them (36.67%) had in
coherences in a similar way. Regarding the accuracy rate, it was ob
tained 0.8566, which is lower than the corresponding counterpart based 
on replications, 0.8893. However, this is not always true, for LASSO, the 
voting system provides an accuracy rate of 0.8440, which is larger than 
0.8240, the one from the corresponding counterpart considering within- 
subject variability. In order to avoid this conceptual and methodological 
concern, the methods addressing within-subject variability provide an 
only response for each subject containing all the information from all 
voice recordings. 

The proposed CAD system relies on a voice recording experiment to 
detect Reinke's edema based on the phonation of the vowel /a/ in a 
sustained way, a feature extraction process considering a variety of 
relevant features and a statistical methodology for variable selection and 
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classification based on Bayesian regularization for replicated covariates. 
Any of these components could be modified or replaced to try a better 
approach in different ways. For example, regarding the phonation pro
tocol, other authors have considered other vowels and their combination 
for detecting voice disorders (see, e.g., Oliveira et al. [39]). It would be 
interesting to check if it is possible to further decrease the within-subject 
variability and improve stability by using recordings of different sus
tained vowels. Another relevant CAD component is feature extraction, 
since it provides the main ingredient for the classifiers. We have 
considered an initial set of features that had shown potential in the 
scientific literature about vocal-fold pathologies, mixing features based 
on perturbation, cepstral analysis, noise, nonlinear dynamics, and en
tropies. The proposed variable selection procedure selected the most 
relevant ones for Reinke's edema detection. However, classification 
approaches based on replications could be applied with the same ben
efits to other feature sets as well. For example, PLP coefficients consti
tute an interesting option to test. Also filtering as RASTA could be 
studied for PLP coefficients providing RASTA-PLP features [36] that 
could be tested on databases recorded under mismatched acoustic 
conditions for Reinke's edema detection. Robustness on environmental 
noise and recording channel effects in realistic environments is a 
research topic of great interest that has not been fully addressed up to 
now for voice disorder detection. Finally, the third CAD component to 
discuss is the statistical methodology. The regularization-based ap
proaches considered in this paper can be easily modified to handle other 
methods different from the most usual ones: LASSO, Ridge and Elastic 
Net. In this Bayesian context, this is achieved through the use of other 
shrinkage prior distributions. For example, van Erp et al. [55] provided a 
theoretical and conceptual comparison of nine different shrinkage prior 
distributions that included local Student's t, group LASSO, hyperLASSO, 
horseshoe, and discrete normal mixture in addition to LASSO, Ridge and 
Elastic Net. An approach that would need a different framework to 
handle within-subject variability would be based on nonlinearity. For 
example, it would be interesting extending artificial neural networks 
and support vector machine for replicated covariates. In an 
independent-based approach, they have been used in the diagnosis of 
voice diseases by automatic speech recognition [50]. The idea of 
considering replications in a proper way could also be extended to the 
construction of kernels, which have been successfully developed for 
independent instances in the problem of semi-supervised learning using 
a small number of training samples [35]. 

There is a scientific and technological challenge to develop robust 
CAD systems that can be incorporated into medical center protocols in 
such a way that they provide assistance in the diagnosis and monitoring 
of voice diseases to the health professionals. The proposed system, 
including or not modifications of its components, could be integrated 
into a protocol that could be used in primary care as a triage method. 
This would enable the family doctor to refer the patient to the appro
priate hospital department based on an objective criterion that supports 
his or her basic knowledge of the symptoms. 

6. Conclusion 

The proposed CAD system capturing within-subject variability due to 
the multiple replications of voice recordings for each individual con
stitutes a robust system to address the detection of voice disorders by 
using acoustic features. The system relies on a voice recording experi
ment to detect Reinke's edema, a feature extraction process, and variable 
selection and classification approaches based on Bayesian regularization 
considering replications. 

The replication-based regularization methods provide a more robust 
approach to the solution of the current problem than the independence- 
based methods, at the same time that good accuracy metrics and a 
relevant set of features are selected, which can be interpreted in relation 
to the effects of Reinke's edema on the voice production mechanisms. 
This study constitutes a contribution to fill in the gap provided by the 

lack of within-subject variability management in the scientific literature. 
Although the approaches have been applied in the context of an 
experiment specifically designed for Reinke's edema detection, they can 
be applied to different contexts where the replications play a key role. 

