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1. Introduction

Let H(D) denote the space of holomorphic functions on the unit disk D.
Suppose ϕ and ψ are holomorphic functions defined on D such that ϕ(D) ⊆ D.
The weighted composition operator Wϕ,ψ is defined as follows:

Wϕ,ψ(f)(z) = ψ(z)f(ϕ(z))

for all f holomorphic on D.
For the study of weighted composition operators one can refer to [3], [5],

[7], [9], [15], [16], [17], [21] and references therein.
Fix any a ∈ D and let σa(z) be the Möbius transformation, defined by

σa(z) =
a− z

1− az
, z ∈ D .

We denote the set of all Möbius transformations on D by G. Also, the inverse
of σa under composition is again σa for z ∈ D. Further, we have

∣∣∣σ′a(z)
∣∣∣ =

1− |a|2
|1− az|2

and

1− |σa(z)|2 =

(
1− |a|2) (

1− |z|2)

|1− az|2 =
(
1− |z|2)

∣∣∣σ′a(z)
∣∣∣ (1.1)
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for all a, z ∈ D.
Fix 1 < p < ∞ and −1 < q < ∞. Then f is in the Besov type space Bp,q

if
∥∥f

∥∥
Bp,q

=
(∫

D

∣∣∣f ′(z)
∣∣∣
p (

1− |z|2)q dA(z)
) 1

p

< ∞ , (1.2)

where dA(z) denotes the Lebesgue area measure on D.
Also, if we take 1 < p < ∞ and q = p−2 in (1.2), then we get the analytic

Besov space Bp. That is, an analytic function f is in the analytic Besov space
Bp if

∥∥f
∥∥
Bp

=
(∫

D

∣∣∣f ′(z)
∣∣∣
p (

1− |z|2)p−2 dA(z)
) 1

p

< ∞ . (1.3)

Again, if p = 2 and −1 < q < ∞ in (1.2), then we get the weighted Dirichlet
spaces Dq, and for 1 ≤ p ≤ 2 and q = 0, we get the Dirichlet type spaces Dp.
Also, for 1 ≤ p < ∞, Bp,p is the Bergman space Ap.

We can see that |f(0)|+ ‖f‖p,q is a norm on Bp,q, that makes it a Banach
space. Moreover, we can observe that, for f to be in Bp,q or Bp, it is necessary
that the derivative of f belong to the weighted Bergman spaces Ap

q or Ap
p−2.

Also, for 1 < p < q < ∞, we have the relation Bp ⊂ Bq.
The Besov space Bp is invariant under Möbius transformations. That is,

if f ∈ Bp, then f ◦ ϕ ∈ Bp, for all ϕ ∈ G. Moreover from the definition of
norm on Bp, we have ∥∥f ◦ ϕ

∥∥
Bp

=
∥∥f

∥∥
Bp

(1.4)

for all f ∈ Bp, see [1].
Let µ be a positive measure on D. Then the space Dp(µ) is defined as the

space of all holomorphic functions f ∈ H(D) for which f
′ ∈ Lp(D, µ). Also,

the norm on Dp(µ) is defined as

∥∥f
∥∥p

Dp(µ)
=

∫

D

∣∣∣f ′(z)
∣∣∣
p
dµ(z) .

For 1 ≤ p ≤ ∞, we denote by Hp(D) the Hardy space of the unit disk D,
see [4]. We denote by Sp, the space of those holomorphic functions on D with
first derivative in the Hardy space Hp(D). For each such function f we define
the Sp norm of f by ∥∥f

∥∥
Sp =

∣∣f(0)
∣∣ +

∥∥f
′∥∥

Hp .

We note that Sp is a Banach space with this norm.
In this paper we study weighted composition operators between Besov

spaces by using Carleson measures.



weighted composition operators 219

2. Bounded and compact weighted composition operators

In this section, we characterize boundedness and compactness of Wϕ,ψ by
using Carleson measures.

Definition 2.1. Take 0 < p < ∞. A positive measure µ on D is called a
p-Carleson measure in D if

sup
I⊂∂D

µ(S(I))
|I|p < ∞ , (2.1)

where |I| denotes the arc length of I and S(I) denotes the Carleson square
based on I,

S(I) =
{

z ∈ D : 1− |I| ≤ |z| < 1 ,
z

|z| ∈ I

}
.

