
E extracta mathematicae Vol. 23, Núm. 3, 279 – 292 (2008)
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Abstract : The concept of rank of a wild algebra, introduced by Y. Han in [8], is discussed and,
after a slight modification, investigated by means of Tarski’s quantifier elimination theorem.
This method allows, in particular, to prove that if there is a regular one-parameter family
of d-dimensional algebras, uncountably many of them wild, then the whole family consists
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1. Introduction

It is still not known if tame is open, that is, if tame algebras define Zariski-
open sets in varieties of algebras. The analogous fact about representation-
finite algebras was proved long ago by Gabriel [5]. By the result of Geiss [7] a
degeneration of a wild algebra is wild. Clearly, the Geiss’s result would follow
from openness of tame, in fact the latter property would be much stronger.
It is proved in [11] that tame is open is equivalent to finite axiomatizability of
the class of tame algebras (of any fixed dimension, over algebraically closed
fields of fixed characteristic).

Beside of potential applications, a positive solution of the problem would
enhance our understanding of tame-wild dichotomy. There are also some
rather unexpected connections with other problems in representation theory,
see [12].

In [8] Y. Han formulates wild rank conjecture and proves that it implies
that tame is open. He also proves the conjecture for several classes of algebras
(see Corollary 3.2 below). The conjecture is equivalent to finite axiomatiz-
ability of tameness (Remark 3.11).

We modify slightly the definition of the rank of a wild algebra introduced
by Han. The modification conserves the main feature of the rank: wild algebra
has finite wild rank, and the (suitably modified) wild rank conjecture implies
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that tame is open. Using Crawley-Boevey’s proof of tame-wild dichotomy
[2] we give in Theorem 2.2 and Corollary 2.4 some relations between the
ranks. Calculating our rank is easier by elementary means, in particular we
prove that d-dimensional algebras with ranks bounded by a fixed number form
constructible sets in varieties of algebras (Proposition 3.4). We collect some
consequences of this fact, in particular we prove in Corollary 3.7 that if there is
a regular one-parameter family of d-dimensional algebras, uncountably many
of them wild, then the whole family consists of wild algebras.

Finally we look at the problem from another point of view. Having ob-
served that wildness of an algebra can be expressed in terms of certain first
order properties of matrix rings, we look for some “compactness theorems”
(see Proposition 4.1). It has not helped with the question if tame is open so
far. But we believe it is a reasonable approach to the problem.

The main results of the paper were presented at the Conference on Rep-
resentation Theory and Related Topics, Trieste 2006.

The author thanks to the Referee for valuable comments.

2. On the definition of wildness

Throughout this paper K denotes an algebraically closed field. We denote
by K〈X, Y 〉 the free associative K-algebra with two free generators X, Y .
Given a ring R we denote by Mm(R) the ring of all m × m-matrices with
coefficients in R.

Recall the classical definition of wild algebra due to Drozd [4]:

Definition 2.1. A finite dimensional K-algebra A is wild if there exists
an A-K〈X, Y 〉-bimodule M , free of finite rank over K〈X, Y 〉, such that the
functor

M ⊗K〈X,Y 〉 (−) : fin(K〈X, Y 〉) → mod(A)

preserves indecomposability and sends nonisomorphic modules to nonisomor-
phic ones.

Here fin(K〈X, Y 〉) is the category of the left finite dimensional K〈X, Y 〉-
modules, whereas mod(A) is the category of the left finitely generated A-
modules. The complementary concept is tame algebra. The reader is referred
to [4], see also [3], [16] for the original definition of tameness. See also the
monograph [18, Chapter XIX] for a discussion of conditions equivalent to
wildness.
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Let us call a bimodule M satisfying the condition in Definition 2.1 a wild
parametrization for A. We call the K〈X, Y 〉-rank of M the rank of the
parametrization. If A is wild then Y. Han [8] calls the minimal rank of a
wild parametrization for A the rank of A. Let us call it wild rank of A and
denote by wrk1(A). Set wrk1(A) = ∞ when A is tame.

