
Future Generation Computer Systems 127 (2022) 208–224

t
s
s
c
s
t
d
r
n
r

h

t
U

(

h
0
n

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Exploitingmulti-level parallel metaheuristics and heterogeneous
computing to boost phylogenetics
Sergio Santander-Jiménez a,b,∗, Miguel A. Vega-Rodríguez a, Leonel Sousa b

a Department of Computer and Communications Technologies, University of Extremadura, Escuela Politécnica, Campus Universitario
s/n, Cáceres 10003, Spain
b Instituto de Engenharia de Sistemas e Computadores - Investigação e Desenvolvimento em Lisboa (INESC-ID), Rua Alves Redol
9, Lisboa 1000-029, Portugal

a r t i c l e i n f o

Article history:
Received 16 October 2020
Received in revised form 12 August 2021
Accepted 4 September 2021
Available online 15 September 2021

Keywords:
Heterogeneous computing
Multi-level parallelism
Evolutionary computation
High performance computing
Bioinformatics

a b s t r a c t

Optimization problems are becoming increasingly difficult challenges as a result of the definition
of more realistic formulations and the availability of larger input data. Fortunately, the computing
capabilities of state-of-the-art heterogeneous systems represent an opportunity to deal with the main
complexity factors of these problems. These platforms open the door to the definition of robust
metaheuristic solvers, in which parallel computations of different nature can be efficiently mapped
to the most suitable architectures and hardware resources. This work investigates the combination
of multi-level parallelism and heterogeneous computing to address an important multiobjective
problem in bioinformatics: phylogenetics. A parallel metaheuristic approach, based on the joint
exploitation of parallel tasks at the algorithm, iteration, and solution levels, is proposed to tackle
computationally intensive inferences on CPU+GPU systems. Different heterogeneous design alternatives
are also discussed, in accordance with the way the interactions between CPU and GPU are handled.
The experimental evaluation of the proposal on real-world biological datasets points out the benefits
of using multi-level, heterogeneous strategies, reporting accelerations up to 396× over the baseline
metaheuristic as well as significant energy savings with regard to other parallel approaches, without
impacting multiobjective solution quality.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Multiple application domains in science are characterized by
he need to address optimization problems efficiently. However,
olving these problems represents a remarkably challenging task,
ince their complexity is progressively growing [1]. Different
omplexity factors, including hard-to-tackle search spaces, sen-
itivity to problem parameters and sizes, multiple objective func-
ions, high dimensionality, and large input data, represent fun-
amental issues that impact the execution of optimization algo-
ithms. As a consequence, traditional algorithmic approaches do
ot longer satisfy the time constraints required to efficiently solve
eal-world optimization problems.

In order to overcome these issues, research on parallel meta-
euristics has played a prevailing role in the last years. The

∗ Corresponding author at: Department of Computer and Communica-
ions Technologies, University of Extremadura, Escuela Politécnica, Campus
niversitario s/n, Cáceres 10003, Spain.

E-mail addresses: sesaji@unex.es (S. Santander-Jiménez), mavega@unex.es
M.A. Vega-Rodríguez), las@inesc-id.pt (L. Sousa).
ttps://doi.org/10.1016/j.future.2021.09.011
167-739X/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
exploitation of the parallelism available in these search algo-
rithms represents a crucial strategy to satisfy execution con-
straints and achieve high-quality solutions in reasonable time [2].
Particularly, metaheuristics exhibit different, heterogeneous par-
allelization levels that can be classified according to the following
hierarchy [3]:

• Algorithm level: this parallelization level is aimed at allow-
ing the concurrent execution of different instances or com-
ponents of the metaheuristic through different processes. It
usually involves the parallel evolution of multiple structured
populations in a collaborative or non-collaborative way;
• Iteration level: this level is focused on parallelizing the tasks

that compose a generation of the metaheuristic, in such a
way that the evolution of solutions in a particular population
is handled in parallel. Problem-independent intra-algorithm
strategies are employed to execute evolutionary operators,
local searches, etc., using multiple threads;
• Solution level: this level is oriented towards the paralleliza-

tion of operations treating a single solution (i.e. the calcu-
lation of objective functions and constraints verification).
Problem-dependent intra-algorithm techniques are herein
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.future.2021.09.011
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2021.09.011&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sesaji@unex.es
mailto:mavega@unex.es
mailto:las@inesc-id.pt
https://doi.org/10.1016/j.future.2021.09.011
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Santander-Jiménez, M.A. Vega-Rodríguez and L. Sousa Future Generation Computer Systems 127 (2022) 208–224

t
s
r
d
h
p
d
d
t
t
t
m
r
f
t
l
h
m

e
p
t
(
i
S
p
t

i
l
l
t
r
t
t
c
g
p

r
h
p
t
S

applied to take advantage of the data parallelism opportu-
nities exhibited in the problem formulation.

Highly complex optimization problems demand the combina-
ion of all the above mentioned parallelization levels to attain
atisfactory results. However, each level has specific computing
equirements [4,5], thus making their joint deployment on single-
evice, homogeneous environments not a suitable solution. The
eterogeneous computing capabilities offered by state-of-the-art
arallel systems represent a promising approach to undertake the
esign of multi-level parallel metaheuristics, as parallel tasks of
ifferent nature can be assigned to different devices according
o their characteristics. In this sense, a fundamental question
hat must be addressed is how to effectively map each level
o the underlying hardware resources, since an inappropriate
apping could lead to a poor exploitation of the system, idle

esources, increased energy consumption, and other parallel per-
ormance issues. This research work is aimed at dealing with
hese issues, defining and discussing strategies to exploit multi-
evel parallelism and orchestrate heterogeneous resources for
igh-performance and energy-aware metaheuristic-based opti-
ization.
This paper investigates the definition of a multi-level and het-

rogeneous parallel solver to tackle an important bioinformatics
roblem, phylogeny reconstruction [6]. The proposal is based on
he Multiobjective Shuffled Frog-Leaping Optimization Algorithm
MO-SFLA) [7], a bioinspired multiobjective metaheuristic with
ntrinsic parallelism opportunities. The algorithmic design of MO-
FLA contains the elements required to implement the three
arallel levels, thus representing a suitable framework to build
he method.

The proposed approach introduces multi-level strategies rely-
ng on MPI [8] at the algorithm level, OpenMP [9] at the iteration
evel, and CUDA [10] at the solution level to allow efficient phy-
ogenetic searches on CPU+GPU heterogeneous systems. An ex-
ensive experimental evaluation on five real-world datasets, rep-
esenting different problem sizes, has been conducted to assess
he performance of the proposal from three different perspec-
ives: parallel performance, multiobjective quality, and energy
onsumption. Moreover, the relevance of the proposed strate-
ies will be analysed through comparisons with state-of-the-art
arallel phylogenetic tools.
The main contributions of this work can be listed as follows:

1. Proposal of a fully multi-level, parallel metaheuristic based
on MO-SFLA that exploits the potential of CPU+GPU sys-
tems to boost optimization tasks through the joint com-
bination of algorithm, iteration, and solution-level paral-
lelism techniques;

2. Definition and discussion of different design strategies and
orchestration schemes to implement accurate interactions
between the heterogeneous layers involved in the pro-
posal;

3. Identification and analysis of different configurations and
variants of the proposal, aimed at promoting different par-
allel and multiobjective performance achievement goals;

4. In-depth evaluation and discussion of the proposed method
and the defined design alternatives, attending to parallel
performance, multiobjective results, and energy consump-
tion.

This paper is organized as follows. The next section highlights
ecent trends on the development of parallel metaheuristics for
eterogeneous systems, also identifying research efforts in the
hylogenetics field. The formulation of the tackled problem and
he associated complexity factors are presented in Section 3.
ection 4 summarizes the baseline algorithm and presents the
209
multi-level and heterogeneous strategies investigated in this re-
search work. Section 5 introduces the experimental methodology
and evaluates, from different points of view, the results ob-
tained by the proposal. Finally, Section 6 provides conclusions and
defines future research directions.

2. Related work

This section provides insight into noteworthy research works
that investigated the relationship between optimization prob-
lem solvers and modern parallel computing platforms. Significant
approaches specifically tailored to the bioinformatics problem
herein tackled are also highlighted.

In recent years, the availability of an increasingly larger num-
ber of parallel architectures has brought new opportunities to
accelerate the solution of NP-hard optimization problems. [4] pre-
sented a comparison of different parallel architectures (multicore
CPUs, GPUs, clusters, and grid setups) when executing evolu-
tionary algorithms under the island and global parallelization
models. A significant conclusion derived from this work lies in the
fact that not every platform is equally suitable to parallelize the
different workloads of an evolutionary algorithm, thus support-
ing the need for heterogeneous computing in this context. [11]
examined the master–worker parallelization of Particle Swarm
Optimization (PSO) for hyper-parameter selection in deep neural
networks running on multi-GPU systems. The results obtained for
an experimental setup composed of up to six Tesla K80 GPUs
denote significant speedups for large population sizes as well as
high classification accuracy.

[12] showed that the use of NVIDIA Jetson TK1 embedded
platforms represents a promising approach to accelerate the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) when large
numbers of objectives and population sizes are considered. More-
over, [13] presented an implementation of genetic algorithms in
ARM CPUs that relies on remote FPGA boards to conduct the
calculation of fitness functions. In fact, the fine-grained paral-
lelization of fitness calculations was found to be a significant
approach to deal with the complexity of bioinformatics functions,
as shown in [14] for the case of gene expression data and gene se-
lection for cancer classification. More recently, hybrid MPI+SIMD
implementations of evolutionary algorithms for SW26010 proces-
sors were investigated in [15], reporting speedups up to 3603x on
the Sunway TaihuLight supercomputing system. The intersection
of parallel computing, metaheuristics, and heterogeneous sys-
tems has also seen practical applicability in recent years to boost
research on Tensor decomposition [16], big data management and
processing [17], deep learning architectures [18], 0–1 knapsack
problems [19], and evolutionary biology [20].

Along with these developments, significant research efforts
have been oriented towards the exploitation of different par-
allelism levels. [21] introduced a two-level approach in which
multicore resources are employed to parallelize a genetic algo-
rithm for forest fire propagation prediction at the iteration and
solution levels. The proposed method was successfully used to
address high-workload scenarios in reasonable time. In [22], algo-
rithm and solution-level parallel strategies were applied to boost
the performance of population-based metaheuristics (namely ge-
netic algorithms and scatter searches) for docking simulation on
CPU+GPU clusters. Later on, [23] addressed the parallelization of
the Teaching–Learning-Based Optimization (TLBO) algorithm, us-
ing hybrid MPI+OpenMP schemes aimed at exploiting parallelism
at the algorithm and iteration levels. In [24], multi-criteria job
shop scheduling problems were successfully tackled by defining a
dual heterogeneous parallel genetic algorithm. The proposal com-
bines island models with fine-grain parallelism to take advantage
of both multicore CPU and GPU resources.

S. Santander-Jiménez, M.A. Vega-Rodríguez and L. Sousa Future Generation Computer Systems 127 (2022) 208–224

o
p
a
e
H
e
n
t
C
T
p
f
d
m
e
r

t
k
f
p
a
c
p
N
a
a
s
r
t
M
t
c
A
F

t
w
l
e
s
m
R
m
(
s
b
p
t
l
m
p

b
t
h
l
u
p
f
l
t
e
b

(
V

p
o
m

w

h
o
i
0
s
b
F
a

A

On the other side, [25] proposed a multi-level implementation
f differential evolution for learning classification rules. In this
roposal, the algorithm, iteration, and solution parallel levels
re adapted to run entirely on the GPU by introducing differ-
nt strategies to improve memory coalescence and throughput.
owever, other works have demonstrated that relying the ex-
cution of multi-level parallelism on just a single device does
ot guarantee optimal performance. For instance, [5] has shown
hat the iteration level is more suitable to be run on multicore
PUs, especially when standard population sizes are employed.
he idea of going a step forward in the mapping of metaheuristic
arallelization levels and the need for collaborative CPU+GPU
rameworks is also supported in [26]. Our work is aimed at shed-
ing further light on this point, verifying how the design of a fully
ulti-level method, accurately orchestrated in a heterogeneous
nvironment, can effectively boost the solution of a complex
eal-world problem.

