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Abstract : There exists a strong connection between the concept of (sub)normality and that
of moment problem. They interact very often, sometimes in a subtle, unexpected way. It
is possible to use a (sub)normality result, providing eventually a spectral measure, used to
solve a moment problem. Conversely, there are situations when the solution to a moment
problem leads to the existence of a normal extension for some operators. The present work
endeavor to present several results sustaining the interplay mentioned above, as well as the
necessary background to understand those phenomena, both is a bounded or a unbounded
context.
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1. Bounded subnormal operators

1.1. Introduction We start by presenting the concepts of operator-
valued positive measure and spectral measure. More details can be found in
[8], [12] or [25].

Let Ω be an arbitrary set and let P(Ω) be the family of all subsets of Ω.
We recall that a nonempty family Σ ⊂ P(Ω) is said to be a σ-algebra if it has
the following properties:

(i) ∅ ∈ Σ ;

(ii) if S ∈ Σ, then Ω \ S ∈ Σ ;

(iii) if Sk ∈ Σ, k = 1, 2, 3, . . . , then
⋃

k≥1 Sk ∈ Σ .

From now on we assume that Ω is a (topological) Hausdorff space. We
denote by Bor(Ω) the smallest σ-algebra in P(Ω) containing all open (equiv-
alently closed) subsets of Ω. Each element of S ∈ Bor(Ω) is called a Borel
subset of Ω.

† This text is a written version of the lectures given by the author within the Fourth
Advanced Course in Operator Theory and Complex Analysis, held at the University of
Sevilla, June 18-20, 2007.
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Let also H be a fixed complex Hilbert space and let B(H) be the algebra of
all bounded linear operators acting in H. The identity on H will be denoted
by IH or simply by I.

Definition 1.1. An operator-valued positive measure (or simply a posi-
tive measure ) on Ω is a map F : Bor(Ω) → B(H) with the following properties:

(1) F (S) ≥ 0 for all S ∈ Bor(Ω);

(2) F (∅) = 0, F (Ω) = I;

(3) for every sequence (Sk)k≥1 of mutually disjoint Borel sets and each
x ∈ H, the series

∑
k≥1 F (Sk)x is convergent in H and one has

F


⋃

k≥1

Sk


x =

∑

k≥1

F (Sk) x .

If, moreover,

(4) for every pair S1, S2 ∈ Bor(Ω) we have

F
(
S1

⋂
S2

)
= F (S1) F (S2) ,

then F is said to be a spectral measure on Ω.

Remarks 1.1. (a) If F : Bor(Ω) → B(H) is a positive measure, then
for each finite family (Sk)m

k=1 consisting of mutually disjoint Borel subsets, we
have

F




m⋃

k≥1

Sk


 =

m∑

k≥1

F (Sk) ,

as a consequence of (2) and (3). In particular, if S1 ⊂ S2, if F (S2)−F (S1) =
F (S2 \ S1) ≥ 0.

(b) If F : Bor(Ω) → B(H) is a spectral measure, then F (S) is an orhogonal
projection for all S ∈ Bor(Ω). Indeed, F (S)∗ = F (S) by (1) and F (S)2 =
F (S), via (4).

Given a positive measure F : Bor(Ω) → B(H), for all pairs (x, y) ∈ H we
set

Fx,y(S) = 〈F (S)x, y〉 , S ∈ Bor(Ω) ,
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which are scalar measures. Note that Fx,x is positive for all x ∈ H.

An important tool for the study of (operator-valued) positive measures is
the following classical theorem, due to Naimark (see [21]):

Theorem 1.1. Let F : Bor(Ω) → B(H) be a positive measure. There
exist a Hilbert space K ⊃ H and a spectral measure E : Bor(Ω) → B(K)
such that F (S) = PE(S)|H for all S ∈ Bor(Ω), where P is the orthogonal
projection of K onto H.

We recall that a complex-valued map f on Ω is said to be a Borel function
if f−1(A) ∈ Bor(Ω) for each A ∈ Bor(C). Let B(Ω) be the set (in fact, an
algebra) of all Borel functions on Ω and B∞(Ω) the subset (in fact, a sub-
algebra) of all bounded functions from B(Ω).

Given a positive measure F : Bor(Ω) → B(H) and a function f ∈ B∞(Ω),
we can construct, as in the scalar case, the “integral” of the function f with
respect to the measure F , which is an element of B(H) denoted by

∫
Ω f dF .

Moreover, the map

B∞(Ω) 3 f 7−→
∫

Ω
f dF ∈ B(H) (1)

is linear, unital, contractive and involutive. If, in addition, the measure F is a
spectral measure, the map (1) is also multiplicative. As both B∞(Ω) and B(H)
are C∗-algebras, the map (1) is therefore a unital C∗-algebra homomorphism,
provided that F is a spectral measure. In particular, setting Nf =

∫
Ω f dF

for some f ∈ B∞(Ω), the adjoint N∗
f of Nf is precisely Nf̄ and we have that

N∗
f Nf = NfN∗

f ( = N|f |2). In other words, the operator Nf is normal. The
converse is also true:

Theorem 1.2. Let N ∈ B(H) be a normal operator and let σ(N) be the
spectrum of N . There exists a unique spectral measure EN : Bor(σ(N)) →
B(H) such that

N =
∫

σ(N)
z dEN (z) .

