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1. Introduction

In 1972 K. Kenmotsu [2] introduced a new class of almost contact Rie-
mannian manifolds which are nowadays called Kenmotsu manifolds. It is well
known that odd dimensional spheres admit Sasakian structures whereas odd
dimensional hyperbolic spaces can not admit Sasakian structure, but have
so-called Kenmotsu structure. Kenmotsu manifolds are normal (non-contact)
almost contact Riemannian manifolds. Kenmotsu [2] investigated fundamen-
tal properties on local structure of such manifolds. Kenmotsu manifolds are
locally isometric to warped product spaces with one dimensional base and
Kähler fiber. As a generalization of both Sasakian and Kenmotsu manifolds,
J. A. Oubiña [3] introduced the notion of trans-Sasakian manifolds, which are
closely related to the locally conformal Kähler manifolds. A trans-Sasakian
manifold of type (0,0), (α, 0) and (0, β) are respectively called the cosympletic,
α-Sasakian and β-Kenmotsu manifold, α, β being scalar functions. In partic-
ular, if α = 0, β = 1; and α = 1, β = 0 then a trans-Sasakian manifold will
be a Kenmotsu and Sasakian manifold respectively. As β is a scalar function,
β-Kenmotsu manifolds provide a large varieties of Kenmotsu manifolds.

The notion of locally φ-symmetric Sasakian manifolds was introduced by
T. Takahashi [5]. In the context of Lorentzian geometry, the notions of weakly
and strongly local φ-symmetry were introduced by Shaikh and Baishya [4]
with several examples. The present paper deals with a study of conformally
flat, weakly locally φ-symmetric and strongly locally φ-symmetric β-Kenmotsu
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manifolds. The class of weakly locally φ-symmetric β-Kenmotsu manifolds
contains the class of strongly locally φ-symmetric β-Kenmotsu manifolds.

The paper is organised as follows. Section 2 is concerned with preliminaries
and Section 3 is devoted to the study of conformally flat β-Kenmotsu mani-
folds. It is proved that a conformally flat β-Kenmotsu manifold is a generalized
η-Einstein manifold. In Section 4, we investigate a necessary and sufficient
condition for a β-Kenmotsu manifold to be of strongly locally φ-symmetric. It
is shown that a strongly locally φ-symmetric 3-dimensional β-Kenmotsu man-
ifold is an Einstein manifold. Section 5 consists of weakly locally φ-symmetric
β-Kenmotsu manifolds and obtained a necessary and sufficient condition for
a β-Kenmotsu manifold to be of weakly locally φ-symmetric and also in the
last section the existence of β-Kenmotsu manifold is ensured by a non-trivial
example.

2. Preliminaries

A (2n+1)-dimensional smooth manifold M is said to be an almost contact
metric manifold [1] if it admits a (1, 1) tensor field φ, a vector field ξ, a 1-form
η and a Riemannian metric g which satisfy

φξ = 0, η(φX) = 0, φ2X = −X + η(X)ξ, (2.1)

g(φX, Y ) = −g(X,φY ), η(X) = g(X, ξ), η(ξ) = 1, (2.2)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2.3)

for all vector fields X, Y on M .
An almost contact metric manifold M2n+1(φ, ξ, η, g) is said to be β-Ken-

motsu manifold if the following condition holds:

∇Xξ = β
(
X − η(X)ξ

)
(2.4)

and

(∇Xφ)(Y ) = β
(
g(φX, Y )ξ − η(Y )φX

)
, (2.5)

where∇ denotes the Riemannian connection of g. If β = 1 then a β-Kenmotsu
manifold is called Kenmotsu manifold and if β is constant then it is called
homothetic Kenmotsu manifold.