The literature also gives account of the recurrent linkage be-
ween parallelism and phylogenetic search algorithms. Several
ey works on the evaluation of different hardware platforms
or this problem can be highlighted. [27] reported parallel im-
lementations of the phylogenetic parsimony function on FPGA
nd CPU architectures. GPU-accelerated phylogenetic distance
omputations were examined in [28] by devising a parallel ap-
roach that optimized data structures and memory transactions.
etwork-on-chip-based accelerators were investigated in [29] to
ddress the breakpoint phylogeny problem. [30] comparatively
nalysed CPU-based vectorization schemes and GPU kernels to
peed up the phylogenetic likelihood function. Following this
esearch line, [31] undertook the definition of vertical data par-
itioning schemes to improve likelihood computations on GPUs.
ore recently, [32] reported new parallel strategies included in

he 3.0 release of the BEAGLE library, an API for parallel likelihood
omputations supporting a wide range of hardware accelerators.
dditionally, [33] studied the parallelization of the well-known
itch’s algorithm on different generations of NVIDIA GPUs.
These previous works were mainly focused on accelerating

he computations associated to the solution processing level,
ithout exploring in detail other potential sources of paral-

elism. However, the combination of different parallelization lev-
ls has also found applicability in phylogenetics. State-of-the-art
ingle-criterion methods rely on mixed-mode parallel approaches
ostly oriented towards CPU architectures, as in the case of
AxML [34] and IQ-TREE [35]. These two tools implement ho-
ogeneous parallel schemes that combine MPI with OpenMP

IQ-TREE) or POSIX threads (RAxML) to distribute separate tree
earches and parallelize tree likelihood computations on CPU-
ased systems, with SIMD support. Differently, MrBayes [36]
rovides a heterogeneous parallel approach that integrates MPI at
he CPU side with the CUDA implementation of BEAGLE to calcu-
ate tree scores on GPU devices. Therefore, these single-criterion
ethods rely on the combination of job-level and solution-level
arallelism to accelerate computations.
In the case of multiobjective approaches, developments have

een focused on the definition of two-level parallel designs
hrough MPI+OpenMP schemes, as reported in [20]. It can be
ighlighted the cluster-oriented approach implemented in Phy-
oMOEA, a multiobjective genetic algorithm [37]. This method
ndertakes, at each generation of the algorithm, the parallel
rocessing of separate solutions in the population using MPI. This
irst parallel level is complemented by an additional OpenMP
ayer that distributes likelihood site calculations across execu-
ion threads. Consequently, the parallel scheme of PhyloMOEA
xploits the iteration and solution parallelization levels on CPU-
ased cluster infrastructures.
210
Since the state-of-the-art tools implement mainly two paral-
lelization levels, the accurate exploitation of all the three theoret-
ical levels still represents an open research question. Moreover,
most of the previously mentioned methods rely on CPU-only
strategies or do not explore alternative orchestration schemes
to maximize the exploitation of heterogeneous resources. The
herein presented research tries to fill this gap, examining how
the problem can benefit from the definition of a fully multi-
level parallel metaheuristic (integrating the three key paralleliza-
tion levels) that accurately exploits the combined capabilities of
heterogeneous CPU+GPU platforms.

3. Problem formulation

Phylogenetic inference deals with the definition of the evolu-
tionary events that explain the diversity observed in the molecu-
lar characteristics of current organisms or genes [6]. These evolu-
tionary hypotheses are illustrated as tree-shaped structures T =
V , E), commonly designated as phylogenetic trees. The node set
in T is composed of: (1) internal nodes describing hypothetical

ancestral organisms, and (2) leaf nodes representing the extant
organisms under study. The phylogenetic topology is therefore
defined by the node-to-node relationships specified in the branch
set E. The input data employed in these biological analyses is
given by a multiple sequence alignment of size N × M , where
N refers to the number of organisms under consideration and
M the length of their molecular sequences. For DNA sequences,
the values that each sequence site can assume are defined by the
nucleotide state alphabet Λ = {A, C,G, T }, which also includes
special characters (gaps ‘-’, unknown ‘?’) and combinations of
nucleotides.

Under these conditions, a phylogenetic search algorithm must
undertake the processing of a phylogenetic tree decision space
with the aim of identifying the evolutionary hypotheses that op-
timize one or several biological quality criteria. Following current
research directions on addressing incongruence issues [37–39],
a multiobjective formulation of the problem based on the two
most popular phylogenetic optimality criteria, parsimony P(T)
and likelihood L(T), is herein adopted:

optimize f⃗ (T) = {f1(T), f2(T)},
where f1(T) = minimize P(T),

f2(T) = maximize L(T).
(1)

The first objective function considered in this formulation,
arsimony P(T), quantifies the amount of evolutionary change
bserved in a phylogenetic tree. Under this criterion, priority
ust be given to the phylogenies that minimize the P(T) score,

which is given by the following expression:

P(T) =
M∑
i=1

∑
(u,v)∈E

C(ui, vi), (2)

here (u, v) ∈ E represents the branch between the nodes u, v ∈
V , ui, vi ∈ Λ are the character states at the ith site for u and
v, and C(ui, vi) measures if a state change (substitution event)
as taken place between ui and vi. In case a substitution event is
bserved in this evolutionary step, C(ui, vi) will be 1. Otherwise,
f both nodes show the same value at the ith site, C(ui, vi) will be
. P(T) can be calculated following Fitch’s algorithm [40], which
pecifies a bottom-up procedure to identify substitution events
y defining ancestral character states throughout the topology.
or an internal node u with children v, w, the ancestral state set
t site i, Ai(u), is calculated as:

i(u) =
{
Ai(v) ∩ Ai(w) if Ai(v) ∩ Ai(w) ̸= ∅, (3)
Ai(v) ∪ Ai(w) if Ai(v) ∩ Ai(w) = ∅.

S. Santander-Jiménez, M.A. Vega-Rodríguez and L. Sousa Future Generation Computer Systems 127 (2022) 208–224

B
l
t
i
w
i
M

Herein, an empty intersection (Ai(v) ∩ Ai(w) = ∅) denotes
a substitution event, since at least one of the child nodes did
not inherit the state value of the ancestor u at the ith site. The
definition of ancestral states can then be used to calculate P(T)
by identifying these potential substitutions.

The second objective function employed in this formulation,
likelihood L(T), measures the conditional probability of observing
the input sequences, given a phylogenetic tree and a probabilistic
model of nucleotide evolution. In this case, preference is given to
the phylogenetic trees that maximize the L(T) score, which can
be calculated in the following way:

L(T) =
M∏
i=1

∑
x∈Λ

πxLp (ri = x), (4)

where πx represents the stationary probability of the state x ∈ Λ,
r ∈ V the root node, and Lp(ri = x) is the partial likelihood of x
being observed at the ith site of r . Felsenstein’s algorithm [41]
defines a procedure to calculate partial likelihood arrays by pro-
cessing the topology in a recursive way. For an internal node u
with children v, w, Lp(ui = x) can be defined as:

Lp(ui = x) =

(∑
y∈Λ

Pxy (tuv) Lp (vi = y)

)

×

(∑
y∈Λ

Pxy (tuw) Lp (wi = y)

)
,

(5)

where tuv , tuw are the branch lengths, modelling evolutionary
times, between u and v, w and Pxy(t) is the transition probability
of observing a substitution event from x to y within a time t . For
a terminal node l, Lp(li = x) = 1 in case the character state li is
equal to x. Otherwise, Lp(li = x) = 0. After calculating the partial
likelihood arrays for each node, the L(T) score derived from Eq. (4)
is computed and reported in terms of log-likelihood values.

Phylogenetic reconstruction represents a difficult NP-hard
problem [6], which shows two main complexity factors. First, the
number of possible candidate solutions surpasses the Eddington
number even for low-sized datasets. More specifically, the phy-
logenetic tree space grows exponentially with the number N of
input sequences, following the double factorial (2N−5)!!. Second,
the length M of the sequences and the number S of states in Λ

have an impact in the calculations performed at the objective
function level, thus contributing to the challenging time con-
straints of the problem. From scratch, the evaluation procedures
used to calculate the parsimony and likelihood scores show com-
plexities of O(NM) and O(NMS2), respectively. The increasingly
larger problem sizes involved in real-world phylogenetic analy-
ses therefore demand innovative optimization strategies, which
combine robust metaheuristics and the computing capabilities
of state-of-the-art heterogeneous platforms to efficiently address
these issues.

4. Multi-level parallel MO-SFLA for heterogeneous systems

In order to efficiently infer phylogenies on CPU+GPU sys-
tems, this work proposes a multi-level, heterogeneous approach
based on the MO-SFLA metaheuristic. This section provides first a
general overview of the baseline metaheuristic, proceeding after-
wards with the description of multi-level parallelization strate-
gies and the definition of heterogeneous design alternatives.

4.1. Baseline algorithm: MO-SFLA

MO-SFLA [7] is a population-based metaheuristic aimed at

addressing complex optimization problems by combining search g

211
strategies from PSO and Shuffled Complex Evolution. The main
idea lies in simultaneously exploring multiple directions of the
search space by defining different partitions of individuals, des-
ignated as memeplexes, which are separately processed and re-
fined through independent learning steps. These memeplexes are
initialized and updated at each generation through a shuffling
technique that allows the definition of a balanced distribution of
n individuals per memeplex. Given a population P to be parti-
tioned into m memeplexes, the best individual P1 is assigned to
the first memeplex Mem1, the second best individual P2 to the
second memeplex Mem2, Pm to Memm, Pm+1 to Mem1, etc. Parallel
searches are then performed over each memeplex and, at the end
of a generation, the updated memeplexes are merged in order
to spread knowledge, thus enhancing the evolution of the whole
population.

4.1.1. Application to phylogenetics
In order to tackle the phylogenetics problem with MO-SFLA,

the representation of individuals in this algorithm is based on
the equivalence between phylogenetic trees and matrix-shaped
encodings. Particularly, the algorithm codifies a phylogeny as a
symmetric distance matrix δ of size N × N , where each entry
δ[x, y] contains a floating-value measurement of the evolutionary
distance between the organisms x and y. The phylogenetic tree
associated to a distance matrix is obtained by using neighbour-
joining techniques, such as the BIONJ tree-building method [6].
On the other side, the distance matrix for a given phylogenetic
tree can be calculated as δ[x, y] =

∑
u,v∈Pathx,y tuv , where Pathx,y

refers to the set of nodes in the path between x and y, while tuv
represents the length of the branch (u, v). In this way, the search
engine can switch from the tree decision space to the matrix
space and vice versa according to the status of the optimization
process.

Throughout the learning steps of the algorithm, new candi-
date solutions are generated by applying floating-point search
operators over these phylogenetic representations. MO-SFLA can
apply three different search strategies to boost the quality of the
memeplexes. The first one employs information from the best
local solution Best local in the currently processed memeplex Memi
to generate a new candidate solution Solnew as follows:

Dxy = rand() ∗ (Bestlocal.δ[x, y] −Memij.δ[x, y]), (6)

Solnew.δ[x, y] = Memij.δ[x, y] + Dxy, (7)

where Memij refers to the jth individual in Memi and rand() is a
uniformly-distributed random number in the range [0,1]. The sec-
ond search operator applies a similar learning strategy but taking
into account the best global solution Bestglobal in the population,
replacing Best local with Bestglobal. In the third search strategy, a
local search procedure based on the application of topological
rearrangements (subtree pruning-regrafting and nearest neigh-
bour interchange) and gradient-based branch length optimization
is conducted. The selection of the search strategy to be used
over Memij depends on an associated counter variable which
can take the values 0 (learning from Best local), 1 (learning from
estglobal), or 2 (local search). Each memeplex is refined through nl
earning steps, generating new solutions that are integrated into
he memeplex in case an improvement in multiobjective quality
s observed. Conversely, if Solnew does not improve Memij, Memij
ill increase its counter variable to try a different search strategy

n the next generation. Fig. 1 illustrates the learning process in
O-SFLA, while Fig. 2 represents an example of a Pareto front

enerated by the algorithm.

S. Santander-Jiménez, M.A. Vega-Rodríguez and L. Sousa Future Generation Computer Systems 127 (2022) 208–224

o

4

a
p
a
T

Fig. 1. Adaptation to the problem and learning procedure. Each memeplex Memi is processed separately, generating new solutions for nl learning iterations.
Phylogenetic information in an individual Memij can be encoded by means of a distance matrix δ and a tree-shaped topology T , which are subject to different learning
operators attending to Memij .counter. The resulting solutions Solnew are stored in an integration pool and incorporated to Memi in case of verifying improvements
ver the original individuals.
Fig. 2. Output of MO-SFLA: Pareto front and example of a multiobjective phylogenetic topology for a dataset of Bombycoidea gene data (denoted later as 50 × 18,321).
.1.2. Handling multiobjective information
In this work, an adaptive version of MO-SFLA [42] is applied

s a baseline for the proposed multi-level design. Two separate
opulations PD, P I , each one initialized with popSize/2 individuals,
re employed to define two sets of memeplexes MemD and MemI .
he main difference between PD and P I lies in the multiobjective

strategy followed to evaluate the quality of individuals. While
PD follows Pareto dominance-based techniques (implemented
through fast non-dominated sorts and crowding distance assign-
ments [43]), P I uses indicator-based fitness strategies (based on
hypervolume [44]). In this way, the definition of the MemD and
MemI sets in the shuffling steps is conducted in accordance with
the multiobjective quality strategy considered in each population,
as well as the identification of best local and global solutions.