Theorem 1.2 is a fundamental result in operator theory, known as the
spectral theorem for normal operators (see, for instance, [25]).

Normal operators form a class in B(H) whose members are fairly well
understood. For this reason, mathematicians have tried to study some larger
classes, related to that of normal operators. One of them is the class of
subnormal operators, which will be discussed in the next section.
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1.2. Subnormal operators It was Halmos (see [16]) who first isolated
the class of subnormal operators as restrictions of normal operators to invari-
ant subspaces (which are not necessarily normal). More precisely, we have the
following:

Definition 1.2. An operator S ∈ B(H) is said to be subnormal if there
exists a Hilbert space K ⊃ H and a normal operator N ∈ B(K) such that
S = N |H.

In particular, H is invariant under N and Sk = Nk|H for all integers k ≥ 1.

Example 1.1. One of the simplest yet interesting example of a subnormal
operator is the following. Let T be the unit circle in the complex plane and
let L2(T) be the Hilbert of all square integrable complex-valued functions
with respect to the normalized Lebesgue measure on T. The (multiplication)
operator N on L2(T), given by Nf(ζ) = ζf(ζ), is normal, as it is easily seen.
The Hardy space H2(D), consisting of those functions from L2(T) having an
analytic extension to unit disk in the complex plane D, is a closed subspace
of L2(T), invariant under N . Thus the operator S = N |H2(D) is a subnormal
operator which is non trivial in the sense that S is not normal.

The next result is a (very elegant and useful) criterion of subnormality,
due to Halmos and Bram (see [10]).

Theorem 1.3. An operator S ∈ B(H) is subnormal if and only if

n∑

j,k=0

〈
Sjxk, S

kxj

〉
≥ 0 (HB)

for all finite collections of vectors x0, x1, . . . , xn ∈ H.

The necessity of the (HB) condition is easily obtained. Indeed, it is clear
that

n∑

j,k=0

〈
Sjxk, S

kxj

〉
=

n∑

j=0

∥∥N j∗xj

∥∥2 ≥ 0 ,

where N is any normal extension of S. The sufficiency is much more elaborated
(see [16] or [13]).

Another criterion of subnormality, due to M. Embry (see [13]), is expressed
in terms of positive measures. Specifically, we have the following:
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Theorem 1.4. An operator S ∈ B(H) is subnormal if and only if there
exists a positive measure F : Bor

(
[0, ‖S‖) → B(H) such that

S∗nSn =
∫ ‖S‖

0
tn dF (t)

for all integers n ≥ 0.

With the terminology from the theory of operator moment problems (see
[19], [22], [31], . . . ) the operator S is subnormal if and only if the sequence
(S∗nSn)n≥0 is a Hausdorff operator moment sequence.

The result of Halmos-Bram (Theorem 1.3) has been extended to arbitrary
families of operators. To exhibit such a result, due to Ito (see [17]), let Γ be a
fixed (non-null) abelian semi-group. A representation of Γ in B(H) is a map
Γ 3 γ 7→ Sγ ∈ B(H) such that Sγ1Sγ2 = Sγ1+γ2 for all γ1, γ2 ∈ Γ and S0 = I.
Such a representation is said to satisfy the Halmos-Bram-Ito-condition (briefly
(HBI)-condition) if

n∑

j,k=1

〈
Sγjxk, Sγk

xj

〉 ≥ 0

for all finite collections x1, . . . , xn ∈ H and γ1, . . . , γn ∈ Γ.
A representation Γ 3 γ 7→ Sγ ∈ B(H) is said to have a normal extension if

there exists a Hilbert space K ⊃ H and a representation Γ 3 γ 7→ Nγ ∈ B(K)
such that Nγ is normal and Sγ = Nγ |H for all γ ∈ Γ.

A version of the Halmos-Bram theorem, due to Ito, sounds like that:

Theorem 1.5. A representation Γ 3 γ 7→ Sγ ∈ B(H) has a normal exten-
sion if and only if it satisfies the (HBI)-condition.

An interesting application of the Halmos-Bram criterion is the following
result, due to A. Atzmon (see [7]):

Theorem 1.6. Let (αm,n)m,n≥0 be a double sequence of complex num-
bers. There exists a (scalar) positive measure on the closed unit disk D such
that

αm,n =
∫

D
zmz̄n, m, n ≥ 0

if and only if ∑

m,n,j,k≥0

αm+j,n+k cn,j c̄m,k ≥ 0
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for every double sequence (cn,j)n,j≥0 with finite support, and

∑

m,n≥0

(
αm,n − αm+1,n+1

)
wmw̄n ≥ 0

for every sequence (wn)n≥0 with finite support.

