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Abstract

The improvement of high-performance computing platforms has leveraged the accele-
ration and optimization of computationally intensive applications. Since these applications
consume a large amount of resources and time, its optimization has been a key point of
research. Some examples of these applications are classical scientific applications, image
processing and deep learning techniques.

In high-performance computing platforms the optimization of these applications have
been addressed using multiple techniques. In this sense, the workload distribution technique
is widely used. This technique consists in the distribution of the workload between the
processes deployed on the different computing devices that compose the platform. Current
distributed applications usually perform a homogeneous workload partitioning between
processes composing the application without taking into account the heterogeneous features
of the resources in which they execute. As a consequence, non-optimal partitioning leads to
longer execution times. These execution times are established by the slowest process. Thus,
a heterogeneous distribution according to the capabilities of each process is needed. In order
to achieve an optimal workload distribution it is necessary to model the heterogeneity of the
platform resources. The analytical computation and communication models have traditionally
been used for modeling that resources capabilities.

This thesis proposes different methodologies with the objective of improving the perfor-
mance of high computational cost applications in heterogeneous platforms. The idea is to
characterize the computational capabilities of the processes involved in the execution of the
applications, and then perform a partition and distribution of the workload heterogeneously
in terms of such capabilities. To evaluate our proposal, experiments with common scientific
kernels and neural network based applications are performed to illustrate and demonstrate
the advantages with respect to the current techniques available in the literature.





Resumen

El desarrollo de las plataformas de computación de alto rendimiento ha potenciado
la aceleración y optimización de las aplicaciones de cálculo intensivo. Dado que estas
aplicaciones consumen una gran cantidad de recursos y tiempo, su optimización ha sido
objeto de investigación. Algunos ejemplos de estas aplicaciones son aplicaciones científicas
clásicas, procesamiento de imágenes y técnicas de aprendizaje profundo.

En este tipo de plataformas, la optimización de estas aplicaciones se ha abordado median-
te múltiples técnicas. En este sentido, el procesamiento distribuido es ampliamente utilizado
para repartir la carga de trabajo entre todos los procesos desplegados en los diferentes dispo-
sitivos de cómputo que componen la plataforma. Generalmente, las aplicaciones distribuidas
actuales suelen realizar un reparto homogéneo de la carga de trabajo sin tener en cuenta las
características de los recursos en los que se ejecutan. Como consecuencia, una partición no
óptima conduce a tiempos de ejecución que dependen únicamente del proceso más lento.
Por lo tanto, es necesario adaptar la carga de trabajo en función de las capacidades de cada
proceso. Para ello, es necesario modelar la heterogeneidad de los recursos de la plataforma.
Los modelos analíticos de cómputo y comunicación se han utilizado tradicionalmente para
establecer las capacidades de dichos recursos.

En esta tesis, se proponen diferentes metodologías con el objetivo de mejorar el rendi-
miento de las aplicaciones de alto coste computacional en plataformas heterogéneas. Para ello
es necesario caracterizar las capacidades computacionales de los procesos que intervienen en
la ejecución de las aplicaciones, para posteriormente realizar una partición y distribución
óptima. Nuestra propuesta ha sido evaluada mediante experimentos con kernels científicos
comunes y aplicaciones basadas en redes neuronales, ilustrando así los beneficios de las
técnicas propuestas con respecto al estado del arte.
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Chapter 1

General overview

1.1. Challenges of heterogeneous supercomputers

High Performance Computing (HPC) platforms have been used to tackle with high
computational demanding applications as linear algebra [78], Neural Networks (NN) [61,
28, 11], data mining [30] and Machine Learning (ML) algorithms, including classification
[69, 58, 40], regression and clustering [29]. These applications are deeply studied in Chao
Wang et al. [85]. The main reason of the HPC platforms usage is that they provide a big
amount of fast processing computational resources, distributed file systems and high speed
networks to communicate data and results between devices. Applications executed on HPC
platforms are composed of processes deployed on the platform resources that collaborate to
solve a problem. Therefore, processes use the computational and communication resources
available in the platform to perform computations and exchange results.

From a different perspective, the high computational and communication needs of the
applications have leveraged the improvements in the capabilities of the devices, allowing
the advancement of HPC environments which are continually improving their resources.
As a consequence, central processing units (CPUs), graphic processing units (GPUs), ten-
sor processing units (TPUs) or embedded devices, along with high-speed communication
networks such as Infiniband or Ethernet, are included in these platforms. In the Top-500
[27] list of supercomputers, the evolving heterogeneity is appreciated. The Top-500 is a
ranking list of supercomputers all over the world which is updated twice every year. For
example, the JUWELS supercomputer [35] is found on June 1st, 2021 in the position 8th of
this ranking. This platform is composed of two modules, Cluster and Booster. The Cluster
module provides general purpose computing with more than 2300 nodes made up of Skylake
CPUs, while the Booster module is composed of by 936 nodes with 3744 NVIDIA A100
GPUs. Both modules can be used together, providing a large amount of heterogeneous
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resources. Indeed, system provides with different available networks connections between
nodes, including the 200Gbit/s Mellanox HDR200 InfiniBand network.

a) CPUs System Share b) GPUs System Share

Figure 1.1 Detailed percentage values for Top500 heterogeneity statistics (June 2021).

In the Top500 ranking, the heterogeneity of the platforms is observable. In the recent
years, heterogeneous systems composed of nodes with CPUs+GPUs has dominated the
TOP500 ranking due to better performance. There are some exceptions of homogeneous
platforms composed of CPUs as Fugaku, Sunway TaihuLight, K-computer or Frontera.

The resulting heterogeneity of supercomputing platforms is a challenge to the achievement
of good performance of applications. Regarding the capabilities of the resources, there are
multiple works which have studied particular aspects of these components such as memory
bandwidth [79], power consumption [20, 68], on-board processing [52], performance [81]
or resource management [2, 82]. Figure 1.1 shows the heterogeneity of CPUs and GPUs
types and its usage rate in the Top500 ranking. Together with the continuous increase in the
number of devices in the platforms, also known as scaling, previous factors play a crucial
role in the application efficiency.

Scaling promotes the use of more devices to execute an application, which means a
heterogeneity increment. The scaling trends and issues for supercomputing platforms are
studied in [93, 26]. A scaling example analyzing the application speed and providing a better
understanding of the computation time is provided in [73]. It describes scalability for CPUs
and GPUs platforms using different communication links. Meanwhile, the work [54] studies
the future impact of heterogeneous scaling for diverse applications and approaches. The
advances during the recent years in these computing devices architectures (CPUs and GPUs)
are shown in the Table 1.1. It is clearly observable the development trend of architectures
in short time periods. In this aspect, there exist multiple works and studies that evaluate
the performance of different GPU and CPU architectures [15, 19, 74], demonstrating the
acceleration and performance of every architecture generation.
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Year Type Device Architecture GFLOPS Cores Memory Frequencie

2011 CPU Xeon 5690 Westmere 166 6 32 3470
2011 GPU Tesla M2090 Fermi 1331 16 177 1300
2012 CPU Xeon E5-2690 S.Bridge 372 8 51 2900
2014 CPU Xeon E5-26993 Haswell 1324 18 68 2300
2015 GPU Tesla K40 Kepler 5040 15 288 745
2015 GPU Tesla M40 Maxwell 6844 24 336 1000
2016 GPU Tesla P100 Pascal 9340 56 720 1328
2017 CPU Xeon Plat8180 Skylake 4480 28 120 2500
2017 GPU Tesla V100 Volta 14899 80 900 1380
2018 CPU Xeon Plat9282 C. Lake 9320 56 175 2600
2020 GPU Ampere A100 Ampere 19500 108 1555 1410

Table 1.1 Different compute architectures over the years for CPU and GPU devices. Memory
is shown in bandwidth (BW) units and frequency in (Mhz). Cores per GPU are streaming
multiprocessors (SM).

HPC allows the execution of parallel applications, providing the usage of a big amount
of processes deployed on the platform resources. Processes are in charge of executing data
parallel applications in a sequence of computation and communications steps. Thus, one of
the main challenges in current heterogeneous HPC platforms is to find an optimal workload
balance between processes. The simplest approach is to distribute the computational workload
in a equitable mode (homogeneously), that is, not considering the resources features of the
processes. Hence, processes are assigned with the same workload amount. As a consequence,
in the communication step, faster processes that have completed the computation step should
wait at synchronization points for the rest of the processes, which highly degrades the
overall performance. Consequently, the application time is determined by the slower process.
Meanwhile, faster processes finish its assigned computation earlier. The conclusion is
that the distribution of the workload should consider the uneven resources computational
capabilities. Heterogeneous workload distribution is based on the estimation of the processes
computational capabilities, assigning to each process a workload amount proportional to its
speed, that results in an improvement the application overall performance. Figure 1.2 shows
an example of a heterogeneous platform with deployed processes assigned with different
resources.

Nevertheless, heterogeneous workload distribution have some factors that should be
considered. Since different amounts of workload are assigned to each process, memory
capacity of each resource and process is an important factor that limits the assigned workload
size to avoid memory overloads. In addition, as the workload is partitioned and processes
have different computational capabilities, communication imbalances appears, that impact
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Figure 1.2 Example of a heterogeneous HPC platform composed of 2 Nodes. Nodes are
composed of a different number of CPU cores and GPUs. Five processes (0-4) are deployed
in the platform and assigned with different resources.

the global execution time. Finally, data movements between processes progress through
different communication channels, which are determined by the mapping of the processes on
the platform resources and the application communication pattern.

Depending on the application, the communication and computation requirements may
vary. As a consequence, applications running on modern HPC platforms with tightly coupled
computing devices should consider the following aspects for the optimization of its running
applications:

As the performance highly degrades with the heterogeneity of the platform, applications
should balance the workload considering the computational capabilities of each process,
which should be determined according to its speed.

Applications should consider memory restrictions and its representative properties to
avoid unnecessary memory overloads.

Applications should reduce communication imbalances, selecting the appropriate data
flows between processes by using adequate communication channels and communica-
tion patterns.

Hence, heterogeneous workload distribution is an optimization problem that focuses on
the previous three challenges, and it is the main motivation of this thesis. To obtain initial
insights, the following Section 1.2 describes different scientific applications addressed in
this work, also known as kernels. Then, challenges of reducing the execution time of HPC
applications using communication and computation balancing are deeply studied.
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1.2. Heterogeneous data partitioning for scientific kernels.

Data partitioning is a technique to distribute data workload between the processes running
on a given platform computational resources. This technique is based on partitioning the data
into smaller chunks or partitions. Each partition is assigned to an specific process. In high
computational demanding applications, the data partitioning and distribution is critical for
the performance of the applications. Traditionally, data partitioning techniques have been
designed to capture the application behaviour and the heterogeneity of modern heterogeneous
platforms. The objective is to determine the processes capabilities in order to find an optimal
distribution of the application workload based on these capabilities.

In the literature, heterogeneous data partitioning methods have demonstrated improve-
ments in the performance. As an example, work [36] proposes an efficient recursive sequential
algorithm to explore the available solutions and to determine the parallel heterogeneous data
distribution. However, most of the state-of-art works use modeling techniques to capture a
simplified description of the computation and communication costs. This thesis applies this
heterogeneous data partitioning method to Data-Parallel kernels.

In a data-Parallel kernels, all the processes execute the same algorithm on an assigned
partition of the data space. These kernels are the main components of scientific applications
running in HPC platforms. Attending to heterogeneous kernel workload partitioning, the
procedure is as follows:

1. The first step is to determine the computational capabilities of the processes. Mainly,
there are two techniques to determine the processes speeds. The first technique is
using a numerical value representing how faster is a specific process with respect to
the rest, and is called Constant Performance Models (CPM). The second technique are
Functional Performance Models (FPM), which represent the speed of every process as
a function dependant on the size of the problem. As a result of these techniques, the
speed of the processes is obtained. FuPerMod is a tool proposed in [46], that executes a
benchmark to determine the processes speeds. The benchmark is provided by the user
and should be representative of the application computations. A benchmark example
that could be used by FuPerMod are General Matrix Multiplications (GEMMs) to
provide a good representation of the computation performed in matrix multiplications
operations. In FuPerMod, the functional performance models of the processes are gen-
erated as a speed vector S = {s1(x),s2(x), . . . ,sP(x)}, with P the number of processes,
and x the problem size.

2. The second step is to perform the data partitions to be assigned to the processes using
the speeds obtained in the previous step. A way to do this is to assign heterogeneous
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partitions with a specific shape. Each process performs the computation of its assigned
data. The shapes of the partitions partially determine the communications of processes.

3. The final step is to define a metric to measure the communications costs between
processes. In this sense, analytical communication modeling techniques are used as a
mathematical representation of the application behaviour to predict communication
costs. In the analytical communication models, the most representative features of the
communications are considered, including patterns specific to each kernel.

Following, an introduction of two representative HPC scientific kernels is performed.
Later, the kernels communications are deeply analyzed. Chosen kernels are called SUMMA
and Wave2D.

1.2.1. SUMMA kernel computation partitioning

The Scalable Universal Matrix Multiplication Algorithm (SUMMA) is a dense matrix
multiplication [83] over a 2-dimension data space. The algorithm executes the multiplication
C = A×B, being C,A,B square matrices identically partitioned into P rectangles arranged
in columns, being P the number of processes. In each iteration k ∈ N, each process update
the values of its assigned blocks ci j = ci j +aik ×bk j, where aik is the kth column and bk j is
the kth row, both of them with its respective blocks. Blocks are the unit used to represent
computation and communication. The kth row and column are named as pivot block row (pbr)
and pivot block column (pbc), respectively. These pivots run through matrices A and B, from
left to right (pbc) and from top to bottom (pbr). In this algorithm, communication modeling
between processes is calculated with the pivots movements as shown in Figure 1.3(a). To
do this, the pbc in matrix A is communicated from the owner processes to the horizontally
overlapping processes. The process owning the pbr broadcasts it to the rest of processes in
the column. Once the N iterations are over, each block of the resulting matrix C contains the
final value ci j = ∑

N−1
k=0 aik ×bk j.

1.2.2. Wave2D kernel computation partitioning

The Wave2D kernel implements a bi-dimensional wave propagation equation, that is a
type of equations solved under the technique of finite differences. The goal is to mathemati-
cally model the vibrations of a membrane u over a surface z for given positions (x,y) at time
t. It is formulated as ut = c2∇2u, where ∇2 = δ 2

δx2 +
δ 2

δy2 is the Laplacian variable to measure
the density of a continuous probability and c represent the units of velocity. Hence, the
solution in the surface is calculated at a specific step u(x,y, t), being 0 ≤ x < a, 0 ≤ y < b and
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Figure 1.3 SUMMA algorithm on a heterogeneous platform with P = 8 processes. The figure
shows the iteration k for the pbc and pbr calculating the respective value in matrix C.

t ≥ 0 with a,b the boundaries of axis x,y, respectively. In this way, u(x,y, t +1) is generated
from the previous steps u(x,y, t) and u(x,y, t −1) to model the movement of the membrane
as a wave. This behaviour is shown in the Figure 1.4 left part. A simple partition of the data
is shown on the right part where the communication of the halo elements between processes
p and p+1 is done vertically in the represented matrix. In addition, the image on the left in
the Figure 1.4 represents the dot matrix that defines the wave propagation in the data space.

1.3. Analyzing kernel communications influence.

Computational partitioning approaches only consider the computation capabilities of the
resources, disregarding the communication costs. Beaumont et al. [7, 6] sets that “The prob-
lem of partitioning dense matrices into sets of sub-matrices has received increasing attention
recently and it is crucial when considering dense linear algebra and kernels with similar
communication patterns on heterogeneous platforms". The communication optimization
problem is NP-Complete. This means that with a high number of processes is impossible to
solve in an affordable time.

The communication have a determinant influence in the overall execution time of a kernel
or application. Nevertheless, workload partitioning techniques usually does not consider
communications between processes, which impacts the execution time. As a consequence,
even with an optimal computational load balance, the application overall performance is
not optimal. Since each application have different communication pattern, as shown in
Figures 1.3 and 1.4 for the SUMMA and Wave2D kernels, it is necessary to model the
communication costs individually for each kernel. Minimizing the total volume of the kernel
communications is not enough in these platforms due the usage of communication channels
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Figure 1.4 Wave2D visualization on the left of the discrete solution u(x,y, t). The computation
on the right side represent a 1D partition where each process pi ∈ P computes its slice using
the halo elements from the neighbor processes p−1 and p+1. Each point of the Wave2D
propagation is calculated as shown in the right side of the image.

with uneven performance. A solution is to analytically represent the cost of communication
and model the optimization problem with communication cost as the objective to minimize.

Analytical communication models allow to express the application behaviour in a platform
as an equation based on a set of parameters. The complexity of the analytical model increases
dramatically with the heterogeneity of the platform. Multiple works have been proposed
with the objective of describe the communications accurately to simplify the communication
optimization problem. Approaches LogGP [9] and its heterogeneous counterpart HLogGP
[10] proposed point-to-point (P2P) models to describe the communications. The LMO
model [45] is based on the Hockney model [33]. HLogGP and LMO models have limited
representations of the communication since factors as the topology and contention are ignored.
Contention represents the number of concurrent transmission in the same communication
channel. The model τ − Lop [67, 66, 65] have been proposed in the recent years. This
model aims to implement an automatic model generation if communications with simple
cost expressions and contention awareness. Additionally, the τ −Lop model captures the
concurrency of sequence transmissions from every process while LMO and HLogGP do
no take into account this factor. Also, this tool defines every sequence transmission as
a unique transmission between the source and destination process with the size of the
message m j through the channel c j. Hence, each sequential transmission is modeled as
1∥T c j(m) = [oc(m)+Lc j(m,1)], being the overhead o the time elapsed since the message
is built and sent and L the transfer time of a message through the channel c j. The operator
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∥ represents the cost of concurrent transmissions. Concurrent transmission are modeled
as τ ∥T c j(m) = [oc(m)+Lc j(m,τ)] with τ concurrent messages transmissions through the
channel c j.

1.3.1. Kernels communication modeling using the τ −Lop model

This section models the communications for the previously introduced SUMMA and
Wave2D kernels using the τ −Lop analytical communication model.

The SUMMA communication modeling is realized using the τ −Lop approach between
processes. The sending and receiving blocks of the pbc and pbr can be performed using
different communication patterns, such as P2P transmissions involving two processes, ring
communication between processes in the same row or column, and broadcast pattern in-
volving a set of processes in the same column. As example, modeling the P2P pattern
of communication is outlined below for the SUMMA Kernel using τ − Lop (Θ), where
Θ represents the communication cost. First, the horizontal cost of sending pbc blocks is
represented in matrix A. The cost of the sequence of transmissions performed by each pro-
cess p holding the pbc to its overlapping process is represented as Θ

pbc
k,p at iteration k. The

network channel c j perform the transmissions of the messages of size m j. Hence, being Ppbc
k

the set of processes holding the pbc, the global communication cost is Θ
pbc
k = ∥

p∈Ppbc
k

Θ
pbc
k,p ,

with ∥ representing the concurrent transmissions. Similar, the description of the vertical
communications of sending the pbr blocks in matrix B, where Ppbr

k is the set of all processes
holding the pbr in iteration k defines the global communication as Θ

pbr
k = ∥

p∈Ppbr
k

Θ
pbc
k,col(p)

to the rest of the processes in the same column. Hence, the Equation 1.1 defines the total
communication cost of the SUMMA approach:

Θ
SUMMA =

N−1

∑
k=0

[Θpbc
k +Θ

pbr
k ] (1.1)

Regarding the Wave2D kernel, it communicates intermediate results using P2P transmis-
sions. As an example, P2P transmission T from process p1 to its neighbours are shown in
Figure 1.3(b). Assuming a computational balance between the data assigned to the processes,
all processes start their corresponding transmission at once after the computation phase. Thus,
we can define the cost per iteration for a specific process p with ηp neighbour processes
as Θp = ∥

j∈ηp

T c( j)(m( j)), being T c( j) the P2P transmission cost through channel c( j). As

all P processes executes in parallel and hence, the communication is also parallelized, the
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total communication of the Wave2D kernel for K iterations is determined as formulated in
Equation 1.2.

Θ
W2D = K × [

P
∥

p=1
Θp] (1.2)

1.4. Communication optimization in data-parallel applica-
tions.

Data-parallel applications executes the same algorithm in all processes with disjoint data
partitions. Processes communicate with others intermediate results. Thus, communication
metrics are implemented to reduce the communication cost in data-parallel applications.

The aforementioned advances in partitioning the workload between processes have led to
the need of optimizing communications between processes. Different strategies based on
partitioning the workload in heterogeneous platforms have been proposed in the literature.
As a example, Beaumont et al. [7] proposed a load-balanced algorithm which creates a
column-based partition to minimize the volume of communications. A communication
metric is applied based on the perimeter of the rectangles, and hence, it is minimized when
rectangles become as square as possible. Following, the original formulation of the problem
is exposed to later apply the τ −Lop tool as a optimization metric.

The algorithm assumes as inputs, P processes, a 2D data space of size N ×N and the
computational definition of the processes as a relative speed vector S = {s1,s2, . . . ,sp}.
Each process will be assigned with its own non-overlapping tile of the data space with size
np = wp ×hp,1 ≤ p ≤ P with ∑

P
p=1 np = 1, being np the data size proportional to the speed

n1
s1

= n2
s2

= · · · = np
sp

of process p. The algorithm minimizes the half-perimeter objective

function β = ∑
P
p=1(wp +hp), and hence, minimize the overall communication.

The proposal generates an arrangement adding processors as row or column following
three steps. First, the relative speed S vector is ordered upwardly, being the slowest process
located in the first position of the vector s1 ≤ s2 ≤ ·· · ≤ sp. Secondly, each step of the
algorithm adds a new p rectangle following the order described in S. Such new rectangle could
be added to the last column (and hence resizing that column) or as a new column. Finally,
possible arrangements of the new rectangle are evaluated to find the optimal distribution
using the β metric. An example of the calculation process for the β metric is shown in
Figure 1.5. To have a better understanding of the algorithm, the example from the Figure 1.5
is following detailed. First, the process p1 is added as a column. Secondly, the addition of
p2 have two possibilities, as a row or as a column. In the case of adding p2 as a column,
the previous p1 rectangle is not modified. In the case of adding p2 as a row, the resulting
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Figure 1.5 Beaumont partitioning algorithm for P = 3 processes with a relative speed vector
of S = 0.15,0.2,0.65. Each step add a process in a column and row arrangement. The metric
β outputs the value for each tiling, being the selected one the minimum value highlighted in
red β = 3.35. The showing step (red star) adds the process p3 as a column.

partition width is the sum of both columns values and the height is modified to maintain the
same data amount for both processes. Finally, p3 is added for all possibilities, as a new row
or as a new column. Finally, when all processes are arranged, the β metric is calculated to
select the best arrangement.

1.4.1. Communication time as optimization metric for kernels

Beaumont metric β aims to capture the communication cost of the algorithm. It generates
an output partition dependant on the half perimeters communication cost. Even though the
approach is able to produce a near optimal solution, it does not consider the heterogeneity of
the communication networks, in which every communication progresses through a communi-
cation channel with different performance. Therefore, the following issues are determined in
the application of β for the SUMMA and Wave2D kernel execution:
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Communication pattern used by the kernels are not captured. Therefore, since the
communication pattern is quite different for the SUMMA and Wave2D kernels, the
generated partitions should differ from each other. SUMMA communicates with pro-
cesses in the same row. Meanwhile, Wave2D takes into account the nearest neighbours
for each step calculation. Instead, the metric β outputs the same partitioning solution
for both kernels, which is completely incorrect.

Communication channels differences are not considered. In current heterogeneous
platforms, the communication costs of different channels communicating pairs of
processes differs notably in performance [16, 91]. Indeed, kernels use advanced
communication facilities, including collective operations as Broadcast, Allgather
and Allreduce communications [24]. The β metric only takes the communication
communication volume and P2P message passing.

Θ
IB,P2P
SUMMA Θ

IB,Ring
SUMMA Θ

TCP,P2P
SUMMA Θ

TCP,Ring
SUMMA Θ

IB,P2P
W2D Θ

TCP,P2P
W2D β (X)

c=1 1.73 1.80 2.33 2.69 3.21−5 3.66−4 9.00
c=2 0.64 0.64 0.83 0.80 3.62−5 3.98−4 5.76
c=3 0.54 0.51 0.82 0.80 4.10−5 4.08−4 5.50
c=4 0.65 0.69 0.89 1.07 4.43−5 4.29−4 5.88
c=5 0.87 0.97 1.15 1.42 6.15−5 3.95−4 6.50
c=6 1.12 1.26 1.49 1.82 3.93−5 4.97−4 7.28
c=7 1.14 1.57 1.88 2.25 3.60−5 6.49−4 8.10
c=8 1.73 1.80 2.33 2.70 3.21−5 3.66−4 9.00

Table 1.2 Cost values obtained for β (X) metric and Θ in mili-seconds for the SUMMA and
Wave2D kernels. The Θ metric is only applied in the last step with P = 8 processes.

Attending to these issues, in heterogeneous platforms is critical to represent the commu-
nication accurately. The τ −Lop model is used to address this challenge with the objective of
minimizing the communication cost Θ(k,π,X), where k is the kernel, π is the communication
network and X is the available data.

Following, a comparative study of the Beaumont β (X) and Θ(k,π,X) approaches is
presented. The components of the study are the speed vector S = [0.05, 0.05, 0.08, 0.1, 0.1,
0.12, 0.2, 0.3] with P = 8 processes and M = 4 nodes. The networks used are Transmission
Control Protocol (TCP) and Infiniband (IB). Results are shown in the Table 1.2 for the two
approaches (Θ and β ) with the winner partition in bold. Note that the winner partition
contains c = 3 columns.

Obtained mapping of the β approach from Table 1.2 is Z = {0, 1, 2, 3, 0, 1, 2, 3} as shown
in Figure 1.6(a), being each element of the vector, the node Z[p] ∈ M assigned to a specific
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Figure 1.6 Obtained optimal partitions for both metrics β and Θ metrics. Each rectangle of
the mapping is assigned to a process (number).

a) β metric b) Θ
TCP,Ring
SUMMA

Figure 1.7 Communication for the β and Θ metrics for the SUMMA approach. Pie chart
shows the amount of data assigned to each process (%). Colors of the pie chart shows the
assigned node based on Z. Bar plots shows the communication of the pbc and pbr (%).
Colors from bar plots represent Figure 1.5 row and column additions.

process p. This resulting mapping is improved using the τ −Lop metric. In contrast with the
β communication model which is generic to all platforms, τ −Lop should be executed in
each platform to obtain the different values of the parameters o overhead and L transfer time.
Based on the parameter measurement and the analytical communication modeling, τ −Lop
obtains the estimation of the communication time. Obtained partitions using the τ −Lop
metric are shown in Figure 1.6 for the different network channels IB and TCP. Also, different
communication patterns [53] as ring-allreduce and P2P are used. The Figure 1.7 represents
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the communications through rows and columns in the SUMMA kernel for β and τ −Lop
approaches.

As conclusion, metrics as the proposed by Beaumont, reduce the complexity of the
communications representations and obtain a good solution to reduce them. On the other
hand, analytical communication models aims to capture more accurately the communication
between processes for data-parallel applications in an affordable time.

1.5. Deep learning in heterogeneous HPC platforms

Deep learning (DL) have gained increasing interest in the research community due to
the great advances in performance during the last decades. Focusing on this thesis, this fact
has motivated the development of several optimization methods for deep learning based
algorithms. In this sense, deep learning algorithms can be applied to multiple fields as image
processing [58, 59], natural language processing [89] or medical approaches [43]. As a result,
HPC environments have been exploited to parallelize/distribute deep learning algorithms
with the aim of improving the computational performance. Table 1.3 shows the high runtime
consumption conducted by the training step of deep learning models and the growing of
GPUs computing speed, as shown in the previous Table 1.1.

Proposal Platform Memory Data Running Time

[41] 2 GTX 580 2 × 3Gb 1.2M HD images 6 days
[47] 1K CPUs N/A 10M images 3 days
[18] 64 GTX 680 64 × 4Gb 10M images 3 days
[62] GTX 280 1Gb 1M images 1 day
[22] 1K CPUs +6Gb 1.1B audios 16 hours
[70] 96 V100 96 × 16Gb 500K MS images 0.5 hours

Table 1.3 Summary of large-scale deep learning approaches from literature. Thousands,
Millions and Billions units are represented as K, M and B, respectively. MS are multi-spectral
images with more than 3 channels. HD are high-definition images.

HPC offers the possibility of distribute the execution of multiple applications. Some
examples of these applications are neural networks [44, 80], data mining [38], genome
sequencing [51] and Deep Neural Networks (DNNs) based on deep learning architectures
[63]. These applications are deeply studied in Chao Wang et al. [85].

Deep learning algorithms are based on the structure of a brain, which comprises a net of
computational nodes called neurons. Each neuron receives multiples inputs from the initial
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data and hence produce an output using the weighted sum of the inputs passed through an
activation function. This function makes the learning a simpler process. Thus, to correctly
learn, deep learning architectures use multiple and hierarchically-connected layers, where
neurons are organized to progressively extract deep and abstract features from the data. The
first layer of neurons is called input layer, whilst the last layer of neurons is the output layer
and therefore the intermediate layers are named as hidden layers. Neurons are trained to
adjust the optimal weights that minimize the loss signal produced between the desired output
and the obtained one. This process is named as forward propagation, where at each layer j,
neurons do the computation y j = f (∑n

i=1Wi j × zi+b), where W are the weights of the model
that are adjusted to the training data to obtain a better representation of the data features, z are
the activations, b is the bias and f (·) generates an output activation when a threshold define
by the shape of the function is reached. After that, the objective is to minimize the training
loss over all of the training examples to descent over the slope of the error E = 1

2 ∑i(ŷi −yi)2,
where, ŷi is the true answer for the i-th training example and yi is the value computed by the
neural network. This method is known as the gradient descent (GD) optimization. Finally,
weights parameters θ are updated following Equation 1.3.

θ
t+1 = θ

t −α
∂E(X ,θ t)

∂θ
(1.3)

where, θ defines the set of trainable parameters of the model, X is the input data passed
through the network, t is the iteration of the training procedure and α is the learning rate that
modulates the behaviour of the gradient descent algorithm.

The input data of deep networks can be represented by multiples data types such as raw,
images or graphs. The high potential and ability of these networks for features recognition,
different ability learning (such as driving a car), natural language processing or biomedical
applications has been widely proved in the literature. For instance, Dieleman et al. [25]
have classified different galaxies types, Zhou and Troyanskaya [94] are able to predict
and construct protein structures, whilst Serizel and Giulani [72] have largely studied the
application of deep models for speech recognition in children and adults language. Focusing
on image processing, Convolutional Neural Networks (CNNs) have been proposed to solve
the spatial feature extraction from images [49, 50, 3, 56]. In this context, convolutional
layers are composed of neurons, which are activated depending on certain visual stimuli, i.e.
features. Thus, each layer works as a visual filter which respond to a specific and abstract
stimuli. Layers can process N-dimensional arrays by locally applying multidimensional
kernels over the input data, overlapping the kernel onto defined regions. Indeed, kernels Kl

are filters defined as adjustable arrays with a size of kl × kl × f l , which operates over the
input data by performing an affine transformation between the learnable weights within Kl
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and the input layer data. This transformation is indeed the element-wise product between the
current features from the data window and the kernels weights, where kl refers the spatial
dimension (width and height) and f l the spectral dimension (depth) of a specific layer l. The
output of the kernel operations is a set of features maps, which are extracted by the kernels
comprised by the l-th layer and which are sent to the next layer l +1. The workaround for
forward and backward propagation is the same and it is also applied to the kernels.