The adaptive nature of the approach lies in the use of per-
formance measurements PerfD, PerfI to update the number of
memeplexes, mD and mI , assigned to each multiobjective strat-
egy. PerfD and PerfI are computed by calculating the normalized
distance between Solnew and MemD

ij or MemI
ij for each objective in

each learning step. In this way, it can be quantified the success
of each multiobjective strategy, assigning more individuals to the
212
best performing technique by dynamically updating mD and mI :

m′D = Round

(∑mD

i=1 PerfDi∑mD

i=1 PerfDi +
∑mI

i=1 PerfIi
∗m

)
, (8)

m′I = Round

(∑mI

i=1 PerfIi∑mD

i=1 PerfDi +
∑mI

i=1 PerfIi
∗m

)
. (9)

A control parameter ac is employed to specify the number
of generations that must be considered, when capturing perfor-
mance feedback, before the adaptive update of memeplexes is
performed. In the last stages of a generation, the memeplexes
assigned to each multiobjective strategy are merged into the
associated population (PD or P I), thus allowing the evolution of
the optimization process according to this adaptive guidance.

4.2. Multi-level parallel design

MO-SFLA represents a suitable algorithm to define a multi-
level parallel approach due to its intrinsically parallel design.
The following sources of algorithm, iteration, and solution-level
parallelism can be identified:

S. Santander-Jiménez, M.A. Vega-Rodríguez and L. Sousa Future Generation Computer Systems 127 (2022) 208–224

s
l
l
e

r
i
s
w
o
d
t
r
i
a
M
r
m
m
t
P
f
P
s
s

4

s
t
t
1
o
t
t
1
o
t
t
i
p
a
#
t
u

Algorithm 1 Algorithm-level Parallelism in MO-SFLA: MPI Design
Input: int maxEval (maximum number of evaluations), int popSize (number of

individuals in the population), int m (number of memeplexes), int n (number
of individuals per memeplex = popSize/m), int nl (number of learning steps per
memeplex), int ac (adaptive adjustment control).

Output: PF (Pareto front).
1: Parallel API Initialization (MPI, OpenMP, CUDA, BEAGLE)
2: PD, P I ← Initialize Populations (popSize/2), PF ← 0
3: mD,mI

← m/2, mproc ← m/ MPI_Comm_size
4: while ! stop criterion is reached (maxEval) do
5: if MPI_Comm_rank = 0 then
6: PD ← Non-Dominated Sorting and Crowding (PD , mD

∗ n)
7: P I ← Indicator-based Fitness Assignment (P I , mI

∗ n)
8: {MemD

1 ... MemD
mD } ← Shuffling and Distribution (PD , mD , n)

9: {MemI
1 ... MemI

mI } ← Shuffling and Distribution (P I , mI , n)

10: Mem ← MemD
∪ MemI

11: /*Sending mproc memeplexes to each MPI process i*/
12: for x = mproc ∗ i to mproc ∗ i + mproc do
13: MPI_Send (Memx , n, i)
14: end for
15: MPI_Send (Bestglobal(PD), 1, i), MPI_Send (Bestglobal(P I), 1, i)
16: else
17: /*Receiving mproc memeplexes from the master process*/
18: for x = 1 to mproc do
19: MPI_Recv (Memx , n, 0)
20: end for
21: MPI_Recv (Bestglobal(PD), 1, 0), MPI_Recv (Bestglobal(P I), 1, 0)
22: end if
23: Pool ← Generate Candidate Solutions (Mem, mproc , nl , Bestglobal) /*Iteration

level*/
24: Pool ← Evaluate Candidate Solutions (Pool) /*Solution level*/
25: Mem,PerfD,PerfI ← Integrate Solutions and Calculate MO-Performance (Pool)
26: if MPI_Comm_rank = 0 then
27: /*Receiving the mproc updated memeplexes from each process i =

MPI_ANY_SOURCE*/
28: for x = mproc ∗ i to mproc ∗ i + mproc do
29: MPI_Recv (Memx , n, i)
30: end for
31: MPI_Recv (PerfD, 1, i), MPI_Recv (PerfI, 1, i)
32: PerfDmean , PerfImean ← Calculate Mean MO-Performance (PerfD, PerfI, ac)
33: mD , mI

← Redistribute Memeplex Assignment (PerfDmean , PerfImean , ac)
34: PD , P I ← Update Populations (Mem, mD , mI)
35: PF ← Update Pareto Front (PF, PD , P I)
36: else
37: /*Sending the updated mproc memeplexes to the master process*/
38: for x = 1 to mproc do
39: MPI_Send (Memx , n, 0)
40: end for
41: MPI_Send (PerfD, 1, 0), MPI_Send (PerfI, 1, 0)
42: end if
43: end while
44: Parallel API Termination (MPI, OpenMP, CUDA, BEAGLE)
45: return PF

1. Algorithm level: the upper-level components of the meta-
heuristic, the memeplexes, represent independent subpop-
ulations that can be evolved in parallel. The evolution of
memeplexes can then be separately managed by assigning
them to different MPI processes.

2. Iteration level: within a particular memeplex, the tasks
that compose the learning loop handle the generation of
new candidate solutions from one individual to another
separately. These iterative tasks can then be independently
processed by using OpenMP threads.

3. Solution level: the objective functions defined in the for-
mulation of the problem, parsimony and likelihood, show
data parallelism at the nucleotide processing level, which
can be handled by exploiting the computing capabilities of
GPU devices.

The detailed steps of the multi-level parallel MO-SFLA are
hown in Algorithms 1 (for the algorithm level), 2 (iteration
evel), 3 (solution level — parsimony objective), and 4 (solution
evel — likelihood objective). These algorithms are described and
xplained in the next subsections.
 t

213
4.2.1. Algorithm level
Algorithm 1 illustrates the main skeleton of the multi-level

approach, putting emphasis on the algorithm parallelization level.
Due to the stochastic components and the coarse granularity
of the tasks performed at the algorithm and iteration level,
multicore CPUs will be exploited to implement these first two
parallelization layers. The initial steps involve the initialization
of the parallel programming APIs and the data structures re-
quired by the algorithm (lines 1–3 in Algorithm 1). Each MPI
process will be responsible for managing the evolution of mproc
memeplexes each generation, which is determined in accordance
with the number of memeplexes (m) and the communicator
group size MPI_Comm_size. Processes are organized following
a master–worker hierarchy, where the master process (with
MPI_Comm_rank = 0) undertakes the execution of multiobjective
assessment strategies (Pareto dominance and indicator-based fit-
ness) over PD, P I and the memeplex shuffling in the initial stages
of the generation (lines 6–9). Afterwards, the distribution of the
resulting memeplexes is conducted through message passing,
employing the MPI_Send function at the master side (lines 12–
15) and MPI_Recv at the worker side (lines 18–21). In this step,
the workers also receive copies of the best global solutions in
accordance with the multiobjective strategy associated to the
assigned mproc memeplexes.

Once the memeplexes have been distributed, each process car-
ies out the learning steps over the assigned partitions, in which
teration-level parallelization strategies are applied to generate a
olution pool (line 23), and the calculation of objective functions,
ith solution-level offloading to the GPU (line 24). The multi-
bjective performance measurements required by the adaptive
esign are also registered herein (line 25). It is worth noting
hat, during these steps, the master process assumes a worker
ole to avoid idle resources. The retrieval of the obtained results
s then undertaken by communicating the updated memeplexes
nd performance values to the master through MPI_Send and
PI_Recv (lines 26–42), with MPI_ANY_SOURCE enabled at the
eceiver to soften synchronization constraints. With this infor-
ation, the master will be able to update the configuration of
emeplexes assigned to each multiobjective strategy and merge

hem in the corresponding population (lines 33 an 34). Finally, the
areto front structure that contains the non-dominated solutions
ound by the algorithm is updated (line 35). The contents of this
areto front are returned in the output of the algorithm once the
top criterion (a certain number of fitness evaluations) has been
atisfied.

.2.2. Iteration level
The iteration-level parallelization, performed within the as-

igned mproc memeplexes, is described in Algorithm 2. The first
ask in this stage consists of the definition of index arrays to iden-
ify the best global and local solutions for each memeplex (lines
–3 in Algorithm 2). Due to the fact that this is a simple indexing
peration, it can be handled by a single execution thread by using
he OpenMP directive #pragma omp single. For each memeplex,
he generation of new solutions inside the learning loop (lines 6–
2) is parallelized by using the worksharing directive #pragma
mp for. The processing times for each iteration may vary due to
he differences between the three learning strategies included in
he MO-SFLA design, as well as the effect of topological complex-
ty in the tree-building procedure. As a result, this loop can lead to
otential load imbalance issues. In order to address this problem,
dynamic scheduling strategy is set in the schedule clause of
pragma omp for. Another strategy to enhance performance at
his level is the use of core-thread affinity, which is enabled by
sing the OMP_PROC_BIND flag.
Alternatively, other schemes can also be applied to implement

his parallelization level, e.g. the use of #pragma omp for on

S. Santander-Jiménez, M.A. Vega-Rodríguez and L. Sousa Future Generation Computer Systems 127 (2022) 208–224

m
p
u
a
m

4

p
u
F
d
q
t
a
e
s
p

P
m
i
o
e
N
o
b
t
a
n
n
t
u
n
d

t
s
t
t
a
0
n

1
1

1
1
1
1

1
1
1
1
2
2
2
2

s

Algorithm 2 Iteration-level Parallelism in MO-SFLA: OpenMP
Design
Input: Individual* Mem (memeplexes assigned to the MPI process), int mproc

(number of memeplexes assigned), Individual Bestglobal(PD) (best global solution
from PD), Individual Bestglobal(P I) (best global solution from P I), int n (number
of individuals per memeplex), int nl (number of learning steps per memeplex).

Output: Pool (new candidate solutions generated by the process).
1: #pragma omp single
2: BGlobalArray ← Index Best Global Solutions (Mem, Bestglobal(PD),

Bestglobal(P I))
3: BLocalArray ← Index Best Local Solutions (Mem)
4: for x = 1 to mproc do
5: /*Generation of new candidate solutions via Equations 6–7 variants and local

searches*/
6: #pragma omp for schedule (dynamic)
7: for j = 1 to nl do
8: switch (Memx(n−j) .counter)
9: case 0: Poolx(n−j) ← Learn from Best Local (Memx(n−j) , BLocalArrayx)

10: case 1: Poolx(n−j) ← Learn from Best Global (Memx(n−j) , BGlobalArrayx)

11: case 2: Poolx(n−j) ← Apply Local Search (Memx(n−j))
12: end for
13: end for
14: return Pool

top of line 4 combined with the collapse clause to join the
emeplex and learning loops. Nevertheless, this alternative ap-
roach could impose some performance penalties, due to the
se of collapsed-loop indices in the nested loop and the strided
ccesses that can arise when nl does not match the size n of the
emeplex.

.2.3. Solution level
The solution level is focused on parallelizing fine-grained,

roblem-specific operations for a given candidate solution, which
sually take place within the computation of objective functions.
or the optimization problem herein tackled, a major source of
ata parallelism is found in the independent processing of se-
uence sites for both parsimony and likelihood (Eqs. (2) and (4)),
hus allowing the concurrent computation of partial parsimony
nd likelihood operations for each site. Phylogenetic datasets now
nclose a large amount of nucleotides per sequence, which makes
uitable the execution of these objective functions in massively
arallel accelerators like GPUs.
Algorithm 3 introduces the devised CUDA parsimony kernel.

rior to the instantiation of the kernel, two main data structures
ust be mapped to the GPU memory hierarchy. The first one

s the input sequence alignment sequences, which is transferred
nce at the beginning of the application. In order to allow an
fficient processing of character states, a char array of length
× M is employed to store the input sequences in row-major

rder. Furthermore, each character in the sequences is codified
y using hexadecimal values (given in Table 1), which allow
he computation of Fitch’s ancestral states through bit-wise AND
nd OR operations. The second data structure is the phyloge-
etic topology to be evaluated, which is encoded by an internal
ode array denoted as nodes. Each element of this array contains
he information required to process the topology in a bottom-
p fashion, namely integer references to the associated child
odes (id_children) where the most significant bit is devoted to
istinguish between internal (1) and leaf (0) positions.
In Algorithm 3, each GPU thread is responsible for calculating

he partial parsimony score P(T)thread_id at the thread_id site of the
equences. After initializing thread_id, P(T)thread_id, and the ances-
ral state set Athread_id (lines 1 and 2 in Algorithm 3), each node in
he topology array is processed to determine the corresponding
ncestral state value node_state, which initially takes the value
x1F (line 5). By checking the most significant bit of the child
ode reference, it can be read the child state from A (in
thread_id

214
Table 1
Hexadecimal codification of the input sequences.
Nucleotide state Hex value Nucleotide state Hex value

A (Adenine) 0 × 08 Y (C or T) 0 × 05
C (Cytosine) 0 × 04 K (G or T) 0 × 03
G (Guanine) 0 × 02 V (A or C or G) 0 × 0E
T (Thymine) 0 × 01 H (A or C or T) 0 × 0D
M (A or C) 0 × 0C D (A or G or T) 0 × 0B
R (A or G) 0 × 0A B (C or G or T) 0 × 07
W (A or T) 0 × 09 ? (Unknown) 0 × 0F
S (C or G) 0 × 06 - (Gap) 0 × 10

