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a b s t r a c t

Deciphering the signals that are attached to the transition from normal to disease stage is crucial in
preventive medicine to understand the progression of complex diseases. Between normal and disease
stages there exists the pre-disease stage, in which the disease is yet reversible towards the normal
stage. Traditionally, molecular biomarkers have been used to identify the pre-disease stage. However,
they have limitations because they have an individual and static nature. In complex diseases, the
dynamics and interplays of certain genes have to be taken into account in order to identify the pre-
disease stage. Therefore, in complex diseases, it is necessary to use dynamical network biomarkers
(DNBs). The development of time-course omics data has been crucial to the use of DNBs as biomarker.
In this article, a new two-step method is proposed for the identification of DNBs as pre-disease stage
signal. In the first step, the relevant genes in the dataset are pre-filtered using a differential gene
expression analysis. In the second step, the DNBs are identified, from a multi-objective optimization
viewpoint, by using an Artificial Bee Colony based on Dominance (ABCD) algorithm. Specifically,
identified DNBs optimize three objectives: they are the smallest gene network that shows the strongest
signal in the earliest time-point of the disease progression and best correlates with the disease
phenotype. The proposed method has been evaluated with five time-course microarray datasets and
the results have been compared with five methods from other authors, surpassing their results. The
effectiveness of the proposed method has been also proved with a leave-one-out cross-validation and a
Gene Ontology term enrichment. In fact, the proposed method obtains values around 90% for accuracy,
precision, recall, and F1 scores.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The identification of biomarkers that allows the study of dis-
ase stages (normal, pre-disease, and disease state) is crucial in
he tracking of the complex diseases progression. Generally, the
re-disease stage of a disease is reversible to the normal stage,
ut in complex diseases this is difficult to detect [1]. Complex dis-
ases as cancer, diabetes, lung injury, influenza, and Alzheimer’s
isease among others, are diseases caused by both genetic and
nvironmental factors. Because of that, the progression of com-
lex diseases is difficult to study [2].
Traditionally, disease biomarkers have been identified as in-

ividual molecules in different samples (control, disease) or con-
itions [3]. However, the static analysis of isolated molecules is
ot a proper way to identify biomarkers of a complex disease [4].
n complex diseases, not individual but dynamic changes among
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molecules occur. Therefore, interaction networks of molecules
have been used for the study of complex diseases progression [5].

In the recent last years, due to the development of high-
throughput technologies, high amounts of omics data are avail-
able as a powerful tool for the study of complex diseases pro-
gression [6]. The use of time-course omics data allows to con-
struct interaction networks of biomarkers that change through
the time, named dynamical network biomarkers (DNBs). DNBs
can be used to identify the pre-disease stage of a complex disease
and, therefore, try to discover the mechanisms of the disease
progression in order to avoid the disease stage [7]. Taking into ac-
count that high-throughput data is usually noisy and contains few
samples, the development of an efficient computational method
is crucial for the identification of DNBs [8]. In the last years,
different approaches have been proposed to manage the large-
scale, high-dimensional, and dynamic properties of the biological
data, like metaheuristics and evolutionary computation. More
specifically, the metaheuristic and evolutionary algorithms have
demonstrated their ability to solve a wide variety of bioinformatic
problems such as the ones mentioned in [9,10], but very few have
faced the DNB identification problem.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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In this article, the identification of DNBs is carried out as
a multi-objective optimization problem. More specifically, the
identification of the DNB that best reflects the pre-disease stage is
treated as a three-objective optimization problem: a DNB has to
be the smallest group of molecules that most correlates with the
disease phenotype and best reflects the limit of the normal stage
before the disease stage, that is, the pre-disease stage. The multi-
objective optimization is carried out with an Artificial Bee Colony
based on Dominance (ABCD) algorithm, an adaptation of the Ar-
tificial Bee Colony (ABC) algorithm. Before the optimization step,
a pre-filtering step, only selecting the differentially expressed
genes (DEGs) of the data, is developed to keep the genes that
offer biological insight into the disease progression. In order to
validate both statistically and biologically the proposed method, a
leave-one-out cross-validation (LOOCV), a comparison with other
different DNB identification methods, and a Gene Ontology en-
richment of the identified DNBs are performed. Therefore, the
novelty and main contributions of this work can be explained as
follows:

• A newmethod for the identification of DNBs and pre-disease
stage in complex diseases has been developed.
• This new method uses a Differential Gene Expression anal-

ysis for data pre-filtering in a first step and an ABCD algo-
rithm for multi-objective optimization in a second step.
• Three objectives are optimized: size of the DNB, correlation

with the disease phenotype, and earliest time-point with the
strongest signal of the disease progression.
• Five time-course gene expression datasets of four complex

diseases in different organisms have been used for the eval-
uation of the proposed method.
• The proposed method has been compared with five methods

proposed by other authors in the scientific literature for
the identification of DNBs and pre-disease stage in different
complex diseases.
• The results of the proposed method have been validated

statistically with a leave-one-out cross-validation and bio-
logically with a Gene Ontology term enrichment analysis.

The rest of the article is organized as follows. A review of
the scientific literature about DNBs identification is gathered in
Section 2. Section 3 gives the definition and formulation about
the problem we face in this article. Pre-filtering and optimization
steps of the proposed method are described in Section 4. Section 5
collects the datasets used, the experimental settings, the results
obtained, the comparisons with other methods proposed in the
scientific literature, and the biological relevance and reliability of
the results. Finally, Section 6 presents the conclusions and future
work.