Again, µ is called a vanishing p-Carleson measure if

lim
|I|→0

µ(S(I))
|I|p = 0 . (2.2)

Take h ∈ (0, 1) and θ ∈ [0, 2π). If we set

S(h, θ) =
{

z ∈ D :
∣∣∣z − eiθ

∣∣∣ < h
}

,

then we can see that (2.1) and (2.2) are equivalent to

sup
h∈(0,1), θ∈[0,2π)

µ(S(h, θ))
hp

< ∞ (2.3)

and
lim
h→0

sup
θ∈[0,2π)

µ(S(h, θ))
hp

= 0 , (2.4)

respectively.

Suppose ϕ is a holomorphic mapping defined on D. Let ϕ(D) ⊆ D and
ψ ∈ Bq be such that ψ(z)ϕ

′
(z)(1 − |z|2) ∈ Lq(D, λ), where dλ(z) is the

Möbius invariant measure defined by dλ(z) = (1 − |z|2)−2dA(z). We define
the measures µq and νq on D by

µq(E) =
∫

ϕ−1(E)

∣∣∣ψ(z)ϕ
′
(z)

∣∣∣
q (

1− |z|2)q−2 dA(z) (2.5)
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and
νq(E) =

∫

ϕ−1(E)

∣∣∣ψ′
(z)

∣∣∣
q (

1− |z|2)q−2 dA(z) , (2.6)

where E is a measurable subset of the unit disk D.
Take ψ ∈ Aq

q−2, then we can define the measure νq,ψ on D by

νq,ψ(E) =
∫

ϕ−1(E)
|ψ(z)|q (

1− |z|2)q−2 dA(z) . (2.7)

Definition 2.2. Take 1 < p < ∞. Let µ be a positive measure on D.
Then the measure µ is p-Carleson measure for Bp if there is a constant K > 0
such that ∫

D

∣∣∣f ′(ω)
∣∣∣
p
dµ(ω) ≤ K

∥∥f
∥∥p

Bp

for all f ∈ Bp. That is, the inclusion operator i from Bp into Dp(µ) is
bounded.

Further, the measure µ is a vanishing p-Carleson measure for Bp if the
inclusion operator i from Bp into Dp(µ) is compact.

The following characterization of p-Carleson measures is given in [1].

Theorem 2.3. Take 1 < p < ∞. Let µ be a positive measure on D. Then
the following statements are equivalent:

(1) The measure µ is a p-Carleson measure for Bp.

(2) There exists a constant K < ∞ such that

µ(S(h, θ)) ≤ Khp

for all θ ∈ [0, 2π) and h ∈ (0, 1).

(3) There exists a constant C < ∞ such that

∫

D

∣∣∣σ′a(z)
∣∣∣
p
dµ(z) ≤ C

for all a ∈ D.

Theorem 2.4. ([22, Proposition 3.4]) Take 1 < p < ∞. Let µ be a
positive measure on D. Then the following statements are equivalent:
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(1) The measure µ is a vanishing p-Carleson measures for Bp.

(2) For all a ∈ D, we have

lim
|a|→1

∫

D

(
1− |a|2
|1− az|2

)p

dµ(z) = 0 .

Using [8, page 163] and [2, Lemma 2.1], we can easily prove the following
lemma.

Lemma 2.5. Let ϕ be a holomorphic mapping defined on D such that
ϕ(D) ⊆ D. Take ψ ∈ Bq such that ψ(z)ϕ

′
(z)(1− |z|2) ∈ Lq(D, λ). Then

∫

D
g dµq =

∫

D

∣∣∣ψ(z)ϕ
′
(z)

∣∣∣
q
(g ◦ ϕ)(z)

(
1− |z|2)q−2 dA(z)

and ∫

D
g dνq =

∫

D

∣∣∣ψ′
(z)

∣∣∣
q
(g ◦ ϕ)(z)

(
1− |z|2)q−2 dA(z) ,

where g is an arbitrary measurable positive function in D.

The next result is essential for the proof of Theorem 2.8. The proof follows
by similar lines as in the case of composition operators on Besov spaces [22,
Lemma 3.8].

Lemma 2.6. Given 1 ≤ p, q < ∞, let ϕ be a holomorphic mapping defined
on D with ϕ(D) ⊆ D and ψ ∈ Bq be such that Wϕ,ψ : Bp → Bq is bounded.
Then Wϕ,ψ : Bp → Bq is compact (weakly compact) if and only if whenever
{fn} is a bounded sequence in Bp converging to zero uniformly on compact
subsets of D, then ‖Wϕ,ψ(fn)‖Bq → 0 (respectively, {Wϕ,ψ(fn)} is a weak
null sequence in Bq).

