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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Let (Q,9p) be a bounded symmetric domain of C" equipped with its
Bergman metric gg. In [3] it is proven that (€2, gp) does not admit a holomor-
phic and isometric (from now on Kéhler) immersion into the flat Euclidean
space CV for any N € N and it admits a Kihler immersion into £2(C) (the
infinite dimensional complex Euclidean space with the flat metric) if and only
if the rank of 2 equals 1, namely € is the complex hyperbolic space CH" and
9B = (n + 1)gnyp. Here gy, denotes the hyperbolic metric on CH", namely
the metric whose associated Kéhler form is given by

i -
Whyp = = 5 00log (L= [2*), |2 = [z 4+ + [

Moreover, one can verify (see also Calabi [2, Theorem 13]) that the map
f:CH" — ¢%C)

(renzm) (1) (o, /O ) (1)

is a Kihler immersion of (CH™, (n+1)gp,,) into £2(C) (we are using the multi-
index notation of Section 2). In this paper we address the problem of extending
this result when the ambient space is the indefinite complex Euclidean space

T = (€7, grs) | r,s € NU{oo}, (r,s) # (00,00).
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Here g, is the indefinite K&hler metric on C"** whose associated (indefinite)
Kaéhler form is given by

i T r+s
5 2 2
ve= o0 (L p- 3 Jal @
j=1 k=r+1
when 7 € N and s € NU {o0}, and
i s +oo
5 2 2
woos =500 | =3 Izl + D |l (3)
j=1 k=s+1

when s € N and r = co. One calls s the index of g,,. Notice that we
are excluding the case when both s = co and r = oo, since by Theorem
1 in Calabi [2] every real analytic Kahler manifold admits a local Kéhler
immersion into C>*°. Observe also that (CH",(n + 1)gs,p) can be Kéhler
immersed into C°** via the map i o f: CH" — C**, where i: (*(C) — C°*
denotes the natural inclusion and f is the map in (1). It is worth pointing
out that one can construct infinitely many non congruent Kéhler immersion
of (CH", (n 4 1)ghnyp) into C>*®. For example for any holomorphic function
1 on CH" the map z — (¢(2),v¥(z), f(z)) is a Kahler immersion of CH"
into C>1,

Behind the pure mathematical interest, indefinite Kéhler geometry can be
viewed in the case when s = 1, as a combination of the Lorentzian geometry of
space-time and the symplectic geometry of phase space. Among the authors
that have been studying the geometry of Kéhler submanifolds of finite indef-
inite space forms we cite M. Barros, A. Romero, Y.J. Suh and T. Umehara
(see [1], [5], [7]).

Our main result is the following theorem, which shows that (CH",
(n + 1)ghyp) can be characterized among irreducible bounded symmetric do-
mains as the only one which admits a Kahler immersion into C*%, s < oo.

THEOREM 1. Let (2,gp) be a Cartan domain. Assume that there exists
a local Kéhler immersion (£, gg) into C™*, then r = oo, s € N and (2, gp) =
(CH™, (n + 1) ghyp)-

The paper is organized as follows. In the next section we collect the basic
results about bounded symmetric domains and their Calabi’s diastasis func-
tions needed in the proof of Theorem 1, to whom Section 3 is dedicated.

The authors would like to thank Antonio J. Di Scala for his very useful
comments and remarks.
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2. PRELIMINARIES

Let (M, g) be a Kahler manifold. A Kéhler potential for g is a real valued
function ® such that in a neighbourhood of a point p € M endowed with
complex coordinates {z} = {z1,...,2,}, one has

(9 9\ _ o
9oB =29\ 92 075) ~ 020075

If g (and hence ®) is assumed to be real analytic, by duplicating the variables
z and z, ® can be complex analytically continued to a function ® defined in a
neighbourhood U of the diagonal containing (p, p) € M x M (here M denotes
the manifold conjugated to M). Thus one can consider the power expansion
around the origin of ® with respect to z and z and write it as

oo
2,Z2) = Z a2z Z"k, (4)
j,k=0
where we arrange every n-tuple of nonnegative integers as a sequence m; =
(mj1,...,mjy) and order them as follows: mg = (0,...,0) and if |m;| =
Yooy Mja, |mj| < |mjy1| for all positive integer j. Further 2™ denotes the
monomial in n variables [[}_; za ", z = (21, - -, 2n)-

A Kahler potential is not umque, it is defined up to an addition with the
real part of a holomorphic function. The diastasis function D9 for g is the
Kaéhler potential around p characterized by the fact that in every coordinate
system {z} centered at p, the matrix (a;) in (4) with ® = DY satisfies ajo =
ag; = 0 for every nonnegative integer j.