2. Scientific literature review

The use of dynamical network biomarkers (DNBs) for the
identification of the pre-disease stage in complex diseases is
recent (since 2012 [7]). In the last years, a number of differ-
ent approaches for DNB identification have been developed and
reported in the scientific literature to be applied to different
diseases. The complexity of this problem makes metaheuristic
methods a very suitable tool for its study [9,10]. Although meta-
heuristics field is very active (some recent surveys are [11–15]),
very few efficient computational methods have been developed
to solve the DNB identification problem [16] since its appearance
in 2012 [7]. In this section, different methods proposed in the
scientific literature in the recent years that maximize the network
score (i.e. composite index) for searching an appropriate DNB in

different complex diseases are reviewed.

2

In order to understand the dynamical organizations of molec-
ules in complex diseases, several methods have been developed.
One example is the use of an edge network, performed by X. Yu
et al. in [17]. In contrast to conventional networks, in an edge
network a node is a pair of molecules and an edge connects two
pairs of molecules. This new concept was applied along with the
use of second-order statistical information of a gene expression
profile of subjects infected with influenza H3N2/Wisconsin. The
combination allowed the identification of edge-biomarkers in or-
der to study the prognosis of the influenza infection and to detect
biomarkers of the disease. The edge-biomarkers formed a DNB
and the time in which a determined DNB achieved the highest
network score was the pre-disease stage. The prediction accuracy
of a DNB was evaluated with a leave-one-out cross-validation
(LOOCV).

In [18], T. Zeng et al. performed a framework named Progres-
sive Module Network (PMN) with data of gene expression of type
1 diabetes mellitus in mice to identify the DNB that represented
the pre-disease stage. They constructed tissue-specific and time-
specific networks taking into account the biological interactions
among molecules. Then, they used the PMN in order to detect the
pre-disease biomarkers as the network that achieved the highest
network score.

Y. Li et al. in [19], using the knowledge of protein–protein
interactions (PPIs), constructed dynamical networks of PPI to
identify DNBs. They used gene expression data of H3N2 and H1N1
influenza, acute lung injury, and type 2 diabetes mellitus for the
identification of network modules with ClusterONE algorithm. As
in previous methods, the DNB that effectively represented the
pre-disease stage was the one that got the largest network score.

The use of multi-objective optimization in DNB identification
did not appear until F. Vafaee applied it in [16], where NSGA-II
algorithm [20] was used. The DNB identification for acute lung
injury was treated in her method as a bi-objective optimization
problem: maximizing the network score and minimizing the time
in which the pre-disease stage occurred. Finally, she showed that
the selected DNB was accurate by means of a three-stage analysis
of the DNB. First, the DNB core was extended with PPIs. Then,
that extension was analyzed in order to show that the extension
could be target genes that regulated the genes of the DNB. Finally,
she performed a gene ontology term enrichment analysis of the
extended DNB.

One of the most recent methods in DNB identification is the
one developed by A. D. Torshizi and L. Petzold in [21]. They
developed two algorithms with time-course gene expression data
of acute lung injury: the simulated annealing-based search al-
gorithm and the pathway-induced dynamic biomarker discovery
algorithm. In the first one, the DNB was identified by finding
the highest network score in each step of time. In the second
algorithm, the information of the biological pathways of the data
was included, therefore, the DNB was biologically suitable and
got the highest network score. In order to check if the DNB had
biological relevance, they correlated the DNB and the phenotype
of interest and carried out a gene ontology term enrichment
analysis of the DNB.

3. DNB identification problem

The goal of the DNB identification from time-course high-
throughput data is to determine the limit between the normal
and disease stage in a disease development, named pre-disease
stage. Consider a dataset D with the concentrations of a set of
molecules over K samples (different subjects, with and without
the disease, that is, case and control samples) at different time-
points. The concentration of i molecule at t time-point is mt

i ,
hich can be seen as a vector with K elements (since we have
samples): mt

=
⟨
mt ,mt , . . . ,mt

⟩

i i,1 i,2 i,K .
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In [7], L. Chen et al. showed that a DNB is a group of molecules
(DNB ⊆ D), which has to meet three properties at t time-point
to reflect the pre-disease stage, that is, the critical transition
between the normal and disease stage. First, the concentrations
of these molecules have to drastically vary between the different
samples (case and control samples), that is, they have a high
standard deviation. Second, the concentrations of the molecules
in the group are greatly correlated, that is, they have a high intra-
cluster correlation coefficient. And third, the concentrations of
these molecules are not greatly correlated with other molecules
out of the group, that is, they have a low inter-cluster correla-
tion coefficient. These three properties can be formulated as in
Eqs. (1), (2), and (3):

1. Standard deviation of the DNB at t time-point, SDt
DNB. In

the pre-disease stage, the DNB shows an increase in its
standard deviation:

SDt
DNB =

1
| DNB |

∑
mt

i ∈DNB

σmt
i
, (1)

where | DNB | is the number of molecules in the DNB and
σmt

i
is the standard deviation of the different samples of the

i molecule at t time-point.
2. Intra-cluster correlation of the DNB at t time-point,

PCintratDNB. The DNB presents an increase in the intra-
cluster correlation coefficient in the pre-disease stage:

PCintratDNB =
1

| DNB | ×(| DNB | −1)

∑
mt

i ,m
t
j ∈DNB

ρmt
i ,m

t
j
, (2)

where ρmt
i ,m

t
j
is the Pearson correlation coefficient between

two molecules (i and j) at t time-point.
3. Inter-cluster correlation of the DNB, at t time-point, with

the rest of molecules that do not form the DNB, PCinter tDNB.
The DNB shows a decrease in the inter-cluster correlation
coefficient in the pre-disease stage:

PCinter tDNB =
1

| DNB | ×(| D | − | DNB |)

∑
mt

i ∈DNB,m
t
j ̸∈DNB

ρmt
i ,m

t
j
,

(3)

where | D | is the number of molecules in the entire dataset
D and ρmt

i ,m
t
j
is the Pearson correlation coefficient between

two molecules (i and j) at t time-point.