1.5.1. Analyzing distributed deep learning communications

Distributed deep learning algorithm splits the input data into multiple partitions that are
assigned to the processes in a distributed environment as HPC platforms. The scaling in
distributed deep learning algorithms from the training speed perspectives is analyzed in the
work [80].

Node 0

Node 1Node 2

Node 0

Node 1Node 2

+ +

Node 0

Node 1Node 2

Node 0

Node 1Node 2

Update Update

Figure 1.8 Horovod ring-allreduce implementation which communicates data between nodes
or devices. The image show M = 3 nodes. First node communicates data in green, second
node data in blue and third node data in orange.

Frameworks provide a ease of use implementations for deep learning algorithms. For
instance, Caffe [34] provides a single and multi-GPU training for a single machine focusing
in a group of initial users. On the other hand, Apache SINGA [86, 55] provides scalable
deep learning for distributed environments. Furthermore, TensorFlow includes the scaling
for CPU and GPU machines, cluster and mobile devices [1]. Also, Horovod [71] permits to
uniformly distribute workload between multiple devices with an optimized ring all-reduce
communication collective (which is shown in Figure 1.8), which improves the communication
between processes. The procedure of the ring all-reduce collective is as follows. Each device
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(0 . . .M) communicates with its neighbors 2×(M−1) times, where M is the number of nodes
or devices. In the first M −1 iterations the values contained in the buffer of the receiving
node are accumulated with the received ones. In each iteration, values in each node are
calculated as the sum of the communicated values with the local node value. Subsequently,
nodes updates the global values of the previous step locally. After that, each node have
the complete global values. Another interesting framework is MXNet [14], which uses a
communication structure named called KVStore with a two-level structure. The first level
synchronizes data between the devices running on the same node. The second level is
responsible for the communication and synchronization between different nodes. Finally, the
PyTorch framework [60] provides versatility, simplicity and functionality to develop a wide
variety of deep learning algorithms within distributed environments. In this context, PyTorch
implements two different communication mechanisms. In this regard, it supports Remote
Procedure Call (RPC) communications and three backends (named Gloo, NCCL and MPI),
providing the communication primitives for multi-process parallelism. There are different
reasons in the selection of a specific backend in PyTorch. For instance, NCCL provides the
best GPU performance for Infiniband and Ethernet networks due to the optimized collective
operations. On the other hand, MPI gains potential when a heterogeneous system is used,
combining CPU and GPU, whilst Gloo works similar as NCCL with a lower performance.
Related to this, Asaadi et al. [4] have conducted an interesting study about the communication
issue considering heterogeneous environments. Also, there are several works that benchmark
the performance of frameworks with respect to the training time [5, 76].

1.5.2. Workload balancing for deep learning image processing

The optimization of deep learning algorithms is performed by distributing the workload
between the available processes. This can be defined as a hard NP-Problem. In order to solve
this problem, different types of data processing parallelism have been proposed:

Data parallelism is used to replicate the neural model among all available resources that
compose the platform. Every resource holds an entire copy of the model and performs
its own training procedure. In this sense, the data is shuffled and partitioned between the
resources at each epoch so every training step is different in all replicas as exposed in
Le et al. [48]. After the training step, replicas should communicate the obtained results
using communication collectives. A popular example of communication collective is
ring all-reduce [71].

Model parallelism is situationally used when the model is too big to fit in the memory
of the resources. In this context, every resource train its own part of the model with the
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same portion of the data to later join the results and continue the training procedure.
As training is inherently sequential, this should be done in specific situations and with
a deep knowledge of the functionalities.

Hybrid parallelism is the combination of the data and model parallelism approaches.
This method is not common in the literature and it is only used under certain circum-
stances where there is a problem composed of an extremely big data amount and solved
by a high complex model.

Nevertheless, it is worth noting that processes with different speeds are involved in the
training of the deep learning models within heterogeneous platforms. Synchronization points
imposed in the communication of intermediate results cause straggler processes and hence,
affecting directly the training step by decaying the performance and increasing the total
run-time. This is caused by the different computational capabilities of the devices, which
leads to some processes (the faster ones) waiting for the rest and producing waiting times
at synchronization points. In order to deal with this drawback, Visnhu et al. [84] proposed
an implementation based on MPI to scale TensorFlow applications in HPC clusters. In this
work, an evaluation of the scalability of this proposal is done by calculating the speedup of
different schemes under a homogeneous partition of some deep learning datasets as MNIST
[23] and CIFAR10 [39]. On the other hand, Dipankar et al. [21] estimated the computation
and communication and proposed a distributed multi-node synchronous called Synchronous
Stochastic Gradient Descent (SSGD). Focusing in data parallelism and assuming a perfect
homogeneous platform, SSGD fits perfectly. Conversely, in heterogeneous platforms, faster
processes should wait at the synchronization points. A depth study of the homogeneous
parallelization methods is conducted by Bennun et al. [8]. In this work, an asynchronous
stochastic optimization method using Asynchronous Stochastic Gradient Descent (ASGD) is
proposed. This method solves the problem of synchronization points since replicas do not
need to wait for the slower ones. Nevertheless, it adds a new problem called staleness. This
happens when the training in each replica is computed using an old version of the parameters,
and hence, causing a negative impact on the resulting model accuracy. Thus, a solution should
be provided. Some works tried to solve the workload imbalance in heterogeneous platforms.
For instance, Chen et al. [12] proposed a semi-dynamic load balancing to deal and reduce the
stragglers processes of distributed ML workloads. The basic concept of this work is to have
static workload within each iteration for each process but dynamic workload across different
iterations. It implements a Load-Balanced Bulk Synchronous Parallel (LB-BSP) to equalize
all devices batch processing times by re-configuring their batch sizes at the synchronization
points. To do this, the goal is to find the device batch size B = {b0,b1, . . . ,bp} that minimize
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the processing time of the complete execution. The corresponding speed assigned to each
process is calculated as the consumed time to complete the processing of input data x. Then,
gradient aggregation is computed using the worker batch size when aggregating gradients
following Equation (1.4)

g =
1

∑
P
p=0 |bp|

P

∑
p=0

|bp| ·gp, (1.4)

where |bp| is the process batch size, X = ∑
P
p=0 |bp| is the total batch size and gp the gradients

of the p process. Finally, in the next iteration the new batch sizes values are dynamically
re-calculated by following previous calculations again. Data parallelism functioning can
be appreciated in the Figure 1.9(a) for P = 2 where the red line splits the input data in two
uneven partitions xp using the process speed.

a) Heterogeneous Data Parallelism scheme

b) Heterogeneous Model Parallelism scheme

Figure 1.9 Data and model parallelism for heterogeneous partitions considering CNN models.
h,w define the spatial dimensions (height and width) of the data. Batch size is assigned to
each process in terms of speed. The used image is from the MNIST data set, characterized
by its size (28,28,1).

Attending to model parallelism, the number of works is not high compared to data
parallelism [77, 90, 75, 13]. In the forward pass of CNNs, the convolutional weight matrix is
vertically partitioned and distributed over the available p resources for a specific layer of the
neural model. This procedure is shown in the Figure 1.9(b). In the backward pass, processes
use the error E and calculate the gradients for their corresponding subset using the output
from the forward step. Finally, gradients are shared between processes.
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1.6. Memory overload in deep learning data balancing

The amount of data used for conducting the training stage of any deep learning method can
be extremely high and practically unmanageable. Thus, memory overload issues may appear
causing severe limitations within the learning procedure. This drawback may occurs more
frequently for large data such as hyper-spectral images, where the high spectral dimension
and the large data variability severe hinder the accuracy of the deep model. Indeed, the way
the data is stored and distributed in these applications can cause important memory problems.
As a result, the model accuracy is also highly affected since the assigned training samples to
each process is limited due to the high spectral-dimension of the data and the limitation of
the partitions. Also, different stages in the execution of deep learning algorithms require the
computation of an extremely big amount of floating points operations. Hence, a big amount
of parameters should be stored in memory, which may require large memory spaces. In order
to solve memory overload issues, different strategies have been proposed in the literature to
address the balancing of data with a trade-off between the amount of data and the quality
of the data [59, 57, 32]. The objective of these trade-off techniques is to obtain the features
with more representation of the data while discriminating the rest of the features.
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Chapter 2

Goals and motivation

In Chapter 1 we reviewed the challenges and issues related to workload partitioning
in heterogeneous platforms and its implications in the computation and communication
costs. A main conclusion is that the computational workload balance and the processes
communication optimization have a decisive impact in the application overall execution
time. One of the main objectives of this thesis is to apply previous described techniques
and methods to improve performance of deep learning algorithms running on heterogeneous
HPC platforms. In concrete, we address the following tasks:

1. Optimizing parallelism schemes for deep learning image classification while solving
the staleness problem. The partitioning and distribution of the training data should be
achieved using properties that characterize the different processes.

2. Developing methods to avoid memory overload issues and fault-tolerant techniques in
distributed environments.

It is worth noting that this thesis stems as the continuation of the final master thesis work
published in [64]. Furthermore, in the context of the master work, three contributions were
published in scientific journals. These contributions are the followings:

1. Rico-Gallego, J. A., Diaz-Martin, J. C., Calvo-Jurado, C., Moreno-Alvarez, S. and
Garcia-Zapata, J. L. (2019). Analytical Communication Performance Models as a
metric in the partitioning of data-parallel kernels on heterogeneous platforms. The
Journal of Supercomputing, 75(3), 1654-1669. [IF(2019)=2.469].

2. Rico-Gallego, J. A., Diaz-Martin, J. C., Moreno-Alvarez, S., Calvo-Jurado, C. and
Garcia-Zapata, J. L. (2020). Performance evaluation of model-driven partitioning
algorithms for data-parallel kernels on heterogeneous platforms. Computational and
Mathematical Methods, 2(1), e1017.
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3. Rico-Gallego, J. A., Moreno-Alvarez, S., Diaz-Martin, J. C. and Lastovetsky, A. L.
(2020). A tool to assess the communication cost of parallel kernels on heterogeneous
platforms. The Journal of Supercomputing, 76(6), 4629-4644. [IF(2019)=2.469].

Former contributions during this thesis period provide an extended description of each
technique and methodology. They demonstrated the advantages of the proposed methods
compared to other well-known literature methods. In the following Sections, the main
contributions of this thesis are provided.

2.1. Optimizing deep learning data-parallelism in HPC.

In this Section, a brief summary of the first contribution of this thesis is provided. In
that work, a heterogeneous load balancing technique for deep learning applications using the
data-parallelism approach is proposed. The objective of the proposed work is to optimize
models training performance in terms of time and model accuracy.

Deep learning data-parallelism approaches distribute the input data between processes,
known as replicas. Our proposal is to perform a heterogeneous data partitioning and dis-
tribution between replicas running in a HPC platform. The data partitioning is performed
using the FuPerMod tool [17], which models the computational capabilities of each replica
in the platform. We provide a representative benchmark of the computations as input to
FuPerMod, obtaining a meaningful speed profiling of each replica. We experimentally found
that a simple neural network represents accurately the computations performed in the training
of a deep learning model. FuPerMod returns a speed function for each replica sp(B), which
varies through a range of batch sizes B. For each batch size, the speed obtained by FuPerMod
is the inverse of the execution time.

The speed of each replica is determined by FuPerMod in a prior step to the training,
assuming a dedicated platform, with no variations in the resources performance. Additionally,
this method can be used in non-dedicated platforms by the application of fine-grain speed
adaption during the training step [12]. Once the speed vector is obtained, the partitioning step
assigns a batch size |Bp| to each replica according to its speed. The sum of the batch sizes
assigned to the replicas is the global batch size ∑

P
p=1 |Bp|= |B|. Faster replicas are assigned

with a larger batch size. As a consequence, each replica p trains its own copy of the model
(see Figure 1.9(a)) with an non-overlapping input data subset of size X

B ×Bp. The objective
of this speed-based partitioning is that all processes finish the computation of its assigned
batch at the same time, and hence, minimize the waiting times in the communication step.
This technique reduces the staleness problem, ensuring that each replica communicates up to
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date gradients with other replicas, and hence, avoiding the training with staleness parameter
values.

Replicas should communicate gradients in a prior step to perform parameter updates.
Thus, global gradients are obtained using local gradients from each replicas. Global gradients
are calculated with the information obtained from the different input data in each replica.
The communication procedure is performed using parameter servers or communication
collectives. Parameter servers use a centralized node to store gradients from each replica.
Communication collectives are used as a decentralized method where each replica sends
messages to the rest. In this proposal, the communication is done via Allreduce collective as
gk = 1

P ∑
P
p=1 gk

p, being k the training iteration.
This work is based on the PyTorch framework and the implementation is hence compatible

with centralized data interchange using parameter servers. Finally, the experimentation results
show that this implementation maintains the accuracy of a deep model while decreases
substantially the training times and avoids straggler processes and staleness. Results are
described in the first paper of the compendium of publications of this thesis.

2.2. Convolutional layers partitioning in distributed model
parallelism

In this Section, the second contribution of this thesis is briefly described. In this contribu-
tion, a heterogeneous load balancing technique for deep models using the model-parallelism
approach is proposed. The objective of the proposal is to partition specific parts of the model
that are computationally expensive to accelerate the training. Meanwhile, the memory of the
processes is controlled to avoid overloads.

Deep learning models may suffer from communication bottlenecks and memory overloads
due to the high amount of data and model parameters processed, which should be stored in
memory. Current data partitioning solutions in the literature assume homogeneous resources,
however, in current heterogeneous HPC platforms, memory constraints should be considered
to avoid memory overloads. In this thesis, we address a heterogeneous partitioning over the
convolutional layers of convolutional neural networks (CNNs).

Assuming a CNN, our method splits computing tensors across the spectral dimension
(filters). Tensors are multidimensional arrays used in computations of deep learning models.
Filters in convolutional networks are implemented as tensors. Following the heterogeneous
partitioning we propose, each replica computes a specific number of filters, assigned based
on its computational capabilities, and later combines results with the rest of replicas.
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Figure 2.1 Example of a VGG-16 network for the heterogeneous model parallelism proposal.

The workload of each process is computed as (B,Wl,Hl, f p
l ), with p the process number, l

the layer, W,H the width and height of the input data, f the filters in the layer and B the batch
size. During these computations, tensors are computed partially or totally in each process,
in case they are split or not. The partitioned tensors are communicated to each process
using the allreduce collective. Thus, tensors are concatenated after each partitioned layer to
compose the complete tensor. As a consequence, the total number of parameters of the model
is defined as ∑

L
l=1 kl ×Bl ×Fl , where L is the total number of layers. Thus, heterogeneous

partitioning is performed over the filter dimension f p
l = fl × sp, where ∑

P
p=1 f p

l = Fl .
The performance analysis have been carried out on deep learning models VGG11, VGG16,

VGG19. An example of one of these networks is shown in Figure 2.1. Scientific data sets
used to train the models are MNIST and CIFAR100. MNIST is composed handwritten digits
images of size 28× 28× 1, representing digits from 0 to 9, with a training set of 60.000
examples and a test set of 10.000 examples. CIFAR100 contains 60.000 colour images of
size 32×32×3 of 100 non-biased classes. The models are evaluated in a heterogeneous HPC
platform with four NVIDIA Volta V100 and an Intel Xeon Gold 6240 CPU. Results show
an improvement of the accuracy for evaluated models and a notable training acceleration.
Meanwhile, memory overloads are avoided. Results are shown in the second article of the
compendium of publications of this thesis.

2.3. Deep learning memory usage optimization

In this Section, the third contribution of this thesis is described. The experimentation
is performed using remote sensing scenes. The objective of this proposal is to improve the
memory usage in the training step while accelerating the execution.
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Remote sensing images [42, 31] capture different wavelength channels with detailed
information from the spatial and spectral dimensions of a scene. The resulting images have
a large size, and the deep learning models used to process them contain a large amount of
parameters. Hence, it is necessary to reduce the memory usage to avoid overload problems.

Most deep learning model architectures use single-precision values (FP32) for the compu-
tations in the training step. In order to optimize computations, two challenges appear. First,
the memory should store FP32 operations, which is very costly. Secondly, computations
should be reduced in order to speed up the training without affecting the deep network
accuracy. Examples of the high cost of processing FP32 operations are Capsule Networks
[57], Residual and Dense networks [59], which perform training and inference stages using
single-precision floating operations with remote sensing scenes as input data. We propose
to address both challenges to reduce the high computational demand of remote sensing
images classification tasks in different NVIDIA GPUs architectures described in Table 2.1.
Following, our proposal is described.

Model Architecture GFLOPS GFLOPS Frequencie L2 L1 L0
FP32 FP16 FP32 Cache Cache Cache

Tegra TK Kepler 365 - 951 1536 48 -
Tegra X1 Maxwell 649 1298 1267 2048 32 -
Tegra X2 Pascal 750 1465 1267 4096 32 12

Xavier Volta 1410 2820 1377 6144 256 12
Table 2.1 NVIDIA GPUs properties for half-precision (FP16) and single-precision (FP32).
Frequency is shown in (Mhz) and cache size is shown in kilobytes (KBs).

Memory saving while decreasing computation can be achieved by casting specific opera-
tions from FP32 to half-precision FP16. The key point to do this transformations effectively
is to prevent the model accuracy from dropping. Our proposal is to perform mixed precision
by maintaining an accumulative copy of the weights in FP32 and performing mixed precision
(combination of FP32 and FP16) operations during the whole training step. FP16 is used
for the forward and backward propagation. Meanwhile, FP32 is used for the loss computa-
tion and weight updating. Some operations need to be represented in FP32 since the FP16
approximation does not provide good results. Meanwhile, some data as the weights and
gradients are cast into FP16. This entails the problem of precision errors as zero gradients
or incorrect values in loss and activations when the magnitudes of the values are lower than
2−24. In order to solve that issue, an accumulative copy of the weights is used in the weight
updating step. Additionally, it is necessary to perform loss scaling to push gradients values
up to higher values and avoiding zero gradients.
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We use the Apex Automatic Mixed Precision (AMP) [37] of PyTorch framework to
implement this technique. AMP provides the functionalities to transform FP32 to and from
FP16. Experiments are conducted over the Indian Pines (IP), Salinas Valley (SV), Kennedy
Space Center (KSC) and University of Pavia (UP) hyperspectral images as input dataset and
using multiple deep models. Results show a high improvement in the computation step time
while maintaining accuracy. In addition, the memory consumption is significantly reduced.
Results are shown in the third publication of the compendium of publications of this thesis.

2.4. Deep learning acceleration in non-dedicated environ-
ments

In this Section, a summary of the fourth publication of this thesis is described. In this
proposal, deep learning models are trained in non-dedicated cloud platforms. The input of
the deep learning models are remote sensing images. The objective of this proposal is to
accelerate the training step in cloud computing environments. Meanwhile, a scaling study is
provided to evaluate performance for increasing amount of data and processes.

Dedicated HPC platforms have previously been used as target environments. Since this
thesis addresses the usage of heterogeneous platforms to train deep models, non-dedicated
platforms as cloud computing should be considered. Cloud computing platforms are com-
monly used for the processing of massive data amounts in deep learning algorithms. The
challenges of processing complex data over multiple replicas distributed across non-dedicated
platforms are also present in cloud environments due its heterogeneous nature. Clouds in-
tegrate a high number of resources distributed in different locations and connected with
different networks.

Computing intensive remote sensing images have not been usually processed using cloud
computing approaches. However, there are some thorough works which take advantage
of the distribution and acceleration of the data processing time for remote sensing scenes
[87, 88, 92] offered by cloud computing. Cloud computing can significantly reduce the
training time of deep networks, providing with a reduced cost hardware solution. In cloud
computing, users pay by the usage time on the platforms while the platform provides with a
set of expensive resources. An important additional benefit is the fault-tolerance support of
this platforms. Fault-tolerance aims to maintain the training of the deep learning algorithm
in case that a node fails, re-hosting the affected tasks in other nodes. This re-hosting is also
useful for situational memory overload errors.
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The experimentation carried out in this part of the work consists in performing computa-
tional load balancing of a fully connected deep neural network composed of 4 hidden layers
with 144 neurons per layer. The output layer is composed of 58 neurons. The experimen-
tation is divided in three parts. First, a scaling evaluation is performed by increasing the
number of replicas. Results show that the speedup increases with the number of replicas, as
expected. However, the huge data volume to process avoids to speedup the training without
causing communication bottlenecks. Secondly, the training is accelerated for multiple data
sizes. The acceleration is based on the data distribution. A study of the run-time increment
depending of the model input data is performed. Finally, we compare the accuracy obtained
with the PyTorch framework to our proposed method. Results are very promising and they
are detailed in the fourth publication of the compendium of publications of this thesis.
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Chapter 3

Conclusions

This thesis proposes and evaluates heterogeneous workload balancing techniques for
scientific applications and deep learning algorithms in HPC and cloud platforms. Following,
we summarize the steps in the implementations of each contribution.

In HPC scientific applications and kernels, we propose and evaluate the use of analytical
models of the communications as a optimization objective. Previously, workload is distributed
heterogeneously between processes according to their computing capabilities. Regarding
deep learning algorithms, we propose to apply several optimization techniques to improve
the performance of the training of deep models. These techniques should the accuracy of
trained model and consider memory storage restrictions.

Following, we highlight a set of conclusions obtained from our contributions to the fields
of discussion:

Communication waiting times in distributed environments are critical to improve the
applications performance. Current data partitioning techniques aims to distribute the
computation based on a limited representation of the communications.

Deep learning frameworks does not consider the heterogeneity of the resources in the
platform. As a consequence, the processing time and accuracy of the model are highly
impacted.

The implementation of heterogeneous balancing techniques improves the training
performance, however, they could produce memory overload issues. While non-
dedicated cloud platforms solve this issues by re-hosting failed replicas, the usage of
techniques as mixed-precision has been demonstrated useful to accelerate training time
and avoiding memory overloads while maintaining the accuracy.
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To conclude this summary, the different works described in this thesis have been published
in several journals and conferences, to a total of six journal publications and four conference
presentations. Some of them have been developed during the master period, previous to
the doctoral work. Finally, it is worth noting that this thesis has coincided in time with
the COVID-19 pandemic during almost all of its development, limiting the assistance to
conferences during that time.
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Abstract
Deep neural networks are currently trained under data-parallel setups on high-per-
formance computing (HPC) platforms, so that a replica of the full model is charged 
to each computational resource using non-overlapped subsets known as batches. 
Replicas combine the computed gradients to update their local copies at the end of 
each batch. However, differences in performance of resources assigned to replicas in 
current heterogeneous platforms induce waiting times when synchronously combin-
ing gradients, leading to an overall performance degradation. Albeit asynchronous 
communication of gradients has been proposed as an alternative, it suffers from the 
so-called staleness problem. This is due to the fact that the training in each rep-
lica is computed using a stale version of the parameters, which negatively impacts 
the accuracy of the resulting model. In this work, we study the application of well-
known HPC static load balancing techniques to the distributed training of deep mod-
els. Our approach is assigning a different batch size to each replica, proportional to 
its relative computing capacity, hence minimizing the staleness problem. Our exper-
imental results (obtained in the context of a remotely sensed hyperspectral image 
processing application) show that, while the classification accuracy is kept constant, 
the training time substantially decreases with respect to unbalanced training. This is 
illustrated using heterogeneous computing platforms, made up of CPUs and GPUs 
with different performance.
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Heterogeneous platforms
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1  Introduction

Deep learning (DL) algorithms based on neural network architectures [19] have 
reached great accuracy in areas such as image classification [17, 20] and speech 
recognition [5] among others. When compared with other machine learning (ML) 
and pattern recognition methods, deep neural networks (DNNs) work as universal 
approximators of parameterized maps (models) composed of stacks of layers [12], 
where each one is composed by several nodes (neurons) connected to the nodes of 
the precedent and subsequent layers through synaptic weights and saturation control 
biases [22]. Overall, DNN models fit neuron weights and biases through an iterative 
optimization process based on training with examples. Improvements with respect 
to traditional techniques are supported by the large amount of data available to train 
these models, as well as by advances in high-performance computing (HPC) plat-
forms [9].

DNN learning strategies can be roughly classified into supervised and unsuper-
vised learning [14], depending on whether they use labeled data or not. This work 
focuses on supervised image classification with DNNs, whose input dataset, X  , is 
composed of nexamples images of �n ∈ ℝh×w×c ( n = 1,… , nexamples ), where h × w 
denotes the spatial dimensions of the images (i.e., height and width) and c the spec-
tral depth (i.e., the number of channels). X  is divided into two main subsets. The 
first one is the so-called training set, on which the classifier adjusts its weights and 
biases. The second set is the test set, on which the classifier makes the inference. 
With this in mind, it is easy to describe the DNN for image classification as a map-
ping model M(⋅, �) with parameter � that performs M ∶ X → Y , associating each 
image of the original dataset ( X  ) with a corresponding label ( Y ) by adjusting the 
parameters of the model � . On this wise, the purpose of supervised learning is to 
find optimal 𝜃⋆ values in order to minimize the distance between the outputs of the 
model and the labeled values. Such distance is determined by the so-called loss 
function L(�) (e.g., mean square error) during the training stage. The Stochastic Gra-
dient Descent (SGD) method is commonly used for this purpose. In each iteration k, 
SGD updates � through gradient gk of L(�) as �k+1 = �k − � gk , where � is the so-
called learning rate, which controls the advance in the weight domain. gk is com-
puted as gk = 1

���
∑

n∈� ∇l(n��k), being l(n|�k) the loss of the example n, computed 
on �k .

The updating process demands high computational capacity. To accelerate it, 
dedicated HPC clusters and non-dedicated cloud platforms are commonly used for 
large-scale deep networks training on large datasets. The training process is usually 
distributed on the platform resources based on two main schemes of parallelization, 
known as model parallelism and data parallelism.

Model parallelism is used when the model is too large to fit in the memory of 
an isolated computational resource, and hence, it is split and deployed among the 
available resources. Every process trains its own portion of the model using the 
same batch of examples. Depending on the deployment of the model, learners 
communicate intermediate results using different strategies [13]. As training is an 
inherently sequential process, this scheme could result in the underexploitation of 
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the computational resources, as its performance is limited by the communication 
between the processes and by the number of nodes involved in the training process.

Conversely, data parallelism consists of running replicas of the training model 
on the available computational resources. Every replica holds a local copy of the 
entire model, which is trained on disjoint data subsets of � called batches [18]. After 
every batch in the training step is completed, replicas compute the gradients of their 
respective loss function. Next, they coordinate to combine their local computed gra-
dients before updating � , commonly by tree reduction collective communications 
[23], or pushing gradients to centralized parameter servers [7]. Needless to say, 
these synchronization points cause straggler processes to have a high impact on the 
overall performance. Furthermore, performance degradation grows with the hetero-
geneity of the platform and the number of replicas used to train the model. Model 
and data types of parallelism can be combined in order to mitigate their limitations 
in some particular scenarios. This is known as hybrid parallelism.

Two general mechanisms contribute to solve the aforementioned performance 
issue. First, using an asynchronous SGD optimization procedure to relax the consist-
ency of parameter values by allowing processes to asynchronously combine gradi-
ents and update parameters. This scheme decouples communication and computa-
tion, which highly benefits the training performance. However, the order in which 
parameters are updated is not deterministic, and hence gradient computations in a 
replica are done on a stale version of parameter values. This distance between a 
local parameter used to compute gradients in a replica and its global current value is 
known as staleness. Empirical studies [7] show that a low degree of staleness does 
not penalize the learning accuracy of the model. Meanwhile, other works [10] pro-
pose mechanisms for reducing staleness impact on the accuracy of training models.

A second approach to mitigate staleness consists of using load balancing tech-
niques to assign to each replica an amount of work which is in accordance with its 
computational capacity. A dynamic load balancing mechanism is proposed in [3], in 
which, in each epoch, every replica is assigned with a batch size proportional to its 
speed. A key point is to determine the speed of each replica in the system, and this 
is achieved by using an additional recurrent neural network that calculates the size 
of the batch in the next epoch as a function of the current speed and processing time. 
A non-dedicated cloud platform is assumed in this context, with shared assigned 
computing resources and, hence, variable speed and memory parameters. Although 
adaptive (and partially able to deal with stragglers due to temporal speed variations), 
this mechanism requires a large number of epochs to be effective and steals compu-
tational resources from the main training process.

In this paper, we introduce a new mechanism for improving the distributed per-
formance of the training process of deep models, while keeping their accuracy. Our 
methodology follows a two-step approach. First, prior to the training, we use the 
FuPerMod tool [6] to determine the computational capabilities of the computational 
resources assigned to each replica in the platform. We assume dedicated hetero-
geneous clusters made up of both CPUs and GPUs. Secondly, in the training step, 
we assign a batch size to each replica that is proportional to its relative speed. The 
goal is to balance the workload and, as a consequence, to minimize the communica-
tion of the waiting times of the replicas at the time of communicating the computed 
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gradients. We use the synchronous SGD with reduction tree communication to com-
bine gradients, which ensures deterministic order in combining the per-replica com-
puted gradients, and hence it does not affect the overall accuracy.

The static load balancing technique has been widely used in the HPC field [1, 
21], because it does not require any additional computational resources during 
the execution time of an application. Notwithstanding this fact, especially in non-
dedicated platforms where the workload variation is higher, it can be combined 
with other mechanisms, such as those proposed in [3] to perform fine-grained and 
dynamic adaptations during the training stage. Furthermore, this can be combined 
with asynchronous SGD techniques, such in [4], to ensure minimal staleness. Hence, 
the primary contributions of this work are:

•	 A new methodology to improve the performance of data-parallel distributed 
training of deep models, while preserving the accuracy of the trained model 
when replicas run on dedicated heterogeneous platforms.

•	 The application of common HPC-based static workload balancing techniques for 
training deep models, in order to optimize resource exploitation and execution 
times.

•	 An evaluation of the impact of the heterogeneity of dedicated computing plat-
forms on the deep network distributed training process.

The rest of this paper is organized as follows. First, we discuss related works in 
Sect. 2. Section 3 describes our implementation, including the distribution of pro-
cesses on the heterogeneous platform and the training model procedure. Section 4 
details how we evaluated our system and presents the obtained results. Finally, 
Sect. 5 presents our conclusions and future work.

2 � Related work

The increase in dataset sizes and the number of parameters to learn in deep models 
have leveraged the usage of HPC platforms to accelerate training, including dedi-
cated clusters and non-dedicated cloud environments. The work in [2] provides an 
excellent survey of current distributed techniques to parallelize and distribute the 
training. The main data and model parallelization schemes are described in work 
[16] that proposes a distribution training of convolutional networks [19] using data 
parallelism in convolutional layers and model parallelism in fully connected layers, 
as well as different synchronization methods for parameter updating between work-
ers. In this paper, we focus on the data parallelism scheme applied to convolutional 
networks.

