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Abstract: Magnetite supported on multiwalled carbon nanotubes catalysts were synthesized by
co-precipitation and hydrothermal treatment. The magnetic catalysts were characterized by X-ray
diffraction, Fourier-transform infrared spectrometry, thermogravimetric analysis and N2 physisorp-
tion. The catalysts were then tested for their ability to remove diclofenac (DCF) and naproxen
(NAP) from an aqueous solution at different conditions (pH, temperature, and hydrogen peroxide)
to determine the optimum conditions for chemical oxidation. The optimization of the process pa-
rameters was conducted using response surface methodology (RSM) coupled with Box–Behnken
design (BBD). By RSM–BBD methodology, the optimal parameters (1.75 mM H2O2 dosage, 70 ◦C
and pH 6.5) were determined, and the removal percentages of NAP and DCF were 19 and 54%,
respectively. The NAP–DCF degradation by catalytic wet peroxide oxidation (CWPO) was caused
by •OH radicals. In CWPO of mixed drug solutions, DCF and NAP showed competitive oxidation.
Hydrophobic interactions played an important role during the CWPO process. On the other hand,
the magnetic catalyst reduced its activity after the second cycle of reuse. In addition, proof of concept
and disinfection tests performed at the operating conditions showed results following the complexity
of the water matrices. In this sense, the magnetic catalyst in CWPO has adequate potential to treat
water contaminated with NAP–DCF mixtures.

Keywords: emerging contaminants; CWPO; magnetic catalyst; MWCNTs; wastewater

1. Introduction

Many contaminants are present in several water environments, especially in ur-
ban wastewaters. Most of those contaminants are toxic, endocrine disruptors and po-
tentially carcinogenic to human life, terrestrial and aquatic animals in general, even at
low concentrations.

Lately, pharmaceutical compounds have been specially reported to cause negative
effects on the aquatic life of several countries [1]. Naproxen (NAP) and diclofenac (DCF)
are the two nonsteroidal anti-inflammatory drugs (NSAIDs) most detected in wastewater
treatment plants (WWTPs), surface water (SW), and hospital wastewater effluent (HW),
and they are tending to increase their concentrations in water. Nowadays, their significant
range of concentrations is between 0.1 ng/L to 0.220 mg/L [2–4]. NAP (84 against fish) and
DCF (9300 against Oncorhynchus mykiss) [5] are high values of risk quotient (RQ), and they
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and their degradation byproducts have exhibited adverse effects on aquatic organisms.
Their toxicity is measured as EC50 (median effective concentration), and NAP was reported
in 0.33 mg/L on C. dubia and DCF in 14.5 mg/L on phytoplankton [6].

Conventional wastewater treatment showed low efficiency in removing pharmaceu-
ticals since they are nonbiodegradable compounds, which means exploring alternative
technologies for the efficient treatment of wastewater [7]. One of the most efficient tech-
nologies explored to date is the advanced chemical processes (AOPs) [8]. In the past,
AOPs have been applied for reducing the concentrations of residual organic compounds
and for disinfection purposes. Nowadays, they are being used to improve the biological
treatability of recalcitrant and toxic micropollutants, such as pharmaceuticals, herbicides
and endocrine-disrupting compounds (EDCs), reducing the inhibitory effects of those
specific substances towards microbial growth [9].

From AOPs, the catalytic wet peroxide oxidation (CWPO) process has been demon-
strated to be highly effective in the removal of aromatic compounds, herbicides, pesticides,
azo dyes, and pharmaceutical compounds at mild conditions [10]. CWPO is mostly ap-
plied due to its simplicity in terms of equipment and management operation compared to
homogeneous Fenton [11–13]. The degradation mechanism is based on the oxidation of
the organic compound by the action of hydroxyl radicals (•OH). In CWPO, the generation
of •OH mainly depends on a solid catalyst, usually an iron-based catalyst, and the pres-
ence of H2O2 in the aqueous medium (Equations (1) and (2)) [14]. Consequently to these
Fenton-reaction, hydroxide ions (−OH) and hydroperoxyl radicals (•OH2) are produced.
On the other hand, some researchers have reported that pH, temperature, and the chemical
properties of the contaminants have an important effect on the CWPO efficiency.

Fe2+ + H2O2 → Fe3+ + •OH+ −OH (1)

Fe3+ + H2O2 → Fe2+ + •OH2 + H+ (2)

The catalytic activity of the catalyst is crucial to the effective removal of recalcitrant
and toxic compounds [15–17]. In this sense, many researchers have studied several cat-
alysts. From the catalysts studied, Fe3O4 supported on multiwalled carbon nanotubes
(Fe3O4/MWCNTs) has shown as an effective material in a wider range of pH (8–10) in
CWPO with the additional advantage of its easy recovery due to its magnetic properties.
In the catalyst, it is noteworthy the function of MWCNTs as stable support even at drastic
acidic and temperature conditions, and the role for the dispersion of magnetite onto its
surface, obtaining a magnetic catalyst with minimum leaching of iron and so the minimum
reduced toxicity towards the reaction medium [18].

Notwithstanding the huge scientific literature reported, the efficient removal of phar-
maceuticals, i.e., drug mixture, from different water matrices need to be explored since their
degradation mechanism depends on several factors (hydrogen peroxide dosage, tempera-
ture, pH, catalyst dosage, etc.) [19,20]. Furthermore, it is well-known that the composition
of the wastewater represents a crucial factor; hence, the real wastewaters should be used at
this scope because it is more appropriate for theoretical investigations [21,22]. The normal
methodology used to evaluate the parameter effects is response surface methodology
(RSM) coupled with Box–Behnken design (BBD) [23,24].