This is, in fact a solution of the moment problem in the closed unit
disk D (see the next section for formal definitions), whose proof, as given
by A. Atzmon, uses Theorem 1.3.

1.3. Moment problems in semi-algebraic sets Let t = (t1, . . . , tn)
denote the variable in the real Euclidean space Rn, and let Pn be the algebra
of all polynomial functions in t1, . . . , tn, with complex coefficients. Let also
Zn

+ be the set of all n-tuples of nonnegative integers (i.e., multi-indices). If
α = (α1, . . . , αn) ∈ Zn

+ is an arbitrary multi-index, we put tα = tα1
1 · · · tαn

n .
Let γ = (γα)α∈Zn

+
be an n-sequence of real numbers. We set

Lγ(tα) = γα , α ∈ Zn
+ , (2)

and extend Lγ to Pn by linearity.
The n-sequence γ = (γα)α∈Zn

+
is said to be positive semi-definite if Lγ is

positive semi-definite (that is, Lγ(pp̄) ≥ 0 for all p ∈ Pn).
Let K ⊂ Rn be a closed set. The n-sequence γ is said to be a K-moment

sequence [9] if there exists a positive Borel measure µ on K such that tα ∈
L1(µ) and γα =

∫
K tα dµ(t) for all α ∈ Zn

+. When such a measure µ exists,
then it is called a representing measure of the sequence γ.

To solve the K-moment problem means to characterize those n-sequences
of real numbers γ = (γα)α∈Zn

+
(γ0 > 0) which possess a representing measure

on K (see [9]).
Let P = {p1, . . . , pm} be a finite family in Pn consisting of polynomials

with real coefficients, and let

KP =
{
s ∈ Rn : pj(s) ≥ 0, j = 1, . . . ,m

}
. (3)

A closed subset K ⊂ Rn will be called (in this text) semi-algebraic if there
exists a family P such that K = KP .

Fix P = {p1, . . . , pm} a finite family in Pn, as above. Suppose that K =
KP is compact. In this case, with no loss of generality we may and shall
assume that 0 ≤ p(s) ≤ 1 for all p ∈ Pn and s ∈ K. We also assume that
{0, 1} ⊂ P.
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We denote by ∆P the set of all products of the form

q1 · · · qk(1− r1) · · · (1− rl)

for polynomials q1, . . . , qk, r1, . . . , rl ∈ P and integers k, l ≥ 1.
We clearly have p|K ≥ 0 for all p ∈ ∆P . Note also that the set ∆P can be

explicitly constructed in terms of P.

The following assertion has been proved by the author of this text (see [33]
and [35]; see also [11], [23], [27], . . . for related results).

Theorem 1.7. Suppose that K = KP is compact and that the family P
generates the algebra Pn.

An n-sequence of real numbers γ = (γα)α∈Zn
+

(γ0 > 0) is a K-moment
sequence if and only if the linear form Lγ is nonnegative on the set ∆P .

In addition, the representing measure of a K-moment sequence is uniquely
determined.

Corollary. Let P and K = KP be as in the previous statement. Let also
γ = (γα)α∈Zn

+
(γ0 > 0) be a K-moment sequence, and let µ be the representing

measure of γ. Assume that there exists an r ∈ P (Rn) such that Lγ(rp) ≥ 0
for all p ∈ ∆P . Then

supp(µ) ⊂ {
s ∈ K : r(s) ≥ 0

}
.

If Lγ(rp) = 0 for some r ∈ P (K) and for all p ∈ ∆P , then

supp(µ) ⊂ {
s ∈ K : r(s) = 0

}
.

Remarks 1.2. (1) There are versions of the previous results stated for a
family P consisting of polynomials with complex coefficients (see [35]).

(2) Most of the classical results concerning the moment problems (e.g.,
the Hausdorff moment problem, the trigonometric moment problems etc., in
one or several variables (see also [2], [9], . . . ) are particular cases of these
results.

(3) Results concerning the decomposition of positive polynomials on semi-
algebraic compact sets can be obtained as applications of the moment results
from above (see [33] and [35]).
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1.4. Moments and subnormality That there exists a strong connec-
tion between the moment problem and subnormality has been known for a
longtime (see [31], [13], [1], [7], [6], to quote only a few).

In this section, we present some statements concerning the subnormality of
certain (multi)operators, as well as some operator moment problems, obtained
via the results from the previous section (see also [6]).

As in the first two sections, let H be a complex Hilbert space and let B(H)
be the algebra of all bounded linear operators acting on H.