In a β-Kenmotsu manifold [2], the following relations hold:
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(∇Xη)(Y ) = β
(
g(X,Y )− η(X)η(Y )

)
, (2.6)

R(X,Y )ξ = −β2
(
η(Y )X − η(X)Y

)
+ (Xβ)

(
Y − η(Y )ξ

)

− (Y β)
(
X − η(X)ξ

)
,

(2.7)

R(ξ, X)Y =
(
β2 + ξβ

)(
η(Y )X − g(X,Y )ξ

)
, (2.8)

η(R(X, Y )Z) = β2
(
η(Y )g(X, Z)− η(X)g(Y, Z)

)

− (Xβ)
(
g(Y, Z)− η(Y )η(Z)

)

+ (Y β)
(
g(X, Z)− η(Z)η(X)

)
,

(2.9)

S(X, ξ) = −(
2nβ2 + ξβ

)
η(X)− (2n− 1)(Xβ), (2.10)

S(ξ, ξ) = −(
2nβ2 + ξβ

)
, (2.11)

for any vector field X, Y , Z on M and R is the Riemannian curvature tensor
and S is the Ricci tensor of type (0, 2).

If the Ricci tensor of an almost contact Riemannian manifold M is of the
form

S = ag + bη ⊗ η (2.12)

for some functions a and b on M , then M is said to be an η-Einstein manifold.
We now state and prove some basic results in a β-Kenmotsu manifold

which will be frequently used later on.

Lemma 2.1. Let M2n+1(φ, ξ, η, g) be a β-Kenmotsu manifold. Then for
X, Y , W the following relation holds:

(∇W R)(X, Y )ξ = −2β(Wβ)
(
η(Y )X − η(X)Y

)

− β3
(
g(Y, W )X − g(X, W )Y

)− βR(X, Y )W
+ β(Xβ)

(− g(Y, W )ξ + η(Y )η(W )ξ
− η(Y )W + η(W )Y

)

− β(Y β)
(− g(X,W )ξ + η(X)η(W )ξ
− η(X)W + η(W )X

)
.

(2.13)

Proof. By virtue of (2.4), (2.6) and (2.7) we can easily get (2.13).
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Lemma 2.2. Let M2n+1(φ, ξ, η, g) be a β-Kenmotsu manifold. Then the
following relation holds:

(∇W R)(X, ξ)Z =
(
2β(Wβ) + W (ξβ)

)(
g(X, Z)ξ − η(Z)X

)

+ β
(
β2 + ξβ

)(
g(X,Z)W − g(W,Z)X

)

− βR(X, W )Z

(2.14)

for any vector field X, Z, W on M .

Proof. The relation (2.14) follows from (2.6) and (2.8).

Lemma 2.3. In a Riemannian manifold, for any vector field X, Y , Z, the
following relation holds:

g
(
(∇W R)(X, Y )Z, U

)
= −g

(
(∇W R)(X,Y )U,Z

)
. (2.15)

Proof. It is easy to prove (2.15) and hence we omit it.

3. Conformally flat β-Kenmotsu manifolds

Let us consider a β-Kenmotsu manifold M2n+1(φ, ξ, η, g) (n > 1), which
is conformally flat. Then we have

R(X, Y )Z =
1

2n− 1
(
S(Y, Z)X − S(X, Z)Y

+ g(Y, Z)QX − g(X, Z)QY
)

− r

2n(2n− 1)
(
g(Y, Z)X − g(X, Z)Y

)
,

(3.1)

where Q is the Ricci operator, i.e., g(QX,Y ) = S(X, Y ) and r is the scalar
curvature of the manifold.

Setting Z = ξ in (3.1) and using (2.7) and (2.10) we obtain

η(Y )QX − η(X)QY =
(
β2 + ξβ +

r

2n

) (
η(Y )X − η(X)Y

)

− (2n− 1)
(
(Xβ)η(Y )− (Y β)η(X)

)
ξ.

(3.2)

Again plugging Y = ξ in (3.2) we obtain by virtue of (2.11) that

QX =
(
β2 + ξβ +

r

2n

)
X

−
(
(2n + 1)β2 − (2n− 3)ξβ +

r

2n

)
η(X)ξ

− (2n− 1)
(
(Xβ)ξ + η(X) gradβ

)
,

(3.3)
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which can be written as

S(X, Y ) =
(
β2 + ξβ +

r

2n

)
g(X, Y )

− (2n− 1)
(
(Xβ)η(Y ) + (Y β)η(X)

)

−
(
(2n + 1)β2 − (2n− 3)ξβ +

r

2n

)
η(X)η(Y ).