As can be seen in Eq. (4), these three properties can be com-
bined into a network score, named composite index (CI), being
CI tDNB the CI of the DNB at t time-point:

CI tDNB =
SDt

DNB × PCintratDNB
PCinter tDNB

, (4)

where t is the time-point when the DNB is identified.
The identification of DNBs from time-course high-throughput

data as an early and strong signal of a disease development can
be treated as a multi-objective optimization problem. In the DNB
identification problem, a DNB has to be the smallest group of
molecules that best reflects the pre-disease stage and best corre-
lates with the phenotype of interest. Therefore, three objectives
have to be optimized, as can be noted in Eq. (5).

F (DNB) = [F1(DNB), F2(DNB), F3(DNB)], (5)

where F is the optimization function and DNB is the solution, in
this case, the group of molecules that form the DNB. F consists in

three objective functions: F1, F2, and F3.

3

The first objective tries to maximize the signal difference
between the normal and disease stage, that is, it tries to find the
time-point that best reflects the pre-disease stage. As said, the
signal is quantified by the composite index, CI , for each time-
point of the disease development (see Eq. (4)). Therefore, the
first objective tries to maximize the difference of the composite
index of a DNB (difCI tDNB) between a t time-point and the previous
time-point (t − 1), as can be observed in Eq. (6).

F1(DNB) = difCI tDNB = CI tDNB − CI t−1DNB. (6)

The second objective tries to maximize the correlation coeffi-
cient at t time-point, CC t

DNB, between the expression of the DNB
and the phenotype of interest. Therefore, the second objective
corresponds to maximizing the intra-cluster correlation of the
DNB, as Eq. (7) represents.

F2(DNB) = CC t
DNB = PCintratDNB

=
1

| DNB | ×(| DNB | −1)

∑
mt

i ,m
t
j ∈DNB

ρmt
i ,m

t
j
, (7)

where ρmt
i ,m

t
j
is the Pearson correlation coefficient between two

molecules (i and j) at t time-point.
Finally, the third objective tries to minimize the size of the

group of molecules that form the DNB, |DNB|. In order to make
the F (DNB) optimization function easier, this third objective is
urned into a function to maximize, as the first and second objec-
ives. Eq. (8) shows the third objective of the DNB identification
roblem.

3(DNB) =
1
|DNB|

. (8)

4. Proposed method for DNB identification

The proposed method consists in two steps. First, due to the
high dimensionality of the time-course high-throughput data,
the data is pre-filtered. Second, the identification of DNBs is
performed as a multi-objective optimization using the Artificial
Bee Colony based on Dominance (ABCD) algorithm.

4.1. Data pre-filtering

Data pre-filtering step goal is to remove the data that is not
relevant in the problem, in this case, DNB identification. As can
be seen in Fig. 1, the dimensionality of the data is reduced first,
and then, the information that is not relevant is removed.

First, taking into account that a wide number of probe sets do
not have a HUGO (Human Genome Organization [22]) gene sym-
bol associated, those probe sets are removed from the dataset.

The second pre-filtering step is to save the unique genes for
the following pre-filtering steps. That is, datasets usually contain
multiple probes of the same gene, so they are averaged in order
to keep a unique probe per gene in the dataset. Also, the number
of samples has to be equal in the different conditions (time-
points, in this case). Therefore, the least number of samples in
a time-point is taken as reference value and when a time-point
has a number of samples that exceeds this reference value, those
samples are averaged.

The next pre-filtering step is to perform a differential ex-
pression analysis with the unique genes in order to identify
the Differentially Expressed Genes (DEGs). DEGs are those genes
whose expression levels change between two conditions in a
statistically significant manner. In the DNB identification prob-
lem, the conditions that are compared to filter DEGs are each
time-point. More specifically, a fold-change filtering is applied

to select the genes that their expression is double or half in
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Fig. 1. Data pre-filtering procedure.
i

l
i
(
m

he case samples compared to control samples. Therefore, unique
enes whose p-value corrected with false discovery rate (FDR)

estimation is higher than 0.01 or the fold-change is lower than
2 are filtered out, that is, those genes are not considered as DEGs.

The last pre-filtering step is the normalization of the case
amples with the corresponding control samples to make a fair
omparison of expression levels among all the time-points. For
ach time-point, the expression of each gene is subtracted from
ts mean expression and then divided by its standard deviation.

