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A Note on the Class of Superreflexive

Almost Transitive Banach Spaces

Jarno Talponen

University of Helsinki, Department of Mathematics and Statistics, Box 68,
(Gustaf Hällströminkatu 2b) FI-00014 University of Helsinki, Finland

talponen@cc.helsinki.fi
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Introduction

This note investigates the interplay between the geometry of the norm
and isometric symmetries of Banach spaces. We denote the closed unit ball
of a real Banach space X by BX and the unit sphere of X by SX. A Ba-
nach space X is called transitive if for each x ∈ SX the corresponding orbit
GX(x) ·= {T (x) | T : X → X is an isometric automorphism} coincides with
SX. If GX(x) = SX (respectively conv(GX(x)) = BX) for all x ∈ SX, then X
is called almost transitive (respectively convex-transitive). We refer to [3] for
an extensive survey of these and other related concepts.

We will study the class of simultaneously almost transitive, uniformly con-
vex and uniformly smooth Banach spaces. This class has been studied previ-
ously by Finet [8], Cabello [5], Becerra and Rodriguez [1] and we denote it by
J following [3]. An example of such a space is Lp(0, 1) for 1 < p < ∞.

We will provide a criterion for a convex-transitive Banach space X to
belong to J . Based on [8, 5, 1] Becerra and Rodriguez summarized in their
survey [3] some connections between transitivity conditions and the geometry
of the norm. Especially [3, Theorem 6.8, Corollary 6.9] provide a long list of
conditions on X equivalent to X being a member of J . For example, a convex-
transitive space X belongs to J provided that it is an Asplund space or has the
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Radon-Nikodym Property. Observe that since L∞(0, 1) is convex-transitive
(see [11] or [3]) and contains isometrically all separable Banach spaces, the
convex-transitivity condition per se does not guarantee any good geometric
behavior.

In order to characterize the convex-transitive spaces, which belong to J , we
impose the following two geometric conditions. Firstly, we require that there
exist relatively weakly open subsets of SX of diameter less than 2. Secondly,
we impose the condition that the ω-exposed points of BX are weakly dense
in SX. Some different versions of the results in this paper are found in the
preprints [14]. See [12] for important results regarding ω-exposed points.

Preliminaries

Throughout this article we will consider real Banach spaces denoted by
X, Y and Z unless otherwise stated. For a general introduction to the geome-
try of the norm see the first chapter of [9]. Given f ∈ X∗ and α ∈ R the corre-
sponding open slice of C ⊂ X is denoted by S(C, f, α) = {x ∈ C | f(x) > α}.
Put B(x, ε) = x + εBX for x ∈ X and ε > 0. The dual X∗ of X is said to be
convex ω∗-transitive if convω∗({T ∗(f) : T ∈ GX}) = BX∗ for f ∈ SX∗ . For a
Banach space X and u ∈ SX, we recall that the modulus of roughness at u is
given by

η(X, u) = inf
δ>0

{
sup

{‖u + h‖+ ‖u− h‖ − 2
‖h‖ : h ∈ X, ‖h‖ ≤ δ

}}
. (1)

Note that 0 ≤ η(X, u) ≤ 2. The norm is Fréchet differentiable at u if and
only if η(X, u) = 0, see [6, Lemma I.1.3]. The space X is extremely rough if
η(X, u) = 2 for u ∈ SX. We will also require the following results. Recall the
geometric fact below, which can be found in [6, I.1.11].

Lemma 1. Let X be a Banach space and x∗ ∈ SX∗ . Then

η(X∗, x∗) = inf{diam(S(BX, x∗, α)) : 0 < α < 1}.

The following characterization of the class J is crucial in our arguments
and it is included in [2, Theorem 1]: The space X is a member of J if and
only if X∗ is convex ω∗-transitive and the norm of X∗ is not extremely rough.

Recall the classical S̆mulyan lemma (see e.g. [7, Lemma 8.4]), which states
that the below conditions (i)-(iii) are equivalent:
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(i) The norm ‖ · ‖ of a Banach space X is Gateaux differentiable at x ∈ SX.

(ii) For all (fn), (gn) ⊂ SX∗ such that limn→∞ fn(x) = limn→∞ gn(x) = 1 it
holds that fn − gn

ω∗−→ 0 as n →∞.

(iii) There is unique f ∈ SX∗ such that f(x) = 1, i.e., x is a smooth point.

The ω-exposed points are a class of nicely rotund points. Recall that x ∈
SX is said to be ω-exposed (resp. strongly exposed) if there is f ∈ SX∗ , f(x) =
1, such that whenever (xn) ⊂ BX is a sequence satisfying limn→∞ f(xn) = 1
then x = ω − limn→∞ xn (resp. x = limn→∞ xn). In such a case f above
is called a ω-exposing functional (resp. strongly exposing functional) for x.
Actually, a norm-attaining functional f ∈ SX∗ is a ω-exposing functional for a
(unique) point x ∈ SX if and only if f is a smooth point in X∗ (see e.g. [13]).

Results

The following Theorem 2. gives a criterion for convex-transitive Banach
spaces to be members of the class J . Recall that J is the class of almost transi-
tive Banach spaces, which are simultaneously uniformly convex and uniformly
smooth.