(3.4)

Generalizing the notion of η-Einstein manifold we define the notion of gener-
alized η-Einstein manifold as follows:

Definition 3.1. An almost contact Riemannian manifold is said to be a
generalized η-Einstein manifold if its Ricci tensor S of type (0, 2) is of the
form

S = ag + bη ⊗ η + c[η ⊗ ω + ω ⊗ η], (3.5)

where ω is a 1-form defined by ω(X) = g(X, ρ) for all X such that ρ and ξ
are mutually orthogonal to each other.

We now suppose that ω(X) = g(X, ρ) = (Xβ) = g(gradβ, X) for all X.
If ρ and ξ are orthogonal then we have (ξβ) = 0 and hence (3.4) takes the
form (3.5), where

a =
( r

2n
+ β2

)
, b = −

( r

2n
+ (2n + 1)β2

)
and c = −(2n− 1).

This leads to the following:

Theorem 3.1. A conformally flat β-Kenmotsu manifold (M2n+1, g)
(n > 1) is a generalized η-Einstein manifold.

Let us consider a β-Kenmotsu manifold (M2n+1, g) (n > 1) which is Ricci
semi-symmetric, that is, it satisfies the relation R(X, Y )·S = 0, where R(X,Y )
is considered as the derivation of the tensor algebra at each point of the
manifold for tangent vectors X and Y . Therefore we get

S
(
R(X, Y )Z,U

)
+ S

(
Z, R(X,Y )U

)
= 0. (3.6)

Setting X = U = ξ in (3.6) and using (2.8), (2.9), (2.10) and (2.11) we get

S(Y, Z) = −(2nβ2 + ξβ)g(Y, Z)
− (2n− 1)

(
η(Y )(Zβ)− η(Z)(Y β)

)
.

(3.7)
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If ω(X) = g(X, ρ) = (Xβ) = g(grad β, X) for all X then (3.7) yields

S(Y, Z) = −(2nβ2 + ξβ)g(Y, Z)
− (2n− 1)

(
η(Y )ω(Z)− η(Z)ω(Y )

)
.

(3.8)

From (3.8) it follows that a Ricci-semisymmetric β-Kenmotsu manifold is
an Einstein manifold if and only if

η(Y )ω(Z) = η(Z)ω(Y ), (3.9)

that is the vector fields ξ and ρ = gradβ are codirectional. This leads to the
following:

Theorem 3.2. A Ricci-semisymmetric β-Kenmotsu manifold (M2n+1, g)
(n > 1) is an Einstein manifold if and only if the structure vector field ξ and
the scalar potential of the structure function β are co-directional.

We now suppose that a conformally flat β-Kenmotsu manifold (M2n+1, g)
(n > 1) is Ricci semi-symmetric. Then we get the relation (3.6).

Using (3.1) in (3.6) we get

g(Y,Z)S(QX,U)− g(X, Z)S(QY,U)
+ g(Y, U)S(QX, Z)− g(X, U)S(QY, Z)

=
r

2n− 1
(
g(Y, Z)S(X, U)− g(X, Z)S(Y,U) + g(Y, U)S(X, Z)

− g(X,U)S(Y, Z)
)
.

(3.10)

Let λ be the eigenvalue of the endomorphism Q corresponding to an eigen-
vector X. Then QX = λX, i.e., S(X,U) = λg(X, U) and hence

S(QX,U) = λS(X, U). (3.11)

By virtue of (3.11) it follows from (3.10) that
(
λ− r

2n

)(
g(Y,Z)S(X,U)− g(X, Z)S(Y, U)

+ g(Y,U)S(X, Z)− g(X, U)S(Y, Z)
)

= 0,

which yields

g(Y, Z)S(X, U)− g(X, Z)S(Y,U) + g(Y, U)S(X, Z)
− g(X, U)S(Y, Z) = 0,

(3.12)
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provided λ 6= r
2n .