Algorithm 3 Solution-level Parallelism in MO-SFLA: CUDA
Parsimony
Input: __constant__ NodePars* nodes (phylogenetic node array), __constant__

int num_inner (number of internal nodes), __global__ char* sequences (input
nucleotide sequences), __constant__ int seq_length (sequence length)

Output: __global__ int* Acc_P(T) (accumulated partial parsimony scores)
1: thread_id ← blockIdx.x * blockDim.x + threadIdx.x
2: P(T)thread_id ← 0, Athread_id ← 0
3: for i = 1 to num_inner do
4: /*Initializing ancestral value for node i and reading states from its children*/
5: node_state ← 0x1F
6: for j = 1 to nodes[i].num_children do
7: child_id ← nodes[i].id_children[j]
8: if child_id is an internal node then
9: child_state ← Athread_id[child_id] /*read state from the ancestral set*/
0: else
1: child_state ← sequences[seq_length*(child_id)+thread_id] /*read state from

the dataset*/
2: end if
3: /*Performing Fitch’s set operations (Equation 3)*/
4: fitch_op ← node_state & child_state
5: P(T)thread_id ,node_state ← (fitch_op=0) ? {P(T)thread_id+1, node_state |

child_state} : {P(T)thread_id , fitch_op}
6: end for
7: Athread_id[i] ← node_state
8: end for
9: /*Performing parallel reduction of P(T)thread_id values within a thread block*/
0: __shared__ TBlock_P(T)← 0
1: TBlock_P(T)[threadIdx.x] ← P(T)thread_id
2: Acc_P(T)[blockIdx.x] ← Shared Memory Parallel Reduction (TBlock_P(T))
3: return Acc_P(T) /*Final parallel reduction at the host side*/

the case of internal nodes previously processed by the kernel)
or from sequences (in the case of leaf nodes) (lines 8–12). After
this step, Fitch’s intersections and unions are performed between
the current value of node_state and the child one (lines 14–15).
P(T)thread_id will be increased any time an empty intersection is
detected, since it denotes the presence of a substitution event at
the thread_id site. These operations are performed for each child,
toring the resulting node_state value in Athread_id (line 17). After
the topology array has been entirely processed, shared-memory
parallel reductions are applied over the P(T)thread_id values in a
thread block (lines 20–22). The resulting reductions are then
arranged at the host side to compose the final P(T) score.

Regarding likelihood, the proposed multi-level design imple-
ments this objective function by using BEAGLE [32], a high-
performance library that provides an efficient, fine-grained par-
allel implementation of the likelihood calculations. More specifi-
cally, BEAGLE assigns the calculation of each entry in the partial
likelihood arrays to a separate GPU thread, along with exploit-
ing other sources of parallelism related to the computation of
transition probabilities and the reduction of site likelihoods.

Algorithm 4 enumerates the steps required to calculate likeli-
hood with BEAGLE. The first one involves the initialization of the
BEAGLE library, performed at the beginning of the application, by
using the function beagleCreateInstance (line 2 in Algorithm
4). Some essential parameters related to the computations (such
as the number of sequences, number of partial likelihoods to
be computed, character states in the alphabet, sequence lengths,
number of transition probability matrices and rate categories, and

S. Santander-Jiménez, M.A. Vega-Rodríguez and L. Sousa Future Generation Computer Systems 127 (2022) 208–224

O

s
B
a
e
u
o
f
d
c
s
g
b
c

o
d
o
r
l
c
s
a
b
U

Algorithm 4 Solution-level Parallelism in MO-SFLA: BEAGLE
Likelihood
Input: char* sequences (input nucleotide sequences), NodeLike* nodes (phylogenetic

node array), int num_sequences (number of sequences), int num_partials (number
of partial likelihood arrays to be calculated), int num_states (number of state
values), int seq_length (sequence length), num_trMatrices (number of transition
matrices), num_rCategories (number of rate categories), scale_buffers (likelihood
scaling buffers), GPU_id (GPU to be employed), config (model configuration file)

utput: int Global_L(T) (likelihood score)
1: /*Beagle Instance Initialization (only in the first generation)*/
2: Beagle ← Create BeagleLib Instance (num_sequences, num_partials,

num_states, seq_length, num_trMatrices, num_rCategories, scale_buffers, GPU_id,
BEAGLE_FLAG_FRAMEWORK_CUDA | BEAGLE_FLAG_PRECISION_DOUBLE |

BEAGLE_FLAG_PROCESSOR_GPU)
3: Beagle ← Set Tip States (sequences)
4: Beagle ← Set Model Rate Matrix and State Frequencies (config)
5: Beagle ← Set Among Site Rate Heterogeneity (config)
6: /*Conducting likelihood computations*/
7: likeOps ← Define Likelihood Operations (nodes, Beagle)
8: tMatrices ← Update Transition Matrices (likeOps.Transitions, Beagle)
9: PartialLikelihoods ← Calculate Partials (likeOps.Partials, Beagle)

10: Global_L(T) ← Calculate Log-Likelihood (PartialLikelihoods, tMatrices, Beagle)
11: return Global_L(T)

likelihood scaling buffers), as well as the targeted GPU device
and computation flags, are provided in the initialization proce-
dure. Afterwards, the input sequence data (sequences) and the
pecifications of the sequence evolution model (contained in a
EAGLE configuration file config) must be provided to the library,
ccordingly transferring the structures to the GPU memory hi-
rarchy in contiguous data patterns. beagleSetTipStates is
sed to provide the BEAGLE instance with the sequence data
bserved for each leaf node (line 3), while the character state
requencies and the instantaneous substitution rate matrix that
efine the model are set by using beagleSetStateFrequen-
ies and beagleSetEigenDecomposition (line 4). In case the
elected evolutionary model supports among-site rate hetero-
eneity (+Γ models [6]), the beagleSetCategoryRates and
eagleSetCategoryWeights functions are used to specify this
haracteristic (line 5).
Once initialized and configured the library, the calculation

f the likelihood function for a topology array nodes is con-
ucted as follows. First, it must be created from nodes the list
f likelihood operations likeOps to be performed, namely those
elated to the computation of transition probabilities and partial
ikelihoods (line 7). In practical terms, this list of operations
orresponds to different steps in Felsenstein’s algorithm. Tran-
ition probabilities tMatrices are defined throughout the topology
ccording to the parameters of the evolutionary model and the
ranch lengths of the targeted nodes, employing the beagle-
pdateTransitionMatrices function for this purpose (line

8). After that, the operations list is processed to update the
partial likelihood structures PartialLikelihoods by using beagle-
UpdatePartials (line 9). Once the transition matrices and
the partial likelihoods are set, the library can proceed with the
computation of the log-likelihood of the phylogeny through the
beagleCalculateEdgeLogLikelihoods function (line 10).
The resulting Global_L(T) value, which specifies the likelihood of
the candidate solution, is then transferred from the GPU to the
host side. Further details on the implementation of likelihood
with BEAGLE can be found in [32,45].

4.3. Heterogeneous alternatives

Following the multi-level strategies previously introduced, dif-
ferent heterogeneous design alternatives can be devised to im-
plement the interactions between the coarse-grained CPU-based
levels and the fine-grained GPU-based layer. This work investi-
gates two main heterogeneous schemes, which are graphically
illustrated in Fig. 3.
215
In the first design variant (designated as MPI-to-CUDA,
Fig. 3(a)), the MPI processes are responsible for conducting the
instantiations of the solution-level, GPU evaluation procedures
and the retrieval of objective function scores. Given num_proc
processes, a total of num_proc CUDA streams and BEAGLE li-
brary instances will be used to offload parsimony and likelihood
computations to the GPU. The key idea consists of transferring a
large chunk of phylogenetic topologies to be processed in each
instantiation of the kernels, thus minimizing the overhead intro-
duced when initializing the communications between CPU and
GPU. More specifically, the evaluation of the candidate solutions
generated in the memeplex learning loop will be carried out once
all the learning steps have been completed, such that mproc × nl
solutions are offloaded per kernel instantiation. That is, the GPU
operates at each generation over the complete pool of solutions
generated by the ith MPI process, interacting through the ith
CUDA stream and BEAGLE instance.

In the second alternative (designated as OpenMP-to-CUDA,
Fig. 3(b)), the responsibility of interacting with the GPU is as-
sumed by the OpenMP execution threads operating inside the
memeplex learning loop. The main goal lies in computing the
objective scores for a candidate solution immediately after gen-
erating it, so that the evaluation can take place without waiting
for the termination of the whole iteration-level parallel loop.
Therefore, each kernel instantiation deals with the evaluation of
a single phylogenetic topology. In order to implement this idea,
num_proc×num_threads CUDA streams and BEAGLE instances are
required. Whenever the jth thread in a process generates a new
candidate solution (via best local learning, best global learning,
or local search), the resulting phylogenetic topology is communi-
cated through the corresponding jth stream and the GPU proceeds
with the parsimony and likelihood evaluation of the transferred
solution.

In both MPI-to-CUDA and OpenMP-to-CUDA design variants,
the use of different CUDA streams/BEAGLE instances and asyn-
chronous functions allow the achievement of concurrent kernel
execution, according to the amount of resources available in the
employed GPU device.

5. Experimental methodology and evaluation

The experimental assessment of the proposed multi-level, het-
erogeneous approach is undertaken in this section. In a first
step, different parametric configurations of the proposal will be
analysed, in order to identify the most satisfying settings in
terms of execution time and solution quality. Afterwards, the
benefits of the multi-level parallel strategy will be examined by
providing insight into the parallel performance, multiobjective
results, and energy consumption of the proposal. This evaluation
is followed by the comparative assessment of heterogeneous de-
sign alternatives. Finally, comparisons with other state-of-the-art
phylogenetic methods are presented.

The hardware platform used in the experimentation is a
CPU+GPU system comprising, in the CPU side, two Intel Xeon
Gold 5218 processors at 2.30 GHz (a total of 32 physical cores
available), with 22MB L3 cache and 64GB DDR4 RAM. Two dif-
ferent CUDA-enabled GPUs have been plugged in this system
with the aim of examining our heterogeneous approach on high-
performance and commercial GPGPU devices:

• Tesla V100, based on the Volta architecture, composed of 80
streaming multiprocessors (5120 CUDA cores) with a GPU
clock of 1380 MHz, a global memory of 16 GB at 877 MHz
and 4096-bit memory bus width;
• RTX 2080Ti, based on the Turing architecture, composed

of 68 streaming multiprocessors (4352 CUDA cores) with a
GPU clock of 1545 MHz, a global memory of 11GB at 7000
MHz and 352-bit memory bus width.

S. Santander-Jiménez, M.A. Vega-Rodríguez and L. Sousa Future Generation Computer Systems 127 (2022) 208–224

G
a
s
i
d
G
c
s
c
i

n
e
R

Fig. 3. Heterogeneous design variants: (a) depicts a proposal based on MPI-to-CUDA interactions, in which each process instantiates the parsimony and likelihood
GPU kernels once all the learning steps have been completed, transferring the complete pool of new solutions to the GPU prior to the kernel instantiations. On the
other side, (b) shows an OpenMP-to-CUDA interaction scheme, where each thread assigns to the GPU a single candidate solution immediately after generating it
inside the parallel learning loop.
The software in this system includes Ubuntu 18.04LTS, the
CC 8.4.0 compiler implementing OpenMP 4.5, MPICH 3.3.1 as the
dopted MPI platform, and the CUDA compilation tools 10.1. The
oftware herein tested was compiled by enabling the correspond-
ng optimization and architecture-specific flags e.g. -O3, -genco-
e:arch,code. This hardware infrastructure and the considered
PU testing environments were chosen in accordance with the
haracteristics of the setups currently found in real biological
tudies [46]. In this way, it is possible to investigate the impli-
ations and the applicability of the proposed multi-level method
n scenarios commonly found in parallel bioinformatics research.

In order to test the performance of the proposal on a heteroge-
eous range of problem sizes, five real-world datasets have been
mployed in the experimentation (assuming the General Time
eversible evolutionary model [6]):

1. 50 × 18321: lepidopteran superfamily Bombycoidea gene
data, containing 50 sequences with 18,321 characters per
sequence (9141 distinct alignment patterns) [47];
216
2. 55× 1314: rbcL plastid gene data, containing 55 sequences
with 1314 characters per sequence (789 distinct alignment
patterns) [48];

3. 169 × 24251: Mammalian organisms DNA data, contain-
ing 169 sequences with 24,251 characters per sequence
(24,234 distinct alignment patterns) [49];

4. 218 × 4182: Prokaryotic RNA data, containing 218 se-
quences with 4182 characters per sequence (1846 distinct
alignment patterns) [50];

5. 500 × 759: rbcL plastid gene data, 500 sequences with 759
characters per sequence (759 distinct alignment patterns)
[51].

