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Abstract : Let G be a compact metrizable abelian group with normalized Haar measure λ,
Γ the dual group of G and Λ a subset of Γ. Let X be a Banach space and f : G −→ X be a

Pettis integrable function with respect to λ. It has been shown that the set {f̂(γ) : γ ∈ Λ} of
the Fourier coefficients of f is a relatively norm compact subset of X. We have shown by a
counter-example that the converse of this result is not true, in general. We have introduced
the idea of type II-Λ-Weak Radon-Nikodym property (type II-Λ-WRNP) of X and have
shown that the converse is true for X having this property when Λ is a Riesz set. We have
also obtained several necessary and sufficient conditions for X to possess this property when
Λ is a Riesz set.
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1. Introduction

In [7], Edgar introduced the idea of Λ-Radon-Nikodym property in a Ba-
nach space associated with a compact metrizable abelian group. Dowling
called it type I-Λ-Radon- Nikodym property and also introduced another such
property called type II-Λ-Radon Nikodym property in [6]. He used these prop-
erties to give new characterizations of Riesz subsets and Rosenthal subsets of
countable discrete abelian groups. We introduced in [17] the idea of type I-
Λ-weak Radon-Nikodym property in a Banach space under the name Λ-weak
Radon-Nikodym property.

The object of the present paper is to introduce the idea of type II-Λ-
weak Radon-Nikodym property in a Banach space associated with a compact
metrizable abelian group. It is observed that type II-Λ-Radon-Nikodym prop-
erty implies type II-Λ-weak Radon-Nikodym property which, in turn, implies
type I-Λ-weak Radon-Nikodym property.
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It has been shown that the set of Fourier coefficients of a Pettis integrable
function is relatively norm compact and it satisfies some other conditions.
The converse of this result has been shown to be true for a Banach space
possessing type II-Λ-weak Radon-Nikodym property where Λ is a Riesz set.
Several sufficient conditions have been obtained for a Banach space to possess
this property and they have been shown to be necessary also when and only
when Λ is a Riesz set.

2. Notations and terminologies

Throughout this paper, G will denote a compact metrizable abelian group
(under multiplication), β(G) is the σ-algebra of Borel subsets of G, and λ is
the normalized Haar measure on β(G). Let Γ = Ĝ be the dual group of G,
the set of continuous homomorphisms γ : G −→ C with |γ(z)| = 1, for all
z ∈ G. Then Γ is a countable discrete abelian group [14].

Let X be a complex Banach space with dual X ′. By a vector measure, we
always mean a finitely additive set function from β(G) to X.

The set of all X-valued countably additive vector measures of bounded
variation defined on β(G) is denoted by V 1(G; X). The set of all X-valued
vector measures with bounded average range (with respect to Haar measure
λ) is denoted by V ∞(G;X). V 1(G; X) is a Banach space under the variation
norm whereas V ∞(G; X) is a Banach space under the norm

‖µ‖∞ = sup{‖µ(E)‖/λ(E) : E ∈ β(G), λ(E) > 0}.

Every µ ∈ V ∞(G; X) is countably additive, λ-continuous and of bounded
variation, and as such V ∞(G;X) ⊂ V 1(G; X).

A function f : G −→ X is said to be scalarly integrable if x′f ∈ L1(G)
for each x′ ∈ X ′. Let us recall that every scalarly integrable function is
Dunford integrable [3, p. 52, Lemma II.3.1]. The value of the Dunford integral
D –

∫
E fdλ, E ∈ β(G), lies in X ′′. If D –

∫
E fdλ belongs to X for each E ∈

β(G), then f is called Pettis integrable and we denote it by P –
∫
E fdλ.

The Fourier coefficients of a Dunford integrable function f : G −→ X are
defined as

f̂(γ) = D –
∫

G
γ̄fdλ, γ ∈ Γ.

The Fourier coefficients of a Pettis integrable or a Bochner integrable func-
tion are similarly defined.



type ii-Λ-weak radon-nikodym property 203

The Fourier coefficients of a bounded vector measure µ : β(G) −→ X are
defined as

µ̂(γ) =
∫

G
γ̄dµ, γ ∈ Γ.

The set of all Pettis integrable functions from G to X is denoted by
P (G; X). It becomes a normed linear space under the Pettis norm

‖f‖P = sup
‖x′‖≤1

∫

G
|x′f |dλ = sup

‖x′‖≤1
‖x′f‖1 < ∞, f ∈ P (G; X).