Since a conformally flat β-Kenmotsu manifold (M2n+1, g) (n > 1) is gen-
eralized η-Einstein, therefore using (3.5) in (3.12) we obtain

b
(
g(Y,Z)η(X)η(U)− g(X, Z)η(Y )η(U) + g(Y,U)η(X)η(Z)

− g(X, U)η(Y )η(Z)
)

+ c
(
g(Y,Z)

(
η(X)ω(U) + η(U)ω(X)

)

− g(X,Z)
(
η(Y )ω(U) + η(U)ω(Y )

)

+ g(Y, U)
(
η(X)ω(Z) + η(Z)ω(X)

)

− g(X,U)
(
η(Y )ω(Z) + η(Z)ω(Y )

))
= 0,

(3.13)

provided λ 6= r
2n . Setting Z = ξ and U = ρ we get
( r

2n
+ (2n + 1)β2

) (
η(X)ω(Y )− η(Y )ω(X)

)
= 0. (3.14)

From (3.14) we get either β2 = − r
2n(2n+1) or

η(X)ω(Y ) = η(Y )ω(X),

that is, the vector fields ξ and ρ = gradβ are co-directional. Thus we can
state the following:

Theorem 3.3. Let (M2n+1, g) (n > 1) be a conformally flat β-Kenmotsu
and Ricci-semisymmetric manifold such that r

2n is not an eigenvalue of the
Ricci tensor and r

2n + (2n + 1)β2 6= 0. Then the structure vector field ξ and
the scalar potential of the structure function β are co-directional.

4. Strongly locally φ-symmetric β-Kenmotsu Manifolds

Definition 4.1. A β-Kenmotsu manifold M2n+1(φ, ξ, η, g) is said to be
strongly locally φ-symmetric if the relation

φ2
(
(∇W R)(X, Y )Z

)
= 0 (4.1)

holds for any vector X, Y, Z, W tangent to M .
In particular, if X, Y, Z, W are horizontal vector fields, then it is a weakly

locally φ-symmetric β-Kenmotsu manifold.
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Let us take a β-Kenmotsu manifold M2n+1(φ, ξ, η, g) which is strongly
locally φ-symmetric. Then for all X,Y, Z,W ∈ TpM we have from (4.1)

(∇W R)(X,Y )Z = η
(
(∇W R)(X,Y )Z

)
ξ. (4.2)

Using (2.15) we obtain from (4.2) that

(∇W R)(X, Y )Z = −g
(
(∇W R)(X, Y )ξ, Z

)
ξ. (4.3)

Hence from (2.13) and (4.3) we obtain

(∇W R)(X, Y )Z = β
(
2(Wβ)

(
η(Y )g(X,Z)− η(X)g(Y,Z)

)

+ β2
(
g(Y, W )g(X, Z)− g(X,W )g(Y,Z)

)

− (Xβ)
(
η(Y )η(W )− g(Y,W )

)
η(Z)

+ (Y β)
(
η(X)η(W )− g(X, W )

)
η(Z)

+ g
(
R(X,Y )W,Z

))
ξ

(4.4)

for any vector field X,Y, Z,W tangent to M . Thus in a strongly locally φ-
symmetric β-Kenmotsu manifold the relation (4.4) holds. Conversely if in a
β-Kenmotsu manifold the relation (4.4) holds, then applying φ2 on both sides
of (4.4) and using (2.1) we obtain the relation (4.1) and hence the manifold is
strongly locally φ-symmetric. This leads to the following:

Theorem 4.1. A β-Kenmotsu manifold M2n+1(φ, ξ, η, g) is strongly lo-
cally φ-symmetric if and only if the relation (4.4) holds.

Replacing Z by ξ in (4.2) and then using (2.15), we have

(∇W R)(X,Y )ξ = 0 (4.5)

for any vector field X,Y, Z, W on M . From (4.5) and (2.13) it follows that

R(X, Y )W = −2(Wβ)
(
η(Y )X − η(X)Y

)

− β2
(
g(Y, W )X − g(X,W )Y

)

+ (Xβ)
(
η(Y )η(W )ξ − g(Y, W )ξ − η(Y )W + η(W )Y

)

− (Y β)
(
η(X)η(W )ξ − g(X,W )ξ − η(X)W + η(W )X

)
.