Paper [7] proposes the Downpour asynchronous SGD algorithm implemented in 
the DistBelief framework. This framework enables large-scale model and data paral-
lelism for training purposes. The Downpour algorithm launches multiple replicas 
of the model using data parallelism, and it uses asynchronous SGD gradient com-
munication based on a centralized parameter server. Authors empirically found that 
reaching a certain level of staleness tolerance does not significantly impact the model 
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accuracy. Nevertheless, work [10] proposes a mechanism for reducing the staleness 
of the asynchronous SGD by modulating the learning rate using the current average 
gradient staleness values. They provide a discussion on the interplay of hyperpa-
rameters and distribution design choices, using the implemented Rudra framework. 
The staleness problem is also addressed in [4], using a different approach. This 
work performs data-parallel training of models by using p backup workers in addi-
tion to P replicas and data-parallel synchronous optimization. In order to update the 
model parameters, it considers P faster gradient computations and drops the rest. 
This approach reduces staleness and performance degradation caused by straggler 
replicas, at the expense of using additional resources. In this paper, we follow a syn-
chronous SGD approximation method that avoids the staleness problem, although it 
is more sensitive to waiting times at synchronization.

Focusing on heterogeneous platforms, work [15] studies the performance degra-
dation of SGD optimization in heterogeneous platforms (with respect to homoge-
neous distributed training schemes). They focused on a Stale Synchronous Parallel 
synchronization scheme, in which the grade of staleness is limited by the updating 
protocol and the parameter server. The authors propose both constant and dynamic 
learning rate schedules for updating the parameters. In this way, the unstable conver-
gence caused by stragglers is mitigated, improving statistical and hardware perfor-
mance. A key difference with respect to our work is that we use collective communi-
cation as synchronization mechanism, avoiding the necessity of additional parameter 
server processes.

The thorough work in [3] proposes to adapt batch sizes in each replica to their 
relative speeds. As a consequence, straggler replicas waiting times are minimized. 
Authors use a Bulk Synchronous Parallel scheme (which avoids staleness) on heter-
ogeneous non-dedicated cloud platforms, with simulated injected stragglers in their 
experiments. The measurement of the respective speed of the replicas (needed to 
compute their assigned batch sizes) is achieved using a Recurrent Neural Network, 
trained along epochs with per-replica CPU performance and memory usage values 
in each iteration. It is worth noting that our work follows a similar approach to those 
adapting batch sizes in replicas to their computational performance. However, a nov-
elty of our work is to introduce an offline and static load balance mechanism which 
does not interfere with the training of the model. Work [3] offers additional insights 
that we plan to include in future works, such as conducting weighted gradient aggre-
gation to avoid per-sample biases in replicas.

3 � Detailing the adopted approach

This section details our proposal for training of deep models1 following a data-
parallel scheme. We assume a dedicated heterogeneous platform made up of a set 
of computational nodes, with different speeds. Nevertheless, our approach can also 
be applied to non-dedicated cloud environments as an initial workload distribution, 

1  The source code is available at https​://githu​b.com/mhaut​/stati​c_load_deepl​earni​ng.
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or assuming the possible variations in performance. Replicas running the training 
process are deployed on the computing nodes of the platform, commonly multicore 
CPUs and GPUs with different numbers of cores and processing speeds on current 
heterogeneous platforms.

A key issue is to accurately determine the speed of each node. In this regard, 
FuPerMod is a tool that is commonly used in heterogeneous HPC platforms. It deter-
mines empirically the computational capabilities of a node running a given applica-
tion. To achieve that, the tool executes a benchmark (provided by the user) in each 
compute node. This benchmark should be representative of the application in order 
to obtain meaningful execution profiles. In this work, we use a convolutional neural 
network (on a range of batch sizes) as the benchmark to measure the speed in each 
replica. As output, FuPerMod returns the speed of the P computational nodes in the 
heterogeneous platform, as a set of P functions S = {s1(x), s2(x),… , sP(x)} . A func-
tion sp(x) varies along a given range of batch sizes x to represent the performance 
profile of a computational node, which depends on its available resources (including 
cache and memory sizes). FuPerMod speed is provided as the inverse of the time 
invested in executing the benchmark for a given batch size |B|.

It is important to note that the set of speed functions S characterizing the platform 
is statically determined in a previous initialization step. Observe Fig. 1. The speed 
functions, together with the specific batch size |B|, are used as inputs to the FuPer-
Mod partitioner utility, which computes the number of examples |Bp| assigned to 
each replica p, with 

∑P

p=1
�Bp� = �B� . As FuPerMod partitioner works with sizes in 

Fig. 1   General distributed learning framework of a model using static load balance mechanisms. The 
figure represents an iteration k of an epoch in the training process, where P = 3 replicas are assigned 
with an uneven batch size Bp . Replicas perform the parameter update after communicating gradients ( gk ) 
using the MPI_Allreduce collective operation
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bytes, we convert the input batch size to bytes using h × w × c × r × |B| , with r the 
number of bytes to represent each pixel.

To train the model, SGD works as a synchronous iterative process over multiple 
passes of the dataset, called epochs. In each epoch, the dataset � is split up in P 
subsets and assigned to the P corresponding replicas. The size of the subset in a 
replica p is computed as |�|∕|B| × |Bp| . Furthermore, the distribution of the dataset 
to the replicas is made in such a way that batches assigned to replicas do not overlap 
in each epoch and, additionally, every replica trains its own copy of the model on 
the full set of examples along epochs. Then, replicas use their assigned subsets in 
batches to train their copies of the model. A description of the process is shown in 
Fig. 1. Iteration k of the SGD training process performs the following general steps: 

1.	 Every replica p manages a batch of |Bp| examples, with �B� = ∑P

p=1
�Bp� . The size 

of the batch Bp is proportional to the relative speed of the replica p, running on 
computational resources with speed sp(|Bp|).

2.	 Replicas compute their gradients based on a Loss function l(n|�k
p
) that returns the 

error of the sample n ∈ Bp , computed in the iteration k using parameters �k
p
 with 

respect to the actual value. The gradient computation in a replica p is 
gk
p
=

1

�Bp�
∑

n∈Bp
∇l(n��k

p
).

3.	 After computing the gradient vectors gk
p
 , each replica delivers a collective all-

reduce communication operation in order to combine gradients as: gk = 1

P

∑P

p=1
gk
p

4.	 Each replica updates the parameters using the received gradients and �.

We use PyTorch to train a model based on the previous steps. It implements MPI 
blocking collectives [8], which impose synchronization, and hence, straggler pro-
cesses degrade performance. The proposed methodology is also compatible with the 
use of a parameter server that holds an updated global copy of the parameters The 
main drawback of this approach is its centralized nature that is mitigated by dis-
tributing parameters on several server processes [7] and the resources consumed by 
such additional server processes.

Finally, balancing the workload according to the replicas that determined compu-
tational capacity ensures that all replicas finish iteration k at the same time, avoiding 
idle times at the communication step and hence improving the overall performance. 
Of course, an error in the workload balancing may always exist, depending on errors 
in the measurement of the speed of the replicas using benchmarking, and on the 
granularity of the example size, which we consider negligible. A limitation of this 
methodology is that a static workload assignment to replicas does not adapt to tem-
poral changes in the system loads derived from the shared usage of resources in non-
dedicated platforms. We indeed assume a homogeneous network, and hence, we do 
not account for the influence of possible imbalances in the gradients communication 
performance in the model training.

At this point, it is important to note that [3] presents a weighted aggregation in 
the gradient computation for assigning every example with the same worth, as 
gk =

1

�B�
∑P

p=1
gk
p
 . This improvement does not affect the performance, although it 

certainly has an impact in the convergence of the model.
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4 � Experimentation and analysis

This section evaluates the proposed approach. We detail first the hardware and 
software elements, and then we discuss the results of the training tasks in terms 
of performance and accuracy. To conclude, we experimentally test the proposed 
load balanced implementation in ResNet [11], a relevant and standard architec-
ture in the field.

A small test platform called Metropolis is used to obtain initial insights and 
results of the behavior of the implementation and also a dedicated heterogene-
ous HPC cluster called Ceta-Ciemat to obtain real and more complete results of 
our implementation in a real environment. Metropolis is composed of two nodes, 
Pluton and Caronte, that use three different GPUs: an NVIDIA RTX 2080Ti and 
an NVIDIA RTX 2060 (connected to Pluton) and an NVIDIA RTX 1050Ti (con-
nected to Caronte), with 11 GB, 6 GB and 4 GB of memory, respectively. The 
CPUs are an Intel Xeon E5620 (Nehalem) 8-core processors running at 2.40 GHz 
with 12 GB of RAM. Nodes are connected by an Ethernet GigaBit network. Five 
replicas are deployed in that set of computational nodes. A CPU core is reserved 
for each replica running on a GPU, in order to be used for memory transfers 
and communications. On the other hand, the Ceta-Ciemat cluster is composed 
of eight multicore CPU nodes connected by an InfiniBand QDR Network. Each 
CPU node holds one or two Kepler K80 GPUs with 24 GB of RAM. The CPUs 
are a 24-core Intel Haswell running at 2.50 GHz with 64 GB of RAM. Although 
all GPUs are similar, we experimentally found significant differences in speed 
between nodes using one GPU with respect to nodes using two GPUs. The reason 
is that GPUs share the PCI bus, which impacts the performance of data trans-
fers between CPUs and GPUs. Such subtle performance penalties can be found in 
other platforms.

We trained our models using two standard datasets, MNIST and CIFAR-10. 
MNIST is composed of black and white handwritten digits images, represent-
ing digits from 0 to 9, with a training set of 60.000 examples and a test set of 
10.000 examples. These digits have been normalized in size and centered to a 
fixed image size of 28 × 28 × 1 of 32-bit floats. CIFAR-10 contains 60.000 color 
images of size 32 × 32 × 3 of 10 non-biased classes. This dataset is used to verify 
that the proposed implementation provides successful results.

Two models are used in our experiments. Both have a feature extractor com-
posed of several stages of convolutional and pooling layers and a classifier with 
fully connected (FC) layers. Details are shown in Tables 1 and 2. The two-dimen-
sional convolutional layers have been implemented to extract deep features, 
employing the rectified linear unit (ReLU) activation function. The feature maps 
obtained in the convolutional part are reshaped into an unrolled vector represen-
tation to feed the classifier.

As a conduit example, we evaluate the performance of training the model 
described in Table  1 with the MNIST dataset in the Metropolis platform. Per-
formance is measured using wall clock time per epoch. The final results are 
obtained by taking the maximum training time per epoch of the replicas involved 
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in the training process, along five different executions. To obtain our performance 
data, we run e = 10 epochs. As a baseline test, we use a homogeneous (unbal-
anced) distribution of the batch size |B| between replicas in the platform, with 
|Bp| = |B|∕P,∀p . Figure  2 shows the performance data in separate computation 
and communication plots, for a range of batch sizes |B|. The communication time 
is measured from the invocation of the blocking communication operation to the 
reception of the gradients, and it includes waiting times. As expected, replicas 

Table 1   Layers of the 
convolutional neural network 
implemented for classification 
of the MNIST image dataset

Padding is added to convolutional layers for not shrinking the image

Model for MINST (Number of parameters: 21,840)

Layer ID Kernel/neurons Activation funct. Pooling Dropout

Conv1 5 × 5 × 10 ReLU 2 × 2 No
Conv2 5 × 5 × 20 ReLU 2 × 2 No
FC1 50 ReLU – Yes
FC2 n

classes
Softmax – No

Table 2   Layers of the 
convolutional neural network for 
the classification of the CIFAR-
10 image dataset

Padding is added to convolutional layers to avoid shrinking the 
images

Model for CIFAR-10 (Number of parameters: 176,034)

Layer ID Kernel/neurons Activation funct. Pooling Dropout

Conv1 7 × 7 × 10 ReLU 2 × 2 No
Conv2 7 × 7 × 20 ReLU 2 × 2 No
FC1 120 ReLU – No
FC2 84 ReLU – No
FC3 n

classes
Softmax – No

Fig. 2   Computation (left) and communication (right) times of training the model described in Table 1 on 
the MNIST dataset in Metropolis platform for a range of batch sizes, evenly distributed between P = 5 
replicas. The processing time is provided in seconds per epoch
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running on CPUs spend more time in computing their batches of examples than 
those on GPUs, because of their lower computing throughput. As a consequence, 
GPU replicas wait at communication points, degrading overall performance of 
the training process.

Figure  3 illustrates the speeds of the replicas running on the Metropolis com-
putational nodes, obtained by benchmarking using FuPerMod. As expected, high 
differences between GPUs and CPUs are observed, with slight differences between 
processes running in similar resources (either CPUs or GPUs). Figure 4 shows the 
results of the training execution for a range of batch sizes |B|, under the proposed 
static balanced distribution. FuPerMod partitioner unevenly distributed every batch 
B between replicas according to their speeds. Due to the fact that every replica needs 
to complete a similar amount of computing work, communication waiting times 
are dramatically reduced with respect to Fig. 2. This reduction also arises from the 
reduction in the differences of the time lines in the plots. As a consequence, the 
overall performance is significantly improved, as shown in Fig. 5.

We now focus on the Ceta-Ciemat system to validate performance results 
obtained in the previous proof-of-concept Metropolis platform. Figure  6 (top) 

Fig. 3   FuPerMod characteriza-
tion of the computational capa-
bilities of P = 5 replicas running 
on the Metropolis nodes. Speeds 
are shown for a range of batch 
sizes |B|

Fig. 4   Computation (left) and communication (right) times of training the model described in Table 1 on 
the MNIST dataset in Metropolis platform for a range of batch sizes. Batch sizes are unevenly distributed 
between P = 5 replicas, according to their speeds determined by FuPerMod tool. Time is provided in 
seconds per epoch
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shows the performance results obtained after training the model detailed in 
Table  2 with the CIFAR-10 dataset. We use a homogeneous distribution of the 
batch size, hence with |Bp| = |B|∕P,∀p , between P = 16 replicas deployed on 
available computational nodes of the platform. As in the previous platform, we 
have two groups of replicas depending on whether they run on CPUs or GPUs. 
Differences in performance between groups are high; however, slight differences 

Fig. 5   Performance of training 
the model described in Table 1 
on the MNIST dataset for unbal-
anced and balanced distribu-
tions between P = 5 replicas in 
Metropolis 

Fig. 6   Performance times in seconds per epoch of the computation (left) and communication (right) of 
training the model in Table 2, using CIFAR-10 dataset in the Ceta-Ciemat cluster, for increasing batch 
sizes. Top figures represent evenly (unbalanced) distribution and bottom figures represent unevenly (bal-
anced) distribution between P = 16 replicas
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in performance between replicas running on similar resources also impact the 
performance of the entire training process. Note that differences in computation 
(and hence, inversely, in communication, due to waiting times) grow with the 
batch sizes. The corresponding results obtained with a balanced distribution of 
the batch |B| between replicas, according to their speeds, are shown at the bottom 
of Fig. 6. Again, plot lines differences shrink, meaning that replicas invest similar 
times in performing their assigned computing workloads, hence reducing wait-
ing times at communication points. Figure 7 displays the total performance times 
for the two models in Tables  1 and 2, trained, respectively, on CIFAR-10 and 
MNIST on the Ceta-Ciemat platform with P = 16 replicas. Differences between 
unbalanced and balanced distributions remain constant along batch sizes for both 
MNIST and CIFAR-10 datasets. As a summary, the average speedups along the 
range of batch sizes for statically balanced workload distributions—with respect 
to unbalanced ones—are 1.52% and 2.78% , respectively.

Additionally, we evaluate the accuracy, defined as the percentage of correct clas-
sification of examples, given non-biased datasets as MNIST and CIFAR-10. In order 
to show the behavior of the models in both unbalanced (even) and balanced (une-
ven) workload distributions, the batch size is set to |B| = 2048 examples. Figure 8 
shows both per-epoch and temporal evolution of the accuracy of the model trained 
on MNIST. We include the temporal evolution of accuracy to illustrate differences 
in convergence times of the methods with respect to training time. We can observe 
that both distribution approaches require around e = 50 epochs to converge to a 
similar accuracy. Figure 9 shows the corresponding results for CIFAR-10, with the 
difference that the model needs e = 300 epochs to converge on this (larger) dataset. 
We actually executed a higher number of epochs than those shown in both models 
plots; however, we experimentally observe that those values of e were enough for 
the models to converge. Table 3 summarizes the accuracy of the models including 
their standard deviation along five executions. The table shows the accuracy reached 
for MNIST and CIFAR-10 datasets in the Ceta-Ciemat platform for e = 50 and 
e = 300 epochs, respectively. Accuracy figures fall in the same range if we consider 

Fig. 7   Performance times in seconds per epoch for models trained with CIFAR-10 (left) and MNIST 
(right) datasets on the Ceta-Ciemat platform ( P = 16 replicas) for unbalanced and balanced distributions 
of batch sizes between P = 16 replicas
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the standard deviation; hence, there are no significant differences. Nevertheless, the 
aggregation of weighted gradients in the trained process (proposed in work [3] and 
described in Sect.  3) should make accuracy values even closer, without affecting 

Fig. 8   Accuracy of the model described in Table 1, trained on MNIST dataset for unbalanced and bal-
anced distributions of batch sizes |B| in the Ceta-Ciemat platform. Both per-epoch and temporal evolu-
tion of the accuracy are shown. The shaded areas represent the standard deviation along a set of five 
repetitions

Fig. 9   Accuracy of the model described in Table 2 trained on CIFAR-10 dataset for unbalanced and bal-
anced distribution of batch sizes |B| in the Ceta-Ciemat platform. Both per-epoch and temporal evolution 
of the accuracy are shown. The shaded areas represent the standard deviation along a set of five repeti-
tions

Table 3   Maximum accuracy and Last accuracy (obtained in the last epoch) of models described in 
Table 1 and Table 2, trained on MNIST and CIFAR-10 datasets, respectively

The best metric values are in bold

Dataset Maximum accuracy Last accuracy #Epochs

Unbalanced Balanced Unbalanced Balanced

MNIST ��.�� ± 1.47 96.92 ± 0.69 ��.�� ± 1.26 96.58 ± 0.75 e = 50

CIFAR-10 67.54 ± 4.64 ��.�� ± 1.11 66.22 ± 2.45 ��.�� ± 1.10 e = 300
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performance. Finally, as the previous results show that the accuracy remains con-
stant with load balancing, performance tests have been carried out on the main 
ResNet architectures under CIFAR-10. Table  4 shows that the speedup obtained 
remains constant when the number of parameters is not triggered, while with a 
higher number of parameters it achieves a higher speedup. 

5 � Conclusions and future work

This paper describes a new approach to distribute the training of deep networks on 
dedicated heterogeneous platforms. The proposed methodology departs from a pre-
computed characterization of the speed of the computational resources of the plat-
form. It provides replicas of the model (running in such computational resources) 
with a batch size that is proportional to their computing capabilities, in such a way 
that waiting times at communication points (performed at each training iteration to 
combine gradients between processes) are eliminated. As a consequence, the overall 
execution time needed for training the deep model is reduced (while the accuracy is 
not significantly affected), as demonstrated for two different platforms and datasets.

One of the main contributions of this work is the exploitation of well-known HPC 
optimization techniques to balance the distributed training of deep learning models. 
Previous works propose dynamic load balancing techniques that impact the perfor-
mance, albeit requiring a high number of iterations to be really effective. In turn, our 
methodology can dynamically adapt batch sizes to performance variations during 
the training process, as a result from the non-dedicated usage of resources (which is 
characteristic of cloud environments).

Our future work will focus on the study of the scalability of the proposed imple-
mentation regarding the number of replicas, using both larger datasets and deeper 
networks.
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Table 4   Training times for 
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The best metric values are in bold
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a b s t r a c t

Deep neural networks (DNNs) have transformed computer vision, establishing themselves as the current
state-of-the-art for image processing. Nevertheless, the training of current large DNNmodels is one of the
main challenges to be solved. In this sense, data-parallelism has been the most widespread distributed
training strategy since it is easy to program and can be applied to almost all cases. However, this solution
suffers from several limitations, such as its high communication requirements and the memory con-
straints when training very large models. To overcome these limitations model-parallelism has been pro-
posed, solving the most substantial problems of the former strategy. However, describing and
implementing the parallelization of the training of a DNN model across a set of processes deployed on
several devices is a challenging task. Current proposed solutions assume a homogeneous distribution,
being impractical when working with devices of different computational capabilities, which is quite com-
mon on high performance computing platforms. To address previous shortcomings, this work proposes a
novel model-parallelism technique considering heterogeneous platforms, where a load balancing mech-
anism between uneven devices of an HPC platform has been implemented. Our proposal takes advantage
of the Google Brain’s Mesh-TensorFlow for convolutional networks, splitting computing tensors across
filter dimension in order to balance the computational load of the available devices. Conducted experi-
ments show an improvement in the exploitation of heterogeneous computational resources, enhancing
the training performance. The code is available on: https://github.com/mhaut/HeterogeneusModelDNN.

� 2021 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, those techniques based on neurobiology structures
and deep learning (DL) [1] approaches have completely trans-
formed the methods of automatic data analysis within different
fields such as robotics, medicine, industry, remote sensing, intelli-
gence and defense, among others [2–5]. Shallow and deep artificial
neural networks (ANNs and DNNs, respectively) are powerful fea-
ture extraction models due to their ability to automatically learn
the hidden patterns and internal regularities/relationships from
large collections of examples. These structures are composed of
interconnected computational nodes (known as neurons), where
each one serves as a linear discriminant. Furthermore, these neu-
rons are arranged in hierarchically stacked layers. Input data is dri-
ven through each layer, which apply a trainable set of weights to
detect and respond to certain stimuli (i.e., input features, such as
spectral attributes as light intensity or spatial patterns as borders

and edges). Indeed, those weights are automatically learned to fit
the data.

In particular, Convolutional Neural Networks (CNNs) [6] effi-
ciently process multidimensional input arrays by processing local
receptive fields on the data. Within each convolutional layer, the
weights are organized as multidimensional filters (also called ker-
nels) which are slid over the input data volume following a stride
through its different dimensions. As a result of convolving the fil-
ters over the input, an output feature volume is obtained, identify-
ing the presence of the filtered feature and locating its position.

CNNs achieve competitive performances, establishing them-
selves as the current state-of-the-art in image processing and com-
puter vision techniques [7,8]. However, current implementations
have dramatically grown in both depth and structural complexity.
This imposes severe restrictions on the hardware resources used to
train the models, due to their high computational burden and mas-
sive memory consumption [9]. As a consequence, training a CNN
model is a compute-intensive task that often takes several days
even using specialized hardware as GPUs. Traditional techniques,
such as data batching [10], have provided an adequate solution
to the problem by dividing training data into smaller pieces that
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can be easily handled by the computer system. However, as the
amount of data and the structural complexity of networks
increases, new techniques are needed.

One of the most widely used methods to accelerate the training
stage is data parallelism. Data parallelism consists of running sev-
eral replicas of the training model on every device in a parallel sys-
tem. Every replica holds a local copy of the entire model, which are
trained on disjoint data batches assigned to each replica. In every
batch step, replicas communicate computed gradients in order to
update local weights. Communication between replicas is achieved
using two main methods: collective communications [11], or cen-
tralized parameter servers [12]. Some works [13–15] have achieved
a very high scaling efficiency using data parallelism approaches,
indicating that communication overhead is not excessive.
Nonetheless, some data parallelism applications may suffer exces-
sive inter-device communication overhead, which severely hinders
the scalability of training large models [16,17].

An alternative is model parallelism. This scheme is used when
the model is too large to fit in the memory of a single device,
and hence data parallelism cannot be used. The model to train is
partitioned and every device trains its own portion of the model
using the same batch of examples. Depending on the model
deployment, devices communicate intermediate results using dif-
ferent strategies [18]. In this parallelization scheme, communica-
tion is usually less than in the data parallelism scheme.

Nevertheless, in both data and model parallelism schemes, syn-
chronization points imposed by the communication cause strag-
gler processes to have a high impact on the overall performance,
which is a well-known problem in parallel HPC applications. Fur-
thermore, performance degradation grows with the heterogeneity
of the platform and the number of devices used to train the model,
which limit the scalability of these approaches.

To mitigate performance differences between devices, and
hence diminishing straggler processes impact, load balancing tech-
niques are used. These techniques assign a quantity of work to
each device according to their computational capabilities. These
techniques have been applied to data parallelism training of large
models. A dynamic load balancing using an adaptive batch size
proportional to every device speed is proposed in [19] and evalu-
ated on a non-dedicated platform, with shared computing
resources and variable speed and memory. On tightly-coupled
platforms, a static approach is proposed in [20] using a neural net-
work to determine the batch size proportional to the speed of
every resource.

In this paper, a static load balancing approach is proposed for
the model parallelism scheme, with the goal of the efficient train-
ing of deep neural architectures on heterogeneous HPC platforms.
Our proposal is based on Mesh-TensorFlow [21]. This framework
assumes a homogeneous platform and proposes an uniform distri-
bution of the workload among all the devices involved in the train-
ing. Our main contribution is the extension of the previous
framework to heterogeneous platforms, such as those composed
of CPUs and GPUs of different capabilities and features, currently
widespread in HPC. Our approach seeks to minimize the waiting
times of the fastest devices at the communication points during
training.

The methodology consists in a pre-training phase implementa-
tion for static heterogeneous partitioning of the convolutional fil-
ters, assigning to each device a number of filters determined by
its computational capabilities. This is done using an HPC technique
to measure the computational capabilities of every device. This
approach is automatic and transparent to the user. Another contri-
bution is the possibility of a heterogeneous model partitioning
across the number of filters i.e. the channel dimension. Logically,
the contributions maintain the capabilities of Mesh-TensorFlow
to homogeneously partitioning the height and width dimensions

of a tensor. This scheme of heterogeneous model parallelism
improves the performance on heterogeneous HPC platforms by
adequately exploiting resource capabilities, while it does not affect
negatively to the overall accuracy.

The paper is structured as follow. Section 2 details related state
of the art articles. Section 3 introduces the Mesh-TensorFlow
methodology. Section 4 explains the heterogeneous approach and
the followed training procedure. Section 5 evaluates the perfor-
mance of the proposed methodology. In this sense, the impact of
filter partitioning in CNNs is evaluated on two platforms composed
of many heterogeneous devices to demonstrate its behaviour on
different environments. MNIST and CIFAR100 have been used to
test the performance. Testing on MNIST has been done using a
three-layers CNN, while for CIFAR100 different versions of the
VGG network [22] has been implemented. Promising results
demonstrates that the proposed methodology reduces training
times while maintains accuracy by avoiding waiting times at com-
munication points. Finally, Section 6 shows our conclusions and
possible extensions.

2. Related work

Training large scale models is a compute intensive task usually
performed in HPC platforms with multiple computational nodes to
accelerate the process. Recent advantages in speeding up CNNs
training are shown in [23]. This work focuses on studying different
forms of acceleration when hardware is limited and an improve-
ment in performance is sought. A thorough study of the paralleliza-
tion training schemes and issues is carried out in Tal Ben-Nun et al.
[24].

Parallelization schemes are commonly classified in data paral-
lelism and model parallelism [25,12]. While our work focuses on
the model parallelism scheme on heterogeneous platforms com-
posed of both CPU and GPU nodes, several works addressed data
parallelism and provide with common methods and techniques
to parallelize and speedup training of large models. Jiang et al.
[26] study the performance degradation of SGD optimization in
heterogeneous platforms with respect to homogeneous distributed
training schemes. They proposed the Stale Synchronous Parallel syn-
chronization scheme to address the problem known as staleness, a
consistency issue derived from the different speeds of parameter
updating by processes. The grade of staleness is limited by the
weights updating protocol and the parameter servers. An asyn-
chronous distributed version with variance reduction is proposed
in [27]. Load balancing is an alternative method to address stale-
ness issue. Chen et al. [19] proposes to adapt batch sizes in each
replica training the model in a device to their relative speeds. As
a consequence, straggler replicas waiting times are minimized.
Authors use a Bulk Synchronous Parallel training scheme on hetero-
geneous non-dedicated cloud platforms with simulated injected
stragglers in their experiments. The measurement of the respective
speed of the replicas needed to compute their assigned batch sizes
is achieved using a Recurrent Neural Network, trained along epochs
with a per-replica CPU performance and memory usage values in
each iteration. Moreno et al. [28] proposes a static load balancing
technique in heterogeneous HPC clusters dedicated platforms,
assigning to each replica a batch size proportional to its relative
speed. The speeds of the replicas are determined prior to the train-
ing step by using a benchmark and the FuPerMod tool [29].

Regarding model parallelism, this approach has been tradition-
ally used for big models that do not fit in the memory of a single
device [30]. An efficient intra-layer model parallel approach that
enables training models with billions of parameters is imple-
mented in [31]. However, partitioning the model is still a complex
task and usually it requires to optimize memory for a very high
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number of parameters [32]. A foundational work with a novel
approach for automatically placing operations of a large model
on the devices of a parallel heterogeneous system is based on the
reinforcement learning paradigm [33].

Anapproachtoobtainingspeedupistosplitupamodelacrossmul-
tiple devices using pipelining. Pipedream [34] proposes to adopt
pipelining by concurrently injecting multiple mini-batches to the
model. It smooths out the consistency problem ensuring that each
deviceoveramini-batchseesthesameweightsbystoringmultiplever-
sionsofweights.Gpipeframework[18]proposesapipeliningmethodby
dividing each mini-batch into multiple micro-batches and indeed
pipeliningthemicro-batchesofthesamemini-batchtoreducethestal-
enessproblem.DNNsintroducesignificanteffortsforprogrammersto
partitionmodel layers.Harlapet al. [34] determine theprofilesof the
processing time of each layer offline and use dynamic programming
tocreatebalancedpartitionsofthemodelthoughapipeline.

The literature includes multiple frameworks which are respon-
sible for providing data and model based parallelization schemes
through different programming languages [35]. Horovod [36] pro-
posed distributed training of models using data parallelism in con-
volutional layers and model parallelism in fully connected layers
with different synchronization methods for the parameter updat-
ing phase. Users should indicate which device is responsible for
executing each of the different layers of the model. DistBelief [37]
framework is used for deep models in a cluster of hundreds of
nodes. It provides model parallelism for one or multiple machines.
Furthermore, it provides data parallelism under two different dis-
tributed methods. DownpourSGD method is an asynchronous
stochastic gradient descent procedure which leverages adaptive
learning rates used for multiple replicas, and Sandblaster L-BFGS
method is a distributed implementation of L-BFGS using a type
of hybrid parallelization (joint data and model parallelism).
PyTorch [38] framework provides an efficient set of primitives as
well as a library for model parallelism based on remote procedure
calls. Another parallelization framework called EC-DNN is pro-
posed in [39] to tackle the degradation of the global model that
the average parameters of the local models produce. In this sense,
Sun and Liu [39] introduces the weighted sum instead of the aver-
age of the outputs of the local models in order to ensure that the
global model perform better than local models.

Recently, new workload distribution methods have been imple-
mented to address the requirements of training deep networks.
Guang Shi [40] propose a model parallelism approach to efficiently
train Deep Belief Networks (DBNs) using a high performance dis-
tributedenvironment.Thisproposalhavemanagedtoacceleratesig-
nificantly the trainingoverdifferentdatasets.Mesh-TensorFlow[21]
specifies a language to distribute the workload among the different
available devices. It provides both data parallelism andmodel paral-
lelismschemes.Underthemodelparallelismscheme,andassuminga
homogeneous platform, it evenly distributes tensor computations
across a specified dimension on the available devices.