Every f ∈ P (G; X) induces a countably additive, λ-continuous vector
measure µf : β(G) −→ X of σ-finite variation, defined by

µf (E) = P–
∫

E
fdλ,

for all E ∈ β(G).
Since the normalized Haar measure on a compact abelian group G is a

finite Radon measure and hence a perfect measure [18, p. 9, Prop. 1-3-2], it
follows from [4, p. 149] that the induced vector measure µf of an f ∈ P (G; X)
has a relatively norm compact range in X.

If for a vector measure µ : β(G) −→ X, there exists an f ∈ P (G;X) such
that

µ(E) = P –
∫

E
fdλ,

for all E ∈ β(G), then f is said to be the Pettis derivative of µ. Thus every
f ∈ P (G;X) is the Pettis derivative of its induced vector measure µf .

If f ∈ P (G; X) is the Pettis derivative of a vector measure µ : β(G) −→ X,
then it is easy to verify that f̂(γ) = µ̂(γ), for all γ ∈ Γ.

The set of all f ∈ P (G;X) whose induced vector measures are of bounded
variation is denoted by P 1(G; X) so that P 1(G; X) ⊂ P (G;X).

A function f : G −→ X is said to be scalarly essentially bounded if
x′f ∈ L∞(G) for each x′ ∈ X ′. The set of all scalarly essentially bounded
Pettis integrable functions from G to X is denoted by P∞(G; X). Thus
P∞(G;X) ⊂ P 1(G; X) ⊂ P (G; X). If f ∈ P (G; X), then it can be shown
that f ∈ P∞(G; X) if and only if the induced vector measure µf ∈ V ∞(G; X).

As usual, we shall denote by L(L1(G), X) (resp. L(C(G), X)) the space of
all bounded linear operators from L1(G) (resp. C(G)) to X which is a Banach
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space under the operator norm. Fourier coefficients of a T ∈ L(L1(G), X)
(resp. L(C(G), X)) are defined by

T̂ (γ) = T (γ̄), γ ∈ Γ.

It is easy to see that the Banach spaces V ∞(G;X) and L(L1(G), X) are
isometrically isomorphic under the correspondence

µ(E) = T (χE),

for all E ∈ β(G), or equivalently

T (φ) =
∫

G
φdµ,

for all φ ∈ L1(G), where µ ∈ V ∞(G;X) and T ∈ L(L1(G), X).
If T ∈ L(L1(G), X) corresponds to µ ∈ V ∞(G; X), then

T̂ (γ) = T (γ̄) =
∫

G
γ̄dµ = µ̂(γ),

for all γ ∈ Γ.
If Λ ⊂ Γ, then we define

V 1
Λ (G; X) = {µ ∈ V 1(G;X) : µ̂(γ) = 0 for all γ /∈ Λ}

and
PΛ(G; X) = {f ∈ P (G; X) : f̂(γ) = 0 for all γ /∈ Λ}.

Similar definitions are used for V ∞
Λ (G; X), L1

Λ(G; X), P∞
Λ (G; X), L∞Λ (G; X),

P 1
Λ(G;X), LΛ(L1(G), X) and LΛ(C(G), X). It is clear that

L∞(G;X) ⊂ P∞(G;X) ⊂ V ∞(G; X) = L(L1(G), X),

and hence

L∞Λ (G; X) ⊂ P∞
Λ (G; X) ⊂ V ∞

Λ (G;X) = LΛ(L1(G), X).

We define

V 1
Λ, ac(G; X)= {µ ∈ V 1

Λ (G; X) : µ is absolutely continuous with respect to λ}.
If Λ ⊆ Γ, then Λ is called a Riesz subset of Γ if V 1

Λ (G) = L1
Λ(G). It is easy

to show that if Λ is a Riesz subset of Γ and X is a Banach space then

V 1
Λ (G;X) = V 1

Λ, ac(G; X).

A sequence {in} of measurable functions in : G −→ R is called a good
approximate identity on G [7, p. 202] if it satisfies the following properties
(without loss of generality, by [10, p. 298, Theorem 33.12]):
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a) in ≥ 0 for n = 1, 2, . . .,

b)
∫
G indλ = 1 for n = 1, 2, . . .,

c) supp în is finite and 0 ≤ în ≤ 1 on Γ for n = 1, 2, . . .,

d) limn→∞
∫
U indλ = 1 for all neighborhoods U of 1 in G.