.2. Artificial Bee Colony based on Dominance (ABCD) algorithm

The Artificial Bee Colony (ABC) algorithm was developed by D.
araboga and B. Basturk in [23]. ABC algorithm is a metaheuristic
ethod for function optimization that is motivated by the intel-

igent behavior of honey bees. ABC purpose is to find the best
olutions in a way that is similar to the way that bees find their
est food sources. In a hive, three types of bees exist and each
ype has a task: employed bees are the bees related to the known
ood sources or solutions in the ABC algorithm, onlooker bees
eceive information from the employed bees and choose the best
ood sources/solutions, and scout bees search randomly new food
ources/solutions.
In this article, an adaptation of ABC algorithm, the Artificial

ee Colony based on Dominance (ABCD) algorithm, has been
esigned and implemented for DNB identification problem. Its
hoice has been motivated due to ABC has been used in many
roblems since its development, achieving very good results [24].
lso, the use of ABC is simple due to its reduced number of
arameters, so it can be easily adapted to many contexts [25]. The
BCD algorithm is a multi-objective optimization algorithm that
ses Pareto dominance between solutions, taking into account
hat the non-dominated solutions are the best solutions. More
pecifically, in the DNB identification problem, a solution is a
ariable-length list of genes (that is, each element of the list is a
ene) that is considered as a potential DNB (see Section 3). ABCD
seudocode can be seen in Algorithm 1 and its flowchart in Fig. 2.
4

Algorithm 1: Pseudocode of ABCD algorithm.
Input : GeneExpr (pre-filtered gene expression dataset), MaxDNBsize

(maximum number of genes that can form the DNB),
MinDNBsize (minimum number of genes that can form the DNB),
MaxIterations (maximum number of iterations), DNBColony
(colony size, number of DNBs), Tmax (limit for the scout bees)

Output: ParetoSols (different non-dominated solutions)
1 HalfColony← DNBColony/2
2 solutions← InitialSols(GeneExpr , HalfColony, MaxDNBsize, MinDNBsize)
3 ParetoSols← ∅
4 for iteration← 1 to MaxIterations do
5 EmployedBees(solutions, GeneExpr , HalfColony, MaxDNBsize,

MinDNBsize)
6 RankCrowding(solutions)
7 CalculateProbs(solutions, HalfColony)
8 OnlookerBees(solutions, GeneExpr , HalfColony+ 1, DNBColony,

MaxDNBsize, MinDNBsize)
9 ScoutBees(solutions, GeneExpr , DNBColony, MaxDNBsize, MinDNBsize,

Tmax)
10 RankCrowdingSort(solutions)
11 ParetoSols← UpdateParetoSols(solutions, DNBColony)
12 solutions← HalfBestSols(solutions, DNBColony)

13 return ParetoSols

The first step of ABCD algorithm is the initialization of the
solutions. In ABCD, the half of the total colony (DNBColony) of
solutions (HalfColony, Line 1) is associated with employed bees,
and therefore, they are initialized in this step (Line 2). Each
solution is randomly initialized with a different number of genes
between the maximum and minimum values (MaxDNBsize and
MinDNBsize, respectively). The different genes are randomly cho-
sen from the dataset that is already pre-filtered (GeneExpr). Be-
sides, the non-dominated solutions will be stored in ParetoSols,
nitialized as empty (Line 3).

The next step of ABCD algorithm is the search of the best so-
utions after their initialization. The search consists in a loop that
s repeated until MaxIterations number of iterations is reached
Line 4). The best solutions are searched in each iteration by the
anagement of employed bees, onlooker bees, and scout bees.
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Employed bees of ABCD algorithm (Line 5) are the first
alfColony solutions in the entire colony, that is, the HalfColony
umber of solutions randomly initialized in the initialization step.
ach employed bee makes a search of a new solution using the
utation operator over the original solution (see Section 4.2.1).
hen, using a strict dominance, the solution that dominates over
he other is kept. That is, if the mutated solution dominates over
he original solution, this is replaced by the mutated solution,
therwise, the original solution is kept.
The employed bees that are related to the best solutions have

higher probability to be selected by the onlooker bees. In order
o know which employed bees are the best ones, the rank and
rowding operators described in [20] are used (Line 6). Therefore,
 l

5

the solutions of the employed bees have a non-domination rank
score and a crowding distance score.

Onlooker bees of ABCD algorithm are the second HalfColony
solutions in the entire colony, that is, the HalfColony+1 to
NBColony number of solutions. Each onlooker bee chooses an
mployed bee as its current solution. The selection of employed
ees is based on a Prob(DNB) probability value (Line 7) that is
ssociated to the quality of its solution and is calculated with
he RC(DNB) function that depends on its non-domination rank
nd crowding distance scores (Rank(DNB) and Crowding(DNB),
espectively) (see Eq. (9)). As can be seen in Eq. (10), the final
robability value Prob(DNB) assures that all the solutions have at
east a 10% probability of being chosen while the 90% probability
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epends on the quality of the solution (RC(DNB)). Once every
nlooker bee has selected its employed bee (Line 8), a new
olution is created with the mutation operator (see Section 4.2.1).
inally, a non-strict dominance is used for selecting between the
utated and current solution. More specifically, if the mutated
olution is not dominated by the current solution, the mutated
olution is selected, otherwise, the current solution is kept.

C(DNB) =
1

Rank(DNB)+ (
1

1+ Crowding(DNB)
)

(9)

Prob(DNB) = (0.9× RC(DNB))+ 0.1 (10)

Scout bees of ABCD algorithm check all the DNBColony solu-
ions, represented by both employed and onlooker bees (Line 9).
f a solution has not been enhanced after Tmax number of trials,
his solution is abandoned and a scout bee generates randomly a
ew solution that replaces the abandoned solution.
After that, all the solutions in the entire colony are sorted

Line 10) by quality (non-domination rank and crowding distance
cores), that is, from the best to the worst quality.
Finally, the non-dominated solutions are saved and updated

n ParetoSols (Line 11). Furthermore, the best HalfColony solutions
ill be the employed bees of the next iteration (Line 12).