The Wild Rank Conjecture of Han asserts that there is a function f : N −→
N such that wrk1(A) ≤ f(dimK A) whenever A is wild. It is not known if this
is true in general. The conjecture is confirmed for some classes of algebras.
For instance, if A is a d-dimensional wild algebra which is either local or a
two-point algebra or a radical square zero algebra, then wrk1(A) ≤ 10b, where
b is the fixed number defined in [8, Lemma 7].

The natural idea of a potential proof of Wild Rank Conjecture is to inves-
tigate the proof of tame-wild dichotomy and bocs reduction algorithm, see [2],
[4]. The obstruction is the following: in order to check if an algebra A is wild
one applies the algorithm not just to A but, roughly speaking, to the class of
A-modules of dimension bounded by m, separately for each m ∈ N. A is wild
if we find a “wild configuration” for some m. The problem is to approximate
a priori this m by a function of the dimension of A.

The condition that a bimodule M is a wild parametrization for A is rather
complicated. But there are several well known reformulations of the definition
allowing a translation into more accessible language. We present one of them
in the theorem below.

First recall the concept of module varieties. Given a number m let modA(m)
be the variety of all algebra homomorphisms A → EndK(Km). We iden-
tify the points of modA(m) with the corresponding modules. By a plane in
this variety we mean a two dimensional affine subvariety of the affine space
HomK(A, EndK(Km)) contained in modA(m).

Theorem 2.2. The following conditions are equivalent for an algebra A:

(1) A is wild,

(2) There is a number m and a plane in the variety of m-dimensional A-
modules, consisting of pairwise nonisomorphic indecomposable modules.

Moreover, the number m in (2) can be chosen such that m ≤ 4 · wrk1(A).

Proof. For the proof of the implication (1)⇒(2) we can either refer to the
third main theorem of [6], see also [17], or make the following consideration.
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Assume that M is a wild parametrization for A. Consider the following
4× 4-matrices with coefficients in K〈X,Y 〉.

X =




0 0 0 0
0 0 0 0
1 0 0 0
0 X Y 0


 ; Y =




0 0 0 0
1 0 0 0
0 0 0 0
0 1 X 0




Let N be the K〈X, Y 〉-K〈X, Y 〉-bimodule isomorphic to K〈X, Y 〉4 as a
right K〈X, Y 〉-module and equipped by the left action of X and Y defined by
X and Y respectively (in the standard basis). One can check directly that the
functor

(−)⊗K〈X,Y 〉 N : fin(K〈X, Y 〉) → fin(K〈X,Y 〉)
preserves indecomposability and sends nonisomorphic modules to nonisomor-
phic ones (but it is not full!), see [2, p. 479].

Moreover, the matrices X 2, Y2, XY = YX have coefficients of degree at
most one and every (noncommutative) monomial in two variables of degree
at least 3 applied to X and Y vanishes. We conclude that the A-modules

M ⊗K〈X,Y 〉 N ⊗K〈X,Y 〉 (K〈X, Y 〉/(X − λ, Y − µ)), λ, µ ∈ K

form a plane of indecomposable pairwise nonisomorphic modules of dimension
4· (the rank of M), as required.

(2)⇒(1) Under the assumption (2) the well known arguments, see [4], [14],
prove that A is not tame. Then apply Tame-Wild Dichotomy [4], [2].

Recall that wrk1(A) denotes the minimal rank of a wild parametrization
for A. Denote by wrk2(A) the minimal number m in the condition (2) in the
above theorem. We agree that wrk2(A) = ∞ if A is tame.

We have proved that wrk1(A) is finite if and only if wrk2(A) is finite and
wrk2(A) ≤ 4 · wrk1(A). There is also an upper bound for wrk1(A) in terms
of wrk2(A).

Proposition 2.3. For any basic K-algebra Λ:

wrk1(Λ) ≤ 2064 · dimK(Λ)(dimK(Λ) + 1)wrk2(Λ).