EXAMPLE 1. Let CH! = {z € C : |2|*> < 1} be the unitary disk of C,
equipped with the hyperbolic metric gy, whose associated Kahler form is
given by )

? —
Whyp =~ 5 ddlog (1 — |z|2) .
Then the globally defined diastasis around the origin is given by

2j Ky
DI (z,2) = —log (1 — |2[%) Z‘ d ajp = 2
J

The conditions for the existence of a Ké&hler immersion into the finite
or infinite dimensional complex Euclidean space CN? = CV endowed with
the flat metric g9 = gn,o have been studied by Calabi in [2], and can be
summarized as follows:
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THEOREM 2. (CALABI'S CRITERION) Let (M,g) be a Kéhler manifold
and p € M. There exists a neighbourhood U C M of p which admits a Kahler
immersion f: (U, g) — CN=* if and only if the matrix of coefficients (aj;) in
(4) with ® = DY is positive semidefinite of rank at most N. Moreover, if f is
full then the rank of (a;i) is exactly N.

Recall that a holomorphic map f: (M,g) — CN<* is said to be full if
f(M) is not contained in any complex totally geodesic submanifold of CV.

A bounded symmetric domain €2 of complex dimension n is an open con-
nected bounded subset of C™, such that for every = € 2 there is a biholomor-
phism o, of £ for which x is an isolated fixed point. The reproducing kernel K
for the Hilbert space of holomorphic L?-functions on €2 defines the Kihler form
wp = %85 log K on 2, whose associated metric is called the Bergman metric.
Every bounded symmetric domain is the product of irreducible bounded sym-
metric domains, called Cartan domains.

From E. Cartan classification, Cartan domains can be divided into
two categories, classical and exceptional ones. Classical domains can be de-
scribed in terms of complex matrices as follows (m and n are nonnegative
integers, n > m):

Mm,n)={Z € My ,(C) : I, - ZZ* > 0} (dim(9y) = nm),

Ooln] = {Z € M(C) : 2 =27, I, — 22" > 0} (dim(Qg) - "(";“) ,

O[] = {2 € My(C) : Z=~27, I, - 22" > 0} (dim(Q) = "),

n

94[71,]: Z:(Zl,...,Zn)E(Cn:n?é27Z‘Zj‘2<]"
j=1

n

2
sz

j=1

2 n
1+ =2) |z >0p  (dim(Q4) =n),
7j=1

where I,,, (resp. I,) denotes the m x m (resp. n x n) identity matrix, and
A > 0 means that A is positive definite. In the last domain we are assuming
n # 2 since 4[2] is not irreducible (and hence it is not a Cartan domain).
Indeed, (see [3] for details) the biholomorphism

f:Q42] — CH! xCH!

(21,22) +—— (21 +iz2,21 —i22)
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satisfies
f*(2(ghyp 2] ghyp)) = 9gB-

Notice also that we have the following equalities
(§alm, 1], 9p) = (CH™, (m + 1)gnyp),
([1,n],g5) = (CH", (n + 1)gnyp),
(1], 95) = (23(2], g5) = ([l 95) = (CH', 2g1,),
(23(3], 95) = (CH?, gpy).

The reproducing kernels of classical Cartan domains are given by

1 *\1—(nT+Tm
Ko (2,2) = gy et = 2201707,
1 _n
Ko, (2, 2) = i [det(I, — ZZ*)]"("Y)
1 e
Koy (2,2) = gy detln = 22717077,
1 n 2 n -
K = 1 2l — |2
(2, 2) Vi) + jz:;z] 2; EA , (5)

where V' (€;) is the total volume of ; with respect to the Euclidean measure
of the ambient complex Euclidean space (see [3] for details).

There are two kinds of exceptional domains Q5[16] of dimension 16 and
6[27] of dimension 27, that can be described in terms of 3 x 3 matrices with
entries in the 8-dimensional algebra of complex octonions Oc. We refer to [6]
for a more complete description of these domains.

3. PROOF OF THE MAIN RESULT
The proof of the Theorem 1 is based on the following two lemmas.

LEMMA 3. Let (M,g) be a Kihler manifold and let A = (aj;) be the
00 X oo Hermitian matrix given by

DY(z,2) = » a2z, (6)
J:k
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where {z1,...,2z,} are complex coordinates centered at the origin of a neigh-
bourhood U of p € M and DY is the diastasis function of g. If (U, gy) admits
a Kédhler immersion into C°** (resp. C™°) then the number of negative eigen-
values is less or equal than s (resp. r).

Proof. In order to prove the lemma we introduce the following notations.
Denote by {v;}ien @ sequence of complex numbers and consider the complex

+oo
V= {{Ui}ieN : Zvizmi < oo}

vector space

=0

Every holomorphic function ¢ = Z;;Og a;z2™ induces a linear functional {b\ €
V* = Hom(V,C) by

400
V()= awi,  v={vlien€V.
i=0

Define a sesquilinear form on V' by

DI VxV — R

(u,v) — uAv*.