.2.1. Mutation operator
The mutation operator (Fig. 3 and Algorithm 2) is applied

y employed and onlooker bees in order to create a Mutated
olution from an Original solution. Three types of mutation are
allowed: replacing a gene from the original solution by another
different gene, adding a gene to the original solution, or removing
a gene from the original solution. The choice of the mutation type
depends on a random number (R_Number), the number of genes
of the original solution (DNBsize), and if the dominance is strict
or not (Dominance):

1. The original solution has the minimum number of genes
(Line 2 in Algorithm 2). In this case, it is only possible to
replace or to add a gene to the solution. If the mutation
is carried out by employed bees, the dominance is strict
(Line 3) and only replacing a gene is allowed. Otherwise,
if the mutation is performed by the onlooker bees, the
dominance is not strict (Line 5) and the choice between
replacing or adding a gene depends on the random number.

2. The original solution has the maximum number of genes
(Line 10). In this case, it is only possible to replace or
to remove a gene from the solution. The choice between
replacing or removing a gene depends on the R_Number
random number.

3. The original solution has a size between the minimum and
the maximum number of genes, both not included (Line
15). In this case, the three types of mutation are possible.
The choice depends on the dominance type and on the
random number.

5. Experimental settings and results

5.1. Time-course datasets

The proposed method has been evaluated with five time-
course microarray datasets collected from the Gene Expression
Omnibus (GEO) of the National Center for Biotechnology Infor-
mation (NCBI) [26]. Table 1 contains information about these five

datasets.

6

Algorithm 2: Pseudocode of the ABCD mutation operator.
Input : GeneExpr (pre-filtered gene expression dataset), MinDNBsize

(minimum number of genes that can form the DNB), MaxDNBsize
(maximum number of genes that can form the DNB), Original
(original solution), DNBsize (number of genes in the original
solution), Dominance (dominance type, strict or non-strict)

Output: Mutated (new mutated solution)
1 R_Number ← RandomNumber()
2 if DNBsize == MinDNBsize then
3 if Dominance == strict then
4 Mutated← Replacing(Original, GeneExpr)

5 else
6 if R_Number % 2 == 0 then
7 Mutated← Replacing(Original, GeneExpr)

8 else
9 Mutated← Adding(Original, GeneExpr)

10 else if DNBsize == MaxDNBsize then
11 if R_Number % 2 == 0 then
12 Mutated← Replacing(Original, GeneExpr)

13 else
14 Mutated← Removing(Original)

15 else
16 if Dominance == strict then
17 D_Number = 2

18 else
19 D_Number = 3

20 switch R_Number % D_Number do
21 0: Mutated← Replacing(Original, GeneExpr)
22 1: Mutated← Removing(Original)
23 2: Mutated← Adding(Original, GeneExpr)

24 return Mutated

5.2. Settings

The data pre-filtering step has been coded and implemented
in R 3.6.1 in Windows 10 Pro. For differential expression analysis,
the ‘‘limma" package of R is applied [27,28].

The ABCD algorithm has been coded and implemented in
Python 3.8.1 in Windows 10 Pro. In order to use the best con-
figuration of DNBColony and MaxIterations variables, a study to
reach 3000 evaluations has been performed using 120 DNBColony
× 25 MaxIterations, 60 DNBColony × 50 MaxIterations, and 30
DNBColony × 100 MaxIterations options. The option with a colony
size (DNBColony) of 120 and 25 iterations (MaxIterations) gives the
best results and it is used in the ABCD algorithm. The maximum
number of trials for the scout bees is set in 10 (Tmax = 10). The
minimum number of genes of a network is set in 2 (MinDNBsize =
2) and the maximum number of genes of a network (MaxDNBsize)
is established taking into account the size of the DNB identified
in other methods for each dataset.

The calculation of DNB accuracy in the dataset has been coded
and implemented in R 3.6.1 in Windows 10 Pro. A SVM (Support
Vector Machine) classifier is performed using the software LIB-
SVM [29] of ‘‘e1071" R package, Leave-One-Out Cross-Validation
(LOOCV) technique, a linear kernel, and a C parameter with
minimum and maximum values 2−5 and 215 [30], respectively.

5.3. Results

5.3.1. Data pre-filtering results
In the proposed method, the first step consists in a data

pre-filtering. First, in order to reduce the dimensionality of the
datasets, those genes without HUGO gene symbol associated and
duplicated genes are removed (see Section 4.1). Table 2 presents
the dimensionality reduction in genes (G) and samples (S) of the

datasets carried out in the first two steps of the data pre-filtering.
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Fig. 3. Flowchart of the ABCD mutation operator for DNB identification.
able 1
nformation about the time-course microarray datasets.
Dataset Description Genes Samples Time-points

GSE2565 Gene expression changes in lung tissue of mice caused by the exposition
of air (control groups) or carbonyl chloride, known as phosgene (case
groups). The phosgene-induced lung injury progression is studied with the
tissue collected of the mice at 0.5, 1, 4, 8, 12, 24, 48, and 72 h after the
exposition.