Proof. Assume that Λ is a wild K-algebra. Let n be the number of iso-
morphism classes of simple Λ-modules and d = dimK(Λ). We follow the steps
of the proof of Tame-Wild Dichotomy in [2]. We use the terminology and
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notation from there. Denote by P1(Λ) the category of Λ-homomorphisms
α : P → Q between projective Λ-modules, such that Im(α) ⊆ rad(Q), the
Jacobson radical of Q. We shall write an object of P1(Λ) as a triple (P,Q, α)
[2, Section 6]. The dimension vector of such an object (P,Q, α) is the pair
(dim top(P ), dim top(Q)) ∈ K0(Λ) × K0(Λ) of dimension vectors of top(P )
and top(Q).

Given an element z ∈ K0(Λ) (identified with Zn via dim) let |z| be the
sum of the coordinates of z.

There is an additive Roiter bocsA = (A, V ), a dimension vector preserving
equivalence

Ξ : rep (A) −→ P1(Λ)

(rep (A) denotes the category of representations of the bocs A) and a finitely
generated Λ-A-bimodule T such that if Ξ(M) = (P, Q, α) then Coker(α) ∼=
T ⊗A M , [2, Proposition 6.1].

If (P, Q, α) is indecomposable in P1(Λ) and dim(Coker(α)) = m then
|dim top(P )|+ |dim top(Q)| ≤ m + md.

If modΛ(m) contains a plane of pairwise nonisomorphic indecomposable
modules it follows that the bocs A is wild and one of the wild configurations
showed in [2, Proposition 3.10] occur when the reduction algorithm is applied
to the representations of A of some dimension (d, d′) such that |(d, d′)| :=
|d|+ |d′| ≤ m.

The proof of Proposition 3.10 in [2] shows that there exists a functor

F : fin(K〈X, Y 〉) −→ rep(A)

defining wildness of A and such that

|dim(F(U))| ≤ 172 ·m(d + 1) dimK(U)

for any U in fin(K〈X,Y 〉). We also use the fact that the functors Θ∗
I (see

Section 3 in [2]) induce an injection of the corresponding Grothendieck groups
of the categories of representations of bocses.

Next, there is a finitely generated Λ-K〈X, Y 〉-bimodule S such that the
functor

S ⊗K〈X,Y 〉 (−) : fin(K〈X,Y 〉)−→mod(Λ)

preserves indecomposability and heteromorphisms. This functor is equivalent
to the composition of T ⊗A (−), F and a full and faithful endofunctor Φ of
fin(K〈X,Y 〉) such that dimK Φ(U) = 3 · dimK U for any U in fin(K〈X,Y 〉).
Remember that T ⊗A (−) is equivalent to the composition of the dimension
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vector preserving equivalence Ξ with taking the cokernel. The cokernel of
a homomorphism between projective Λ-modules with the tops at most m′-
dimensional, has the dimension less than or equal m′d. Thus

dimK(S ⊗K〈X,Y 〉 U) ≤ 3 · 172 ·md(d + 1) · dimK U.

Now, following the proof of Theorem B in 6.4 of [2] we conclude that
there is a nonzero element p ∈ K[X,Y ] and an R-Λ-bimodule S′′, where
R = K[X, Y, p−1], free of rank less than or equal 516 · d(d + 1) over R and
such that the functor

(−)⊗R S′′ : fin(R) −→ mod(Λ)

preserves indecomposability and heteromorphisms.
Then the final correction is made: we construct a wild parametrization of

the form L ⊗R S′′ for a suitable K〈X,Y 〉-R-bimodule L, free of rank 4 as a
left K〈X, Y 〉-module, see the proof of Theorem B in [2]. Let us remark that
the left multiplication by X and Y in L is defined by the matrices X and Y
described in the proof of Theorem 2.2.

Corollary 2.4. Let Λ be a (not necessarily basic) K-algebra. Assume
that µ is the maximum of the dimensions of simple Λ-modules (clearly µ ≤
dimΛ). Then

1
4 wrk2(Λ) ≤ wrk1(Λ) ≤ 2064 · µ dimK(Λ)(dimK(Λ) + 1)wrk2(Λ).

