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Resumen

Los métodos de ecuación integral de superficie (SIE) basados en el método de mo-
mentos (MoM) se han convertido en una herramienta indispensable en electromag-
netismo computacional (CEM) en la fase de diseño de una amplia gama de aplica-
ciones. El uso de este tipo de herramientas puede suponer un reto en aplicaciones de
vanguardia como la compatibilidad electromagnética (EMC) o la nanotecnoloǵıa en
aplicaciones plasmónicas, donde el elevado tamaño de los sistemas y la problemática
multiescala, presente en el nivel de detalle geométrico requerido en estas aplicaciones,
y la problemática multif́ısica, en el sentido de que se combinan diversos materiales
con respuestas electromagnética muy diferentes, complica sobremanera la obtención
de resultados precisos en tiempos razonables. Las técnicas de precondicionamiento
basadas en el método de descomposición de dominios (DDM) se presentan como una
de las mejores alternativas para hacer frente al mal condicionamiento que domina estos
sistemas.

En este contexto, esta tesis doctoral combina los últimos avances y explora nuevas
soluciones en algoritmos SIE, hardware informático y habilidades de paralelización para
abordar la solución eficiente y robusta de problemas extremadamente grandes y mal
condicionados. En primer lugar, se ha desarrollado e integrado un método de descom-
posición de dominios altamente eficiente con las tecnoloǵıas del grupo de investigación
que avala la tesis. A continuación, se han incorporado los nuevos avances en algoritmos
SIE para mejorar la versatilidad del método propuesto, proporcionando un verdadero
conjunto de herramientas multipropósito para la simulación electromagnética de prob-
lemas extremadamente complejos con aplicaciones en la vida real.





Abstract

Surface integral equation (SIE) methods based on the method of moments (MoM)
have emerged as a powerful and indispensable tool in computational electromagnetics
(CEM) for the simulation and engineering of a wide range of applications. The use
of this type of simulation tools can be critical in cutting-edge applications such as
EMC engineering or the field of nanoplasmonics, where extremely large-scale problems
that also suffer from problematic multiscale and multiphysics issues that complicate
the accurate analysis of challenging systems. Schwarz preconditioners based on the
domain decomposition method (DDM) are presented as one of the best alternatives to
deal with the ill-conditioning of such systems.

In this context, this doctoral thesis combines the latest breakthroughs and devises
new methodologies in SIE algorithms, computing hardware, and parallelization skills
to address the efficient and robust solution of the extremely large and ill-conditioned
problems. First, a highly efficient domain decomposition method is developed and in-
tegrated with the advanced SIE technologies of the research group that endorses this
thesis. Next, novel SIE advances in non-conformal discretization and preconditioning
of deep multiscale and multiphysics problems are incorporated to improve the ver-
satility of the proposed methods, providing a truly multipurpose methodology for the
electromagnetic simulation of extremely challenging problems with real-life application.
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1.1 Motivations of the thesis

Surface integral equation (SIE) methods based on the method of moments (MoM) [1]
have emerged as a powerful and indispensable tool in computational electromagnetics
(CEM) for the simulation and engineering of a wide range of applications [2–6], from ad-
vanced antenna design [7–9], enhancement of antennas by plasmon resonances [10–12],
electromagnetic compatibility and interference (EMC/EMI) [13], radar cross section
(RCS) [14] and stealth technologies [15,16] to integrated circuits [17].

SIE methods provide significant advantages over volumetric approaches such as the
finite difference in the time domain (FDTD) [18] or the frequency domain finite element
methods (FEMs) [19,20]. Although the latter benefit from relatively simple parameter-
izations of the electromagnetic fields and are much easier to implement, the application
of SIE methods to Maxwell’s equations raises much smaller solution subspaces, since
they only require the parameterization of the two-dimensional (2D) boundary surfaces
and interfaces, rather than the three-dimensional (3D) structure and embedding space.
They also eliminate the requirement for absorbing boundary conditions to terminate
open problems. These advantages, combined with outstanding accuracy and versatility,
make SIE-MoM a preferred choice when it comes to solving many real-life applications

1
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dealing with complex large-scale structures.

The use of this type of simulation tools can be critical in some of the applications
mentioned. Specially, it is critical to effectively address the design and management of
the EMC and EMI issues (commonly termed EMC engineering) as early as possible in
the platform design stage, trying to assure the overall system performance. The EMC
engineering entails the need of solving electrically large EM radiation problems, which
are challenging problems.

Another really challenging cutting-edge field that has ignited intense research in
recent years is nanotechnology. Among the many multidisciplinary challenges posed
by this revolutionary science, the unprecedented ability of subwavelength confinement,
enhancement, and spatio-temporal control of light and electron beams in the vicin-
ity of metal/dielectric interfaces have stimulated an intense research in the field of
plasmonics. SIE methods have been extended to the field of nanoplasmonics [21–27].
Nanoplasmonics is a flourishing branch of optical engineering concerned with the study
of the interaction of light with sub-wavelength metallic nanoparticles or devices at the
nanometer scale. It has numerous scientific and technological applications, e.g. in
telecommunication [28], energy production [29], biomedicine and biosensing [30, 31],
among many others [32–38]. In the last years, nanoplasmonics has become a very
active research topic, increasingly demanding numerical simulation to theoretically
explain and/or provide guidance to experimental studies. The light scattering from
plasmonic nanoparticles is well described by classical electrodynamic equations. Until
recently, the dominant simulation techniques in nanoplasmonics were those based on
volumetric methods, partly because of the availability of commercial software such as
COMSOL http://www.comsol.com/.

Nevertheless, SIE Maxwell solvers bring important advantages when it comes to
large-scale systems and nanoparticle assemblies spanning a large number of wave-
lengths. Although these methods pose dense matrices that may be too large for direct
solution in the case of large problems, iterative fast solvers such as the multilevel
fast multipole algorithm (MLFMA) or the parallel MLFMA-fast Fourier transform
(MLFMA-FFT) are available [39–44].

However, despite the great advances achieved up to now, there are still a lot of
challenges that need to be faced in order to be able to simulate and design cutting-edge
real-life applications. The systems needed to adequately model the behaviour of these
plasmonic particles results in extremely large-scale problems that further suffer from
problematic multi-scale issues associated to the detailed description of the geometry
or even from the multiphysics resulting from the combination of drastically different
materials. These issues yield extremely ill-conditioned matrix equations, impinging
a dramatic deterioration of convergence and performance of the SIE solution, which
often makes the problem even impossible to be solved [45–53].
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In previous cases, where the ill-conditioning of the system dominates the simu-
lation scenario, the preconditioning techniques can be applied to improve iterative
convergence. Those physics-based that use quasi-Helmholtz decompositions [54–56]
or the Calderon identities [57–61] have proven good success, but those based on alge-
braic techniques, such as the incomplete lower unitriangular upper triangular (ILU), or
block-Jacobi preconditioners [62–64] also improve considerably the convergence. But
one of the best alternative is the use of Schwarz preconditioners based on the domain
decomposition method (DDM) [65–70], which can be categorized as an algebraic pre-
conditioner but also as a physic-based preconditioner, since it allows to separate the
physics of the different subsystems that make up the whole problem to adequately solve
each one using the appropriate method based on its properties.

Additionally, the mesh generation and computer-aided design (CAD) processes re-
quired to correctly define the problem became really complicated, especially in the
case of using domain decomposition techniques, challenging due to the complexity
of the partitions and connections in the geometry. An important advance that has
recently been brought to the SIE based methodology is the technique known as Dis-
continuous Galerkin (DG),that allow different parts of a larger, more complex assembly
to be modeled and meshed independently and assembled back to form a whole con-
nected body, without caring about mesh conforming or slight miss-placement at the
tear contours. Other SIE non-conforming scheme alternative to DG is the very recently
presented Multibranch Rao-Wilton-Glisson (MB-RWG) [71]. The MB-RWG basis func-
tions can be easily integrated into existing MoM codes without need of penalty terms,
additional volumetric integrals or artificial surfaces. They are very convenient for h-
refinement techniques and are div-conforming basis functions, allowing the construction
of solenoidal basis as linear combination of them.

In this context, this thesis combine the latest breakthroughs in SIE algorithms, com-
puting hardware, and parallelization skills to address the efficient and robust solution
of the extremely large and ill-conditioned problems rendered by real-life EMC/EMI
and nanotechnology applications, by first developing a high efficient multipurpose do-
main decomposition framework, which is the cornerstone of the method and subse-
quent developments. Among the different possibilities, the additive Schwarz domain
decomposition preconditioner is integrated with the advanced SIE technologies of the
research group that endorses the thesis. Next, novel SIE advances are devised for the
use of non-conformal discretizations and preconditioning in deep multiscale and mul-
tiphysics problems. A collection of extremely challenging problems in EMC/EMI and
nanoplasmonics with real life applications is also presented at the end of this memory
to illustrate the advanced capabilities of the methodology developed in this thesis.
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1.2 Objectives

The main objectives of this work are detailed below.

• Development of a general-purpose DDM implementation for composite multi-
material homogeneous problems.

• Efficient implementation of shared-memory parallelism using OpenMP at the lo-
cal solvers and mixed-memory MPI/OpenMP parallelism at the mutual coupling
interaction.

• Development of non-conformal MoM implementations of the SIE methods based
on Discontinuous Galerking (DG) and multibranch-RWG basis functions (MB-
RWG) to improve the CAD processes required in DDM.

• Development of high scalability preconditioners capable of solving complex multi-
scale problems including non-conformal meshes to improve the convergence of the
iterative local solvers.

• Application of the developed algorithms to the solution of real-life multi-scale
systems in EMC/EMI and plasmonics, focusing especially on surface enhanced
Raman spectroscopy (SERS) applications.

1.3 Contribution of the thesis

The main contribution of this thesis is the development of general-purpose methodolo-
gies to perform the electromagnetic analysis of large-scale complex problems including
deeply multi-scale and multi-physics features with application in real-life systems in
plasmonics and EMC/EMI engeneering within the SIE-MoM developed by the research
group where this work was carried out. This can be described through the following
lines:

• Development of a truly multisolver overlapping Schwarz domain decomposition
method with a library module of solvers for composite multi-material homoge-
neous problems using the electric and magnetic combined field integral equation
(JMCFIE) formulation. The proposed algorithm uses the tear-and-interconnect
transmission conditions to solve local open penetrable problems independently
without need of artificial surfaces to make the problem closed. The implemen-
tation is designed to allow the easy inclusion of new methodologies in the local
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solver or mutual coupling, and can benefit from the existence of a large number
of geometric repetitions and symmetry patterns.

• Efficient parallelization of the DDM implementation delivered in the previous
point by applying a two-stage parallelization strategy: shared memory OpenMP
parallelization of the local solvers to be applied inside each subdomain; and hy-
brid memory MPI/OpenMP parallelization of the DDM framework, including fast
subdomain mutual couplings and the global Krylov iterative solver. This strategy
enables unprecedented efficiency and flexibility in distributing the DDM work-
load among large mixed-memory computers made up of a number of distributed
shared-memory nodes with large numbers of parallel processors and cores inside.
The second stage of parallelization includes an extension of the MLFMA-FFT to
achieve a distributed global coupling calculation in both domains and materials.
Furthermore, the proposed algorithm is able to take advantage of the global con-
tributions contained in the local matrix of MoM domains to drastically reduce
the neccesary computational resources.

• Development of an RWG-based implementation of the SIE methods integrated
in the toolkit of the research group for solving non-conformal and quasi-non-
conformal discretized problems, in order to facilitate the handling of subdomains
and surfaces in the DDM proposed scheme. The ability to independently model,
combine and assemble the different subsystems of a large complex problem en-
hances the versatility of the domain decomposition preconditioner, without car-
ing about mesh conforming or the presence of spurious slits and overlaps due to
slight missplacement between subsystems at the tear contours. This is addressed
by two different procedures: the equivalent electric and magnetic currents at
the tear lines and junctions are expanded in terms of half-RWG (h-RWG) basis
functions, and their continuity is enforced in the weak sense through the use of
an interior penalty (IP) term in the case of Discontinuous Galerking; and by
the use of the novel multibranch-RWG basis functions, which are div-conforming
functions defined on quasi-non-conformal discretizations. In addition, new ad-
vances in DG methodology are devised and applied for the first time with the
JMCFIE formulation to greatly simplify the treatment of piecewise-homogeneous
composite objects including arbitrary connections between multi-material regions
(which poses the well-known multi-material junction problem). The use of DG
and non-conformal discretizations with the JMCFIE allows the seamless solution
of these awkward problems without any specific treatment of the junctions (nei-
ther within the solver nor by the user), which greatly simplifies the procedure for
dealing with multiscale and multiphysics problems. This proposal allows to easily
manage the CAD generation and tessellation procedures for multiscale problems
and to simplify the resolution process in the DDM scheme.

• Development of an efficiently parallelized combination of a multilevel quasi-
Helmholtz decomposition preconditioner in synergy with the MLFMA-FFT for
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the solution of complex problems exhibiting deep multi-scale features. The inclu-
sion of the novel multibranch functions in this process enables for the first time
the application of a quasi-Helmholtz decomposition to a problem discretized by
non-conformal meshes. The physical properties of the different parts of the ge-
ometry in a really complex system play a fundamental role in the selection of
the optimal DDM domains to improve the outer convergence of the method.
However, the optimization of the outer iterative method in the DDM scheme
results in a complexity shift towards local solvers, which must lead with inner
strong interactions and multi-scale features like cavities or arrays of antennas.
In these cases, the inclusion of efficient preconditioners such as those developed
in this thesis allows to speed-up the convergence of the fast local solvers while
optimizing the outer interactions and the general performance of the method.

1.4 Structure of the thesis

This document has been structured in five chapters. The first, and present, introduces
formally the scope of the thesis, the objectives and the contributions of the work.

The second chapter is a detailed review of the SIE backgound supporting the meth-
ods developed in this work. In particular, fundamental theory and computational
algorithmic are described for the full-wave solution of the JMCFIE by the Method of
Moments and its acceleration via the multilevel fast multipole algorithm.

In the third chapter, the tear-and-interconnect DDM is developed for PEC and
extended to composite piecewise homogeneous objects. Then, the MR preconditioner
is combined with the MLFMA-FFT to develop a high efficient local solver to include
in the DDM framework.

In chapter fourth, non-conformal techniques based on DG and MB-RWG basis
functions are introduced. The previously developed MR preconditioner is also extended
to the solution of non-conformal problems.

Chapter fifth introduces the application of the methods developed in this thesis to
the solution of extremely multiscale and very challenging problems in EMC engineering
and nanoplasmonics with application in biosensing.

Finally, the sixth chapter summarizes the main conclusions of the thesis and some
future lines.
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Chapter 2

Surface Integral Equation Methods

Contenido
2.1 Surface Integral equation formulation for composite objects 9

2.2 Method of Moments . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Multilevel Fast Multipole Algorithm - Fast Fourier Trans-
form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

This chapter describes the SIE formulation, which constitutes the background of
the procedures developed in this thesis, and establishes the foundation of the notation
that will be applied in the rest of the document.

The chapter is structured as follows. First, the electric and magnetic field inte-
gral equations and their combinations are formulated for the general case of arbitrary
composite PEC and piecewise-homogeneous penetrable objects. Then, the method
of moments (MoM) is introduced to transform the integral equations into a matrix
system. Finally, the multilevel fast multipole method (MLFMA) is described as an
efficient acceleration for the solution of the dense matrix system posed by the MoM.

2.1 Surface Integral equation formulation for com-

posite objects

An arbitrarily shaped piecewise homogeneous penetrable object situated in an un-
bounded homogeneous medium (free-space for the sake of clarity) is considered, as is
shown in figure 2.1. In the following, a time harmonic variation exp(jwt) is assumed

9
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Figure 2.1: Arbitrarily shaped 3-D piecewise homogeneous object. Notation used for the statement
of the surface integral equation formulation.

and suppressed from the formulation. Each region Ri is characterized by its electro-
magnetic properties ϵi = ϵriϵ0 and µi = µriµ0, where ϵi is the electric permittivity, µi

is the magnetic permeability, ϵri and µri are the relative permittivity and permeability
in region Ri and ϵ0 and µ0 are the constitutive vacuum parameters. Sij is the inter-
face between regions Ri and Rj. n̂ij are normal unit vectors to Sij pointing towards
Ri, with n̂ij = −n̂ji. Einc

i and Hinc
i are the electric and the magnetic incident fields,

respectively.

In region Ri, the electric field integral equation (EFIE) and the magnetic field
integral equation (MFIE) can be formulated in two alternative ways, depending on the
method applied to project the fields onto the surfaces. Let us introduce the equivalent
electric and magnetic currents Jij(r

′) and Mij(r
′) on the interfaces Sij that surround

Ri, which are related to the fields on this region by Jij(r
′) = n̂ij×Hi(r

′) and Mij(r
′) =

−n̂ij × Ei(r
′) respectively.