Then we note that modifying each in if necessary on a set of measure 0,
one has

in(t) =
∑

γ∈Γ

în(γ)γ(t) =
∑

γ∈supp în

în(γ)γ(t),

for all γ ∈ Γ.
It should be noted that a compact metrizable abelian group always pos-

sesses a good approximate identity [10, p. 298, Theorem 33.12].
Let Λ be a subset of Γ and {aγ}γ∈Λ be a bounded subset of X. Let us

define, for each positive integer n, the function Fn : G −→ X by

Fn(z) =
∑

γ∈Λ

în(γ)aγγ(z), z ∈ G.

It is obvious that Fn ∈ L∞Λ (G; X) for each n. The sequence {Fn} is said to be
associated with the bounded set {aγ}γ∈Λ.

3. Main results

Lemma 1. If Λ ⊂ Γ and {aγ}γ∈Λ is a bounded subset of X with the
associated sequence {Fn}, then

F̂n(γ) =





în(γ)aγ for γ ∈ Λ,

0 for γ /∈ Λ,

and hence

F̂n(γ) −→




aγ for γ ∈ Λ,

0 for γ /∈ Λ,

in the norm topology of X.

Proof. The proof is straightforward and follows from the orthogonality
relation as given in [14, p. 10] and from the fact lim în(γ) = 1 for γ ∈ Γ.
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Theorem 2. Let µ : β(G) −→ X be a finitely additive bounded vector
measure and Λ be any subset of Γ. Let S = {µ̂(γ) : γ ∈ Λ}. Then

(a) S is a bounded subset of X,

(b) if µ is countably additive, then S is relatively weakly compact,

(c) if µ is countably additive and has a relatively norm compact range, then
S is relatively norm compact in X,

(d) if µ is countably additive and µ̂(γ) = 0 for all γ /∈ Λ, then the sequence
{Fn} associated with the set S is bounded in P (G;X),

(e) if µ is countably additive and µ̂(γ) = 0 for all γ /∈ Λ, then µ ∈ V 1
Λ (G; X)

if and only if the sequence {Fn} associated with the set {µ̂(γ) : γ ∈ Γ}
is bounded in L1

Λ(G;X).

Proof. We prove Part (d) only as the proofs of the other parts are easy.
For example, (b) follows from [11, p. 264, Lemma 2].

Part (d): As in the proof of Theorem 1 in [1, p. 111], we have that for each
x′ ∈ X ′, ‖x′Fn‖1 ≤ |x′µ|(G), and hence

sup
‖x′‖≤1

‖x′Fn‖1 ≤ sup
‖x′‖≤1

|x′µ|(G) = ‖µ‖(G),

where ‖µ‖(·) is the semivariation of µ. Thus ‖Fn‖P ≤ ‖µ‖(G) for all n. This
shows that the associated sequence is bounded in P (G; X).

Corollary 3. (a) If f : G −→ X is a Pettis integrable function, then
for any subset Λ of Γ, the set {f̂(γ)}γ∈Λ is relatively norm compact in X.

(b) If f ∈ PΛ(G;X), then the sequence {Fn} associated with {f̂(γ)}γ∈Λ

is bounded in P (G;X).

Remark. If f : G −→ X is a Dunford integrable function, then for any
subset Λ of Γ, the set {f̂(γ)}γ∈Λ is bounded in X ′′, the proof being straight-
forward as

sup
γ∈Λ

‖f̂(γ)‖ ≤ sup
‖x′‖≤1

∫

G
|x′f |dλ < ∞.

Theorem 4. If Λ is a subset of Γ and {aγ}γ∈Λ is a subset of X, then the
following statements are equivalent:

(a) The set {aγ}γ∈Λ is relatively weakly compact in X and the corresponding
associated sequence {Fn} is bounded in L1

Λ(G; X).
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(b) The set {aγ}γ∈Λ is bounded in X and the corresponding associated
sequence {Fn} is bounded in L1

Λ(G;X).

(c) There exists a µ ∈ V 1
Λ (G;X) such that µ̂(γ) = aγ for all γ ∈ Λ.

(d) There exists an absolutely summing operator T : C(G) −→ X such that
T̂ (γ) = aγ for all γ ∈ Λ, and T̂ (γ) = 0 for γ /∈ Λ.