These datasets cover diverse, representative evaluation sce-
narios from real-world phylogenetic analyses, with different char-
acteristics according to the two key dimensions of the prob-
lem: number of sequences and sequence length. In this way,
it can be thoroughly evaluated the relevance of the proposed

S. Santander-Jiménez, M.A. Vega-Rodríguez and L. Sousa Future Generation Computer Systems 127 (2022) 208–224

t
w
i
s
a
s
L
i
w
t
n
W
i

5

c
t
W
e
o
M
v
g
w
b
t

p
M

f
e
b
c
w
a
m

t
i
m
u
c
b
A
n
g
c
i
t

c
t
p
r
w
m
m
i
h
h

5

multi-level approach in a diversified set of problem instances
comprising real data, each one with different implications on
parallel performance, energy requirements, and multiobjective
search constraints.

In order to ensure a rigorous, statistically-reliable experimen-
al evaluation, 31 independent runs of the methods under study
ere performed per experiment. Furthermore, the statistical test-

ng of solution quality results followed the methodology de-
cribed in [52]. The Kolmogorov–Smirnov normality test was
pplied, in a first step, to examine the distribution of the re-
ults samples. Homoscedasticity was then analysed by using the
evene test in case of dealing with Gaussian distributions, accord-
ngly applying ANOVA afterwards if homogeneity in variances
as observed. For the remaining cases (no Gaussian distribu-
ions, no homoscedasticity), the evaluation of statistically sig-
ificant differences among samples was conducted by using the
ilcoxon–Mann–Whitney tests. A confidence level of 95% was set

n the statistical tests herein applied.

.1. Configuration of the parallel metaheuristic

The first step in this experimental evaluation involves the
onfiguration of input parameters to determine their influence in
he computational and optimization capabilities of the proposal.
ith this purpose in mind, parametric studies were conducted to

valuate parallel and multiobjective performance under a range
f uniformly-distributed candidate input values, assuming the
PI-to-CUDA version of the application. In accordance with pre-
ious studies [42], an adaptive adjustment control (ac) value of 5
enerations and a stop criterion (maxEval) of 12,000 evaluations
ere initially established, so that the parametric studies could
e focused on the key parameters that govern the behaviour of
he proposal: the population size (popSize), the distribution of
memeplexes (m, managed by MPI processes), and the learning
steps (nl, handled by OpenMP threads).

Using for testing purposes the dataset 218x4182, the execu-
tion time of each candidate configuration profile was first mea-
sured and evaluated. Second, the multiobjective quality of the
achieved solutions was examined by using hypervolume. Hy-
pervolume (IH) is a widely-adopted multiobjective metric that
calculates the volume of the objective space (area for bi-objective
problems) that is covered by at least one of the solutions x
reported by a multiobjective optimizer, that is, the volume of the
orthogonal polytope

∏n:
n∏
=
{
p ∈ Rn

: p ⪯ x, for some x ∈ X
}
. (10)

When comparing candidate settings and optimizers, the ones
achieving higher hypervolume scores are preferred from a mul-
tiobjective point of view, since they denote more satisfying opti-
mization capabilities.

Fig. 4(a) illustrates the median execution time and hypervol-
ume scores reported by different distributions of memeplexes
and learning steps, mapped through the MPI and OpenMP layers.
Taking into account the characteristics of the hardware platform
herein used, configurations of 2 processes × 16 threads, 4 pro-
cesses × 8 threads, 8 processes × 4 threads, and 16 processes
× 2 threads were evaluated, with a fixed population size of 256
individuals. The 2 × 16 configuration reported the worst results
for both execution time and hypervolume, due to the limited
concurrency capabilities observed at the evaluation procedures
and the restrictions imposed on the adaptive evolutionary process
by the use of a low number of memeplexes. In contrast, the 4 × 8
and 8 × 4 configurations led to the most satisfying behaviour
from a time perspective. In fact, the 8 × 4 configuration was
 e

217
Fig. 4. Comparison of execution time (Texec , in seconds) and multiobjective
erformance (hypervolume, in %) for different parametric configurations of
O-SFLA on 218x4182.

ound to be the best performing candidate in terms of both
xecution time and hypervolume. In the case of 16 × 2, it can
e observed a worsening in execution time due to the impact of
ommunications with an increased number of MPI processes, as
ell as a reduction in hypervolume quality with regard to 8 × 4
s a result of the lower solution diversity available within the
emeplexes.
Using the 8 × 4 distribution, the effect of varying the popula-

ion size, with 64, 128, 192, and 256 individuals, can be observed
n Fig. 4(b). From an execution time perspective, the best perfor-
ance is attained when a population size of 256 individuals was
sed. This input value implies that the parallel loops and kernels
an operate over a larger number of solutions, reducing the num-
er of generations and therefore the impact of serial components.
lthough this approach enhances parallel performance, it has a
egative impact in multiobjective quality, as the algorithm is
iven less iterations to evolve the populations until the stop
riterion is satisfied. Consequently, a worsening in hypervolume
s observed when going beyond 192 individuals, being this value
he optimal population size from a multiobjective perspective.

From these results, it can be determined two recommended
onfiguration profiles for the population size, in accordance with
he desired parallel and solution quality properties. In case of
utting priority to execution time, the use of 256 individuals
epresents the strategy that attains the most satisfying behaviour,
ithout implying a relevant degradation in multiobjective perfor-
ance. On the other hand, strict multiobjective quality require-
ents can be better satisfied by using a population size of 192

ndividuals. These two profiles, designated as BestPar and BestMO,
ave been considered throughout the experimental evaluation
erein presented.

.2. Parallel, multiobjective, and energy results

Once these configuration profiles have been identified, the
valuation of the multi-level parallel design can be undertaken.

S. Santander-Jiménez, M.A. Vega-Rodríguez and L. Sousa Future Generation Computer Systems 127 (2022) 208–224

a
r
p
s
M
m
c
3
p
s

In order to highlight the benefits of multi-level parallelism in this
context, three evaluation criteria have been considered: parallel
performance, multiobjective quality, and energy consumption.
The main idea lies in exploring the parallel performance gains
attained by the proposal over other traditionally-adopted ap-
proaches i.e. CPU-only, mixed-mode multicore designs, as well
as potential impacts in multiobjective capabilities and energy
consumption.

The median parallel results observed in the experimentation
re presented in Table 2. For each dataset, the execution times
eported by the CPU-only, multicore version of MO-SFLA and the
roposed multi-level design on Tesla V100 and RTX 2080Ti are
hown in the Texec entries (columns 2, 3, and 6 respectively).
oreover, the SU entries outline the speedups achieved by the
ulti-level designs over the CPU serial implementation (SU Serial
olumns) and the multicore version (SU Multicore columns, using
2 physical cores). The results from the BestPar configuration
rofile are reported in the upper side of Table 2, while the bottom
ide shows results from the BestMO profile.
This comparative evaluation points out the attainment of ef-

fective speedups over CPU implementations in all the evaluation
scenarios. The comparison with the serial version of the algo-
rithm suggests that the exploration and exploitation of multi-
level parallelism represents a suitable solution to accelerate time-
consuming phylogenetic analyses, with performance gains up
to 396×. In comparison to the multicore implementation, the
best case scenarios are observed in the datasets with the high-
est number of unique sequence patterns (169 × 24,251 and
50 × 18,321), which represent the problem sizes with the largest
available data parallelism. For the specific case of 169 × 24,251,
speedups of 14.3× (BestPar) and 13.1× (BestMO) are achieved
when using Tesla V100 at the solution-level layer, maintaining
similar performance on the commercial RTX 2080Ti (13.5× and
12.4× respectively). Even in the case of datasets with limited
data parallelism e.g. 500 × 759, the multi-level approach shows
improved parallel results thus justifying the applicability of the
proposal on different real-world phylogenetic scenarios.

A comparison of time profiles between the CPU-only, multi-
core version and the multi-level proposal is depicted in Fig. 5.
This figure reports the normalized percentage of time spent in
the evaluation of candidate solutions (objective functions), evo-
lutionary operators (learning from best global, best local, and
local searches), and serial operations (including overhead sources
i.e. synchronizations and communications). On analysing the CPU
implementation, it can be observed the significant role played by
the evaluation procedures in the computations, representing the
task that dominates the execution time in a higher degree. When
applying multi-level parallelism, with solution-level calculations
on the GPU, the resulting profile denotes a more balanced distri-
bution of times, in which the evaluation time issues shown by the
reference version are successfully tackled. Other operations, es-
pecially the local searches, become increasingly noticeable under
this approach.

The second aspect to be evaluated is the potential impact in
multiobjective quality, with the aim of determining if the multi-
level parallel design is able to preserve the search capabilities
of the original algorithm. Table 3 introduces the comparison
of multiobjective results between the multi-level proposal and
the CPU-only baseline implementation, detailing median hyper-
volume scores IH (columns 2 and 4), interquartile ranges IQR
(columns 3 and 5), and the P-values obtained from the statistical
tests applied over the attained result samples (column 6).

In terms of hypervolume, the multi-level proposal is able
to reach the multiobjective quality of the baseline metaheuris-
tic under the two considered configuration profiles, reporting

high-quality hypervolume scores (over 71%) in all the datasets

218
herein evaluated. In all these evaluation scenarios, the attained
P-values are noticeable higher than the significance threshold
0.05, which means that statistically significant differences were
not found between the multi-level proposal and the baseline
version of MO-SFLA. Consequently, this multiobjective perfor-
mance analysis confirms that the proposed multi-level parallel
design maintains the optimization capabilities of MO-SFLA, with
significantly reduced execution times. A representation of the
Pareto front distributions obtained by the proposal is depicted in
Fig. 6.

The last evaluation point in this experimental analysis is fo-
cused on the assessment of energy consumption. In order to ex-
amine this aspect, power measurements were taken, with times-
tamps of 100 ms, by using (1) Intel’s Running Average Power
Limit (RAPL) counters [53] at the CPU side; and (2) the NVIDIA
System Management Interface (NVIDIA-SMI) [54] at the GPU side.
Table 4 illustrates energy results from the CPU-only multicore
implementation (columns 2–3) and the multi-level proposal on
Tesla V100 (columns 4–6) and RTX 2080Ti (columns 7–9). For
each approach, the energy consumed per device in Joules is
reported, in accordance with the measurements observed at the
RAPL packages (J(CPU)), the RAPL DRAM domains (J(DRAM)), and
the NVIDIA-SMI GPU samples (J(GPU)). In order to simplify this
analysis, the results reported in Table 4 correspond to the BestPar
configuration profile of the metaheuristic.

The comparison of energy results gives account of signifi-
cant savings in the overall consumed energy when the proposed
multi-level design is used. More specifically, the multi-level par-
allel approach is able to attain improvements in the accumulated
energy consumption of 85.9% (50 × 18,321), 81.5% (55 × 1314),
92.0% (169 × 24251), 77.8% (218 × 4182), and 37.7% (500 × 759)
over the baseline multicore version when using the Tesla V100
GPU. It can be highlighted that these improvements become more
noticeable in datasets with a larger number of unique sequence
patterns, as observed in the case of 50× 18,321 and 169× 24251.
If the commercial RTX 2080Ti GPU is employed instead, effective
energy improvements of 82.2% (50 × 18,321), 78.6% (55 × 1314),
89.8% (169 × 24251), 73.1% (218 × 4182), and 29.3% (500 × 759)
are achieved. These results suggest that, despite the differences
in energy efficiency between high-performance and commer-
cial GPUs, the adoption of multi-level heterogeneous strategies
consistently leads to significant energy improvements in all the
evaluation scenarios herein considered.

In order to further examine the behaviour of the proposal,
Fig. 7 shows the evolution of power per device (in W) throughout
the execution of the algorithm, using the RTX 2080Ti GPU in
the 50 × 18,321 dataset. These power measurements provide a
clear depiction of the different steps defined in the algorithmic
design of MO-SFLA. Initially, the CPU is in charge of conducting
the initialization of populations, data structures, and APIs, while
the GPU remains waiting for the initial set of individuals to be
scored. Afterwards, it can be observed alternating patterns be-
tween the CPU and GPU, which correspond with the execution of
algorithm-level, iteration-level, and solution-level parallel tasks
within a generation. Due to the fact that the algorithm defines
different search operators, it can be noticed that the generations
do not show homogeneous time and power requirements. Par-
ticularly, the gaps observed in some generations prior to the
GPU offloading are motivated by the execution of the most time-
demanding operator, local searches, in those situations where
stagnated individuals were identified in the memeplexes.

In conclusion, these results denote the satisfying parallel and
energy performance achieved by the multi-level parallel ap-
proach. The proposed design is also consistent with the original
search capabilities of the baseline MO-SFLA algorithm, which are
successfully preserved as suggested by the statistical assessment

of multiobjective quality.