The aim of this work was to model, optimize, and compare NAP–DCF mixture
removal by magnetic catalyst using the RSM–BBD methodology. The effect of different
operational parameters like pH, temperature and H2O2 dose was evaluated to forecast
the output. Meanwhile, the removal competition of the drugs was seen through the
CWPO experiments. In addition, drug degradation was observed through the intermediate
compounds. Finally, as a proof of concept, CWPO treatment of real and relevant water
matrices was performed to demonstrate the effectiveness of the CWPO process. With those
results, we will give the first insight into the NAP–DCF mixture removal and demonstrate
applying CWPO technology for the treatment of real matrices with that mixture.
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2. Results and Discussion
2.1. Catalyst Characterization

TEM images (Figure 1a) show that the FMWCNTs had a medium size of less than
50 nm. The sphere-like shape with a diameter range of 10–20 nm belongs to Fe3O4 particles
in the prepared Fe3O4–MWCNTs catalyst (Figure 1b) [25]. Furthermore, TEM images
revealed the formation of clusters, which is attributed to the magnetic properties of the
magnetite [13]. Those facts confirm that the magnetite nanoparticles were successfully de-
posited on the surface of MWCNTs and the high reliability of the applied synthesis method.
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Thermal gravimetric analysis (TGA) of FMWCNTs (pretreated MWCNTs), fresh cat-
alyst and the third reuse of catalyst 4 were performed (Figure 1c). In addition, derivate
weight loss was analyzed for FMWCNTs, the catalyst 4 and its third reuse (Figure 1d). As
can be seen in Figure 1c, all the solid samples are thermally stable up to 400 ◦C under air
atmosphere. Afterward, a fast mass loss between 40 to 68% for the catalyst and 90% for the
support occurred from 400 to 700 ◦C [26]. The maximum temperature of oxidation for the
catalyst 4, its third reuse and support were 600, 550 and 650 ◦C, respectively (Figure 1d).
The oxidation of MWCNTs and carboxyl groups by the temperature between the range
of 400 to 700 ◦C reduced the mass of the catalyst and support [20]. On the other hand,
comparing the mass loss among the catalysts, it can be highlighted that the catalysts 4, 3
and 1 showed more magnetite than catalysts 2 and 5 since the mass loss in the two first was
low compared to the last three after 700 ◦C. This last statement agrees with the initial iron
compositions used to prepare them (see Section 3.2). Finally, the residual of mass left after
700 ◦C until 1000 ◦C confirmed the deposition of magnetite on the FMWCNTs, and we hy-
pothesize that H2O2 treatment could be a practical method for the surface functionalization
of MWCNTs [20].
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For better comprehension of the structure and composition of the material, FT-IR
spectra were obtained (Figure 2a,b). As shown in Figure 2a,b, the broad adsorption
peak found at 3410 cm−1 corresponds to the stretching mode of O-H on the surface of
FMWCNTs and some adsorbed atmospheric water. The peaks appearing at 1622 cm−1

and 1055 cm−1 are assigned to the stretching vibration of C=C (double bonds) as well as
C-O and C-O-C. Compared to the FMWCNTs, the catalysts (fresh and reused) presented
an additional peak at 568 cm−1 resulting from the Fe-O stretching vibration of the Fe3O4,
suggesting the formation of the Fe3O4/MWCNTs, and thus the interaction between Fe3O4
and functionalized MWCNTs [27]. Additionally, from Figure 2b, it can be confirmed that a
load of magnetite remains after the third reuse of the catalyst since the peak at 568 cm−1

can be observed in the reused catalyst [13].
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Textural properties (specific surface area, SBET, micropore volume, VMic, and total pore
volume, VTotal) and N2 adsorption–desorption isotherms at 77 K of FMWCNTs, catalyst
4 and 5 are displayed in Table 1 and Figure 2c. From SBET values estimated by applying
the Brunauer–Emmett–Teller equation, the support and the magnetic catalysts 4 and 5 had
very similar values (97 and 96, 90 m2 g−1, respectively), indicating that the deposition
of magnetite on the support did not interfere in the textural properties of FMWCNTs.
This last statement agrees with the obtained similar N2 adsorption–desorption isotherms
of FMWCNTs and catalysts 4 and 5 (Figure 2c). From the very low micropore volume
values (0.05–0.06 cm3 g−1) and the average pore widths of 15.9 nm (17.1 and 14.7 nm)
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of the materials (Table 1), it can be confirmed that the prepared catalysts are essentially
mesoporous (type IV-a isotherms) [28].

Table 1. Textural properties of the materials.

Material SBET
(m2 g−1)

VMic
(cm3 g−1)

VTotal
(cm3 g−1) VMic/VTotal

Average Pore
Width (nm) *

FMWCNTs 97 0.06 0.23 0.26 17.9
Catalyst 4 96 0.05 0.23 0.22 17.1
Catalyst 5 90 0.05 0.23 0.22 14.7

* average pore size at 4 V/A by BET.

To study the potential magnetization of the catalyst, the magnetization hysteresis
curves of the catalyst 4 and third reuse were obtained. The M−H hysteresis loop of the
solids measured at the maximum external field (H) of 60 kOe at 5 K and 300 K are plotted in
Figure 2d. The typical S-type was observed in the two magnetization curves, illustrating the
superparamagnetic behavior of the catalyst. The saturation magnetization (Ms) of the fresh
catalyst 4 and its third reuse both were found of 20.0 emu g−1 at 300 K and 25.0 emu g−1

at 5 K [29], confirming this values the good magnetic separation of the catalyst from the
aqueous solution by applying an external magnetic field.

Finally, elemental analysis of the FMWCNTs, fresh catalysts, and the third reuse of
catalyst 4 was analyzed, and the results are collected in Table 2. The CHNS measurements
found that the %C in MWCNTs, fresh catalyst 4, and its third reuse were 84.47, 40.72, and
41.65%, respectively [24]. Thereafter, it can be confirmed that carbon deposition on the
catalyst surface was not significant.

Table 2. Elemental analysis of the materials.

FMWCNTs Catalyst 1 Catalyst 2 Catalyst 3 Catalyst 4 Catalyst 5 Third Reuse
Catalyst 4

% C 84.47 40.72 50.0 58.0 40.72 58.0 41.65
% Fe n.d. 26.22 19.5 21.0 35.0 10.6 36.1

n.d., not detected.

2.2. Screening of the Magnetic Catalyst by CWPO

Five catalysts were prepared for determining which of them possess high catalytic
activity. Figure 3a,b display the evolution of the degradation of NAP and DCF by CWPO.
The reaction conditions were established as follows: DCF concentration of 5 mg L−1, NAP
concentration of 5 mg L−1, catalyst mass of 1.0 g L−1, 1.5 mM of H2O2 concentration, pH
of 6 and 3 h of reaction time.
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As expected, the highest removal of DCF (66%) and NAP (40%) from aqueous solution
was obtained by using catalyst 4 by CWPO. That high removal could be related to the high
Fe percentage (35%) of this catalyst. On the other hand, the lowest DCF (39%) and NAP
(19%) removal were obtained by using catalyst 5 with an iron percentage of 10.6%, which
was the lowest among the prepared catalysts. On the other hand, with catalysts 1, 2 and
3, low NAP removal values (range of 15 to 23%) were obtained. However, among those
catalysts, catalyst 2 could be determined the highest DCF removal. The composition of
catalyst 2, with the highest percentage of MWCNTs, could have positively affected the DCF
and NAP removal. Thus, in other research, it has been reported that MWCNTs can play a
main role in the CWPO process since they can remove NAP or DCF at pH values above
6.5 [11,30].