Proof. (a) ⇒ (b) It is trivial.
(b) ⇒ (c) It follows from Theorem 2 of [1].
(c)⇒ (d) Let there exist a µ ∈ V 1

Λ (G; X) such that µ̂(γ) = aγ for all γ ∈ Λ.
Then there exists a bounded linear operator T : C(G) −→ X whose represent-
ing measure is µ [3, p. 6, Theorem I.1.13 and p. 153, Definition VI.2.2]. Clearly
T̂ (γ) = µ̂(γ) for all γ ∈ Γ. Hence T̂ (γ) = aγ for all γ ∈ Λ, and T̂ (γ) = 0 for
γ /∈ Λ. Since µ is of bounded variation, T is absolutely summing [3, p. 162,
Theorem VI.3.3].

(d) ⇒ (c) Let there exist an absolutely summing operator T : C(G) −→ X
such that T̂ (γ) = aγ for all γ ∈ Λ, and T̂ (γ) = 0 for γ /∈ Λ. Then T is weakly
compact [3, p. 164, Corollary VI.3.5]. So there exist a countably additive
vector measure µ : β(G) −→ X such that µ̂(γ) = T̂ (γ) for all γ ∈ Γ [3, p. 152,
Theorem VI.2.1 and p. 153, Theorem VI.2.5]. Hence µ̂(γ) = aγ for all γ ∈ Λ
and µ̂(γ) = 0 for all γ /∈ Λ. Since T is absolutely summing, it follows from [3,
p. 162, Theorem VI.3.3] that µ is of bounded variation. Thus µ ∈ V 1

Λ (G; X)
with µ̂(γ) = aγ for all γ ∈ Λ.

(c) ⇒ (a) It follows from Theorem 2.

Lemma 5. Let f : G −→ X be a Dunford integrable function. If there
exists a countably additive vector measure µ : β(G) −→ X such that µ̂(γ) =
f̂(γ) for all γ ∈ Γ, then f is Pettis integrable with µ as its induced vector
measure.

Proof. The proof is straightforward.

Combining Theorem 4 and Lemma 5, we have the following important
result:

Corollary 6. Let f : G −→ X be a scalarly integrable function such
that f̂(γ) ∈ X for all γ ∈ Γ. If X contains no copy of c0, then f is Pettis
integrable.
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Proof. By hypothesis and the density of D (trigonometric polynomials)
inside C(G), the operator T : C(G) −→ X given by φ −→ D–

∫
G φ̄fdλ is

well defined and bounded. By [3, p. 159, Theorem VI.2.15], T must be weakly
compact and thus its representing measure µ is countably additive and takes
its values in X [3, p. 153, Theorem VI.2.5]. It is easy to see that T (γ) = f̂(γ)
for all γ ∈ Γ. Finally, since µ̂(γ) = T (γ) (applying [3, p. 152, Theorem
VI.2.1(iii)]), one gets µ̂(γ) = f̂(γ) for all γ ∈ Γ and Lemma 5 completes the
proof.

Following Dinculeanu [5, p. 73, Definition 7], we define the convolution of
a vector-valued function f with a scalar-valued function φ.

Definition 7. Let f : G −→ X be a vector-valued function and φ :
G −→ C be a scalar-valued function. Let G0 be the set of all points t ∈ G
such that the mapping s −→ f(s)φ(ts−1) is scalarly integrable. We define the
convolution f ? φ : G0 −→ X ′′ by

(f ? φ)(t) = D –
∫

G
f(s)φ(ts−1)dλ(s)

for t ∈ G0. Similarly φ ? f is defined and f ? φ = φ ? f .
According to Dinculeanu [5, p. 73, Definition 7], if the mapping s −→

f(s)φ(ts−1) is Pettis integrable for all t ∈ G0, then the convolution f ? φ :
G0 −→ X ⊂ X ′′ is defined by

(f ? φ)(t) = P –
∫

G
f(s)φ(ts−1)dλ(s)

for t ∈ G0.

Lemma 8. If f : G −→ X is scalarly integrable and φ ∈ L∞(G), then f ∗φ
is defined everywhere on G with values in X ′′ and

‖(f ? φ)(t)‖ ≤ ‖f‖P ‖φ‖∞
for t ∈ G.

Proof. Easy.