22,690 104 0.5, 1, 4, 8, 12, 24,
48, and 72 h

GSE13268 Gene expression changes in adipose tissue of GotoKakizake (GK) and
WistarKyoto (WK) rats with normal diet (ND — control groups) and
high-fat diet (HF — case groups), causing type 2 diabetes (T2D) disease.
T2D disease progression is studied with the tissue collected of GK-ND,
GK-HF, WK-ND, and WK-HF rats at the age of 4, 8, 12, 16, and 20 weeks.

31,099 101 4, 8, 12, 16, and
20 weeks

GSE15150 Gene expression changes in pancreatic lymph nodes tissue of Non-Obese
Diabetic (NOD) mice caused by type 1 diabetes (T1D) disease induction.
T1D disease progression is studied with the tissue collected of mice at the
age of 10 days (control group), and 4, 8, 12, 16, and 20 weeks (case
groups) after the disease induction.

43,790 35 4, 8, 12, 16, and
20 weeks

GSE21884 Gene expression changes in spleen tissue of Non-Obese Diabetic (NOD)
mice caused by type 1 diabetes (T1D) disease induction. T1D disease
progression is studied with the tissue collected of mice at the age of 10
days (control group), and 4, 8, 12, 16, and 20 weeks (case groups) after
the disease induction.

43,790 27 4, 8, 12, 16, and
20 weeks

GSE30550 Gene expression changes in blood of 17 healthy human subjects caused by
the inoculation with live influenza (H3N2/Wisconsin) viruses. The disease
progression is studied taking blood of the subjects 24 h and immediately
prior to inoculation (control groups) and at 0, 5, 12, 21, 29, 36, 45, 53, 60,
69, 77, 84, 93, 101, and 108 h (case groups) after the inoculation.

11,961 268 0, 5, 12, 21, 29,
36, 45, 53, 60, 69,
77, 84, 93, 101,
108 h
After the dimensionality reduction of the datasets, the non-
nformative genes of the datasets are removed, in order to avoid
he use of the genes that do not have a significant biological
ole in the processes and conditions of interest in the following
7

steps (see Section 4.1). Table 3 shows the results of removing the
non-informative genes in the data pre-filtering. In the Supple-
mentary file, we present the collection of the DNB genes that are
identified per dataset by the different authors in their respective
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Table 2
Results obtained in the dimensionality reduction at the pre-filtering of the five datasets. The number of genes (G)
and samples (S) are indicated at the beginning of the pre-filtering step (Before pre-filtering), after removing genes
without a HUGO gene symbol associated (Gene symbol associated), and after removing by averaging the repeated
genes and the extra samples found in any time-point (Non repeated/extra).

GSE2565 GSE13268 GSE15150 GSE21884 GSE30550

G S G S G S G S G S

Before pre-filtering 22,690 104 31,099 101 43,790 35 43,790 27 11,961 268
Gene symbol associated 22,147 104 15,225 101 21,608 35 21,608 27 11,548 268
Non repeated/extra 13,432 104 15,225 100 21,608 24 21,608 18 11,548 240
methods. In order to make a fair comparison among different
methods, the DNB genes of other authors are included in the
informative unique genes of this article. Therefore, the number
of DEGs corresponds to the first DEGs until reaching 100 or 150
maximum number of informative unique genes, depending on the
dataset. The last two datasets (GSE21884 and GSE30550) have
less than 100 informative unique genes. The DEGs identified in
the proposed method are also collected in the Supplementary file.

5.3.2. ABCD results
After the data pre-filtering step, only the significant data of

ach dataset are used by the ABCD algorithm for the DNB identi-
ication of the different diseases. Table 4 shows the characteristics
f the five datasets used by ABCD after data pre-filtering. As can
e seen, only the first time-points (always surpassing the 50% of
ll the available time-points) are used by ABCD due to in the last
ime-points the disease would be already developed.

Table 5 presents the final results of the proposed method
er dataset after the ABCD step: difference of composite in-
ex between a time-point and the previous time-point (difCI),
ime-point when the pre-disease stage occurs (T ), correlation
oefficient with the disease phenotype (CC), number of genes of
he DNB (DNBsize), and exact genes of the DNB (DNB). As can
e seen, the identified DNBs are small but they show a strong
ignal (difCI between 0.549 and 1.111) in the earliest time points
of the disease progression (T ) and correlate well with the disease
henotype (CC between 0.397 and 0.930).
In order to analyze how the genes of each network are re-

ated per dataset over all the time-points and how the DNBs
merge in the identified pre-disease stage, the dynamical evo-
ution of DNBs is represented in Figs. 4, 5, 6, 7, and 8. If the
NB genes are not correlated, no arrow is represented. As can
e observed, throughout the different time-points the correlation
hanges among genes. However, in all datasets the time-point
elected as pre-disease stage (T in Table 5) shows the earliest
ime-point with the greatest correlation strength, represented
s dark red (if the correlation is positive) or dark blue (if the
orrelation is negative).
Moreover, a leave-one-out cross-validation (LOOCV) has been

erformed with all the samples in each dataset (see Table 1 and
irst rows in Table 6), in order to confirm that the genes of each
NB have the ability to classify the samples in early or later stages
f the disease. In this way, the reliability of the proposed method
s experimentally validated. As can be observed, the number of
amples ranges from 27 (GSE21884) to 268 (GSE30550), ensuring
eliable statistics. Table 6 shows the accuracy (Accuracy (%)),
recision (Precision (%)), recall (Recall (%)), and F1 (F1 (%)) scores
er dataset, and the mean of the same scores (Accuracyavg (%),
recisionavg (%), Recallavg (%), and F1avg (%)) reached by the pro-
osed method for the five datasets. In all the datasets, in general,
he value of all the scores is high, achieving the 100% in three
ut of five datasets. In conclusion, the proposed method presents
ood results, with high averages of the scores (from 87.2% in
ccuracy to 91.3% in recall). Therefore, the identified DNBs are
ble to recognize the pre-disease stage, allowing a differentiation
etween previous and posterior stages of each disease. Thus, the
roposed method is suitable for an early diagnosis of the diseases.
8