Regarding the drug competition in the process, it is important to mention that DCF
was most susceptible to be removed than NAP at pH 6. That similar preference has been
reported for the treatment by CWPO of IBU-DCF mixture at pH 6.18. In that research, it was
found that DCF is less dependent on the initial pH since pKa of DCF (4.15) is lower than
pKa of IBU (4.9), and therefore, DCF is the dominant species in solution between pH values
of 4.15 and 6.19 [11]. However, the NAP molecule is more stable than DCF since NAP
is a methoxynaphthalene and DCF is a monocarboxylic acid consisting of phenylacetic
acid having a (2,6-dichlorophenyl) amino group at the 2-position. Furthermore, in some
research about CWPO treatment of a mixture of pharmaceutical compounds has been
reported that both pollutants containing several aromatic rings are more susceptible to
be removed by this technology [31]. In all experiments developed in this study, DCF was
preferable removed than NAP, and this could be related to the alkaline pH that may favor
the removal of DCF over NAP since the first has two opposite rings in the molecule and
the second two benzene rings joined together.

In the same way, the H2O2 removal efficiencies were analyzed. Figure S1 in the
Supplementary Material depicts the evolution of this parameter for each catalyst by CWPO.
As it can be observed, the highest efficiency was obtained for NAP using the catalyst 4.
Thus, catalyst 2 showed the second-highest H2O2 removal efficiency for NAP and the
first for DCF. Meanwhile, the other catalysts showed lower H2O2 efficiencies. In this
sense, according to the obtained H2O2 efficiencies and drug removal values, catalyst 4 was
selected as the catalyst to be used in the CWPO process optimization.

2.3. Optimization of NAP–DCF Removal by CWPO with a Magnetic Catalyst

The evaluation of the effect of the operating conditions on the CWPO process was
carried out using RSM–BBD methodology. For this purpose, 15 CWPO experiments were
accomplished. The catalyst used in the experiments was catalyst 4. The operating condi-
tions that were maintained constant were catalyst dosage at 1.0 g L−1, atmospheric pressure
and NAP and DCF concentration at 5 mg L−1 each. The varied operation conditions were
pH, temperature and H2O2 dosage. The variables in each experiment and their response
calculated as removal efficiency (η) (Equation (3)) are summarized in Table 3.

η =
(C0 − C)

C0
(3)

where C0 and C are the concentrations of NAP or DCF (mg L−1) at the initial time and any
time t, respectively.

Hence, the values obtained for NAP and DCF removal from their corresponding
predicted model are collected in Table 3. Thus, it was not found a significant difference
between the observed and predicted values since their determination coefficients were up
to 0.99 (R2 of NAP = 0.993 and R2 of DCF = 0.995) (see Figure S2 in the Supplementary
Material) [32]. In addition, the regression model was analyzed by analysis of variance
(ANOVA) test. The results are collected in Table 4.
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Table 3. Experimental design matrix of the degradation of NAP and DCF by CWPO.

Actual Values NAP Removal Efficiency (%) DCF Removal Efficiency (%)

N◦ A (H2O2 dose, mM) B (T, ◦C) C (pH Initial) Observed Predicted Observed Predicted

1 0.50 50 7.0 9.00 9.42 30.00 31.08
2 3.00 50 7.0 11.00 11.02 34.78 35.49
3 0.50 70 7.0 13.00 12.98 37.50 36.79
4 3.00 70 7.0 18.00 17.58 52.00 50.92
5 0.50 60 6.5 12.64 12.85 37.92 38.74
6 3.00 60 6.5 18.47 19.08 57.00 58.19
7 0.50 60 7.5 5.00 4.40 15.00 13.81
8 3.00 60 7.5 4.58 4.37 13.74 12.92
9 1.75 50 6.5 17.00 16.37 51.00 49.09
10 1.75 70 6.5 19.00 18.82 54.00 53.89
11 1.75 50 7.5 2.00 2.18 8.12 8.23
12 1.75 70 7.5 9.22 9.85 22.66 24.56
13 1.75 60 7.0 10.60 10.56 31.00 31.37
14 1.75 60 7.0 10.10 10.56 31.10 31.37
15 1.75 60 7.0 11.00 10.56 32.00 31.37

Reaction conditions: [NAP]0 = [DCF]0 = 5.0 mg L−1, [catalyst] = 1.0 g L−1, atmospheric pressure, 3 h of reaction time.

Table 4. ANOVA results of the NAP and DCF quadratic polynomial model.

DF SS MS F Prob > F (p-Value)

NAP

Model 9 373.31 41.48 85.03 <0.000 -
Residual 5 2.44 0.49 - - -

Lack of fit 3 2.03 0.68 3.33 0.239 Not significant
Pure error 2 0.41 0.20 - - -

Total 14 375.74 - - - -

DCF

Regression 9 3161.79 351.31 114.08 <0.000 -
Residual 5 15.40 3.08 - - -

Lack of fit 3 14.79 4.93 16.25 0.059 Not significant
Pure error 2 0.61 0.30 - - -

Total 14 3177.16 - - - -
DF: degrees of freedom, SS: sum of squares, MS: mean of squares, F: degree of freedom, p: probability.

As can be seen in Table 4, the found F-values for NAP and DCF were 85.03 and 114.08,
respectively. These values indicated that the predicted equations were significant and able
to describe the correlation between response and independent variables [33]. In the same
way, the determined p-values were significant since they were below 0.05, meaning that
the coefficients are significant. Otherwise, p-values up to 0.05 indicate that the coefficient is
not significant [33]. Thus, the significant terms of the NAP and DCF quadratic polynomial
model were A–C, A2, B2, C2, AB, AC and BC (see Tables S1 and S2 in the Supplementary
Material) excepting A2 and C2 for the NAP model. However, they were included in the
model response predictions since those terms in the model equation were found so close to
the experimental yield [33]. The quadratic polynomial response surface models for NAP
and DCF removal by CWPO were obtained as Equations (4) and (5), respectively.