Lemma 9. If f : G −→ X is Pettis integrable and φ ∈ L∞(G), then f ?φ is
defined everywhere on G with values in X and is Pettis integrable and weakly
equivalent to a Bochner integrable function.
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Proof. The first part follows from [5, p. 73, Proposition 9]. For the second
and third parts, we have x′f ∈ L1(G) for x′ ∈ X ′. Also φ ∈ L∞(G). Hence
x′f ? φ = x′(f ? φ) is a uniformly continuous, in particular, continuous scalar-
valued function on G [14, p. 4]. So f ? φ is scalarly measurable and weakly
continuous on G with values in X. Since G is compact, f ? φ has a weakly
compact range in X. Hence the result follows from [2, p. 259, Corollary 19].

However a direct proof of the second part (i.e., that f ? φ is Pettis inte-
grable) can be made as follows:

Since x′f ? φ(t) =
∫
G φ(ts−1) < f(s), x′ > ds we can see that this is a

measurable map; moreover, ‖f ? φ(t)‖ ≤ ‖φ‖∞‖f‖P for all t ∈ G. Thus f ? φ
is Dunford-integrable. Let T : L∞(G) −→ X ′′ be the operator defined by

T (g) = D –
∫

G
g(f ? φ)dλ.

We need to see that T (L∞(G)) ⊂ X. For each x′ ∈ X ′ we have, by Fubini’s
theorem and Pettis integrability of f:

〈T (g), x′〉 =
∫

G
g(t)〈f ? φ(t), x′〉 dt =

∫

G
g(t)

(∫

G
φ(ts−1)〈f(s), x′〉ds

)
dt

=
∫

G

(∫

G
g(t)φ(ts−1)dt

)
〈f(s), x′〉 ds =

∫

G
〈h(s)f(s), x′〉 ds

=
〈
P–

∫

G
hfdλ, x′

〉

for h(s) =
∫
G g(t)φ(ts−1)dt. Since P –

∫
G hfdλ ∈ X, it follows that Tg ∈ X.

Theorem 10. If f : G −→ X is a scalarly integrable function, then for
any good approximate identity {in} on G, in ? f is defined everywhere on G
with values in X ′′ for each n. Let {Fn} be the sequence associated with the
bounded set {f̂(γ)}γ∈Γ of X ′′. Then Fn = in ? f and

̂(in ? f)(γ) = în(γ)f̂(γ)

for each n, and F̂n(γ) −→ f̂(γ) for each γ ∈ Γ in the norm topology of X ′′.
Also

‖x′Fn − x′f‖1 −→ 0

for each x′ ∈ X ′.
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If f is Pettis integrable, then in ? f takes its values in X for each n, and
F̂n(γ) −→ f̂(γ) for each γ ∈ Γ in the norm topology of X. Also Fn −→ f in
Pettis norm.

Proof. An easy calculation shows that in ? f is defined everywhere on G
with values in X ′′. By suitable modification of the arguments as given in the
proof of (c)⇒ (a) of the Theorem in [7, p. 203], we get Fn = in ? f .

The next part also follows easily. We only prove that Fn −→ f in Pettis
norm. Let us define Tn : L1(G) −→ L1(G) by

Tn(φ) = in ? φ

for all φ ∈ L1(G). Then Tn ∈ L(L1(G), L1(G)) for all n. Let T (φ) = φ for
all φ ∈ L1(G). Then T ∈ L(L1(G), L1(G)). Now in ? φ −→ φ implies that
Tn(φ) −→ T (φ) = φ for each φ ∈ L1(G). Therefore Tn −→ T uniformly
on every compact set of L1(G) [9, p. 43]. Since f is Pettis integrable, its
induced vector measure has a relatively norm compact range. Hence the
set {x′f : ‖x′‖ ≤ 1} is relatively norm compact in L1(G) [4, p. 149] and
so Tn −→ T uniformly on this set. Thus Tn(x′f) −→ T (x′f) uniformly on
{x′ ∈ X ′ : ‖x′‖ ≤ 1}. So

sup
‖x′‖≤1

‖Tn(x′f)− T (x′f)‖1 −→ 0,

which implies that ‖Fn − f‖P −→ 0.

Theorem 11. Let µ : β(G) −→ X be a countably additive and λ-con-
tinuous vector measure. If the sequence {Fn} associated with the bounded
set {µ̂(γ)}γ∈Γ has a weak λ-almost everywhere limit f : G −→ X, then f is
Pettis integrable with µ as its induced vector measure.