S. Santander-Jiménez, M.A. Vega-Rodríguez and L. Sousa Future Generation Computer Systems 127 (2022) 208–224

s
o

Table 2
Multi-level MO-SFLA: Comparison of parallel performance (median execution time Texec in seconds and speedups SU) with CPU-only
implementations.

BestPar configuration

Dataset CPU-only Multi-level GPU Tesla V100 Multi-level GPU RTX 2080Ti

Multicore Time SU SU Time SU SU
Texec Texec Serial Multicore Texec Serial Multicore

50 × 18321 656.202 85.491 216.031× 7.676× 89.972 205.272× 7.293×
55 × 1314 57.980 11.358 131.855× 5.105× 11.174 134.034× 5.189×
169 × 24251 14124.429 987.662 396.063× 14.301× 1047.741 373.352× 13.481×
218 × 4182 486.137 104.126 140.019× 4.669× 102.966 141.596× 4.721×
500 × 759 861.774 481.850 50.598× 1.788× 486.995 50.064× 1.770×

BestMO configuration

50 × 18321 684.488 95.518 193.353× 7.166× 98.886 186.768× 6.922×
55 × 1314 58.936 11.554 129.619× 5.101× 11.462 130.657× 5.142×
169 × 24251 14469.671 1105.350 353.894× 13.091× 1166.745 335.272× 12.402×
218 × 4182 495.455 113.426 128.539× 4.368× 112.384 129.730× 4.409×
500 × 759 875.528 490.780 49.678× 1.784× 494.839 49.270× 1.769×
Fig. 5. Normalized time profiles for the CPU-only and multi-level heterogeneous versions of MO-SFLA, illustrating the percentages of time spent on evaluations, local
searches, learning from best local or from best global, and serial operations (including overhead).
Table 3
Multi-level MO-SFLA: Comparison of multiobjective quality (median hypervolume IH , interquartile
range IQR, and P-values) with CPU-only implementations.

BestPar configuration

Dataset CPU-only Multi-level P-value

IH IQR IH IQR test

50 × 18321 77.145% ±0.010 77.145% ±0.006 0.910
55 × 1314 71.778% ±0.017 71.783% ±0.017 0.722
169 × 24251 77.780% ±0.105 77.776% ±0.145 0.451
218 × 4182 74.896% ±0.027 74.902% ±0.052 0.322
500 × 759 73.019% ±0.037 73.022% ±0.021 0.978

BestMO configuration

50 × 18321 77.146% ±0.010 77.148% ±0.007 0.804
55 × 1314 71.778% ±0.010 71.783% ±0.014 0.558
169 × 24251 77.839% ±0.061 77.835% ±0.059 0.468
218 × 4182 74.936% ±0.020 74.966% ±0.047 0.429
500 × 759 73.037% ±0.019 73.033% ±0.015 0.699
Table 4
Multi-level MO-SFLA: Comparison of energy consumption per device (in Joules J) with CPU-only implementations.
Dataset CPU-only Multi-level GPU TeslaV100 Multi-level GPU RTX2080Ti

J(CPU) J(DRAM) J(CPU) J(DRAM) J(GPU) J(CPU) J(DRAM) J(GPU)

50 × 18321 157382.7 9232.2 18256.3 1034.6 4195.3 19068.6 1059.9 9565.3
55 × 1314 13206.6 863.6 1957.9 106.3 539.2 1910.9 104.2 989.6
169 × 24251 3334761.3 266915.5 228968.4 17006.2 42821.9 237920.7 17394.4 111730.9
218 × 4182 110821.6 6987.7 20120.6 1136.2 4899.7 19820.9 1108.7 10738.7
500 × 759 192305.1 10219.8 102190.1 4575.0 19455.6 103225.4 4598.8 35241.7
5.3. Evaluation of heterogeneous design alternatives

Next, the experimental assessment of the heterogeneous de-
ign alternatives herein devised is undertaken. We will first focus
n examining the differences in parallel performance between the
219
two CPU–GPU interaction schemes, MPI-to-CUDA and OpenMP-
to-CUDA, by analysing execution times. For each dataset, Ta-
ble 5 shows the median time results attained by each strategy
(columns 2–5 for MPI-to-CUDA and columns 6–9 for OpenMP-to-
CUDA) on the Tesla V100 and RTX 2080Ti GPUs.

S. Santander-Jiménez, M.A. Vega-Rodríguez and L. Sousa Future Generation Computer Systems 127 (2022) 208–224

h

Fig. 6. Representation of the median-hypervolume Pareto fronts generated by the multi-level approach (using the BestMO configuration). These plots illustrate the
eterogeneity of the considered problem instances, in terms of diverging front shapes and distributions.
Fig. 7. Evolution of power measurements (CPU packages, DRAM, and GPU RTX 2080Ti) during the execution of the multi-level approach on the 50 × 18,321 dataset.
For both BestPar and BestMO configuration profiles, the
OpenMP-to-CUDA scheme leads to general improvements over
the MPI-to-CUDA variant. The most noteworthy scenario is given
by the 55 × 1314 dataset, for which the OpenMP-to-CUDA inter-
action mapping allows the algorithm to finish execution 10%–13%
faster than the MPI-to-CUDA approach. However, our results
highlight one particular scenario that OpenMP-to-CUDA failed to
run: 169 × 24251. This dataset, which was successfully handled
220
by the MPI-to-CUDA variant, implied increased memory con-
sumption requirements for OpenMP-to-CUDA that resulted into
OutOfMem exceptions at the GPU side.

In order to understand the impact of memory requirements
on each heterogeneous alternative, NVIDIA-SMI was employed
to monitor memory usage in runtime. The results retrieved by
this tool are reported in Table 6. In average terms, the memory
consumption of OpenMP-to-CUDA is about 1.61 (Tesla V100) and

S. Santander-Jiménez, M.A. Vega-Rodríguez and L. Sousa Future Generation Computer Systems 127 (2022) 208–224

d
t
t
t
p
p
v
t
o
N
m
d
t

5

d
m
c
e
I
a
e
c

B
a
o
s
m
a
M
t

Table 5
Heterogeneous design alternatives: comparisons of execution time (in seconds).

Execution time Texec
Dataset MPI-to-CUDA version OpenMP-to-CUDA version

Tesla V100 RTX 2080Ti Tesla V100 RTX 2080Ti

BestPar BestMO BestPar BestMO BestPar BestMO BestPar BestMO

50 × 18321 85.491 95.518 89.972 98.886 84.824 94.871 86.763 97.150
55 × 1314 11.358 11.554 11.174 11.462 10.212 10.410 9.702 9.935
169 × 24251 987.662 1105.350 1047.741 1166.745 OutMem OutMem OutMem OutMem
218 × 4182 104.126 113.426 102.966 112.384 100.739 112.451 100.596 109.349
500 × 759 481.850 490.780 486.995 494.839 473.656 484.602 479.148 488.291
Table 6
Heterogeneous design alternatives: comparisons of GPU memory consumption
(in MiB).

GPU memory usage

MPI-to-CUDA version OpenMP-to-CUDA version

Tesla V100 RTX 2080Ti Tesla V100 RTX 2080Ti

50 × 18321 3432 2200 6296 5080
55 × 1314 2584 1352 2888 1672
169 × 24251 10936 9704 OutMem OutMem
218 × 4182 3320 2088 5848 4632
500 × 759 3288 2056 5736 4520

1.99 (RTX 2080Ti) times higher than MPI-to-CUDA, as a result
of the increased memory allocation pressure demanded by the
thread-stream mapping. In this sense, the BEAGLE library in-
stances contribute the most to the consumed memory, due to
the size of the additional data structures required to perform
likelihood calculations.

From these results, it can be highlighted the main benefits and
rawbacks of each heterogeneous alternative. First, the OpenMP-
o-CUDA scheme represented the best performing approach in
erms of execution time, yet its applicability directly depends on
he characteristics of the input data (i.e. sequence length and site
atterns) and the memory size of the employed GPU device. A
ractical strategy to increase the viability of this heterogeneous
ariant lies in the introduction of dataset split techniques, so that
he GPU can perform partial scoring tasks on different partitions
f the input sequences without overflowing memory capacity.
evertheless, the MPI-to-CUDA scheme provides the multi-level
etaheuristic with increased flexibility to satisfactorily tackle
ifferent problem sizes, at the expense of a potential impact in
he achievable parallel results.

.4. Comparisons with the state of the art

In order to validate the relevance of the proposed multi-level
esign of MO-SFLA, comparisons with state-of-the-art parallel
ethods for phylogenetic inference are introduced next. This
omparative analysis has been conducted with regard to four ref-
rence methods: the single-criterion biological tools RAxML [34],
Q-TREE [35], and MrBayes [36], as well as the multiobjective
pproach PhyloMOEA [37]. For comparison purposes, we will
mploy the MPI-to-CUDA heterogeneous scheme and the BestPar
onfiguration profile of MO-SFLA.
In a first step, comparisons with RAxML, IQ-TREE, and Mr-

ayes are introduced. These biological tools integrate different
lgorithmic strategies and parallel schemes to carry out single-
bjective phylogenetic analyses. RAxML defines several search
trategies, e.g. rapid hill climbing and lazy subtree rearrange-
ents, within a parallel design that implements job-level par-
llelism to distribute independent phylogeny reconstructions via
PI and the combination of POSIX threads and SIMD vectoriza-

ion to accelerate likelihood scoring operations. On the other side,
221
IQ-TREE implements a master–worker approach, based on mixed
mode MPI+OpenMP programming and SIMD CPU instructions, to
parallelize a hill-climbing optimization approach with stochastic
perturbation components. Finally, MrBayes is a Markov Chain
Monte Carlo method for Bayesian phylogenetics, which combines
MPI and the BEAGLE library to efficiently process independent
Markov chains on CPU+GPU systems. These tools are widely
adopted due to their search features and their capabilities to
exploit hardware resources, boosting performance in important
research scenarios [55–57].

Since successful comparisons of phylogenetic quality between
MO-SFLA and these biological tools were reported in previous
research [42], the analysis herein presented is focused on exam-
ining parallel performance and energy consumption. With this
purpose in mind, we have evaluated the median execution times
and energy results attained by the reference methods on each
dataset, considering as a stop criterion the same number of phylo-
genetic trees generated by MO-SFLA. Table 7 provides insight into
parallel performance, reporting execution times Texec for RAxML,
IQ-TREE, and MrBayes (columns 2–4) and the speedups SU at-
tained by our multi-level MO-SFLA proposal over each method
(columns 5–7). For all the evaluated problem sizes, the proposed
parallel approach successfully leads to the best execution times,
achieving speedups up to 20.8× over RAxML, 27.0× over IQ-TREE,
and 35.5× over MrBayes.

The use of optimized data representations and the accurate
orchestration of the multi-level layers benefit the processing of
complex datasets, not only when it comes to large sequence
lengths (e.g. 169 × 24,251) but also in the case of instances
with a high number of sequences (500 × 759). Even for datasets
with limited data parallelism, the multi-level proposal is able
to report effective improvements in the execution time required
to complete the phylogenetic analysis. The best-case scenario is
observed for 218 × 4182, which is a dataset characterized by
site patterns with poor uniformity and gaps. While the other
phylogenetic tools are impacted by the challenging features of
this dataset, the strategies implemented in the proposal lead
to significant results in this difficult scenario. It is also impor-
tant to remark that the multi-level MO-SFLA addresses a harder,
more computationally demanding multiobjective formulation of
the problem, in comparison with the single-objective nature of
the biological methods herein tested. This fact further highlights
the benefits of the proposal and the significant parallel perfor-
mance attained by accurately exploiting multi-level parallelism
on heterogeneous systems.