Theorem 2.7. Take 1 < p ≤ q < ∞. Let ϕ ∈ Bp be such that ϕ(D) ⊆ D
and ψ ∈ Aq

q−2. Also, suppose that the measure νq,ψ is a vanishing q-Carleson
measure for Bq. Then Wϕ,ψ defines a bounded operator from Bp into Aq

q−2.
Moreover, Wϕ,ψ : Bp → Aq

q−2 is compact.

Proof. We prove the compactness only. Let {fn} be a bounded sequence in
Bp such that fn → 0 uniformly on compact subsets of D. Since the measure
νq,ψ is a vanishing q-Carleson measure for Bq, the inclusion map i : Bq →
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Lq(D, νq,ψ) is compact. Since Bp ⊂ Bq, we have ‖fn‖Lq(D,νq,ψ) → 0 as n →∞.
Therefore, by Lemma 2.5, we have

∥∥Wϕ,ψ(fn)
∥∥q

Aq
q−2

=
∫

D

∣∣ψ∣∣q∣∣fn ◦ ϕ
∣∣q (

1− |z|2)q−2 dA(z)

=
∫

D

∣∣fn

∣∣q dνq,ψ −→ 0 as n →∞ .

Thus, Wϕ,ψ : Bp → Aq
q−2 is compact.

Theorem 2.8. Take 1 < p ≤ q < ∞. Let ϕ,ψ ∈ Bp be such that ϕ(D) ⊆
D. Also, suppose that the measure νq is a vanishing q-Carleson measure for
Bq. Then Wϕ,ψ exists as a bounded operator from Bp into Bq if and only if
Wϕ,ψϕ′ exists as a bounded operator from Ap

p−2 into Aq
q−2.

Proof. First, suppose Wϕ,ψ : Bp → Bq is bounded. Then there exists a
constant C > 0 such that

∥∥Wϕ,ψ(f)
∥∥
Bq
≤ C

∥∥f
∥∥
Bp

for all f ∈ Bp .

Also, by Theorem 2.7, we can find a constant M > 0 such that
∥∥Wϕ,ψ′ (f)

∥∥
Aq

q−2
≤ M

∥∥f
∥∥
Bp

for all f ∈ Bp .

Take f ∈ Ap
p−2 and let the function g ∈ Bp be such that g

′
= f and g(0) = 0.

Also, we have
∥∥∥Wϕ,ψϕ′ (f)

∥∥∥
Aq

q−2

=
∥∥∥ψϕ

′
f ◦ ϕ

∥∥∥
Aq

q−2

=
∥∥∥ψϕ

′
f ◦ ϕ + ψ

′
g ◦ ϕ− ψ

′
g ◦ ϕ

∥∥∥
Aq

q−2

≤
∥∥∥(ψg ◦ ϕ)

′
∥∥∥

Aq
q−2

+
∥∥∥ψ

′
g ◦ ϕ

∥∥∥
Aq

q−2

= ‖Wϕ,ψ(g)‖Bq
+

∥∥∥Wϕ,ψ′ (g)
∥∥∥

Aq
q−2

≤ (C + M)
∥∥g

∥∥
Bp

= (C + M)
∥∥f

∥∥
Ap

p−2
.

Thus, Wϕ,ψϕ′ : Ap
p−2 → Aq

q−2 is bounded.
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Conversely, suppose Wϕ,ψϕ′ : Ap
p−2 → Aq

p−2 is bounded. Again, by Theo-
rem 2.7, Wϕ,ψ′ : Bp → Aq

q−2 is bounded. Take f ∈ Bp such that f(0) = 0.
Then, we have

‖Wϕ,ψ(f)‖Bq
=

∥∥∥(ψf ◦ ϕ)
′
∥∥∥

Aq
q−2

=
∥∥∥ψϕ

′
f
′ ◦ ϕ + ψ

′
f ◦ ϕ

∥∥∥
Aq

q−2

≤
∥∥∥Wϕ,ψϕ′ (f

′
)
∥∥∥

Aq
p−2

+
∥∥∥Wϕ,ψ′ (f)

∥∥∥
Aq

q−2

< ∞ .

By using Theorem 2.8 and Theorem 1 of [6], we can prove the following
theorem.

Theorem 2.9. Take 1 < p ≤ q < ∞. Let ϕ,ψ ∈ Bp be such that ϕ(D) ⊆
D. Also, suppose that the measure νq is a vanishing q-Carleson measure for
Bq. Then Wϕ,ψ exists as a bounded operator from Bp into Bq if and only if

sup
a∈D

∫

D

(
1− |a|2
|1− aω|2

)q

dµq(ω) < ∞ .