If T = (T1, . . . , Tn) ∈ B(H)n is a commuting multioperator (briefly, a
c.m.), for every p ∈ P2n, p(z, z) =

∑
α,β cα,β zαzβ, we set

p(T ∗, T ) =
∑

α,β

cα,β T ∗αT β, (4)

with Tα = Tα1
1 · · ·Tαn

n for all α = (α1, . . . , αn) ∈ Zn
+.

We recall that a c.m. T ∈ B(H)n is said to be subnormal if there exist a
Hilbert space K ⊃ H and a c.m. N ∈ L(K)n consisting of normal operators
(which is called a normal extension of T ) such that Tj = Nj | H, j = 1, . . . , n.
Among all normal extensions of a subnormal c.m. T , there exists a minimal
one, which is unique up to unitary equivalence. In that case one also have
‖Tj‖ = ‖Nj‖, j = 1, . . . , n (see [17] for details).

Let K = KP be a semi-algebraic compact subset of Rn (see the previous
section). Let also τ be the mapping

Cn 3 z = (z1, . . . , zn) 7−→ (|z1|2, . . . , |zn|2
) ∈ Rn. (5)

Note that the set τ−1(K) ⊂ Cn is also compact. With this notation, we have
the following (see [33, Theorem 3.1]):

Theorem 1.8. The commuting multioperator T ∈ B(H)n has a normal
extension N ∈ B(K)n (K ⊃ H), whose joint spectrum lies in τ−1(K), if and
only if (p ◦ τ)(T ∗, T ) ≥ 0 for all p ∈ ∆P .

The next result is an enlarged version of [33, Theorem 3.4]. The method
of proof is similar to that for Theorem 1.8.

Theorem 1.9. Let Γ = (Γα)α∈Zn
+

be a sequence of bounded self-adjoint
operators on H, with Γ0 = I. Let also LΓ : Pn → B(H) be the mapping

LΓ(p) =
∑
α

cαΓα if p(t) =
∑
α

cαtα .
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Then there exists a uniquely determined operator-valued positive measure FΓ

on K such that LΓ(p) =
∫
K pdFΓ for all p ∈ P (K) if and only if LΓ(p) ≥ 0

for all p ∈ ∆P .

In the affirmative case, assume, moreover, that there exists an r ∈ Pn with
real coefficients such that LΓ(rp) ≥ 0 for all p ∈ ∆P . Then

supp(FΓ) ⊂ {
s ∈ K : r(s) ≥ 0

}
.

If LΓ(rp) = 0 for some r ∈ Pn and for all p ∈ ∆P , then

supp(FΓ) ⊂ {
s ∈ K : r(s) = 0

}
.

Remark 1.1. Theorem 1.9 contains, as a particular case, the following clas-
sical result of [31]:

A sequence (Γk)k∈Z+ in B(H) can be represented as

Γk =
∫ 1

0
tk dF (t), k ≥ 0 ,

for a certain operator-valued positive measure F on [0, 1], if and only if

m∑

j=0

(−1)j

(
m
j

)
Γj+k ≥ 0

for all integers m, k ≥ 0. See also [19] for further connections.

A consequence of Theorem is the following (see also [33, Theorem 3.4]):

Corollary. Let T ∈ B(H)n be a subnormal c.m., and assume that the
support of the representing measure FT of T is contained in the semi-algebraic
compact set K = KP .

If there exists an r ∈ Pn with real coefficients such that ((pr)◦τ)(T ∗, T ) ≥ 0
for all p ∈ ∆P , then

supp(FT ) ⊂ {
s ∈ K : r(s) ≥ 0

}
.

If there exists an r ∈ Pn such that (r ◦ τ)(T ∗, T ) = 0, then one also has
(r ◦ τ)(N∗, N) = 0, where N is the minimal normal extension of T .
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2. Unbounded subnormal operators

2.1. Unbounded normal operators The results and concepts from
this section are classical. More details can be found in [12] or [25] (see also
[26]).

LetH be a fixed complex Hilbert space. We consider linear transformations
of the form T : D(T ) ⊂ H → H, where D(T ) is the domain (of definition )
of T . Let also R(T ) = T (D(T )) and G(T ) = {(x, Tx) ∈ H ×H : x ∈ D(T )}
be the range and the graph of T , respectively. If D(T ) = H, the operator T
is said to be densely defined. If G(T ) = G(T ), the operator T is said to be
closed. If G(T ) is the graph of an operator T̄ , then T is said to be closable
and T̄ (which extends T ) is the closure of T .

Let T : D(T ) ⊂ H → H be densely defined. One defines the adjoint T ∗ of
T in the following way. The domain of T ∗ is given by

D(T ∗) =
{
y ∈ H : ∃My ≥ 0 such that | 〈Tx, y〉 | ≤ My‖x‖ , x ∈ D(T )

}
.