Applying the equivalence principle to the total electric and magnetic fields Ei(r
′)

and Hi(r
′) in Ri, the tangential (T) EFIE and MFIE equations are obtained as follows:

T-EFIEi:
∑
j′∈Gi

(ηiLi(Jij′)− Ki(Mij′))tan

+
1

2
n̂ij ×Mij(r) =

(
Einc

i (r)
)
tan

, r ∈ Sij,∀j ∈ Gi (2.1)

T-MFIEi:
∑
j′∈Gi

(
Ki(Jij′) +

1

ηi
Li(Mij′)

)
tan

−1

2
n̂ij × Jij(r) =

(
Hinc

i (r)
)
tan

, r ∈ Sij,∀j ∈ Gi. (2.2)
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In a similar way, the twisted or normal (N) equations in Sij throughout Ri can be
written as

N-EFIEi : n̂ij ×
∑
j′∈Gi

(ηiLi(Jij′)−Ki(Mij′))

−1

2
Mij(r) = n̂ij × Einc

i (r), r ∈ Sij,∀j ∈ Gi (2.3)

N-MFIEi : n̂ij ×
∑
j′∈Gi

(
Ki(Jij′) +

1

ηi
Li(Mij′)

)
+
1

2
Jij(r) = n̂ij ×Hinc

i (r), r ∈ Sij,∀j ∈ Gi. (2.4)

In Eqs. (2.1-2.4) Gi denotes the set of indices of the regions surrounding region Ri

(for example, in Fig. 1, G2 = {1, 3, 5}), ηi is the intrinsic impedance in medium Ri,
Einc

i (r) and Hinc
i (r) are the incident fields due to the sources located inside Ri, and the

integro-differential operators L and K are defined as

Li(Xi) = jki

∫
S

Xi(r
′)gi(r, r

′)dS ′

+
1

jki
∇
∫

Xi(r
′)∇′gi(r, r

′)dS ′ (2.5)

Ki(Xi) = PV

∫
S

Xi(r
′)×∇gi(r, r

′)dS ′ (2.6)

with r the observation points approaching to Sij from the interior of region Ri and
with r′ ∈ Sij′ the source points at the boundaries surrounding Ri. ∇′ denotes the
gradient in the primed (source) coordinates, PV denotes the Cauchy principal value
of the integral in Eq. (2.6), ki is the wavenumber in Ri, and

gi(r, r
′) =

e−jki|r−r′|

4π|r− r′|
(2.7)

is defined as the homogeneous Green’s function in Ri. The summations in equations
(2.1) to (2.4) account for all the interfaces Sij′ surrounding Ri (including Sij). Xi

stands for any electric (Ji) or magnetic (Mi) current radiating in Ri. At this point,
fulfilling the procedure of [72] to derive a set of stable and well-tested SIEs, the above
integral equations are combined in region Ri, leading to the two following combined
field integral equations on Sij [73]

JCFIEi: ai
1

ηi
T-EFIEi + biN-MFIEi (2.8)

MCFIEi: − ciN-EFIEi + diηiT-MFIEi (2.9)
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with ai, bi, ci and di the appropriate complex combination coefficients. The next step
is to combine Eq. (2.8) for regions Ri and Rj into a single integral equation for each
interface Sij as follows:

JCFIEij: ai
1

ηi
T-EFIEi + aj

1

ηj
T-EFIEj + biN-MFIEi + bjN-MFIEj (2.10)

which substituting (2.1) and (2.4) can be expressed as

JCFIEij: ai
∑
j′∈Gi

(
Li(Jij′)−

1

ηi
Ki(Mij′)

)
tan

+ aj
∑
j′′∈Gj

(
Lj(Jjj′′)−

1

ηj
Kj(Mjj′′)

)
tan

+ bin̂ij ×
∑
j′∈Gi

(
Ki(Jij′) +

1

ηi
Li(Mij′)

)
+ bjn̂ji ×

∑
j′′∈Gj

(
Kj(Jjj′′) +

1

ηj
Lj(Mjj′′)

)

+
1

2

(
ai
ηi
n̂ij ×Mij(r) +

aj
ηj
n̂ji ×Mji(r)

)
+
1

2
(biJij(r) + bjJji(r))

= ai
1

ηi

(
Einc

i (r)
)
tan

+ aj
1

ηj

(
Einc

j (r)
)
tan

+ bin̂ij ×Hinc
i (r) + bjn̂ji ×Hinc

j (r), r ∈ Sij. (2.11)

In a similar way, Eq. (2.9) is combined for regions Ri and Rj to obtain another single
integral equation on Sij:

MCFIEij: − ciN-EFIEi − cjN-EFIEj + diηiT-MFIEi + djηjT-MFIEj (2.12)



2.2. Method of Moments 13

which applying (2.3) and (2.2) can be expressed as

MCFIEij: − cin̂ij ×
∑
j′∈Gi

(ηiLi(Jij′)−Ki(Mij′))

− cjn̂ji ×
∑
j′′∈Gj

(
ηjLj(Jjj′′)−Kj(Mjj′′)

)
+ di

∑
j′∈Gi

(ηiKi(Jij′) + Li(Mij′))tan

+ dj
∑
j′′∈Gj

(
ηjKj(Jjj′′) + Lj(Mjj′′)

)
tan

+
1

2
(ciMij(r) + cjMji(r))

− 1

2
(diηin̂ij × Jij(r) + djηjn̂ji × Jji(r)) = −cin̂ij × Einc

i (r)− cjn̂ji × Einc
j (r)

+ diηi
(
Hinc

i (r)
)
tan

+ djηj
(
Hinc

j (r)
)
tan

, r ∈ Sij. (2.13)

thereby constituting the JMCFIE formulation.

In the last equations, summations in j′ account for all the interfaces Sij′ surrounding
each region Ri (including Sij), while summations in j′′ account for all the interfaces
Sjj′′ surrounding each region Rj (including Sij).

The boundary conditions ensuring the continuity of the tangential component of
the fields can be enforced in the previous expressions at every interface and wired to
the SIE formulation as follows:

Xij(r
′) = −Xji(r

′), r′ ∈ Sij (2.14)

where Xij stands for Jij or Mij on Sij. Equation (2.14) implies that surface currents
on opposite sides of an interface are equal in magnitude but have opposite directions.

2.2 Method of Moments

To obtain the equivalent currents Jij and Mij on the surfaces Sij, the MoM procedure
[1] is applied to the previous equations (2.11) and (2.13). First, for the sake of clarity,
the total currents on the surfaces of the whole body are collected as

J(r) = Jij(r), r ∈
⋃

i=1..M
j∈Gi

Sij (2.15)

M(r) = Mij(r), r ∈
⋃

i=1..M
j∈Gi

Sij. (2.16)
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Then, the currents on the whole body are expanded in a sum of known vector basis
functions fn in the form

J =
∑
n

Jnfn (2.17)

M =
∑
n

Mnfn. (2.18)

Jn and Mn are the unknown expansion complex coeficientes. Substituting Eqs. (2.17)
and (2.18) into Eqs. (2.11) and (2.13) and applying the Galerking testing procedure, a
system of linear equations is derived from the integral equations and can be expressed
as a dense matrix system as follows:


Zij,ij Zij,kl . . . Zij,pq

Zkl,ij Zkl,kl . . . Zkl,pq
...

...
. . .

...
Zpq,ij Zpq,kl . . . Zpq,pq



Iij
Ikl
...
Ipq

 =


Vij

Vkl
...

Vpq


(2.19)

where each block of the impedance matrix is given by

Zij,i′j′ =

[
Z

1J

ij,i′j′ Z
1M

ij,i′j′

Z
2J

ij,i′j′ Z
2M

ij,i′j′

]
(2.20)

with

Z
1J

ij,ij(m,n) = aiA
i
mn + ajA

j
mn + biB

′i
mn − bjB

′j
mn

+
1

2
(bi + bj) Imn (2.21)

Z
1M

ij,ij(m,n) = −ai
ηi
Bi

mn −
aj
ηj
Bj

mn +
bi
ηi
A′i

mn −
bj
ηj
A′j

mn

+
1

2

(
ai
ηi

− aj
ηj

)
I ′mn (2.22)

Z
2J

ij,ij(m,n) = diηiB
i
mn + djηjB

j
mn − ciηiA

′i
mn + cjηjA

′j
mn

−1

2
(diηi − djηj) I

′
mn (2.23)

Z
2M

ij,ij(m,n) = diA
i
mn + djA

j
mn + ciB

′i
mn − cjB

′j
mn

+
1

2
(ci + cj) Imn (2.24)
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for the self-coupling of surface Sij,

Z
1J

ij,ij′(m,n) = aiA
i
mn + biB

′i
mn (2.25)

Z
1M

ij,ij′(m,n) = −ai
ηi
Bi

mn +
bi
ηi
A′i

mn (2.26)

Z
2J

ij,ij′(m,n) = diηiB
i
mn − ciηiA

′i
mn (2.27)

Z
2M

ij,ij′(m,n) = diA
i
mn + ciηiB

′i
mn (2.28)

for the mutual coupling between surfaces Sij and Sij′ sharing region Ri, and

Z
1J

ij,jj′′(m,n) = −ajA
j
mn + bjB

′j
mn (2.29)

Z
1M

ij,jj′′(m,n) =
aj
ηj
Bj

mn +
bj
ηj
A′j

mn (2.30)

Z
2J

ij,jj′′(m,n) = −djηjB
j
mn − cjηjA

′j
mn (2.31)

Z
2M

ij,jj′′(m,n) = −djA
j
mn + cjηjB

′j
mn (2.32)

for the mutual coupling between surfaces Sij and Sjj′′ sharing region Rj. On the
previous equations some integral terms are defined:

Ai
mn =

∫
∆m

fm · Li(fn)dS (2.33)

Bi
mn =

∫
∆m

fm · Ki(fn)dS (2.34)

A′i
mn =

∫
∆m

fm · n̂m × Li(fn)dS (2.35)

B′i
mn =

∫
∆m

fm · n̂m ×Ki(fn)dS (2.36)

I imn =

∫
∆m

fm · fndS (2.37)

I ′imn =

∫
∆m

fm · n̂m × fndS (2.38)

where ∆m is the subdomain where function fm is defined.

2.3 Multilevel Fast Multipole Algorithm - Fast Fourier

Transform

The standard MoM procedure and the Galerkin’s testing method provide an N × N
dense matrix whose solution are the N unknown coefficients In of the expansion of the
equivalent currents density in terms of basis functions.
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To reduce the otherwise prohibitive computational cost of the MoM for the case of
large-scale geometries, we apply the MLFMA-FFT. This is an extension of MLFMA to
speed-up the matrix-vector-product (MVP) in the framework of an iterative resolution
of the problem. Assuming an octree spatial decomposition of the geometry into a set
of groups, the MVP in group p can be obtained using FMM as

N∑
n=1

ZmnIn =
∑
q∈Bp

∑
n∈Gq

ZmnIn +

(
−jk

4π

)2

∫
S2

Vmp

∑
q /∈Bp

αpq(k, rpq)
∑
n∈Gq

Vqn(k̂)Ind
2k̂,m ∈ Gp (2.39)

where Bp is the set of indexes for the nearby (adjacent) groups of group p, Gp is the set
of indexes corresponding to the testing functions of group p, Gq is the set of indexes
corresponding to the basis functions of group q, and S2 is the Ewald unit sphere. In Eq.
(2.39), the near interactions between basis and testing functions belonging to adjacent
groups are calculated using the direct MoM procedure. The far (non-adjacent) group
contributions are accounted for using the standard FMM [74] by (i) aggregating the
radiation of the basis functions within each group q to the center of their groups

Vqn(k̂) =

∫
∆n

(Ī− k̂k̂) · fn(r)e−jk·(rq−r)dS (2.40)

where rq is the center of the qth group and with Ī the 3-D unit dyad; (ii) Translating
the aggregated radiations between the different groups using the translator operator

αpq(k, rpq) =
L∑
l=0

(−j)l(2l + 1)h
(2)
l (krpq)Pl(k̂ · r̂mn) (2.41)

where h
(2)
l is the spherical Hankel function of the second kind, Pl is the Legendre

polynomial of degree l, and L is the number of multipole expansion terms [41]; And
(iii), disaggregating the receiving patterns to the testing functions within each receiving
group p

Vmp(k̂) = α

∫
∆m

(Ī− k̂k̂) · fm(r)e−jk·(r−rp)dS

−(1− α)k̂ ×
∫
∆m

fm × n̂m(r)e
−jk·(r−rp)dS (2.42)

With this algorithm, the computational cost is reduced from O(NitN
2) to O(NitN

1.5),
with Nit the number of iterations required to obtain a prescribed residual error.

Using MLFMA the computational cost of the MVP can be further reduced to
O(NitN logN), using exponential translation, interpolation and adjoint interpolation
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(or anterpolation) of the fields, in the framework of a multilevel octree decomposition
of the geometry. Additionally, to benefit from the availability of multicore distributed
computers, the MLFMA-FFT extension is applied. This algorithm implements the
translation between groups at the coarsest level of the octree decomposition by per-
forming a 3-D circular convolution per sample of the Ewald sphere. This operation
is efficiently done in the transformed domain applying the FFT. MLFMA-FFT avoids
inter-process communication and equally distributes the workload among parallel pro-
cesses, posing a highly scalable parallel implementation. Solutions of surface integral
equation with up to one billion unknowns have been obtained using this method [75,76].
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After introducing background and notation for the SIE in the previous chapter,
the present chapter focuses on the detailed description of the DDM implementation,
which is one of the main developments of this thesis and constitutes the framework
for further contributions that have been devised. A multilevel tear-and-interconnect
DDM approach is developed and combined with the methods presented in Chapter 2
to address the solution of composite multimaterial objects. Highly scalable precon-
ditioners are described for the acceleration of the local solvers in the DDM scheme.
Several validation examples are also included to illustrate the capabilities of the pro-
posed methods.
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3.1 Introduction

Domain decomposition methods based on transmission conditions have been success-
fully used for the resolution of electromagnetic scattering from complex penetrable
and non-penetrable problems with different electromagnetic properties and multiscale
features. The idea is to decompose the original problem into a collection of smaller
subdomains which are solved separately and coupled back together, thus reducing the
iteration count and abling the solution of challenging problems with a good degree of
success.

The DD paradigm was initially conceived for the preconditioning of finite element
methods [77, 78], but it was finally extended to conventional SIE approaches, first
applied to non-penetrable bodies [48]– [79] and later on extended to penetrable and
composite objects [49], [80]– [52]. They provide the preconditioning necessary to over-
come the problems of ill-conditioning of the dense matrix system of linear equations
that results from the conventional SIE-method of moments formulation, and the sub-
sequent problems of slow convergence of the accelerated iterative solution. DDM takes
advantage of natural partitioning rules given by the scale and/or physics of each block
of the global geometry to split the entire problem into subdomains. Therefore, sub-
domains are coupled together taking into account the proper transmission conditions
between them and iterating in an external Krylov loop (GMRES [39]).

A possible drawback of the usual DDM approach is that it implies the introduction
of auxiliary unknowns on artificial interfaces to close the subdomains and enforce the
transmission conditions, which in some cases results in a significant computational
cost overhead [45]. In this thesis, we propose an alternative tear-and-interconnect
SIE-DDM approach which can be applied to non-penetrable and penetrable bodies,
which does not require the use of artificial surfaces between adjacent domains to get
them closed. The transmission conditions preventing unphysical reflections from the
subdomain interfaces are enforced along the tearing contours between subdomains,
avoiding the effects of charge accumulations along the artificial cuts. Additionally, this
scheme greatly simplifies the algorithm, which indeed can be more easily embedded
into existing SIE codes, and it has a good propensity for parallelization over distributed
computers.



3.2. Tear-and-Interconnect Additive Schwarz DDM Formulation 21

3.2 Tear-and-Interconnect Additive Schwarz DDM

Formulation

In this thesis, a multilevel additive Schwarz DDM preconditioner [62, 81] is applied
for the solution of the matrix system in (2.19). The procedure starts by applying a
partition of the geometry according to the geometrical features, materials and the par-
ticularities of the different blocks and subsystems of the overall problem. The naturally
splitting properties of the systems under study (perfect electric conductor surfaces, an-
tennas, etc.) can be exploited to avoid the introduction of artificial subdivisions and
interfaces. This results in a DD of the objects boundary surfaces into a collection
of non-overlapping touching and/or non-touching subdomains. The matrix equation
in (2.19) can be then left-preconditioned throughout the solutions of the individual
subdomains, as follows:

P · Z · I = P · V (3.1)

where P is the DDM block diagonal preconditioner, which can be written as:

P =


P1 0

P2

. . .

0 Pp

 (3.2)

with p the number of subdomains in the DDM. Each Pi block is the inverse of the
impedance matrix block Zi governing the local problem enclosed in subdomain i (de-
noted as Di). The subdomain matrix Zi can be obtained as:

Zi = Ri · Z ·RT
i (3.3)

where Ri is a restriction matrix that maps the complete vector of unknowns to the
sub-vector of unknowns corresponding to subdomain Di (Ii = Ri · I) , and where the
transpose RT

i is the prolongation matrix that extends a sub-vector Ii into the whole
domain. The DDM block diagonal preconditioner can be then built as:

P =

p∑
i=1

RT
i · Z−1

i ·Ri (3.4)

The rightmost MVP in the left-hand side of (3.1), Ṽ = Z · I, corresponds to the global
(outer) MVP, coupling the different subdomain solutions with one another. Meanwhile,
the leftmost product by the matrix P provides the preconditioner individual subdomain
solutions, which can be written as Ĩi = Pi · Ṽi, with Ṽi = Ri · Ṽ . Though formally
written in (3.4) with the inverses of the subdomain matrices, the individual solutions
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imply solving the following independent subdomain matrix systems by the method
deemed appropriate in each case:

Zi · Ĩi = Ṽi (3.5)

Once these “inner” subproblems are solved, their solutions are assembled together
yielding the whole solution of currents at the actual global iteration, as:

Ĩ =

p∑
i=1

RT
i · Ĩi (3.6)

Different SIE formulations can be applied to derive the matrix system of linear
equations. We use in this thesis the JMCFIE formulation described in Chapter 2, as
it poses a well-conditioned system of linear equations for both the equivalent electric
and magnetic currents. Initially, for the discretization of the integral equations the
so-called multiregion piecewise vector basis functions [73] are used, which implicitly
satisfy the boundary conditions for the currents on the boundary surfaces and line
junctions where different material regions intersect.

3.2.1 Transmission Conditions

In order to achieve good convergence with the above preconditioner, it is essential
to enforce the so-called transmission conditions among touching subdomains. In [48],
artificial PEC surfaces are defined in order to close the open regions that arise from
the splitting phase, while the approach of [82] utilizes the information of the near-
range couplings. To impose the transmission conditions that guarantee the continuity
between domains connected in the original problem, in this thesis we apply a procedure
consisting of enlarging the subdomains to incorporate the near-field current flowing
across the tearing contours. Thus, instead of solving equation (3.5), the following
equation for the augmented (overlapping) subdomains is solved:

Z′
i · Ĩ ′i = Ṽ ′

i (3.7)

where Z′
i = R′

i · Z · R′T
i is the impedance matrix block of the augmented subdomain

D′
i, Ṽ

′
i = R′

i · Ṽ and R′
i and R′T

i are the restriction and prolongation matrices for the
augmented subdomain D′

i respectively. Once these systems are solved, their solutions
are restricted-back to the original non-overlapped subdomains, as Ĩi = Ri ·R′T

i · Ĩ ′i, and
assembled together to provide the whole solution of currents at the actual stage using
(3.6).

In the implementation developed in this thesis, the enlargement to build the aug-
mented subdomains is done by including “flaps” of a quarter to a half wavelength
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width belonging to the adjacent (touching) subdomain(s). Otherwise, the restriction
and prolongation matrices are not explicitly implemented. Instead, the subdomains
are constructed following an orderly sequence from the meshed CAD models, which
are generated specifically to facilitate the application of the domain decomposition.

Each subdomain is an independent CAD model composed of two components: First,
a reduced domain, which could be made of one or more surfaces; second, one or more
inner flap surfaces. The inner flaps of one domain are intended to be part of the
outer flaps of the adjacent domains. The union of reduced domain and inner flap(s),
constitutes the actual or restricted domain, while the union of restricted domain and
the outer flaps is named as augmented domain.

The components of each domain are assembled and meshed together. Far from
constituting a problem, this way of working is common in the current CAD packages.
Different entities can be composed and meshed together, providing subsequent access
separately to the mesh (or specific sub-mesh) portion corresponding to each entity.

In the first instance, conformal meshes are applied to guarantee the current flow
across touching subdomains. In the next chapter, an alternative paradigm is presented
to deal with non-conformal discretizations, which is much more amenable to deal with
highly complex structures. However, here we need that the different subdomains have
conformal discretizations at the tear contours, defined as the touching lines between
inner flaps of adjacent domains (that is, between adjacent restricted domains). Nev-
ertheless, this operation is still available in most of the current meshing packages,
usually just by specifying the number of edges in which a contour must be discretized.
The multiregion basis functions are subsequently calculated within each subdomain.
Noticeably, all the required degrees of freedom are present at this stage except those
defined at the tearing contours, which will be defined during the DDM assembly stage.