Theorem 2.10. Take 1 < p ≤ q < ∞. Let ϕ,ψ ∈ Bp be such that
ϕ(D) ⊆ D. Also, suppose that the measure νq is a vanishing q-Carleson
measure for Bq. Then Wϕ,ψ : Bp → Bq is compact if and only if Wϕ,ψϕ′ :
Ap

p−2 → Aq
q−2 is compact.

Proof. First, suppose Wϕ,ψ : Bp → Bq is compact. Let {fn} be a bounded
sequence in Ap

p−2 such that fn → 0 uniformly on compact subsets of D. For
each n, let us consider the function gn ∈ Bp such that g

′
n = fn and gn(0) = 0.

The sequence {gn} also converges to zero uniformly on compact subsets of
D as n → ∞. Further, Wϕ,ψ : Bp → Bq is compact, so ‖Wϕ,ψ(gn)‖Bq → 0
as n → ∞. Again, by Theorem 2.7, Wϕ,ψ′ : Bp → Aq

q−2 is compact, so∥∥Wϕ,ψ′ (gn)
∥∥

Aq
q−2

also converges to zero as n →∞. Also, we have

∥∥∥Wϕ,ψϕ
′ (fn)

∥∥∥
Aq

q−2

=
∥∥∥ψϕ

′
fn ◦ ϕ

∥∥∥
Aq

q−2

≤
∥∥∥ψϕ

′
fn ◦ ϕ + ψ

′
gn ◦ ϕ

∥∥∥
Aq

q−2

+
∥∥∥ψ

′
gn ◦ ϕ

∥∥∥
Aq

q−2
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=
∥∥∥(ψgn ◦ ϕ)

′
∥∥∥

Aq
q−2

+
∥∥∥Wϕ,ψ′ (gn)

∥∥∥
Aq

q−2

=
∥∥Wϕ,ψ(gn)

∥∥
Bq

+
∥∥∥Wϕ,ψ′ (gn)

∥∥∥
Aq

q−2

≤ (C + M)
∥∥gn

∥∥
Bp

= (C + M)
∥∥fn

∥∥
Ap

p−2
.

Therefore,
∥∥Wϕ,ψϕ′ (fn)

∥∥
Aq

q−2
→ 0 as n →∞. Thus, Wϕ,ψϕ′ : Ap

p−2 → Aq
q−2 is

compact.
Conversely, suppose Wϕ,ψϕ′ : Ap

p−2 → Aq
q−2 is compact. Again, by Theo-

rem 2.7, Wϕ,ψ
′ : Bp → Aq

q−2 is compact. Let gn be the same sequence as in
the direct part. Then, we have
∥∥Wϕ,ψ(gn)

∥∥
Bq

=
∥∥∥(ψgn ◦ ϕ)

′
∥∥∥

Aq
q−2

=
∥∥∥ψϕ

′
g
′
n ◦ ϕ + ψ

′
gn ◦ ϕ

∥∥∥
Aq

q−2

≤
∥∥∥Wϕ,ψϕ′ (fn)

∥∥∥
Aq

q−2

+
∥∥∥Wϕ,ψ′ (gn)

∥∥∥
Aq

q−2

−→ 0 as n →∞ .

Thus, Wϕ,ψ : Bp → Bq is compact.

By using Theorem 2.10 and Corollary 1 of [6], we can prove the following
theorem.

Theorem 2.11. Take 1 < p ≤ q < ∞. Let ϕ,ψ ∈ Bp be such that
ϕ(D) ⊆ D. Also, suppose that the measure νq is a vanishing q-Carleson
measure for Bq. Let Wϕ,ψ exists as a bounded operator from Bp into Bq.
Then the weighted composition operator Wϕ,ψ is compact from Bp into Bq if
and only if

lim sup
|a|→1

∫

D

(
1− |a|2
|1− aω|2

)q

dµq(ω) = 0 .

Theorem 2.12. Let 1 < p < ∞. Let ϕ,ψ ∈ Bp be such that ϕ(D) ⊆ D.
Also, suppose that the measure νp is a vanishing p-Carleson measure for Bp.
Then Wϕ,ψ : Bp → Bp is bounded (compact) if and only if the measure µp is
a bounded (respectively vanishing) p-Carleson measure for Bp.