5.4. Comparison with other methods

In order to validate the proposed method, its results are com-
pared with the results obtained by other methods (from other
authors) for DNB identification. Table 7 shows this comparison.
It is worth to know that the time-point for the pre-disease stage
(T ) and the number of genes in the identified DNB (DNBsize) have
been obtained directly from the different articles, and the dif-
ference of composite index (difCI) and the correlation coefficient
with the disease phenotype (CC) for the different methods have
been calculated as in the proposed method in order to make fair
comparisons. Table 7 includes two parts for every dataset.

The first part makes the comparison taking into account the
three objectives to optimize (difCI , CC , and DNBsize). As can be
observed, in general, the proposed method improves the three
objectives in all the datasets regarding all the other methods.
In a total of 8 comparisons (some datasets include comparisons
with several methods), there are only 2 exceptions: (i) in dataset
GSE2565 for difCI in [16], although the proposed method im-
proves this method in the other two objectives (CC — correlation
coefficient with the disease phenotype and DNBsize — number
of genes required); and (ii) in dataset GSE30550 for CC in [17],
although the proposed method improves this method in the other
two objectives (DNBsize — number of genes required and difCI
— difference of composite index, that is, difference of signal
between the normal and disease stage).

The second part shows the time-point selected as pre-disease
stage (T ) by each method. In general, the proposed method de-
tects the earliest time-point for the pre-disease stage, with only
1 exception out of 8 comparisons: in dataset GSE30550, the
proposed method detects the same time-point as [19], which is
exactly the subsequent time-point to the one detected by [17].

Regarding execution times, the proposed method cannot be
compared with the other methods because execution times were
not found in all the corresponding articles. However, taking into
account the complexity of the problem, the execution time is
on the order of minutes. In the case of the proposed method,
the running time varies (depending on the dataset) between 8
and 60 min, when using a laptop with a CPU Intel i7-9750H at
2.60 GHz, 16 GB RAM, and Windows 10 Pro as operating system.

Therefore, it can be concluded that the proposed method, in
general: (i) requires less genes (which facilitates the posterior
biomedical analysis), (ii) improves the correlation coefficient with
the disease phenotype, (iii) improves the difference of signal
between the normal and disease stage, and (iv) detects the ear-
liest time-point for the pre-disease stage (which is important in
preventive medicine).

5.5. Biological relevance of the selected genes

DNBs identified for each dataset are the network that leads to
the disease stage. In order to study the association between the
DNB genes and the disease they are related to, a disease enrich-
ment has been developed using Gene Ontology (GO) terms. Ta-
ble 8 shows the biological processes, molecular functions, and cel-
lular components enrichment per dataset performed with GOrilla
tool [31].
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Fig. 4. Dynamical evolution of the DNB genes identified by the proposed method in GSE2565 dataset.

Fig. 5. Dynamical evolution of the DNB genes identified by the proposed method in GSE13268 dataset.

Fig. 6. Dynamical evolution of the DNB genes identified by the proposed method in GSE15150 dataset.

9
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Table 3
Results obtained with the filtering of non-informative genes.

GSE2565 GSE13268 GSE15150 GSE21884 GSE30550

Unique genes 13,432 15,225 21,608 21,608 11,548
Authors’ DNB genes 96 37 7 6 28
DEGs 62 63 93 19 83
Informative unique genes 150 100 100 25 86
Table 4
Characteristics of the datasets used by ABCD for DNB identification.

GSE2565 GSE13268 GSE15150 GSE21884 GSE30550

DNBsize MinDNBsize 2 2 2 2 2
MaxDNBsize 16 37 7 6 22

Time-points used 0.5, 1, 4, 8,
12 h

4, 8, 12
weeks

4, 8, 12
weeks

4, 8, 12
weeks

0, 5, 12, 21, 29,
36, 45, 53 h

Dimensionality Genes 150 100 100 25 86
Samples 30 15 12 6 120
Table 5
Results obtained with the proposed method.
Dataset difCI T CC DNBsize DNB

GSE2565 0.549 4 h 0.683 2 mylpf, ccl20
GSE13268 0.804 4 weeks 0.397 7 loc100912649, tti1, gstp1, comt, c6,

fzd1, vof16
GSE15150 1.111 4 weeks 0.835 3 pla2g1b, mt2, igfbp1
GSE21884 0.674 4 weeks 0.930 3 reg2, 4933400f21rik, c030011g24rik
GSE30550 0.621 45 h 0.866 3 tlr7, tnfaip6, rtp4
Table 6
Results generated with LOOCV, showing the accuracy, precision, recall, and F1 scores obtained by the proposed
method.