YNAP = 10.57 + 1.55A + 2.40B − 5.79C + 0.27A2 + 0.75AB + 1.91B2 + 1.31BC − 1.56AC − 0.67C2 (4)

YDCF = 31.37 + 4.64A + 5.28B − 17.55C + 2.09A2 + 2.43AB + 5.12B2 + 2.89BC − 5.08CA − 2.54C2 (5)

where YNAP and YDCF represent the removal percentage of NAP and DCF, respectively. A,
B and C are H2O2 dosages, temperature and pH, respectively.

The reported model showed optimum NAP and DCF removal efficiencies of 18.82 and
53.89%, respectively, whereas the experimental NAP and DCF removal percentages were
found to be 19.0 and 54.0% (Table 3). Hence the predictions of the regression model using
the RSM tool showed a value of deviation lower than 2% with the experimental results.
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Due to the very small value of deviation, it could be concluded that the prediction of the
developed model showed high accuracy.

From the effect of the parameters studied, pH resulted in having a great effect on
removing the drug mixture, whereas the temperature also performed its own effect to
a certain extent. Up to 70 ◦C, the temperature can have a negative effect on the drug
removal [34]. On the other side, the p-values obtained for lack of fit (LOF) for NAP and
DCF were not significant, confirming that the response and independent variables showed
a high correlation.

2.4. Influence of the Operating Parameters: Response Surface Methodology

The influence of the operating parameters on CWPO reaction for removing NAP–
DCF mixture was analyzed by RSM–BBD methodology [30]. The combined effect of the
operating parameters (pH, temperature and H2O2) in their range studied is shown in
Figure 4a,b, Figure 5a,b, and Figure S4 (in the Supplementary Material). It is noteworthy to
say that the predicting response outside of the range of the independent variables may not
give accurate results since the change of the independent variable range led to a change in
the intercept and coefficients of the developed model.
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2.4.1. The Combined Effect of Hydrogen Peroxide Dose and pH on the Removal of DCF
and NAP

Figure 4a,b show the interaction of pH (6.5–7.5) and H2O2 dose (ranging from 0.5 to
3 mM) in the CWPO of NAP (5.0 mg L−1) and DCF (5.0 mg L−1) in an aqueous solution. As
shown, the removal of both pollutants trends to increase when the pH decrease and H2O2
increase until a certain extent. The maximum removal of NAP and DCF was obtained at
pH 6.5 and 1.75 mM of H2O2 dosage using 1.0 g L−1 of catalyst. Thus, pH has a significant
effect on the generation of hydroxyl radicals in the CWPO process, so when pH increases,
the scavenging of the HO is favored. Those results are following those found in some
research about the removal of atrazine [20], NAP and DCF [30] by CWPO.

In the same way, bicarbonate ions appear at pH solution up to 6.35 (Equation (6)). The
mechanism of scavenging consists of the reaction of bicarbonate ions with the hydroxyl
radicals (Equation (7)) to produce carbonate radicals (CO•−3 ) (E0 = 1.78 V, pH 7), which have
lower redox potential compared to the potential of the hydroxyl radicals (E0 = 2.8 V) [35].
Furthermore, bicarbonate ions decompose the H2O2 (Equation (8)) [34].

H2CO3(aq) → HCO−3 (aq) + H+
(aq) pKa1 = 6.35 (6)

HCO−3 + •OH → CO•−3 + H2O (7)

HCO−3 + H2O2 → HCO−4 (aq) + H2O(aq) (8)

2.4.2. Effect of Temperature on pH and Synergistic Effect of NAP and DCF

The effect of the interaction between the reaction temperature (50–70 ◦C) and pH
(6.5–7.5) on NAP–DCF removal is shown in Figure 5a,b.

As expected, the worst removal was obtained at the highest tested pH (7.5) along with
the studied temperatures. However, when the pH started to decrease from 7.4 to 6.5, while
the temperature was increasing, the removal of the mixture increased. The increase in the
reaction temperature, to a certain extent, improved the degradation of contaminants [31].
In this particular case, temperature up to 70 ◦C improved the mixture removal; further, this
value would lead to the decomposition of H2O2 in CWPO reaction.

On the other hand, the increase of H2O2 dose with the increase of temperature in-
creased the NAP–DCF mixture removal (see Figure S3 in the Supplementary Material).
This fact confirms that the concentration of H2O2 at non-stoichiometric concentration did
not generate its own decomposition [14].

From the evaluation of these effects, the highest removal efficiencies of NAP (19.0%)
and DCF (54.0%) could be determined at the optimal conditions: 1.75 mM H2O2 dosage,
pH 6.5 and 70 ◦C.

2.5. Catalyst Stability

For the heterogeneous CWPO process, evaluating the reusability and stability of the
catalyst is significant for the purpose of industrial implementation because it is directly
related to the treatment costs. Moreover, under real conditions, increasing the temperature
to 70 ◦C would be more costly than increasing it to 50 ◦C. On the other hand, real water
matrices contain different and several organic contaminants that can require additional
amounts of hydrogen peroxide. In this regard, the recycling tests of the catalyst were
performed at a higher H2O2 dosage (3 mM), the temperature of 50 ◦C, pH solution of 6.5,
1.0 g L−1 of catalyst (catalyst 4), NAP and DCF concentration of 5 mg L−1 each one, for 3 h
of reaction time. The results are depicted in Figure 6a,b.

Figure 6a,b shows the evolution of NAP and DCF concentration, and Figure S4
(Supplementary Material) shows the H2O2 removal efficiencies for the degradation of the
mixture along the 3 h of reaction time during 3 consecutive CWPO runs.
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5.0 mg L−1, [catalyst] = 1.0 g L−1, pH = 6.5, 3 mM H2O2, 50 ◦C, atmospheric pressure and 3 h of reaction time.

As can be expected, the catalyst showed different removal rates for DCF and NAP
after 3 consecutive reaction cycles. In the first case, DCF showed similar removal values
in the two first cycles. However, in the third cycle, DCF removal was reduced. A similar
trend was observed in the CWPO cycles for NAP, although, in this case, the reduction
in the removal during the third cycle was lower. Furthermore, the measured pH in the
effluent of the third cycle was 7, whereas in the first and second cycles was 6.5. From
these observations, it could be said that the decrease in the removal of the drugs along the
cycles can be related to the pH since at pH 7, the H2O2 is decomposed, and the scavengers
eliminate the •OH radicals [34]. Hence, the increase of the pH is related to the generation
of bicarbonate ions, which are formed from the excess of CO2 at alkaline pH in the medium
reaction [35].