Proof. We only prove the boundedness. Suppose first that Wϕ,ψ : Bp →
Bp is bounded. Then by Theorem 2.8, Wϕ,ψϕ′ is a bounded operator on Ap

p−2.
Also, by Theorem 2.7, Wϕ,ψ′ : Bp → Ap

p−2 is bounded.
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Let f ∈ Bp such that f(0) = 0. Then, by using Lemma 2.5, we have
∥∥∥Wϕ,ψϕ′ (f

′
)
∥∥∥

p

Ap
p−2

=
∫

D

∣∣∣ψϕ
′
(z)

∣∣∣
p ∣∣∣f ′(ϕ(z))

∣∣∣
p (

1− |z|2)p−2 dA(z)

=
∫

D

∣∣∣f ′(ω)
∣∣∣
p
dµp(ω) .

Therefore, we can find a constant C > 0 such that
∫

D

∣∣∣f ′(ω)
∣∣∣
p
dµp(ω) ≤ C

∥∥f
∥∥p

Bp
.

That is, the inclusion operator i : Bp → Dp(µ) is bounded. Thus the measure
µp is a bounded p-Carleson measure for Bp.

Conversely, suppose that µp is a bounded p-Carleson measure for Bp. Our
aim is to prove that Wϕ,ψ : Bp → Bp is bounded. Also, we have (ψ(f ◦ϕ))

′
=

ψϕ
′
(f

′ ◦ ϕ) + ψ
′
(f ◦ ϕ). Take f ∈ Bp. So by Lemma 2.5, we have

∫

D

∣∣∣ψϕ
′
(z)

∣∣∣
p ∣∣∣f ′(ϕ(z))

∣∣∣
p (

1− |z|2)p−2 dA(z) =
∫

D

∣∣∣f ′(ω)
∣∣∣
p
dµp(ω) < ∞ .

Also, by using Theorem 2.7, we get
∫

D

∣∣∣ψ′
(z)

∣∣∣
p ∣∣f(ϕ(z))

∣∣p (
1− |z|2)p−2 dA(z) =

∫

D
|f(ω)|p dνp(ω) < ∞ .

Hence Wϕ,ψ : Bp → Bp is bounded.

We can also prove the compactness of Wϕ,ψ by using Theorem 2.7 and
Theorem 2.10.

3. Essential norm

In this section, we find estimates for the essential norm of Wϕ,ψ. The
following two lemmas are proved in [5].

Lemma 3.1. Take 0 < r < 1 and denote Dr = {z ∈ D : |z| < r}. Let µ
be a positive Borel measure on D. Take

∥∥µ
∥∥

r
= sup
|I|≤1−r

µ(S(I))
|I|p and

∥∥µ
∥∥ = sup

I⊂∂D

µ(S(I))
|I|p ,

where I run through arcs on the unit circle. Let µr denotes the restriction of
measure µ to the set D \ Dr. Further, if µ is a Carleson measure for some
Besov space, so is µr and ‖µr‖ ≤ M‖µ‖r, where M > 0 is a constant.
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Lemma 3.2. For 0 < r < 1 and 1 < p < ∞, let

∥∥µ
∥∥∗

r
= sup
|a|≥r

∫

D
|σ′a(z)|pdµ(z) .

Moreover, if µ is a Carleson measure for some Besov space, then ‖µr‖ ≤
K‖µ‖∗r, where K is an absolute constant.

Take f(z) =
∑∞

s=0 asz
s holomorphic on D. For a positive integer n, define

the operators Rnf(z) =
∑∞

s=n+1 asz
s and Kn = I−Rn, where I is the identity

map.
Recall that the essential norm of an operator T is defined as:

∥∥T
∥∥

e
= inf

{∥∥T −K
∥∥ : where K is compact operator

}
.

Lemma 3.3. If T is a bounded linear operator on Bp, then

λ lim sup
n→∞

∥∥TRn

∥∥ ≤ ∥∥T
∥∥

e
≤ lim inf

n→∞
∥∥TRn

∥∥

for some positive constant λ independent of T .

Proof. Since (Rn+Kn)f = f for every n, where Kn is a compact operator,
we have ∥∥T

∥∥
e
≤ ∥∥TRn + TKn

∥∥
e
≤ ∥∥TRn

∥∥
e
≤ ∥∥TRn

∥∥
so that ∥∥T

∥∥
e
≤ lim

n→∞ inf
∥∥TRn

∥∥ . (3.1)

Also, since Kn is a compact operator on Bp, therefore we have
∥∥T −Kn

∥∥ ≥ ∥∥(T −Kn)Rn

∥∥
=

∥∥(TRn −KnRn

∥∥ ≥ ∥∥TRn

∥∥− ∥∥KnRn

∥∥ .
(3.2)

Since Rn → 0 pointwise if p ≥ 1 [25, Corollary 6] and is therefore uniformly
bounded. Hence Rn → 0 uniformly on each relatively compact subset of Bp.