Proof. The scalar measure x′µ has a Radon-Nikodym derivative φx′ ∈
L1(G) with respect to λ such that x′Fn −→ φx′ in L1(G) for each x′ ∈ X ′.
Then, by hypothesis, it follows that x′f = φx′ λ-almost everywhere. So f is
scalarly integrable. An easy calculation shows that f̂(γ) = µ̂(γ) for all γ ∈ Γ.
So by Lemma 5, f is Pettis integrable.

Remark. If the measure µ : β(G) −→ X that appears in Theorem 11 is
not λ-continuous, the function f is Dunford-integrable since

x′Fn(t) =
∫

G
in(ts−1)d(x′µ)(s)
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and ∫

G
|x′f |dλ ≤ lim

n

∫

G
|x′Fn(t)|dt ≤ |x′µ|(G) ≤ ||µ||(G)

by Fatou’s lemma.

Definition 12. Let G be a compact metrizable abelian group with dual
group Γ. Let Λ be a subset of Γ. A Banach space X is said to have type II-Λ-
weak Radon-Nikodym property (type II-Λ-WRNP ) if every µ ∈ V 1

Λ, ac
(G; X)

has a Pettis derivative in P 1
Λ(G; X).

A Banach space X is said to have type I-Λ-weak Radon-Nikodym prop-
erty (type I-Λ-WRNP ) if every µ ∈ V ∞

Λ (G; X) has a Pettis derivative in
P∞

Λ (G;X). It was introduced by us in [17] under the name Λ-weak Radon-
Nikodym property.

Since V ∞
Λ (G;X) ⊂ V 1

Λ, ac
(G; X) and since Pettis derivative of a vector

measure in V ∞
Λ (G; X) belongs to P∞

Λ (G;X), it follows that type II-Λ-WRNP
implies type I-Λ-WRNP, for any subset Λ of Γ.

If G = Π, the circle group, then Γ = Z (the set of all integers) and type
II-Z-WRNP is equivalent to usual WRNP and type II-N-WRNP is equivalent
to usual AWRNP [15].

If, in the above definition, Pettis derivative is replaced by Bochner deriva-
tive, then one gets type II-Λ-RNP [6].

It is obvious that type II-Λ-RNP implies type II-Λ-WRNP, but the con-
verse is not true as AWRNP does not imply ARNP [12], which are equivalent
to type II-N-WRNP and type II-N-RNP respectively. However in a separable
Banach space, the converse is true.

If Λ is a finite subset of Γ then if µ ∈ V 1
Λ, ac

(G;X) and f(t) = Σγ∈Λµ̂(γ)γ(t)
then it is clear that f ∈ L1

Λ(G; X) and µ̂f = µ̂. Therefore µf = µ which
implies that f is the Bochner derivative of µ. Thus every Banach space has
type II-Λ-RNP and hence type II-Λ-WRNP.

In [17] we presented some characterizations of type I-Λ-WRNP. Using The-
orem 10, one can easily prove the following corollary.

Corollary 13. Let Λ ⊂ Γ and X be a complex Banach space. Then the
following conditions are equivalent:

(a) X has type I-Λ-WRNP.

(b) If {aγ}γ∈Λ is a bounded set in X such that the associated sequence {Fn}
is bounded in L∞Λ (G;X), then there exists an f ∈ P∞

Λ (G;X) such that
Fn −→ f in Pettis norm.
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Now we give an example to show that the converse of Corollary 3(a) is not
true, in general.

Example 14. Let us consider the complex Banach space X introduced
by Ghoussoub, Maurey and Schachermayer [8, V.4] and let G = Π, the circle
group for which the dual group is Γ = Z. Then X does not have the AWRNP
[12, p. 7, Remarks 2] and X ′′ has the WRNP [12, p. 3, Theorem 2.1]. So there
exists a countably additive vector measure µ : β(G) −→ X of bounded varia-
tion whose negative Fourier coefficients vanish but µ has no Pettis derivative.
Thus the set S = {µ̂(γ) : γ ∈ Γ} cannot coincide with the set of Fourier
coefficients of a Pettis integrable function. It follows by Theorem 2(d) that
the sequence associated with S is bounded in P (G,X). Again as X ′′ has the
WRNP, it has the compact range property (CRP) [13]. So X has also CRP.
Hence µ has a relatively norm compact range in X which implies that the
set S is relatively norm compact in X. Thus we obtain a relatively norm
compact set S in X, the associated sequence of which is bounded in P (G,X),
which does not coincide with the set of Fourier coefficients of a Pettis inte-
grable function. This shows that the converse of Corollary 3(a) is not true, in
general.