For each y ∈ D(T ∗), the linear functional fy(x) = 〈Tx, y〉, x ∈ D(T ), has a
bounded extension to H, thus by a classical theorem by Riesz there exists a
(unique) vector y∗ ∈ H such that 〈Tx, y〉 = 〈x, y∗〉 for all x ∈ D(T ). We set
T ∗(y) = y∗, which is linear on D(T ∗). The operator T ∗ : D(T ∗) ⊂ H → H is
called the adjoint of T .

The next three results are classical (see [12] and/or [25]).

Theorem 2.1. If the operator T : D(T ) ⊂ H → H is densely defined and
closed, then its adjoint T ∗ : D(T ∗) ⊂ H → H is also densely defined and
closed. Moreover, T ∗∗ = T .

Definition 2.1. A densely defined closed operator N is said to be normal
if NN∗ = N∗N .

Although this definition is formally the same as the corresponding one for
bounded operators, it explicitly means that

D(NN∗) =
{
x ∈ D(N∗) : N∗x ∈ D(N)

}

=
{
x ∈ D(N) : Nx ∈ D(N∗)

}
= D(N∗N)

and NN∗x = N∗Nx for all x ∈ D(NN∗) = D(N∗N).

Theorem 2.2. A densely defined closed operator N is normal if and only
if D(N∗) = D(N) and ‖N∗x‖ = ‖Nx‖ for all x ∈ D(T ).
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The most important property of a normal (not necessarily bounded) op-
erator is the existence of an associated spectral measure (already mentioned
in the bounded case; see Theorem 1.2).

Theorem 2.3. Let N : D(N) ⊂ H → H be a normal operator. There
exists a uniquely determined spectral measure E : Bor(C) → B(H) such that

〈Nx, y〉 =
∫

C
z dEx,y(z) , x ∈ D(N) , y ∈ H .

In fact, defining σ(N) as the set of those z ∈ C for which zI−N has not a
bounded inverse, which is the spectrum of N , one can prove that the support
of the spectral measure E in Theorem 2.3 is precisely σ(N).

2.2. Insufficiency of the Halmos-Bram condition As in the
bounded case, a linear transformation S : D(S) ⊂ H → H is said to be
subnormal when there exist a Hilbert space K ⊃ H and a normal operator
N : D(N) ⊂ K → K such that D(S) ⊂ D(N) and Sx = Nx for all x ∈ D(S).
A natural question is the following:

Problem. Characterize the unbounded normal operators.

As we have seen, the Halmos-Bram condition is necessary and sufficient for
the subnormality of a given bounded operator. This condition can be stated
for unbounded transformations in the following way:

n∑

j,k=0

〈
Sjxk, S

kxj

〉
≥ 0 (HBU)

for all finite collections of vectors x0, x1, . . . , xn ∈ D∞(S), where

D∞(S) =
⋂

k≥0

D
(
Sk

)
.

Although certainly necessary, the condition (HBU) is far from being suffi-
cient for the subnormality of a given linear (unbounded) transformation. The
following example, showing the insufficiency of the (HBU)-condition for sub-
normality, has been given by J. Stochel and F.H. Szafraniec (see [29]; see also
[28] and [30] for other details concerning unbounded subnormal operators).
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Example 2.1. Let γ = (γm,n)m,n≥0 be a positive semi-definite (see Sec-
tion 1.3 for this and other details) double sequence of complex numbers. In
the space of polynomials in two variables P2, we define the semi-inner product
〈p, q〉0 = Lγ(pq̄) (a classical idea which goes back to Gelfand and Naimark;
see [15]). Put I = {q ∈ P2 : 〈q, q〉0 = 0}, which is an ideal in P2. Therefore,
H0 is a P2-module. Moreover, setting 〈p̃, q̃〉 = 〈p, q〉0 for all p, q ∈ P2, where
p̃ = p + I, H0 becomes an inner product space, whose completion will be
denoted by H.

We consider in H the operator S : H0 → H, given by Sp̃ = zp + I, where
z = s + it is the complex variable and s, t the corresponding real variables.
In fact, H0 is invariant under S, and so we have D∞(S) = H0, implying
D∞(S) dense in H. In addition, H0 is algebraically generated by the set{
Sk(1 + I) : k ≥ 0

}
, and we may say that 1̃ = 1 + I is a “cyclic vector”

for S.
Assume now that S would have a normal extension N in a Hilbert space

K ⊃ H. If E is the spectral measure on N , we would have Sk(1̃) = Nk(1̃) for
all k ≥ 0. Hence

〈zm, zn〉0 =
〈
Sm1̃, Sn1̃

〉
=

∫

C
zmz̄n dE1̃,1̃(z)

for all integers m,n ≥ 0. This clearly implies that

γm,n =
∫

C
smtn dµ

for all integers m,n ≥ 0, where µ = E1̃,1̃, showing that γ is a moment sequence.
But choosing as γ a positive semi-definite sequence which is not a moment
sequence (see, for instance, [9] for the existence of such a sequence), we are
led to a contradiction. On the other hand, with γ only a positive semi-definite
sequence, and choosing q̃0, . . . , q̃n ∈ H0 arbitrary, a simple calculation shows
that

n∑

j,k=0

〈
Sj q̃k, S

kq̃j

〉
=

∥∥∥∥∥∥
∑

k≥0

z̄kqk

∥∥∥∥∥∥

2

0

≥ 0 ,

which is precisely the (HBU)-condition for S.
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2.3. Moments in unbounded sets via algebras of fractions We
first present some facts from [36] (see also [3] and [37]).