Proof. The left hand side inequality follows from Theorem 2.2. Let Λ′ be
basic algebra Morita equivalent to Λ. The right hand side inequality follows
since there is an exact equivalence of categories

F : mod(Λ′) → mod(Λ)

such that dimK F (X) ≤ µ dimK(X) for any Λ′-module X.

3. Application of quantifier elimination

Throughout this section we fix a natural number d. Let AlgK(d) be the
variety of the d-dimensional K-algebras (associative, with unit), see [13]. That
is, AlgK(d) is a subset of Kd3

consisting of the tuples γ = (γijk)i,j,k=1,...,d such
that the multiplication

· : Kd ×Kd → Kd
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defined by

ei · ej =
d∑

k=1

γijkek, i, j = 1, ..., d,

is associative and admits a unit. Here we denote by ei the ith standard basis
element of Kd. We consider AlgK(d) as a topological space with the Zariski
topology.

Given γ ∈ AlgK(d) let A(γ) be the K-algebra isomorphic to Kd as vector
space and equipped with the multiplication defined by γ with respect to the
standard basis e1, ..., ed of Kd. Let W be the set of the points γ of AlgK(d)
corresponding to wild algebras. Given i = 1, 2 and a number r set

W≤r
i = {γ ∈ AlgK(d) : wrki(A(γ)) ≤ r}

Lemma 3.1. W≤r
i ⊂ W for any i = 1, 2 and natural r.

Proof. For i = 1 the proof is well-known [8], [7], [11]. The idea is the
following. Applying algebraic geometry arguments one shows that an algebra
A is wild if and only if, for some natural m, the following condition φm holds:

there exists an A-K〈X,Y 〉-bimodule M , free of rank m over K〈X,Y 〉, such
that the A-modules M⊗K〈X,Y 〉U and M⊗K〈X,Y 〉V are isomorphic if and only
if U ∼= V , for any m-dimensional left K〈X,Y 〉-modules U , V .

Moreover, if wrk1(A) = m, then φm holds. The condition φm is chosen in
such way that, applying upper semi-continuity arguments and variety dimen-
sion characterizations of wildness, see e.g. [15], one shows that the Zariski
closure of the set of points γ such that A(γ) has the property φm, is contained
in W.

The proof for i = 2 follows now, since W≤r
2 ⊆ W≤2064d2(d+1)r

1 by Proposi-
tion 2.3, Corollary 2.4.

This way we get the following corollary.

Corollary 3.2. [8] The wild rank conjecture implies that tame is open.

Let L = (x1, x2, ...,+, ·, 0, 1) be the first order language of the theory of
fields. Let φ = φ(x1, ..., xm) be a formula in this language in d variables.
Given a field L and elements a1, ..., am ∈ L we define the satisfiability of φ by
the sequence a1, ..., am in L in the usual way, under the natural interpretation
of the symbols ·, +, 0, 1. The fact that a1, ..., am satisfy the formula φ in L is
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denoted by L |= φ(a1, ..., am). The reader is referred to [1] and [10] for basic
concepts of model theory.

The following assertion is a direct consequence of well-known Tarski’s
quantifier elimination theorem for algebraically closed fields [10, Theorem
12.4].

Theorem 3.3. For any first order formula φ = φ(x1, ..., xm) in the lan-
guage L with free variables x1, ..., xm there exists a quantifier-free formula
ψ(x1, ..., xm) of the form

∨

i=1,...,s

[Fi1(x1, ..., xm) = ... = Fini(x1, ..., xm) = 0 ∧Gi(x1, ..., xm) 6= 0]

where Fij , Gi ∈ Z[x1, ..., xm], i = 1, ..., s, j = 1, ..., ni, such that

K |= φ(a1, ..., am) ⇔ K |= ψ(a1, ..., am)

for any algebraically closed field K and any tuple a = (a1, ..., am) ∈ Km. The
numbers s, ni, for i = 1, ..., s and the degrees of the polynomials Fij , Gi are
bounded by a number depending only on the complexity of φ.