(4.6)
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Taking the inner product on both sides of (4.6) by U we obtain

R̃(X, Y, W,U) = −2(Wβ)
(
η(Y )g(X, U)− η(X)g(Y, U)

)

− β2
(
g(Y, W )g(X,U)− g(X, W )g(Y, U)

)

+ (Xβ)
(
η(Y )η(W )η(U)− g(Y, W )η(U)
− η(Y )g(W,U) + η(W )g(Y, U)

)

− (Y β)
(
η(X)η(W )η(U)− g(X,W )η(U)
− η(X)g(W,U) + η(W )g(X, U)

)
,

(4.7)

where R̃(X, Y,W,U) = g(R(X, Y )W,U) for all vector fields X, Y,W,U on
M . Taking an orthonormal frame field at any point of the manifold and
contracting over X and U in (4.7) we get

S(Y,W ) = −(2nβ2 + ξβ)g(Y, W ) + (ξβ)η(Y )η(W )
− (4n + 1)(Wβ)η(Y )− (2n− 1)(Y β)η(W ).

(4.8)

Substituting Y by ξ in (4.8) and using (2.10) we obtain

(n + 1)(Wβ) = −(n− 1)(ξβ)η(W ) for n > 1. (4.9)

By virtue of (4.9), (4.8) yields

S(Y, W ) = −(2nβ2 + ξβ)g(Y, W ) + (2n− 1)(ξβ)η(Y )η(W )
− (2n− 1)

(
(Wβ)η(Y ) + (Y β)η(W )

)
.

(4.10)

If ω(Y ) = g(Y, ρ) = (Y β) = g(grad β, Y ) for all Y and also ρ and ξ are
orthogonal then we have (ξβ) = 0 and hence (4.10) becomes

S(Y, W ) = −2nβ2g(Y, W )− (2n− 1)
(
η(Y )ω(W ) + η(W )ω(Y )

)
. (4.11)

Thus we can state the following:

Theorem 4.2. A strongly locally φ-symmetric β-Kenmotsu manifold
M2n+1(φ, ξ, η, g) (n > 1) is a special type of generalized η-Einstein manifold.

If β = 1 then (4.8) reduces to

S(Y,W ) = −2ng(Y, W ). (4.12)

This leads to the following:
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Corollary 4.1. A strongly locally φ-symmetric Kenmotsu manifold is
an Einstein manifold.

If n = 1 then (4.9) yields (Wβ) = 0 for all W and hence (4.8) reduces
to (4.12). Thus we can state the following:

Corollary 4.2. A strongly locally φ-symmetric 3-dimensional β-Ken-
motsu manifold is an Einstein manifold.

Taking contraction over Y and W in (4.11) we obtain

r = −2n(2n + 1)β2. (4.13)

This leads to the following:

Theorem 4.3. In a strongly locally φ-symmetric β-Kenmotsu manifold
the scalar curvature r is given by the relation (4.13).

5. Weakly locally φ-symmetric β-Kenmotsu manifolds

Definition 5.1. A β-Kenmotsu manifold M2n+1(φ, ξ, η, g) is said to be
weakly locally φ-symmetric if and only if

φ2
(
(∇W R)(X, Y )Z

)
= 0 (5.1)

holds for any vector X,Y, Z,W orthogonal to ξ, that is for any horizontal
vector field X, Y, Z, W .

We consider a β-Kenmotsu manifold M2n+1(φ, ξ, η, g), which is weakly
locally φ-symmetric. Then using (2.1) in (5.1) we have

(∇W R)(X, Y )Z = η
(
(∇W R)(X, Y )Z

)
ξ (5.2)

for any X,Y, Z,W orthogonal to ξ. In view of (2.15) it follows from (5.2) that

(∇W R)(X, Y )Z = −g
(
(∇W R)(X, Y )ξ, Z

)
ξ. (5.3)

Using (2.13) in (5.3) we obtain the relation

(∇W R)(X, Y )Z = β3
(
g(Y, W )g(X, Z)− g(X, W )g(Y, Z)

)
ξ

+ βg
(
R(X, Y )W,Z

)
ξ

(5.4)

for any horizontal vector field X, Y, Z, W orthogonal to ξ.
Also if in a β-Kenmotsu manifold M2n+1(φ, ξ, η, g) the relation (5.4) holds,

then applying φ2 on both sides of (5.4) and using (2.1) we obtain the rela-
tion (5.1). Thus we can state the following:
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Theorem 5.1. A β-Kenmotsu manifold M2n+1(φ, ξ, η, g) is weakly locally
φ-symmetric if and only if the relation (5.4) holds.