Our work is based on Mesh-TensorFlow. It focuses on model
parallelism scheme for convolutional layers, performing heteroge-
neous partitions and distributions of tensors based on the capabil-
ities of each device in a dedicated HPC platform. This static load-
balancing technique reduces the waiting times of processes at syn-
chronization points, and as a consequence, increases the training
performance in heterogeneous platforms. Thus, the homogeneous
proposal of Mesh-TensorFlow [21] is our comparison objective in
terms of performance.

3. Mesh-TensorFlow methodology

Mesh-TensorFlow is a language for specifying distributed tensor
computations between a set of processes deployed on the homoge-

neous computational resources of an HPC platform. Mesh-
TensorFlow is built on top of TensorFlow [41], and hence inherits
most of its constructs, as graphs, tensors, variables, devices and
the automatic computation of gradients. Furthermore, it extends
TensorFlowwith three main components: tensors, meshes and lay-
outs. Each one is described in detail below.

A tensor in Mesh-TensorFlow is a multidimensional array that
works as data container. In this sense, input and output data,
obtained feature maps and convolutional filter weights can be rep-
resented as tensors. The dimensions of a tensor can be assigned
with a name. A mesh is also a multidimensional array, however,
unlike the tensor structure, it describes a virtual topology for the
computational nodes (devices) of the platform, i.e., a structured
abstraction of its physical topology. As in the tensor case, each
dimension of the mesh array can be assigned with a name. Finally,
a layout is an injection mapping from a tensor dimension to a mesh
dimension. The layout describes how a tensor is partitioned across
the specified dimension and distributed between the devices in the
specified mesh dimension. Every tensor partition is referred as a
slice. In this context, the user specifies the layout and its device dis-
tribution over the mesh, and hence, designs the model parallelism
structure of the model training.

Mesh-TensorFlow does not provide a way to map two tensor
dimensions into one mesh dimension. Furthermore, it assumes
always a homogeneous platform, i.e., it requires the size of the par-
titioned tensor dimension to be evenly divisible by the size of the
mesh dimension. Devices of the platform apply parallel computa-
tions on their assigned slices and they communicate results by
using MPI reduction primitives to reduce out tensor dimensions
when needed. If a layout is not specified for a tensor, such tensor
is replicated in all devices.

Algorithm 1. Convolutional neural model definition

X 2 RB�N�M: Input volume
mesh ¼ ½ð\b0"; dÞ�
f 0 ¼ dimensionð\filters 0"; sz0Þ
f 1 ¼ dimensionð\filters 1"; sz1Þ
f 2 ¼ dimensionð\filters 2"; sz2Þ
layout ¼ ½filters0 : b0�
Z0 = conv2dðX; f 0; ½k0 � k0�)
X0 = ReLU Z0ð Þ
Z1 = conv2dðX0; f 1; ½k1 � k1�)
X1 = ReLU Z1ð Þ
Z2 = conv2dðX1; f 2; ½k2 � k2�)
X2 = ReLU Z2ð Þ
Z3 = FClayer X2; fc; reduceDim ¼ trueð Þ
X3 = ReLU Z3ð Þ
logits = FClayer X3;number of classesð Þ

Algorithm1 provides a pseudo-code of the model parallelism
definition with Mesh-TensorFlow. In particular, it describes a
CNN model with three convolutional layers as baseline. The input
data is denoted as X 2 RB�N�M , where naturals B; N; M are the
batch size and the height and width spatial dimensions, respec-
tively (as Mesh-TensorFlow works in the spatial dimension, the
spectral dimension can be omitted to simplify the mathematical
nomenclature). As the data moves through the convolutional layers
(denoted as conv2d), these apply their filters to the data, overlap-
ping them to small windows of the input data (defined by the local
receptive field) and extracting as a result an intermediate output
feature volume. In this way, the l-th conv2d receives Xl�1 as input
data, applying its f l filters individually as the element-wise product
between the kernel weights Wl and the input elements that fall
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into the local receptive field with size kl � kl, to which the bias bl is
added. The resulting array Zl can be interpreted as the extracted
feature maps which indicates both the occurrence of that feature
learned by the filter Wl and its location within the input data. Eq.
(1a) provides the general formulation of a convolution layer:

Zl ¼ Wl � Xl�1 þ bl ð1aÞ

Zlði; j; tÞ ¼
Xkl

î¼1

Xkl

ĵ¼1

Wl ð̂i; ĵ; tÞXl�1ðiþ î; jþ ĵÞ þ blðtÞ ð1bÞ

Eq. (1b) specifies the extraction of the ði; j; tÞ-th feature within Zl vol-

ume, where i; j and î; ĵ are the spatial indices that cover the input and
weights arrays, respectively, and t ¼ 1; . . . ; f l indicates the filter
index. Fig. 1 provides the graphical interpretation of these equations.
In addition, to learn the non-linear patterns, a non-linear activation
function (in this case the Rectified Linear Unit is implemented, i.e. Xl

= ReLUðZlÞ ¼ maxð0;ZlÞ [42,43]) is included, which returns the final
output volume Xl 2 Rf l�Nl�Ml . In this case, as three conv2d layers are
implemented, l is set to l ¼ 1;2;3. Once the feature extraction stage
conducted by conv2d layers is completed, the obtained data repre-
sentation is processed by amultilayer perceptron (MLP), which com-
prises two fully-connected layers, denoted as FClayers. This MLP is
the final classifier, where the FClayers contain fc and
number of classes perceptrons respectively.

Furthermore, mesh describes a one-dimensional virtual topol-
ogy, which is denoted as b0 and is composed by d devices, defining
the tuple (‘‘b0”, d). Then, dimension variables f 0; f 1 and f 2 are
defined, where each one specifies the names (‘‘filters1”, ‘‘filters2”
and ‘‘filters3”) and sizes (sz1; sz2 and sz3) for a tensor dimension.
Such names are used later in the layout description. In turn, layout
describes the mapping of the tensor dimension described previ-
ously (filters0) to a mesh dimension (b0). In particular, such map-
ping is only specified for dimension f 0, which means that no
partition is made for those kernel tensors in the second and third
conv2d layers. As a direct consequence, in the first conv2d layer,
the corresponding kernel tensor is automatically partitioned and
distributed across the f 0 dimension to the d devices specified in
the mesh dimension b0. As a result, the model is partitioned in

½k0; k0; sz0=d� slices per device. On the contrary, second and third
conv2d layers are not included in the layout, hence, their kernel
tensors are replicated within each device. Between conv2d layers
and FC layers, Mesh-TensorFlow internally performs a MPI reduc-
tion operation to combine the tensor slices distributed in the first
layer. Fig. 2 provides the graphical representation of kernel tensors
at first (left), second and third (right) conv2d layers. On the left
side, the kernel tensor is partitioned across the number of filters
dimension (sz0=d), while on the right side, the kernel tensor are
replicated in each device.

In addition, it is noteworthy that, partitioning a feature map
tensor (i.e., X) along the batch dimension (B) is equivalent to per-
form data parallelism, since actually the data is partitioned
between devices.

Fig. 3 shows the complete landscape of the described CNN
model in Algorithm1, considering d ¼ 3 devices. Note that,
although devices represented in the figure have different computa-
tional capabilities, Mesh-TensorFlow divides the kernel tensors
into homogeneous slices. This homogeneous partitioning can be
considered unfair, as it does not fully-exploit the more powerful
devices, while it can overwhelm the less powerful ones. As a result,
the processes required in each device perform calculations at dif-
ferent speeds, due to the different computing and memory capabil-
ities, and hence they arrive to the reduction communication phase
(just before the fully connected layers) at different times, which
have a decisive impact in the overall performance. in order to over-
come this limitation, this paper introduces the HetMesh-
Tensorflow approach as a new strategy to perform heterogeneous
partitioning, taking into account the devices’ capabilities.

4. Hetmesh-Tensorflow approach

This section provides the details of the proposed method. The
main goal pursued by the developed model is the efficient and
effective training of deep CNN-inspired models, following a model
parallelism scheme based on a heterogeneous HPC platform. In this
sense, and following the previous section, we assume a set of com-
putational nodes or devices with different computational capabili-
ties (speeds).

Fig. 1. Graphical representation of standard conv2d layer. f l filters with size kl � kl are overlapped on the input volume Xl�1 2 RB�N�M , obtaining the intermediate feature
maps Zl 2 Rf l�Nl�Ml , where output spatial dimensions are obtained as Nl ¼ N�klþ2ql

sl

j k
þ 1 and Ml ¼ M�klþ2ql

sl

j k
þ 1 (ql is the padding and sl the stride).
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Fig. 2. Partitioning and Mapping defined by a layout of the kernel tensors in convolutional layers of the Algorithm 1 to a one-dimensional mesh with d ¼ 3 devices. At the left
part, kernel tensor in the first convolutional layer is shown, that is partitioned across filter0 dimension between available devices in three slices. At the right part, kernel
tensor in the second convolutional layer is shown, that is replicated in every device. The array devices contain a description of the available devices in the platform. The tensor
in the first convolutional layer is evenly partitioned between devices, independently of each device computational capabilities.

Fig. 3. Mesh-TensorFlow homogeneous partitioning of those kernel tensors defined by the three convolutional layers specified in Algorithm 1, considering d ¼ 3 devices.
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4.1. Homogeneous distribution issues

Original Mesh-TensorFlow performs tensor partitioning across a
certain dimension in equally proportioned slices, and hence, every
device is assigned with the same amount of workload, indepen-
dently of its speed. As a result, faster devices will wait for the
slower ones in every reduction communication point, which can
lead to performance degradation.

To overcome this limitation, we propose a new methodology,
assuming a heterogeneous platform composed by several devices
with different computational capabilities. Our proposed method
focuses on the partitioning of kernel tensors across the filter
dimension considering 1D-meshes in convolutional layers. As a
result, model parallelism scheme is provided.

4.2. Strategy to adapt workload to speeds

In order to perform heterogeneous partitions and distributing
tensor slices between a set of heterogeneous devices depending
on their capabilities, a key issue should be addressed: How can
we accurately determine the speed of each device to balance the
workload?.

In this regard, FuPerMod [29] is an interesting tool that has
been wisely-used in scientific HPC applications to distribute the
workload between a set of heterogeneous nodes. In fact, FuPerMod
executes a benchmark to accurately determine the devices speeds.
As a result, FuPerMod returns the relative speed of the d devices
comprised by the heterogeneous platform, as a set of d functions
indicated by Eq. (2):

s ¼ fs1ðpÞ; s2ðpÞ; . . . ; sdðpÞg 2 Rd; ð2Þ
where each function sið�Þ varies along a given range of task sizes p
(given in bytes) to represent the device performance. The speed is
obtained as the inverse of the time ti invested in executing the
benchmark for every size pj that falls within the search range
(where p indicates the maximum limit), i.e., siðpjÞ ¼ pj=tiðpjÞ. Load
balancing is achieved when ti � tj; 8i; j 2 f1; . . . ;dg. The final goal
is to find p ¼ fp1; . . . ;pdg 2 Rd s.t.

P
ipi ¼ p, which is formulated

by FuPerMod as an optimization problem and solved using an iter-
ative geometrical method [44]. Then, the relative differences in the
amount of work, which is assigned to each device and represented
as vector p, are used to obtain the optimal size of the kernel tensor
slice across the filter dimension to be distributed to the devices.
With this valuable information, it performs the final partitioning
to balance the workload.

Both, the partition vector p and the vector of speeds s are deter-
mined statically by running FuPerMod tool in a previous step to the
model training, and therefore, its computations do not affect to the
training performance. In addition, it is not necessary to always run
it before training, since launching it once, the results are stored.
Obviously, determining the speed of a device, and hence, its
assigned slice, may not be completely accurate. However, small
errors that may appear are assumed as common jitters that could
appear even in homogeneous systems. In this regard, Moreno
et al. [20] proposed an accurate method to balance the workload
to a set of processes training a CNN based on FuPerMod, under a
data parallelism scheme, by using as a benchmark a CNN on a
range of tensor sizes.

4.3. Heterogeneous partitioning

Once the speeds of the devices are determined by [20], tensors
are partitioned across the dimension specified in the layout to the
virtual 1D-mesh of devices. Algorithm1 remains unchanged,
because the partitioning step is completely transparent to the user.

The tensor will be only partitioned once in a convolutional layer
according to both the tensor filters dimension and vector speeds s.
The dimension specified in the layout will determine the number
of partitions for the following convolutional layers. Fig. 4 provides
a graphical representation of this procedure. Note the difference
with the previous Fig. 3, where the first conv2d was homoge-
neously partitioned between devices. In particular, in Fig. 4 the
partitioning within first conv2d layer filters can be observed,
where the f 0 filters of size k0 � k0 are distributed among the differ-

ent devices as f 00 – f 10 – f 20 and s.t. f 0 ¼ f 00 þ f 10 þ f 20, according to
vector s.

As pointed before, CNNs are divided into two parts: the fea-
ture extractor net and classification net. The feature extractor
net is composed by the set of convolutions and pooling layers,
obtaining as a result the feature maps where the existence and
position of the features learned by the filters are indicated.
According to Mesh-TensorFlow implementation, in purely convo-
lutional partitioned layers, the workload that each device will
have to process (i.e. the slice assigned to the device) is

ðB;Nl;Ml; jf iljÞ, being f il the number of filters of a kernel tensor
in the l-th convolutional layer assigned to the i-th device, with
i ¼ 1; . . . ; d, while Nl and Ml are the respective height and width
of the output feature volume Xl and B the batch size. In partic-

ular, those filters assigned to a device f il are computed using
FuPerMod as described in Section 4.2.

Once a tensor is partitioned according to the layout, the model
will not replicate again until reach the classification net, imple-
mented by a MLP. This slightly changes the behavior with respect
to Mesh-TensorFlow (as detailed in Section 4.4), in which parti-
tioning is performed repeatedly along all convolutional layers in
forward propagation.

Tensor slices must be stacked at every communication point
(reduction) in order to compose the tensors and update them dur-
ing the backward propagation stage, by using the computed gradi-
ents. Thus, to reduce out the parameter slices, all dimensions
except the filter dimension must match in all slices.

4.4. Semantics of proposed tensor partitioning

Original Mesh-TensorFlow has several problems when parti-
tioning over the filter dimension for multiple convolutions, in addi-
tion to its unfair partitioning procedure in heterogeneous
environments.

As described in Section 3, the layout indicates the tensor
dimensions to be partitioned. Therefore, we can define the total
number of filter dimensions to be partitioned as n. The mesh
indicates the number of devices to be assigned over a dimension.
The first problem when facing multiple convolutions is that the
mesh� layout relation produces an increment in the number of
partitions over the mesh dimensions, with a total of dn

partitions.
To understand this problem, we first define the Eqs. (1a) and

(1b) that describe the standard application of the l-th convolu-
tional layer on the input data Xl�1 2 RBl�N�M (where Bl ¼ f l�1

indicates the input channels), by convolving the weight matrix
Wl 2 Rf l�kl�kl�Bl which results into the output volume
Zl 2 Rf l�N�M (for simplification, we keep constant the spatial
dimension). Therefore, f l convolution filters are overlapped onto
small patches of the input, particularly with receptive field size
kl � kl � Bl, and conduct matrix calculations to obtain for each
application the corresponding output feature. In this sense, a
CNN model with L convolutional layers has to train a number
of parameters given by Eq. (3a), involving a high number of
floating point operations (FLOPs):
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Parameters :
X
l

kl � Bl � f l ð3aÞ

FLOPs :
X
l

f l � ðN �MÞ � Bl � k2l ð3bÞ

In this regard, the number of filters in the current layer f l has
a decisive impact on both the number of parameters (increasing
storage requirements) and the number of FLOPs executed (in-
creasing the computational burden). In this sense, the proposal
divides the l-th layer across the filter domain, grouping the f l fil-
ters into d groups, where d corresponds to the number of avail-
able devices. Accordingly, each device receives f l=d filters, which
significantly reduces both computational load and memory
consumption.

Hence, focusing on the base-line model proposed by Figs. 3–5,
where a 3-layer CNN model is depicted, it is possible to observe
how the proposal divides each convolutional layer between 3
devices. As a consequence, 9 cropped-convolutions are obtained
and distributed into the devices. As the proposal maintains this
partitioning throughout the execution, further partitioning of the
layers will imply a new division to each of the nine chunks. As a
result, 27 cropped-convolutions would be obtained. This exponen-
tial growth generates a large number of inefficient partitions, as
they involve an undesirable increment in communications.

The second problem is related to the limitation that two con-
tiguous convolutions cannot be partitioned over the filter dimen-
sion. This is because the partitioned filters of the contiguous
convolution would be applied on an input already partitioned,
resulting in a significant loss of information.

Algorithm 2. Algorithm for heterogeneous slices partitioning.

1: d, total number of devices
2: pnum = 0 . . . d� 1, the device identifier
3: filterslayer , total filters comprised by the layer

4: sliceShapepnum, vector where each element indicates filters
per device

5: s = ½s0; s1; . . . ; sd�1�, the speeds array
6: sliceShape = ½k; k�, the shape of the slice, where k is the

kernel size
7: sliceBegin = ½0;0�, the start of each slice in the convolution
8: for pnum ¼ 0;1; . . . ; d� 1do
9: for layer in layoutLayers do
10: if layer is evenConvolution then
11: layerShapepnum = toInteger(spnum � filterslayer)

12: sliceShape.append(layerShapepnum)
13: if pnum is 0 then
14: begin = 0
15: else

16: begin =
Pd�1

pnum¼0layerShape
pnum

17: end if
18: sliceBegin.append(begin)
19: else if layer is oddConvolution then
20: sliceShape.append(filterslayer)
21: sliceBegin.append(0)
22: end if
23: end for
24: end for

Fig. 4. Graphical representation of heterogeneous kernel partition (according to vector speeds s) within first convolutional layer, and standard kernel replication within
second and third layers, following the CNN model proposed in Algorithm 1, considering d ¼ 3 devices that are represented in different colors.
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To overcome both problems, two solutions have been imple-
mented over the original proposed method. First, our heteroge-
neous proposal changes the layout semantic established by
Mesh-TensorFlow at some points. In this sense, there is still a mesh
which represents the virtual topology of the devices in the hetero-
geneous platform and the layout is still composed by pairs (tensor-
dimension, mesh-dimension), however, only the number of devices
on the first dimension of filters to be partitioned will be indicated
in the mesh. Subsequently, the mesh will be replicated for the fol-
lowing partitions on the filters. Hence, taking into account the
model represented in Fig. 4 and described in Table 1, the mesh
and the layout from Algorithm 1 are adapted to
mesh ¼ ½ð\b0"; dÞ; ð\b1";1Þ; ð\b2";1Þ� and
layout ¼ ½filters0 : b0; filters1 : b1; filters2 : b2�, respectively.

To get over the loss of features, two types of convolutional lay-
ers have been defined when partitioning across the filter dimen-
sion. On the one hand, the partitioning convolutions, also called
even convolutions Pconv are defined as the building block in which
both workload partitioning and distribution are made between the
devices across the filter dimension. On the other hand, the odd con-

volutional layers, also called reduce convolutions Rconv are the
building blocks that receive and process a partition from the previ-
ous Pconv convolution. Thus, in Rconv all filters must be processed
in each device in order to preserve the model precision, avoiding
the loss of information. The complete behavior of these two types
of conv2d layers can be observed on Fig. 5 where both are repre-
sented with its respective filters assignment per layer and device.
There is a notable difference with the previous Fig. 4 which refers
to the original Mesh-TensorFlow code and hence, only one layer
can be partitioned to avoid the two problems described in this Sec-
tion. A simple vision for the heterogeneous partitioning with these
changes is showed in Algorithm 2.

With these two modifications, it has been possible to preserve
the efficiency provided by the model parallelism given by Mesh-
TensorFlow, adapting it to a heterogeneous partitioning across fil-
ter dimension.

4.5. Performance analysis

As explained before, the workload of each convolution will be
determined by the computational capacity of each device (col-
lected by vector s) with the number of filters. Combining the
devices fairly in the processing of convolutional kernels can
increase the performance of the deep model. In this sense, the per-
formance is determined by the computation and communication
times. Therefore, focusing on both homogeneous and heteroge-
neous partitioning, the computational and communication cost is
indicated by Eq. (4):

tcomp ¼ maxðB � zio � ciuÞ ð4aÞ

tcomm ¼ B � zio ð4bÞ

Table 1
Layers of the convolutional neural network implemented for classification of the
MNIST dataset.

Model for MNIST

Layer ID Kernel/Neurons Activation Funct.

Conv0 7� 7� 60 ReLU
Conv1 5� 5� 120 ReLU
Conv2 3� 3� 180 ReLU

Avg-Pool 2� 2 –
FC1 128 ReLU
FC2 nclasses Softmax

Fig. 5. Graphical representation of the heterogeneous partitioning to solve Mesh-TensorFlow filter partitioning problems. The loss of features problem is solved using two
partitioning convolutions Pconv and one reduce convolution Rconv in the middle of both. Also, the one-dimensional mesh extension is used.
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where B denotes the batch size, ci ¼ ½kl; kl; f il� defines the local recep-
tive field and the number of filters (per device i) of the l-th convo-
lutional layer, zio represents the units for the input and output
layers and u the neurons units.

The computation time tcomp will be given by the slowest device.
This is because to avoid staleness synchronous communication is
used. As for the heterogeneous approach the workload balancing
has previously occurred, there is no significant difference between
the maximum time and the average time of all devices. Conversely,
Eq. (4a) under the homogeneous approach proposed by Mesh-
TensorFlow is significantly higher due to waiting times between
devices. This is analyzed in Section 5.

5. Experimentation and analysis

In this section the heterogeneous approach is evaluated in
terms of performance compared to the homogeneous distribution.
The platform is detailed, and then we discuss the results obtained
in the training phase in terms of performance and accuracy. The
experimentation is divided into two parts. First, a basic network
is used to demonstrate the behavior of the proposal in a simpler
way. Subsequently, more extensive tests have been performed
with deeper networks and more complex datasets.

Tests have been carried out in a single machine environment
because the distributed model parallelism from Mesh-
TensorFlow implementation is under development and currently,
it does not support multiple node platforms.

To obtain initial insights of the implementation, the first
machine used is an X Generation Intel Core i9-9940X processor
with 19.25M of Cache and up to 4.40 GHz (14 cores/28 way
multi-task processing). Motherboard is a Gigabyte X299 Aorus
with 128 GB of DDR4 RAM. Graphic processing units are a NVIDIA
GeForce GTX 2080Ti with 11 GB GDDR6 of video memory and 4352
cores, and a NVIDIA Titan RTX with 24 GB GDDR6 of video memory
and 4608 cores. On the other hand, the second machine used
belongs to the Ceta-Ciemat supercomputing cluster. This cluster
provides with a more realistic environment composed of four NVI-
DIA Volta V100 with 32 GB RAM HBM2 of video memory and 5120
cores. The processor is an Intel Xeon Gold 6240 with 196 GB RAM
and 24.75M cache and 18-cores up to 3.90 GHz. In order to evalu-
ate this proposal, all the computing elements are used in the first
machine, while 3 GPUs and CPU are used for the Ceta-Ciemat
machine.

Models were trained using two standard datasets, MNIST and
CIFAR100. MNIST is composed of black and white handwritten dig-
its images of size 28� 28� 1, representing digits from 0 to 9, with
a training set of 60:000 examples and a test set of 10:000 examples.
CIFAR100 contains 60:000 colour images of size 32� 32� 3 of 100
non-biased classes. This dataset is used to verify that the proposed

implementation provides successful results in a complex classifica-
tion problem with a high number of classes.

Numerous models are used in the experiments. First, we use the
model shown in Table 1 to get the first approximation test of the
HetMesh implementation efficiency in a heterogeneous system.
This model is composed of a convolutional part of 3 convolutional
layers and a average-pool layer. The classification part is composed
of 2 fully-connected layers and the softmax.

Each model is executed five times using both the homogeneous
and the heterogeneous distributions. The results in the figures
show the mean of all runs along with the standard deviation.

Note that the gain obtained from performing the heterogeneous
distribution over the homogeneous one will be conditioned by the
difference between the devices (both GPU and CPU) where the
training is executed.

The evolution of the precision across the training step has been
studied. The main objective of the heterogeneous distribution is to
be time efficient without losing precision. Fig. 6(a) shows the evo-
lution of the precision along epochs for both proposals. As we can
see, our proposal accuracy percentage is almost the same as the
original homogeneous throughout the training. Furthermore,
Fig. 6(b) shows a clearly advantage of the heterogeneous proposal,
that completes the training significantly earlier. The results shown
in the Fig. 6 are detailed in the Table 2.

Once the efficiency of the heterogeneous proposal was intro-
duced and verified, tests were carried out with deeper CNN models
using the Ceta-Ciemat machine. These networks are the well-
known VGG11, VGG16 and VGG19. In these VGG networks, the
model is evaluated every 30 epochs, and therefore, the shuffling
of the data occurs at that time.

At this point, it is worth noting the accuracy gap observed in
Fig. 7(a) between our proposal and the original implementation
of partitioned convolutions. Indeed, the obtained results are in line
with recently developed theories in the deep learning field as
described below. As the convolution layer attempts to learn and
adjusts its filter weights in a 3D space (width, height and channel
dimensions), each filter has to simultaneously map the correlations
between channels and spatial dimensions [45], whichmay result in
a correlation between different filters in the same convolutional
layer [46]. In this respect, it has been observed that dividing the fil-
ters into several convolutions and then combining them rather

Fig. 6. Model described in Table 1 trained for 30 epochs in the first machine.

Table 2
Results for time and accuracy under model described in Table 1.

Baseline Proposed

Epoch time Min. 154.27 93.57
Max. 160.82 100.91
Avg. 155.06 95.54

Accuracy 99.32 99.17
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than applying them all in one convolutional layer is more compu-
tationally efficient and provides better precision results [47].
Although the black box nature of the convolution layer prevents
the accurate interpretation of the extracted features, recent works
find that dividing the full convolution layer into smaller convolu-
tions (or even finding a smaller set of basis filters) reduces model
parameters, prevents model overfitting and reduces the correlation
between kernel filters [47,45,48,46,49,50]. In this sense, the pro-
posed heterogeneous model divides the odd-layer filters into par-
allel convolutions and the independently extracted features are
concatenated and combined in the even-layers. On the contrary,
the homogeneous model applies standard convolutions in all its
layers, except for the last one, which is divided homogeneously.
Therefore, obtained results seem to indicate that the heteroge-
neous model is able to extract less redundant data representations,
which in the end helps to improve the accuracy results. Further-
more, at Fig. 7(b) it is observed that our heterogeneous proposal
has adjusted the loss more than the homogeneous original pro-
posal in a significantly less amount of time.

Regarding the training time, the results in the Table 3 shows the
epoch training times of these methods. It is appreciated how there
is a notable decrease in the epoch times when more convolutions
are partitioned in a heterogeneous way. Thus, it is demonstrated
that our proposal in this article achieves a notable improvement
in training times by being able to heterogeneously partition all
convolutions (see Table 4).

As shown in the Table 3, the speedup depends on the number of
convolutions that are partitioned. It is important to remember that
only even convolutions Pconv are partitioned. Therefore, the
speedup depends on how many convolutions with greater compu-
tational load are denoted as Pconv.

6. Conclusion

A new approach to distribute the training of deep networks
on dedicated heterogeneous platforms is described. To achieve
this, the computing capabilities of each of the devices must be
determined in a previous step. With this, the training platform
is characterized. This provides a computational load balance
through the model parallelism scheme. Specifically, this compu-
tational adjustment is made over the model convolution filters.
Thus, waiting times at communication points are almost elimi-
nated. These synchronization points are located in those layers
in which the model is not partitioned. This causes a reduction
of the overall execution time needed for training the deep model
as demonstrated for two different platforms and datasets. Fur-
thermore, our heterogeneous partitioning proposal has no nega-
tive impact on model precision while reducing the training time.
Thus, it increases the convergence of deep models, while provid-
ing improved accuracy.

One of the main contributions of this work is the exploitation of
well-known HPC optimization techniques to balance the dis-
tributed training of deep learning models on model parallelism
schemes. Previous works focus on the homogeneous distribution
of the workload between devices, assuming a homogeneity
between the devices. Conversely, our work takes into account the
computation differences between devices, being able to adapt the
computation made on each of them.

This development could be extended in terms of scability by
increasing the number of replicas, using larger datasets and differ-
ent devices. The proposed HPC techniques used for the implemen-
tation of this proposal will greatly facilitate the increase of replicas.
This is the main reason why it has been decided to use this type of
techniques. Hence, scalability test will be carried out as soon as the
distributed model parallelism implementation is provided by
Mesh-TensorFlow.

Table 4
Accuracy results for VGG models.

Baseline Proposed

VGG11 Max. 61.26 63.75
Last. 61.16 63.71

VGG16 Max. 63.74 66.79
Last. 63.71 66.43

VGG19 Max. 61.59 66.61
Last. 61.30 66.61

Fig. 7. VGG16 model trained for 2100 epochs on the Ceta-Ciemat platform.

Table 3
Time (seconds) per epoch for VGG models.

Baseline Proposed

VGG11 Min. 5402.21 922.61
Max. 5460.87 928.25
Avg. 5419.24 924.72

Speedup 5.86

VGG16 Min. 9619.58 1943.50
Max. 9681.67 1960.34
Avg. 9657.80 1953.91

Speedup 4.94

VGG19 Min. 13135.04 2123.94
Max. 13255.21 2165.82
Avg. 13218.72 2147.32

Speedup 6.15
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Abstract
Hyperspectral images (HSIs) record scenes at different wavelength channels, provid-
ing detailed spatial and spectral information. How to storage and process this high-
dimensional data plays a vital role in many practical applications, where classifica-
tion technologies have emerged as excellent processing tools. However, their high 
computational complexity and energy requirements bring some challenges. Adopt-
ing low-power consumption architectures and deep learning (DL) approaches has 
to provide acceptable computing capabilities without reducing accuracy demand. 
However, most DL architectures employ single-precision (FP32) to train models, 
and some big DL architectures will have a limitation on memory and computation 
resources. This can negatively affect the network learning process. This letter leads 
these challenges by using mixed precision into DL architectures for HSI classifica-
tion to speed up the training process and reduce the memory consumption/access. 
Proposed models are evaluated on four widely used data sets. Also, low and high-
power consumption devices are compared, considering NVIDIA Jetson Xavier and 
Titan RTX GPUs, to evaluate the proposal viability in on-board processing devices. 
Obtained results demonstrate the efficiency and effectiveness of these models within 
HSI classification task for both devices. Source codes: https​://githu​b.com/mhaut​/
CNN-MP-HSI.
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1  Introduction

As one of the most important data sources in remote sensing, hyperspectral imag-
ing (HSI) provides rich and detailed spectral information about different materi-
als on the earth surface. This spectral information has been widely used in a vast 
number of applications, such as image super-resolution [13] or spectral unmixing 
[24], among others. By analysing the continuous and narrow-band spectral sig-
natures contained into pixels, different land cover categories can potentially be 
precisely differentiated. In this context, supervised classification plays a vital role 
in analysing and processing the HSI information. Moreover, the main interest of 
supervised classifiers lies in their guided training procedure, where labelled train-
ing samples are used to fit the model parameters. As a result, supervised meth-
ods achieve much higher precision values than unsupervised methods [6]. There-
fore, many supervised methods have been extensively exploited in many practical 
activities, including land changes monitoring or natural resources management 
[1]. However, the accuracy of supervised classifiers is highly affected when the 
number of available training samples is limited in relation to the (high) data 
dimensionality, which is quite common in HSI due to the high cost and workload 
involved in the expert annotation. This may cause incomplete training process 
that easily introduces overfitting.