The following theorem shows that type II-Λ-WRNP guarantees the con-
verse assertion when Λ is a Riesz set.

Theorem 15. Let G be a compact metrizable abelian group with dual
group Γ. Let Λ be a subset of Γ and let X be a Banach space. Let us consider
the following statements:

(a) X has type II-Λ-WRNP.

(b) Every µ ∈ V 1
Λ (G; X) has a Pettis derivative f ∈ P 1

Λ(G; X).

(c) For every µ ∈ V 1
Λ (G;X), there exists an f ∈ P 1

Λ(G; X) such that µ̂(γ) =
f̂(γ) for all γ ∈ Γ.

(d) For each absolutely summing operator T ∈ LΛ(C(G), X), there exists
an f ∈ P 1

Λ(G; X) such that T̂ (γ) = f̂(γ) for all γ ∈ Γ.

(e) Each absolutely summing operator T ∈ LΛ(C(G), X) is representable
by an f ∈ P 1

Λ(G; X).

(f) If {aγ}γ∈Λ is a bounded set in X such that the associated sequence {Fn}
is bounded in L1

Λ(G; X), then there exists an f ∈ P 1
Λ(G; X) such that

f̂(γ) = aγ for γ ∈ Λ.
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(g) If {aγ}γ∈Λ is the same as in (f), then there exists an f ∈ P 1
Λ(G;X) such

that Fn −→ f in Pettis norm.

(h) If {aγ}γ∈Λ is the same as in (f), then there exists an f ∈ P 1
Λ(G;X) such

that for each x′ ∈ X ′, ‖x′Fn − x′f‖1 −→ 0.

(i) If {aγ}γ∈Λ is the same as in (f), then there exists an f ∈ P 1
Λ(G;X) such

that for each x′ ∈ X ′, x′Fn −→ x′f weakly in L1(G).

(j) If {aγ}γ∈Λ is the same as in (f), then there exists an f ∈ P 1
Λ(G;X) such

that for each γ ∈ Γ, F̂n(γ) −→ f̂(γ) weakly in X.

(k) If {aγ}γ∈Λ is the same as in (f), then there exists an f ∈ P 1
Λ(G;X) such

that for each γ ∈ Γ, F̂n(γ) −→ f̂(γ) in the norm topology of X.

Then (b) ⇔ (c) ⇔ (d) ⇔ (e) ⇔ (f) ⇔ (g) ⇔ (h) ⇔ (i) ⇔ (j) ⇔ (k) ⇒ (a). If
Λ is a Riesz set, then all the conditions are equivalent. Conversely, if all the
conditions are equivalent, then Λ is a Riesz set.

Proof. (b) ⇒ (c) Let µ ∈ V 1
Λ (G; X). Then by (b), µ has a Pettis derivative

f ∈ P 1
Λ(G; X). Hence µ̂(γ) = f̂(γ) for all γ ∈ Γ and (c) follows.

(c) ⇒ (d) It follows from Theorem 4.
(d)⇒ (e) Let T ∈ LΛ(C(G), X) be an absolutely summing operator. Then

by (d), there exists an f ∈ P 1
Λ(G;X) such that

T (γ) = T̂ (γ̄) = f̂(γ̄) = P –
∫

G
f(z)γ(z)dλ(z)

for all γ ∈ Γ. Hence for any trigonometric polynomial

φ(z) =
n∑

i=1

ciγi(z), γi ∈ Γ, ci ∈ C,

we have
T (φ) = P –

∫

G
φ(z)f(z)dλ(z).

Since trigonometric polynomials are dense in C(G), it follows from [16, p.
246, Theorem 2.4 (b)] that

T (φ) = P–
∫

G
φ(z)f(z)dλ(z)

for all φ ∈ C(G). This shows that T is representable by f ∈ P 1
Λ(G; X) and

(e) follows.
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(e) ⇒(f) Let {aγ}γ∈Λ be a bounded set in X such that the associated
sequence {Fn} is bounded in L1

Λ(G; X). Then by Theorem 4, there exists an
absolutely summing operator T ∈ LΛ(C(G), X) such that T̂ (γ) = aγ for all
γ ∈ Λ. By (e), T is representable by an f ∈ P 1