That is, any first-order formula can be replaced by a constructible condi-
tion, if we are restricted to algebraically closed fields. We do not give here a
precise definition of the complexity of a formula, it is an intuitive “by-product”
of the usual recursive definition of the set of first-order formulas.

Proposition 3.4. Let r be a natural number. There exist numbers s,
t1, ..., ts and polynomials Fab, Ga ∈ Z[Xijk : 1 ≤ i, j, k ≤ d], a = 1, ..., s,
b = 1, ..., ta, such that

W≤r
2 =

s⋃

a=1

(
ta⋂

b=1

{γ ∈ AlgK(d) : Fab(γ) = 0} ∩ {γ ∈ AlgK(d) : Ga(γ) 6= 0})

The polynomials Fab, Ga are chosen independently on the algebraically closed
field K. The numbers s, t1, ..., ts and the degrees of the polynomials are
bounded by a number depending only on d and r.

Proof. The property wrk2(A(γ)) ≤ r can be written as first order formula
with variables γ. Indeed, the inequality wrk2(A(γ)) ≤ r means that, for some
m ≤ r, there are three d-tuples of m×m-matrices

(Ms)1≤s≤d, (Mx
s )1≤s≤d, (My

s )1≤s≤d
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such that
1) for any λ, µ ∈ K the matrices Mλ,µ

s = Ms + λMx
s + µMy

s define a
A(γ)-module structure on Km, that is:

Mλ,µ
s Mλ,µ

t =
d∑

u=1

γstuMλ,µ
u ,

and
∑d

u=1 ιuMλ,µ
u equals the identity matrix if (ι1, ..., ιd) is the unit of A(γ).

Moreover, Mx
s Mx

t = Mx
s My

t = My
s Mx

t = My
s My

t = 0 for any s, t. This
means that the points Mλ,µ of modm(A(γ)) defined by Mλ,µ(ei) 7→ Mλ,µ

i ,
i = 1, ..., d, λ, µ ∈ K, define a plane in modm(A(γ)).

2) for any λ, µ ∈ K any idempotent matrix commuting with all Mλ,µ
i is

either 0 or the identity (the plane consists of indecomposable modules).
3) The modules are pairwise nonisomorphic: if there is an invertible matrix

F such that Mλ,µ
i F = FMλ′,µ′

i for every i = 1, ..., d then λ = λ′ and µ = µ′.
The assertion follows now from Theorem 3.3.

Remark 3.5. The formula considered in the proof can be regarded as a first
order formula in the two-sorted first order language of the theory of algebras
over fields, see Section 4 below and [10]: we substitute the variables of the
second sort by matrices. The shape of the formula does not depend on the
size of the matrices. Moreover, we can restrict to the constructible subset
of AlgK(d) containing the points corresponding to basic algebras with fixed
Gabriel quiver. Then rearrange the formula and require that the matrices
whose existence is postulated satisfy the nilpotency condition Nild, see Section
4, of degree d.

Consider a regular map ` : K → AlgK(d). By the degree of ` we mean
the maximum of the degrees of the coordinate maps of `. Set Aλ := A(`(λ)).
Under the hypothesis that tame is open the following holds: if Aλ is wild for
infinitely many λ ∈ K, then Aλ is wild for every λ. We prove some weaker
facts.

Theorem 3.6. Fix d and let i = 1 or i = 2. There exists a function
β(i) : N2 → N, such that if

|{λ ∈ K : wrki(Aλ) ≤ r}| ≥ β(i)(r,deg(`)),

for some r, then Aλ is wild for any λ ∈ K.



288 s. kasjan

Proof. Consider the case i = 2 first. Let C := `−1(W≤r
2 ). By Proposi-

tion 3.3

C =
s⋃

a=1

(
ta⋂

b=1

{λ ∈ K : F ′
ab(γ) = 0} ∩ {γ ∈ AlgK(d) : G′

a(γ) 6= 0})

for some polynomials Fab, Ga in one variable with coefficients in K. By Propo-
sition 3.4 the number s and the degrees of the polynomials can be bounded
by a number T depending only on d, r and deg(`). Set β(2)(r,deg(`)) = T 2.