We now suppose that a β-Kenmotsu manifold satisfies the relation

φ2
(
(∇W R)(X, Y )ξ

)
= 0 (5.5)

for any horizontal vector fields X, Y , W .
Using (2.1) in (5.5) we obtain

(∇W R)(X, Y )ξ = η
(
(∇W R)(X,Y )ξ

)
ξ. (5.6)

In view of (2.15), (5.6) yields

(∇W R)(X,Y )ξ = 0 (5.7)

for any horizontal vector field X,Y,W . Also for any X,Y, Z,W orthogonal to
ξ, the relation (2.13) reduces to

(∇W R)(X,Y )ξ = −β3
(
g(Y,W )X − g(X,W )Y

)− βR(X, Y )W
− β(Xβ)g(Y, W )ξ + β(Y β)g(X,W )ξ.

(5.8)

From (5.7) and (5.8), it follows that

R(X,Y )W = −β2
(
g(Y, W )X − g(X,W )Y

)

− (Xβ)g(Y, W )ξ + (Y β)g(X,W )ξ
(5.9)

for any horizontal vector field X, Y,W .
Taking the inner product on both sides of (5.9) by U we obtain

R̃(X,Y, W,U) = −β2
(
g(Y, W )g(X, U)− g(X,W )g(Y, U)

)

− (Xβ)g(Y, W )η(U) + (Y β)g(X,W )η(U).
(5.10)

Also since X, Y,W,U are orthogonal to ξ, therefore (5.10) yields

R̃(X,Y, W,U) = −β2{g(Y, W )g(X,U)− g(X, W )g(Y, U)} (5.11)

for any horizontal vector field X, Y, W,U . In view of Schur’s theorem it can
be shown that β is a constant. Thus we can state the following:

Theorem 5.2. If a weakly locally φ-symmetric β-Kenmotsu manifold sat-
isfies the relation (5.5) then the manifold is of constant curvature −β2.
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Corollary 5.1. The weakly locally φ-symmetric Kenmotsu manifold sat-
isfying the relation (5.5) is a manifold of constant curvature −1.

We now consider a weakly locally φ-symmetric β-Kenmotsu manifold.
Then the relation (5.4) holds for any horizontal vector field X, Y, Z, W .

Let X, Y, Z, W be arbitrary vector fields on TpM . We now compute

(∇φ2W R)(φ2X, φ2Y )φ2Z

in two different ways. Firstly from (5.4) it follows by virtue of (2.1) and (2.2)
that

(∇φ2W R)(φ2X,φ2Y )φ2Z = β3
(
g(Y,W )g(X, Z)− g(X,W )g(Y,Z)
− g(Y,W )η(X)η(Z)
− g(X, Z)η(Y )η(W )
+ g(X, W )η(Y )η(Z)
+ g(Y,Z)η(X)η(W )

)
ξ

+ βg
(
R(φ2X,φ2Y )φ2W,φ2Z

)
ξ.

(5.12)

From (2.1), (2.2), (2.7) and (2.8) it follows that

R(φ2X, φ2Y )φ2W = −R(X,Y )W

+ η(W )
(
− β2

(
η(Y )X − η(X)Y

)

+ (Xβ)
(
Y − η(Y )ξ

)

− (Y β)
(
X − η(X)ξ

))

+ (β2 + ξβ)
(
η(Y )g(X, W )− η(X)g(Y, W )

)
ξ.

(5.13)

By virtue of (5.13) we obtain from (5.12) that

(∇φ2W R)(φ2X, φ2Y )φ2Z = β
(
R̃(X, Y, Z, W )− η(Z)R̃(X, Y, W, ξ)

+
(
β2g(Y, W ) + η(W )(Y β)

)
(
g(X,Z)− η(X)η(Z)

)

− (
β2g(X,W ) + η(W )(Xβ)

)
(
g(Y, Z)− η(Y )η(Z)

))
ξ.