Let
〈f, g〉 =

∫

D
f ′(z)g′(z) dA(z)

be the integral pairing that identifies B∗
p and Bq. Then we see that

〈Rnf, g〉 = 〈f,Rng〉
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for all n, f ∈ Bp and g ∈ Bq.
Now, ∥∥KnRn

∥∥ =
∥∥(KnRn)∗

∥∥ =
∥∥R∗

nK∗
n

∥∥ . (3.3)

In particular, since K∗
n is compact and the norm of a functional in B∗

p is less
than or equal to the norm of the generating function, it follows that R∗

n also
converges to zero on each relatively compact subset of B∗

p. Thus ‖R∗
nK∗

n‖ → 0.
So from (3.2) and (3.3), we get

∥∥T
∥∥

e
≥ ∥∥T −Kn

∥∥ ≥ λ lim sup
n→∞

∥∥TRn

∥∥

for some positive constant λ independent of T .

In the following theorem we give upper and lower estimates for the essential
norm of a weighted composition operator.

Theorem 3.4. Let ϕ,ψ ∈ Bp be such that ϕ(D) ⊆ D. Also, suppose
that the measure νp is a vanishing p-Carleson measure for Bp. Suppose Wϕ,ψ

is bounded on Bp Then there are absolute constants C1, C2 ≥ 1 such that

lim sup
|a|→1

∥∥(Wϕ,ψ)σa

∥∥p

Bp
≤ ∥∥Wϕ,ψ

∥∥p

e
≤ C1 lim sup

|a|→1
Φ(a) + C2 lim sup

|a|→1
Ψ(a) ,

where

Φ(a) =
∫

D

(
1− |a|2
|1− aω|2

)p

dµp(ω)

and

Ψ(a) =
∫

D

(
1− |a|2
|1− aω|2

)p

dνp(ω) .

Proof. First we prove the upper estimate.
Upper estimate: By Lemma 3.3, we have

∥∥Wϕ,ψ

∥∥p

e
≤ lim inf

n→∞
∥∥Wϕ,ψRn

∥∥p

Bp
≤ lim inf

n→∞ sup
‖f‖Bp≤1

∥∥(Wϕ,ψRn)f
∥∥p

Bp
.

Thus

∥∥(Wϕ,ψRn)f
∥∥p

Bp
=

∣∣ψ(0)(Rnf(ϕ(0))
∣∣ +

∥∥∥(ψRnf ◦ ϕ)
′
∥∥∥

p

Ap−2

.
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Now the term |ψ(0)(Rnf(ϕ(0))| is bounded as n → ∞. So, by using
Lemma 2.5, we have

∥∥(Wϕ,ψRn)f
∥∥p

Bp
=

∫

D

∣∣∣(ψ(z)(Rnf(ϕ(z))))
′
∣∣∣
p (

1− |z|2)p−2 dA(z)

≤
∫

D

∣∣∣ψ(z)ϕ
′
(z)

∣∣∣
p ∣∣∣(Rnf)

′
(ϕ(z))

∣∣∣
p (

1− |z|2)p−2 dA(z)

+
∫

D

∣∣∣ψ′
(z)

∣∣∣
p
|(Rnf)(ϕ(z))|p (

1− |z|2)p−2 dA(z)

=
∫

D

∣∣∣(Rnf)
′
(ω)

∣∣∣
p
dµp(ω) +

∫

D
|(Rnf)(ω)|p dνp(ω)

= I1 + I2 . (3.4)

The last condition follows by using Theorem 2.7 and Theorem 2.8.
However, for any 0 < r < 1, we first take the integral I2,

∫

D

∣∣(Rnf)(ω)
∣∣p dνp(ω) =

∫

D\Dr

∣∣(Rnf)(ω)
∣∣p dνp(ω) +

∫

Dr

∣∣(Rnf)(ω)
∣∣p dνp(ω) .

Since the measure νp is a bounded p-Carleson measure. Using [5, Proposition
3], we have ∣∣Rnf(ω)

∣∣ ≤ ∥∥f
∥∥
Bp

∥∥RnKω

∥∥
Bq

.

Also we have ∣∣(Rnf)′(ω)
∣∣ ≤ ∥∥f ′

∥∥
Ap

p−2

∥∥(RnKω)
′∥∥

Aq
q−2

.

Take 0 < r < 1 and |ω| ≤ r, z ∈ D. Also, take the Taylor expansion of

Kω =
∞∑

k=1

(k + 1)w−kzk.