To rule out leaching of iron from the catalyst, several experimental tests were carried
out. Thus, the dissolved iron in the effluent of the third cycle was negligible. Other research
has been reported that the possible iron leaching from the catalyst could be discarded at
near alkaline pH [36].

In addition, the determination of H2O2 removal efficiencies was also performed
(Figure S4 of the Supplementary Material). As shown in figure, the trends were also
decreasing, indicating that the H2O2 was highly decomposed at alkaline pH [34].

In addition, H2O2 blank (3 mM H2O2), adsorption blank ([catalyst] = 1.0 g L−1), and
quenching tests (using 2-propanol) were performed to quantify their contribution to the
CWPO reaction of the NAP–DCF mixture. The results are depicted in Figure S5 of the
Supplementary Material. The tested operating conditions were the same of the previous
CWPO tests ([NAP]0 = [DCF]0 = 5.0 mg L−1, pH = 6.5 and 50 ◦C). In the case of quenching
tests, 3 mM H2O2 and 1.0 g L−1 of catalysts were used. The results of these tests confirmed
that adsorption (DCF removal of 10%) and H2O2 test had low contribution in the removal
of the drugs, whereas in quenching test was observed a 40% of removal of DCF. Therefore,
CWPO was the main process involved in the removal of the drugs.

2.6. H2O2 Activation on Fe3O4/MWCNTs

EPR measurements were used to identify •OH radicals generated by Fe3O4/MWCNTs-
H2O2. 5, 5-dimethyl-1pyrroline N-oxide (DMPO) was used as a spin trapping agent, to
form the DMPO adduct in the Fe3O4/MWCNTs-H2O2 system and so identify the •OH
radicals [37] (Figure 7). As illustrated in Figure, compared to signal intensity of DMPO
only and DMPO plus catalyst, the formation of DMPO- HO signal in Fe3O4/MWCNTs-
H2O2 system was observed at 0 min and 23 min, indicating that H2O2 in the presence of
the catalyst was decomposed into •OH radicals. Furthermore, no other radical signals
were observed, suggesting that •OH radicals were the main active species involved in the
removal of NAP and DCF [38].
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Figure 7. EPR spectra of DMPO, DMPO with catalyst, and DMPO adducts formed in CWPO reaction.

2.7. Proposed Reaction Mechanisms for the Degradation of DCF and NAP by CWPO

A sample from CWPO effluent was submitted for the extraction of the organic com-
pounds. The sample comes from a CWPO reaction carried out at 5 mg L−1 of NAP,
5 mg L−1 of DCF, 1.0 g L−1 of catalyst 4, 3 mM of H2O2 and 50 ◦C. The extraction method
has been previously described by Zgoła-Grześkowiak [39]. The organic compounds ex-
tracted were analyzed by (−/+)-ESI–LC–MS technique. NAP and DCF standards were also
analyzed by LC–MS to contrast with the sample injected. A total of thirty peaks between
NAP (14) and DCF (16) that can be attributed to intermediate compounds were identified
in the treated CWPO sample after 3 h reaction time (Figure S6 and Tables S3 and S4 in
the Supplementary Material). In the case of the standards, the characteristic peak of NAP
(naproxen M = (C14H13O3)-; molecular weight = 230 g mol−1; tR = 19.9 min) and DCF
(DCF M = (C14H10NCl2O2)-; molecular weight = 295 gmol−1; tR = 22.7 min) were identified
(Figure S7a,b of the Supplementary Material).

Figure 8 depicts the possible simplified reaction mechanism of NAP degradation
based on the byproducts identified by the ESI–LC–MS technique. The detected ions (−)-ESI
m/z was 228.8, 204.6, 149.8, 249.8, 187, 216.7, 185, 201, 175, 207, 147 and 128.9, and they
were labeled with a letter C and consecutive numbers (Table S3 of the Supplementary
Material). The formation of the Cs (C1, C2, C3, C4, C8, C9, C10, C11, C12 and C13) may
be due to the rapid attack of •OH radicals via hydroxylation process, which is a common
reaction pathway in •OH reaction with aromatic molecules [40–42], with the subsequent
demethoxylation (C1 and C3) [42] or decarboxylation (C5, C6, C7). In this pathway, two
intermediates (C6 (m/z 184.9) and C7 (m/z 216.7)) had higher intensity.

In route A, occurred the •OH attack in only one aromatic ring, opening it in the left
and forming C2 (m/z 249.8). Consequently, the broken ring, C2, experiments the •OH
attack with the subsequent decarboxylation, leading to the formation of C3 (m/z 204.6) [42].
Sequentially, demethoxylation of C3 by •OH attack and later decarboxylation leads to
the production of C4 (m/z 149.8). The generation of C12 (m/z 213) comes from the first
decarboxylation of C4, and then this reacts with •OH, causing the opening ring [42]. The
cleavage of m/z 213 by •OH attack leads to the formation of C13 (m/z 128.9) and C14
(m/z 101) byproducts.

In route B, NAP is converted to the corresponding carboxyl radical by •OH and the
subsequent decarboxylation yields C5 (m/z 186.8). Thus, the presence of C5 has been re-
ported by Kanakaraju et al. (2015). The abstraction of hydrogen of C5 yields C6 (m/z 184.9),
and the •OH attack on the vinyl group of C6 resulted in the formation of C7 (m/z 217) and
C8 (m/z 200.9) (2-acetyl-6-methoxynaphthalene) [41,43]. Sequentially, the demethoxyla-
tion of C7 (1-(6-methoxynaphthalen-2-yl) ethylhydroperoxide) by the attack of •OH and
subsequent decarboxylation yields C9 (m/z 175) (naphthalene-1, 3, 7-triol), C10 (m/z 207)
(naphthalene-1,2,3,4,6-pentaol) [17] and C11 (m/z 147) (2-oxo-3-hydroxyldicarboxyl-dioic
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acid). These intermediates were also reported in the literature as the most common NAP
degradation byproducts by •OH -based oxidation processes [17,40,41].
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Figure 8 Figure 8. Proposed reaction pathway for the degradation of NAP by CWPO.