Regarding energy consumption, Table 8 reports the accu-
mulated energy results J observed for the biological methods
(columns 2–4) and the improvements achieved by the multi-level
MO-SFLA (columns 5–7). These results denote the satisfying be-
haviour of the proposal from an energy consumption perspective,
improving the results of RAxML in almost all the datasets while
also outperforming IQ-TREE and MrBayes in all the evaluation
scenarios. More specifically, MO-SFLA reports average energy

improvements of 41.7% (over RAxML), 60.6% (IQ-TREE), and 56.0%

S. Santander-Jiménez, M.A. Vega-Rodríguez and L. Sousa Future Generation Computer Systems 127 (2022) 208–224

i
a
a
w
g
l
p
t
M
5
p

s
v
s
v
p
a
i
r
e
1
n
i
t
p
m

Table 7
Comparisons with other parallel phylogenetic methods: parallel performance (execution times in
seconds) from each tool and improvements obtained by the proposed multi-level MO-SFLA.
Dataset Execution time Texec MO-SFLA speedups SU

RAxML IQ-TREE MrBayes RAxML IQ-TREE MrBayes

50 × 18321 111.048 123.322 108.980 1.299× 1.443× 1.275×
55 × 1314 11.883 19.812 26.780 1.046× 1.744× 2.358×
169 × 24251 4060.592 6742.647 1662.210 4.111× 6.827× 1.683×
218 × 4182 2160.601 2813.444 3692.420 20.750× 27.020× 35.461×
500 × 759 1127.645 2493.391 3015.360 2.340× 5.175× 6.258×
Table 8
Comparisons with other parallel phylogenetic methods: energy consumption (accumulated J) from each tool
and improvements obtained by the proposed multi-level MO-SFLA.
Dataset Energy consumption J MO-SFLA energy improvements

RAxML IQ-TREE MrBayes RAxML IQ-TREE MrBayes

50 × 18321 24593.405 29167.997 25426.717 △4.502% △19.480% △7.632%
55 × 1314 2379.591 3830.229 5574.066 ▽9.407% △32.029% △53.294%
169 × 24251 1010391.235 1523083.634 486026.767 △71.417% △81.039% △40.580%
218 × 4182 489577.856 614903.163 869106.382 △94.657% △95.746% △96.990%
500 × 759 240021.156 500153.239 682048.375 △47.413% △74.764% △81.494%
Table 9
Comparisons with other parallel phylogenetic methods: speedups for Phylo-
MOEA and MO-SFLA (CPU-only multicore and CPU+GPU multilevel versions). The
results from PhyloMOEA and the CPU-only MO-SFLA refer to executions with 16
cores.
Dataset Speedups SU

PhyloMOEA CPU-only MO-SFLA Multi-level MO-SFLA

55 × 1314 8.300× 14.446× 131.855×
218 × 4182 10.200× 15.665× 140.019×
500 × 759 6.300× 15.283× 50.598×

(MrBayes). The energy-aware nature of the method is therefore
supported by the comparisons herein presented, thus suggesting
that both performance gains and energy savings can be attained
when solving high-complexity optimization problems through
multi-level, heterogeneous strategies.

In order to further examine the performance of MO-SFLA, we
ntroduce in Table 9 additional comparisons with PhyloMOEA,
n alternative parallel multiobjective method. This multiobjective
pproach adopts MPI processes to distribute, under a master–
orker scheme, the evaluation of new candidate solutions at each
eneration, complementarily using OpenMP threads to parallelize
ikelihood site calculations. Table 9 illustrates the speedups re-
orted by PhyloMOEA in [37] for 16 cores, in comparison to
he results obtained by the CPU-only and multi-level variants of
O-SFLA. This comparative analysis is focused on the datasets
5 × 1314, 218 × 4182, and 500 × 759, which were also em-
loyed in [37].
In these datasets, PhyloMOEA is able to report effective

peedups of 8.3×, 10.2×, and 6.3× over the corresponding serial
ersion. When the same amount of processing resources is con-
idered (16 cores), it can be observed that the CPU-only, multicore
ersion of MO-SFLA achieves better performance from a parallel
erspective, with speedups up to 15.7×. Furthermore, when
ll the heterogeneous resources are employed, the multi-level
mplementation of MO-SFLA significantly boosts the speedup
esults up to 140.0× in these datasets. In practical terms, this
nhanced parallel exploitation leads to execution times below
0 min for the 500x759 dataset, thus improving the 6 h origi-
ally reported by PhyloMOEA in [37]. These results denote the
mportance of the heterogeneous parallel strategies devised at
he algorithm, iteration, and solution layers of MO-SFLA. The
roposed multi-level design allows increased parallel perfor-
ance by taking full advantage of the three key parallelization
222
levels available in metaheuristic optimizers, in comparison to
alternative approaches that partially combine them.

According to this experimental analysis, the proposal therefore
represents a promising approach for orienting the parallel pro-
cessing capabilities of state-of-the-art heterogeneous platforms
towards the efficient solution of hard-to-tackle bioinformatics
problems.

6. Conclusions and future research works

As the complexity of real-world optimization problems keeps
growing with the increasing availability of larger, hard-to-process
data and the definition of more accurate mathematical models,
the development of efficient parallel metaheuristics has become
a fundamental research direction. This research work has inves-
tigated the combination of multi-level parallelism and heteroge-
neous computing to address complex multiobjective optimization
problems, focusing on a challenging bioinformatics problem: phy-
logenetic reconstruction. The proposed method was built upon
the algorithmic design of MO-SFLA, an intrinsically parallel mul-
tiobjective metaheuristic, and exploits parallelism at three differ-
ent layers: (1) algorithm level, (2) iteration level, and (3) solution
level. Different strategies have been defined to accurately map
each parallelism level to the most suitable computing device
on heterogeneous CPU+GPU environments, using MPI, OpenMP,
and CUDA/BEAGLE in accordance with the characteristics of the
computations to be performed at each step. Moreover, two main
heterogeneous schemes have been devised to orchestrate CPU–
GPU interactions, with the aim of examining the performance
attained by different design alternatives.

An in-depth experimental evaluation was carried out to ex-
amine the benefits of the multi-level, heterogeneous proposal
on a range of different problem sizes, represented by five real-
world biological datasets. Two main configuration profiles for
the parallel metaheuristic were identified from the initial para-
metric studies, each one representing the parameter settings
recommended to achieve the desired parallel and multiobjective
performance goals. Using these profiles, the experimental eval-
uation gave account of the significant results attained by the
proposal from a parallel performance perspective, accelerating
the baseline serial algorithm up to 396×.

In comparison to an alternative CPU-only multicore imple-
mentation, effective accelerations up to 14.3× were observed,
with no performance degradation in multiobjective quality. Fur-

thermore, noticeable energy savings on both high-performance

S. Santander-Jiménez, M.A. Vega-Rodríguez and L. Sousa Future Generation Computer Systems 127 (2022) 208–224

t
t
t
d
s
e
i
e
c
a
b
i
A
b
m
p
p
b

C

and commercial GPUs were verified in all the evaluation tests, be-
ing the best case scenario observed in the dataset with the longest
sequence length (energy improvements of 92.0% when using a
Tesla V100 GPU to offload solution-level tasks). Additionally, the
comparison of heterogeneous schemes revealed performance-
memory consumption tradeoffs, depending on the attachment of
CUDA/BEAGLE streams to MPI processes or OpenMP threads. Fi-
nally, the comparisons with state-of-the-art biological tools sug-
gested the satisfying time and energy savings achieved by the
proposal, thus confirming the key role that multi-level parallelism
and heterogeneous systems can play in the solution of grand
computational challenges.

Our future research lines are mainly oriented towards the in-
egration of new high-performance strategies to further optimize
he proposal. In a first step, dataset split strategies will be inves-
igated to address potential memory consumption issues on large
atasets. The adoption of asynchronous, non-generational parallel
chemes also represents a promising approach to minimize the
ffect of overhead sources. Moreover, the increased heterogene-
ty of current hardware architectures provides opportunities to
xtend the proposal to more sophisticated platforms and cluster
onfigurations, combining CPUs, integrated and dedicated GPUs,
nd other hardware co-processors. In this context, efficient load
alancing and orchestration techniques will be devised to max-
mize the exploitation of the underlying hardware resources.
n important question to be addressed lies in the comparison
etween internal power monitoring tools and external measure-
ent devices to analyse energy consumption accurately in the
resence of such heterogeneity. Finally, the evaluation of the
roposal in other optimization problems, fundamentally from the
ioinformatics domain, will be undertaken.

RediT authorship contribution statement

Sergio Santander-Jiménez: Conceptualization, Methodology,
Investigation, Software, Data curation, Validation, Visualization,
Writing – original draft. Miguel A. Vega-Rodríguez: Concep-
tualization, Methodology, Investigation, Resources, Project ad-
ministration, Funding acquisition, Writing – review & editing.
Leonel Sousa: Conceptualization, Methodology, Formal analysis,
Resources, Project administration, Funding acquisition, Writing –
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This work was partially funded by the MCIU (Ministry of
Science, Innovation and Universities, Spain), the AEI (State Re-
search Agency, Spain), and the ERDF (European Regional De-
velopment Fund, EU), under the contract PID2019-107299GB-
I00/AEI/10.13039/501100011033 (Multi-HPC-Bio project), as well
as Portuguese funds through FCT (Fundação para a Ciência e a
Tecnologia, Portugal) projects UIDB/50021/2020 and LISBOA-01-
0145-FEDER-031901 (PTDC/CCI-COM/31901/2017, HiPErBio).

References

[1] C. Coello, S. González, J. Figueroa, M.G. Castillo, R. Hernández, Evolutionary
multiobjective optimization: open research areas and some challenges
lying ahead, Complex Intell. Syst. 6 (2020) 221–236.

[2] G. Schryen, Parallel computational optimization in operations research:
A new integrative framework, literature review and research directions,
European J. Oper. Res. 287 (1) (2020) 1–18.
223
[3] E.G. Talbi, A unified view of parallel multi-objective evolutionary
algorithms, J. Parallel. Distrib. Comput. 133 (2019) 349–358.

[4] S. Limmer, D. Fey, Comparison of common parallel architectures for the
execution of the island model and the global parallelization of evolutionary
algorithms, Concurr. Comp. Pract. E. 29 (9) (2017) e3797, 1–31.

[5] M. Abbasi, M. Rafiee, M.R. Khosravi, A. Jolfaei, V.G. Menon, J.M. Koushyar,
An efficient parallel genetic algorithm solution for vehicle routing problem
in cloud implementation of the intelligent transportation systems, J. Cloud
Comput. 9 (2020) 6, 1–14.

[6] T. Warnow, Computational Phylogenetics: An Introduction To Designing
Methods for Phylogeny Estimation, Cambridge Univ. Press, Cambridge, UK,
2017.

[7] S. Santander-Jiménez, M.A. Vega-Rodríguez, L. Sousa, Multiobjective frog-
leaping optimization for the study of ancestral relationships in protein
data, IEEE Trans. Evol. Comput. 22 (6) (2018) 879–893.

[8] W. Gropp, W. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming
with the Message Passing Interface, third ed., The MIT Press, Cambridge,
MA, USA, 2014.

[9] R. van der Pas, E. Stotzer, C. Terboven, Using OpenMP - the Next Step, The
MIT Press, Cambridge, MA, USA, 2017.

[10] N. Wilt, The CUDa Handbook: A Comprehensive Guide To GPU
Programming, Addison Wesley, Pearson, NJ, USA, 2013.

[11] P. Ribalta, J. Nalepa, L. Sánchez, J. Ranilla, Hyper-parameter selection in
deep neural networks using parallel particle swarm optimization, in: Proc.
of GECCO 2017, ACM, 2017, pp. 1864–1871.

[12] J.J. Moreno, G. Ortega, E. Filatovas, J.A. Martínez, E.M. Garzón, Using low-
power platforms for evolutionary multi-objective optimization algorithms,
J. Supercomput. 73 (2017) 302–315.

[13] R. Gadea-Gironés, R. Colom-Palero, V. Herrero-Bosch, Optimization of deep
neural networks using SoCs with OpenCL, Sensors 18 (5) (2018) 1384,
1–23.

[14] J.A. Gomez-Pulido, et al., Fine-grained parallelization of fitness functions
in bioinformatics optimization problems: gene selection for cancer classi-
fication and biclustering of gene expression data, BMC Bioinformatics 17
(2016) 330, 1–13.

[15] Y. Liu, Q. Liao, J. Sun, M. Hu, L. Liu, L. Zheng, Heterogeneous paral-
lel genetic algorithm based on SW26010 processors, in: Proc. of IEEE
HPCC/SmartCity/DSS 2019, IEEE, 2019, pp. 54–61.

[16] W. Yang, K. Li, K. Li, A pipeline computing method of SpTV for three-order
tensors on CPU and GPU, ACM Trans. Knowl. Discov. Data 13 (6) (2019)
63, 1–27.

[17] C. Chen, K. Li, A. Ouyang, K. Li, FlinkCL: An OpenCL-based in-memory
computing architecture on heterogeneous CPU-GPU clusters for big data,
IEEE Trans. Comput. 67 (12) (2018) 1765–1779.

[18] J. Chen, K. Li, K. Bilal, X. Zhou, K. Li, P.S. Yu, A bi-layered parallel training
architecture for large-scale convolutional neural networks, IEEE Trans.
Parallel Distrib. Syst. 30 (5) (2019) 965–976.

[19] K. Li, J. Liu, L. Wan, S. Yin, K. Li, A cost-optimal parallel algorithm for the
0–1 knapsack problem and its performance on multicore CPU and GPU
implementations, Parallel Comput. 43 (2015) 27–42.

[20] S. Santander-Jiménez, M.A. Vega-Rodríguez, Parallel multiobjective meta-
heuristics for inferring phylogenies on multicore clusters, IEEE Trans.
Parallel Distrib. Syst. 26 (6) (2015) 1678–1692.

[21] T. Artés, A. Cencerrado, A. Cortés, T. Margalef, Time aware genetic
algorithm for forest fire propagation prediction: exploiting multi-core
platforms, Concurr. Comp. Pract. E. 29 (9) (2017) 1–18.