(7)

Assume now that f: U — C°* is a Kdhler immersion of a neighbourhood of
a point p € M into C** (the case C™*° is treated similarly). We can assume
that f(p) = 0. In local coordinates f is given by

f(2) = (f1(2), -5 [5(2), fs4a(2), ... ) € €5,

for suitable holomorphic functions f;. Since f is a Kahler immersion it follows
by (3) and by the very definition of the diastasis function that

+o00
DY(z,2) = ~ ()P = = £+ D ()P

k=s+1
Hence in our notation

< I ~ =~
D9 (u,v) = —fi(w fi(v) = = fo@ i)+ Y fe@fe(v).  (8)

k=s+1

Let W C V be the complex subspace of V' consisting of those w € V such that
D9(w,w) < 0. By (7) each eigenvector of a negative eigenvalue of the matrix
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A belongs to W. Hence, in order to prove the lemma we need to show that
dim W < s. Assume, by a contradiction, that dim W > s and let 51, . ,fm,
m < s be a basis for the subspace of V* spanned by the linear functionals
fiy.., fs. Itm =0 then f(U) C £2(C) and by Calabi’s criterion the matrix A
does not have negative eigenvalues. On the other hand, if m > 1, the C-linear
map L: W — C™ defined by

L(w) = (&(w),....&ulw))

is surjective. Thus there exists 0 7& wo € W such that fl(wo) = .. =
Em(wo) = 0 and hence fi(wp) = --- = fs(wo) = 0. By (8) we have D9 (wp, wp)
> 0, which contradicts the fact that wg € W. 1

LEMMA 4. The diastasis function around the origin for the Bergman
metric gp of a Cartan domain € is globally defined and given by

D(z) = log (V(Q)Ka(z,2)). 9)

Furthermore, if (aj;,) is the matrix in (6), we have aj, = 0 whenever
[mj| # Imgl-

Proof. We refer the reader to [4] for a proof. 1

In order to simplify the proof of our theorem we introduce the following
definition. We say that a square submatrix C' of a square matrix M is central
if its diagonal lies on the diagonal of M. Furthermore we say that M is a
block matrix if it is of the form

00 0 0
0O My 0 0
M= 0 My, 0 ’
0

where each block M; is a central submatrix of M.

Notice that Lemma 4 says that the matrix (a;;) of the diastasis D% of a
Cartan domain €2 is a block matrix, where each block M; contains the elements
ajr, with |mj| = |my| = 1.

Proof of Theorem 1. Let (2,gp) be a Cartan domain. Then it is easily
seen that (CH',~vgp,,) admits a Kihler immersion in (€, gg) where v is the
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genus of ). By Example 1 the matrix (a;) for vgn,, is a diagonal matrix
with infinite positive eigenvalues (given by v/j, j = 1,2,...). By Lemma 3
it follows that CH!, and hence (2, gg), can not be Kihler immersed into C™*
with r € N, s < o0.

Thus it remains to prove that a Cartan domain of rank greater than 1 can
not admit a Kéahler immersion into C** for s € N.

Assume, by contradiction, that there exists f: Q — C°*. Without loss
of generality we can assume f(0) = 0. We are going to prove that the matrix
(a;) in (6) has infinite negative eigenvalues. By Lemma 3 this will be the de-
sired contradiction. Since it is known that any irreducible bounded symmetric
domain of rank at least two can be exhausted by totally geodesic submanifolds
isomorphic to €4[3], we need only to prove the assertion for the case 4[3].

By Lemma 4 and equation (5) the diastasis of (£24[3], gB) is given by

D (2,2) = —3log (1 2(|z1* + |22l + |2]?)
+(A+3+2) (F+B+5)).

We will show that every block (except the first one) has at least one negative
eigenvalue. Consider the 3 x 3 matrix

12 (2]232 4+ 1) _i _1 j

I P T e W B T

Let By be the matrix obtained by evaluating B at z3 = 23 = 0. Then By is
the submatrix of (aj;) with j, k corresponding to the triples (2,0,0), (0,2,0)
and (0,0,2). Further let B,, be the submatrix of (a;)) with j, k corresponding
to the triples (2,0,n), (0,2,n), (0,0,n + 2). The matrix B,, can be obtained
from B by deriving each of its entries n times with respect to z3, n times with
respect to z3 and evaluating at z3 = z3 = 0. From

%" 12(2]23* 4+ 1)
0Z507 (1 — 2|23)2 + |23/4)

>0,

23=2z3=0

we have det(B,) < 0 for all n € N. Thus every B,, must have a negative
eigenvalue. This implies that the (n + 2)th block of (ajx) which contains B,
as a central submatrix, has at least one negative eigenvalue and hence (a;)
has infinite negative eigenvalues. I
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