Regarding the DCF byproducts from the treated CWPO sample, the proposed struc-
tures of intermediates after 3 h reaction time at the specified operating conditions are listed
in Table S4 (Supplementary Material). In contrast to other advanced oxidation technologies,
the number of found intermediate compounds was considerably lower [44]. Based on the
intermediates identified by ESI–LC–MS, a reaction pathway for the degradation of DCF by
CWPO was proposed (Figure 9).
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Figure 9 Figure 9. Proposed reaction pathway for the degradation of DCF by CWPO.

Route A, C2 (5-hydroxy-diclofenac) indicates hydroxylation as one of the first steps [45].
Then, C3 (diclofenac-2, 5-iminoquinone) is formed from C2 (5-hydroxy-diclofenac) by •OH
attack and abstraction of H• [46]. Subsequent decarboxylation on C3 (diclofenac-2, 5-
iminoquinone) produces C4 (m/z 229.8) by •OH attack. The cleavage of C4 caused by •OH
leads to form C5 (m/z 375), and then the decarboxylation of C5 generates C6 (m/z 364).
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Subsequently, the hydrogen abstraction from C6 leads to the formation of C7 (m/z 362).
After several •OH attacks of C7, C8 (m/z 175) is generated.

Degradation route B is started with the decarboxylation by the attack of •OH at
the aromatic ring. Degradation route C is beginning with the chlorination of C1 on one
aromatic ring leading to the formation of C9 (m/z 329.1). Subsequently, decarboxylation
on C9 forms C10 (m/z 284). Then hydroxylation occurs on C10 leading to the formation
of C12 (m/z 299.1). Next, C12 (m/z 299.1) is attacked for •OH in the NH bridge. In this
reaction C16 (2-oxo-3-(1-carboxymethyl) pentanedioic acid (m/z 201)) is formed primarily
and C13 (2, 6-dichloroaniline (m/z 160.8)). Pathway D showed the dehydration of DCF
leading to the formation of C14 (m/z 277).

2.8. Catalytic Wet Peroxide Oxidation Treatment of Different Real Water Matrices

To test the feasibility of CWPO for wastewater treatment, three CWPO experiments
were carried out to treat three real environmentally relevant aqueous matrices. Specifically,
surface water (SW), wastewater treatment plant (WWTP) effluent and hospital wastewater
(HW) spiked with the NAP–DCF mixture were treated by CWPO. Before the treatment,
the aqueous matrices were characterized, and the results are summarized in Table S5
(Supplementary Material). The initial reaction conditions were 3 mM H2O2 dosage, 1 g L−1

of catalyst 4, and 50 ◦C. The results of the treatments are depicted in Figure 10a.
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As can be expected, CWPO treatment was able to remove total organic carbon (TOC)
from real aqueous matrices (i.e., 50 and 40% of TOC removal for SW and WWTP effluent,
respectively) (Figure 10a). However, TOC removal found for HW spiked with NAP–DCF
was the lowest (11%). These results agree with the obtained H2O2 removal efficiencies,
which are shown in Figure 10b. The highest consumption values of H2O2 in the CWPO
were found for SW and WWTP effluent, directly related to the efficient TOC removal from
these aqueous matrices.

Effluent Disinfection by CWPO

All real water matrices were tested for the presence and enumeration of total aerobic
mesophilic, total coliforms, Escherichia coli, Enterococcus spp., Pseudomonas aeruginosa, Clostrid-
ium perfringens, and molds and yeasts according to International Standards Organization
(ISO) techniques. The results are summarized in Table S6 of the Supplementary Material.

At first, the three raw aqueous matrices (entries 1, 2 and 3) presented Clostridium
perfringens and aerobic mesophilic bacteria. Since the real matrices are heterogeneous,
distinct microorganisms can be found in each matrix [47]. Therefore, the matrices spiked
with NAP–DCF mixture (entries 5, 6 and 7) presented those microorganisms as well. The
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matrices were treated by CWPO for a 3 h reaction time, but the microorganisms persisted
(entries 8, 9 and 10). However, after 8 h of CWPO treatment, they were removed from the
real aqueous matrices (entries 12 and 13), excepting the SW–NAP–DCF effluent (entry 11).
It is important to highlight that the increase of molds and yeasts in CWPO effluent of SW
could be due to the generation of derived reactions, which could be the necessary nutrients
for this bacteria growth [48]. In this sense, the organic compounds generated in CWPO
processes could be used as nutrients for microorganisms. In the same way, the appearance
of the microorganisms in CWPO effluent of SW–NAP–DCF after 8 h could also be due to
the derived compounds generated in the CWPO reaction.

On the other hand, CWPO treatment was also able to remove Enterococcus spp. from
HW (entry 10), and Enterococcus spp. and total coliforms from HW–NAP–DCF (entry 13).
In previous research has been reported that CWPO was able to remove those kinds of
bacteria [49]. Therefore, CWPO is an alternative technology to eliminate pathogenic bacteria
that could be resistant to antibiotics from some water matrices, such as HW and WWTP
effluent [47]. Furthermore, CWPO was able to eliminate the toxicity since the growth of
some microorganisms in the SW matrix was promoted.

3. Materials and Methods
3.1. Materials

MWCNTs (diameter of 30–50 nm; length of 20 mm) were supplied by Sun Nanotech
Co. Ltd. in Beijing, China. FeCl3·6H2O, FeCl2·4H2O, ammonia solution 25%, TiOSO4 and
H2O2 30% (w/w) were purchased from Sigma-Aldrich (Overijse, Belgium). NAP and DCF as
sodium salts with a purity of more than 98% were purchased from Sigma-Aldrich. All the
solutions used in the experiments were prepared in ultrapure water (ELGA, Veolia Water,
UK). Furthermore, a mini magnetic stirrer with a plastic cover for magnetic stirring and an
Aitsite magnet NFD 60 for separation of the solid from the reaction medium was required.