As a result, a complete set with the different meshed components of each subdomain
is obtained. The generation of the DDM framework is an user-friendly process that
takes as input the conformal but independent meshes of each restricted subdomain
(reduced domain and flaps). The DDM structure of the entire problem is subsequently
obtained by automating the assembly of the subdomain components, leading to the
global geometry structure (ordered according to the spatial DD) and indexing lists to
the different restricted and augmented subdomains. With this scheme, applying the
restriction operator simply corresponds to picking the vector elements belonging to
a specific subdomain (restricted or augmented). Similarly, applying the prolongation
operator corresponds to putting the elements back in their correct positions of the
global structure. Remarkably, the multiregion basis functions guaranteeing current
flow across the tearing contours are generated at this stage and, importantly, assigned
only to one of the two touching subdomains, in each case.
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Figure 3.1: Sketch of the geometry decomposition into subdomains using conventional and T&I ap-
proaches

The procedure is illustrated in Fig. 3.1, compared to the conventional approach
using artificial closing surfaces. The original (penetrable or non-penetrable) domain,
whose boundary surface is denoted as S, is split into two subdomains, D1 and D2,
made up as D1 = S1 ∪ Γ12 and D2 = S2 ∪ Γ21 in the conventional DD partition, and
D1 = S1 ∪ Γ′

12 and D2 = S2 ∪ Γ′
21 in the tear-and-interconnect approach. Using this

last approach, D1 and D2 are not the subdomains really solved in each global iteration,
but the augmented subdomains are solved instead, build up as D′

1 = S1 ∪ Γ′
12 ∪ Γ′

21

and D′
2 = S2 ∪ Γ′

21 ∪ Γ′
12. Once the local solutions of the augmented subdomains are

found, these solutions are restricted back to the original subdomains, D1 and D2, and
assembled to provide the global solution. The portions of the solutions belonging to the
enlargement flaps in each case (Γ′

21 and Γ′
12, respectively) are discarded, thus paving

the way to the global iterative solver, which will not have to deal with the cancellation
of the electric potentials produced by the charges accumulated along the contours.
Remarkably, the size of the quarter to a half wavelength width enlargement flaps, Γ′

12

and Γ′
21, as required by the tear-and-interconnect approach, is usually much smaller

than the auxiliar (artificial) surfaces Γ12 and Γ21 required to close the subdomains in
the conventional DDM approach.

It is important to point out that this formulation is valid for all kinds of non-
penetrable and piecewisely homogenous penetrable composite materials. This, together
with the previously mentioned ability to deal with both closed and open surfaces,
extends its applicability to the pursued real-life EMC/EMI and plasmonics problems.

3.2.2 Multisolver step and Acceleration of Mutual Coupling
Calculation

Solving the preconditioned problem stated in (3.1) involves the resolution of the sub-
domain matrix systems in (3.5). For small subdomains, e.g. those containing small
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antennas, the quickest way to proceed is to apply the direct resolution of the MoM,
by calculating and storing the factorization of the impedance matrices in (3.5). The
resolution of these subdomains in each global iteration is thus calculated in negligi-
ble time. Even for subdomains with several tens of thousands of unknowns, this can
compensate for a longer setup time, especially if several right-hand parts are to be
solved (for example during calculation of mutual coupling between several antennas).
Conversely, accelerated iterative methods are preferred for electrically medium or large
subdomains to reduce the computational time and memory. In the proposed scheme,
independent and highly scalable MLFMA-FFT algorithms [75] are applied tailored to
the specific features and materials of each subdomain and using their own local octrees.
Any other SIE fast algorithms could be employed easily, however, without changes in
the proposed DDM framework.

Additionally, solving (3.1) also requires the calculation of the rightmost MVP in
the left hand side of that expression. This is the global MVP that couples the dif-
ferent subdomain solutions with one another in each iteration. Two alternatives are
considered at this stage. The first and more straightforward consists of applying the
hybrid MLFMA-FFT algorithm to directly compute this MVP, using a global octree
partitioning of the entire computational domain. This, however, results in a large
memory footprint. A more efficient approach consists of recycling the local octrees and
MLFMA frameworks of the individual subdomains to calculate the self-coupling terms
of the MVP, as well as to accelerate the near-field radiation of electric and magnetic
fields to all other (observation) subdomains [83]. At the observation subdomains, the
incoming radiation patterns are summed-up and projected into the testing functions,
thus completing the MVP. Special treatment is required at the tearing basis and testing
functions to account for the Cauchy singular terms bound to identity terms in over-
lapping zones between subdomains. This approach reduces the memory burden while
providing an implementation with a high parallel propensity. In addition, it impacts
favorably on other important issue related with composite material problems. The
presence of materials with different physical properties complicates the optimal choice
of setup configuration parameters of the MLFMA such as the cell size or the number of
multipoles to achieve good convergence. Using accelerated near-field radiation between
domains allows to avoid this critical point and reinforces the multisolver character of
the implementation.

3.2.3 MPI/OpenMP parallel implementation

Regarding the code implementation, the object-oriented programming language C++
is used. The use of C++ provides a clear, readable and modular code and also a
precise low-level control of the memory management. It should be noted that each
solver used to address the inner problems is defined as object oriented class dynamic
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library independently compiled and linked to the DDM framework. In that way, each
solver class is instantiated when creating as much objects of that class as subdomains
that are going to use that solver. Static initialization of the inner solvers is used to
avoid the repetition of the subdomain solver setup for each external iteration. Each
subdomain solver object is instantiated only once at the very beginning of the simula-
tion. This programming strategy takes the DDM “divide and conquer” approach one
step further, by being applied to the implementation of the code itself. New solvers
(general or ad-hoc for certain subdomains) can be straightforwardly included into the
DDM framework by building the proper shared libraries after defining the extern in-
terface data structures and methods. The iterative solver used in each Krylov loop
is the GMRES implementation from the book of SIAM Templates [39], adapting the
code for complex arguments and parallelizing it using the OpenMP standard.

Simultaneously to these algorithmic advances, there has been a sustained growth
in computer technology, leading to massively parallel high performance computing
(HPC) computers, whose computing capabilities are constantly growing. Nevertheless,
for this to result in a real advance in simulation capacity, thus getting closer to the
real industrial necessities, it is very important that solvers can benefit from the large
amount of parallel computing resources of the new architectures. In this context, the
efficient parallelization of the available fast solvers becomes a priority task.

A hybrid MPI/OpenMP parallel implementation of the DDM in distributed mixed
memory computers is proposed for the simulation of extremely large scale and com-
plex problems. In this section, the details of its efficient parallel implementation are
presented, describing the different stages of the parallel algorithm.

Solving the DDM preconditioned problem stated in (3.1) involves the local (inde-
pendent) resolution of the subdomain matrix systems involved in (3.2) at each stage of
the external iterative Krylov algorithm. At a first glance, as the DDM is a “divide and
conquer” approach, this property could be applied for simple parallel implementation
on shared memory computers. However, supporting shared-memory parallelization in
the domain decomposition might not be the best option, since the load balance would
be strongly conditioned by the partition of the problem, which is done at the user level.
A much more advantageous option is to include the shared memory parallelization into
the local solvers of each subdomain, decoupling the load balance among processors
from the domain decomposition of the geometry (see Fig. 3.2). With this scheme,
the domain decomposition depends only on the problem nature and the user prefer-
ences. An arbitrary number of subdomains can be send to each distributed computing
node, depending on the computing resources available. For small subdomains, shared-
memory parallel implementations of the direct method of moments can be applied, by
calculating and storing the factorization of the impedance matrices in (3.2). The reso-
lution of these subdomains in each global iteration can be then calculated in negligible
time. For electrically larger subdomains, a shared-memory parallel implementation of
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Figure 3.2: (a) Multilevel octree partition of the geometry; (b) Global coupling calculation.

MLFMA is applied to reduce computational time and memory.

Remarkably, solving (3.1) also requires the calculation of the rightmost matrix-
vector-product (MVP) in the left hand side of that expression. This is the global MVP
that couples the different subdomain solutions with one another in each iteration. As
the domain decomposition subdomains are distributed among different (distributed)
computing nodes, its calculation will necessarily involve communications at the network
level.

The high-scalability MLFMA-FFT algorithm [75] was adapted in this thesis to
compute this distributed MVP using a global (locally compatible) octree partition of
the entire computational domain. The global MVP calculation can be decomposed in
the following three steps:

• At the first step, the near-field couplings are computed at the process level by
recycling the local frameworks of each subdomains. In the case of MLFMA
subdomains, the near-field interaction contained in the local MLFMA solvers
are applied. And in the case of subdomains solved by MoM, the DDM scheme
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takes advantage of these MoM matrices to avoid the calculation (and memory
requirements) of some blocks of the near-field interactions present in the global
near-field coupling.

• At the second step, the far-field interactions of lower levels of the octree are
computed for the source octree cells and the interaction belonging to other process
is communicated to the corresponding process using an ALL to ALL scheme.

• And at the third step, the far-field interactions at the coarsest level are computed
with FMM-FFT through a distributed transpose of source interactions that allow
the local parallelization at the directions level, combining with an ALLtoALLw
scheme that avoid the build of a global FFT translation matrix.

The above parallelization approach is very efficient when dealing with PEC prob-
lems or large homogeneous dielectric objects. However, in the case of problems that
combine large dielectric objects with large assemblies of composite multi-region objects,
it is necessary to develop a different algorithm that takes advantage of the geometrical
and physical features of each domains at the global MVP level to reduce unnecessary
calculations.

          

     

     

     

     

        

  

  

    

     

   

   

        

  

  

  

  

  

     

  

      

   

   

  

Figure 3.3: Domain and region distribution of a composite multi-material object analyzed with DDM.

At this point, different coupling schemes are proposed to compute the global cou-
plings depending on the kind of dielectric region. It will be explained with the example
shown in Fig. 3.3. In this theoretical example, the DDM strategy is applied to a col-
lection of geometric canonical forms, providing eight structures subdomains (shown in
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Fig. 3.3). The problem is decomposed into 12 subdomains that are distributed along 6
mpi processes. At this point, the particularities of each region are taking into account,
depending on where the belonging domains are distributed, to the efficient solution of
the global coupling interaction:

• External global regions that are shared by all processes (such as region 0 in
the above example) are computed by the procedure described previously in this
section.

• Regions shared by several subdomains corresponding to different MPI processes
(such as region 2) are computed by MLFMA-FFT but only with communica-
tions between the involved computing nodes, without synchronization with other
processes.

• Regions shared by several subdomains corresponding to the same MPI process
(such as region 4) are computed by a conventional MLFMA framework without
communications.

• Regions corresponding to only one subdomain are computed using the framework
of the local solvers, taking advantage of the MLFMA structures (regions 1 and 3)
or extracting these interactions from the MoM matrix (regions 5 to 14), recycling
the matrix in the case of linked subdomains with repetition patterns (matrix
interactions recycled from inner regions of D7 to inner regions of D8 to D10).

Finally, the proposed implementation also takes advantage of the Non Uniform
Memory Architecture (NUMA) nodes distribution, reducing the inter-core communi-
cations. Importantly, to avoid large memory footprints, the global octree must be
compatible with the local ones, so the (persistent) data stored in the local MLFMA
frameworks of the individual subdomains is recicled to calculate the self- and mutual-
coupling terms of the global MVP. At the observation subdomains, the incoming ra-
diation patterns are summed-up and projected into the testing functions using their
local MLFMA frameworks, thus completing the MVP. The proposed approach greatly
reduces the memory burden, providing an extremely scalable implementation both in
time and, especially, in memory.

3.2.4 Validation and application

In this section, the effectiveness of the proposed SIE-DDM implementation is illustrated
for the solution of EM radiation and scattering problems. All the simulations shown
in this section were performed in a cluster with 4× Xeon E7-8867v3@2.5GHz (4 ×
16 cores = 64 cores) and 1 TB of RAM memory.
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Figure 3.4: Set of the geometry surfaces which make up the subdomains and detail of the multiscale.

To begin with, the coupling between two monopole mounted on a finite ground
plane (for which measurements are available in [84]) is studied [85]. The dimensions
(W×L×H) of the ground plane are 612 × 408 × 100 mm and the diameter of the
monopoles is 1.5748 mm, while their lengths are 765 mm (long monopole) and 127.5
mm (short monopole). Further details can be looked up in [84]. The geometry is
subdivided into 3 subdomains: D1 contains the ground plane, D2 includes the long
monopole antenna and D3 the short one. The surfaces that form the subdomains are
shown in Figure 3.4. It can also be observed in the inset of this figure the multiscale
features present in this geometry.

The computed S11 parameter of the larger monopole and the S12 parameter, repre-
senting the isolation between the two monopoles, are shown versus frequency in Figure
3.5. A good agreement between the computed results and the measurements can be
observed.

Next, two additional validation examples are considered to illustrate the ability and
accuracy of the proposed procedure to decompose the simulation of fully homogeneous
dielectric objects. A dielectric polytetrafluoroethylene (Teflon) cylinder is considered
first, with 12.5 m in length, 2.5 m radius, and a relative permittivity and permeability
of ϵr = 2.1− j0.00042 and µr = 1. A θ̂ polarized plane wave impinging on the cylinder
with θinc = 45◦ and ϕinc = 0◦ at a frequency of 300 MHz is considered as the excitation.
Following the tear-and-interconnect procedure, the cylinder is decomposed into three
open subdomains, as illustrated in Fig. 3.6, where the overlapping flaps to construct the
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Figure 3.5: S parameters. Simulations versus measurements. (a) S11 of the long monopole; (b)
Coupling S12 of the two monopoles on the ground plane.

augmented subdomains are also shown (using the notation of Fig. 3.1). A fairly dense
discretization was applied to benefit iterative convergence, posing 1 615 392 unknowns
for the equivalent electric and magnetic currents. Fig. 3.7 shows the equivalent electric
and magnetic current distributions on the surface for the DDM solution, calculated
with the JMCFIE formulation for penetrable bodies.

The parallel MLFMA-FFT algorithm was applied to speed-up both the reference
(single-domain) solution, as well as the local solutions and the global MVP within the
DD method. Looking at Fig. 3.7, it can be seen that no artifacts are observed around
the tearing lines, with the current perfectly flowing between subdomains. Additionally,
the DDM current solution does not show appreciable differences with the reference
solution calculated with conventional MLFMA-FFT (not shown as they are identical).
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Figure 3.6: Dielectric cylinder and partition into subdomains.

Bistatic radar cross sections (RCS) at θ = 45 were also calculated for the previous
impinging wave, and shown in Fig. 3.8. An excellent agreement between the DDM
and the reference MLFMA-FFT solution is observed. Iterative count and time to
solve (wall-clock time) convergences are gathered in Fig. 3.9 for both the DD and
the reference solution. A strong reduction of the iteration number required to attain
an iterative Krylov residual error below 10−6 is observed for the case of the DDM
solution, where only 48 iterations were required. This contrasts with the more than
1 400 iterations required for the the reference solution. Nevertheless, despite the sharp
reduction of the iterative count, it is important to note that the application of the
DDM preconditioner poses a significant increase in the cost per iteration. Indeed, the
better convergence rates are reached if a high precision is ascribed to the inner solvers
making up the preconditioner (consequently, the same iteration tolerances have been
prescribed for inner problems as for the external solver).

A better figure of merit to compare both solutions in terms of computational cost is
the wall-clock time required to complete the calculations. Looking at Fig. 3.9 (down),
it can be observed that the wall-clock convergence is much faster in the reference
MFLMA-FFT solution. This is as expected, considering that this is a well-conditioned
homogeneous example, without multiscale features or multiple materials, which was
entirely solved on a shared-memory computing node. Using DDM approaches for
this kind of well-conditioned problems does not report any benefit, as the reduction
in the number of Krylov iterations does not compensate the much higher cost per
iteration. Such well-conditioned and “medium-sized” problems can be solved faster
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Figure 3.7: Equivalent electric (left) and magnetic (right) currents (dBµA/m) induced on the surfaces
of the domain decomposed dielectric cylinder.

using MLFMA or MLFMA-FFT, provided they are properly parallelized to benefit
from the availability of many parallel cores.

Next, a dielectric slab is considered with 12 x 12 x 0.25 m3 and a relative per-
mittivity and permeability of ϵr = 2 and µr = 1. The excitation is an oblique plane
wave with incident angles θinc = 45◦ and ϕinc = 0◦ and θ̂ polarized at the frequency
300 MHz. A total of 7 381 344 unknowns are applied to model the equivalent elec-
tric and magnetic currents on the slab surfaces. The dielectric slab is divided into
nine mosaic-like subdomains, as shown in Fig. 3.10. Also in this case the subdomains
are open, which is not an inconvenience to obtain proper local solutions through the
JMCFIE formulation. As an example, consider the first subdomain, in the upper
right corner, which is represented in more detail in the inset. The subdomain is build
up as D1 = S1 ∪ Γ′

12 ∪ Γ′
14 ∪ Γ′

15, while the augmented (actually solved) subdomain
is D′

1 = S1 ∪ Γ′
12 ∪ Γ′

21 ∪ Γ′
14 ∪ Γ′

41 ∪ Γ′
15 ∪ Γ′

51 ∪ Γ′
24 ∪ Γ′

42. The other subdomains
and augmented subdomains are constructed similarly. The induced electric and mag-
netic current densities are shown in Fig. 3.7, where no artifacts are observed around
the tearing lines, with the current density flowing perfectly across the different sub-
domains. Regarding convergences, in Fig. 3.12, conclusions similar to those of the
previous example can be drawn: with the DDM solution the number of iterations is
drastically reduced, although the wall-clock time is higher for these homogeneous, well-
conditioned problems. Nevertheless, the above two examples demonstrate the validity
of the tearing-and-interconnect approach to subdivide the solution of homogeneous di-
electrics without need of defining artificial surfaces to close the subdomains. Several
challenging problems with extremely multiscale features are shown in Chapter 5 to
illustrate the capability of the proposed domain decomposition method.
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Figure 3.8: Radar cross section of the domain decomposed dielectric cylinder.
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Figure 3.9: Iteration count and wall-clock time for the dielectric cylinder.
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Figure 3.10: Partition of a dielectric plate into subdomains.

Figure 3.11: Equivalent electric (up) and magnetic (down) currents (dBµA/m) induced on the surfaces
of the domain decomposed dielectric plate.
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Figure 3.12: Iteration count and wall-clock time for the dielectric plate.
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3.3 Highly Scalable Preconditioners

As previously mencioned, solving the DDM preconditioned problem stated in involves
the resolution of the subdomain matrix systems. The physical properties of the different
parts of the geometry in a really complex system plays a fundamental role in the
selection of the optimal DDM domains to improve the outer convergence of the method.
However, the optimization of the outer iterative method in the DDM scheme results in
a complexity shift towards local solvers, which must lead with inner strong interactions
and multi-scale features like cavities or arrays of antennas. In this cases, the inclusion
of a efficient preconditioner to improve the fast solvers in the local step improve the
general performance of the method or even is needed to achieve the correct results in
really challenging methods.

In this section, a high scalability implementation of the MR preconditioner is de-
veloped in combination with the MLFMA-FFT in order to build a local solver able
to address complex multi-scale domains exhibiting deep multi-scale nature. The MR
preconditioner, alone and combined with LU preconditioner, is then judiciously em-
bedded into the formulation described in Chapter 2, rendering a vast improvement of
the matrix system conditioning by accurately handling multi-scale mesh features in
different levels of detail. A novel and more versatile formulation of the hierarchical
MR preconditioner using non-conformal meshes is included in the next sections.