To address the aforementioned issues, several deep models have been devel-
oped reaching some breakthrough accomplishment in ML. Convolutional neural 
networks (CNNs) have demonstrated to be highly accurate techniques due to their 
ability for automatically extracting discriminative features. For instance, Yue 
et al. [26] proposed a CNN3D to classify HSI data in consideration of spectral-
spatial information. To further enhance the accuracy, many improvements have 
been included to the CNN framework, such as Paoletti et al. [18] who presented 
a fast end-to-end CNN3D in the consideration of the full spectral signatures con-
tained in HSI data to improve the classification accuracy. However, CNN models 
still encounter some limitations due to the depth and the high number of trainable 
parameters, and the intrinsic characteristics of HSI data. Specially, CNN models 
require an important amount of training data to adjust their weights appropriately. 
To overcome the limitations, different strategies have been proposed, such as 
semisupervised and active learning (AL) techniques [7], which address the lack 
of training samples problem by increasing the quantity-quality trade-off of the 
training samples, respectively. Particularly, these techniques are quite effective for 
discovering feature representativeness and discriminativeness. Other algorithms 
are based on residual and dense connections [20]. These techniques can alleviate 
both loss of information and vanishing gradient problems of very complex and 
deep architectures. Finally, there is a third type of algorithms based on new infor-
mation routing techniques, such as capsule modules [19] which were proposed to 
overcome the CNN limitations when exploring the spatial relationships among 
learned instantiation parameters, such as size, perspective and orientation.

Despite these progresses, CNN-based models still face some challenges when 
dealing with HSI data. For instance, their training and inference stages require 
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processing thousands of millions of floating point operations, involving a large 
number of parameters and data variables which are in single-precision format. 
This increases the storage and compute requirements, which are already high 
because of the large spectral dimension. As a result, deep HSI classifiers require 
powerful and usually expensive computer resources, which are high power-con-
suming and therefore usually located in processing centres at the ground segment. 
As a result, developing on-board processing solutions is quite difficult, as com-
puting platforms usually have limitations in both memory capacity and energy 
consumption [5]. In this context, adapting these deep models to reduce both 
memory and computing requirements is mandatory, not only to optimise comput-
ing times, but also to deploy them on low-power-consumption platforms, allow-
ing on-board processing.

This paper adopts the newest trends in deep learning (DL), combining single 
(FP32) and half-precision (FP16) data and arithmetic formats to alleviate the high 
computational burden involved by deep HSI classification models while maintaining 
the accuracy performance [9, 17]. Indeed, this paper conducts an extensive com-
parative between several CNN-based models with single and mixed precision strate-
gies by taking advantages of GPU architecture. Moreover, it provides a comparative 
between high and low-power consumption devices, comparing the NVIDIA GPUs 
Titan RTX and Jetson Xavier. Implemented HSI classifiers exhibit: (i) a high speed 
within math-intensive operations, where Tensor Cores optimize the convolution and 
matrix operations, and (ii) a significant reduction in both memory consumption and 
memory access times.

2 � Background

The success of CNN lies in the application of local kernels onto small patches of the 
input, which filter the presence of specific features, followed by an activation func-
tion that obtains the neuronal response to those features:

where � ∈ ℝ
N×N×C and � ∈ ℝ

M×M×K are the input and output volumes, and 
� ∈ ℝP×P×C×K and � ∈ ℝ

K defines the kernel weights and bias vector. Natu-
rals t̂ ∈ [1,C] and t ∈ [1,K] index the input and output channels, i, j ∈ [1,N] and 
î, ĵ ∈ [1,P] are indexing the output and kernel elements along the spatial dimension, 
and ĩ, j̃ are the re-centred spatial indices indexing the input. H defines the activation 
function. From Eq. (1), it is easy to estimate the number of parameters and FLOPs 
performed by L convolution layers:

(1)� = H(� ∗ � + �), with yi,j,t =
∑
î,ĵ,t̂

xi+ĩ,j+j̃,t̂wî,ĵ,t̂,t + bt

(2)Params.:

L
∑

l=1

P2

l
× Cl × Kl, FLOPsl ∶ Kl × N2

l
× Cl × P2

l
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This results in a massive amount of both trainable parameters and operations, mak-
ing CNNs computational-intensive models. Important efforts have been conducted 
in order to reduce this drawback [4, 14]. Some approaches attempt to lighten the 
model by dividing the standard layer into separable depth/point-wise layers [23]. 
In [22], authors combine separable layers with shift-based operations to simulate 
the movement of the spatial features at each map, reducing the number of param-
eters and therefore the operations performed. Also, [2] proposes a lightweight model 
based on separable convolutions, combining the deep feature extraction with an 
approximate rank-order clustering. Furthermore, [21] divides the layer into a lighter 
convolution operation combined with a set of cheaper linear transformations. How-
ever, these models operate on FP32, without taking advantage of the benefits of 
mixed precision between FP32 and FP16.

3 � Methodology

3.1 � NVIDIA hardware optimization

The great demand for high performance devices for parallel and massive data pro-
cessing has produced a wide range of GPUs, with different features and capabili-
ties, which are pretty useful for many computationally intensive applications. In par-
ticular, the NVIDIA Turing architecture [10] is quite interesting, as it encodes an 
instruction and its control information with 128 bits, following the Volta encoding 
format, while previous architectures, such as Pascal and Maxwell, employ 64 bits for 
an instruction information and 64 bits of control. In this sense, Turing uses 91 bits 
for the instruction information and 23 bits for the control, while the remaining 14 
are not used. Regarding memory, Turing combines L1 data cache and shared mem-
ory, following Volta model. The L2 cache is similar to previous generations, as it is 
unified for data, instructions, and memory. Table 1 provides a comparison between 
different NVIDIA GPUs architecture generations.

Therefore, Turing provides both a new streaming multiprocessor (SM) and a new 
memory system architectures, improving the efficiency and performance for massive 
parallel applications, which is quite interesting for optimizing DNNs for HSI clas-
sification. For instance, the Turing SM enables concurrent execution of FP32 and 

Table 1   Comparative between 
several NVIDIA GPUs 
architectures

Architectures (sizes in KiB)

Feature Turing Volta Pascal Maxwell Kepler

2 cache 4096 6144 4096 2048 1536
L1.5 cache 46 64 64 32 –
L1 cache 144 256 32 32 48
L0 cache 16 12 12 – –
Registers 64 64 128 64 255
Tensor Cores ✓ ✓ ✗ ✗ ✗
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INT32 operations by including independent integer and floating-point math data-
paths, while the different memory-level paths have been unified, providing a bigger 
and faster L2 cache and including support for the GDDR6 memory technology to 
increase the bandwidth. In addition, the architecture enhances the specialized execu-
tion units for matrix operations, called Turing Tensor Cores (TTCs). These TTCs 
are designed for the multiplication of two matrices, and the accumulation of a third 
matrix and provide multi-precision computing (considering FP32, FP16, INT8 and 
INT4). This property facilitates the combination of different precision formats (the 
so-called mixed precision) when training neural networks, which significantly accel-
erates arithmetic calculations and reduces the memory accesses/consumption, while 
keeping constant the accuracy results.

To properly optimize those operations, a high-performance CUDA SDK is pro-
vided, which includes the TensorRT as the inference optimizer. It takes a trained 
network (i.e. a network definition and the corresponding set of trained parameters) 
and produces a highly optimized runtime engine which performs the inference stage 
for the selected network. Finally, previous architectures can be built in embedded 
systems and other devices, such as the low-power-consumption and heterogene-
ous multi-processor NVIDIA Tegra models. For instance, the Tegra K1, TK1 and 
TK2 models use the Kepler architecture with a maximum of 365 GFLOPS and 951 
MHz frequency, while Tegra X1 uses the Maxwell architecture. This model includes 
the half-precision, and it is composed of 256 GPU cores with a maximum of 1298 
GFLOPS for FP16, 649 GFLOPS for FP32 and 1267 MHz frequency. Its succes-
sor, Tegra X2, changes the GPU architecture to Pascal with a maximum of 1465 
GFLOPS for FP16, 750 GFLOPS for FP32 and 1267 MHz frequency. Tegra Xavier 
models adopt the Volta architecture with a maximum of 2820 GFLOPS for FP16, 
1410 GFLOPS for FP32 and 1377 MHz frequency. Finally, although it is not yet 
publicly available to the market, Clara AGX models will implement the Turing 
architecture, considering the previous Xavier computing module to produce an opti-
mal inference using TTCs.

3.2 � Mixed precision strategy

As noted above, DL training systems use the FP32 format, which involves reading 
and computing millions of parameters represented by 32 bits. As a result, DNNs 
exhibit high time and energy costs. In this sense, the current trend is to reduce the 
memory footprint while optimizing the memory load of the model in order to speed 
the computation. This can be done by rearranging the data [25] or shrinking the data 
size [17]. In particular, casting some data/operations from FP32 to FP16 calcula-
tion is quite interesting, saving memory while increasing the speed up. Therefore, 
this paper studies the performance of several DNNs considering single and mixed 
precision [17]. Proposed implementations are based on TTC behaviour, where the 
DNNs performance is accelerated by transforming the vast majority of the math-
ematical computations into half-precision, while ensuring that no task-specific accu-
racy is degraded by identifying those steps/computations that require single preci-
sion. Hereof, hidden layers cast their FP32 inputs into FP16 format to conduct FP16 
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calculations, resulting into a FP16 outputs. Moreover, to prevent model accuracy 
loss, the following three techniques are implemented [9]: (i) maintaining a FP32 
copy of weights, which accumulates the gradients after each optimizer step; (ii) loss-
scaling to avoid vanishing gradient because data truncation, and (iii) FP16 arithme-
tic with accumulation in FP32. These techniques are detailed below.

During training step, data tensors (model weights, activations and gradients val-
ues) are cast into FP16 format, which implies that all arithmetic operations will be 
performed in FP16 too. This enables a faster operation, consuming less memory 
bandwidth. Equation  (3) shows the castings for forward (3a) and backward (3b) 
steps formulation: 

 where �(l) denotes the corresponding weights of the l-th layer, � is the learning rate 
and �L∕��(l) the weight derivation, considering L as the loss function and L the 
number of layers.

However, FP16 has some disadvantages which can produce an incorrect training. 
Indeed, FP16-data are composed of 16 bits, which are organized as follows: the first 
bit is the sign bit, which gives + 1 or − 1, then the following 5 bits are used to code 
an exponent between −  14 and 15, while the fraction part comprises the remain-
ing 10 bits. Compared to FP32, it has a smaller range of possible values (from 2−24 
to (2 − 2−10)215 , where normalized value exponents range into [−14, 15] ) but also a 
smaller offset. As a result smaller magnitudes than 2−24 are ignored and discarded. 
This produces severe precision errors, such as an incorrect weight update, zero gra-
dients, or infinite/NaN values in the loss or activations.

To counteract this, first a FP32 copy of weights is kept. Although the FP16-
weights are used during the forward and backward steps of each iteration to halve 
the memory consumption and bandwidth, weights updating is conducted over the 
FP32-weights to avoid the truncated/zero weights. Then, updated weights are cast 
back to FP16 to perform the next forward–backward steps. Regarding the gradients, 
the loss is scaled up by factor s = 8 before the backpropagation, pushing it into large 
values to prevent potentially truncated/zero gradients, and then a reverse scaling is 
applied before the weight update. In this sense, the softmax of the model tail should 
be represented in FP32 to avoid numerical error calculations. Equation (4) shows the 
loss scaling formulation for the weight update:

This simple and cheap solution allows the computation of small gradients, avoid-
ing artificial vanishing problems and poor weights to be learnt, and hence, improv-
ing the convergence of the model as demonstrated in [16, 17]. Finally, DNN can 
include some operations that required FP32 precision to avoid the uncertainties (in 
particular batch-normalization and softmax layers). Indeed, DNN performs vector 

(3a)∀l ∈ [1,… , L],
(

�
(l) = �

(l) + �
(l)
)

FP32→FP16

(3b)∀l ∈ [1,… , L],
(

�
(l)
new

= �
(l)

old
− �

�L

��(l)

)

FP32→FP16

(4)�FP32 = �FP32 − �
1

s

(

s
�L

��FP16→FP32

)
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dot-products, reductions and point-wise operations, where the FP16 vector dot-prod-
uct has to accumulate the partial products into a FP32 value and then convert it to 
FP16 before writing to memory in order to maintain the accuracy precision. This 
can be easily conducted by the TTCs. Moreover, large reductions which perform 
the sum of a vector elements should be done in FP32 following the same procedure. 
Figure 1 provides the mixed precision training flowchart.

As we can observe, the DNN has to detect the operation types that should be 
represented in FP32 because their FP16 representation does not provide the desired 
accuracy (for instance, the loss, softmax and cross-entropy functions). To do this, 
Apex Automatic Mixed Precision (AMP) [11] is used. Apex is an extension on 
PyTorch which takes care of tensor casting, ensuring that all arguments are of the 
same type. To ensure that castings are performed only once per iteration, it keeps an 
internal cache of all the casts of the parameters and reuses them. Moreover, it per-
forms the FP32 copy of weights, computing forward and backward stages in FP16 
and updating in FP32, and detecting those operations that should be executed on 
FP32 while most of computations are executed on FP16.

4 � Experimental evaluation

To conduct the comparison between several DNNs for HSI classification in single 
and mixed precision formats, an X Generation Intel Core i9-9940X is employed, 
which is composed of 14 cores (28 with multi-task processing) running at 
4.40GHz with a 19M cache. The GPU is an NVIDIA Titan RTX with 24GB of 
GDDR6 memory, 4608 cores and 576 Turing Tensor Cores. Also, the NVIDIA 

Fig. 1   Mixed precision training. Red and green paths represent FP32 and FP16 formats, respectively. 
During forward step, �(l−1) and �(l) denote the input and output activations of l-th layer, and �(l) its 
kernel-weights. During backpropagation, ��(l) and �(l) are the activation and weights gradients
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Jetson AGX Xavier is tested, with an ARM CPU composed of 8 cores running at 
2.5GHz with 16GB-RAM and 512 Volta tensor cores.

Moreover, four widely used HSI data sets [3, 12] have been used in our experi-
ments, i.e. Indian Pines (IP), Salinas Valley (SV), Kennedy Space Center (KSC) 
and the University of Pavia (UP).

•	 IP has 145 × 145 pixels with 20m spatial resolution and 224 spectral bands in the 
wavelength range from 0.4 to 2.5 μm . We remove 24 bands due to water absorp-
tion and null values, keeping 200 bands.

•	 UP has 610 × 340 pixels and 103 spectral bands in the wavelength range from 
0.43 to 0.86 μm and 1.3 m spatial resolution.

•	 SV has 224 spectral bands and 512 × 217 pixels with a 3.7 m spatial resolution in 
the range from 0.4 to 2.5 μm . We remove some noisy and water absorption bands 
from the original 224 bands, keeping 200 bands.

•	 KSC has 224 spectral bands and 512 × 614 pixels with a 18 m spatial resolution 
in the range from 0.4 to 2.5 μm . Again, we remove water absorption and low 
SNR bands, keeping 176 bands.

Overall (OA) and average accuracy (AA) and kappa coefficient (K) have been 
used to measure the accuracy performance. Also, the runtime (in seconds), num-
ber of parameters, memory consumption (in MB) and the processed-samples-per-
second (PSpS) measurements have been adopted to evaluate the computational 
properties.

We compare the performance of several DNNs for HSI classification, considering 
single and mixed precision training and inference. To address the experimentation, 
we have selected the most innovative algorithms. Thus, effective algorithms previ-
ously tested on a broad set of algorithms from the HSI DL literature are used. In par-
ticular, the CNN2D and CNN2D+RO [8] have been used to perform spatial feature 
extraction (FE) and HSI classification, where the second one includes random occlu-
sion data augmentation. Regarding the scalability and consistency of our proposal, 
the deeper and more complex PResNet model [20] is used to conduct deep spectral-
spatial FE and HSI classification. Model setting specifications [8, 20] have been fol-
lowed. These algorithms were previously tested over the same data sets mentioned 
above, maintaining a consistency in the evaluation conducted.

Fig. 2   Overall accuracy (%) of SP_CNN2D, SP_CNN2D+RO and SP_PResNet and their mixed preci-
sion counterparts, MP_CNN2D, MP_CNN2D+RO and MP_PResNet, when considering different train-
ing percentages in IP, KSC, SV and UP scenes
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Figure 2 provides the OA evolution of CNN2D, CNN2D-RO and PResNet in sin-
gle (SP_CNN2D, SP_CNN2D+RO and SP_PResNet) and automatic mixed preci-
sion (MP_CNN2D, MP_CNN2D+RO and MP_PResNet) when considering differ-
ent amounts of training samples, in particular 5%, 10% and 15% of IP and KSC 
scenes, and 1%, 5% and 10% of SV and UP images. Focusing on FP32 implemen-
tations, SP_PResNet significantly outperforms the OA of CNN models (with the 
exception of KSC, due to the spatial complexity and intense spectral mixing of the 
image), while the SP_CNN2D+RO consequently improves the results of the con-
ventional CNN2D, which is greatly affected by overfitting. This behaviour can be 
observed also between MP implementations, where MP_PResNet is able to extract 
highly discriminative feature representations, as it not only builds a more complex 
architecture but also considers the full spectral information. Comparing SP with MP 
implementations, each pair of networks reach close accuracy with slight variations, 
in particular SP_CNN2D and MP_CNN2D, where the second one usually reaches 
better OA, i.e. with MP, the problem of overfitting can be effectively reduced.

Table  2 provides a deeper study between both implementations, evaluating the 
accuracy in terms of OA, AA and Kappa values over IP (10% training data) and UP 
(5% training data). Once more, PResNet reaches the best accuracy values, and it is 
followed by CNN2D+RO model. Also, the pairs of models achieve quite similar 
results, being sometimes slightly better the SP-version and others the MP (in par-
ticular the CNN2D). Focusing on the number of parameters, pairs of implementa-
tions exhibit also quite similar parameters, where the PResNet comprises more 
parameters than the other models. However, runtimes captured during training stage 
show that, despite having the same number of parameters (approximately), the MP-
based implementation is faster than SP models, achieving also similar accuracy 
performances.

Finally, Fig.  3 provides the memory consumption and the PSpS ratios of both 
PResNet implementations considering every HSI dataset. Moreover, we compare 
both GPUs, evaluating the performance of typically high-performance computing 
and low-power-consumption devices. Regarding the Titan RTX, and focusing on the 
memory requirements, the same batch size [20] is used, where SV and IP scenes 
consume the most due their number of channels. However, MP_PResNet greatly 
reduces its memory consumption, where the FP32 copy of weights and the auxiliar 
FP32 variables barely represent a great effort compared to the large number of acti-
vations, which are stored in FP16. Moreover, the transformation of most operations 
to FP16 arithmetic significantly increases processing speed, while the reading/writ-
ing of FP16 tensors in memory has less impact. As a result, more samples can be 
processed per second, as we can observe in Fig. 3b, which in turn allows the batch 
size to be increased. This behaviour can be also observed on Jetson Xavier device, 
where the MP-implementations process more samples per second. Comparing both 
devices, we can see that the processing ratios are quite similar, where the Titan RTX 
has a higher ratio because of its optimized Turing Tensor Cores, while the Jetson 
Xavier contains Volta Tensor Cores. This result demonstrates that mixed-precision 
is an useful technique to reduce the high computational and memory requirements 
of DNNs for HSI classification, effectively adjusting them to the hardware limita-
tions imposed by potential on-board platforms, such as the Jetson Xavier.



9199

1 3

Deep mixed precision for hyperspectral image classification﻿	

Ta
bl

e 
2  

A
cc

ur
ac

y 
pe

rfo
rm

an
ce

 o
ve

r I
P 

an
d 

U
P 

sc
en

es
 c

on
si

de
rin

g 
si

ng
le

 a
nd

 m
ix

ed
 p

re
ci

si
on

A
ls

o,
 n

um
be

r o
f p

ar
am

et
er

s a
nd

 tr
ai

ni
ng

 ru
nt

im
es

 a
re

 p
ro

vi
de

d
B

es
t r

es
ul

ts
 p

re
se

nt
ed

 in
 b

ol
d 

fo
nt

C
la

ss
In

di
an

 P
in

es
Pa

vi
a 

U
ni

ve
rs

ity

PR
es

N
et

C
N

N
2D

C
N

N
2D

+
RO

PR
es

N
et

C
N

N
2D

C
N

N
2D

+
RO

SP
M

P
SP

M
P

SP
M

P
SP

M
P

SP
M

P
SP

M
P

0
97

.0
7

99
.0

2
73

.6
6

69
.7

5
90

.2
4

76
.1

99
.8

99
.7

6
95

.9
4

95
.8

3
97

.6
1

97
.2

3
1

99
.4

1
99

.2
7

86
.2

7
86

.5
2

92
.0

9
92

.4
8

99
.9

9
99

.9
8

98
.6

6
98

.8
5

99
.3

7
99

.2
2

2
98

.7
4

98
.8

84
.2

6
89

.6
4

95
.3

4
95

.8
2

99
.0

5
98

.9
9

88
.7

6
90

.4
9

91
.4

2
91

.6
8

3
96

.7
1

94
.7

4
95

.8
7

93
.5

2
95

.0
2

95
.8

7
99

.6
99

.4
6

96
.6

3
96

.8
7

98
.9

1
98

.6
4

4
99

.5
9

98
.9

4
89

.0
6

87
.6

8
95

.3
5

93
.9

8
10

0.
0

10
0.

0
99

.4
8

99
.8

4
98

.7
9

97
.8

9
5

99
.5

4
99

.3
6

93
.9

4
95

.3
7

97
.9

98
.7

8
10

0.
0

99
.9

8
92

.9
8

94
.1

5
97

.9
98

.1
8

6
88

.8
89

.6
80

.8
88

.0
96

.0
90

.4
98

.4
6

98
.4

8
91

.7
2

90
.0

6
94

.4
3

95
.7

7
7

99
.9

1
10

0.
0

95
.5

8
97

.0
2

97
.4

97
.9

1
99

.7
6

99
.7

1
97

.6
8

97
.2

2
98

.9
7

98
.6

7
8

96
.6

6
95

.5
5

54
.4

4
76

.6
7

81
.1

1
73

.3
3

99
.8

9
99

.8
5

97
.9

5
98

.0
9

98
.7

3
99

.0
7

9
96

.6
6

97
.0

1
89

.1
9

92
.4

1
94

.5
6

93
.3

5
–

–
–

–
–

–
10

98
.9

2
98

.7
2

91
.9

6
93

.6
7

97
.7

6
97

.8
9

–
–

–
–

–
–

11
97

.1
2

97
.1

1
85

.2
8

83
.9

94
.6

8
93

.1
5

–
–

–
–

–
–

12
99

.8
9

10
0.

0
95

.0
3

91
.2

4
97

.0
8

98
.0

5
–

–
–

–
–

–
13

98
.5

4
98

.7
97

.1
2

98
.6

5
98

.8
9

99
.5

1
–

–
–

–
–

–
14

95
.3

3
94

.4
1

90
.3

7
90

.6
6

95
.2

7
96

.7
1

–
–

–
–

–
–

15
95

.2
4

95
.9

5
81

.1
9

79
.5

2
96

.9
1

93
.1

–
–

–
–

–
–

O
A

98
.4
9

98
.3

8
90

.5
1

91
.8
2

96
.0
6

96
.0

5
99
.8
2

99
.7

9
96

.6
5

96
.8
7

98
.2
8

98
.1

8
A

A
97
.3
8

97
.3

2
86

.5
0

88
.3
9

94
.7
2

92
.9

0
99
.6
2

99
.5

8
95

.5
3

95
.7
1

97
.3

5
97
.3
7

K
(x

10
0)

98
.2
8

98
.1

5
89

.1
7

90
.6
6

95
.5
1

95
.4

9
99
.7
6

99
.7

2
95

.5
5

95
.8
5

97
.7
2

97
.5

8
Tr

. t
im

e 
(s

)
26

5.
27

25
6.
6

22
4.

77
21
8.
57

23
3.

72
22
2.
69

67
4.

73
60
0.
1

38
5.

04
33
1.
69

39
7.

6
34
1.
12

Pa
ra

m
et

er
s

4.
6M

1.
1M

4.
6M

1.
1M



9200	 M. E. Paoletti et al.

1 3

5 � Conclusions and future work

Most existing DL architectures use FP32 format for training, brighting a big 
burden for memory consumption/access. To address the issue, we exploit mixed 
precision over two GPU devices (Titan RTX and Jetson Xavier) to train several 
deep HSI classifiers. This can reduce memory consumption and the time spent 
on memory and arithmetic operations. Experimental results have revealed that 
MP-based implementations are quite effective and efficient in HSI classification. 
Moreover, the comparison between high- and low-power-consumption devices 
shows that it is an useful solution to reduce the computational and memory 
requirements, adapting the deep and complex models to the limitations imposed 
by the potential on-board platforms. This provides interesting results for HSI 
classification in this type of devices where memory usage and workload computa-
tion are key factors, as demonstrated in recent studies on satellites devices [15]. 
Encouraged by these results, we will explore more DL models with mixed preci-
sion, exploring practical applications.

Acknowledgements  Supported by FEDER and Junta de Extremadura (GR18060).

References

	 1.	 Bioucas-Dias JM, Plaza A, Camps-Valls G, Scheunders P, Nasrabadi N, Chanussot J (2013) 
Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci Remote Sens 
Mag 1(2):6–36

	 2.	 Fang B, Li Y, Zhang H, Chan JCW (2020) Collaborative learning of lightweight convolu-
tional neural network and deep clustering for hyperspectral image semi-supervised classifica-
tion with limited training samples. ISPRS J Photogram Remote Sens 161:164–178. https​://doi.
org/10.1016/j.isprs​jprs.2020.01.015

	 3.	 Green RO, Eastwood ML, Sarture CM, Chrien TG, Aronsson M, Chippendale BJ, Faust JA, 
Pavri BE, Chovit CJ, Solis M et al (1998) Imaging spectroscopy and the airborne visible/infrared 
imaging spectrometer (aviris). Remote Sens Environ 65(3):227–248

	 4.	 Haut JM, Alcolea A, Paoletti ME, Plaza J, Resano J, Plaza A (2020) Gpu-friendly neural net-
works for remote sensing scene classification. IEEE Geosci Remote Sens Lett. https​://doi.
org/10.1109/LGRS.2020.30193​78

	 5.	 Haut JM, Bernabé S, Paoletti ME, Fernandez-Beltran R, Plaza A, Plaza J (2018) Low-high-
power consumption architectures for deep-learning models applied to hyperspectral image clas-
sification. IEEE Geosci Remote Sens Lett 16(5):776–780

Fig. 3   Memory consumption and processed samples per second ratio on Titan RTX and Jetson Xavier 
devices considering PResNet



9201

1 3

Deep mixed precision for hyperspectral image classification﻿	

	 6.	 Haut JM, Paoletti M, Plaza J, Plaza A (2017) Cloud implementation of the k-means algorithm for 
hyperspectral image analysis. J Supercomput 73(1):514–529

	 7.	 Haut JM, Paoletti ME, Plaza J, Li J, Plaza A (2018) Active learning with convolutional neural net-
works for hyperspectral image classification using a new bayesian approach. IEEE Trans Geosci 
Remote Sens 56(11):6440–6461

	 8.	 Haut JM, Paoletti ME, Plaza J, Plaza A, Li J (2019) Hyperspectral image classification using ran-
dom occlusion data augmentation. IEEE Geosci Remote Sens Lett 16(11):1751–1755

	 9.	 Jia X, Song S, He W, Wang Y, Rong H, Zhou F, Xie L, Guo Z, Yang Y, Yu L et al (2018) Highly 
scalable deep learning training system with mixed-precision: training imagenet in four minutes. 
arXiv preprint arXiv​:1807.11205​

	10.	 Jia Z, Maggioni M, Smith J, Scarpazza DP (2019) Dissecting the nvidia turing t4 gpu via micro-
benchmarking. arXiv preprint arXiv​:1903.07486​

	11.	 Kim D, Kwon Y, Liu P, Kim IL, Perry DM, Zhang X, Rodriguez-Rivera G (2016) Apex: automatic 
programming assignment error explanation. ACM SIGPLAN Notices 51(10):311–327

	12.	 Kunkel B, Blechinger F, Lutz R, Doerffer R, Van der Piepen H, Schroder M (1988) Rosis (reflective 
optics system imaging spectrometer)-a candidate instrument for polar platform missions. In: Opto-
electronic technologies for remote sensing from space, vol 868. International Society for Optics and 
Photonics, pp 134–141

	13.	 Lanaras C, Baltsavias E, Schindler K (2015) Hyperspectral super-resolution by coupled spec-
tral unmixing. In: Proceedings of the IEEE International Conference on Computer Vision, pp 
3586–3594

	14.	 Li P, Han L, Tao X, Zhang X, Grecos C, Plaza A, Ren P (2020) Hashing nets for hashing: a quan-
tized deep learning to hash framework for remote sensing image retrieval. IEEE Trans Geosci 
Remote Sens 58(10):7331–7345. https​://doi.org/10.1109/TGRS.2020.29819​97

	15.	 Lofqvist M, Cano J (2020) Accelerating deep learning applications in space. In: The 34th Annual 
Small Satellite Conference

	16.	 Lu J, Lu S, Wang Z, Fang C, Lin J, Wang Z, Du L (2019) Training deep neural networks using posit 
number system. In: 32nd IEEE International System-on-Chip Conference (SOCC), pp 62–67. https​
://doi.org/10.1109/SOCC4​6988.2019.15705​58530​

	17.	 Micikevicius P, Narang S, Alben J, Diamos G, Elsen E, Garcia D, Ginsburg B, Houston M, 
Kuchaiev O, Venkatesh G, Wu H (2018) Mixed precision training. In: International Conference on 
Learning Representations

	18.	 Paoletti M, Haut J, Plaza J, Plaza A (2018) A new deep convolutional neural network for fast hyper-
spectral image classification. ISPRS J Photogramm Remote Sens 145:120–147

	19.	 Paoletti ME, Haut JM, Fernandez-Beltran R, Plaza J, Plaza A, Li J, Pla F (2018) Capsule networks 
for hyperspectral image classification. IEEE Trans Geosci Remote Sens 57(4):2145–2160

	20.	 Paoletti ME, Haut JM, Fernandez-Beltran R, Plaza J, Plaza AJ, Pla F (2018) Deep pyramidal resid-
ual networks for spectral-spatial hyperspectral image classification. IEEE Trans Geosci Remote 
Sens 57(2):740–754

	21.	 Paoletti ME, Haut JM, Sidonio N, Plaza J, Plaza A (2021) Ghostnet for hyperspectral image clas-
sification. IEEE Trans Geosci Remote Sens. https​://doi.org/10.1109/TGRS.2021.30502​57

	22.	 Paoletti ME, Haut JM, Tao X, Plaza J, Plaza A (2020) Flop-reduction through memory allocations 
within cnn for hyperspectral image classification. IEEE Trans Geosci Remote Sens. https​://doi.
org/10.1109/TGRS.2020.30247​30

	23.	 Roy SK, Chatterjee S, Bhattacharyya S, Chaudhuri BB, Platoš J (2020) Lightweight spectral-spa-
tial squeeze-and- excitation residual bag-of-features learning for hyperspectral classification. IEEE 
Trans Geosci Remote Sens 58(8):5277–5290. https​://doi.org/10.1109/TGRS.2019.29616​81

	24.	 Tao X, Cui T, Ren P (2019) Cofactor-based efficient endmember extraction for green algae area esti-
mation. IEEE Geosci Remote Sens Lett 16(6):849–853

	25.	 Yu J, Huang T (2019) Autoslim: towards one-shot architecture search for channel numbers. arXiv 
preprint arXiv​:1903.11728​

	26.	 Yue J, Zhao W, Mao S, Liu H (2015) Spectral-spatial classification of hyperspectral images using 
deep convolutional neural networks. Remote Sens Lett 6(6):468–477

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.