Let Ω be a compact Hausdorff space and let C(Ω) be the algebra of all
complex-valued continuous functions on Ω, endowed with the natural norm
‖f‖∞ = supω∈Ω |f(ω)|, f ∈ C(Ω). It is well known that every positive linear
functional on C(Ω) has an integral representation. Specifically, if ψ : C(Ω) →
C is linear and positive, then there exists a uniquely determined positive
measure µ on Ω such that ψ(f) =

∫
Ω f dµ, f ∈ C(Ω). As a matter of fact, if

ψ : C(Ω) → C is linear, then ψ is positive if and only if ψ is continuous and
‖ψ‖ = ψ(1).

These features of positive linear functionals can be partially or totally
recaptured in more general spaces, derived from the basic model C(Ω).

Let Q be a family of non-null positive elements of C(Ω). We say that Q
is a set of denominators if : (i) 1 ∈ Q, (ii) q′, q′′ ∈ Q implies q′q′′ ∈ Q, and
(iii) if qh = 0 for some q ∈ Q and h ∈ C(Ω), then h = 0.

Let C(Ω)/Q denote the algebra of fractions with numerators in C(Ω),
and with denominators in the family Q, which is a unital C-algebra (see,
for instance, [32] for details). This algebra has a natural involution f → f̄ ,
induced by the natural involution of C(Ω).

To define a natural topological structure on C(Ω)/Q, we note that for
every f ∈ C(Ω)/Q we can find a q ∈ Q such that qf ∈ C(Ω). If

C(Ω)/q =
{
f ∈ C(Ω)/Q : qf ∈ C(Ω)

}
,

then we have C(Ω)/Q = ∪q∈QC(Ω)/q. Setting ‖f‖∞,q = ‖qf‖∞ for each
f ∈ C(Ω)/q, the pair (C(Ω)/q, ‖ ∗ ‖∞,q) becomes a Banach space. For this
reason, C(Ω)/Q can be naturally regarded as an inductive limit of Banach
spaces (see [24, Section V.2]).

Giving two elements q, q′ ∈ Q, we say that q′ divides q (in Q) if there
exists q′′ ∈ Q such that q = q′q′′.

In each space C(Ω)/q we have a positive cone (C(Ω)/q)+ consisting of
those elements f ∈ C(Ω)/q such that qf ≥ 0 as a continuous function. We
say that f ∈ C(Ω)/q is positive if f ∈ (C(Ω)/q)+.

The positive elements of the algebra C(Ω)/Q are, by definition, the mem-
bers of the cone (C(Ω)/Q)+, consisting of all finite sums of positive elements
from the cones (C(Ω)/q)+, with q ∈ Q arbitrary. The positivity of a linear
map on C(Ω)/Q will be defined with respect to the positive cone (C(Ω)/Q)+.

In fact, a linear map ψ : C(Ω)/Q → C is positive if and only if ψ|(C(Ω)/q)+

is positive for all q ∈ Q.
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Example 2.2. Let C∞ = C ∪ {∞} be the Riemann sphere and let Ω =
(C∞)n, for a fixed integer n ≥ 1, which is a compact Hausdorff space.

Let P2n be the algebra of all polynomials in z1, . . . , zn, z̄1, . . . , z̄n, where
z = (z1, . . . , zn) ∈ Cn is the current variable. (In fact, P2n can be identified
with the algebra of polynomials in 2n real variables and complex coefficients,
and so this notation is compatible with that from the previous chapter; see
also Section 1.4. For every multi-index α = (α1, . . . , αn) ∈ Zn

+, we define

rα(z) =
(
1 + |z1|2

)α1 · · · (1 + |zn|2
)αn ∈ P2n

and qα(z) = 1/rα(z), z ∈ Cn. We note that each function qα has a unique
continuous extension to Ω, by setting qα(z) = 0 for all z ∈ Ω \Cn. Moreover,
if h ∈ C(Ω) and h(z)qα(z) = 0 for all z ∈ Cn and some α, then h = 0, since
Cn is dense in Ω. For this reason, it is clear that the set Q2n =

{
qα : α ∈ Zn

+

}
is a set of denominators, and we can form the algebra of fractions C(Ω)/Q2n.

