Lifting Infinitesimal Automorphisms to Higher Order Adapted Frame Bundles

J. KUREK, W.M. MIKULSKI

Institute of Mathematics, Maria Curie-Sklodowska University, Pl. M. Curie-Sklodowskiej 1, Lublin, Poland, kurek@hektor.umcs.lublin.pl

> Institute of Mathematics, Jagiellonian University, ul. Reymonta 4, Kraków, Poland, mikulski@im.uj.edu.pl

Presented by Manuel de León

Received July 17, 2007

Abstract: We describe all $\mathcal{F}ol_{m,n}$ -natural operators \mathcal{A} lifting infinitesimal automorphisms X on foliated (m + n)-dimensional manifolds (M, \mathcal{F}) with n-dimensional foliations \mathcal{F} into vector fields $\mathcal{A}(X)$ on the r-th order adapted frame bundle $P^r(M, \mathcal{F})$. Next, we describe all $\mathcal{F}ol_{m,n}$ -natural affinors on $P^r(M, \mathcal{F})$.

Key words: foliated manifold, infinitesimal automorphism, natural operator, natural affinor, higher order adapted frame bundle.

AMS Subject Class. (2000): 58A20, 58A32.

0. INTRODUCTION

The present paper is devoted to extend results from our previous papers [4] and [3] to similar results for foliated manifolds instead of manifolds. We modify and joint in respective way the texts of papers [4] and [3]. All manifolds and maps are assumed to be of class C^{∞} .

The notion on foliated manifolds can be found in many papers, e.g. [5]. Let $\mathcal{F}ol_{m,n}$ denote the category of all (m+n)-dimensional foliated manifolds with *n*-dimensional foliations and their foliation respecting local diffeomorphisms. Let (M, \mathcal{F}) be a $\mathcal{F}ol_{m,n}$ -object. We have the *r*-th order adapted frame bundle

 $P^{r}(M,\mathcal{F}) = \{j_{0}^{r}\varphi \mid \varphi : (\mathbf{R}^{m+n},\mathcal{F}^{m,n}) \to (M,\mathcal{F}) \text{ is a } \mathcal{F}ol_{m,n}\text{-map}\}$

over M of (M, \mathcal{F}) with the target projection, where $\mathcal{F}^{m,n} = \{\{a\} \times \mathbf{R}^n\}_{a \in \mathbf{R}^m}$ is the standard *n*-dimensional foliation on \mathbf{R}^{m+n} . Clearly, $P^r(M, \mathcal{F})$ is a principal bundle with the group $G^r_{m,n} = P^r(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})_0$ (with the multiplication given by the composition of jets) acting on the right on $P^r(M, \mathcal{F})$ by the composition of jets. Every $\mathcal{F}ol_{m,n}$ -map $\psi : (M_1, \mathcal{F}_1) \to (M_2, \mathcal{F}_2)$ can be extended (via composition of jets) into principal bundle (local) isomorphism

61

 $P^r\psi: P^r(M_1, \mathcal{F}_1) \to P^r(M_2, \mathcal{F}_2)$ covering ψ given by $P^r\psi(j_0^r\varphi) = j_0^r(\psi \circ \varphi)$. Thus we have the bundle functor $P^r: \mathcal{F}ol_{m,n} \to \mathcal{PB}_m(G^r_{m,n})$ in the sense of [1].

Let (M, \mathcal{F}) be a $\mathcal{F}ol_{m,n}$ -object. A vector field X on M is called an *in-finitesimal automorphism* of (M, \mathcal{F}) if its flow is formed by local $\mathcal{F}ol_{m,n}$ -maps $(M, \mathcal{F}) \to (M, \mathcal{F})$ or (equivalently) if [X, Y] is tangent to \mathcal{F} for any vector field Y tangent to \mathcal{F} . The space $\mathcal{X}(M, \mathcal{F})$ of all infinitesimal automorphisms of (M, \mathcal{F}) is a Lie subalgebra in $\mathcal{X}(M)$.