If |C| > T 2 then C contains a subset of the form {Ga 6= 0}, that is, C is
cofinite in K, hence dense. By Lemma 3.1 the proof is finished in case i = 2.

In the case i = 1 we use Corollary 2.4: it is enough to set

β(1)(r,deg(`)) = β(2)(4r,deg(`)).

The following is a direct consequence of the above result.

Corollary 3.7. If Aλ is wild for uncountably many values of λ , then Aλ

is wild for every λ ∈ K.

Let L be the subfield of K generated by the coefficients of `.

Theorem 3.8. Fix d and i = 1 or i = 2. There exists a function
η(i) : N → N such that if wrki(Aλ) ≤ r for some λ ∈ K such that the
transcendence degree trdegLL(λ) of λ over L is at least η(i)(r), then Aλ is
wild for any λ ∈ K.

Proof. Let i = 2. We keep the notation from the proof of Theorem 3.6.
The polynomials F ′

ab, G
′
a have coefficients in L. Let η(2)(r) be the maximum

of the degrees of the polynomials F ′
ab. If trdegLL(λ) ≥ η(2)(r) and λ ∈ C then

C contains a subset of the form {Ga 6= 0} and we finish the proof as in 3.6.

Again we get

Corollary 3.9. If Aλ is wild for some λ ∈ K transcendent over L, then
Aλ is wild for every λ ∈ K.

Remark 3.10. The proof of Proposition 2.3 is in fact a comment to a proof
due to Crawley-Boevey in [2]. In order to prove Corollaries 3.7 and 3.9 one
does not have to trace this complicated consideration: it is possible to define
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another “wild rank” based on an idea from the proof of Lemma 3.1. Namely,
let the new wild rank be the least m such that the condition φm holds. Then
quantifier elimination proves an analogue of Theorems 3.6 and 3.8. But such
a rank is not a natural concept, contrary to wrk1 and wrk2 - the first coming
from the standard definition of wildness, the latter related with a method of
proving wildness, frequently used in practice.

Remark 3.11. The Wild Rank Conjecture is equivalent to finite axiomati-
zability of the classes of d-dimensional tame algebras over algebraically closed
fields, for every d ∈ N. Indeed, assume first that Wild Rank Conjecture is true.
The left hand side inequality of Corollary 2.4 shows that, given a natural num-
ber d, there is a number r such that wrk2(A) ≤ r, for any d-dimensional wild
algebra A. It follows from (the proof of) Proposition 3.4 that wrk2(A) ≤ r is
a first order property of the algebra A and therefore it is an axiom for the class
of wild d-dimensional algebras. The finite axiomatizability of the class of tame
d-dimensional algebras follows now by standard model theory arguments, see
e.g. [1, Theorem 4.12] and [10, Theorem 2.13].

Conversely, if the class of d-dimensional tame algebras is finitely axioma-
tizable, then again by basic facts of model theory we conclude that there is a
number r such that wrk2(A) ≤ r, for any d-dimensional wild algebra A. Now
the assertion of Wild Rank Conjecture follows thanks to the right hand side
inequality of Corollary 2.4. See also Corollary 3.7 in [11] and the comments
there.

4. Final remarks

In this section we discuss some “compactness theorem” for properties of
matrix algebras. We have noticed in 3.5 that wildness of a K-algebra A(γ)
determined by structure constants γ is equivalent to the fact that some matrix
algebraMm(K) has a property ψ(γ) depending on A. If we could find a bound
for the number m, depending only on complexity of ψ we would prove that
tame is open. Unfortunately we are not able to do it - our compactness
theorem works only for some class of properties.

Let L be a field, not necessarily algebraically closed. Now we are going
to define a class of properties, or rather formulas in a suitable language of
algebras over fields.