[22] B. Imbernón, J. Prades, D. Giménez, J.M. Cecilia, F. Silla, Enhancing large-
scale docking simulation on heterogeneous systems: An MPI vs rCUDA
study, Future Gener. Comput. Syst. 79 (Part 1) (2018) 26–37.

[23] A. García-Monzó, H. Migallón, A. Jimeno-Morenilla, J.L. Sánchez-Romero,
H. Rico, R.V. Rao, Efficient subpopulation based parallel TLBO optimization
algorithms, Electronics 8 (1) (2019) 19, 1–21.

[24] J. Luo, D.E. Baz, R. Xue, J. Hu, Solving the dynamic energy aware job shop
scheduling problem with the heterogeneous parallel genetic algorithm,
Future Gener. Comput. Syst. 108 (2020) 119–134.

[25] A. Cano, B. Krawczyk, Learning classification rules with differential evo-
lution for high-speed data stream mining on GPUs, in: Proc. of IEEE CEC
2018, IEEE, 2018, pp. 1–8.

[26] J.J. Escobar, J. Ortega, A.F. Díaz, J. González, M. Damas, Multi-objective
feature selection for EEG classification with multi-level parallelism on
heterogeneous CPU-GPU clusters, in: Proc. of GECCO 2018, ACM, 2018,
pp. 1862–1869.

[27] N. Alachiotis, A. Stamatakis, Acceleration of the phylogenetic parsimony
kernel? in: Proc. of FPL 2011, IEEE, 2011, pp. 417–422.

[28] W.S. Martins, T.F. Rangel, D.C.S. Lucas, E.B. Ferreira, E.N. Caceres, Phylo-
genetic distance computation using CUDA, in: BSB 2012, 7409 of LNCS,
Springer Verlag, 2012, pp. 168–178.

[29] T. Majumder, S. Sarkar, P.P. Pande, A. Kalyanaraman, Noc-based hardware
accelerator for breakpoint phylogeny, IEEE Trans. Comput. 61 (6) (2012)
857–869.

http://refhub.elsevier.com/S0167-739X(21)00357-5/sb1
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb1
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb1
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb1
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb1
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb2
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb2
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb2
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb2
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb2
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb3
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb3
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb3
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb4
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb4
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb4
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb4
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb4
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb5
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb5
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb5
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb5
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb5
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb5
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb5
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb6
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb6
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb6
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb6
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb6
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb7
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb7
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb7
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb7
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb7
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb8
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb8
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb8
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb8
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb8
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb9
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb9
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb9
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb10
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb10
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb10
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb11
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb11
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb11
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb11
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb11
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb12
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb12
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb12
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb12
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb12
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb13
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb13
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb13
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb13
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb13
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb14
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb14
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb14
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb14
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb14
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb14
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb14
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb15
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb15
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb15
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb15
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb15
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb16
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb16
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb16
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb16
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb16
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb17
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb17
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb17
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb17
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb17
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb18
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb18
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb18
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb18
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb18
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb19
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb19
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb19
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb19
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb19
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb20
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb20
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb20
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb20
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb20
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb21
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb21
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb21
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb21
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb21
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb22
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb22
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb22
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb22
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb22
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb23
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb23
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb23
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb23
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb23
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb24
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb24
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb24
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb24
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb24
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb25
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb25
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb25
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb25
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb25
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb26
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb26
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb26
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb26
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb26
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb26
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb26
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb27
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb27
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb27
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb28
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb28
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb28
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb28
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb28
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb29
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb29
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb29
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb29
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb29

S. Santander-Jiménez, M.A. Vega-Rodríguez and L. Sousa Future Generation Computer Systems 127 (2022) 208–224
[30] F. Izquierdo-Carrasco, N. Alachiotis, S. Berger, T. Flouri, S.P. Pissis, A.
Stamatakis, A generic vectorization scheme and a GPU kernel for the
phylogenetic likelihood library, in: Proc. of IEEE IPDPS 2013, IEEE, 2013,
pp. 530–538.

[31] C. Ling, J. Gao, G. Lu, Phylogenetic likelihood estimation on GPUs
using vertical partitioning scheme, in: Proc. of the 2016 IEEE
Trustcom/BigDataSE/ISPA, IEEE, 2016, pp. 1210–1217.

[32] D.L. Ayres, et al., BEAGLE 3: Improved performance, scaling, and usability
for a high-performance computing library for statistical phylogenetics, Syst.
Biol. 68 (6) (2019) 1052–1061.

[33] S. Santander-Jiménez, M.A. Vega-Rodríguez, A. Zahinos-Márquez, L. Sousa,
GPU Acceleration of fitch parsimony on protein data: From Kepler to
Turing, J. Supercomput. 76 (2020) 9827–9853.

[34] A. Stamatakis, RAxML Version 8: A tool for phylogenetic analysis
and post-analysis of large phylogenies, Bioinformatics 30 (9) (2014)
1312–1313.

[35] L.T. Nguyen, H.A. Schmidt, A. von Haeseler, B.Q. Minh, IQ-TREE: A fast
and effective stochastic algorithm for estimating maximum likelihood
phylogenies, Mol. Biol. Evol. 32 (1) (2015) 268–274.

[36] F. Ronquist, et al., MrBayes 3.2: Efficient Bayesian phylogenetic inference
and model choice across a large model space, Syst. Biol. 61 (3) (2012)
539–542.

[37] W. Cancino, L. Jourdan, E.G. Talbi, A.C.B. Delbem, Parallel multi-objective
approaches for inferring phylogenies, in: Proc. of EVOBIO’2010, 6023 of
LNCS, Springer, 2010, pp. 26–37.

[38] S. Santander-Jiménez, M.A. Vega-Rodríguez, Applying a multiobjec-
tive metaheuristic inspired by honey bees to phylogenetic inference,
BioSystems 114 (1) (2013) 39–55.

[39] X. Min, et al., Using MOEA with redistribution and consensus branches to
infer phylogenies, Int. J. Mol. Sci. 19 (1) (2018) 62, 1–10.

[40] W. Fitch, Toward defining the course of evolution: Minimum change for a
specific tree topology, Syst. Zool. 20 (4) (1972) 406–416.

[41] J. Felsenstein, Evolutionary trees from DNA sequences: A maximum
likelihood approach, J. Mol. Evol. 17 (6) (1981) 368–376.

[42] S. Santander-Jiménez, M.A. Vega-Rodríguez, L. Sousa, A multiobjective
adaptive approach for the inference of evolutionary relationships in
protein-based scenarios, Inform. Sci. 485 (2019) 281–300.

[43] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi–
objective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002)
182–197.

[44] E. Zitzler, S. Künzli, Indicator-based selection in multiobjective search, in:
Parallel Problem Solving from Nature VIII, 3242 of LNCS, Springer Verlag,
2004, pp. 832–842.

[45] P.O. Lewis, STROM Tutorial: Calculating the likelihood (Chapter 10), 2020,
https://stromtutorial.github.io/linux/steps/, (accessed 12 2021).

[46] B. Hie, E.D. Zhong, B. Berger, B. Bryson, Learning the language of viral
evolution and escape, Science 371 (6526) (2021) 284–288.

[47] A. Zwick, J.C. Regier, C. Mitter, M.P. Cummings, Increased gene sam-
pling yields robust support for higher-level clades within Bombycoidea
(Lepidoptera), Sys. Entomol. 36 (1) (2011) 31–43.

[48] P.O. Lewis, A genetic algorithm for maximum-likelihood phylogeny in-
ference using nucleotide sequence data, Mol. Biol. Evol. 15 (3) (1998)
277–283.

[49] R.W. Meredith, et al., Impacts of the cretaceous terrestrial revolution and
KPg extinction on mammal diversification, Science 334 (6055) (2011)
521–524.

[50] J.R. Cole, et al., The ribosomal database project (RDP-II): sequences and
tools for high-throughput rRNA analysis, Nucleic Acids Res. 33 (suppl_1)
(2005) D294–D296.

[51] M.W. Chase, et al., Phylogenetics of seed plants: An analysis of nucleotide
sequences from the plastid gene rbcl, Ann. the Missouri Botanical Gard.
80 (3) (1993) 528–580.
224
[52] D.J. Sheskin, HandBook of Parametric and Nonparametric Statistical
Procedures, fifth ed., Chapman & Hall/CRC, NY, USA, 2011.

[53] K.N. Khan, M. Hirki, T. Niemi, J.K. Nurminen, Z. Ou, RAPL In action:
Experiences in using RAPL for power measurements, ACM Trans. Model.
Perform. Eval. Comput. Sys. 2018 (2018) 9, 1–26.

[54] NVIDIA Corporation, Nvidia system management interface, 2016, https:
//developer.nvidia.com/nvidia-system-management-interface, (accessed 12
2021).

[55] R. Lu, et al., Genomic characterisation and epidemiology of 2019 novel
coronavirus: implications for virus origins and receptor binding, Lancet
395 (10224) (2020) 565–574.

[56] H. Tegally, et al., Sixteen novel lineages of SARS-CoV-2 in South Africa,
Nature Med. 27 (2021) 440–446.

[57] C.H. Yu, et al., Nucleic acid binding by SAMHD1 contributes to the
antiretroviral activity and is enhanced by the GpsN modification, Nature
Commun. 12 (2021) 31, 1–14.

Sergio Santander-Jiménez received the Ph.D. degree
in Computer Engineering from the University of Ex-
tremadura (UEx), Spain, in 2016. He is currently
an Assistant Professor of computer organization and
design in the Department of Computer and Commu-
nications Technologies, UEx. He has authored or co-
authored more than 60 publications, also co-organizing
multiple international workshops on high-performance
bioinformatics. He has edited 3 journal special issues
and served as a reviewer for over 30 JCR-indexed
journals. His research interests include multiobjective

evolutionary computation, high performance computing, and bioinformatics.

Miguel A. Vega-Rodríguez received the Ph.D. degree
in Computer Engineering from the University of Ex-
tremadura (UEx), Spain, in 2003. He is currently a
Full Professor of computer architecture in the Depart-
ment of Computer and Communications Technologies,
UEx. He has authored or co-authored more than 700
publications including journal papers (more than 150
JCR-indexed journal papers), book chapters, and peer-
reviewed conference proceedings, for which he got
several awards. He has edited more than 20 special
issues of JCR-indexed journals. His research inter-

ests include parallel and distributed computing, evolutionary computation,
bioinformatics, and reconfigurable and embedded computing.

Leonel Sousa received the Ph.D. degree in Electrical
and Computer Engineering from the Instituto Superior
Técnico (IST), Universidade de Lisboa (UL), Portugal,
in 1996. He is currently a Full Professor with UL
and a Senior Researcher with the R&D Instituto de
Engenharia de Sistemas e Computadores (INESC-ID). He
has authored or co-authored more than 250 papers in
journals and international conferences, and has edited
four special issues of international journals. Professor
Sousa is a Distinguished Scientist of the ACM and
the recipient of multiple awards. His research inter-

ests include VLSI architectures, computer architectures and arithmetic, parallel
computing, and signal processing.

http://refhub.elsevier.com/S0167-739X(21)00357-5/sb30
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb30
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb30
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb30
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb30
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb30
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb30
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb31
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb31
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb31
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb31
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb31
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb32
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb32
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb32
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb32
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb32
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb33
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb33
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb33
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb33
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb33
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb34
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb34
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb34
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb34
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb34
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb35
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb35
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb35
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb35
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb35
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb36
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb36
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb36
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb36
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb36
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb37
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb37
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb37
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb37
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb37
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb38
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb38
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb38
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb38
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb38
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb39
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb39
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb39
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb40
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb40
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb40
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb41
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb41
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb41
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb42
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb42
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb42
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb42
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb42
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb43
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb43
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb43
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb43
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb43
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb44
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb44
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb44
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb44
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb44
https://stromtutorial.github.io/linux/steps/
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb46
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb46
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb46
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb47
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb47
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb47
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb47
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb47
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb48
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb48
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb48
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb48
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb48
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb49
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb49
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb49
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb49
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb49
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb50
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb50
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb50
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb50
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb50
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb51
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb51
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb51
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb51
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb51
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb52
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb52
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb52
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb53
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb53
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb53
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb53
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb53
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb55
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb55
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb55
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb55
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb55
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb56
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb56
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb56
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb57
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb57
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb57
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb57
http://refhub.elsevier.com/S0167-739X(21)00357-5/sb57

	Exploiting multi-level parallel metaheuristics and heterogeneous computing to boost phylogenetics
	Introduction
	Related work
	Problem formulation
	Multi-level parallel MO-SFLA for heterogeneous systems
	Baseline algorithm: MO-SFLA
	Application to phylogenetics
	Handling multiobjective information

	Multi-level parallel design
	Algorithm level
	Iteration level
	Solution level

	Heterogeneous alternatives

	Experimental methodology and evaluation
	Configuration of the parallel metaheuristic
	Parallel, multiobjective, and energy results
	Evaluation of heterogeneous design alternatives
	Comparisons with the state of the art

	Conclusions and future research works
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