If ξ, η ∈ Zn
+ are given, let α ∈ Zn

+ be such that 2αj > ξj +ηj when ξj 6= ηj ,
and αj ≥ ξj when ξj = ηj . In this case, the rational function

zξ z̄η

rα(z)
=

n∏

j=1

z
ξj

j z̄
ηj

j

(1 + |zj |2)αj

has a (unique) continuous extension to Ω.
For a fixed α ∈ Zn

+, let P2n,α be the linear space generated by the mono-
mials zξ z̄η, with ξ, η ∈ Zn

+ satisfying the relations from above. For each
p ∈ P2n,α, the function p/rα has a unique continuous extension to Ω, say
h, allowing us to write p(z) = h(z)/qα(z), z ∈ Cn. In this way, the space
P2n,α can be identified with a subspace of C(Ω)/qα, and so P2n is a subalge-
bra of the algebra of fractions C(Ω)/Q2n.

The Hamburger moment problem in Cn means to characterize those multi-
sequences γ = (γξ,η)ξ,η∈Zn

+
for which there exists a positive measure µ on Cn

with the property

γξ,η =
∫

Cn

zξ z̄η dµ(z) , ξ, η ∈ Zn
+.

This is equivalent to characterizing those linear forms L : P2n → C for which
there exists a positive measure µ on Cn such that L(p) =

∫
Cn pdµ for all

p ∈ P2n.
The positivity of linear forms on the algebra of fractions can be described

in the following way (see [36, Theorem 2.4]):
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Theorem 2.4. A linear map ψ : C(Ω)/Q2n → C is positive if and only if

‖ψq‖ = ψ(q−1) , q ∈ Q2n ,

where ψq = ψ|C(Ω)/q.
If ψ : C(Ω)/Q2n → C is positive, there exists a positive measure µ on

Cn such that 1/q is µ-integrable for all q ∈ Q2n and ψ(f) =
∫
Cn f dµ for all

f ∈ C(Ω)/Q2n.

Giving a solution to the Hamburger moment problem on Cn amounts
to extending the linear functionals on P2n to positive linear functionals on
C(Ω)/Q2n. The next result is an assertion in this sense (see [36, Theorem 3.7]).

Theorem 2.5. Let φ : P2n → C be linear. There exists a positive ex-
tension ψ : C(Ω)/Q2n → C of φ such that ‖ψα‖ = ‖φα‖ for all α ∈ Zn

+,
with φα = φ|P2n,α and ψα = ψ|C(Ω)/qα, if and only if ‖φα‖ = φ(q−1

α ) for
all α ∈ Zn

+.

That the condition from the statement is necessary can be easily obtained,
as follows.

If φ(p) =
∫
Cnp dµ for all p ∈ P2n,α we have

|φ(p)| ≤
∫

Cn

∣∣∣∣
p

rα

∣∣∣∣ dµ ≤ ‖p‖αφ(rα) ,

whence ‖φα‖ ≤ φ(rα). But rα ∈ P2n,α and ‖rα‖∞,qα = 1, and so ‖φα‖ =
φ(rα).

2.4. Positive maps on algebras of fractions As before, let Ω be
a compact Hausdorff space and let H be a complex Hilbert space. The next
two results are essentially due to Arveson (see [4]).

Theorem 2.6. Let Ψ : C(Ω) → B(H) be linear, positive and unital. Then
Ψ is completely positive and completely contractive.

Let us explain the meaning of this statement. We know that Ψ is linear,
Ψ(f) ≥ 0 for all positive f ∈ C(Ω) and Ψ(1) = I. If Mn(C(Ω)) is the algebra
of all n × n-matrices with entries in C(Ω), and if Ψn : Mn(C(Ω)) → B(Hn)
(where Hn is a direct sum of n copies of H) is given by

Ψn((fjk)) = (Ψ(fjk)) , (fjk) ∈ Mn(C(Ω)) ,
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the hypothesis of the theorem from above implies that Ψn ≥ 0 and ‖Ψn‖ ≤ 1
for all integers n ≥ 1. In other words, with the terminology from [4], the map
Φ is completely positive and completely contractive.

Theorem 2.7. Let M ⊂ C(Ω) be a linear subspace with 1 ∈ M. If
Φ : M→ B(H) is a unital, complete contraction, there exists a (completely)
positive map Ψ : C(Ω) → B(H) which extends Φ.

The hypothesis means that Φ(1) = I and ‖(Φ(fjk))‖n ≤ 1 for all (fjk) ∈
Mn(C(M)) and n ≥ 1, where the norm ‖(Φ(fjk))‖n is computed in B(Hn).
This hypothesis implies the existence of a Ψ : C(Ω) → B(H) which extends
Φ, having the properties from Theorem 2.6.

We fix now a set of denominators Q ⊂ C(Ω) and a dense linear subspace
D ⊂ H. Let SF(D) denote the space of all sesquilinear forms on D. Let
ψ : C(Ω)/Q → SF(D) having the following properties:

ψ(1)(x, y) = 〈x, y〉 , x, y ∈ D
and

ψ(f)(x, x) ≥ 0 , f ∈ C(Ω)/Q , f ≥ 0 , x ∈ D .