Larger experiments containing different voice recording protocols in 
mismatched acoustic conditions and the study of other signal processing 
algorithms for feature extraction are issues of interest to improve the 
CAD system, as well as trying to explore the possible nonlinearity 
through the development of new replication-based variable selection 
and classification approaches based on kernels. 
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[13] Gómez-Garca J, Moro-Velázquez L, Godino-Llorente J. On the design of automatic 
voice condition analysis systems. Part I: review of concepts and an insight to the 
state of the art. Biomed Signal Process Control 2019;51:181–99. 

[14] Hariharan M, Polat K, Sindhu R. A new hybrid intelligent system for accurate 
detection of Parkinson’s disease. Comput Methods Prog Biomed 2014;113(3): 
904–13. 

[15] Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. Data 
mining, inference, and prediction. Springer series in statistics. 2nd ed. Springer; 
2009. 

[16] Hastie T, Tibshirani R, Wainwright M. Statistical learning with sparsity: the lasso 
and generalizations. In: Chapman & Hall/CRC Monographs on Statistics and 
Applied Probability. 1st ed. Chapman and Hall/CRC; 2015. 

L. Naranjo et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0005
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0005
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0005
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0010
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0010
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0010
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0015
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0015
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0020
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0020
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0025
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0025
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0025
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0030
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0030
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0030
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0035
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0035
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0040
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0040
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0045
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0045
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0050
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0050
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0050
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0055
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0055
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0055
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0060
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0060
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0060
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0065
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0065
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0065
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0070
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0070
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0070
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0075
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0075
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0075
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0080
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0080
http://refhub.elsevier.com/S0933-3657(21)00155-X/rf0080


Artificial Intelligence In Medicine 120 (2021) 102162

10

[17] Heman-Ackah YD, Michael DD, Goding Jr GS. The relationship between cepstral 
peak prominence and selected parameters of dysphonia. J Voice 2002;16(1):20–7. 

[18] Hespanhol L, Vallio CS, Menezes Costa L, Saragiotto BT. Understanding and 
interpreting confidence and credible intervals around effect estimates. Braz J Phys 
Ther 2019;23(4):290–301. 

[19] Hillenbrand J, Cleveland RA, Erickson RL. Acoustic correlates of breathy vocal 
quality. J Speech Lang Hear Res 1994;37(4):769–78. 

[20] Hoerl A, Kennard R. Ridge regression. In: Encyclopedia of statistical sciences. vol. 
8. New York: Wiley; 1988. p. 129–36. 

[21] Hunter EJ, Tanner K, Smith ME. Gender differences affecting vocal health of 
women in vocally demanding careers. Logopedics Phoniatrics Vocol 2011;36(3): 
128–36. 

[22] Jolliffe IT. Principal component analysis. 2nd ed. New York: Springer; 2002. 
[23] Kadiri SR, Alku P. Analysis and detection of pathological voice using glottal source 

features. IEEE J Select Top Signal Process 2019;14(2):367–79. 
[24] Kadoya S, Nishimura O, Kato H, Sano D. Regularized regression analysis for the 

prediction of virus inactivation efficiency by chloramine disinfection. Environ Sci 
Water Res Technol 2020;6:3341–50. 

[25] Kantz H, Schreiber T. Nonlinear time series analysisvol. 7. Cambridge University 
Press; 2004. 

[26] Kob M, Dejonckere P, Calderon E, Kaynar S. Simulation of differences between 
male and female vocal fold configuration during phonation. In: NAG/DAGA; 2009. 
p. 1755–6. 

[27] Lee J-W, Kang H-G, Choi J-Y, Son Y-I. An Investigation of Vocal Tract 
Characteristics for Acoustic Discrimination of Pathological Voices. BioMed 
Research International; 2013 (page ID 758731). 

[28] Li H. Accurate and efficient classification based on common principal components 
analysis for multivariate time series. Neurocomputing 2016;171:744–53. 

[29] Little MA, McSharry PE, Hunter EJ, Spielman J, Ramig LO. Suitability of dysphonia 
measurements for telemonitoring of Parkinson’s disease. IEEE Trans Biomed Eng 
2009;56(4):1015–22. 

[30] Little MA, McSharry PE, Roberts SJ, Costello DA, Moroz IM. Exploiting nonlinear 
recurrence and fractal scaling properties for voice disorder detection. Biomed Eng 
Online 2007;6(1):23. 

[31] Lopes L, Vieira V, Behlau M. Performance of different acoustic measures to 
discriminate individuals with and without voice disorders. J Voice 2020 (In press). 
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[41] Paniagua MS, Pérez CJ, Calle-Alonso F, Salazar C. An acoustic-signal-based 
preventive program for university lecturers’ vocal health. J Voice 2020;34(1): 
88–99. 

[42] Park T, Casella G. The Bayesian LASSO. J Am Stat Assoc 2008;103(482):681–6. 
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