3.3.1 The Multiresolution preconditioner

The multiresolution (MR) preconditioner [56] improves the spectral properties of the
original MoM matrix system by splitting the unknown current into solenoidal and
non-solenoidal parts. The procedure is divided into different steps. First, the input
triangular mesh, supporting the discretization of the problem in terms of standard
RWG basis functions, is rearranged until getting a set of meshes with different mesh-
element (cell) sizes. This is done via a multilevel algorithm in which the adjacent cells of
the previous level, starting from level-0 triangular facets, are aggregated giving rise to
macro-cells. The generalized RWG (gRWG) functions are then defined on each pair of
adjacent macro-cells, and the associated unknown current is divided into solenoidal and
non-solenoidal parts as detailed in [56,86]. This process poses the MR basis functions
of each level. The above scheme is applied recursively down to the quasi-Nyquist
(coarsest) cell-size level, where gRWGs are defined completing the set of multilevel
basis functions.

The above MR functions at the intermediate (detail) levels and gRWG functions at
the coarsest level can be described as linear combinations of the initial underlying RWG
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functions. Thereby, the MoM system matrix Z in the space of the initial RWG basis
functions can be expressed in the new functions by simply applying a change-of-basis
matrix T, as follows:

Ẑ = T · Z ·TT = (3.8)(
ẐMR ẐMR,gRWG

ẐgRWG,MR ẐgRWG

)
where the matrix T is made up of two different blocks:

T = [TMR,TgRWG]
T (3.9)

being TMR the sub-matrix describing the set of NMR basis functions defined at detail
levels, and TgRWG the sub-matrix with the set of NgRWG functions at the coarsest level,
where NMR +NgRWG = N , i.e. the total number of unknowns.

Next, a diagonal preconditioner (DP) D is applied to the MoM matrix in the new
multilevel basis, whose elements are given by:

Dii =
1√
Ẑii

, i = 1, . . . , N (3.10)

The matrix block corresponding to the gRWG functions at the coarsest level (ẐgRWG

in Eq. (3.8)) is further preconditioned in terms of its incomplete LU factorization [53],
which can be denoted as:

DgRWG · ẐgRWG ·DgRWG ≈ L ·U (3.11)

where DgRWG is the portion of D corresponding to the gRWG functions at the coarsest

level and ẐgRWG is the gRWG matrix block of Ẑ.

It is worth mentioning that a naive implementation of the above LU preconditioner
would compromise the scalability on mixed-memory architectures, burdening the com-
munications between distributed processes and drastically reducing efficiency. In this
thesis, a very efficient implementation of this operation is proposed taking advantage
of the highly localized and hierarchic nature of the new set of basis functions.

At this point, the MR preconditioner is applied to the MLFMA method described
in Chapter 2 in order to accelerate the solution (convergence) of the dense matrix
system resulting in the MoM (2.19). The application of the MR preconditioner can be
achieved through a change of basis matrix properly applied to the MoM system. This
change of bases can be efficiently applied through two sparse matrix vector products
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(SpMVP) before and after the MLFMA main MVP as
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T ′T
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where T′ = D ·T is the sparse change-of-basis matrix including the DP of Eq. (3.10).

The integration of the MR preconditioner with the MLFMA must be addressed
carefully, as operating with large sparse matrices, such as those involved in the MR
approach, could create a significant computational bottleneck in parallel deployment.

A simplified notation for the accelerated MVP in (2.39) is consided as:

y =
(
Znear + Zfar

)
· I (3.13)

where the product by Znear on the right hand side (RHS) denotes the near-field contri-
butions (adjacent groups) to the MVP, and the product by Zfar denotes the far (non
adjacent groups) contributions calculated via MLFMA-FFT as explained in Chapter 2.
These contributions correspond to the first and second terms of the RHS in (2.39) re-
spectively. I is the vector with the N unknown coefficients of the expansion of the
current density J (in the original RWG space), and y is the vector resulting from the
MVP.

The above MVP is called in the framework of the parallel iterative solving of the
dense matrix system. Applying the MR preconditioner requires GMRES to operate in
the subspace of the new set of MR basis functions, where the MVP in (3.12) should
be applied instead of (2.39). Considering that MR hierarchical bases can spread be-
yond the boundaries of individual MLFMA octree groups at the finest level, a naive
implementation of (3.12) could easily burden the parallel numerical computation. The
inclusion of the preconditioner was resolved in this thesis by incorporating two addi-
tional SpMVPs in (3.13), as follows:

ŷ = T′ ·
(
Znear + Zfar

)
·T′T · Î (3.14)

where Î is the vector with the unknown coefficients of the expansion of the current
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density J in the new set of (MR+gRWG) bases, and where

ŷ = [ŷMR, ŷgRWG]
T (3.15)

is the resulting MVP in the MR subspace, with ŷMR the part corresponding to the MR
functions defined at the detail levels and ŷgRWG the part corresponding to the gRWG
functions at the coarsest level.

Next, the LU preconditioner defined in Eq. (3.11) is applied to the gRWG part of
the MVP resulting from Eq. (3.14), as

ŷILU
gRWG = (L ·U)−1 · ŷgRWG. (3.16)

Only the gRWG bases contained in the original MLFMA near-field matrix are consid-
ered, by applying (3.8) to Znear, which is calculated for the initial RWG basis functions
at the finest level of the MLFMA octree (i.e., Ẑnear = T · Znear · TT ). Subsequently,
(3.11) is applied to the gRWG block of Ẑnear (Ẑnear

gRWG). This maximizes data locality
and the efficiency of the parallel implementation, albeit at the expense of limiting the
interactions between gRWG functions to those available in MLFMA, resulting in in-
complete LU (ILU) factorization. In the proposed implementation, this implies that
there may even be pairs of gRWG functions that are partially computed in the LU
preconditioner, since not all the partial contributions of the RWGs that make up these
macrobases are available in Znear.

The above formulation has the advantage of applying MLFMA-FFT in the initial
RWG subspace, where its parallel performance is optimized, while GMRES operates in
the preconditioned MR subspace. Importantly, the two additional SpMVPs involved
in Eq. (3.14) and subsequent application of the ILU preconditioner have been accel-
erated and judiciously embedded into the MLFMA-FFT parallel implementation. All
the required sparse matrices (T′, Znear and Ẑnear

gRWG) are stored in compress sparse row
(CSR) format. Efficient algorithms have been developed for the SpMVP parallel com-
putation using OpenMP (this also applies to the near-field calculation of the MVP in
the RWG subspace in Eq. (3.14), i.e., Znear · (T′T · Î). Instead of the usual octree-
group parallelization, a SpMVP is used to avoid memory overlapping, so only the CSR
sparse version of this matrix is stored). Additionally, Ẑnear is never fully calculated,
as only the diagonal and the gRWG block of this matrix are needed. Effective parallel
algorithms have been developed for the calculation of both elements.

The efficient implementation of the ILU preconditioner is, however, somewhat more
cumbersome, as the ILU preconditioner is not naturally prone to parallelization. Naive
implementations generally suffer from heavy inter-process communication overhead, re-
sulting in very inefficient parallel performance. This lack of scalability can be overcome
in the present case by applying the parallel sparse direct and multi-recursive iterative
linear solver (PARDISO), available in the Intel Math Kernel Library (MKL) [87]. The
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pipelining parallelism of this implementation combined with the strong sparsity and
local dependencies of the new set of hierarchical functions with respect to the ini-
tial RWGs, allow efficient parallel computation of (L · U)−1 in multicore computers,
avoiding the bottleneck normally involved when applying the ILU preconditioner in
large-scale parallel calculations.

3.3.2 Validation and application

In this section, the effectiveness of the multiresolution preconditioner implementation
is illustrated for solving realistic large-scale radiation problems to demonstrate the
capability of this efficient preconditioner to solve extremely complex local problems in
a DDM scheme.

Figure 3.13: Ferrari Testarossa CAD model with a shark monopole strip antenna.

A challenging structure consisting of a Ferrari Testarossa is considered next, as
shown in Fig. 3.13. This structure exhibits deep multi-scale nature, combining smooth
surfaces with different levels of details distributed throughout the structure: on the
sides of the doors, front and rear grills, rear cover, wheels, shock absorbers, and the
exhaust pipes. To test the proposed method the calculation of a radiation problem for
a shark-type antenna located in the ceiling is considered. The problem is solved by
MLFMA using the EFIE formulation for the entire structure. The excitation consists
of an extended delta-gap applied to the base of the shark-type antenna. The frequency
was set to 900 MHz, and an average mesh size of λ/20 was set to the smooth parts,
while a fine enough meshing (up to λ/500 in some parts) was applied to properly model
the small details, which clearly reveals the multi-scale nature of this example, yielding
a total of 1 051 408 unknowns. The simulations were calculated on an Intel(R) Xeon(R)
E7-8867 v3 computing server using 32 cores.
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Figure 3.14: Real part of the equivalent electric surface current distribution (dBµA/m) induced on
the Ferrari Testarossa.

The proposed MLFMA-MR-LU is compared to MLFMA-MR, the conventional ILU
preconditioning applied to the whole problem using RWG basis functions (indicated
MLFMA-ILU), and a raw solution using RWG without preconditioning at all (indi-
cated MLFMA). Importantly, given the large size of the problems posed, the gRWG
matrix in MR-LU is stored in CSR format and ILU factorization is accelerated and
parallelized throughout PARDISO routines, which are available from the Intel Math
Kernel Library. Sparse storage and PARDISO factorization and solving are also applied
to the conventional ILU preconditioning. This enables these ILU based preconditioners
to be used in the large examples posed, which would otherwise be intractable due to
computational burden.

The equivalent electric currents induced on the structure are shown in Fig. 3.14.
Figure 3.15(a) shows the convergence of the relative residual error to reach these cur-
rents with the number of Krylov iterations. It can be observed that both the MLFMA-
MR-LU and MLFMA-ILU approaches outperform MLFMA and MLFMA-MR, reach-
ing residual errors below 10−6 in around 1500 iterations. Nevertheless, it must be
remarked that the time per iteration is different in each preconditioner. Consequently,
a better figure of merit is the wall-clock time, defined as the time to solve the com-
plete problem, which is shown in Fig. 3.15(b). From these curves it can observed that
MLFMA-MR-LU is by far the preconditioner that provides the fastest convergence,
reaching the prescribed relative error in little more than half an hour. This contrasts
with the wall-clock time convergence of the other solutions, which remains above a
relative error of 10−3 after one hour and a half.

In view of the preceding results, it can be summarized that MLFMA-MR-ILU
constitutes the best approach of those tested to deal with this kind of multi-scale
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Figure 3.15: teration count and wall-clock time for the radiation of the Ferrari Testarossa proposed
in the Fig. 3.13

problems, providing an efficient preconditioner for the acceleration of the local solution
of large domains in the proposed DDM.
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In Chapter 3, the DDM approach proposed in this thesis was presented as a pow-
erfull tool to deal with multiscale problems. However, in the case of very large and
complex problems, a more efficient handling of the different subsystems in which the
problem is decomposed, which does not require conformal discretizations in the connec-
tions along the different subdomains, is still lacking. This chapter focuses on applying
and envisioning new cutting-edge SIE non-conformal techniques, to improve the usabil-
ity and versatility of the DDM framework in quite complex scenarios without compro-
mise accuracy and efficiency. The Discontinuos Galerkin method is formulated for the
first time in combination with the JMCFIE formulation for arbitrary non-conformal
composite problems. A study of the influence of the interior penalty stabilization pa-
rameter on the performance of the method for this new type of problem in the scope
of DG is also included. Next, the novel multibranch basis functions are introduced and
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combined with the multiresolution preconditioner for the fast solution of quasi-non-
conformal problems exhibiting deep multiscale features. This will enable for the first
time the application of quasi Helmholtz preconditioners using non-conformal meshes.
Several numerical examples are shown to demonstrate the capabilities of the proposed
methods and the convenience of their inclusion in the DDM framework.

4.1 Introduction

The extension of the surface integral equations to non-conforming meshes has ignited
intense research in the last years, with the goal of finding versatile and accurate method-
ologies to address large and multi-scale complex problems while simplifying the other-
wise necessary computer-aided-design generation and meshing processes.

Moreover, the extremely different levels of details depending on the working frequen-
cies and the proper addressing of the geometrical tends to greatly increase the number
of unknowns when leading with real life problems. In this context, h-refinement tech-
niques work to develop methods capable of incresing the accuracy of the SIE solution
for coarse-meshed multiscale problems through local mesh refinement.

Discontinuous Galerkin implementations of the SIE [50, 88–92], based on the com-
bination of the half-Rao-Wilton-Glisson basis functions with an interior penalty term,
are one of the most popular approaches to deal with this kind of problems. Those
methods were first proposed for the solution of the time-domain Maxwell’s equations
using the finite element method [93–97]. Recently, they have been extended to the SIE
formulations for nonpenetrable objects [88–91], impedance boundary condition (IBC)
objects [98,99], and homogeneous penetrable objects [92]. The allowance of discontin-
uous and possibly unstructured nonconformal meshes renders this method as a very
versatile and effective tool to handle problems with very different geometrical scales
and details. For example, the different subsystems of a larger, more complex problem
can be independently modeled, meshed and assembled back together to form a whole
connected body, without caring about mesh conforming or the presence of spurious
slits and overlaps due to slight missplacement between subsystems at the tear con-
tours. This greatly simplifies the CAD generation and meshing processes. Specifically,
achieving current continuity across the DG-treated tear lines paves the way for the
implementation of simple and scalable domain decomposition Schwarz precondition-
ers, which significantly reduce the condition number and iteration count in problems
including geometrical features at very different scales.

The key to these methods lies in the careful treatment of charge accumulation at
the (non-conforming) boundaries between the h-RWG basis functions. This is done
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through the incorporation of an IP and the appropriate selection of a stabilization pa-
rameter, closely relate to the triangular mesh size. Other non-conforming SIE schemes
alternative to DG that avoid the inclusion of an IP term (and the involved singular
integrals) are the monopolar-RWG basis functions [100–105], based on the addition of
artificial testing surfaces or the use of volumetric testing integrals.

More recently, a different approach has been introduced based on the use of the
so-called multi-branch RWG basis functions [71]. These functions are defined over non-
conforming triangles sharing a common tearing line, with the only restriction that the
nodes of the coarser mesh at the tearing line are consistent with part of the nodes of
the finer mesh (i.e, the mesh must be partially node-conforming). This is the type of
meshing emerging after h-refinements, so the MB-RWG basis functions are especially
suited to this problem. But they also bring other advantages. In particular, they
can be easily integrated into existing RWG-based SIE codes without the need of in-
cluding penalty terms, additional volumetric integrals or artificial surfaces, while still
simplifying the CAD and mesh generation. Additionally, MB-RWG are div-conforming
functions, which has allowed the derivation of loop (solenoidal) bases as linear combi-
nation of them [106].

Regardless of the meshing and basis functions applied, as it is mencioned in Chap-
ter 1, SIE methods suffer from ill-conditioning when applied to realistic high-fidelity
models that include multi-scale features, making their resolution challenging. The use
of physics-based preconditioners such as the multiresolution preconditioner (described
in Chaper 3) allows to significantly improve the convergence and iterations count in
these problems. However, despite recent efforts to improve the capabilities of DG-SIE
methods, to date the application of physics-based preconditioners is limited to con-
forming schemes such as those relying on the use of RWG basis functions. This is, in
part, due to the non div-conforming properties of the h-RWG functions.

In this context, the use of a set of div-conforming functions defined over (possi-
bly) non-conforming meshes and combined with physics-based preconditioners would
bring a very appealing advantage, posing a good compromise between performance
and versatility in electromagnetic modelling of complex geometries with multi-scale
features.
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4.2 Discontinuous Galerkin

4.2.1 Formulation

Starting from the matrix system provided by the discretization of the JMCFIE for-
mulation (2.19) (described in Chapter 2) and considering a piecewise homogeneous
penetrable object in a homogeneous (unbounded) medium, DG is applied to the collec-
tion of surfaces Sij composing the entire problem. To provide the greatest versatility in
preparing and solving challenging problems, each surface Sij can be decomposed into
one or more nonoverlapping surfaces Sk, in which conformal discretizations are ap-
plied, while allowing nonconformal meshes across the tear lines and junctions between
different surfaces. This decomposition and the corresponding notation are indicated in
Figure 4.1. In general, it can be writen:

Sij =
⋃
k

Sk (4.1)

Conventional (normal-continuous) RWG basis functions are considered to represent
the currents within the Sk conformal-meshed surfaces. At the nonconformal tear con-
tours between them, half-RWG basis functions, also named as monopolar-RWG [100]
or L2 basis functions [88], are applied. Taking into account that these are non-div-
conforming functions, the normal continuity constraint is broken across the tear lines.
This continuity will be weakly restored by applying the DG formulation, as described
next.

First, equations (2.33) and (2.35) involving operator L for the tangential and normal
equations respectively must be developed. As K is a Fredholm integral operator of the
second kind, it is not naturally concerned by the lack of normal continuity. Equation
(2.33) involves hyper-singular integrals, whose singularity order can be reduced in terms
of the product rule for divergence and the divergence Gauss theorem, by transferring
the gradient operators from the Green’s function and the scalar potential (last term
in (2.5)) to the divergence of the basis and testing functions in (2.33). Thus it can be
written
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Figure 4.1: Decomposition of the boundary surfaces and interfaces of the composite object. Notation
used for Discontinuous Galerkin. Interface Sij between regions Ri and Rj is decomposed into two
nonoverlapping surface pieces, Sij = S1 ∪ S2, yielding the tear contour C12. Interface Sik separating
regions Ri and Rk is modeled by surface S3. Conformal meshes are applied inside surfaces Sk, k = 1..3,
while nonconformal meshes are allowed in the tear contour C12 and multi-material junction contours
C13 and C23.
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]
(4.2)

where ∂Sm denotes the line contour of function subdomain ∆m, and m̂m is the cor-
responding in-plane outgoing unit vector orthogonal to ∂Sm. The last three terms
on the right hand side of (4.2) involving line integrals vanish in the case of using div-
conforming basis and testing functions, as is the case with RWG basis/testing functions.
Otherwise, charges may accumulate on the edges where the normal component of the
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basis and testing functions do not vanish, as is the case with half-RWG functions.
Consequently, the last three terms of (4.2) must be accounted for in the formulation
when such functions are applied.

Similarly, applying the product rule for divergence, the divergence Gauss theorem
and the mixed product identity to transfer the gradient operators from the Green’s
function and the scalar potential to the divergence of the basis function and the rotated
testing function in (2.35)
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m̂m · (fm × n̂m)

∮
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m̂n · fngi(r, r′)d∂S ′d∂S

]
(4.3)

Equations (4.2) and (4.3) correspond to a symmetric DG formulation [88,98]. Using
RWG basis and testing functions, all terms on the right hand side of (4.3) vanish except
the first and fourth, the fourth posing a line integral along the testing function contour.
However, in case of using half-RWG basis and testing functions, the double-line integral
of term number five must be taken into account.