Denote by A the two-sorted first order language of algebras over fields,
see [10], that is, the disjoint union L1

∐
L2 of two copies of L (see Section 3

above) equipped with another function symbol · . The terms from L1 (resp.
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L2) are called terms of the first (resp. second) sort. The new function symbol
associates to a pair of elements of the first and the second sort an element
of the second sort. The language A has the usual logical connectives: ∧, ∨,
¬, → and allows quantifiers on both sorts of variables. By a model for this
language we mean a pair (L,R), where L and R are models for L1 and L2

respectively and the new function symbol is interpreted as a function

· : L×R → R.

It is clear that if L is a field and R is an L-algebra with identity then the
obvious interpretation of the symbols of the language A allows us to treat the
pair (L,R) as a model for A.

Given a sequence of variables x = (x1, ..., xu) let Nilm(x) denote the con-
junction of all equations F = 0, where F runs through the set of all monomials
of degree m in the free associative Z-algebra Z〈x〉 with free generators x. For
example

Nil2(x, y) =′ x2 = xy = yx = y2 = 0′.

Given two numbers m, b let Cm,b be the class of formulas ψ in the language
A such that

1. The free variables in ψ are of the first kind only. Let z = (z1, ..., za) be
a sequence of the free variables of ψ.

2. ψ = ψ(z) has the form

∃x(φ(z, x) ∧ ∀yη(z, x, y))

where φ(z, x) is quantifier-free, has free variables z of the first kind
and b free variables x = (x1, ..., xb) of the second kind, and η(z, x, y) is
positive (=built without negation) and quantifier-free, y is a sequence
of variables of (possibly) both kinds.

3. (φ(z, x) ∧ ∀yη(z, x, y)) → Nilm(x).

Set C =
⋃∞

m,b=1 Cm,b. Let µm,b denote the number of (noncommutative)
monomials in b variables of degree less than m. Given a formula ψ ∈ Cm,b \
Cm−1,b let g(ψ) equal the number of inequalities appearing in φ multiplied by
µm,b.

Note that the formulas described in 3.5 do not belong to C. In order to
include them we would have to resign on the positivity of η.
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Proposition 4.1. Let L be a field and ψ(z) ∈ C, z = (z1, ..., za). Assume
that there is a natural number n such that

Mn(L) |= ψ(λ)

for some λ ∈ La. Then there is such n less than or equal g(ψ).

Proof. We identify Mn(L) with EndL(Ln). Let X1, ..., Xb ∈ Mn(L) be
elements, whose existence is postulated by the outer existential quantifiers.
Since Nilm(X1, ..., Xb) is satisfied, the subalgebra Λ of Mn(L) generated by
X1, ..., Xb has dimension less than or equal µm,b .

Let F1(X1, ..., Xb) 6= 0,..., Ft(X1, ..., Xb) 6= 0 be all inequalities appearing
in φ(λ) and satisfied by X1, ..., Xb. Choose vi ∈ Ln such that for i = 1, ..., t:
F1(X1, ..., Xb)(vi) 6= 0. Let W be the Λ-submodule of Ln generated by
v1, ..., vt, clearly dimL W ≤ g(ψ). Then F (X1, ..., Xb)|W 6= 0. Every L-
endomorphism of W extends to an endomorphism of Ln and since η is pos-
itive quantifier-free we see that the restrictions of X1, ..., Xb to W satisfy
(φ(λ, x) ∧ ∀yη(λ, x, y)) and therefore

EndL(W ) |= ψ(λ).

Remark 4.2. The well-known fact that the matrix algebra of size m ×m
does not satisfy any polynomial identity of degree less than or equal 2m,
[9], can be considered from such a point of view. Namely, take an element
F ∈ Z〈X1, ..., Xb〉 and consider the formula (a sentence, actually)

ψ =′ ∃M1,...,Mb
F (M1, ...,Mb) 6= 0′,

where M1, ...,Ms are matrix variables - variables of the second sort. Set g(ψ) =
[deg F+1

2 ]. If Mn(L) |= ψ for some m then, clearly, F 6= 0 and Mg(ψ)(L) |= ψ,
by the fact mentioned above.
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