Escuela Politecnica
Av. de la Universidad, S/N, 10003
Caceres, Spain
Phone: 0034927257000. Ext. 51655
Email: jarico,juanmariohaut{@unex.es}

Dr. Juan Antonio Rico Gallego y Dr. Juan Mario Haut Hurtado como directores de la tesis titulada ”De-
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N O M E N C L AT U R E
EO Earth observation.
GPUs Graphics processing units.
CPUs Central processing units.
AVIRIS Airbone Visible/Infrared Imaging

Spectrometer.
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AVIRIS-NG Airbone Visible/Infrared Imaging
Spectrometer New Generation.

NASA National Aeronautics and Space
Administration.

TB Terabyte.
GB Gigabyte.
PB Petabyte.
mpp Meters per pixel.
EnMAP Environmental Mapping and Analysis

Program.
EOSDIS Earth Observing System Data and Informa-

tion System.
NSMC China National Satellite Meteorological

Center.
CCRSDA China Center for Resources Satellite Data

and Application.
ESA European Space Agency.
GEO Group on Earth Observations.
HPC High-performance computing.
SAR Synthetic aperture radar.
LIDAR Light Detection and Ranging.
OLI Operational land imager.
ASTER Advanced Spaceborne Thermal Emission

and Reflection Radiometer.
VNIR Visible and near-infrared.
TIR Thermal infrared.
SWIR Shortwave infrared.
GSD Ground sample distance.
PAN Panchromatic.
MSIs Multispectral images.
HSI Hyper-spectral images.
PCA Principal component analysis.
TCT Tasseled cap transformation.
WT Wavelet transform.
KNN K-nearest neighbor.
DTs Decision trees.
RFs Random forests.
MLR Multinomial logistic regression.
GMMs Gaussian mixture models.
NB Naive Bayes-based approaches.
HMMs Hidden Markov models.
SVMs Support vector machines.
ANNs Artificial neural networks.
SAEs Stacked autoencoders.
DBNs Deep belief networks.
RNNs Recurrent neural networks.
CNNs Convolutional neural networks.
DNNs Deep neural networks.
RBMs Restricted Boltzmann machines.
LSTM Long short-term memory.
RESFlow Remote Sensing data Flow.
InSPIRE Integrated Sustainable Pan-European

Infrastructure for Researchers in Europe.
XSEDE Extreme Science and Engineering

Discovery Environment.
MTFC Multi-GPU training framework.

PNPE Parallel neighbor pixel extractor.
G-POD Grid processing on demand.
GENESI-DR Ground European Network for Earth

Science Interoperations and Digital
Repositories.

GiSHEO Grid Services for training and High
Education in Earth Observation.

CEOS Committee on Earth Observation Satellites.
DGGS Discrete global grid systems.
CBIR Content-based image retrieval.
ICP InterIMAGE cloud Platform.
HDFS Hadoop file system.
YARN Yet Another Resource Negotiator.
RDDs Resilient distributed data sets.
VMs Virtual machine.
SaaS Software as a Service.
PaaS Platform as a Service.
IaaS Infrastructure as a Service.
API Application programming interface.
SDNs Software-defined networks.
DNs Domain name servers.
GFS Google File System.
DAG Directed acyclic graph.
I/O Input–output.
HPCC High-performance computing challenger.
AWS Amazon Web Services.
HPL High-performance linpack.
EC2 Elastic computing cloud.
GCE Google Compute Engine.
IBM SL IBM SoftLayer.
MRAP MapReduce with Access Patterns.
MPI Message passing interface.
BLAS Basic linear algebra subprogram.
ML Machine learning.
DL Deep learning.
OS Operating system.
MAP Maximum a posteriori.
BS Block size.
MLP Multilayer perceptron.
ReLU Rectified linear unit.
BFGS Broyden–Fletcher–Goldfarb–Shanno.
DGEMM Double-precision matrix-matrix

multiplication.
TF TensorFlow.
PS Parameter server.
IP Indian Pines.
BIP Big Indian Pines.
HDD Hard disk drive.
RAM Random access memory.
FLOPs Floating-point operations.
PRACE Partnership for Advanced Computing in

Europe.
UCI Unified cloud interface.

I. I N T R O D U C T I O N
A. Big Remote Sensing Data

Remotely sensed images provide very detailed informa-
tion about the surface of the Earth, which often results
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in very significant computational requirements. Present
and future missions for EO have significantly increased
the spatial, spectral, and temporal resolutions of existing
imaging instruments, resulting in higher data volumes.
Meanwhile, the variety of multisensor and multiresolution
acquisitions inevitably leads to the gradual acceptance of
the generated data sets as “big remote sensing data” [1],
not merely due to their high volume but also due to the
inherent complexity of the data, which calls for advanced
processing techniques that often use external sources of
information (e.g., social media data) for adequate inter-
pretation [2].

For instance, remotely sensed hyperspectral images [3]
record information using hundreds of spectral bands
collected at nearly contiguous wavelengths in the
electromagnetic spectrum. This significantly increases their
volume with regards to other kinds of image data used in
remote sensing applications, such as MSIs (tens of bands),
radar, or microwave data sets, creating important require-
ments in terms of storage and processing. In fact, there
has been an exponential growth in these requirements due
to recent technological advances in both the quality and
number of available imaging instruments. This results from
the ever-increasing number of EO missions that are now
generating a nearly continuous flow of remotely sensed
data, which fostered the creation of large remote sensing
data repositories that can only be exploited using adequate
parallel and distributed processing techniques [4]. Only in
the hyperspectral domain, the AVIRIS [5] and its new gen-
eration (AVIRIS-NG)—operated by NASA’s Jet Propulsion
Laboratory—acquires almost 9 GB of data per hour. Sim-
ilarly, the EO-1 Hyperion sensor acquires about 71.9 GBs
of data per hour, which means over 1.6 TB of data per
day. Most of the EO missions that will be operational soon,
e.g., the German EnMAP,1 exhibit equal or even higher data
acquisition rates. This confirms that remote sensing data
have entered the “big data era” [6]. To be more specific,
we summarize, in the following, the properties that qualify
remote sensing data as a kind of big data [7].

1) Data Volume: As mentioned before, remote sensing
data in the optical, radar, and microwave domains
are now characterized by their huge dimensionality,
which results in the acquisition of several TBs of data
per day. The total amount of data archived by the
EOSDIS2 now exceeds 30 PB of data. The amount of
archived data at the NSMC3 exceeds 5 PBs, and the
CCRSDA4 has more than 20 PBs of remote sensing
data in its archive.

2) Data Variety: According to the state of the satellite
industry report,5 there are more than 300 EO satel-
lites currently in orbit. All of them carry at least one

1http://www.enmap.org/
2https://earthdata.nasa.gov/eosdis
3https://www.nsmc.org.cn/en/
4https://data.globalchange.gov/organization/china-center-resources-

satellite-data-application
5https://sia.org/news-resources/state-of-the-satellite-industry-report/

EO instrument, and they are able to collect and trans-
mit data continuously to Earth stations. This means
that hundreds of different kinds of remotely sensed
data are transmitted (in parallel) to the respective
ground receiving stations every day. In addition, since
Landsat-1 was first operational in 1972, there have
been more than 500 EO satellites launched into space,
collecting and archiving more than 1000 different
types of remote sensing data.

3) Data Velocity: With the development of satellite con-
stellations, the satellite revisit times have gradually
transitioned from months to days, hours, or even
minutes. As a result, the multitemporal resolution
of remote sensing data has increased exponentially,
allowing for advanced environmental monitoring and
climate change applications. As mentioned before,
data centers now receive an almost continuous flow of
remote sensing data at ever-increasing speeds, which
creates important requirements in terms of storage
and analysis (particularly in the context of real-time
applications).

In addition to the three aforementioned characteristics,
commonly known as the “three V’s” of remote sensing big
data [6], there are also other important aspects inherent
to the analysis and interpretation of such data. One of the
most important ones is data heterogeneity. Specifically, due
to the existence of various satellite orbits and specifications
for different sensors (with different storage formats, data
projections, spatial resolutions, and revisit times), there
are vast differences in the formats of the archived data, and
these differences create difficulties when developing gen-
eral data interpretation techniques. Currently, big remote
sensing data analysis is attracting significant attention
from governmental and commercial partners, as well as
from academic institutions. This is because the high-level
products that can be obtained from the data are useful in
many relevant applications, including agriculture, disaster
prevention and reduction, environmental monitoring, pub-
lic safety, and urban planning, among many others [8].

One of the most important remote sensing big data
projects has been the EOSDIS [9], which provides end-to-
end capabilities for managing NASA’s Earth science data
from various sources. In Europe, the ESA has been orga-
nizing the “Big Data from Space” conference, with the ulti-
mate goal of stimulating interactions and bringing together
partners and service providers willing to exploit and inter-
pret remotely sensed big data collected from space. The
GEO [10], a large-scale cooperation organization, also pro-
motes the development of big data in remote sensing appli-
cations. As for commercial applications, Google Earth6 is
a successful case of bringing remotely sensed big data to
a large number of users around the world. Many remote
sensing applications, such as target detection, land-cover
classification, spectral unmixing, and pansharpening, can
now be developed easily by resorting to Google Earth and

6https://www.google.com/intl/es/earth/
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advanced processing algorithms. At the academic level,
we have also seen important efforts in top journals launch-
ing multiple special issues devoted to the processing and
analysis of remotely sensed big data [1], [6]. Despite these
significant advances, the processing of remotely sensed big
data still faces significant challenges that we summarize in
the following.

1) Data Integration Challenges: A unified data standard
is needed for heterogeneous remote sensing data
integration. This includes uniform data standards,
metadata standards, and image standards. However,
due to the massive, multimodal, and heterogeneous
nature of big remote sensing data, this is a challenging
and yet unaccomplished goal.

2) Data Processing Challenges: How to design com-
putationally efficient and application-specific data
processing and storage techniques (while providing
unified interfaces to simplify the access to distrib-
uted collections of big remote sensing data) is also
a pressing challenge. In a computing system, data
transmission is generally the bottleneck due to the
limited network bandwidth [8]. Also, the depen-
dence between tasks may introduce ordering con-
straints, and the optimized scheduling of these tasks
may be critical to achieve satisfactory processing
performance.

B. Cloud Computing in Remote Sensing

Currently, cloud computing7 platforms are increasingly
being used to process and store remotely sensed big data
in distributed architectures [7]. The explosive growth
of remote sensing big data has revolutionized the way
these data are managed and processed. Still, impor-
tant challenges remain due to the complex management
of multimodal, multispectral, multiresolution, and mul-
titemporal remote sensing data sets, which appears in
various formats and/or distributed across data centers.
In this regard, cloud computing (based on virtualization
technology) offers the potential to integrate computing,
storage, network, and other physical resources to build
a virtual resource pool where advanced techniques for
remote sensing data processing can be developed and
deployed. In other words, the cloud provides users with
services to integrate data, processing, production, com-
puting platforms, storage, and integrated spatial analysis,
so as to provide solutions in different application domains,
such as environmental problems, land-use/land-cover, and
urban planning. Cloud computing technology also offers
advanced capabilities for service-oriented and HPC. The
use of cloud computing for the analysis of large reposito-
ries of remote sensing images is now considered a natural
solution, resulting from the evolution of techniques previ-
ously developed for other types of computing platforms,
such as commodity clusters or grid environments [12].

7A formal widely accepted definition of cloud computing can be
found in [11].

Quite surprisingly, there are not too many works yet
describing the use of cloud computing infrastructures for
the implementation of remote sensing data processing
techniques. This is partially due to the lack of open reposi-
tories containing labeled remote sensing images for public
use, a situation that is now changing due to the initiatives,
such as BigEarthNet.8 Also, NASA and ESA are now pro-
viding large distributed repositories of remote sensing data
for open use by the scientific community (e.g., the Sentinel
program).9 Due to the availability of such repositories,
the development of techniques based on cloud computing
for distributed processing of remote sensing images has
become a very timely research line.

A relevant question at this point is whether cloud com-
puting can become a de facto architecture for remotely
sensed data interpretation in future years. Our belief is
that, by virtue of its elasticity and high transparency levels,
cloud computing offers a truly unique paradigm for big
remote sensing data processing, in which computational
resources can be accommodated in the form of ubiquitous
services on-demand, on a pay-per-use basis. In addition,
cloud-enabled remote sensing data processing infrastruc-
tures and services can now be delivered for large-scale
remote sensing data across geographically distributed data
centers, which was impossible even with the most powerful
compute clusters. As a result, the incorporation of the
cloud to big remote sensing data processing initiatives
reveals its capacity to deal with the increased compu-
tational and storage challenges introduced by modern
remote sensing applications, especially when coupled with
the powerful new DL algorithms [13] that have been
shown to provide an excellent tool for information extrac-
tion from scientific data, in general, and from remotely
sensed data sets, in particular [14].

C. Article Organization and Contributions

In this article, we provide a review of the most important
initiatives that have been developed so far in the use of
cloud computing architectures (compared with other HPC
solutions, such as commodity clusters or grid computing
platforms) for remote sensing data interpretation, with
particular focus on DL techniques and their implementa-
tions in the cloud. We believe that this review is quite
unique in the sense that it provides a completely new
flavor with regards to other published works that focus on
DL in remote sensing [15]–[17], big remote sensing data
[1], [6], or HPC in remote sensing [4], [18], [19]. None
of these review papers considered cloud computing as a de
facto architecture for big remote sensing data processing,
which is now a widespread implementation option (in par-
ticular, when computationally demanding DL algorithms
are involved in the information extraction process). As a
result, we believe that this review is necessary given the
recent advances in processing strategies, which inevitably

8http://bigearth.net/
9https://sentinel.esa.int/
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led to using DL algorithms in the cloud for the successful
processing and interpretation of big remote sensing data
sets. The remainder of this article is structured as follows.

1) Section II provides a general overview of techniques
for DL in remote sensing data processing and taxon-
omy of DL architectures that have been widely used
in this context.

2) Section III provides a comprehensive review of avail-
able approaches for the efficient implementation of
remote sensing data processing techniques based on
DL algorithms in HPC architectures, including clus-
ters, grids, and cloud computing systems. This section
also includes a discussion and some critical observa-
tions resulting from the in-depth analysis of the works
published so far in these areas.

3) Section IV focuses on cloud computing as the current
de facto architecture for big remote sensing data
processing using DL algorithms. This section first
provides some basic concepts about cloud computing.
Then, it details some of the most popular frameworks
and programming models that have been used for DL-
based processing of remotely sensed data and other
scientific applications in the cloud.

4) Section V describes the most popular ML and DL
libraries and frameworks in cloud computing environ-
ments, with a particular emphasis on those that have
been already used in remote sensing applications.

5) Section VI provides a case study with a processing
example that illustrates a representative technique for
DL-based distributed processing of remotely sensed
hyperspectral data in the cloud, providing also some
suggestions for practical use and exploitation.

6) Finally, Section VII concludes this article with some
remarks and hints at plausible future research
avenues.

II. D E E P L E A R N I N G I N R E M O T E
S E N S I N G
A. Remote Sensing Data Processing

Remote sensing technology now provides high-quality
data from the surface of the Earth (in terms of detailed
resolution, good signal-to-noise ratio, robustness to pertur-
bations, and accurate error corrections). Advanced analysis
and interpretation methods are required to extract the
most useful information contained in the data. As a result,
the remote sensing discipline involves many Earth sci-
ence disciplines, such as meteorology, geology, or ecology,
as well as a variety of engineering skills to properly inter-
pret the huge amount of remotely sensed data provided by
a constellation of air/space EO instruments.

Furthermore, a wide variety of remotely sensed data can
be obtained from these instruments, where optical imaging
systems capturing reflected sunlight are pretty popular due
to the rich information that they contain, with different
formats and resolutions (spatial, spectral, and temporal),
enabling a very detailed and comprehensive assessment

Table 1 List of Popular Remote Sensing Instruments. GSD: Ground

Sample Distance, PAN: Panchromatic, MSI: Multispectral, and HSI: Hyper-

spectral

of surface properties [20], [21]. For illustrative purposes,
Table 1 lists some popular remote sensing instruments that
have been or are currently operational.

In fact, optical remote sensing data play an important
role in many different activities [49]. On the one hand,
PAN, standard RGB, and multispectral products often
exhibit impressive spatial resolution, which strongly facil-
itates the detection of contours, textures, and structures
within the scene. On the other hand, although the spatial
resolution is partially sacrificed, hyperspectral instruments
collect hundreds of narrow and near-continuous bands
ranging from the VNIR to the SWIR wavelength regions,
providing very detailed spectral signatures of the materials
covered by each pixel, thus allowing more accurate and
detailed analysis of the spectral features available in the
data [50].

The advanced products resulting from the analysis and
interpretation of remotely sensed data sets allow for the
implementation of long-term development strategies in
several fields, such as precision agriculture [51], urban
planning [52], or desertification monitoring [53], among
others.

The rich and detailed information contained in remote
sensing data needs to be adequately extracted and
processed to be consequently exploited at the user level.
In this regard, there is a strong demand for accurate and
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Fig. 1. Remote sensing classification can be tackled at three

different levels: pixel-level (left), object-level (center), and

scene-level (right).

computationally efficient analysis techniques, which can
be categorized considering different criteria. In particular,
according to their purpose [54], we can classify available
techniques into the following groups.

1) Restoration and denoising methods manage data cor-
ruption and anomalies introduced during the acquisi-
tion process that may significantly degrade the quality
of the collected data [55], involving radiometric and
geometric corrections, or diffuse solar radiation, and
management of atmospheric effects.

2) Enhancement methods transform the captured data to
increase the quality of certain features, making them
more suitable to human vision skills to conduct visual
analysis. This involves contrast enhancement, super-
resolution, and pan-sharpening, for instance.

3) Transformation methods modify the scene content
in either the spectral or spatial domain for feature
extraction, image compression, or filtering purposes,
such as the PCA, TCT, vegetation indices, or the WT.

4) Classification methods interpret the content of
remotely sensed scenes. Three classification levels
can be distinguished (see Fig. 1) [56], where pixel-
level classification labels each pixel in a scene with a
semantic class [57]; object-level classification seeks to
recognize the elements present in the scene (by usu-
ally combining spectral–spatial features) [58]; and
scene-level classification provides a global meaning
(i.e., a semantic class) to the entire scene by under-
standing and interpreting its features [59]. Moreover,
subpixel analyses can also be conducted by analyzing
the spectral mixtures at each pixel (termed subpixel
classification or spectral unmixing) [18], [60], [61].

Focusing on data transformation and classification
approaches, ML and DL methods have provided a wide
range of processing algorithms for both regression and
classification of complex nonlinear systems [14], [16],
[62], [63], implementing promising learning paradigms to
derive information from the data. These methods range

from purely unsupervised strategies to supervised ones,
with a vast collection of semisupervised and hybrid-based
methods in between [64]–[67].

For instance, k-means clustering is a popular unsu-
pervised method that groups similar samples together
by exploring similarity measures and is able to discover
underlying patterns [68]. On the contrary, the kNNs
usually explores the similarity between samples in a
supervised way [69]. Also, DTs [70] and RFs [71] are
supervised methods, where RFs develop multiple trees
from the randomly sampled subspace of the input sample
and then combine the output through a voting/maximum
rule. In addition, the MLR [72], GMMs [73], and naive
Bayes-based (NB) approaches [74] are probabilistic mod-
els that analyze the data distribution to conduct their
assumptions. HMMs [75] and SVMs [76] are accurate
statistical classifiers. Particularly, the SVM is considered
an efficient and stable algorithm for high-dimensional
data classification. This method learns the decision hyper-
plane that can best separate training samples in a
kernel-included high-dimensional feature space. Finally,
ANNs [77] are versatile empirical-modeling algorithms
composed of hierarchical layers of neurons that process
input stimuli using synaptic weights and transmit their
responses through activation functions. As a result, each
layer refines the neural responses to the input data, obtain-
ing increasingly abstract representations by adjusting the
model weights, which are automatically learned from the
data through the forward–backward propagation mecha-
nism to extract the most relevant information. Moreover,
ANNs offer a very flexible architecture in which both
the number of layers and neurons (and even the shape
and direction of the connections) can be established by
the programmer. In this sense, the great flexibility and
automatic adjustment of neural models (without any prior
knowledge about the statistical features of the data) are
major advantages that have positioned ANNs as a very
attractive approach, creating a sharp contrast to traditional
ML techniques, which usually requires careful engineering
to extract complex handcrafted features, requiring specific
knowledge to recognize the specific regularities present in
the data.

Indeed, the study and implementation of ANNs are so
extensive that, within ML, the subfield of DL has emerged
as a hot topic for signal data processing [13]. Particularly,
DL algorithms have gained significant popularity in remote
sensing data analysis over the past few years. For illustra-
tive purposes, Fig. 2 shows the total number of papers per
year published on this topic and the number of citations
received, revealing an exponential increase in recent years.
The figure was generated using the Web of Knowledge
engine,10 and the exact search string used (and the date
of the query) is specified in the figure caption—where “AB”
indicates that the search was conducted in the abstracts of
the papers—for reproducibility purposes.

10http://www.webofknowledge.com/
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Fig. 2. Total number of (a) papers per year and (b) citations

received by papers in the area “DL in remote sensing.” Source: Web

of Knowledge. Search string: AB � (“deep learning” AND “remote

sensing”). Total number of results: 1621. Date of the query:

February 20, 2021.

A detailed review of available approaches in this
area was given in [15], which discusses how DL has
been applied for remote sensing data analysis tasks,
such as image fusion, registration, scene classification,
object detection, land-use and land-cover classification,
and segmentation. Different application fields are also cov-
ered, including open challenges and directions for future
research. Also, the paper [17] focuses on remotely sensed
hyperspectral data, providing a comprehensive review of
methods for DL-based classification in this field and dis-
cussing the strengths and weaknesses of these methods.
Accordingly, Section II-B includes a brief taxonomy of
the main DL models developed for remote sensing data
analysis.

B. Taxonomy of DL Architectures

There is a great variety of deep models due to the great
flexibility of existing architectures in terms of topology,
data-path connections, and types of layers. In general
terms, the scientific community recognizes five models,
i.e., SAEs, DBNs, RNNs, and CNNs, as the main architec-
tures, from which a great variety of modified networks
have been implemented [17], such as generative adver-
sarial networks (GANs), which have gradually become a
mainstream architecture in the field of remote sensing. In
the following, we review these DL models.

1) SAEs: The autoencoder (AE) implements an
encoder–decoder structure to learn a code representation
from the input data in an unsupervised way. It defines
an optimization problem that attempts to minimize the
reconstruction error ||

�
Wdσ

�
WeXT

��T − X||22 by learning
the matrices of bases Wd and We, where X ∈ RN×B defines
the remote sensing data as an input matrix of N samples
with B channels (feature space), We ∈ RB�×B comprises
the recognition weights of the encoder, which maps the
input data to a code/latent representation with B� �= B

features (code/latent space), and Wd ∈ RB×B�
comprises

the generative weights of the decoder, which recovers the
original feature space by reconstructing the input data. σ

acts as an activation function. The SAE deepens the model

by stacking several AEs [see Fig. 3(a)], where the AEs of
the stacked-encoder (bottom-half) find a series of lower
dimensional features, and the stacked-decoder (top-half)
performs the opposite function [78].

2) DBNs: The DBN is a multilayer generative model
inspired by RBMs. An RBM is a two-layer stochastic net-
work trained to minimize the input reconstruction error in
a similar way as AEs (Gibbs sampling), where the visible
layer deals with the input data and the hidden layer
conducts feature extraction, capturing higher order data
correlations observed in the visible units while learning a
probability distribution over the input data [see Fig. 3(d)].
DBNs take advantage of RBMs, concatenating several
pretrained RBMs and refining the full-model parameters
through labeled data.

3) RNNs: The RNN [see Fig. 3(b)] retains memory
and learns data sequences by introducing loops in its
connections. As a result, the neural responses in each
step depend on those of the previous step by means of
an internal state, which creates a sequential dependence
that provides an association between the current and the
previous data sample. According to which hidden states
are created and how they are managed, three types of
RNNs can be distinguished [79]: the simple vanilla RNN,
the gate-based LSTM, and the simplified gated recurrent
unit (GRU).

4) CNNs: In contrast to other deep models (which were
originally implemented with fully connected layers, e.g.,
the AE), the CNN introduces the convolution layer as a
set of locally connected weights that are rearranged in an
n-dimensional grid. As a result, the convolution kernels
act as feature detection-extraction filters, where neuronal
responses are arranged in a feature map that not only
indicates the presence of a particular stimulus detected
by the kernel (edges, borders, and shapes) but also the
location of these stimuli in the spatial domain. This enables
abstract and refined spatial relationships to be maintained
and extracted within the data through a hierarchical stack
of convolution layers [see Fig. 3(c)], which are combined
with other layers (activation, normalization, and pooling
functions, for instance) to extract elaborate patterns from
the raw inputs.

The flexibility of convolution kernels has demonstrated
a great potential to extract any kind of feature from
the raw data, without applying complex preprocessing
mechanisms. Furthermore, the great architectural plastic-
ity in terms of kernel size and grid organization (which
produces 1-D, 2-D, and 3-D models), layer connections
(direct, residuals, skip, and short-connections), data paths
settings, and wide/depth configuration, along with the
impressive generalization power and the ability to make
strong assumptions about the input data, have estab-
lished convolution-based models as the most successful
and popular deep networks. In fact, these networks rep-
resent the state of the art in image processing through
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Fig. 3. Graphical illustration of traditional deep network architectures applied for processing remote sensing data cubes. (a) SAE optimizes

the reconstruction error between its vector input X and its output X′, where the bottleneck layer contains the latent data representation.

(b) In the traditional RNN model, the data cube is processed in band-by-band fashion, where the spectral signature of each pixel xi is

processed as a temporal sequence, obtaining, as a result, a hidden state h that works as the model memory. (c) CNN processes 3-D inputs

(i.e., the pixel xi and its surrounding area) by applying multidimensional kernels that act as filters for particular features (borders, shapes,

and so on), obtaining a set of feature maps with the neuronal responses to that stimuli. (d) Finally, the DBN is composed of several RBMs

that process and reconstruct the input data, mimicking the SAE behavior to learn the probability distribution of the input in an unsupervised

fashion (DBN based on RBM, where the visible layer is highlighted with a colored border).

derived network models, such as residual (ResNets), dense
(DenseNets), and capsule-based (CapsNets), among many
others [80], [81].

5) GANs: The aforementioned networks work as dis-
criminative models, which maps original inputs to some
desired outputs (by learning conditional distributions
between them) to minimize a loss function. In con-
trast, generative approaches (such as GANs) learn the
joint probability between inputs and outputs, modeling
the data distribution to generate new samples rather
than just evaluating the available ones. Thus, GANs
(see Fig. 4) model a data distribution from a random
noise vector through an adversarial process, where two
neural models, i.e., generative and discriminative net-
works, are simultaneously trained in the competition
(the former to deceive the latter, and the latter to
avoid being deceived by the samples generated by the
former).

III. I M P L E M E N TAT I O N S
In typical DL models, such as those illustrated in Fig. 3,
there are millions of parameters (which defines the
model), and large amounts of data are required to learn
these parameters. This leads to a computationally intensive

process in which the learning step consumes a lot of
time. Therefore, it is important to come up with parallel
and distributed algorithms that can run much faster and
drastically reduce the training times in the context of
remote sensing applications. In the following, we provide a
description of different parallelization strategies for accel-
erating DL algorithms in remote sensing applications by
resorting to three types of HPC architectures: clusters,
grids, and clouds. A description of the main challenges
faced by these different architectures, along with a brief
comparison among them, is then presented. The section

Fig. 4. GAN for remote sensing data processing.
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Fig. 5. Total number of (a) papers per year and (b) citations

received by papers in the area “DL in remote sensing using cluster

computing.” Source: Web of Knowledge. Search string: AB � (“deep

learning” AND “remote sensing” AND “cluster” AND “comput*”).

Total number of results: 11. Date of the query: February 20, 2021.

concludes with a discussion on their potential role in
solving remote sensing problems via DL algorithms.

A. Cluster Computing

In this section, we describe some of the most relevant
approaches in the recent literature to exploit cluster com-
puter architectures (including GPU clusters) for the effi-
cient interpretation of remote sensing data. Fig. 5 shows
the total number of papers published in this area, along
with the number of citations received (according to Web of
Knowledge). In the following, we discuss some of the most
relevant contributions in this field.

As one of the most notable recent developments, Lunga
et al. [82] implement a RESFlow for improving DL algo-
rithms and allowing them to perform computations on
large-scale remotely sensed images. The RESFlow works
by dividing the data into homogeneous partitions that can
fit simple models in homogeneous (i.e., commodity cluster-
based) machines. Despite its cluster-oriented nature, RES-
Flow uses Apache Spark (a tool that has been widely used
in cloud computing, as described in Section IV) to accel-
erate DL inference. The RESFlow incorporates a strategy
to optimize resource utilization across multiple executors
assigned to a single worker. The framework invokes DL
inference at three stages: during deep feature extraction,
deep metric mapping, and deep semantic segmentation.
Resource sharing in GPUs is adopted to achieve a fully
parallelized pipeline for all execution steps.

RESFlow uses Apache Spark, but there are multi-
ple options to distribute training over cluster com-
puting implementations. Other options include TF,11

PyTorch,12 or Horovod.13 These frameworks provide mul-
tiple benefits. For example, Pytorch includes multiple
extensions (as NVIDIA Apex14) to enable streamline mixed
precision with distributed training, and Horovod employs
efficient inter-GPU communications. Similar to Apache

11https://www.tensorflow.org/
12https://pytorch.org/
13https://horovod.ai/
14https://nvidia.github.io/apex/

Spark, some cluster computing approaches take advantage
of Kubernetes15 (k8s) architecture workflow, which allows
for the deployment automation, scaling, and management
of ML/DL applications, as described in [83].

The work in [84] exemplifies the unique advantages
provided by parallel computing environments and pro-
gramming techniques to solve large-scale problems, such
as the training of classification algorithms for remote
sensing data. Specifically, the authors demonstrate that
the training of deep CNNs can be efficiently implemented
using cluster computers containing a large number of
GPUs. The obtained results confirm that parallel training
can dramatically reduce the amount of time needed to
perform the full training process, obtaining almost linear
scalability in a cluster of GPUs without losing any test
accuracy.