All integrals above are bounded and accurately evaluated using the usual singular-
ity extraction or cancellation procedures for RWG basis functions [2, 107], except the
double-contour integrals in the fifth terms on the right hand side of (4.2) and (4.3).
Those integrals are problematic as they become unbounded when the testing and charge
lines coincide, preventing the application of the Galerkin formulation unless they are
avoided or treated in some way.

A carefully inspection of those problematic terms reveals that they can cancel each
other out in the neighboring (touching) half-RWG functions at the two sides of the
tear lines, provided that the continuity of the normal component is enforced. Simply
put, those terms essentially contribute to weakly enforce the current continuity across
the tear lines, as it suffices to guarantee such continuity to push them to zero. In
light of this, they can be omitted from the formulation and replaced by the condition
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to weakly enforce normal current continuity across adjacent contours, which is much
more favorable to evaluate. This condition can be written as follows

t̂k ·Xk + t̂k′ ·Xk′ = 0 on Ckk′ (4.4)

where Ckk′ is the tear contour line between adjacent surfaces Sk and Sk′ , with Ck the
contour line on Sk and Ck′ the contour line on Sk′ . t̂k is the in-plane outgoing unit
vector orthogonal to contour Ck, and t̂k′ is the in-plane outgoing unit vector orthogonal
to contour Ck′ . This can be written for the discretized problem as∑

∂Sm
∈Ck

∑
∂Sn
∈Ck′

(m̂m · fmXm + m̂n · fnXn) = 0 on Ckk′ ,

r ∈ ∂Sm ∩ ∂Sn (4.5)

and introduced into the formulation after adequately weighting with the testing func-
tions as follows

β

jki

∑
∂Sm
∈Ck

∫
∂Sm

m̂m · fm
∑
∂Sn
∈Ck′

(m̂m · fmXm + m̂n · fnXn)d∂S = 0

on Ckk′ , r ∈ ∂Sm ∩ ∂Sn (4.6)

where Xn stands for the Jn or Mn current coefficients, and β is the so-called interior
penalty stabilization parameter [88]. The proper selection of the last parameter, which
depends on the mesh size of the discretization, is very important for the convergence of
the method. An in-depth study of this parameter will be carried out in the numerical
results section.

The above expression is the IP term [88, 92], used to penalize the charge accu-
mulation along the tear contours. This condition is included in the JMCFIE matrix
formulation (2.19) by augmenting (2.33) with the following IP term:

IP i
mn =

β

jki

∫
∂Sm

m̂m · fm m̂n · fn d∂S (4.7)

4.2.2 Multimaterial junctions

In this thesis it is demonstrated that the DG formulation can address nonconformal
junctions between interfaces concerning different regions with different materials. This
is one of the most challenging issues in the analysis of arbitrary complex composite
objects using the SIE-MoM approach, as the imposition of normal current continuity
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Figure 4.2: Multi-material junction between four regions. Straight dashed lines denote interfaces
between regions. The central black point denotes the contour lines between surfaces that meet at the
junction. Solid curved arrows denote the boundary conditions implicit in the JMCFIE formulation.
Small curved dashed arrows denote interior penalty conditions. The large dashed circular arrow
denotes continuity of the normal current across the junction, enforced by the combination of the
boundary conditions and the (weakly imposed) interior penalties.

across the entire junction becomes particularly tedious. It usually requires the explicit
enforcement of the boundary conditions to combine and remove extra unknowns and
equations at junctions [72]. Although the process can be somewhat simplified by using
solutions such as the multiregion oriented piecewise basis functions [73], it still requires
special treatment and conformed meshes across the junction. Otherwise, the use of
non-conforming schemes stands out as a more versatile alternative for modeling highly
complex composite objects.

The proposed DG-JMCFIE formulation can be straightforwardly applied to such
multi-material piecewise homogeneous problems without any restriction or particular
procedure, and without concern for mesh conformity across junction lines. Figure 4.2
shows an example of junction between four different regions Ri, i = 1..4, posing four
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nonoverlapping interfaces S12, S23, S34 and S14. Let us assume that these interfaces
are meshed separately, resulting in four meshed surfaces Si respectively, i = 1..4,
which may be nonconformal across the junction. Four contour lines between pairs
of surfaces that share a region are formed at the junction, namely C41, C12, C23 and
C34. Each pair of straight arrows entering and leaving the junction represents a half-
RWG basis function supporting an unknown Xi, which stands for the current entering
or leaving the junction on surface Si. These coefficients account for the current on
both sides of the surface, as they are equal but flow in the opposite direction due to
the boundary conditions embedded in the JMCFIE formulation, which are implicitly
applied on surfaces Si (this fact is denoted by the continuous circular arrows in Fig.
4.2). Therefore, four independent unknowns arise in the junction. To weakly guarantee
the normal current continuity throughout the junction, it is sufficient to apply the
interior penalty independently to the four contours previously defined within each
region (as otherwise is always the case in the tear lines between any non-conforming
surfaces), which is denoted as IP i

Ckk′
(circular dashed arrows in the figure). Remarkably,

with this procedure nothing particular is needed for the junction case. The normal
current continuity across the whole junction is guaranteed by the combination of the
boundary conditions imposed on the surfaces and the interior penalty (weakly) imposed
on the contours within each region. All this will be confirmed through the numerical
experiments of the next section.

4.2.3 Interior penalty stabilization parameter

The effect of the interior penalty stabilization parameter β (4.7) on the iteration count
for problems involving nonconformal and non-uniform meshes at different scales is
investigated next. A dielectric cube with 1 m edge size and relative permittivity ϵr =
2.0 in vacuum background is considered. The entire surface is partitioned into eight
symmetrical surface pieces (defined each in a corner) where conformal meshes are
applied, while nonconformal meshes are allowed at the tear contours between them.
The inner (conformal meshed) surfaces are modeled using RWG basis and testing
functions, while half-RWG are applied in the discontinuous tear lines. Different mesh
sizes (h) varying from h = λ/10 to h = λ/40 are applied to the different surfaces and/or
tear lines, posing a total of nine different combinations. The meshes used in each case
are shown as insets in the corresponding results figures. A plane wave impinging in
the −ẑ direction at a frequency of 300 MHz, with the electric field polarized along the
x̂ direction, is considered as the excitation.

All problems are solved by MLFMA with the number of unknowns varying from
3 648 to 64 320 unknowns. The raw solution, without preconditioning, is compared to
the Jacobi (J), block-Jacobi (BJ) and ILU preconditioners. In each case, the reference
is the iteration count obtained for the equivalent conformal problem solved by RWG
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Figure 4.3: Iteration count as a function of β to reach a relative residual error below 10−6 for a cube
with 1 m edge size and ϵr = 2.0 decomposed into 8 surface pieces with uniform mesh size of h = λ/10.

basis functions using the same preconditioner.

The influence of the mesh size in the case of uniform discretizations is studied, using
the same size h for the different surface pieces in which the cube is decomposed. Figure
4.3 shows the number of iterations versus parameter β required to achieve a relative
residual error below 10−6 for h = λ/10. Both conformal and nonconformal meshes at
the tear lines are considered, on which half-RWG are defined in any case. Looking at
the figure, it can be observed that the maximum iteration count is obtained in all cases
for IP factors around β = 0.2. The optimum value of this parameter is found around
0.5, for which the minimum number of iterations to reach the prescribed precision is
found for almost all DG solutions. The number of iterations is indeed low, from 42 to
60 depending on the preconditioner. This is merit of using JMCFIE, which combines
both tangential and normal equations resulting in a well-conditioned matrix system.
An interesting case is that for β = 0, meaning that no interior penalty is considered at
all. Convergence in this singular case is in general poor, except when using block-Jacobi
and ILU preconditioners. Remarkably, it can be also observed from Fig. 4.3 that the
iteration count in the case of using ILU preconditioner does not depend on the penalty
factor, but it is constant and as low as 20 iterations for all values of β. Nevertheless, it
is important to note that the application of this preconditioner is computationally more
expensive and less effective as the electrical size of the problem increases. Leaving aside
the ILU preconditioner, the best iteration count is obtained for block-Jacobi, reaching
almost equal convergence to that provided by the conformal reference solution using
exclusively RWG functions for the whole problem.

Figure 4.4 shows the results for the previous cube when a uniform denser meshing
is applied, with h = λ/20. Again, both conformal and nonconformal results using
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Figure 4.4: Iteration count as a function of β to reach a relative residual error below 10−6 for a cube
with 1 m edge size and ϵr = 2.0 decomposed into 8 surface pieces with uniform mesh size of h = λ/20.

half-RWGs at contour lines and the different preconditioners are depicted, as well as
their respective conformal RWG reference solutions. Looking at this figure, it can
be observed a sharper dependence with β, with the iteration counts growing faster
as we move away from the optimal value of the interior penalty parameter, which is
found around β = 0.7. The values of this parameter for which the iteration number is
maximummove also forward, up to around 0.3. What stands out in this result, however,
is the excellent convergence of the block-Jacobi preconditioner with both conformal
and nonconformal meshes, which continues to be able to reach the convergence of the
equivalent conformal RWG problem.

In the next experiment, the influence of the absolute electrical size of the problem
is studied when still using uniform size meshes. A cube with 2 m edge length and
uniform mesh size of h = λ/10 is considered. The same solutions as in the previous
examples are considered. Looking at Fig. 4.5, it can be observed a general increase of
the number of iterations for all cases, but this rise is well correlated to the increase in
the number of iterations for the RWG reference examples. Regarding the location of
maximum and minimum of the iterative count with respect to the value of β, a good
concordance is observed with the results of Fig. 4.3, revealing that the electrical size
of the object does not affect the optimal choice for the penalty factor.

In the following numerical experiments, attention is directed to to the effect of mesh
disparity across the tear lines corresponding to transitions between surface meshes of
different size. For this, the previous cube of ϵr = 2.0 and edge size of 1 m is considered,
which is modeled with alternating mesh sizes of h = λ/10 and h = λ/20 for the
different surface pieces in which it is decomposed, as shown in the inset of Fig. 4.6.
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Figure 4.5: Iteration count as a function of β to reach a relative residual error below 10−6 for a cube
with 2 m edge size and ϵr = 2.0 decomposed into 8 surface pieces with uniform mesh size of h = λ/10.

Three different transition cases are considered: i) Using coarse mesh on both sides of
the tear contours, by applying an adaptive mesh thickening in the vicinity of the tear
contours on densely meshed surfaces, as shown in the inset of Fig. 4.6; ii) Using fine
mesh on both sides of the tear contours, by applying an adaptive mesh refinement
in the vicinity of the tear contours on coarsely meshed surfaces, which is depicted in
the inset of Fig. 4.7; and iii) Applying different mesh size on both sides of the tear
contours, as depicted in the inset of Fig. 4.8. In the first two cases, both conformal
and nonconformal meshes are considered. Naturally, only nonconformal meshes can
be applied on the latter case, as the triangles on both sides of the tear contours very
different in size.

Figures 4.6 to 4.8 gather the results for the different transition examples mentioned
above. In all cases good convergences are obtained, demonstrating the robustness of the
proposed DG-JMCIE approach to address nonconformal meshes of very different sizes.
Interestingly, the iteration number versus the value of β shows a great agreement with
the previous results, in which uniform meshing was applied. In this way, the results
shown in Fig. 4.6 for the case where coarse meshes are applied to both sides of the
tear contours (both conformal and nonconformal) are comparable to those of Fig. 4.3,
where uniform coarse mesh sizes are considered for the entire problem. Similarly, the
results of Fig. 4.7, where a fine mesh is applied to both sides of the tear contours, are
comparable to those of Fig. 4.4, where uniform fine mesh sizes are considered for all
surface pieces. Remarkably, the results of Fig. 4.8, calculated considering different mesh
sizes on both sides of the tear contours (facing large triangles on one side of the tear
contour with nonconformal small triangles on the other side) are also similar to those
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Figure 4.6: Iteration count as a function of β to reach a relative residual error below 10−6 for a cube
with 1 m edge size and ϵr = 2.0 decomposed into 8 surface pieces with alternating mesh sizes of
h = λ/10 and h = λ/20 and coarse mesh on both sides of the tear contours.

of Fig. 4.4. The reference solutions for this case are those of Fig. 4.7. Further analysis
on the convergence histories in Fig. 4.8 shows that block-Jacobi for this example again
yields iteration numbers similar to those using conventional RWGs, revealing that this
case, of great practical interest, can also be solved accurately in a reasonable time
despite drastic mesh size transitions.

In view of the above results, it can be elucidated that the optimal choice of β is
determined especially by the size of the mesh in the tear lines between surfaces, where
half-RWG basis and testing functions are defined, rather than the mesh size in other
surfaces. Importantly, the combination of meshes at very different scales does not
impair the performance of the method. A high precision is still achieved in a small
number of iterations, on the order of those required in the reference solution with
RWGs, thereby paving the way for solving highly complex multiscale problems in a
much more comfortable manner.

4.2.4 Composite piecewise homogeneous objects

A final investigation is included to demonstrate the ability and flexibility of the pro-
posed DG-JMCFIE approach to handle composite objects made up of different materi-
als, without need of specific treatment at the multi-material junctions. This eliminates
one of the major complications in modeling composite objects with integral equation
methodology. The example considered is a composite dielectric cone with a diameter
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Figure 4.7: Iteration count as a function of β to reach a relative residual error below 10−6 for a cube
with 1 m edge size and ϵr = 2.0 decomposed into 8 surface pieces with alternating mesh sizes of
h = λ/10 and h = λ/20 and fine mesh on both sides of the tear contours.

of 2 m and 4 m height, in vacuum. It is made up of nine regions Ri, i = 2..10, with
relative permittivity constants growing correlatively from ϵr2 = 2.0 to ϵr10 = 10.0.

The geometry is depicted in Fig. 4.9. The cone is divided into three main sections
along the z-axis. The two lower sections are subdivided into four regions each (R2

to R5 and R6 to R9 respectively), while the upper section is made of a homogeneous
material (R10). This poses 29 boundary surfaces and interfaces between regions. The
boundary surface of the last region is in turn decomposed into four surfaces, resulting in
a total of 32 nonoverlapping surfaces. These surfaces are independently tessellated and
rejoined to assemble the entire geometry, resulting in different kinds of nonconformal
tear contours: junction contours at the intersections between three or four surfaces,
separating three or four different regions, as well as tear contours between different
surface pieces assembling the same homogeneous interface between two regions. In
all cases, meshes are nonconformal in the tear and junction contour lines, which in
some cases are curved. A total of 69 294 unknowns are applied to model the problem,
divided into 66 436 RWG within the conformal surfaces and 2 858 half-RWG in the
nonconformal junction and tear contours. The excitation is an x̂-polarized plane wave
propagating in the −ẑ direction at a frequency of 300 MHz.

Figure 4.10 shows the triangles at the tear and junction contours for this exam-
ple. On the left side, the assembly of half-RWG basis functions at junctions and tear
contours to apply the proposed JMCFIE-DG solution is depicted. The (nonconformal)
triangles on both sides of the junctions are represented in different colors, meaning that
different current coefficients are associated with each half-RWG function. The normal
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Figure 4.8: Iteration count as a function of β to reach a relative residual error below 10−6 for a cube
with 1 m edge size and ϵr = 2.0 decomposed into 8 surface pieces with alternating mesh sizes of
h = λ/10 and h = λ/20 in the surfaces and tear lines, resulting in drastic mesh size transitions.

current continuity is in this case weakly enforced throughout the interior penalty. On
the right side, the assembly of RWG basis functions at junctions used to calculate the
reference result is depicted. The same color is used to depict (conformal) triangles on
both sides of the junctions, which means that the RWG functions defined in the differ-
ent regions and sharing a given junction edge are combined under a single unknown,
thus imposing the normal current continuity through the junction (in this case, the
multi-region basis functions of [73] are applied to facilitate this solution).

Fig. 4.11 shows the convergence of this problem versus β to reach a residual error
below 10−6. A good concordance is observed with the results provided in the previous
section, despite the difference in the geometry and composition of the problem, which
to a certain extent shows that JMCFIE-DG is an adequate method for any type of
problem, regardless its geometry and complexity. Highly accurate results are obtained
in reasonable number of iterations despite the use of nonconformal meshes and the
high contrast of the media involved in this case, provided that an appropriate penalty
factor is chosen.

In Fig. 4.12 the θ̂θ̂-monostatic RCS of the composite cone in the θ = 90 plane,
calculated using the proposed JMCFIE-DG formulation, is compared with the reference
result obtained via conventional JMCFIE-RWG formulation. It can be observed that
they perfectly agree with each other, further validating the proposed method.

Finally, the equivalent electric and magnetic currents induced at the external bound-
ary surfaces of the cube are shown in Fig. 4.13 for the nonconformal JMCFIE-DG and
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Figure 4.9: Cone-shaped multi-material composite object made up of nine different regions with
dielectric permittivity growing correlatively from ϵr2 = 2.0 to ϵr10 = 10.0.

the reference RWG solutions. Looking at this figure, it can be observed that both the
electric and magnetic current distributions posed by JMCFIE-DG exactly match the
reference solution, flowing smoothly and without the presence of any discontinuity or
artifact around the junction contours. All of the above highlights the enormous poten-
tial of the inclusion of the DG method in a DD scheme, especially in this case applied
to complex composite multi-material objects.
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Figure 4.10: Half-RWG functions defined at nonconformal junctions and tear contours for the cone-
shape example of Fig. 4.9 (left). RWG functions defined at conformal junctions and tear contours for
the cone-shape example of Fig. 4.9(right).

Figure 4.11: Iteration count as a function of β to reach a relative residual error below 10−6 for the
composite object of Fig. 4.9.
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Figure 4.12: θ̂θ̂-monostatic RCS of the cone-shaped composite object of Fig. 4.9 at 300 MHz in the xy-
plane, calculated by the JMCFIE-DG formulation and compared with the conformal RWG reference
solution.

Figure 4.13: Equivalent electric (left) and magnetic (right) current distributions (dBµA/m) on the
external boundary surfaces of the composite object of Fig. 4.9 under plane wave excitation at a
frequency of 300 MHz calculated by the proposed JMCFIE-DG formulation (left) and reference RWG
solution (right).
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4.3 Quasi-Helmholtz preconditioners in non-conformal

meshes

In this section the MR preconditioner is developed over the multi-branch RWG basis
(MB-MR) functions to automatically build a multi-level quasi-Helmholtz decomposi-
tion applied to the MoM solution of complex multi-scale problems discretized with
non-conformal meshes.

4.3.1 MB-RWG basis functions

𝝆+
𝝆𝟏
−

𝝆𝟐
−

𝝆𝟑
−

𝑇+

𝑇1
−

𝑇2
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𝑇3
−

𝑙+

𝑙1
−

𝑙2
−

𝑙3
−

ℎ+

ℎ1
−

ℎ2
−

ℎ3
−

Figure 4.14: Example of a MB-RWG basis function with three branches.