GSE2565 GSE13268 GSE15150 GSE21884 GSE30550

Samples 104 101 35 27 268
Samplesavg 107
Accuracy (%) 62.5 100 100 100 73.3
Accuracyavg (%) 87.2
Precision (%) 62.5 100 100 100 89.5
Precisionavg (%) 90.4
Recall (%) 100 100 100 100 56.7
Recallavg (%) 91.3
F1 (%) 76.9 100 100 100 69.4
F1avg (%) 89.3
Fig. 7. Dynamical evolution of the DNB genes identified by the proposed method in GSE21884 dataset.
10
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Fig. 8. Dynamical evolution of the DNB genes identified by the proposed method in GSE30550 dataset.
Table 7
Comparison of different methods proposed by different authors for DNB identification. The best results for the three objectives are highlighted in bold.

Proposed
method

Y. Li et al.
[19]

T. Zeng et al.
[18]

X. Yu et al.
[17]

A. D. Torshizi
et al.
[21]

F. Vafaee
[16]

GSE2565

difCI 0.549 0.288 – – 0.303 1.692
CC 0.683 0.313 – – 0.289 0.605
DNBsize 2 25 – – 55 16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T 4 h 8 h – – 8 h 4 h

GSE13268

difCI 0.804 0.470 – – – –
CC 0.397 0.320 – – – –
DNBsize 7 37 – – – –
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T 4 w 8 w – – – –

GSE15150

difCI 1.111 – 0.215 – – –
CC 0.835 – 0.378 – – –
DNBsize 3 – 7 – – –
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T 4 w – 4 w – – –

GSE21884

difCI 0.674 – 0.334 – – –
CC 0.930 – 0.401 – – –
DNBsize 3 – 6 – – –
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T 4 w – 4 w – – –

GSE30550

difCI 0.621 0.338 – 0.304 – –
CC 0.866 0.857 – 0.890 – –
DNBsize 3 22 – 22 – –
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T 45 h 45 h – 36 h – –
6. Conclusions and future work

In this article, a new method for DNB (Dynamical Network
iomarker) identification in complex diseases has been developed
sing multi-objective optimization. The identification of a DNB
llows to detect the pre-disease stage and, therefore, to know the
oint of reversibility of a disease. Here, a DNB has been identified
s the smallest gene network that shows the strongest signal
11
in the earliest time-point of the disease progression and best

correlates with the disease phenotype. The proposed method has

been divided into two steps. In the first step, a pre-filtering of the

data has been performed in order to keep only the most relevant

data. The pre-filtering has been carried out with a differential

expression analysis after the dimensionality reduction of the data.
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able 8
O enrichment found in the five datasets with a p-value threshold of 10E-3.
Dataset GO enrichment GO term Description p-value Genes

GSE2565
Process GO:0072679 Thymocyte migration 2.25E−4 ccl20

GO:0032730 Positive regulation of interleukin-1 alpha production 7.89E−4 ccl20

Function

Component

GSE13268
Process GO:0031668 Cellular response to extracellular stimulus 7.14E−4 comt, fzd1, gstp1

GO:0048662 Negative regulation of smooth muscle cell proliferation 9.96E−4 comt, gstp1

Function

Component

GSE15150
Process GO:1904633 Regulation of glomerular visceral epithelial cell apoptotic process 5.07E−4 pla2g1b

GO:1904635 Positive regulation of glomerular visceral epithelial cell apoptotic process 5.07E−4 pla2g1b

Function

Component

GSE21884

Process GO:0044278 Cell wall disruption in other organism 3.38E−4 reg2
GO:0001967 Suckling behavior 9.02E−4 reg2

Function GO:0042834 Peptidoglycan binding 7.33E−4 reg2
GO:0070492 Oligosaccharide binding 9.58E−4 reg2

Component

GSE30550
Process

GO:0002252 Immune effector process 2.85E−4 tlr7, tnfaip6, rtp4
GO:0006952 Defense response 4.31E−4 tlr7, tnfaip6, rtp4
GO:0034154 Toll-like receptor 7 signaling pathway 4.88E−4 tlr7
GO:0051607 Defense response to virus 5.01E−4 tlr7, rtp4

Function GO:0031849 Olfactory receptor binding 4.88E−4 rtp4

Component
In the second step, the ABCD (Artificial Bee Colony based on Dom-
inance) algorithm has been used due to the DNB identification has
been treated as a multi-objective optimization problem.

The proposed method has been evaluated with five time-
ourse gene expression microarray datasets of four different com-
lex diseases in different organisms. Results show that the pro-
osed method identifies small DNBs that are able to reach high
ignals when pre-disease stage occurs and correlate well with
he disease phenotype. Furthermore, the proposed method de-
ects the pre-disease stage in a very early time-point, which is
mportant in preventive medicine. Moreover, the results of the
roposed method are compared with results of other different
ethods (from different authors) for DNB identification. The com-
arison indicates the effectiveness of the proposed method due
o its results are, as a whole, better than the results obtained
y the other methods. Finally, a LOOCV (Leave-One-Out Cross-
alidation) and a GO (Gene Ontology) term enrichment have been
erformed to validate the method, showing the good accuracy
f the proposed method and the good relation of the DNB genes
ith the disease they are linked to.
In summary, the proposed method has shown that can identify

ith effectiveness DNBs as disease initiation signal. The pro-
osed method is a good tool that could be applied in preventive
edicine, in order to facilitate the disease prevention and to

rack the disease progression. More specifically, due to the com-
lexity of some diseases like cancer, Alzheimer, diabetes, etc.
called complex diseases), DNB identification is very valuable to
nderstand the progression of these complex diseases. Beyond
iomedicine, the proposed method could be applied in other
ifferent biological issues that are accompanied by time-course
igh-throughput data.
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