Theorem 2. Let X be a convex-transitive Banach space satisfying the
following conditions:

(a) The weakly exposed points are relatively weakly dense in SX.

(b) inf{diam(U) | U ⊂ SX relatively ω-open, U 6= ∅} < 2.

Then X belongs in J .

Let us discuss the assumptions before giving the proof. The assumption (b)
above can be considered as a weakening of the Point of Continuity Property
(PCP), of the Radon-Nikodym property or of the Kadec-Klee property. Recall
that a Banach space X is said to have the Point of Continuity Property if each
non-empty subset A ⊂ X contains a point x such that for each ε > 0 there
is a non-empty relatively weakly open neighbourhood U ⊂ A of x such that
diam(U) < ε. It should be mentioned that PCP in turn is a much weaker
property than asymptotical uniform convexity (see [10] for a discussion) and
that rotations have not been studied in connection with these two properties.

Regarding assumption (a), as pointed out in the Preliminaries, a point
x ∈ SX is ω-exposed if it is exposed by a smooth functional f ∈ SX∗ . For
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comparison, recall that the analogous fact holds for strongly exposed points
and Fréchet smooth functionals. Moreover, the requirement of a point x
being ω-exposed is much weaker than that of being strongly exposed. These
considerations yield the following consequence of Theorem 2.

Corollary 3. If a convex-transitive space X has the PCP and X∗ is a
Gateaux smooth space, then X ∈ J .

Proof of Theorem 1. According to assumption (b) there exists a relatively
weakly open set U ⊂ SX such that diam(U) < 2. Assumption (a) yields that
there exists a weakly exposed point z ∈ U . If f ∈ SX∗ is a weakly exposing
functional for z, then there exists α ∈ (0, 1) such that S(BX, f, α) ∩ SX ⊂ U .
Indeed, assume to the contrary that S(BX, f, α)∩SX\U 6= ∅ for all 0 < α < 1.
Then one can pick a sequence (vk)k∈N ⊂ SX not intersecting U such that
f(vk) → 1 as k → ∞. Since f is a weakly exposing functional for z, we get
that vk

ω−→ z as k → ∞. This provides a contradiction since U is a ω-open
neighbourhood of z.

Let δ ∈ (α, 1) be such that diam(U) + 2(1− δ) < 2. Then we get that

diam(S(BX, f, δ)) ≤ diam(S(BX, f, δ) ∩ SX) + 2(1− δ) < 2, (2)

since S(BX, f, δ) ∩ SX ⊂ U . Hence we obtain by Lemma 1 that X∗ is not
extremely rough. Since X is convex-transitive, we obtain by a simple and
well-known argument that X∗ is convex ω∗-transitive. Hence X is a member
of J according to [2, Theorem 1].

Theorem 4. Let X be a convex-transitive Banach space and x ∈ SX.
Suppose that for each ε > 0 there exist k ∈ N, δ1, . . . , δk ∈ (0, 1) and
f1, . . . , fk ∈ SX∗ such that f1(x) = f2(x) = · · · = fk(x) = 1 and

diam({y ∈ BX | fi(y) > 1− δi for 1 ≤ i ≤ k}) < ε.

Then X belongs in J .

Proof. We consider X embedded canonically in X∗∗. Fix 0 < ε < 1 and
u∗∗, v∗∗ ∈ SX∗∗ such that u∗∗+v∗∗

2 = x.
As in the assumptions, let (δi) and (fi) be k-uples such that

V
·= {y ∈ BX : fi(y) > 1− δi for 1 ≤ i ≤ k} ⊂ BX (3)

satisfies diam(V ) < ε. Define W = {y ∈ BX∗∗ : fi(y) > 1− δi for 1 ≤ i ≤ k}.
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Recall that BX is ω∗-dense in BX∗∗ according to Goldstine’s theorem.
Since W is relatively ω∗-open in BX∗∗ , we obtain that V is ω∗-dense in W .
Observe that {y − z : y, z ∈ V } is ω∗-dense in {u∗∗ − v∗∗ : u∗∗, v∗∗ ∈ W}.
Thus, by applying the ω∗-lower semicontinuity of the norm of X∗∗ we obtain
that diam(W ) = diam(V ) < ε.

By using that f1(x) = · · · = fk(x) = 1, ‖f1‖ = · · · = ‖fk‖ = 1 and
x = u∗∗+v∗∗

2 , where ‖u∗∗‖ = ‖v∗∗‖ = 1, we obtain that u∗∗(fi) = v∗∗(fi) = 1
for 1 ≤ i ≤ k. Thus u∗∗, v∗∗ ∈ W and hence ‖u∗∗ − v∗∗‖ < ε. Since u∗∗, v∗∗

and ε were arbitrary, we get that x is an extreme point of BX∗∗ .
According to Choquet’s Lemma (see e.g. [7, Lemma 3.40]) the ω∗-slices of

BX∗∗ containing x form a ω∗-neighbourhood basis of x in BX∗∗ . Thus there
exists α ∈ (0, 1) and g ∈ SX∗ such that S(BX∗∗ , g, α) ⊂ W . In particular
diam(S(BX, g, α)) < ε < 2. By Lemma 1 we get that X∗ is not extremely
rough. Since X is convex-transitive we have that X∗ is convex ω∗-transitive.
We conclude by applying [2, Theorem 1] that X is a member of J .
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