3.2. Synthesis of the Catalyst
3.2.1. Functionalization of MWCNTs and Preparation of the Catalyst (Fe3O4/MWCNTs)

The oxidative treatment of MWCNTs and preparation of the catalysts were carried
out following the procedures reported by Yu et al. [20], with some modifications. Briefly,
the commercial MWCNTs were oxidized with H2O2 solution (18% w/w) at 80 ◦C for 4 h.
Afterward, they were washed until neutral pH and then dried in an oven at 100 ◦C for 10 h.
The pretreated MWCNTs obtained were labeled as functionalized MWCNTs (FMWCNTs).
Then, the magnetic catalyst was prepared using different amounts of iron and FMWCNTs.
Table 5 shows the amounts used in the preparation of the different catalysts. Thus, the
FMWCNTs were dissolved in 120 mL of ultrapure water by vigorously stirring under
the purge of nitrogen gas at 60 ◦C. Then, FeCl3·6H2O and FeCl2·4H2O were added, and
immediately after, 0.5 mL of NH4OH was added. The suspension was stirring for 30 min
under nitrogen gas, and the Fe3O4/MWCNTs colloidal solution was formed. The obtained
colloidal solution was transferred and sealed into a Teflon-lined autoclave reactor and then
kept at 120 ◦C for 15 h. After, the precipitate was separated from the aqueous medium by
a magnet and then washed with ultrapure water until the washing water reached a pH
value of 6.5. Subsequently, they were dried in a vacuum oven at 60 ◦C for 24 h. Finally, the
solid materials were labeled with their corresponding number (Table 5).

Table 5. Composition of the prepared Fe3O4/MWCNTs catalysts.

Catalyst 1 Catalyst 2 Catalyst 3 Catalyst 4 Catalyst 5 Magnetite

MWCNT (g) 0.1 0.15 0.2 0.1 0.2 0
FeCl2·4H2O (g) 0.08 0.09 0.1 0.1 0.08 0.08
FeCl3·6H2O (g) 0.28 0.28 0.28 0.28 0.28 0.28
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3.2.2. Support and Catalyst Characterization

A transmission electron microscope (TEM, JEOL 3000F) was used for studying the
morphology of the catalyst and the distribution of the magnetic nanoparticles on the
MWCNTs. The thermogravimetric analyses (TGA) were carried out in a thermal analyzer
TGA Q500 (STA 6000, PerkinElmer, Inc., Waltham, MA, USA) under airflow, following a
heating rate of 10 ◦C min−1 from 30 to 1000 ◦C. Thermo Nicolet F-TIR spectrophotometer,
in a wavelength range from 400 to 4000 cm−1, was used to record the Fourier-transform
infrared spectra of the samples. The textural properties of the materials were studied by
N2 adsorption–desorption isotherms at 77 K obtained in an ASAP 2020 apparatus, with
the samples outgassed for 3 h at 250 ◦C before the measurement. The specific surface
area of the solids (SBET) was calculated using the Brunauer–Emmett–Teller (BET) equa-
tion, and the micropore volume (VMic) was estimated by using Dubinin–Radushkevich
equation. The elemental microanalysis was accomplished in a LECO CHNS-932 analyzer,
where 0.6–1.6 mg of sample was held in a combustion furnace at 1000 ◦C. An MPMS-5S
superconducting quantum interference device (SQUID, San Diego, CA, USA) was used
for determining the magnetic properties of the catalyst. Thus, the total iron content of the
samples was measured using wavelength dispersive X-ray fluorescence analysis (WDXRF).
The measurements with the WDXRF technique were performed using an Aχios spectrome-
ter (PANalytical) equipped with an Rh anode X-ray tube with a maximum power of 4 kW.
For the identification of the •OH radicals, continuous-wave (CW) electron paramagnetic
resonance (EPR) spectra of the samples were recorded at 333 K with an X-band EMX
spectrometer (Bruker, Germany). The spectrometer settings for all spectra were as follows:
center field, 3360 G; microwave power, 1 mW; microwave frequency, 9.46 GHz; sweep
width, 300 G; modulation amplitude, 10.25 G; time constant, 10.24 ms; sweep time, 41.943 s;
accumulation, 2 scans.

3.3. Catalytic Wet Peroxide Oxidation Tests

A typical batch CWPO experiment was carried out in a three-neck round-bottomed
flask using magnetic stirring, where 130 mL of NAP–DCF mixture solution (5 mg L−1 each
one) was added. The reactor had a reflux condenser and was maintained at a constant
temperature using a thermostatic bath. pH was adjusted to the desired value (using 1 M
sulfuric acid solution) after the solution reached the required temperature; then 0.13 g of
catalyst and immediately after the desired hydrogen peroxide dose were added, being this
time considered as zero for the catalytic reaction. Samples were collected at regular time
intervals and immediately filtered through a 0.45 µm PTFE filter.

Reuse tests were performed in the same way after the recovery of the catalyst at a
3 h reaction time. The catalyst was separated from the reaction medium by the action of a
magnet, and the treated effluent was filtered. The catalyst was washed several times with
ultrapure water and dried before being used in the next reaction cycle.

3.4. Statistical Analysis through Response Surface Methodology: Box–Behnken Design

In this work, the effect of the operating parameters on the catalytic degradation of the
NAP–DCF mixture was investigated. The statistical design was carried out testing three
factors: temperature, initial pH and H2O2 dose, as operation parameters to determine the
optimum removal of the mixture. In sequence to give a new response surface, the catalyst
concentration in a NAP–DCF mixture solution (C0 = 5 mg L−1 each one) was maintained
constant at 1.0 g L−1. This concentration was taken as a reference from some previous
research on CWPO [10].

For this evaluation, Box–Behnken design (BBD), a response surface methodology
(RSM), was applied [32]. They used coded levels of BBD are shown in Table 6. In this study,
only 15 experiments were needed, including four replicates (see Table 3).
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Table 6. Experimental design levels with three variables.

Levels Box–Behnken Design A (H2O2) (mM) B (Temperature) (◦C) C (Initial pH)

Low (−1) 0.50 50 6.5
Medium (0) 1.75 60 7.0
High (+1) 3.00 70 7.5

The data were analyzed by RSM, and the commercial software used was Minitab [50].
Multiple linear regression analysis for the experimental data followed by F-test lack of fit
and other tests were performed to select the best correlation.

The analysis of the RSM by Minitab provided a quadratic polynomial, Equation (9),
which fitted the experimental data [50]:

γ = β0 +
j

∑
i=1

βixi+
k

∑
i=2

βiix2
i +

i<j

∑
i

∑
j

βijxixj (9)

where γ is the removal of NAP or DCF (%), β0 is a fixed coefficient, βi, βii and βij are the
coefficients for the linear, quadratic and interaction effects, and Xi and Xj are the coded
values of the independent input variables.