At this point, we emphasize that some works do not
need to exploit clusters of GPUs to conduct the desired
calculations. For instance, in the work [85], the authors
resort to a shared memory system with only four GPUs to
develop an MTFC of a CNN for remotely sensed hyperspec-
tral image classification. The authors first develop a PNPE
that generates 3-D cube samples from the input data auto-
matically. Then, they perform a series of optimizations in
the MTFC, such as task division, the fine-grained mapping
between tasks and GPU thread blocks, and shared memory
usage reduction. To further improve the training speed,
the authors exploit CUDA streams and multiple GPUs to
train minibatches of data samples simultaneously. The
MTFC is shown to outperform popular ML frameworks,
such as Caffe16 and Theano,17 while offering the same level
of classification accuracy.

The paper [86] provides several parallelization
approaches for DNNs, taking into account network
overheads and optimal resource allocation, since
network communication is often slower than inter-
machine communication (while some layers are more
computationally expensive than others). Specifically,
the authors consider a multimodal DNN architecture
and identify several strategies to optimize performance
when training is accomplished on Apache Spark (this
framework will be described in detail in Section IV). The
authors compare their newly developed architecture with
an equivalent DNN architecture modeled after a data
parallelization approach. The experiments in the paper
reveal that the way in which the model is parallelized has
a very significant impact on resource allocation and that
hyperparameter tuning can significantly reduce network
overheads.

Other relevant developments in this area include the
paper [87], which presents parallel versions of DL tech-
niques for dimensionality reduction of remotely sensed
images, also implemented in an Apache Spark cluster. The

15https://kubernetes.io/es/
16https://caffe.berkeleyvision.org/
17https://github.com/Theano/

1328 PROCEEDINGS OF THE IEEE | Vol. 109, No. 8, August 2021

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on September 24,2021 at 14:01:04 UTC from IEEE Xplore.  Restrictions apply. 



Haut et al.: Distributed DL for Remote Sensing Data Interpretation

paper [88] presents an improved version of the aforemen-
tioned development that scales even better in clusters of
GPUs. The paper [89] presents a parallel and distributed
DL-based spectral unmixing algorithm for remotely sensed
hyperspectral data, again using Apache Spark for the
implementation on a cluster computer.

B. Grid Computing

Although many parallel systems are inherently homo-
geneous, a most recent trend in HPC systems is to
use highly heterogeneous computing resources, where
the heterogeneity is generally the result of technologi-
cal advancement in the progress of time. With increas-
ing heterogeneity, grid computing emerged as a premier
technology that could facilitate the processing of remote
sensing data in heterogeneous and distributed computing
platforms.

Although the grid has recently evolved into architectures
with more quality of service, such as the cloud, there
were several reasons for using grid computing for remote
sensing image processing when the first grid-oriented
architectures appeared. First and foremost, the required
computing performance may not be available locally. Also,
the required performance may not be available in just
one location, with a possible solution being cooperative
computing. Last but not least, the required computing
services may be only available in specialized centers, and
in this case, the solution is application-specific computing.
This led to the development of some grid-based approaches
that are now mostly transitioning into cloud computing
implementations, as will be described in Section III-C.

For illustrative purposes, Fig. 6 shows the total num-
ber of papers published in this area, along with the number
of citations received. In the following, we discuss some
of the most relevant contributions focused on using grid
computing platforms for solving remote sensing problems
via DL algorithms.

The GEOGrid project was one of the first DL-oriented ini-
tiatives aimed at providing an e-Science infrastructure to
the remote sensing community. It is specifically developed
to integrate a wide variety of remote sensing data sets and
is accessible online as a set of services.18

The platform called G-POD19 was the first one to provide
a grid-based environment for processing satellite images
provided by ESA, offering several image processing ser-
vices and DL algorithms mainly intended for environmen-
tal studies. G-POD has been successfully applied in real
applications, such as flood area detection.

As an add-on to this tool, the platform for satellite
imagery search and retrieval, called GENESI-DR [90],
offers an advanced interface for digital data discovery and
retrieval, where the original images are processed using
G-POD facilities (comprising some DL algorithms). The
ultimate goal of GENESI-DR was to build an open-access

18https://www.geogrid.com/
19https://gpod.eo.esa.int/

Fig. 6. Total number of (a) papers per year and (b) citations

received by papers in the area “DL in remote sensing using grid

computing.” Source: Web of Knowledge. Search string: AB � (“deep

learning” AND “remote sensing” AND “comput*” AND “grid”). Total

number of results: 9. Date of the query: February 20, 2021.

service to digital repositories focusing on fast search,
discovery, and access to remotely sensed imagery in the
context of postdisaster damage assessment. Once a dis-
aster alert has been issued, response time is critical to
providing relevant damage information to analysts and/or
stakeholders. In this regard, GENESI-DR provides rapid
area mapping and near real-time orthorectification web
processing services to support postdisaster damage needs.

Also, the GiSHEO20 platform (on-demand Grid services
for training and high education in EO) addresses an impor-
tant need for specialized training services in EO. Solutions
were developed for data management, image processing
service deployment, workflow-based service composition,
and user interaction, with particular attention to services
for image processing (able to exploit free image processing
tools, along with some DL techniques). A special feature
of the platform is the connection with the GENESI-DR
catalog, which provides plenty of remote sensing data sets
for free.

To conclude this section, it is important to emphasize
that the CEOS,21 an international coordinating body for
spaceborne missions focused on the study of the Earth,
maintains a working group on information systems and
services, with the ultimate goal of promoting the devel-
opment of interoperable systems for managing EO data
internationally. In this regard, several grid platforms have
greatly benefited from CEOS standards when developing
grid-based tools for accurate interpretation of remotely
sensed data [7].

C. Cloud Computing

Cloud computing solutions represent an evolution of
grid-based approaches and exhibit the potential to manage
and process vast amounts of remotely sensed data in fault-
tolerant environments by interconnecting distributed and
specialized nodes. This strategy can significantly reduce
the processing costs often involved in grid computing,

20http://cgis.utcluj.ro/projects/gisheo
21https://ceos.org/

Vol. 109, No. 8, August 2021 | PROCEEDINGS OF THE IEEE 1329

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on September 24,2021 at 14:01:04 UTC from IEEE Xplore.  Restrictions apply. 



Haut et al.: Distributed DL for Remote Sensing Data Interpretation

Fig. 7. Total number of (a) papers per year and (b) citations

received by papers in the area “DL in remote sensing using cloud

computing.” Source: Web of Knowledge. Search string: AB � (“deep

learning” AND “remote sensing” AND “comput*” AND “cloud”). Total

number of results: 78. Date of the query: February 20, 2021.

leading to natural and cheap solutions for remotely sensed
data processing. For illustrative purposes, Fig. 7 shows
the total number of papers published in this area, along
with the number of citations. In the following, we review
some of the most significant contributions based on cloud
computing for solving remote sensing problems via DL
techniques.

One of the most relevant works addressing the imple-
mentation of DL algorithms for remote sensing data analy-
sis in the cloud was presented in [91], in which the authors
introduced a new cloud-based technique for spectral analy-
sis and compression of hyperspectral images. Specifically,
the authors provide a cloud implementation of the AE,
a popular deep network for non-linear data compression.
Apache Spark (described in detail in section IV) serves
as the backbone of the cloud computing environment by
connecting the available processing nodes using a master–
slave architecture. The obtained results indicate that cloud
computing architectures offer an adequate solution for
compressing and interpreting big remotely sensed data
sets.

The paper [92] proposes an acceleration method for
hyperspectral image classification that exploits scheduling
metaheuristics to automatically and optimally distribute
the workload across multiple computing resources on a
cloud platform. A representative DL-based classification
processing chain is first distributed and implemented in
parallel based on the MapReduce mechanism (described
in detail in Section IV) on Apache Spark. The optimal
execution on Spark is further formulated as a divisible
scheduling framework that takes into account both task
execution precedences and task divisibility when allocat-
ing the divisible and indivisible subtasks onto comput-
ing nodes. The scheduling results provide an optimized
solution to the automatic processing of big hyperspectral
data on cloud environments. The experimental results
demonstrate that this approach can achieve significant
speedups in the classification of hyperspectral imagery on
Spark, obtaining also significant scalability with regards to
increasing data volumes.

The paper [93] exploited the idea that state-of-the-art
DL-based algorithms and cloud computing infrastructure
have become available with a great potential to revolution-
ize the processing of remotely sensed images. Specifically,
their study evaluated, using thousands of images obtained
over a 12-month period, the performance of three ML
and DL approaches (RFs, LSTMs, and U-Nets). The DL
algorithms (LSTMs and U-Nets) were implemented using
the TF framework (described in detail in Section IV),
while the ML-based RF utilized the Google Earth Engine
platform. The study concluded that, although the use of
ML/DL algorithms depends highly on the availability of
labeled samples and the generalization of these methods
still presents some challenges, algorithms based on ANNs
can still be used in the cloud to map large geographic
regions that consider a wide variety of satellite data
formats.

The paper [94] uses cloud computing to make global-
oriented spatiotemporal data simulations using the Open-
Stack management framework (described in detail in
Section IV). This is accomplished by resorting to DGGSs,
designed to portray real-world phenomena by providing
a spatiotemporal unified framework on discrete geospa-
tial data structures, along with a DL-based algorithm to
address the challenges resulting from big remote sensing
data storage, processing, and analysis.

The paper [95] presents a new parallel CBIR system
from remotely sensed hyperspectral image repositories,
implemented on a cloud computing platform. The method
exploits information from spectral unmixing [96] and DL
to accurately retrieve hyperspectral scenes. To this end,
the authors implement a distributed and DL-based unmix-
ing method that operates on a cloud computing envi-
ronment. In addition, they implement a global standard
distributed repository of hyperspectral images equipped
with a large spectral library in a SaaS mode (this concept
will be described in detail in Section IV), providing users
with big hyperspectral data storage, management, and
retrieval capabilities through a powerful web interface.
The parallel unmixing process is then incorporated into the
CBIR system to achieve a highly efficient unmixing-based
content retrieval system.

Other important contributions in this area include the
paper [97], which proposed a model that facilitates the
utilization and performance of Apache Spark algorithms
in cloud environments. Also, the paper [98] presents the
architecture of the ICP data mining package, a distrib-
uted tool for the analysis of remotely sensed data. The
paper [99] proposes an extension of Apache Hadoop
(described in detail in Section IV) that executes opera-
tions for processing remotely sensed images (including
DL methods) in a highly distributed and efficient way.
The paper [100] proposes a highly scalable and efficient
segmentation model for remotely sensed images, capa-
ble of segmenting very high-resolution imagery with DL
algorithms. The paper [101] proposes a method for DL-
based cloud computing based on image sampling, which
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Table 2 Comparison Between Cluster, Grid, and Cloud Architectures

models the remotely sensed data set to be processed as
a streaming service and divides it with a Voronoi dia-
gram. The paper [102] describes a Java software based
on the MapReduce model for handling and processing
remotely sensed images using DL methods. The paper
[103] presents a deep method for storing images using
MapReduce. The paper [104] also uses a MapReduce
framework for DL-based parallel processing of remotely
sensed data through Apache Hadoop. The work [105]
describes a set of requirements to achieve a generalized
and integrated EO information system and the associ-
ated (real-time and off-line) data processing techniques
based on DL. The paper [106] presents a new DL-based
approach for distributed processing of large-scale satellite
images in the cloud. The paper [107] presents a distrib-
uted spatiotemporal indexing architecture implemented
on the cloud and a distributed DL-based algorithm for
improved spatial–temporal queries. The paper [108] dis-
cusses the requirements of overlapping data organization
and proposes two extensions of the HDFS—described
in Section IV—and the MapReduce programming model
for dealing with remotely sensed data. The paper [109]
describes a DL framework for the efficient analysis of large
image volumes, which processes, daily, the data obtained
by NASA’s EO-1 satellite.

D. Challenges and Comparison

The different distribution perspectives described in the
three previous subsections exhibit numerous differences.
As a summary, Table 2 provides an overlook of the
main similarities and differences between the discussed
strategies.

Regarding the cost, there are initiatives that provide
free computing platform services for the scientific and
research communities. An example is PRACE,22 aimed at
high-impact scientific research and engineering develop-
ment across different disciplines. Also, there are specific
projects for different distributed computing approaches.
Condor23 was created for research and education purposes.
EGI-InSPIRE24 was created by the European Commission
for the benefit of the scientific communities within the
European Research Area to exploit grid infrastructures.
This project is also available for cloud computing.

22https://prace-ri.eu/
23http://www.cs.wisc.edu/condor/condorg
24http://www.egi.eu/projects/egi-inspire/

Usually, cloud computing has been identified as a dis-
tributed service, which is not entirely true. Alternatives are
UCI25 or OpenNebula,26 which brings flexibility, scalability,
and simplicity for cloud computing management. In addi-
tion to these projects, the XSEDE27 ecosystem and the EGI28

(European Grid Infrastructure) provide different cost-free
alternatives.

One of the most important features of the cloud (and
one of the main reasons for its popularity) is the elas-
ticity and scalability of its architecture. Since cluster/grid
architectures are limited to available hardware resources,
cloud computing offers the possibility to increase such
resources by resorting to the elasticity property, i.e., using
resources from different infrastructures. This leads to an
increase in the heterogeneity of computing and communi-
cation resources, and to the use of both centralized and
distributed resource handling and allocation.

Finally, another relevant feature of cloud computing is
that the infrastructure does not need to use a job queue
for managing executions from different users. This signifi-
cantly reduces the waiting times for the execution of jobs
that are needed in other architectures, such as clusters and
grids.

E. Discussion

In this section, we discuss some important aspects iden-
tified after the systematic review conducted in the previous
subsections, in an attempt to answer relevant questions,
such as the role of parallel and distributed computing as
an efficient tool for solving remote sensing problems via
DL algorithms.

In our systematic review, we have found that distrib-
uted computing technologies are highly demanded for DL-
based data processing when large volumes of remotely
sensed data need to be processed. Commodity cluster
computers (possibly including hardware accelerators, such
as GPUs) [110], grid environments [111], [112], and
cloud computing systems [113] have been the most
demanded types of HPC platforms for big remote sensing
data processing. Recently, cloud computing has become a
standard for distributed processing due to its scalability,
low cost, service-oriented, and high-performance proper-
ties [7]. Therefore, this technology offers the potential to
deal with tasks that must be accomplished over large data
repositories. As result, cloud computing can be seen as
the most natural solution for the analysis of large volumes
of remotely sensed data, as well as an evolution of other
HPC techniques (such as cluster and grid computing) that
correct their limitations and expands their possibilities.

We have also observed that there are comparatively few
efforts in the literature aimed at the exploitation of clus-
ter and grid computing infrastructure for the processing

25https://code.google.com/archive/p/unifiedcloud/
26https://opennebula.io/
27https://www.xsede.org/
28https://www.egi.eu/services/cloud-compute/

Vol. 109, No. 8, August 2021 | PROCEEDINGS OF THE IEEE 1331

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on September 24,2021 at 14:01:04 UTC from IEEE Xplore.  Restrictions apply. 



Haut et al.: Distributed DL for Remote Sensing Data Interpretation

of remote sensing images compared to cloud computing
implementations. In fact, we have noticed that the cloud
is now in clear expansion and routinely used to solve
remote sensing problems (particularly those involving DL
algorithms). This is because of the popularity of the pro-
gramming languages and frameworks available for imple-
menting DL-based algorithms in the cloud (some of these
tools will be described in detail in Section IV).

Another important observation arising from our litera-
ture review is that the most widely used tool for remote
sensing data processing in cloud computing environments
is Apache Hadoop [114], described in mode details in
Section IV) [115] although recently Apache Spark [116]
has also become a reference tool. The main difference
between Spark and Hadoop is the fact that the former
distributes the data in RDDs [117] that can be managed
more efficiently. As a result, the speedup that Spark can
achieve with respect to Hadoop is very high. In addition,
Spark provides an ML/DL library called MLlib [118]—
described in Section IV—that operates in a distributed and
parallel manner, so that it provides very good performance
with big remote sensing data. Although Hadoop has been
widely used in the past, Spark is now a standard due to
its speed and better memory usage. Our study also shows
that most researchers take advantage of existing cloud
computing frameworks when dealing with remote sensing
data, rather than developing new ones.

In Section IV, we focus on cloud computing as a de facto
paradigm for distributed processing of remotely sensed
data sets and describe the most widely used frameworks
and programming languages that have been adopted in
this context (some of them already mentioned in this
section), with a particular emphasis on the availability of
DL-oriented tools.

IV. F O C U S O N C L O U D C O M P U T I N G
This section first introduces some basic concepts about
cloud computing and then glances at the delivery models,
available execution frameworks, and programming models
supporting this technology (with a particular emphasis on
the tools that have been specifically used in remote sensing
applications).

A. Cloud Computing Basics

Advances in distributed computing technologies,
together with the high amount of data generated and
consumed by a growing number of devices (including
remote sensing instruments), have leveraged the adoption
of emergent cloud computing technology. Nowadays,
cloud computing has become a suitable model to cover
a wide range of users’ needs, including data analytics,
data mining, remote sensing, social media, and other
computational and data-intensive applications. Cloud
computing is a model that provides users with ubiquitous,
on-demand access to remote hardware and software
resources in the form of services. This model has become

a cost-effective solution that usually reduces initial
investment, management, and maintenance costs with
respect to previous clusters and grid technologies. Cloud
computing provides elastic computing, storage, and
networking payment services. The term elastic refers to
the ability of the model to dynamically adapt to user
scalability and variable workload necessities [119], [120].

At the core of cloud computing is the virtualization
technology [121], [122]. Virtualization abstracts the under-
lying physical resources, such as computing, storage, and
networking, as a set of virtual resources, typically enclosed
in the form of isolated instances called VMs. Such modular
design enables some advantageous features, as replica-
tion of data instances, fault tolerance, security (by limit-
ing the interaction between modules), and migration of
instances [123].

Cloud computing determines how the virtualized
resources are allocated, deployed, and delivered to users.
In this sense, delivery models are structured in three basic
categories that describe the form in which users access the
resources [124]:

1) At the higher level of abstraction is SaaS, in which the
user accesses to end applications usually developed,
managed, and maintained by the cloud provider in its
cloud infrastructures. Users access these applications
via web interfaces. A common example is a CBIR
system for remote sensing data repositories.

2) PaaS refers to the provision of development full
stacks, including OSs, libraries, management, and
monitoring tools. The users accessing those services
are usually software developers with limited control
over the underlying infrastructure, which is managed
by cloud providers.

3) The IaaS model lies at the lower level of abstraction
and allows users to manage an elastic infrastructure
composed of a set of computational, storage, and
networking virtual resources. The users develop and
deploy their applications on such virtual resources
and manage the infrastructure.

Without neglecting its benefits, cloud computing faces
an important set of challenges. The most significant is
security, in the sense of both ensuring the access to the
data exclusively by authorized users and systems (privacy),
and maintaining the integrity and availability of the data
distribution (even geographically) and replication across
different locations (e.g., as in different remote sensing data
centers). Performance is an additional key factor impacting
the adoption of cloud computing, especially by scientific
applications that usually execute on tightly coupled high-
performance clusters.

Clusters and clouds have different design goals and fea-
tures [125]. While the main goal of clusters is performance
(supported by dedicated parallel computing resources
connected with minimal latency and stable high band-
width networks), the goal of clouds is to make available
on-demand virtual resources in an elastic platform at a
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Fig. 8. OpenStack main computing, networking, and storage

components.

reasonable cost. Hence, technical management issues—
derived from the shared use of physical resources by VMs
and multiple users, dynamic on-demand scalability, data
movement, virtualization overhead, and workload balance
in the presence of heterogeneity—impact the performance
of applications deployed on the cloud infrastructure.

B. Deployment Frameworks

Henceforth, we adopt the perspective of users of an
IaaS model, allocating a pool of virtual resources con-
nected by networking services to deploy and run scientific
applications. As an effective management framework to
deploy and run the applications, we highlight OpenStack29

although there are other open-source frameworks, such as
Apache Cloudstack30 and OpenNebula that offer similar
features. In the following, we review the functionality of
several of the multiple services available in OpenStack.

Openstack is oriented to manage the complete life cycle
of an IaaS cloud system composed of a large number of
virtual resources for computing, storage, and networking.
The Openstack design architecture is highly modular. Each
independent module implements a specific service and
exposes a well-defined API, making the system extensible
and able to support the integration of third-party services.

Some of the main software components of the Open-
Stack framework are outlined next and shown in Fig. 8.
We structure them into three categories.

1) Computing service components for deploying and
managing VM and Linux containers. These facil-
ities are supported fundamentally by the Nova
compute engine. Furthermore, OpenStack offers a
general-purpose management framework component
for hardware accelerators (such as GPUs) called
Cyborg.

29https://www.openstack.org
30https://cloudstack.apache.org

2) Networking service components with support for dif-
ferent network technologies and equipment. Neutron
is the main component, and it allows managing
SDNs and attaching virtual devices to ports on these
networks.

3) Storage service components, including Cinder compo-
nent for block storage and Swift component that deliv-
ers services for securely storing unstructured data as
a pool of objects and files.

In addition to the aforementioned computing, network-
ing, and storage services, it is worth noting that OpenStack
includes multiple software services for monitoring, devel-
opment, recovery, databases, orchestration of virtualized
resources, workload balance, and more. Among them,
for instance, Keystone provides services for security and
authentication of users and applications. Finally, Horizon
presents a web interface in the form of a dashboard
to manage the virtual resources composing the cloud
infrastructure.

C. Programming Models

The term, remote sensing big data, was coined to refer to
the increasing need of storing, managing, and processing
vast amounts of remotely sensed data, produced at a high
rate and in a wide range of formats. Such overwhelm
flow of data requires flexible parallel platforms with a
large computational capacity and specific programming
facilities.

In contrast to cluster computer-centric paradigms,
as message passing, big data applications require a data-
centric approach, in which a computational task should
be deployed in a computational resource as close as pos-
sible to the data location. As a result, the movement
of data through the network can be minimized. The
limited capability of the network bandwidth is a factor
that, together with the high volume and heterogeneity
of remotely sensed data, highly affects the performance.
In the following, we review some relevant programming
models and application ecosystems that have been widely
used in big remote sensing applications.

1) MapReduce: It is a programming model aimed at
developing scalable and robust applications working with
large data sets [126], [127]. It was originally developed
by Google and, together with the distributed GFS [128],
has been successfully used in solving numerous big remote
sensing data problems (as described in Section III). This
model is particularly suitable for data-centric environ-
ments, such as big remote sensing data processing on
cloud computing platforms [129]. MapReduce provides
the developer with a simple interface based on the map
and reduce functions. An application takes as an input a
structured set of key-value data. The map(k1,v1) function
transforms the input to an intermediate set of key-value
pairs in the target domain (k2,v2). The MapReduce library
combines the intermediate values (v2) on a per-key basis.
Finally, the reduce(k2, list(v2)) function operates on the
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list of values corresponding to each target key to generate
the output. Usually, both map and reduce are executed
by parallel tasks deployed across a set of computational
resources. The model interface abstracts the complexities
of the execution of the remote sensing application in the
specific platform and leaves the underlying details to the
implementation.

MapReduce implementations are ultimately based on
the master–worker approach, in which a master process
manages the automatic parallelization and scheduling of
the tasks on the computational nodes and coordinates their
execution. It partitions the remotely sensed data to be
processed by each map and reduce tasks and schedules
those tasks on computational resources as close as possible
to the data to be processed. To achieve this, it relies
on GFS that provides the locations of the blocks of data
to be processed. This design improves data locality and
minimizes the data transfers through the network, hence
improving the performance.

Besides, MapReduce combines the output intermediate
files of the map tasks and combines the data accord-
ing to the output keys. This intermediate stage tackles
the complexity of a high amount of communication and
coordination tasks, which are hidden to the developer.
Finally, the implementation delivers processed data chunks
to the reduce tasks. Furthermore, MapReduce implementa-
tion promotes fault tolerance mechanisms to detect and
reexecute tasks when necessary. In this sense, the com-
munication between the deployed tasks is achieved using
intermediate files.

2) Hadoop Ecosystem: Hadoop31 has been widely used
to parallelize remote sensing data processing tasks (see
Section III). It is a popular open-source and scalable big
data software framework based on the MapReduce para-
digm, the HDFS, and YARN [115] resource manager.

HDFS basic functionality is similar to that of GFS. Data
are split up into blocks of fixed size and replicated across
several nodes to ensure fault tolerance and availability.
Its implementation follows a master–worker approach.
A Namenode process manages metadata (such as block
mapping information) and delivers that information to the
MapReduce library when requested. DataNode processes
execute in each virtual resource and effectively store data
blocks and provide data reading and writing services to
applications.

MapReduce functionality is implemented by a Job-
Tracker process, which receives job requests and schedules
job tasks to different nodes. Each node is controlled by
a TaskTracker process, which monitors the execution and
reports to the JobTracker if a problem appears. In such
a case, JobTracker resubmits the involved tasks to the
same or a different TaskTracker. In this sense, Hadoop
decouples the MapReduce programming model and the
associated resource management. YARN delivers the for-

31https://hadoop.apache.org

mer services. Its internal architecture is based on three
main components.

1) The first component is the global per-cluster Resource-
Manager process, which accepts job submissions and
allocates resources for the application. It is respon-
sible for scheduling the application in the available
resources.

2) The second component is the NodeManager, a per-
node process. It is responsible for the execution of the
tasks assigned to its node.

3) Finally, the ApplicationMaster is a per-application
process that monitors the application necessities and
their status along their lifecycle, negotiating resources
with the ResourceManager.

The Hadoop framework has been enhanced with multi-
ple tools and services forming the so-called Hadoop Ecosys-
tem, which has been exploited in a variety of remote
sensing applications (see Section III). It includes relational
databases managers (as Hive), NoSQL databases (as HBase,
a column-oriented distributed database running on top
of HDFS), distributed ML/DL and linear algebra solvers
(as Mahout), real-time facilities (Storm), efficient alterna-
tives to the MapReduce programming model, and utili-
ties for the orchestration of the services and components
(ZooKeeper).

3) Apache Spark: Originally developed at UC Berkeley,
Apache Spark [116], [130] was designed to gain velocity
in the processing of big data. Although the MapReduce
model adequately adapts to a large number of applications
as highly parallel batch jobs, it incurs significant latency in
both interactive applications and in those with an iterative
pattern of execution, in which the same data sets need to
be continuously reloaded from the file system.

In this respect, one of the most relevant features of Spark
is its ability to support persistent data in memory, which
greatly benefits performance. This feature is implemented
in the run-time system of Spark, known as Spark Core
Engine. In addition to this module, the Spark ecosystem
includes a set of utilities, as Spark SQL, which allows
managing structured and semistructured data organized
in columns, known as DataFrames, the Spark Stream-
ing module for performing real-time processing on data
streams (ideal for remote sensing applications with real-
time constraints, as described in Section III), and the MLlib
library that includes distributed ML and DL algorithms.

Spark follows a master–worker execution model, with a
driver node acting as the master and a set of worker nodes.
The execution model is shown in Fig. 9. An application
submitted to Spark starts its execution in the context of the
driver node. The application creates a SparkContext object
that transforms the sequence of operations described in the
main program into an execution plan. The execution plan
is represented as a DAG, in which nodes are data elements
and edges are operations on such data. SparkContext splits
up the DAG in stages to be executed by tasks. Then,
SparkContext negotiates the acquisition of resources with
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Fig. 9. Apache Spark execution model in a cloud computing

platform.

the Cluster Manager. While the normal form of executing a
Spark application is to use its own native cluster manager,
Spark is able to run on Hadoop clusters on top of the
YARN resource manager. In any case, after the resources
have been obtained, SparkContext launches an Executor
process in each worker node. Based on the execution plan,
SparkContext schedules tasks to worker nodes and coor-
dinates its execution. Conversely, Executors are in charge
of effectively executing tasks assigned to its worker nodes
and providing access to data.

The RDD [117] is the main abstraction supporting the
Spark model. An RDD is a read-only collection of objects
partitioned and distributed across the worker nodes. The
assignment of tasks to worker nodes considers data-
locality, that is, the availability (or closeness) of the data
to be processed by the task in the RDD partition assigned
to the work node. An important feature of RDDs is that
the data can be cached in memory and, hence, reused
in recurrent parallel operations with minimum overheads.
Furthermore, the RDD is a fault-tolerant data structure.
In this sense, any operation on an RDD object is logged in
such a way that, in the case of a node failure, the RDD can
be reconstructed using the operation lineage. Because lin-
eage dependencies become large and their management is
time-consuming, users may decide to establish checkpoints
in the execution. In addition, the immutable nature of the
RDD objects benefits another fault-tolerance mechanism,
i.e., the execution of backup copies (duplicates) of running
tasks if failed or straggler tasks are detected.

RDDs can be created from data structures in mem-
ory or in the file system and also using data obtained
from any Hadoop service, including the HDFS or databases
as HBase. In addition to the mechanisms for creating
RDDs, Spark includes a set of coarse-grained operations
to process RDD data sets. These operations are structured
in two types.

1) The first type is given by transformation operations
that apply a function to an RDD and generate a trans-
formed RDD data set as a result. In turn, transforma-
tions are classified into narrow, which involves data
located in the worker node where the task executes

the operation, and wide, which involves data across
multiple worker nodes, and therefore, the required
data are copied from other partitions. The movement
of data is coordinated by the driver. Examples of
transformation operations defined in the API are map,
filter, groupbykey, and reducebykey.

2) The second type of operations is called Actions.
Actions are operations that retrieve non-RDD values
(as statistical or processed values) from RDDs, and
their value is returned to the driver program. Exam-
ples of actions are count, collect, reduce, and foreach.
Some of them take as an input parameter a function
to be applied to the data.

Transformations are lazily executed, in the sense that a
sequence of transformations is effectively executed when
an action is performed on the transformed RDD. This
mechanism improves performance in cases in which only
final results (and not intermediate results of the sequence
of transformations) are transferred to the driver program.
Nevertheless, by default, each transformed RDD is recom-
puted each time an action is executed on it. The persistence
mechanism of Spark allows keeping in memory the data,
improving the performance of recurrent operations on the
RDD (this is particularly beneficial for image processing
operations involving sliding windows or kernels, which are
very popular in many remote sensing applications).

Moreover, wide transformations are inefficient opera-
tions in the Spark model, consisting of independent tasks
operating on their own assigned RDD partitions, because
such operations require data movement. Every time a
task executes an operation on remote data, SparkCon-
text coordinates the disk I/O and network transmissions
between the involved nodes. This costly procedure is
called shuffle. The persistence capability highly improves
the performance of the shuffle operations by caching in
memory the RDD data that are going to be reused in wide
transformations, which is also popular in multiscale image
processing operations adopted in many remote sensing
applications (see Section III).

Finally, Spark includes two additional mechanisms to
avoid recurrent copies of shared data between the worker
nodes, called shared variables. The first one is called broad-
cast, and it allows to diffuse a set of values to worker nodes,
which will hold a read-only copy of the data. The second
one allows to maintain simple (associative) accumulators
shared across worker nodes.