RWG basis functions are the basis functions par excellence for solving SIEs problems
defined in terms of triangular meshes. They are defined over two domains (namely,
the positive and negative triangles) and have well-known properties that make them
especially suitable for solving integral equation problems. Analogous to the RWG
functions, the MB-RWG functions are defined over a positive and a negative domain,
but in this case one of the two domains (which without loss of generality we will consider
here to be the negative one) can be made up of several adjacent triangles (as shown in
Fig. 4.14), instead of a single one, as:

fMB
n (r) =


ρ+
n

h+
n
, with r ∈ T+

n

−ρ−
n,i

h−
n,i

, with r ∈ T−
n,i, i = 1, . . . ,Mn

0, otherwise

(4.8)

where T+
n is the positive triangle, and T−

n,i are theMn triangles in the negative domain of
the n-th MB-RWG basis function; ρn and hn are respectively the position vector relative
to the free vertex and the height relative to the common edge of each triangle. The
MB-RWG functions thus defined keep all the desirable properties of RWG functions,
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namely, null normal component around the outer edges, unit normal component at the
common edge lines, and a divergence that can be calculated analytically as

∇ · fMB
n (r) =


2
h+
n
, with r ∈ T+

n

− 2
h−
n,i

, with r ∈ T−
n,i, i = 1, . . . ,Mn

0, otherwise

(4.9)

4.3.2 MB-MR preconditioner

The standard MR generation procedure is described in Section 3.3.1 of Chapter 3.
In the following sections the MR generation scheme will be detailed in the case of
non-conformal meshes where MB-RWG basis functions are defined.

4.3.2.1 Multilevel mesh grouping algorithm

One of the critical points regarding the computational efficiency of the MR precondi-
tioner is the development of a function grouping algorithm that allows reducing the
order of the local SVDs needed to split the underlying currents into their solenoidal
and non-solenoidal parts. The grouping strategy described here extends the scheme
proposed in [108] to non-conformal triangular meshes.

In the case of non-conformal or partially non-conformal meshes supporting MB-
RWG basis functions, some additional constraints are required to ensure charge con-
servation in emerging macro-cells. Such constraints are addressed through specific
treatment of the non-conformal input mesh (at initial, level-0), where both RWGs and
MB-RWGs are defined, posing a proper definition of the level-1 generalized basis func-
tions. In particular, during the aggregation procedure at level-0, if the picked triangle
belongs to a negative domain of an MB-RWG function (see Fig. 4.14), all negative
triangles of that domain must also be aggregated. This guarantees that each level-1
generalized basis function can be described as a linear combination of complete level-
0 RWG and MB-RWG functions. Importantly, to satisfy the charge conservation in
level-1, all triangles with a vertex belonging to the internal nodes of this MB-RWG
must also be aggregated in the same macro-cell.

To better illustrate the described procedure, Fig. 4.15 shows two possible grouping
results when MB-RWG functions come into play, depending on the position of the
“central triangle” picked to make the grouping. In the first case, let us consider the
central triangle labeled “(1)” in Fig. 4.15(a). The triangles labeled “1” and “2”, be-
longing to respective MB-RWG basis functions, are adjacent to this central triangle, so
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they are aggregated to the macro-cell labeled “1” in the Fig 4.15(b). The negative tri-
angles of these functions remain free, and will be added in subsequent iterations of the
algorithm. However, considering the constraints appointed above, all the negative tri-
angles of each MB-RWG function, together with their adjacent triangles connected to
the internal nodes of those functions, must be assigned to the same macro-cell(s). For
example, in this case, they have been grouped giving rise to two separate macro-cells,
labeled ”3” and ”4” in Fig. 4.15(b).

In the second case, the triangle labeled “(2)” in Fig. 4.15(a) is considered as central
triangle, which is part of an MB-RWG function. In this case, all triangles belonging to
this function are adjacent to triangle (2) and therefore they are assigned to the same
macro-cell of level-1, labelled “2” in Fig. 4.15(b). Again, note that all adjacent triangles
of level-0 connected to the internal nodes of the MB-RWG must also be included in
the same macro-cell.

Figure 4.15: Example of cell grouping. (a): level-0 mesh including three MB-RWGs; (b): level-1 mesh
(each macro-cell corresponds to a group of adjacent triangles with the same color).

Taking into account the above procedures, the aggregation process is approached
through an iterative scheme repeated level by level, in which the central cells are se-
lected and merged with their neighbors (connected or adjacent cells). The implemented
algorithm tries to maximize aggregation by avoiding holes in the grouping procedure.
The procedure provides good performance compared to other grouping strategies (such
as octree-based clustering schemes), posing a good balance in the number of child cells
throughout the multilevel grouping, regardless of the density of the underlying mesh.

Finally, depending on the electrical-size of the discretized structure, the grouping
scheme is applied until the quasi-Nyquist (coarsest) cell-size level, or up to when all
level-(L−1) cells are completely included in one level-L cell only.
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4.3.2.2 Generalized MB-RWG Basis Functions

A set of generalized basis functions f li is defined on each pair of adjacent level-l gen-
eralized cells C l,+

i and C l,−
i and described as linear combination of the level-(l − 1)

functions as follows:

f li (r) =

N l−1
i∑

n=1

f l
i,nf

l−1
µi(n)

(r),

µi ∈ {j = j1, . . . , jN l−1
i

/f l−1
j (r) ∈ C l,+

i ∪ C l,−
i } (4.10)

where N l−1
i is the number of level-(l − 1) functions defined strictly within the f li (r)

domain. An example of generalized MB-RWG function is shown in Fig. 4.16 defined
on two level-1 cells.

This set of generalized bases reproduces the behavior of the initial MB-RWG basis
functions at each level. In order to find the coefficients f l

n,i of the above expansion,
the surface divergence operator ∇s· is applied to both sides of (4.10), and the resulting
equation is projected onto the cells of level-(l− 1), posing the following linear system:[

Ql
i

] [
f l
i

]
=

[
qli
]

(4.11)

where
[
Ql

i

]
is a M l−1

i ×N l−1
i matrix, called charge matrix, whose each m,n element is

defined as
Ql

im,n = ⟨ pl−1
m ,∇s · f l−1

µi(n)
(r)⟩ (4.12)

with M l−1
i equal to the number of level-(l− 1) cells that uniquely define the domain of

each f li function, and pl−1
m corresponding to a pulse function, equal to unity inside the

corresponding level-(l− 1) cell, C l−1
m , and zero elsewhere.

[
f l
i

]
is a N l−1

i column vector

that collects the coefficients f l
i,n with n = 1, . . . , N l−1

i , and
[
qli
]
is a M l−1

i column vector
whose elements elements are defined as

qlim = ⟨ pl−1
m ,∇s · f li (r)⟩. (4.13)

To facilitate the generation of the above set of generalized functions, the standard
MB-RWG functions defined on the input triangular mesh are normalized by the corre-
sponding length of the common edge of the positive triangle li,+, as

f0i (r) =


ρ+
i

2A+
i

, with r ∈ T+
i

− li,j

l+i

ρ−
i,j

2A−
i,j

, with r ∈ T−
i,j, j = 1, . . . ,Mi

0, otherwise

(4.14)
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where A+
i and A−

i,j are the areas of the positive and negative domain triangle, T+
i and

T−
i,j, li,j are the edges of the negative triangles in common with T+

i , and Mi is the
number of negative triangles in the f0i domain. The divergence of (4.14) can be written
as

∇s · f0i (r) =


1

A+
i

, with r ∈ T+
i

− li,j

l+i

1
A−

i,j

, with r ∈ T−
i,j, j = 1, . . . ,Mi

0, otherwise

(4.15)

It can be deduced from (4.11) that correctly defining the divergence of each gener-
alized function is enough to properly obtain the generalized coefficients at each level.
The divergence of a generalized function (l > 0) can be expressed as

∇s · f li (r) =


1

Al,+
i

, with r ∈ C l,+
i

− 1

Al,−
i

, with r ∈ C l,−
i

0, otherwise

(4.16)

Figure 4.16: Example of a generalized MB-RWG defined on level-1 cells labelled with “1” and “2”

Taking into account that the matrix system (4.11) is indeterminate [56], a new
determinate matrix system can be defined by reducing a random row and adding the
condition that solenoidal currents do not contribute to the generalized function con-
sidered: [ [̃

Ql
i

][
U l
i

] ] [
f l
i

]
=

[[̃
qli
]

[0]

]
(4.17)

where
[̃
Ql

i

]
and

[̃
qli
]
correspond to

[
Ql

i

]
and

[
qli
]
with one row removed, respectively,[

U l
i

]
is the set of right singular vectors in the null space of

[
Ql

i

]
(which corresponds
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to the solenoidal null space functions) that can be obtained through the SVD decom-
position of

[
Ql

i

]
, and [0] is a null vector of dimension (N l−1

i −M l−1
i + 1). Solving the

system (4.17), the coefficients f l
i,n of (4.10) are found. Then, applying (4.10) recur-

sively, any level-l generalized function f l
i (r) can be expressed as a linear combination

of basis functions at level-0.

4.3.2.3 Multi-Resolution MB-RWG Functions

The procedure for generating multi-resolution MB-RWG functions is described below.
The MR functions provide a set of bases capable of improving the spectral properties of
the SIE system by separating the current into solenoidal and non-solenoidal parts in a
hierarchical scheme. The properties and multilevel nature of these functions transform
the matrix system into a robust and well-conditioned system capable of accurately
handling multiscale features and very small details, in contrast to a generic quasi-
Helmholtz decomposition.

A collection of functions can be defined at each level of the hierarchical mesh de-
composition as a linear combination of generalized functions at this given level as

wl
i(r) =

Kl
i∑

k=1

T l
i,k f

l
δi(k)

(r) (4.18)

where K l
i is the number of f lδi(k)(r) functions defined inside the domain of wl

i.

The first step to build the MR functions is the generation of the charge matrices
in (4.12) for each group of children level-l cells belonging to a given level-(l + 1) cell.
Then, the coefficients T l

i,k for non-solenoidal functions are determined by the non-zero
singular vectors of the charge matrix, while the null singular vectors correspond to the
coefficients of the solenoidal functions. To complete the solenoidal part, the divergence-
free functions defined across each pair of adjacent level-(l+1) cells must be added [86].
This set can be extracted from the null space functions of the joint charge matrix for
the cells defining each generalized MB-RWG function on the level-(l + 1) mesh and
subtracting the function space generated at the previous step by the Gram-Schmidt
orthogonalization process.

A generic MR function wl
i of level-l is expressed in (4.18) as linear combination

of the generalized basis functions of the same level. Importantly, considering that
all generalized functions at any level can be expressed as linear combinations of the
original input MB-RWG and RWG functions (level-0), any generic level-l MR function
can also be described as a linear combination of the input basis functions. This allows
the construction of an MR change-of-basis matrix, paving the way for the application
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of the multilevel MR basis functions set as left and right multiplicative preconditioner
of the original system.

4.3.2.4 Complexity

As mentioned in previous sections, the most expensive operation in the generation of
the proposed preconditioner is the SVD decomposition needed to find the coefficients
of the solenoidal and non solenoidal bases. Applying the hierarchical decomposition of
the input mesh, the dimension of the charge matrices is always small and independent
of the total number of unkowns (N), reducing the complexity of the algorithm up to
O(N logN), where logN corresponds to the number of levels. The hierarquical nature
of the MR basis functions limits the number of original basis that an MR depends to
those defined on triangles belonging to the level-l+1 parent cells. Then, the change-of-
basis matrix is sparse, allowing an efficient application of the MR preconditioner to the
original system through parallel algorithms for sparse computation. The complexity of
the generation algorithm is shown in Fig. 4.17 for the case of a sphere subdivided into
eight symmetrical parts, with non-conformal meshes in the contours between them.

Figure 4.17: Time to generate the multi-resolution basis versus the number of unknowns N. Case of
a sphere.

4.3.2.5 Parallel implementation

The generation of the MR basis functions is parallelized in shared memory computers
applying a two-step strategy. First, the grouping algorithm is applied sequentially to
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obtain the relation between cells and generalized basis functions of level-(l+1) with cells
and generalized basis functions of level-l. Next, local indices referring to the children of
the cells and basis functions are precomputed in level-(l + 1) using two parallel loops,
which includes the generation of the elements of the charge system (4.11). In a second
step, the multi-resolution coefficients in (4.18) of level-(l + 1) are computed from the
coefficients of level-l using two additional parallel loops.

The above scheme provides a good scalability, which facilitates the parallel gener-
ation of the charge matrices and the MR functions, enabling the application of this
method to real-life large-scale complex problems.

4.3.3 Validation and application

A numerical example is introduced to validate the proposed approach for the automatic
generation of all solenoidal and non-solenoidal functions in the solution of a small
object containing global loops. A Möbius volumetric belt is considered, formed by
three Möbius strips connected to each other by three small curved bands, forming
a smooth curvature in the wedges (with a diameter of curvature of λ/15 and strip
width of λ/75), as shown in Fig. 4.18. The surfaces that form this structure are
meshed independently, yielding non-conformal meshes at the junctions between them
(see Fig. 4.18.(right)). The smooth strips are meshed with λ/300 triangular elements,
while the three curved bands placed on the wedges are meshed with λ/1500 triangular
size to minimize the geometrical discretization error on the curved wedges. The use
of non-conformal meshes allows a drastic reduction in the number of unknowns, by
removing the transition regions that would be required in the case of the equivalent
conformed mesh, as illustrated in Fig. 4.18(left). Consequently, the total number of
unknowns reduces from 84180 RWGs to 33 033 RWGs plus 720 MB-RWGs.

First, the generation of the quasi-Helmholtz decomposition is examined. The input
mesh has 23 702 triangles (M), 10 051 inner nodes (excluding MB-RWG internal nodes),
and one structural handle (H). Figure 4.21 shows the cell grouping generated by
the algorithm described in Sect. 4.3.2.1, from level-1, where the input triangles are
rearranged to provide the first generalized cells, to the last level, where all the input
triangles are included in a single generalized cell. A detailed view of the level-1 grouping
in the vicinity of the non-conformal meshes is shown in the upper right corner of
Fig. 4.21.

The proposed multi-resolution generation scheme is then applied to each level-l
mesh, automatically posing 10 052 solenoidal functions (Ns), and 23 701 non-solenoidal
functions (Nns), spread across the 7 levels of the grouping. These numbers match the
required relationship between the number of non-solenoidal functions (Nns = M − 1),
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Figure 4.18: Conformal (left) vs non-conformal (right) meshes of the proposed Möbius strip.

and solenoidal functions (Ns = Vint − 1 + 2H), including the topological (global) loop
corresponding to the handle, as described in [109].

The bistatic RCS is calculated for this example using the proposed MR precondi-
tioner, grown from the RWG and MB-RWG basis functions. The result is depicted in
Fig. 4.19, compared to the reference MoM solution using the conformally meshed struc-
ture of Fig. 4.18(left). A perfect agreement is observed between the MR-MB approach
and the reference solution. The equivalent electric currents on the Möbius surfaces are
shown in the inset of Fig. 4.19.

Figure 4.20 shows the convergence of the proposed approach in terms of the iteration
number under an iterative Krylov resolution of the matrix system. Looking at this
figure, it can be observed that the MR preconditioner applied to non-conformal meshes
outperforms the MB-RWG solution alone, without preconditioner, despite the small
electrical size of the object. This reveals the effectiveness of the MR preconditioner
applied to non-conformal meshes thought multi-branch basis functions.
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Figure 4.19: Bistatic radar cross section and the electric current distribution (dBµA/m) of the mobius
strip.

Figure 4.20: Iteration count for the mobius strip considering a plane wave excitation.
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Figure 4.21: Multi-level cell grouping algorithm for the proposed mobius strip.
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In previous chapters, a hybrid MPI/OpenMP parallel version of the multilevel tear-
and-interconnect DDM was described, including non-conformal techniques and mul-
tiresolution preconditioners to improve the versatility and efficiency of the EM simu-
lation methodology. In this chapter, the performance of the implemented software is
tested by solving several complex large-scale composite penetrable and non-penetrable
objects exhibiting deep multiscale features, in the context of real-life EMC/EMI and
nanotechnology applications.
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Figure 5.1: Partition into 18 subdomains of the F-22 aircraft and onboard radiating systems. The
dimensions of the aircraft are approximately 15 m long, 20 m wide and 5 m high (50λ × 66.667λ ×
16.667λ in terms of the used working wavelength corresponding to 1 GHz). The solver employed in
each domain is indicated. The inner flaps of each touching domain (outer flaps of adjacent domains)
are shown.

5.1 EMC applications

5.1.1 F-22 tactical fighter aircraft

The following example demonstrates the ability of the proposed SIE-DDM method to
handle multi-scale composite materials. The objective is to obtain the accurate vector
solution with the currents induced over the surface of an F-22 aircraft and the onboard
sensors. Subsequently, this solution could be post-processed to predict the operational
performance of the different systems involved. The geometry of the problem is shown
in Figure 5.1. The total number of unknowns is 5 766 388, with the discretization
size varying from λ/10 to λ/360, being λ the wavelength corresponding to 1 GHz.
The F-22 fuselage, including the engine air intake cavities, is split into 3 large PEC
touching subdomains, as shown in Figure 5.1, including the corresponding flaps to
apply the transmission conditions between them. Note that the partition does not
respond to the different subsystems of the fuselage (such as wings, tail, nose, etc.), but
it simply divides it into three approximately equal parts. A partition by subsystems
could be more convenient, although it is not imperative. The radiating systems consist
of 11 antennas (subdomains D8 to D18) assembled inside a PEC POD located in the
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underbelly of the aircraft. The POD is made up of four pieces: the central PEC body
to hold antennas (D4), and three protection dielectric covers (D5 to D7), which are
electromagnetic “transparent” at the operating frequency of 1 GHz. We considered
absorbent-loaded cavity-backed sinuous antennas as those in [110, 111], all of them
equal. The structure of the antennas is detailed at the top of Figure 5.1. Each antenna
is a complex musti-scale composite structure made up of several sinuous PEC arms
of about 3 mm width (λ/100), describing a complex pattern including tiny details,
which demands a careful generation of the mesh. The sinuous arms are embedded on
a PEC cavity filled with absorbing material to avoid back radiation and increase gain
in the maximum radiation direction, thus providing circularly polarized transmissions
in the forward direction in the UHF band. For this complex problem the requirement
fixed for the GMRES residual error is of 10−4 for the outer GMRES and 10−5 for the
inner GMRES. The global MVP is computed using accelerated near field radiation
between subdomains. The simulations were performed in a cluster with 4× Xeon E7-
8867v3@2.5GHz (4× 16 cores = 64 cores) and 1 TB of RAM memory.

The comparative analysis of the convergence performance of the SIE-DDM ap-
proach and MLFMA is shown in Figure 5.2. Only 20 iterations of the outer GMRES
and 18 hours of simulation were required with the SIE-DDM approach to converge to
a residual error of 8.5 · 10−5, below the prescribed threshold. The MLFMA simulation,
however, took more than 20 000 external iterations and 72 hours to achieve a residual
error of 7 · 10−3. The challenging multi-scale and multi-material features of this prob-
lem make it difficult for the global problem to converge if a proper preconditioning
strategy is not employed. Moreover, the possibility offered by the SIE-DDM approach
of using multiple formulations within a subdomain (see Figure 5.1) has special posi-
tive implications in the convergence when there are composite subdomains, as in this
example.