3.5. Analytical Methods

NAP and DCF concentration was analyzed by high-performance liquid chromatogra-
phy, HPLC-UV (Varian ProStar, Bruker, Billerica, MA, USA), using a PerkinElmer column
(250 × 4.6 mm2 i.d., 5 µm) as stationary phase. The analyses were performed at 274 nm,
using a 50/50% (v/v) ratio of acetonitrile/acidified water solution (0.1% H3PO4) as mobile
phase (0.5 mL min−1) and a loop volume of 20 µL.

H2O2 concentration was measured at a wavelength of 410 nm using a UV-vis spec-
trophotometer (Lambda 35, PerkinElmer, Inc., Waltham, MA, USA) after adding titanium
(IV) oxysulfate solution to the sample.

The real water aqueous matrices were characterized by the measurement of the total
organic carbon (TOC) and the total nitrogen (TN) concentrations using a TOC analyzer
(Shimadzu TOC VSCH, Kyoto, Japan), and the chemical oxygen demand (COD), conductiv-
ity, suspended solids concentration, aromaticity, phenolic compounds and nitrate (NO3−)
ions concentration were measured according to standard methods for the examination of
wastewater [51].

Intermediate byproducts generated in the CWPO process were identified by liquid
chromatography (LC) after being extracted by a dispersive liquid–liquid microextraction
procedure [39]. The LC (1100, Agilent Technologies, Palo Alto, CA, USA) was coupled to a
Bruker HCT-Ultra PTM 14 Discovery ion trap mass spectrometer (Bruker Daltonik, Bremen,
Germany). The ESI ion source was operated in negative ion mode for all the analyses. The
DCF and NAP standards were also injected in LC chromatograph.

3.6. Microbiological Analysis

All water samples were tested for the presence and enumeration of total aerobic
mesophilic, total coliforms, Escherichia coli, Enterococcus spp., Pseudomonas aeruginosa,
Clostridium perfringens, and molds and yeasts according to International Standards Or-
ganization (ISO) techniques.

To determine total coliforms, E. coli, C. perfringens, Enterococcus spp. and P. aeruginosa,
effluents were filtered through nitrocellulose membranes (0.45 µm pore size, 47 mm diam-
eter, Merck, Darmstadt, Germany) followed by plating on selective media. A volume of
10 mL of each sample was filtered through the membrane filter for the determination and
enumeration of E. coli, total coliforms, Enterococcus spp., C. perfringens and P. aeruginosa.

Regarding the total coliforms and E. coli, membranes were plated on Chromocult®

(Merck, Germany), followed by incubation at 37 ◦C for 48 h. Enterococcus spp. were isolated
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by plating the membranes on Slanetz and Bartley medium (OXOID, Altrincham, UK) and
subsequently incubated at 37 ◦C for 48 h. For C. perfringens, membranes were transferred on
tryptose–sulfite–cycloserine agar (Merck, Germany), and plates were incubated at 37 ◦C for
24 h. To detect P. aeruginosa, membranes were plated onto Pseudomonas agar base (OXOID,
UK) with cetrimide and were incubated at 37 ◦C for 48 h.

For the enumeration of total mesophilic aerobic respiration, the pour plate count
method was selected, using 10 mL of each water sample taken aseptically and homoge-
nized with 90 mL of peptone water (Merck, Germany). Afterward, 1 mL of a sample of
appropriate dilutions were poured or spread onto plate count agar (OXOID, UK) plates,
which were incubated at 30 ◦C for 72 h. Yeast and molds were determined by count in
YGC agar (Merck, Germany), which were incubated at 25 ◦C for 6 days. All colonies were
counted as colony forming units (CFU) per milliliter of the water sample. Three sets of
plates were prepared for all samples.

4. Conclusions

NAP–DCF mixture in aqueous solution was efficiently treated by catalytic wet per-
oxide oxidation (CWPO) in a batch reactor using synthesized magnetite supported on
multiwalled carbon nanotubes (Fe3O4/MWCNTs) catalyst. RSM–BBD methodology was
successfully applied to evaluate the effect of operating parameters on CWPO of NAP–DCF
mixture. The main effect on CWPO came from the initial pH solution; thus, low pH values
(6.5) favored the NAP–DCF removal, whereas high values led to an extremely decreasing
mixture removal. Furthermore, high temperature also contributed to the increase of the
removal of the drugs. The highest removal of NAP (19%) and DCF (54%) were obtained at
1.75 mM H2O2 dosage, pH 6.5 and 70 ◦C. Higher removal of the drugs was not observed
since pH up to 6.3, since at these conditions, the scavenging of the hydroxyl radicals
was favored. On the other side, the alkaline pH may favor the removal of DCF over the
removal of NAP since the first has two opposite rings in the molecule and the second two
benzene rings joined together. Regarding the stability of the catalyst, it showed good drug
removal results during the two first cycles (>45% for NAP and 20% for DCF). Therefore, the
CWPO efficiency in the third cycle decreased due to the increase in the pH solution (7.5).
Finally, pathogenic bacteria were efficiently removed from three environmentally relevant
aqueous matrices spiked with a NAP–DCF mixture treated by CWPO. This work shows
the successful application of the CWPO process using Fe3O4/MWCNTs for the removal of
the drug mixture in synthetic and real wastewater effluents.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11040514/s1, Figure S1: Hydrogen peroxide efficiencies on (a) NAP and (b) DCF
degradation using the different catalyst; Figure S2: Linear correlation between the experimental
and the predicted values of (a) NAP and (b) DCF removal efficiency; Figure S3: Combined effect
of temperature and H2O2 on the removal of (a) NAP and (b) DCF.; Figure S4: Hydrogen peroxide
efficiencies on NAP and DCF degradation at optimal conditions, Figure S5: Adsorption blank
with the catalyst 4, H2O2 blank and quenching test of CWPO for (a) NAP and (b) DCF, Figure S6:
Intermediaries’ peaks between NAP (12) and DCF (16) identified in the treated CWPO sample, Figure
S7: Characteristic peaks of the (a) NAP and (b) DCF Standards, Table S1: p-test significance of model
terms in the NAP quadratic polynomial model, Table S2: p-test significance of model terms in DCF
quadratic polynomial model, Table S3: Possible intermediates of NAP decomposition in catalytic
wet peroxide oxidation with Fe3O4/MWCNTs, Table S4: Possible intermediates of DCF degradation
in catalytic wet peroxide oxidation with Fe3O4/MWCNTs, Table S5: Representative analysis of the
three real aqueous matrices, Table S6: Microbiological counts of the three real aqueous matrices and
their CWPO effluents.
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