D. Cloud Computing for Scientific Applications

Scientific applications (including remote sensing ones)
exploit the low latency and dedicated resources of clus-
ters to obtain high performance. On the contrary, cloud
computing offers elastic multitenancy (resource time shar-
ing) and nonpredictable and unstable network facilities.
Nevertheless, there is a great interest in evaluating if cost-
efficient and flexible cloud platforms can execute scientific
HPC applications at a reasonable level of efficiency.
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The paper [131] proposes AzureMapReduce, a decen-
tralized MapReduce implementation for Microsoft Azure
cloud infrastructures, and evaluates its (weak-scale) scala-
bility and performance with a remote sensing application.
The authors claim that MapReduce applications in cloud
infrastructures exhibit comparable performance to MapRe-
duce applications executed on traditional clusters. On the
contrary, the work [132] analyzes the performance of the
HPC Challenge (HPCC) benchmark [133] on the Amazon
EC2 cloud platform and concludes that the performance of
general scientific applications on cloud infrastructures is at
least one order of magnitude lower than that on clusters
and supercomputers. Moreover, the work [134] analyzes
the performance of loosely coupled many-task scientific
computing applications on four commercial cloud com-
puting provider platforms with the same aforementioned
conclusion.

The thorough study in [135] presents a run-time per-
formance comparison of the characteristics of the Amazon
EC2 cluster computing instances and a supercomputer.
The paper evaluates latency and bandwidth microbench-
marks, HPCC matrix multiplication kernels, NAS Paral-
lel Benchmarks (NPB [136]), and four full-scale remote
sensing applications used at NASA. The results show that,
in one node, performances are equivalent, while, in several
nodes, the network overheads of the cloud computing
infrastructure have a huge impact on performance.

The paper [125] evaluates Amazon IaaS services at
different levels. The authors execute microbenchmarks to
extract raw performance of latency, bandwidth, memory,
and processing services. Furthermore, they execute the
parallel HPL [137] benchmark to compare cluster and
cloud environments. The goal was to identify the advan-
tages and limitations of cloud platforms. They conclude
that I/O and network performance differences are the
main factors impacting the applications’ performance. One
of the main drawbacks detected in the cloud is the net-
work infrastructure based on Ethernet, which is often not
suitable for the necessities of HPC applications (includ-
ing remote sensing ones). The paper [123] proposes the
HPC2 model that bridges the gap between cluster and
cloud platforms with a set of proposals, including using
Infiniband as network technology (as it is commonly the
case in current remote sensing applications implemented
in cloud environments).

There is a consensus in which the performance differ-
ences between platforms come from the inherent over-
heads in virtualization, memory, storage and I/O, and
latency of the network infrastructure [138], [139]. Fur-
thermore, the work [140] offers an extensive study of
the performance of several cloud providers of public IaaS
services: Amazon EC2, Microsoft Azure, GCE, and IBM
SL, and it concludes that, indeed, there are substantial
differences between the performance of infrastructures of
different cloud providers.

To overcome the differences between cluster and cloud
platforms, several works maintain that it is not enough to

straightforwardly run cluster applications on cloud plat-
forms. This is in contrast with many cloud implementations
of remote sensing algorithms described in Section III,
which simply run available cluster-based codes in cloud
environments. For instance, the paper [141] proposes to
slightly transform HPC applications as representative HPC
kernel solvers by optimizing computational granularity,
which has a high impact on scheduling and communica-
tion/computation overlapping. In addition, they propose
to transform cloud facilities to use thin VMs and CPU
affinity mechanisms. They conclude that, by transforming
HPC applications (such as remote sensing ones) to be run
in a cloud and making clouds HPC-aware, the impact of
the latency and multitenancy is significantly reduced. In
this sense, the paper [142] proposes to use the MRAP
model that extends MapReduce with usual HPC application
data access pattern semantics (noncontiguous and fine-
grained) while taking advantage of the inherent scal-
ability and fault-tolerance features of MapReduce. This
is a promising solution to increase the performance of
the MapReduce-based remote sensing implementations
described in Section III.

V. M A C H I N E A N D D E E P L E A R N I N G
L I B R A R I E S A N D F R A M E W O R K S I N
C L O U D C O M P U T I N G E N V I R O N M E N T S
Numerous efforts have been devoted to the development
and efficient execution of ML and DL applications on cloud
computing infrastructures, not only as optimized libraries
and services but also as applications on top of the Spark
and MapReduce programming models. In this respect,
cloud providers offer several facilities for this challenging
task. Among them, Amazon AWS promotes an ML platform
called SageMaker32 to build and train different models,
with support for TF and Spark. IBM provides tools for
different frameworks, including TF and Keras.33 GCE also
supports the use of TF and provides an infrastructure based
on GPU computational devices. Microsoft Azure, on the
other hand, bases its services on Kubernetes and allows
using accelerators for its ML/DL resources.

Nevertheless, the iterative execution pattern of ML/DL
learning applications (in which the same data are recur-
rently operated, as in many remote sensing data processing
algorithms) does not naturally adapt to established cloud
computing programming models. Virtualization and net-
work overheads are key factors impacting the efficiency of
ML/DL learning applications, which are usually supported
on highly optimized computing linear algebra libraries,
such as BLASs [143] and high-performance networks and
communications based on MPI [144] to achieve high per-
formance.

In addition, ML and DL models have dramatically grown
in terms of structural complexity and depth. Training mod-
els on huge data sets (such as those involved in remote

32https://aws.amazon.com/sagemaker/
33https://keras.io/
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Table 3 Summary of Parallelization Schemes for Distributed Computing

Approaches

sensing applications) has become a computationally very
intensive (as well as a memory-consuming) task that usu-
ally requires several days even using specialized hardware,
such as GPUs. To overcome this limitation, several methods
for parallel training of ML and DL models have been
developed. The parallelization schemes can be structured
in three main groups [145], [146].

1) The first type is the data-parallelism scheme, in which
several replicas of a model are simultaneously trained
in different computational devices on disjoints parti-
tions of the remote sensing data set.

2) The second type is called model-parallelism, and it is
used when a model overcomes the memory capacity
of one computational device; then, it has to be parti-
tioned and deployed on several devices.

3) Finally, the last type is the hybrid-parallelism scheme
that merges data and model-based approaches.

These parallelization schemes can be implemented as
multiple distributed computing approaches. Table 3 sum-
marizes the different characteristics of each scheme for
cloud and cluster/grid computing approaches.

The rest of the section outlines the main frameworks
and libraries offered by cloud providers to face the chal-
lenge of efficient training of ML and DL models when
processing remotely sensed data on cloud computing
infrastructures.

A. Libraries

This section provides an overview of some well-known
ML and DL libraries that are used in cloud computing
environments to build models efficiently. These libraries
have been used in the past to process and accelerate
remote sensing applications.

1) Weka: The Weka34 library was developed at the Uni-
versity of Waikato [147]. It is a Java-based open-source
library that allows building ML and DL models for several
types of algorithms, including classification, clustering,
and data mining. A relevant feature of the library is that
it is multiplatform and even runs on lightweight devices
on top of the Android OS [148]. It supports multiple pro-
gramming languages with different packages and plugins,

34https://weka.sourceforge.io/

such as the DeepLearning4J,35 the RPlugin,36 or several
Python37 DL libraries. Weka was initially developed to offer
a simple and easy-to-use interface. Currently, it provides a
distributed version [149] implemented on top of Spark and
RDDs.

2) MLlib: The MLlib38 is a distributed ML/DL library
that provides model training based on the data paral-
lelism scheme [118]. It was developed in the Scala39 pro-
gramming language and supports Java, Scala, and Python
programming languages. Its main features are scalability
and fast implementation of numerous ML/DL algorithms,
as well as linear algebra, statistics, and optimization primi-
tives. It is built on Spark and implements efficient commu-
nication primitives for data transmissions performed by a
large number of processes and training large models using
the data-parallelism scheme. Some communication primi-
tives of special interest are the broadcast, which efficiently
distributes data over processes training the model, and
the tree-structured aggregation primitive, which collects
processed data avoiding possible bottlenecks. MLlib was
initially designed to efficiently operate on fully distributed
environments, which entails a significant performance
advantage with respect to Weka [150].

The execution model of MLlib is based on the master–
worker paradigm, where the master process acts as a PS
and maintains a centralized copy of the global parame-
ters of the model. It combines values received from the
worker tasks after each training iteration. Tasks deployed
on the computational resources of the platform process
their assigned data set partitions and communicate results
to the PS. The data partitions assigned to each task are
processed in batches, being the size of each batch a key
optimization parameter, which directly affects the resulting
accuracy of the model and the efficiency of the training
[151], [152].

B. Frameworks

This section discusses different frameworks to develop
ML/DL applications in cloud environments.

1) TensorFlowOnSpark: This framework combines
salient features of the TF DL library with Spark and
Hadoop to provide a scalable ML/DL development and
training platform [153]. It supports all TF functionalities,
including asynchronous and synchronous training, data,
and model-based parallelism schemes, and monitoring
with TensorBoard.40 It also enables distributed TF-based
training on cloud computing clusters, with the additional
goal of minimizing the amount of code refactoring
required to run existing TF applications. In summary,
TensorFlowOnSpark deploys a Spark cluster on a cloud

35https://deeplearning4j.org/
36https://weka.sourceforge.io/packageMetaData/RPlugin/
37https://www.python.org/
38https://spark.apache.org/mllib/
39https://www.scala-lang.org/
40https://www.tensorflow.org/tensorboard
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infrastructure and provides facilities for injecting both
RDD and HDFS data in the TF models executed by the
tasks scheduled in the worker nodes.

2) SparkTorch: This framework is intended to execute
code based on the PyTorch library [154] across nodes in a
Spark cluster. The distributed training works under a data-
parallel paradigm and uses both tree reductions and PS
mechanisms to combine partial results from tasks deployed
on the cloud platform. There are two main training modes
available in SparkTorch.

1) The first one is the asynchronous training mode, which
ensures that the replicated models deployed in nodes
are synchronized through each training iteration.

2) The second training mode, called the Hogwild
approach [155], allows lock-free task accessing to
shared memory in order to update parameter values.
This mode eliminates the overheads associated with
locking. However, in this mode, a task could overwrite
the progress of other tasks a risk that the developers
claim that could be assumed when the data to be
accessed is sparse.

3) BigDL: This framework is also implemented on top
of Apache Spark to run DL applications as standard Spark
programs [156]. It offers support for large-scale distrib-
uted applications and provides efficient processing for data
analysis, data injection to neural network models, and
distributed training or inference, using a unified pipeline.
Before training, the model and RDDs are partitioned
and cached in memory across the cloud resources. BigDL
supports two-parameter synchronization mechanisms. The
first one maintains a centralized PS, and the second one
uses collective operations as AllReduce to combine the para-
meters computed by tasks. Despite the fact that collective
message passing primitives are not particularly suitable for
the execution model of a Spark cluster, BigDL implements
an efficient AllReduce algorithm using Spark primitives,
allowing for the integration of DL algorithms in cloud
computing environments.

It is important to note that the three aforemen-
tioned frameworks can use two different communication
approaches.

1) The PS approach, as illustrated in Fig. 10(a) [157],
consists of a centralized architecture where the com-
putational nodes are partitioned into masters and
workers. The workers maintain a workload and data
partition, while the master maintains the global
shared parameters. The workers communicate with
the master to share the weights generated at each
iteration of the model. The master is responsible
for the aggregation of the global weights. In cloud
computing environments, additional workers may be
added or removed from the execution. This must be
handled by the system, so as to switch on any new
workers and send to them the appropriate computa-
tions and data partitions.

Fig. 10. Cloud computing training pipeline in the three discussed

DL frameworks (TensorFlowOnSpark, SparkTorch, and BigDL).

(a) Parameter server approach. (b) AllReduce-Ring BigDL approach.

2) The AllReduce-Ring BigDL approach, as shown
in Fig. 10(b), consists of a decentralized architecture
where each Spark task computes its local gradients,
dividing the local gradients into N partitions. Each
task manages its corresponding parameter partition,
which is shuffled to the corresponding task to aggre-
gate gradients and then update the corresponding
weights. Then, each task launches a Spark broadcast
operation with the updated weights so that these are
read before the next step.

A discussion between the aforementioned frameworks
and their pros and cons in cloud environments is needed
at this point.

1) In terms of applications, all of them provide full inte-
gration with Spark ML/DL algorithms. While Tensor-
FlowOnSpark provides a large amount of algorithms
and applications, BigDL includes extensive DL func-
tionalities.

2) The ease of use differs among different frameworks.
While the TensorFlowOnSpark interface is clear and
easy to use, the documentation for BigDL is intuitive
and provides a comprehensive support for ML/DL
algorithms.

3) Attending to the distributed training, SparkTorch
provides asynchronous and synchronous schemes
since TensorFlowOnSpark asynchronous PS is highly
efficient. We also note that SparkTorch is in a prema-
ture developing phase compared to the TensorFlowOn-
Spark and BigDL implementations. Thus, the latter
frameworks still offer notable advantages. An impor-
tant aspect of TensorFlowOnSpark is the creation of
checkpoints to recover from failures. These check-
points are stored in the HDFS by TF. A similar point
between these two last frameworks can be found in
the monitoring.

4) In terms of scaling and performance, BigDL takes
a step forward from the other frameworks. This is
due to multiple factors. First, it provides extensive
documentation to deploy ML/DL algorithms in differ-
ent providers as EC2. Also, attending to the execution,
it provides a synchronous SGD and an optimized
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AllReduce in the communication step. Another inter-
esting point is that it can be used only for prediction,
and hence, it can load models from different ML/DL
frameworks. Finally, the aforementioned frameworks
execute powerful long-running tasks, while BigDL
uses short-running, nonblocking tasks for the model
computation.

VI. C A S E S T U D Y
This section presents a case study in which a DNN
(implemented on the cloud) is used to process a large
hyperspectral remote sensing image. As noted before,
hyperspectral data cubes comprise a significant amount
of information, which allows us to model the physical
characteristics of the observed materials by analyzing
the detailed spectral signatures (collected on a pixel-by-
pixel basis), which provides rich information for land-
cover analysis. When applied to hyperspectral images,
classification methods suffer from important processing
time and computing/storage constraints, resulting from
the extremely high dimensionality of the data. Therefore,
the implementation of such classifiers in cloud comput-
ing architectures is an effective solution. Here, we use
a deep MLP [17] as the distributed classifier and per-
form classification experiments on a benchmark classifi-
cation data set widely used in the hyperspectral imaging
community.

The remainder of this section is organized as follows.
First, we describe our cloud implementation of the MLP
classifier. Then, we describe the hyperspectral image used
for validation purposes. Then, we provide the character-
istics and configuration of the cloud computing platform
used for experiments. The section ends with a detailed
discussion of our conducted experiments and with some
remarks on the practical utility of distributed DL algo-
rithms in remote sensing applications.

A. Distributed Multilayer Perceptron Classifier

Let us denote a hyperspectral data cube as X ∈
Rh×w×nbands , where each data sample xi is of size h × w

(h being the height and w the width in pixels of the
image), and each pixel can be denoted by xi ∈ Rnbands =

[xi,1, xi,2, . . . , xi,nbands ]. In an MLP classifier, each layer l

performs a data transformation of the weights and the
input data (Wl and xi) as follows:

xl+1
i = H(xl

i · Wl + bl) (1)

where xl+1
i is a feature representation of the input data

obtained by the neurons of that layer (l). Neurons are
obtained as the dot product between the output from the
previous layer neurons plus the bias b (shift parameter)
through an activation function, such as the ReLU or the sig-
moid function, among others [17]. Hence, the kth feature

of the x(l+1)
i sample can be obtained as

xl+1
i,k = H

�
�

nl−1�
j=1

(xl
i,j · wl

k,j) + bl

�
� . (2)

Attending to the MLP optimization step, the optimizer
tries to obtain the set of parameters W and bias that
minimize the loss error. Hence, a backpropagation step
calculates the gradient of the error in order to minimize
the final error. At each step, the updating process is defined
as follows:

Wt+1 = Wt + ∇W (3)

where ΔW = μt · pt, with μ being the learn-
ing rate and p the descent direction of the gradient
at time step t. To optimize this operation, tradi-
tional methods use the information obtained from the
Hessian matrix

Ht · pt = −∇E(X, Wt) (4a)

pt = −H−1
t · ∇E(X, Wt) (4b)

Wt+1 = Wt − μt · H−1
t · ∇E(X, Wt) (4c)

where Wt is the network weight, H is the Hessian matrix,
and ∇E(X, Wt) is the gradient of the error at step t.
Regarding this, as the computation requirements are high,
the optimization provided by the BFGS algorithm [158]
is used, providing an estimation of the Hessian matrix
changes

Wt+1 = Wt − μt · G·
t∇E(X, Wt) (5)

with Gt being the inverse Hessian approximation matrix.
Since G is the inverse of the Hessian matrix H−1, and the
approximation matrix G needs to be updated in each step,
the BFGS method updates it using the following equation,
assuming that qt = H · pt and H−1 · qt = pt:

Gt+1 = Gt +
pt · pT

t

pT
t · qt

− Gt · qt · qT
t

qT
t · Gt · qt

· Gt. (6)

This strategy is quite appropriate for hyperspec-
tral data sets because the computation is high and
the processing requires repetitively reading the original
data set. In this way, a distributed cloud computing
implementation can make the MLP faster and highly
scalable.

Specifically, our distributed implementation reshapes
the hyperspectral data from X ∈ Rh×w×nbands to X ∈
Rnpixels×nbands . This way, each row or column collects
the full representation of a pixel. The master node reads
and divides the original data set over P partitions, which
are assigned to the corresponding workers in the clus-
ter. The data are stored in each worker as an RDD.
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Fig. 11. Graphical overview of the forward and backward pipelines of our distributed MLP classifier.

To take advantage of this, we can improve the computa-
tion time of the distributed algorithm approaches using
a BS implementation. In our implementation, each data
partition (row) r(p)

j is transformed based on the minimum
and maximum features of a sample with the minimum
and maximum from the column of its data partition
as follows:

r(p)
j =

r(p)
j − r(p)

min

r(p)
max − r(p)

min

· (xmax − xmin) + xmin. (7)

Now, every training iteration can be performed using a
forward–backward procedure. An aggregation is done after
each step to compute and process the gradients and losses
from workers and, hence, return a single gradient and
loss. In each forward propagation, each worker forward
its corresponding data partition X(p) through the layers.
Then, gradients are computed at the backpropagation
step, obtaining, for each partition (p), the G(p)

t matrix
at time step t. Gradients are sent to the master node,
and then, the computation of ΔWt takes place. Assuming
that X(p) ∈ (RBS·nrows)×nbands for (p) partitions, (1) is
distributed as

X(l+1),(p)
i = H(X(l),(p) · W(l) + b(l)) (8)

where x
(l+1),(p)
i represents the output matrix neurons of

size (RBS·nrows)×nl
neurons from layer l, x(l),(p) is the input

pixel matrix of size (BS · nrows) from the previous layer,
W(l) is the matrix of weights, which connects neurons from
previous layers with the actual one, and H is the activation
function (e.g., the ReLU).

Once the forward step is completed in every partition
X(p), the error loss is computed by every worker. The final
error is calculated by the master as the mean of all the
errors provided by the slaves. Then, the partition error is
backpropagated to calculate the G(p)

t gradient at each time

step t. The gradients of each partition are computed using
a parallel DGEMM, implemented in BLAS

C = α ∗ X(p) ∗ g
L(p)
t + β ∗ G(p)

t−1 (9)

where α and β are regularization parameters set to
1/nbands and 1, respectively, g

L(p)
t is a matrix representing

the neuron impact per layer L = [l1, l2, . . . , ln], and G(p)
t−1

denotes the previous gradient matrix values. The variable
p, as indicated previously, represents the partition of the
data. In the end, all partition gradients G(p)

t are summed
to obtain the global gradient matrix Gt at the time step t.

Fig. 11 provides a graphical description of the distrib-
uted forward and backward pipelines of our distributed
MLP during the training stage (considering iteration t).
This is conducted after unstacking the hyperspectral sam-
ples in each distributed data partition, where each one is
allocated to a different worker node.

B. Hyperspectral Data Set

To evaluate the performance of our cloud implemen-
tation of the MLP classifier, several experiments have
been conducted over the BIP data set.41 It was gathered
by the AVIRIS sensor [2] during a flight campaign over
the agricultural IP test site in Northwestern Indiana. The
scene was collected at the beginning of the 1992 growing
season and comprises several regular patches of different
crops coupled with irregular forest and grass zones. The
data cube comprises 1417 × 617 pixels, with a ground
sampling distance of 20 mpp. Furthermore, each pixel
comprises 220 channels recorded over a spectral range of
400–500 nm, with a nominal spectral resolution of 10 nm.
However, 20 bands [0–9, 210–219] were removed in order
to avoid null, noisy, and water absorption bands, keep-
ing the remaining 200 bands for experimental purposes.

41https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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Fig. 12. Available labeled samples (and their distribution) in the AVIRIS BIP data set considered in experiments.

The complexity of this challenging image is quite remark-
able, as the pixels are very mixed due to the low spatial
resolution, while the available ground truth is composed
of 58 different and highly unbalanced land-cover classes,
covering only 20.33% of the samples. The size of the data
set exceeds 1 GB. Fig. 12 shows the available labeled
samples per class and their distribution in the scene.

C. Platform Configuration

The designed experiments have been conducted over
an OpenStack-based cloud infrastructure, which has been
implemented onto a hardware platform composed of
two × Intel Xeon CPUs E5-2650v2 @2.60 GHz with
eight cores (16 way multitask processing), 16-GB RAM,
and 600 GB of HDD SAS 10k. In this sense, within the
cloud environment, nine VMs (one master instance and
eight slave instances) have been launched. Each VM runs
Ubuntu 20.04 as OS, with Spark 3.0.1 and Java 9.0.4 serv-
ing as running platforms. Furthermore, the Spark frame-
work provides the distributed MLlib library, which is used
to support the implementation of our cloud-based MLP
classifier.42

42The source code used in this experimentation is currently available
on https://github.com/mhaut/cloud-dnn-HSI

D. Experimental Discussion

During the experimentation, the computational load of a
fully connected deep network has been distributed in order
to evaluate the performance of the cloud infrastructure
when dealing with hyperspectral remote sensing image
classification. In particular, a deep MLP has been designed
to explore the impact of its computational burden over
the cloud environment by involving all model parameters
with all input elements in the computation of the matrix
operations described by (1).

Table 4 describes the architecture of the implemented
MLP, specifying the number of layers and the number
of neurons comprised by each layer. It is noteworthy
that a fully connected neural model entails

�
i NiNi+1

trainable parameters (where Ni represents the number of
nodes at the ith layer with i = [1, L − 1], and L is the
number of layers), which, in turn, involves approximately�

i 2NiNi+1 FLOPs. In particular, the implemented MLP
comprises 78 624 trainable parameters, which implies at
least 157 248 FLOPs. Furthermore, in the calculation of

Table 4 Configuration of the Implemented MLP Classifier (Number of

Neurons per Layer)
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Fig. 13. Distributed MLP performance. (a) and (b) Runtimes and speedups as the number of workers increases, considering different

amounts of training samples for each one. (c) and (d) Obtained runtimes and speedups as the problem size increases, evaluating the

theoretical and obtained behavior for a different number of workers. The different problem sizes result from the selection of different

amounts of training data. Depicted lines provide theoretical speedups and expected runtime measurements, while bars provide the actual

values obtained.

FLOPs, the number of samples processed by the model
must be taken into account.

In addition, two approaches have been followed to
assess the obtained performance in terms of runtimes and
speedup. Indeed, experiments have been conducted con-
sidering both different numbers of workers and different
amounts of training data, where the first approach analyses
the obtained runtimes and speedup by focusing on the
number of workers, while the second approach evaluates
the scalability of the cloud environment by focusing on
the amount of data. For each experiment, we conduct five
Monte Carlo runs and report the average results.

1) Approach Based on the Cloud Environment
Size: The first approach distributes the MLP over the
cloud infrastructure to measure the overall performance

improvement of the system by evaluating its potential with
a different number of workers. In this regard, a cloud
environment with one, two, four, and eight working nodes
has been launched. Moreover, for each configuration, dif-
ferent amounts of training data have been considered.
Particularly, 10%, 35%, 50%, 65%, and 90% of the avail-
able labeled data have been randomly selected from the
BIP data set to learn the 78 624 trainable parameters
comprised by the MLP.

Fig. 13(a) shows a graphical representation of the
obtained results in terms of runtime. As we can observe,
for each configuration of the cloud infrastructure, five
measurements have been collected, which corresponds to
the number of training samples. In this regard, focusing
on each configuration, the obtained runtimes increase as
more data are included during the training stage. This is
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a reasonable and expected behavior since, with the same
resources, an increase in the problem size brings a cor-
responding increase in the runtime. However, comparing
the runtimes among the different configurations, with only
one worker, the execution time soars, easily exceeding
20 000 s with 90% of training samples (purple bar). On the
contrary, as the number of workers increases, the observed
runtimes decrease significantly. In particular, with eight
workers, the highest runtime with 90% of the training
samples never exceeds 4000 s.

These results have a clear impact on the speedup
of the MLP model, which is increased as more work-
ers are launched into the cloud environment. Fig. 13(b)
shows a graphical description of the obtained speedups.
Once again, for each configuration, five measurements
are depicted corresponding with different training per-
centages. In this regard, the cloud infrastructure with one
worker node has been considered as the baseline configu-
ration, which exhibits a speedup of 1 for all training sizes.
Therefore, the speedups of the following configurations
have been consequently obtained. It should be noted that
the improvement in speedup is not exactly the same as the
theoretical speedup marked by the red line in Fig. 13(b),
as communication and scheduling times inevitably affect
the system performance. However, the data volume is high
enough to take full advantage of the cloud environment,
without the communication bottleneck preventing a good
performance result in terms of runtimes. This is clearly
evident in every configuration of the cloud environment.
For instance, focusing on configurations with two and four
workers, the speedups obtained with different training
percentages are quite similar, suggesting that, already, with
10%–50% of training data, computational resources are
being optimally exploited. However, with eight working
nodes, the speedup is significantly higher when more data
are processed, as computational resources are much larger,
thus providing more room to exploit a bigger amount of
data (i.e., to process larger data sets).

2) Approach Based on Problem Size: As mentioned above,
the second approach evaluates the behavior of the imple-
mented cloud solution by placing the focus on the problem
size, i.e., by considering different training set sizes. In this
regard, the experiment attempts to measure the scalability
of each of the cloud environment configurations adopted to
solve the problem (with one, two, four, and eight nodes)
when different amounts of labeled samples are consid-
ered at the training stage. As in the previous experiment,
10%, 35%, 50%, 65%, and 90% of the available labeled
samples have been randomly selected to comprise the
training sets, resulting in different data sizes (in MBs),
which are indicated on the x-axis of the plots reported in
Fig. 13(c) and (d).

Fig. 13(c) provides the obtained results in terms of
runtimes. Following the previous results, for each amount
of training data, runtimes decrease as more workers
are launched into the cloud environment. In this sense,

Fig. 14. Runtime details of the distributed MLP as the problem

size grows, with (a) four and (b) eight working nodes. The different

problem sizes result from the selection of different amounts of

training data. Red lines provide expected measurements, while blue

bars provide the actual measured values.

the one-worker configuration is the slowest one, with run-
times that are more than seven times longer than the ones
obtained by the eight-worker configuration for the case
with the most training data. In this sense, if we connect the
top of each bar, it is particularly interesting to observe the
slope of the line, where the one corresponding to the one-
worker configuration is the steepest. It even exceeds the
theoretical line, which makes it the worst configuration.
On the contrary, the four- and eight-worker configurations
scale remarkably well. Moreover, they even give better
times than theoretically expected. Fig. 14(a) and (b)

Fig. 15. Classification map obtained by the cloud-based MLP for

the BIP data set using 50% of the available labeled data for training.

(a) Ground truth. (b) Predicted labels.
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Table 5 OA Comparison

provides the runtime details for these configurations. As
it can be observed in Fig. 14(a), although the runtime
increases (as expected), the curve is not entirely linear,
which implies that the distribution model is more optimal
when there are more data to distribute. Moreover, the dis-
tance between the obtained runtimes and the theoretical
ones (which are highlighted as a red line) increases as
more data are processed. Particularly, the theoretical run-
times times are 1.18 times higher than the obtained ones.
This proves that the model scales appropriately with the
size of the problem. This is clearly visible in Fig. 14(b),
where theoretical runtimes are 1.59 times higher than
those currently obtained.

Finally, Fig. 13(d) provides the obtained speedups
regarding the problem size. Once more, the one-worker
configuration has been considered as the baseline where,
for each size of the training set, its speedup is set to 1.
Therefore, the speedups of the two-, four-, and eight-
worker configurations have been consequently obtained.
As in the previous plots, the theoretical speedups have
been marked as dotted lines for each configuration. In this
sense, the speedup exhibited by the two-worker configura-
tion is quite close to the theoretical one, while, for the four-
and eight-worker configurations, their speedups improve
as the size of the processed data grows. This is particularly
evident when eight working nodes are launched into the
cloud environment. These results indicate that the com-
putational resources provided by the eight-worker con-
figuration exhibit great scalability, with a great potential
to process bigger remote sensing data sets in order to
optimize the use of the cloud environment capacities.

3) Accuracy Evaluation: Finally, the reliability of the
classification results has been measured in terms of overall
accuracy (OA). In this sense, Table 5 provides the OAs that
have been obtained after training the deep MLP with 10%,
35%, 50%, 65%, and 90% of randomly selected samples.
Furthermore, for the cloud-distributed MLP, configurations
with one, two, four, and eight working nodes have been
considered. These results have been compared with a
parallel implementation based on the PyTorch framework.
As we can observe, the obtained OAs improve as the
MLP network is trained with more samples. Moreover,

after comparing the different implementations, we can
see that the obtained results are quite similar. Fig. 15
provides a classification map that has been obtained by
training the cloud-based MLP with 50% of the available
labeled samples. In this regard, the cloud solution not only
provides an efficient way to distribute the storage and
computation load but also reaches good performance in
terms of accuracy.

To conclude this section, we emphasize that the results
that have been obtained with the MLP are perfectly extrap-
olable to other deep networks, such as CNNs. Indeed,
the cloud environment can run both architectures in a
distributed manner (as it is not specialized hardware),
reaching impressive performance in image analysis with
CNNs as well [159].

VII. C O N C L U S I O N A N D F U T U R E L I N E S
In this article, we have presented a comprehensive review
of recent efforts in parallel and distributed processing of
remotely sensed images, with a particular emphasis on
DL-based approaches and their cloud implementation. Our
review reflects the growing importance of using cloud
computing techniques for distributed processing of remote
sensing images, which is of great importance due to the
current availability of open big remote sensing data repos-
itories. Our review also summarized the processing tools
and techniques that have been used in different remote
sensing applications, which is believed to provide a useful
guideline for new users that wish to develop computation-
ally efficient techniques in this field.

We provide a case study illustrating the results obtained
by a DL algorithm (implemented in the cloud) when
processing a big hyperspectral image. Since hyperspectral
data are characterized by their large size and complex
processing and storage requirements, we believe that the
results provided in our case study offer a good perspective
on the possibilities of implementing DL algorithms in the
cloud for addressing the processing challenges involved
in the extraction of information from remotely sensed
images. In the future, we will expand our study by consid-
ering the inclusion and optimization of specific accelera-
tors (such as GPUs) in the cloud environment for DL-based
remote sensing data processing and interpretation.
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