Using this Taylor expansion, we get that

∣∣RnKω(z)
∣∣ ≤

∞∑

k=n+1

(k + 1)rk .
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Also, we have
∣∣(RnKω)′(z)

∣∣ ≤
∞∑

k=n+1

k(k + 1)rk−1 .

Thus for any ε > 0, we can find n large enough such that
∫

D

∣∣(RnKω)′(z)
∣∣q (

1− |z|2)q−2 dA(z) < εq . (3.5)

Therefore, for a fixed r, we have

sup
‖f‖Bp≤1

∫

Dr

∣∣(Rnf)(ω)
∣∣p dνp(ω) −→ 0 as n →∞ .

On the other hand, let νp,r denote the restriction of measure νp to the set
D \Dr. So by using Lemma 3.2 and Theorem 2.3, we have

∫

D\Dr

∣∣(Rnf)(ω)
∣∣p dνp,r(ω) ≤ K

∥∥νp,r

∥∥ ∥∥(Rnf)
∥∥p

Bp

≤ K M
∥∥νp

∥∥∗
r

∥∥f
∥∥p

Bp
≤ K M

∥∥νp

∥∥∗
r
,

where K and M are absolute constants and
∥∥νp

∥∥∗
r

is defined as in Lemma 3.2.
Now, we take the integral I1,

∫

D

∣∣∣(Rnf)
′
(ω)

∣∣∣
p
dµp(ω) =

∫

D\Dr

∣∣∣(Rnf)
′
(ω)

∣∣∣
p

dµp(ω) +
∫

Dr

∣∣∣(Rnf)
′
(ω)

∣∣∣
p

dµp(ω) .

Also, the measure µp is a bounded p-Carleson measure, because the operator
Wϕ,ψ is bounded on Bp.

Therefore, for a fixed r, we have

sup
‖f‖Bp≤1

∫

Dr

∣∣∣(Rnf)
′
(ω)

∣∣∣
p

dµp(ω) −→ 0 as n →∞ .

Again, let µp,r denote the restriction of measure µp to the set D \Dr. So by
using Lemma 3.2 and Theorem 2.3, we get

∫

D\Dr

∣∣∣(Rnf)
′
(ω)

∣∣∣
p
dµp,r(ω) ≤ K

∥∥µp,r

∥∥ ∥∥(Rnf)
′∥∥p

Ap
p−2

≤ K1M1

∥∥µp

∥∥∗
r

∥∥f
∥∥p

Bp
≤ K1M1

∥∥µp

∥∥∗
r
,
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where K1 and M1 are absolute constants and ‖µp‖∗r is defined as in Lemma
3.2. Therefore,

lim
n→∞ inf sup

‖f‖Bp≤1

∥∥(Wϕ,ψRn)f
∥∥p

Bp
≤ lim

n→∞ inf KM
∥∥µp

∥∥∗
r

+ lim
n→∞ inf K1M1

∥∥νp

∥∥∗
r
.

Thus, ∥∥Wϕ,ψ

∥∥p

e
≤ KM

∥∥µp

∥∥∗
r
+ K1M1

∥∥νp

∥∥∗
r
.

Taking r → 1, we have
∥∥Wϕ,ψ

∥∥p

e
≤ KM lim

r→1

∥∥µp

∥∥∗
r
+ K1M1 lim

r→1

∥∥νp

∥∥∗
r

= KM lim sup
|a|→1

∫

D

∣∣∣σ′a(ω)
∣∣∣
p
dµp(ω)

+ K1M1 lim sup
|a|→1

∫

D

∣∣∣σ′a(ω)
∣∣∣
p
dνp(ω)

= KM lim sup
|a|→1

∫

D

(
1− |a|2
1− aω|2

)p

dµp(ω)

+ K1M1 lim sup
|a|→1

∫

D

(
1− |a|2
|1− aω|

2
)p

dνp(ω)

= KM lim sup
|a|→1

Φ(a) + K1M1 lim sup
|a|→1

Ψ(a) ,

which is the desired upper bound.
Lower bound: The set {σa : a ∈ D} is bounded in Bp. Also, σa − a → 0

as |a| → 1 uniformly on compact sets in D, since

|σa(z)− a| = |z| 1− |a|
2

|1− az| .

Also, fix a compact operator K on Bp. Then ‖K(σa − a)‖Bp → 0 as |a| → 1.
Thus ‖K(σa)‖Bp → 0 as |a| → 1. Therefore

∥∥Wϕ,ψ

∥∥p

e
≥ ∥∥Wϕ,ψ −K

∥∥p

Bp
≥ lim sup

|a|→1

∥∥(Wϕ,ψ)σa

∥∥p

Bp
.
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By using Theorem 2.8, Theorem 3.4 and Theorem 2 from [6], we can prove
the following result.