(5.14)

Again from (2.1) and (2.2) it follows that

g(φ2X, ξ) = g(φ2Y, ξ) = g(φ2Z, ξ) = 0
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and hence φ2X, φ2Y, φ2Z are horizontal vector fields on M . Then by virtue
of (2.1) and (2.2) we have

(∇φ2W R)(φ2X,φ2Y )φ2Z = −(∇W R)(φ2X, φ2Y )φ2Z

+ η(W )(∇ξR)(φ2X,φ2Y )φ2Z.
(5.15)

Also from (5.4) it follows that for any horizontal vector field X, Y, Z, we have

(∇ξR)(X, Y )Z = β3{η(Y )g(X, Z)− η(X)g(Y, Z)},
which implies that

(∇ξR)(φ2X,φ2Y )φ2Z = 0. (5.16)

Using (5.16) in (5.15) we obtain

(∇φ2W R)(φ2X, φ2Y )φ2Z = −(∇W R)(φ2X, φ2Y )φ2Z. (5.17)

In view of (2.1) and (2.2) we have

(∇W R)(φ2X,φ2Y )φ2Z = −(∇W R)(X, Y )Z + η(Z)(∇W R)(X,Y )ξ
+ η(Y )(∇W R)(X, ξ)Z
− η(Y )η(Z)(∇W R)(X, ξ)ξ
+ η(X)(∇W R)(ξ, Y )Z
− η(X)η(Z)(∇W R)(ξ, Y )ξ.

(5.18)

By virtue of (2.13) and (2.14) it follows from (5.18) that

(∇W R)(φ2X, φ2Y )φ2Z

= −(∇W R)(X,Y )Z
− β

(
η(Z)R(X,Y )W + η(Y )R(X, W )Z − η(X)R(Y, W )Z

)

+
(
2β(Wβ) + W (ξβ)

)(
η(Y )g(X, Z)− η(X)g(Y, Z)

)
ξ

− 3β(Wβ)η(Z)
(
η(Y )X − η(X)Y

)

− β(β2 + ξβ)
(
η(X)

(
g(Y, Z)W − g(W,Z)Y

)

+ η(Y )
(
g(W,Z)X − g(X,Z)W

)

+ η(Z)η(W )
(
η(X)Y − η(Y )X

))

− βη(Z)
(
β2

(
g(Y, W )X − g(X,W )Y

+ η(W )η(Y )X − η(W )η(X)Y
)

− (Xβ)
(
η(W )Y − g(Y, W )ξ

)

+ (Y β)
(
η(W )X − g(X,W )ξ

))
.

(5.19)
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From (5.17) and (5.19) we have

(∇φ2W R)(φ2X, φ2Y )φ2Z

= (∇W R)(X, Y )Z
+ β

(
η(Z)R(X, Y )W + η(Y )R(X,W )Z − η(X)R(Y, W )Z

)

− (
2β(Wβ) + W (ξβ)

)(
η(Y )g(X,Z)− η(X)g(Y,Z)

)
ξ

+ 3β(Wβ)η(Z)
(
η(Y )X − η(X)Y

)

+ β(β2 + ξβ)
(
η(X)

(
g(Y, Z)W − g(W,Z)Y

)

+ η(Y )
(
g(W,Z)X − g(X,Z)W

)

+ η(Z)η(W )
(
η(X)Y − η(Y )X

))

+ βη(Z)
(
β2

(
g(Y,W )X − g(X,W )Y + η(W )η(Y )X

− η(W )η(X)Y
)− (Xβ)

(
η(W )Y − g(Y, W )ξ

)

+ (Y β)
(
η(W )X − g(X,W )ξ

))
.

(5.20)

Comparing (5.14) and (5.20) we obtain

(∇W R)(X, Y )Z
=

(
2β(Wβ) + W (ξβ)

)(
η(Y )g(X, Z)− η(X)g(Y, Z)

)
ξ

− 3β(Wβ)η(Z)
(
η(Y )X − η(X)Y

)

+ β
(
R̃(X, Y, Z, W )− η(Z)R̃(X, Y, W, ξ)

+
(
β2g(Y, W ) + η(W )(Y β)

)(
g(X,Z)− η(X)η(Z)

)

− (
β2g(X,W ) + η(W )(Xβ)

)(
g(Y,Z)− η(Y )η(Z)

))
ξ

− β
(
η(Z)R(X, Y )W + η(Y )R(X,W )Z − η(X)R(Y, W )Z

)

− β(β2 + ξβ)
(
η(X)

(
g(Y, Z)W − g(W,Z)Y

)

+ η(Y )
(
g(W,Z)X − g(X, Z)W

)

+ η(Z)η(W )
(
η(X)Y − η(Y )X

))

− βη(Z)
(
β2

(
g(Y, W )X− g(X,W )Y+ η(W )η(Y )X− η(W )η(X)Y

)

− (Xβ)
(
η(W )Y − g(Y, W )ξ

)

+ (Y β)
(
η(W )X − g(X, W )ξ

))
.