The computational parameters of the simulation corresponding to this problem are
gathered in Table 5.1. The approach exploits the fact that the single antenna subdo-
mains D8 to D18 are geometrically identical, except from rotation and/or translation
movements, by reusing the MoM impedance matrix calculations of the first antenna
subdomain for all of them. The convergence records of Figure 5.2, together with the
data of Table 5.1, point out again that the SIE-DDM implementation allows to take on
real-life projects involving convergence difficulties, high requirements of computational
resources and time constraints. Finally, Figure 5.3 shows the equivalent surface current
distribution over the aircraft surface.
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Table 5.1: Computational metrics of subdomains in the simulation of F22 example

Domain D1 D2 D3 D4

Unknows 1 904 096 1 677 374 1 746 978 255 084
Memory (GB) 258.6 162.8 189.4 44.1
Setup time (s) 5380 33136 3851 1188
Solving time (s) 6084 665 708 184

Domain D5 D6 D7 D8

Unknows 54 360 109 872 54 504 19 874
Memory (GB) 10.5 22.2 10.6 12.0
Setup time (s) 350 885 350 262
Solving time (s) 13 43 14 0.5

Domain D9 D10 D11 D12

Unknows 19 874 19 874 19 874 19 874
Memory (GB) 12.0 12.0 12.0 12.0
Setup time (s) 262 262 262 262
Solving time (s) 0.5 0.5 0.5 0.5

Domain D13 D14 D15 D16

Unknows 19 874 19 874 19 874 19 874
Memory (GB) 12.0 12.0 12.0 12.0
Setup time (s) 262 262 262 262
Solving time (s) 0.5 0.5 0.5 0.5

Domain D17 D18

Unknows 19 874 19 874
Memory (GB) 12.0 12.0
Setup time (s) 262 262
Solving time (s) 0.5 0.5
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Figure 5.2: Convergence performance of the outer GMRES when solving the EMC problem of the
F-22 aircraft using the proposed SIE-DDM method and the MLFMA: (a) residual error versus number
of iterations; (b) residual error versus time.
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Figure 5.3: Real part of the equivalent electric surface current distribution (dBµA/m) on the F-22
aircraft surfaces provided by the proposed SIE-DDM method.
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Figure 5.4: Partition into subdomains of the superstructure and masts of the vessel.

5.1.2 Isolation Among V/UHF Communication Systems On-
board a Modern Vessel

A second numerical example is introduced to highlight the ability and versatility of
the proposed approach to solve challenging multi-scale problems using non-conformal
meshes. The evaluation of the isolation between the antennas belonging to four commu-
nications and tactical intelligence systems installed in a realistic vessel is attempted in
this section. The first system (S1) is intended for air-to-ship communications operating
in the VHF band. It consists of several transceivers connected throughout multiport
combining filters to four patch antennas integrated in the intermediate level of the
main mast. The antennas are specifically designed to work simultaneously providing a
full 360◦ field of view and are meshed separately, with a mesh size tailored to the fine
detail features of their respective structures, and placed on the platform mesh resulting
in non-conforming triangles on either side of the tear (connection) lines. Some details
of the resulting non-conformal mesh are illustrated in Fig. 5.7).

The second system (S2) operates in the V/UHF band, dedicated to exterior com-
munications. The transceiver is connected without associated external filtering to
two omnidirectional vertically polarized coaxial dipole antennas [112] located at the
main yardarm of the aft mast, in port/starboard arrangement. The third system (S3)
is composed of two transceivers connected to respective UHF omnidirectional verti-
cally polarized sleeve dipole antennas [112, 113]. The antennas are sited on the upper
yardarm of the aft mast, in port/starboard arrangement. The fourth system (S4) is
an V/UHF system for surface naval applications that makes use of four broadband
omnidirectional, vertically polarized active bicone antennas located at the aft mast.
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Figure 5.5: Arrangement of the antennas on the main (forward) mast of the proposed vessel and
partition into subdomains. The inner flaps of each touching domain (outer flaps of the adjacent
domains) are shown. The formulations employed inside each domain are indicated.

The dimensions of the realistic (although fictitious) ship are approximately 140 m
length, 20 m beam and 40 m height (140λ×20λ×40λ in the used working wavelength,
λ, corresponding to the frequency of 300 MHz). A total of 13 864 912 unknowns are
required in order to mesh the entire geometry of the problem, including 3 468 MB-RWG
basis functions. The vastly multi-scale character of this geometry is brought to light
by the wide variation margin of the edge length of the triangular patches, which goes
from λ/10 in smooth surfaces of the geometry to λ/1639 in regions containing antennas
with fine details (especially in the vicinity of feeding areas [114]).

According to the multi-scale features of the problem, it is decomposed into p = 23
subdomains, as shown in Figures 5.4 to 5.6 :
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Figure 5.6: Arrangement of the antennas on the aft mast and partition into subdomains of the
proposed vessel. The inner flaps of each touching domain (outer flaps of the adjacent domains) are
shown. The formulations employed inside each domain are indicated.

• 10 large subdomains (D1 to D10) containing structural parts of the vessel (Figure
5.4). They are solved using 10 independent four-level MLFMA-FFT solvers.

• 13 electrically small subdomains (D11 to D23) including the 13 antennas onboard
(Figures 5.5 and 5.6): D11 to D14 include the antennas #1 to #4 of system S1,
D15 and D16 include the antennas #5 and #6 of S2, D17 and D18 include the
antennas #7 and #8 of S3, and D19 to D23 include the antennas #9 to #13 of
S4. These subdomains are solved via direct MoM and MoM with MB functions
for the non-conformal cases.

The inner and outer flaps are identified in each case to indicate the formation of re-
stricted and augmented subdomains.

Excitation with delta-gap voltage sources at the feed terminals defined along the
circumference perimeter of the feed wires is considered, as illustrated in the right insets
of Figures 5.5 and 5.6. Remarkably, MB-RWG basis functions are being considered as
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Figure 5.7: Non-conformal mesh details of the feeding point and the connections of antennas with the
vessel structure.

feeder terminals, for which the voltage value must be weighted by the length of the
common edge of the positive triangle at each basis (see Figure 5.7). The entire problem
is modeled as perfectly conducting surfaces. Consequently, the EFIE formulation (α =
1) is used for open surfaces, namely the open parts of the antennas as well as the
feed points. CFIE formulation (α = 0.5) is used for the rest of surfaces, despite the
fact that the application of the DDM scheme shows them as open surfaces with holes
corresponding to the connection of the antenna subdomains to the superstructure of
the vessel. Nevertheless, those “seemingly” open surfaces are actually part of closed
surfaces in the original problem, and they are certainly closed back by the incoming
radiation coming from all the other subdomains, which is added up on the right hand
side of the local subsystems. To accomplish this, both the EFIE and the CFIE must be
able to be combined arbitrarily on the geometry surfaces, regardless of their assignment
to the same or different subdomains.

The global MVP that account for the mutual coupling between subdomains at the
external Krylov stage is sped up via MLFMA-FFT. A residual error of 10−6 (10−7) is
imposed as requirement for the outer (inner) GMRES. Surprisingly, we have checked
that better convergence rates are reached if a high precision is ascribed to the inner
solvers making up the preconditioner. Consequently, equal or even more restrictive
GMRES residual error thresholds than those imposed for the global iterative solver are
set for the inner problems. The simulations were performed in a cluster with 4× Xeon
E7-8867v3@2.5GHz (4× 16 cores = 64 cores) and 1 TB of RAM memory.

To conduct a comprehensive EMC/EMI study in a real engineering case like this,
the simulations could easily be extended from HF to X-band or higher. In this academic
case study, however, the numerical simulations have been constrained to a frequency
sweep from 100 MHz to 550 MHz, according to the different operating bands of the
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Figure 5.8: Convergence performance of the outer GMRES when solving the EMC problem of the
vessel using the proposed SIE-DDM method and the MLFMA: (a) residual error versus number of
iterations; (b) residual error versus time.

systems involved in the example (and considering fundamental emission and reception
bands, out-of-band and spurious bands, as well as harmonic emission and image recep-
tion bands when applicable). For conciseness, the results shown below correspond only
to one simulated frequency, 300 MHz, except for S12 parameters, which are displayed
as a function of frequency covering the usual frequency band for communications in
V/UHF.

Figure 5.8 compares the outer GMRES residual error of the DDM preconditioned
system and the original matrix system in terms of the number of iterations and the
wall-clock time employed to reach a certain convergence threshold (which is a better
figure of merit). What stands out in this result is the excellent convergence of the
proposed SIE-DDM approach, which takes 4 outer Krylov iterations and 1.8 hours of
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Figure 5.9: Real part of the equivalent electric surface current distribution (dBµA/m) on the vessel
surfaces provided by the SIE-DDM approach.

simulation to converge to a residual error of 5 · 10−8. This performance contrasts with
the more than 25 000 iterations and the 60 hours spent by MLFMA to reach a residual
error of just 2 · 10−3. The above problem is a good example of how the concurrence of
large and coarsely meshed objects (vessel superstructure) and radiating elements with
local excitation and finely meshed details, slow down the convergence of the problem
when using a global MLFMA. Otherwise, the rapid convergence of the DDM method
to high precision solutions brings a major competitive advantage for the resolution of
such kind of real EMC projects, in which, additionally to the obvious requirements in
terms of precision, there are due dates to complete the study.

Figures 5.9 and 5.10 show the equivalent currents distribution in the vessel super-
structure. From these currents, the S12 parameters accounting for the coupling among
the antennas of the onboard communications systems are computed. As an example,
the mutual coupling between antenna #3 and the onboard antennas sharing operat-
ing band is shown in Figure 5.11. Now, the interference margin matrices could be
sequentially derived from the joint information provided by the S12 values and the
specifications of the systems involved in the study (external filtering attenuations, RF
and IF response, spurious emission and rejection, receiver sensibilities, etc.). These
matrices lead to an easy evaluation of the potential EMC/EMI threats.

The computational statistics corresponding to this example can be looked up in
Table 5.2, where the following information is shown for each augmented subdomain:
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Figure 5.10: Zoom-in view of the current distribution (dBµA/m) on the masts around the antennas
of the proposed vessel.

Figure 5.11: Mutual coupling (S12) for the transmitting patch antenna #3 of the vessel in the frequency
range from 108 to 550 MHz.

number of unknowns, memory consumption, setup time (consumed only once per fre-
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quency, at the beginning of the simulation), and the solving time, computed as the
average of the solving times throughout all the external iterations.

Table 5.2: Computational metrics of subdomains in the simulation of vessel example

Domain D1 D2 D3 D4

Unknows 64 575 480 887 992 569 64 314
Memory (GB) 1.4 9.6 19.2 1.3
Setup time (s) 8.28 38.66 73.34 8.6
Solving time (s) 9.22 71.7 74.6 9.08

Domain D5 D6 D7 D8

Unknows 439 633 698 046 2 771 909 2 820 127
Memory (GB) 8.8 13.4 50.5 51.7
Setup time (s) 35.66 51.01 193.66 196.89
Solving time (s) 63.66 51.28 459.97 264.29

Domain D9 D10 D11 D12

Unknows 2 881 272 2 770 883 18 147 18 147
Memory (GB) 52.9 51.9 5.8 5.8
Setup time (s) 200.91 193.66 97.8 97.8
Solving time (s) 299.12 459.97 0.33 0.33

Domain D13 D14 D15 D16

Unknows 18 147 18 147 6 804 6 804
Memory (GB) 5.8 5.8 1.4 1.4
Setup time (s) 97.8 97.8 40.8 40.8
Solving time (s) 0.33 0.33 0.11 0.11

Domain D17 D18 D19 D20

Unknows 4 320 4 320 2 498 2 498
Memory (GB) 0.6 0.6 0.2 0.2
Setup time (s) 18.43 18.43 3.72 3.72
Solving time (s) 0.05 0.05 0.03 0.03

Domain D21 D22 D23

Unknows 2 498 2 498 2 384
Memory (GB) 0.2 0.2 0.1
Setup time (s) 3.72 3.72 3.38
Solving time (s) 0.03 0.03 0.02
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5.1.3 Realistic Satellite

As a third example, let us consider a complex satellite by the European Space Agency,
as illustrated in Fig 5.12. The dimensions of the satellite are approximately 20 m
length, 7 m beam and 5 m height (800λ × 280λ × 200λ at the working wavelength,
λ). The detailed model of this structure includes four different communication systems
as shown in Fig 5.12. The C-band and X-band communication systems consist of
four horn antennas supported by two external arms (shown in the upper left corner of
Fig 5.12) whose beam is directed by five reflectors. The K-band communication system
consists of a complex array of horn antennas, which is shown in the lower right corner
of Fig 5.12. The model is completed with two solar panels and the main structure
supporting the described elements.

The DDM was applied in conjunction with the MR preconditioner to get an ac-
curate prediction of the K-band system radiation at 12 GHz. A total of 60 267 853
unknowns were required to mesh the entire geometry, which exhibits deeply multi-
scale features, with a disparate mesh size ranging from λ/20 on smooth surfaces to
λ/1350 in the vicinity of K-band antennas. This disparity in the mesh size results in
poor conditioning, which in turn leads to lack of convergence unless proper simulation
methodologies are applied.

For the analysis of this challenging structure, the entire problem was partitioned
into 10 subdomains (as shown in Fig 5.12). This partitioning is done according to its
natural features:

• Two large subdomains corresponding to the complete solar panels, far enough
from the excitation domain, where it is assumed a smooth variation of the electric
currents and fast convergence.

• Four subdomains for the four aperture antennas belonging to the different com-
munication systems on the satellite.

• Two subdomains for the support arms of the upper communication systems,
including its horn antennas.

• One subdomain for the main structure of the satellite.

• One subdomain for the excited array of antennas.

The subdomains are solved using 10 independent MLFMA-FFT solvers, with six
levels for the support arms subdomains, five levels for the array antenna subdomain
and eight levels for the rest. The intrinsic complexity of this structure is exacerbated
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C-band system

X-band system
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K-band system
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Figure 5.12: Partition into subdomains of the satellite.

by the presence of the large array with 90 horn antennas. The extremely intense
mutual coupling between elements prevents in this case the use of 90 equal small
MoM domains, which would allow taking advantage of the repetition pattern, relieving
local calculations and memory consumption. But, due to the intense mutual coupling
mentioned, this would be at the expense of the lack of convergence of the global iterative
solver. Nevertheless, considering the complete array as an unique large subdomain
is not without problems, since the strong interaction between the elements makes
it necessary to include some kind of effective preconditioning (in this case, the MR
preconditioner) to avoid slow convergence of this specific subdomain, which would
become the bottleneck of the problem.

Fig 5.13 shows the residual error of the local iterative solution (at a given DDM
iteration) of the subdomain corresponding to the horn array antenna using the MR
preconditioned, compared with the Jacobi preconditioner. It can be observed that the
MR preconditioner greatly reduces the iteration count for this multi-scale problem, thus
enabling the solution of this challenging domain in the context of the DDM iterative
resolution.

Fig 5.14 shows the residual error for whole problem using DDM for the two cases of
local preconditioners mentioned in Fig 5.13. Although the outer Krylov convergence
should be similar for both local preconditioner cases, the poor residual error posed
by the Jacobi preconditioner impairs the outer GMRES convergence, thus ruining the
accuracy of the solution. The final equivalent currents calculated applying DDM and
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Figure 5.13: Convergence performance of the inner GMRES when solving one outer GMRES iteration
of the array of antennas domain of the satellite using the proposed MR preconditioner method and
the Jacobi preconditioner.

the MR preconditioner for the local horn array antenna subdomain is shown in Fig 5.15
for the sake of completeness.
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Figure 5.14: Convergence performance of the outer GMRES when solving the EMC problem of the
satellite using the proposed MR and the Jacobi preconditioner in the local solver.

Figure 5.15: Real part of the equivalent electric surface current distribution (dBµA/m) on satellite
surfaces provided by the SIE-DDM approach.
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5.1.4 Rafale aircraft

A different example is shown next. In the previous numerical examples, the focus
of the use of non-conformal discretizations has been in transitions between different
subdomains of a complex geometry, in the framework of a DDM solution. In this
example, the usefulness of this approach for the application of h-refinement techniques
is demonstrated, which allows increasing the degrees of freedom in those regions where
there are fine geometric details or where higher precision is required. This naturally
gives rise to non-conforming multi-scale problems with localized mesh refinement.

Figure 5.16: Partition into subdomains of the Rafale aircraft.

The Rafale aircraft is decomposed into eight DDM subdomains, as shown in Fig. 5.16.
An automatic h-refinement method [115] is then applied to the input mesh of the dif-
ferent subdomains, with two steps of refinement, rendering a locally refined version
that improves accuracy without burdening the computational cost. The final mesh
obtained is shown in Fig. 5.17. The maximum length of the aircraft is 7λ, and the
problem is modeled using 55 267 RWG basis functions in the conformal-mesh regions
and 4 543 MB-RWG basis functions in the non-conformal mesh parts of the geometry.
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Figure 5.17: H-refinement non-conformal mesh of the proposed Rafale aircraft .

Figure 5.18 compares the GMRES residual error provided by the proposed MR-MB-
RWG scheme with that provided by the Jacobi preconditioner, in both cases applying
MLFMA for the solution of the h-refined subproblem corresponding to the airplane nose
subdomain (see Fig. 5.16). An excellent convergence can be observed. The residual
error for the complete problem is gathered in Fig 5.19, compared to that provided
by the reference solution using conventional MLFMA. It can be observed looking at
this figure that the combination of the MR preconditioner with the MB-RWG basis
functions under a DDM resolution of the problem drastically reduces the global number
of iterations, achieving a Krylov residual error below 10−6 in just 12 iterations.

Finally, the equivalent current distribution in the aircraft structure is shown in
Fig. 5.20.
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Figure 5.18: Convergence performance of the inner GMRES when solving one outer GMRES iteration
of one domain of the Rafale aircraft using the proposed MR preconditioner method and the Jacobi
preconditioner.

Figure 5.19: Convergence performance of the outer GMRES when solving the EMC problem of the
Rafale aircraft using the proposed DDM-MB-MR and the Jacobi preconditioner for the entire problem.
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Figure 5.20: Equivalent electric currents (dBµA/m) induced on the aircraft surfaces.
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5.2 Nanoplasmonic applications

This section gathers some results of application of the methodologies proposed in this
thesis to the field of nanoplasmonics and biosensing. Raman spectroscopy is an impor-
tant biosensing method for the identification of molecules in very low concentrations.
This method consists of impinging onto a sample of analyte with a laser source. Most
of the light absorbed by the sample is elastically scattered back at the same laser wave-
length (Rayleigh scattering). However, a very small portion of the impinging energy
is inelastically scattered posing a spectrum that depends on the energy differences be-
tween vibrational states of the molecule. Different molecules have different vibrational
modes, so the spectrum of the inelastically scattered light yields a molecular finger-
print which uniquely identifies the interrogated molecule. The SERS enhancement of
the otherwise extremely weak inelastic emission of molecules in the nearby of arrange-
ments of metal nanoparticles supporting localized surface plasmon resonances (LSPRs)
is a key factor for the ultrasensitive detection of a variety of organic molecules at low
concentrations [116,117].

Figure 5.21: PS bead with embedded Au nanorods: Subdomains, inner and outer flaps.