We shall briefly say that such a map ψ is unital and positive.
We also consider a subspace F =

∑
q∈QFq ⊂ C(Ω)/Q with Fq ⊂ C(Ω)/q

for all q ∈ Q, and a linear map φ : F → SF(D), which is unital, that is,
φ(1)(x, y) = 〈x, y〉, x, y ∈ D (as above). We want to extend such a map φ
to a map ψ : C(Ω)/Q → SF(D), which should be positive. The main reason
for having such an extension is that positivity of ψ implies the existence of a
positive measure F : Bor(Ω) → B(H) such that

ψ(f)(x, y) =
∫

Ω
f dFx,y , f ∈ C(Ω)/Q , x, y ∈ D

(see [3, Theorem 2.2]).
If φ : F → SF(D) and ψ : C(Ω)/Q → SF(D) are as above, we put

φq = φ|Fq, ψq = ψ|C(Ω)/q, φq,x = φq(∗)(x, x) and ψq,x = ψq(∗)(x, x) for
all q ∈ Q and x ∈ D.

We have the following extension result (see [3, Theorem 2.5] for more
general conditions):

Theorem 2.8. Let F =
∑

q∈QFq with Fq ⊂ C(Ω)/q for all q ∈ Q and
1/q′ ∈ Fq, for every q′ ∈ Q which divides q in Q. Let also φ : F → SF(D) be
linear and unital. The following statements are equivalent:
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(a) The map φ extends to a unital positive map ψ : C(Ω)/Q → SF(D) such
that ‖ψq,x‖ = ‖φq,x‖ for all q ∈ Q and x ∈ D.

(b) φ
(
q−1

)
(x, x) > 0 for q ∈ Q and x ∈ D \ {0} and, for all q ∈ Q,

x1, . . . , xn, y1, . . . , xn ∈ D with

n∑

j=1

φ
(
q−1
j

)
(xj , xj) ≤ 1 ,

n∑

j=1

φ
(
q−1
j

)
(yj , yj) ≤ 1,

and all (fjk) ∈ Mn(Fq) with ‖(qfjk)‖n,∞ ≤ 1, we have
∣∣∣∣∣∣

n∑

j,k=1

φ
(
fjk

)
(xk, yj)

∣∣∣∣∣∣
≤ 1.

Let T = (T1, . . . , Tn) be a tuple of linear operators defined on a dense
linear subspace D ⊂ H. We also assume that TjD ⊂ D and TjTkx = TkTjx
for all j, k = 1, . . . , n and x ∈ D. We define a map φT : P2n → SF(D) by the
equation

φT

(
zξ z̄η

)
(x, y) =

〈
T ξx, T ηy

〉
, ξ, η ∈ Zn

+ , x, y ∈ D ,

extended to P2n by linearity.
As a consequence of Theorem 2.8, we give the following criterion of sub-

normality for a tuple T as above (see also [3, Theorem 3.4]):

Theorem 2.9. The tuple T = (T1, . . . , Tn) admits a normal extension if
and only if for all α ∈ Zn

+, m ≥ 1, x1, . . . , xn ∈ D and y1, . . . , yn ∈ D with

n∑

j=1

φT (rα)(xj , xj) ≤ 1 ,

n∑

j=1

φT (rα)(yj , yj) ≤ 1 ,

and for all p = (pjk) ∈ Mm(P2n,α) with supt∈Cn ‖qα(t)p(t)‖m ≤ 1 we have
∣∣∣∣∣∣

n∑

j,k=1

φT

(
pjk

)
(xk, yj)

∣∣∣∣∣∣
≤ 1 .



184 f.-h. vasilescu

Other criteria of subnormality for unbounded operators can be found in
[30] (the case n = 1) and in [34], where the subject is treated via completely
different methods.
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de polynômes à plusieurs variables, J. Funct. Anal. 58 (3) (1984), 254 – 266.
[12] N. Dunford, J.T. Schwartz, “Linear Operators. Part II: Spectral Theory.

Self Adjoint Operators in Hilbert Space ”, with the assistance of W.G. Bade
and R.G. Bartle, Interscience Publishers John Wiley & Sons, New York-
London, 1963.

[13] M.R. Embry, A generalization of the Halmos-Bram criterion for subnormality,
Acta Sci. Math. (Szeged) 35 (1973), 61 – 64.

[14] B. Fuglede, The multidimensional moment problem, Exposition. Math. 1 (1)
(1983), 47 – 65.

[15] I. Gelfand, M.A. Naimark, On the imbedding of normed rings into the
ring of operators in Hilbert space, Rec. Math. [Mat. Sbornik] N.S. 12 (54)
(1943), 197 – 213.

[16] P.R. Halmos, Normal dilations and extensions of operators, Summa Brasil.
Math. 2 (1950), 125 – 134.



subnormality and moment problems 185
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