(5.21)
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Thus in a weakly locally φ-symmetric β-Kenmotsu manifold, the relation (5.21)
holds for any X, Y, Z, W ∈ TpM .

Next, if the relation (5.21) holds in a β-Kenmotsu manifold, then for any
horizontal vector field X,Y, Z,W we obtain the relation (5.4) and hence the
manifold is weakly locally φ-symmetric. Thus we can state the following:

Theorem 5.3. A β-Kenmotsu manifold M2n+1(φ, ξ, η, g) is weakly lo-
cally φ-symmetric if and only if the relation (5.21) holds for any vector fields
X, Y, Z, W tangent to M .

Taking the inner product on both sides of (5.4) by an arbitrary vector field
U tangent to M , we obtain

g
(
(∇W R)(X,Y )Z,U

)
= β3

(
g(Y, W )g(X, Z)− g(X, W )g(Y, Z)

)
η(U)

+ βg
(
R(X,Y )W,Z

)
η(U).

(5.22)

In a Riemannian manifold it is known that

(divR)(X,Y )Z = (∇XS)(Y,Z)− (∇Y S)(X,Z) (5.23)

for any vector field X, Y , Z on M , where “div” denotes the divergence.
Taking an orthonormal frame field at any point of the manifold and con-

tracting (5.22) over U and W we get by virtue of (5.23) that

(∇XS)(Y, Z)− (∇Y S)(X, Z) = 0 (5.24)

for any X,Y, Z orthogonal to ξ.
Again contracting (5.24) over Y and Z we obtain dr(X) = 0 for any X

orthogonal to ξ. This leads to the following:

Theorem 5.4. In a weakly locally φ-symmetric β-Kenmotsu manifold
M2n+1(φ, ξ, η, g), the scalar curvature is constant along the orthogonal di-
rection of the vector field ξ.

6. Example of β-Kenmotsu manifold

Example 6.1. We consider a 3-dimensional manifold M = {(x, y, z) ∈
R3 : z 6= 0}, where (x, y, z) are the standard coordinates in R3. Let {E1, E2, E3}
be a linearly independent global frame on M given by
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E1 = z2 ∂

∂x
, E2 = z2 ∂

∂y
, E3 =

∂

∂z
.

Let g be the Riemannian metric defined by

g(E1, E3) = g(E2, E3) = g(E1, E2) = 0,

g(E1, E1) = g(E2, E2) = g(E3, E3) = 1.

Let η be the 1-form defined by η(U) = g(U,E3) for any U ∈ χ(M). Let φ be
the (1, 1) tensor field defined by φE1 = −E2, φE2 = E1 and φE3 = 0. Then
using the linearity of φ and g we have η(E3) = 1, φ2U = −U + η(U)E3 and
g(φU, φW ) = g(U,W ) − η(U)η(W ) for any U,W ∈ χ(M). Thus for E3 = ξ,
(φ, ξ, η, g) defines an almost contact metric structure on M .

Let ∇ be the Riemannian connection of g. Then we have

[E1, E2] = 0, [E1, E3] = −2
z
E1, [E2, E3] = −2

z
E2.

Using Koszul formula for the Riemannian metric g, we can easily calculate

∇E1E1 =
2
z
E3, ∇E1E2 = 0, ∇E1E3 = −2

z
E1,

∇E2E1 = 0, ∇E2E2 =
2
z
E3, ∇E2E3 = −2

z
E2,

∇E3E1 = 0, ∇E3E2 = 0, ∇E3E3 = 0.

From the above it can be easily seen that (φ, ξ, η, g) is a β-Kenmotsu structure
on M . Consequently M3(φ, ξ, η, g) is a β-Kenmotsu manifold with β = −2

z .
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