5.2.1 Hybrid colloidal nanocomposite

As a first example, let us consider an assembly of Au nanorods (NR) onto a Polystyrene
(PS) bead. The PS bead has a diameter of 400 nm and relative permittivity ϵr = 1.5.
The NRs have circular section and they are ended with spherical end-caps, with a
diameter of 16 nm and a total length of 38 nm. The excitation of this problem is a
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normally impinging plane wave (laser) at 633 nm. The relative (dispersive) permittiv-
ity of gold at this wavelength is interpolated from the measurements of [118], being
ϵr = −11.7522− 1.2598i. This kind of real-life hybrid dielectric/plasmonic system is of
interest to surface-enhanced Raman scattering (SERS) chemical sensing of analytes, as
they can directly interact with the NR surfaces [119]. The tunable Au NR density can
be used to optimize the SERS efficiency of these hybrid nanomaterials. Nevertheless,
the presence of multiple materials governed by a very different physics exhibiting rather
high dielectric contrast, such as in this case the PS surface (dielectric) and the embed-
ded gold nanorods (plasmonic at visible frequencies), poses a slow convergence of the
iterative solver. The above is compounded by the fact that NRs are embedded onto
the PS bead. Although the multiple-material junctions can be precisely modeled by
the MR piecewise basis/testing functions, its presence hinders the already challenging
multiphysics problem.

The DDM strategy was applied to overcome the potential lack of convergence, the
complete problem is partitioned as sketched in Fig. 5.21(left). Considering first the
large size of this system, it is split into 8 main subdomains, one for each octant. Next,
considering the very different physical nature of the PS bead and the Au NRs, each NR
(and its respective plasmonic-to-dielectric junction) is included into a different subdo-
main. In all, the domain decomposition procedure of this system with 496 Au NRs
leads to 504 subdomains, 8 for the PS dielectric sphere and 496 for the NRs. Based
on this decomposition, we apply different solvers tailored to the different subdomains.
Subdomains 1 to 8 are solved iteratively via MLFMA-FFT, while the remaining sub-
domains (NRs) are solved by direct MoM factorization. In this particular case, as all
the NRs are equal in shape and material, the same impedance matrix block is recycled
for the calculations of the 496 NRs, thereby benefiting from the multiple repetitions
(which is a usual feature of these nanosystems). Global interactions between subdo-
mains are accelerated through parallel distributed MLFMA-FFT. The simulations were
performed in a cluster with 4× Xeon E7-8867v3@2.5GHz (4×16 cores = 64 cores) and
1 TB of RAM memory.

The complexity of this analysis remains especially in the presence of LSPRs sup-
porting very fast (subwavelength) field fluctuations. A high surface mesh density is
considered for the Au NRs, with an edge size around 1/400 wavelengths, while about
1/20 wavelengths are required for the PS sphere. This poses a total of 6 754 224 un-
knowns for the electric and magnetic equivalent currents. The JMCFIE SIE formula-
tion is applied, and a relative error norm of 10−6 is considered to halt the global Krylov
iterative solver. Due to the tear-and-interconnect DDM transmission conditions, the
subdomains are divided into different parts. The rod subdomains are extended to a
small portion of the sphere around them, facilitating the calculation of junctions be-
tween domains. By doing so, the augmented sphere subdomain does not contain basis
functions belonging to the nanorods, improving convergence. Additionally, all DDM
junctions remain simple, since only two surfaces are involved in each case. Remarkably,
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Figure 5.22: Equivalent electric and magnetic currents (dBµA/m) induced on the PS bead .

in this example we must solve a dielectric open problem (sphere with holes). Never-
theless, it must be pointed out again that the global problem we are solving is closed
(due to the contributions from the RHS in DDM).

Looking at Fig. 5.23, it cab be observed that the above problem can be efficiently
solved in reasonable time. A fast convergence is observed for the DDM solution, requir-
ing only 35 outer Krylov iterations to attain a residual error below 10−6. In comparison,
MLFMA-FFT fails to reach the prescribed residual error within 200 iterations (posing
a residual error above 5 ·10−2). A larger picture is obtained by observing the wall-clock
time convergence. In this real-life case, the proposed DDM method brings a definitive
advantage both in terms of iteration count and solving time, enabling convergence and
providing a solution with a high degree of accuracy in just over 5 hours. A solution of
such precision would be very difficult to achieve using MLFMA-FFT (if even possible),
as it begins to stagnate at high residual errors.

Finally, it can be observed looking at Fig. 5.22 that no artifacts are present in
the equivalent currents. These currents flow smoothly through the tear lines between
the different PS octants and between the PS and the NR subdomains. The use of
DDM enables the solution of such multiphysics problem combining plasmonic and
conventional dielectric materials, which are at the antipodes in terms of electromagnetic
behavior.
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Figure 5.23: Iteration (up) count and wall-clock time (down) for the PS bead with embedded nanorods.

5.2.2 Gold Nanooctahedra plasmonic supercrystal for ultra-
sensitive SERS

The next example is a plasmonic biosensor designed to improve the SERS for ultra-
sensitive detection of different analytes related to biology, medicine, forensics, and
environment analysis. The structure considered is a collection of 8 192 gold octahedra
(75nm in length) organized hierarchically to form a densely packed supercrystal, as
shown in Fig. 5.24. 33 128 448 unknowns (4 044 unknowns per element) are required to
capture the physical phenomena produced by supercrystal. A small randomly gener-
ated self-rotation is included in the different octahedrons to account for the assembly
errors in the actual synthesis procedure. The excitation consists of a focused beam
through a lens on the center of the upper layer of the supercrystal, at a wavelength of
785nm, using the Novotny paraxial approximation [120].
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Figure 5.24: Gold Nanooctahedra geometry and domains

The main complexity of this example lies in the low distance between edges of
different elements (as low as 1nm), producing intense interactions between nearby
NP that increase the appearance of LSPRs. These strong interactions (posing a quasi-
volumetric behavior) require complete octree cells under an MLFMA-FFT scheme, with
the subsequent memory increase for the near interactions that burdens the solution or
even make it impossible with reasonable computational resources. However, a problem
of these characteristics can be perfectly addressed using the methods proposed and
developed in this thesis.

A two-level DDM strategy was applied. At the coarsest level, eight subdomains are
defined to capture the mutual coupling interactions between nearby blocks, as shown
in Fig. 5.24 (left). At a finer level, one subdomain per element is considered to capture
the physics of each nanoparticle. The periodicity of the proposed structure is exploited
to reduce the memory consumption, by calculating the MoM matrix only once for the
local solution of all the repeated elements at the finer level, as well as for the self-
coupling interactions at the second level, where MLFMA-FFT is applied to speed-up
the calculations. The simulations were performed in a cluster with 4 computational
nodes of 4× Xeon E7-8867v3@2.5GHz (4 × 16 cores = 64 cores) and 1 TB of RAM
memory each (a total of 256 cores and 4 TB of RAM). Two coarsest domains were
distributed for each computational nodes.

Figs 5.25 and 5.26 show the residual error and the equivalent electromagnetic cur-
rents induced on the surfaces, respectively. Initially, we can not compare the conver-
gence of DDM with other methods, since only DDM really enabled the analysis of this
problem with the available resources. But DDM technology can be applied to reduce
the computational resources required in the global MVP calculation required for an
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Figure 5.25: Gold Nanooctahedra iterative convergence

MLFMA-FFT without applying the DDM preconditioner. In any case, DDM still pro-
vides an accurate solution 10 times faster (a wall-clock time less than an hour) than
this new MLFMA-FFT approach. Figure 5.26 shows the effect of the focused beam on
the crystal, and how it propagates through the internal lattice.

The SERS enhancement factor for the electric near field is obtained to demonstrate
the physical behaviour of the plasmonic biosensor. The SERS e enhancement factor
can be calculated from simulation data as follows [121,122]:

E.F. =
|E(ωin)|2

|Ei(ωin)|2
|E(ωout)|2

|Ei(ωout)|2
(5.1)

where Ei is the electric field of the incident laser and E is the total field in the presence
of the nanoparticle assembly. The first term in (5.1) represents the local electric field
intensity enhancement at the impinging frequency ωin. The second term represents the
local electric field intensity enhancement of the Raman inelastic scattering produced
by the molecule sought. The calculation of the second term is done by reciprocity,
repeating the simulation under a light excitation at the Raman-shifted (output) fre-
quency ωout. For low Raman shifts compared with ωin, the following approximation
can be applied, which avoids the need for a second simulation:

E.F. ≈ |E(ωin)|4/|Ei(ωin)|4. (5.2)

This poses a fourth power dependence on the local electric field enhancement, which
is why very high enhancements can be obtained using this technique.

Fig 5.27 represents the SERS of the biosensor. On the left, we can observe the
normalized SERS of the total electric field. On the right, we show the SERS filtered
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Figure 5.26: Equivalent electric and magnetic currents (dBµA/m) induced on Gold Nanooctahedra
biosensor

with a gaussian function to simulate the effect of the objective lens used in the exper-
imental measurements. In this figures, we can see how the light penetrates leading to
a concentration at the crystal bottom, even given the small distance in wavelengths
between elements.
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Figure 5.27: Gold Nanooctahedra SERS and filtered SERS
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5.2.3 Gold nanocubes with silver incrustations embedded to
a conventional substrate

A final numerical experiment is included to demonstrate the versatillity of the DG
approach in combination with a DDM strategy to solve extremely complex multiscale
structures in plasmonic applications. The example consists of a collection of 400 gold
nanocubes with silver incrustations on the edges, connected to a conventional substrate.
The nanocubes have a side length of 40 nm and are distributed posing small gaps of
3 nm between them. The geometry is shown in Fig. 5.28, and a detailed view of the
mesh and the silver incrustations is depicted in Fig. 5.29. The cubes and substrate are
tessellated separately and assembled back together, resulting in a nonconformal mesh
with 5 187 138 basis functions, of which 5 153 538 are RWG basis functions defined on
the inner conformal meshed surfaces, and 33 600 are half-RWG placed on the noncon-
formal tear lines. The DDM strategy was applied in conjunction with the DG, thus
guaranteeing the current flow across the non-conformal tearing lines. The problem is
decomposed into 401 overlapping subdomains (one substrate with length size of 800
nm and 400 for the nano-cubes). The excitation consists of a plane-wave impinging
from above at a wavelength of 633 nm. The JMCFIE-DG formulation was applied with
an interior penalty stabilization parameter β = 50. The setup time was approximately
2.8 hours, while it took 5.86 hours and 441 iterations for the iterative solver to achieve
a low relative error on the equivalent currents, below 10−6, on a computing server with
128 parallel cores.

Figure 5.28: Plasmonic Au nanocubes with Ag depositions over dielectric substrate

Fig. 5.30 show the equivalent electric currents on the external boundary surfaces of
the gold nanocubes and the substrate. Remarkably, no discontinuities or artifacts are
appreciated, revealing that the currents flow perfectly through the nonconforming tear
lines.
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Figure 5.29: Detail view of plasmonic Au nanocubes non-conformal meshes

Finally, the SERS enhancement factor of Fig. 5.31 was obtained for the assembly
of nanocubes on a horizontal plane that intersects the nanocubes, placed at a distance
of 40 nm above the substrate. The enhancement factor is calculated here using the
approximated formula of (5.2) for a plane wave (laser) normally impinging in the −ẑ
direction. Both the x̂ and ŷ polarization directions are considered and the respective
results are averaged. As expected, high enhancement factors (> 105) can be observed in
hot-spots occurring in the gaps between adjacent nanoparticles of the assembly, which
arise due to mode hybridization.
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Figure 5.30: Equivalent electric currents (dBµA/m) on non-conformal surfaces of the plasmonic Au
nanocubes depositions.

Figure 5.31: SERS enhancement factor for the assembly of figure 5.28 calculated on a horizontal plane
placed at a distance of 40 nm above the substrate.





Chapter 6

Conclusion and future lines

6.1 Conclusion

The work developed in this thesis can be classified into three main lines. First, a mul-
tisolver tear-and-interconnect DDM has been developed in the context of the SIE for
the efficient solution of very complex and large-scale radiation and scattering problems
exhibiting deep multiscale features. This method is supported by a stable and compact
methodology that unifies the treatment of surfaces, interfaces, and junctions, enabling
the combination of different formulations (CFIE, EFIE, JMCFIE, etc.) including arbi-
trarily shaped junctions between different materials. The tear-and-interconnect strat-
egy allows the partition of the entire problem into locally solved subproblems, according
to their physical and geometrical properties. These subproblems can be addressed us-
ing local independent solvers tailored to the particular characteristics and needs, and
taking advantage of pattern repetitions through the inherent divide-and-conquer strat-
egy of the DDM framework. Moreover, efficient and accurate fast algorithms were
also included to obtain the accelerated solution of the mutual coupling between sub-
domains. A novel highly-scalable parallel implementation of MLFMA-FFT combined
with MR-ILU was proposed. The hierarchical nature of the multiresolution base func-
tions has been exploited in the implementation through the use of efficient algorithms
for the storage and calculation of SpMVPs and the efficient application of the PAR-
DISO solver. The efficiency and accuracy of the proposed methods was demonstrated
through the solution of challenging numerical examples.

The versatility of the proposed method was then improved through the devising
and development of non-compliant SIE techniques based on DG, as well as applying
the novel MB-RWG basis functions. One technology or the other (or both at the
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same time) will be applied depending on the needs of each subdomain. The proposed
JMCFIE-DG formulation brings great flexibility to the application of the DDM in real-
life problems, whose CAD models can be built and tessellated independently for the
different parts of the geometry without caring about mesh conformity. Additionally, by
applying DG we effectively solved the awkward issue of junctions between three or more
materials. Normal current continuity is satisfied by the combination of the boundary
conditions at the meeting surfaces (wired to the JMCFIE formulation), and the weak
interior penalty condition independently applied inside the different regions defining
the junction. This greatly simplifies the formulation for the general case, avoiding
any especial action by the end user for this particular case. Numerical experiments
were included to investigate the optimal choice of the interior penalty stabilization
parameter and to demonstrate the versatility and accuracy of the proposed methods.

Finally, the quasi-Helmholtz multi-resolution preconditioner was combined with the
multi-branch RWG functions for the electromagnetic analysis of non-conformal meshes,
enabling the application of h-refinement techniques in the case of problems including
deep multi-scale features. This provides an efficient, accurate and versatile solver for
dealing with very large-scale and extremely complex geometries. Furthermore, due
to the multilevel quasi-Helmholtz decomposition posed by this method, it could be
applied to improve convergence in multiscale non-conformal problems suffering from
low-frequency breakdown issues.

The complete set of devised and implemented simulation tools has been applied to
solve different real-life challenging problems in EMC/EMI and plasmonics applications.
Each of these examples shows various capabilities and possible configurations of the
multipurpose methodology developed in this thesis.

6.2 Future lines

The enormous potential and versatility of the methods developed in this thesis of-
fers a wide repertoire of possible improvements to continuously guide the simulation
methodologies to the needs of the industry and research centers. The intrinsic nature
of the domain decomposition methods to independently tackle the different parts of a
challenging problem facilitates the easy combination of new solvers to undertake new
problems. In addition, our hybrid MPI/OpenMP implementation of DDM allows to
take advantage of the latest (and likely future) advances in HPC.

Four main lines of action can be distinguished to prepare the developed methodolo-
gies for the near future. First, the development of new solvers to exploit the natural
properties of new kind of problems can be considered, e.g. the combination of accel-
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erated MoM solvers as slottFFT [123] to optimally address the periodicity of finite
periodic structures.

Although the SIEs have emerged as a powerful tool in CEM, the development of
a hybrid implementation with finite element methods can be very useful to efficiently
deal with complex antennas or coated layers of inhomogeneous materials. In this con-
text, the accelerated near field radiation method devised in this thesis for the global
MVP enables the easily combination of non-SIE methods as local solvers in the DDM.
Furthermore, advances in iterative physical optics (IPO) algorithms can be added to
optimize the solution of extremely large domains whose interactions can be approxi-
mated with asymptotic methods.

As a second line, the tear and interconnect DDM can be combined with other
DD technologies to further exploit the geometric and physical properties of different
subsystems. Especially, the Robin type transmission conditions and the multitrace
methods [45] allow the efficient treatment of composite multimaterial subdomains (by
overlapping different interfaces with different discretizations) without need of flaps
in the connection between subdomains. This DD paradigm is especially convenient
to split embedded and different material domains in a superstructure. In addition,
the equivalent principle algorithm (EPA) [124] can be combined with the multitrace
methods in the mutual coupling procedure of the DDM to develop a truly multisolver
method capable of handling extremely different domains even in the global MVP cal-
culation. Moreover, the combination of EPA and multitrace methods transform the
global MVP step into a finite periodic problem, that can be accelerated through the
proper algorithms.

The third line of work is the optimization of the DDM implementation taking
into account the mathematical properties of the algorithms in two directions. The
development of recycling Krylov subspaces to reduce the iteration counts of the outer
GMRES, and the incorporation of algorithms to optimize the choice of subdomains.

Finally, different steps in the DDM procedure can be accelerated by using massive
parallelization via graphics processing units (GPUs).
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Luis M. Liz-Marzán. Detection of amyloid fibrils in parkinson’s disease using plas-
monic chirality. Proceedings of the National Academy of Sciences, 115(13):3225–
3230, 2018.
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sistemas radiantes a bordo de estructuras complejas. PhD thesis, University of
Vigo, 2001.



Bibliography 123

[108] Francesca Vipiana, Francesco P. Andriulli, and Giuseppe Vecchi. Two-tier non-
simplex grid hierarchic basis for general 3d meshes. Waves in Random and Com-
plex Media, 19(1):126–146, 2009.

[109] Francesca Vipiana and Giuseppe Vecchi. A novel, symmetrical solenoidal basis
for the mom analysis of closed surfaces. IEEE Transactions on Antennas and
Propagation, 57(4):1294–1299, 2009.

[110] Johannes Hendrik Cloete and Thomas Sickel. The planar dual-polarized cavity
backed sinuous antenna - a design summary. In 2012 IEEE-APS Topical Confer-
ence on Antennas and Propagation in Wireless Communications (APWC), pages
1169–1172, 2012.

[111] Rohit Sammeta and Dejan S. Filipovic. Improved efficiency lens-loaded cavity-
backed transmit sinuous antenna. IEEE Transactions on Antennas and Propa-
gation, 62(12):6000–6009, 2014.

[112] R.A. Burberry and Institution of Electrical Engineers. VHF and UHF Antennas.
IEE electromagnetic waves series. P. Peregrinus, 1992.

[113] W.L. Stutzman and G.A. Thiele. Antenna Theory and Design. Antenna Theory
and Design. Wiley, 2012.

[114] Dietmar Leugner and Heinz-D. Bruns. Modeling antenna feeds by electric and
magnetic current sheets in conjunction with the method of moments. In 2007
2nd International ITG Conference on Antennas, pages 100–104, 2007.

[115] Jorge A. Tobon Vasquez, Zhen Peng, Jin-Fa Lee, Giuseppe Vecchi, and Francesca
Vipiana. Automatic localized nonconformal mesh refinement for surface integral
equations. IEEE Transactions on Antennas and Propagation, 68(2):967–975,
2020.

[116] Ramón A. Alvarez-Puebla, Ashish Agarwal, Pramit Manna, Bishnu P. Khanal,
Paula Aldeanueva-Potel, Enrique Carbó-Argibay, Nicolas Pazos-Pérez, Leonid
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