Λ(G; X). Therefore

aγ = T̂ (γ) = P –
∫

G
f(z)γ̄(z)dλ(z) = f̂(γ)

for all γ ∈ Λ and (f) follows.
(f) ⇒(g) It follows from Theorem 10.
The implications (g) ⇒ (h) ⇒ (i) are trivial and (i) ⇒ (j) follows from the

fact that Γ ⊂ L∞(G).
(j) ⇒ (k) Let{aγ}γ∈Λ be a bounded set in X such that the associated

sequence {Fn} is bounded in L1
Λ(G; X). Then by (j), there exists an f ∈

P 1
Λ(G;X) such that for each γ ∈ Γ, F̂n(γ) −→ f̂(γ) weakly in X. By Lemma 1,

for each γ ∈ Λ, F̂n(γ) −→ aγ in the norm topology of X and hence weakly in
X. Consequently, for each γ ∈ Λ, aγ = f̂(γ) and F̂n(γ) −→ f̂(γ) in the norm
topology of X. Since f̂(γ) = 0 for all γ /∈ Λ, by Lemma 1, F̂n(γ) −→ f̂(γ) for
all γ ∈ Γ in the norm topology of X and (k) follows.

(k) ⇒ (b) Let µ ∈ V 1
Λ (G;X) and µ̂(γ) = aγ for γ ∈ Λ. Then by Theorem

4, the set {aγ}γ∈Λ is bounded in X and the corresponding associated sequence
{Fn} is bounded in L1

Λ(G;X). Hence by (k), there exists an f ∈ P 1
Λ(G; X)

such that for each γ ∈ Γ, F̂n(γ) −→ f̂(γ) in the norm topology of X and
hence weakly in X. Therefore for each x′ ∈ X ′, x′(F̂n(γ)) −→ x′(f̂(γ)).

Now it is easy to verify that for each x′ ∈ X ′ and for each n, in ? (x′µ) =
x′Fn and hence ( ̂in ? x′µ)(γ) = (x̂′Fn)(γ), i.e., în(γ)(x̂′µ)(γ) = x′(F̂n(γ)),
for all γ ∈ Γ. Hence x′(F̂n(γ)) −→ (x̂′µ)(γ) as în(γ) −→ 1 for all γ ∈ Γ.
Consequently

(x̂′µ)(γ) = x′
(
f̂(γ)

)
= x′

(
µ̂f (γ)

)
= (x̂′µf )(γ)

for all γ ∈ Γ where µf is the induced vector measure of f . Hence by uniqueness
Theorem [14, p. 17], x′µ = x′µf for all x′ ∈ X ′ and so µ = µf . This implies
that f is the Pettis derivative of µ and thus (b) follows.

(b) ⇒ (a) It follows from Definition 13.
Now let Λ be a Riesz set. Then V 1

Λ, ac
(G; X) = V 1

Λ (G; X) and hence (a) ⇒
(b) and thus all the conditions are equivalent.

Conversely, let all the conditions be equivalent. Let X be a Banach space
having type II-Λ-WRNP. Then (b) holds. Let m ∈ V 1

Λ (G) and x ∈ X with
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x 6= 0. We define µ : β(G) −→ X by µ(E) = xm(E) for all E ∈ β(G).
Clearly µ ∈ V 1(G;X) and µ̂(γ) = xm̂(γ) for all γ ∈ Γ. Hence µ̂(γ) = 0
for γ /∈ Λ which implies that µ ∈ V 1

Λ (G;X). Hence by (b), µ has a Pettis
derivative f ∈ P 1

Λ(G; X). Therefore µ << λ and so m << λ and hence has
a Radon-Nikodym derivative with respect to λ. This shows that Λ is a Riesz
set.

Theorem 16. Let Λ be a subset of Γ. If for any bounded subset {aγ}γ∈Λ

of X, the associated sequence {Fn} has a weak λ-almost everywhere limit
f : G −→ X, then X has type II-Λ-WRNP.

Proof. Let µ ∈ V 1
Λ, ac

(G; X). Then {µ̂(γ)}γ∈Λ is a bounded set in X. Hence
by hypothesis, the associated sequence {Fn} has a weak λ-almost everywhere
limit f : G −→ X. By Theorem 11, f is Pettis integrable with µ as its induced
vector measure. Since µ ∈ V 1

Λ, ac
(G; X), f ∈ P 1

Λ(G; X). Also f is the Pettis
derivative of µ. Hence X has type II-Λ-WRNP.
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