Theorem 3.5. Let ϕ,ψ ∈ Bp be such that ϕ(D) ⊆ D. Also, suppose
that the measure νq is a vanishing q-Carleson measure for Bq. Suppose Wϕ,ψ

is bounded from Bp into Bq. Then there is an absolute constant C ≥ 1 such
that

lim sup
|a|→1

∫

D

(
1− |a|2
|1− aω|2

)q

dµq ≤
∥∥∥Wϕ,ψϕ′

∥∥∥
q

e

≤ C lim sup
|a|→1

∫

D

(
1− |a|2
|1− aω|2

)q

dµq .

4. Weighted composition operators between Sp spaces

In this section, we find estimates for the essential norm of weighted com-
position operators.

Take f ∈ Hp. Then by Fatou’s theorem, the radial limits f∗
(
eiθ

)
=

limr→1− f
(
reiθ

)
exists almost everywhere on ∂D and f∗ ∈ Lp(∂D, dm), where

dm(z) is the normalized measure on ∂D. We also denote this radial limit by
f . Take ϕ : D → D and ψ ∈ H(D) such that ψϕ

′ ∈ Hq. We define the
measure µϕ,ψϕ′ ,q on D by

µϕ,ψϕ′ ,q(E) =
∫

ϕ−1(E)∩∂D

∣∣∣ψϕ
′
∣∣∣
q
dm,

where E is a measurable subset of the closed unit disk D.

Theorem 4.1. ([3]) Take 1 ≤ p, q ≤ ∞. Let ϕ ∈ H(D) be such that
ϕ(D) ⊂ D and ψ ∈ Sq. Then Wϕ,ψ exists as a bounded operator from Sp into
Sq if and only if Wϕ,ψϕ′ exists as a bounded operator from Hp into Hq.

Moreover, if (p, q) 6= (1,∞), then Wϕ,ψ : Sp → Sq is compact if and only
if Wϕ,ψϕ′ : Hp → Hq is compact.

By using Theorem 4.1 and Theorem 4 of [6], we can prove the following
result.

Theorem 4.2. Take 1 ≤ p ≤ q < ∞. Let ϕ ∈ H(D) be such that
ϕ(D) ⊂ D and ψ ∈ Sq. Then the weighted composition operator Wϕ,ψ defines
a bounded operator from Sp into Sq if and only if
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sup
a∈D

∫

∂D

(
1− |a|2
|1− aω|2

) q
p

dµϕ,ψϕ
′
,q(ω) < ∞ .

By using Theorem 4.1 and Theorem 5 of [6], the following results follow.

Theorem 4.3. Take 1 ≤ p ≤ q < ∞. Let ϕ ∈ H(D) be such that
ϕ(D) ⊂ D and ψ ∈ Sq. Let Wϕ,ψ be bounded from Sp into Sq. Then there is
an absolute constant C ≥ 1 such that

lim sup
|a|→1

∫

∂D

(
1− |a|2
|1− aω|2

) q
p

dµϕ,ψϕ
′
,q(ω)

≤ ‖Wϕ,ψϕ′‖q
e ≤ C lim sup

|a|→1

∫

∂D

(
1− |a|2
|1− aω|2

) q
p

dµϕ,ψϕ′ ,q(ω) .

Theorem 4.4. Take 1 ≤ p ≤ q < ∞. Let ϕ ∈ H(D) be such that
ϕ(D) ⊂ D and ψ ∈ Sq. Then the weighted composition operator Wϕ,ψ defines
a bounded operator from Sp into Sq if and only if

sup
a∈D

∫

∂D

(
1− |a|2
|1− aω|2

) q
p

dµϕ,ψϕ
′
,q(ω) < ∞ .

By using Theorem 4.1 and Proposition 2 of [6], we can prove the following
theorem.

Theorem 4.5. Take 1 ≤ q < p < ∞. Let ϕ ∈ H(D) be such that
ϕ(D) ⊂ D and ψ ∈ Sq. Then Wϕ,ψ is bounded from Sp into Sq if and only if

∫ 2π

0

(∫

Γ(θ)

dµϕ,ψϕ′ ,q(ω)

1− |ω|2
) p

p−q

dθ < ∞ ,

where Γ(θ) is the Stolz angle at θ, which is defined for real θ as the convex

hull of the set
{
eiθ

} ∪
{

z : |z| <
√

1/2
}

.
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