The general concept of natural operators can be found in [1]. In this paper we need the following partial definition.

DEFINITION 1. A $\mathcal{F}ol_{m,n}$ -natural operator $\mathcal{A}: T_{Inf-Aut} \rightsquigarrow TP^r$ is a family of $\mathcal{F}ol_{m,n}$ -invariant regular operators (functions)

$$\mathcal{A} = \mathcal{A}_{(M,\mathcal{F})} : \mathcal{X}(M,\mathcal{F}) \to \mathcal{X}(P^r(M,\mathcal{F}))$$

for any $\mathcal{F}ol_{m,n}$ -object (M, \mathcal{F}) . (Of course, for some (M, \mathcal{F}) one can have $\mathcal{X}(M, \mathcal{F}) = \emptyset$; then $\mathcal{A}_{(M,\mathcal{F})} = \emptyset$.) The invariance means that if $X_1 \in \mathcal{X}(M_1, \mathcal{F}_1)$ and $X_2 \in \mathcal{X}(M_2, \mathcal{F}_2)$ are two related infinitesimal automorphisms of (M_1, \mathcal{F}_1) and (M_2, \mathcal{F}_2) (respectively) by a $\mathcal{F}ol_{m,n}$ -map $\psi : (M_1, \mathcal{F}_1) \to (M_2, \mathcal{F}_2)$ then $\mathcal{A}_{(M_1, \mathcal{F}_1)}(X_1)$ and $\mathcal{A}_{(M_2, \mathcal{F}_2)}(X_2)$ are related by $P^r \psi$. The regularity means that \mathcal{A} transforms smoothly parametrized families of infinitesimal automorphisms into smoothly parametrized families of vector fields.

A $\mathcal{F}ol_{m,n}$ -natural operator $\mathcal{A} : T_{Inf-Aut} \rightsquigarrow TP^r$ is said to be of vertical type if $\mathcal{A}_{(M,\mathcal{F})}(X)$ is a vertical vector field on $P^r(M,\mathcal{F}) \to M$ for any infinitesimal automorphism X of an arbitrary $\mathcal{F}ol_{m,n}$ -object (M,\mathcal{F}) .

Let k be a non-negative integer. A $\mathcal{F}ol_{m,n}$ -natural operator $\mathcal{A}: T_{Inf-Aut} \rightsquigarrow TP^r$ is said to be of order $\leq k$ if for any infinitesimal automorphisms X_1 and X_2 of (M, \mathcal{F}) and $x \in M$ the equality of k-jets $j_x^k(X_1) = j_x^k(X_2)$ implies $\mathcal{A}_{(M,\mathcal{F})}(X_1) = \mathcal{A}_{(M,\mathcal{F})}(X_2)$ on the fiber $(P^r(M,\mathcal{F}))_x$ of $P^r(M,\mathcal{F})$ over x.

EXAMPLE 1. An example of a $\mathcal{F}ol_{m,n}$ -natural operator $\mathcal{A}: T_{Inf-Aut} \rightsquigarrow TP^r$ of order $\leq r$ is the flow operator \mathcal{P}^r sending an infinitesimal automorphism X of a $\mathcal{F}ol_{m,n}$ -object (M, \mathcal{F}) into the complete lift $\mathcal{P}^r X$ of X to $P^r(M, \mathcal{F})$. We recall that $\mathcal{P}^r X$ is the vector field on $P^r(M, \mathcal{F})$ such that if $\{\Phi_t\}$ is the flow of X then $\{P^r(\Phi_t)\}$ is the flow of $\mathcal{P}^r X$. (We observe that to the flow of X we can apply functor P^r because the flow is formed by $\mathcal{F}ol_{m,n}$ -maps.)

EXAMPLE 2. Let $E \in \mathcal{L}(G_{m,n}^r)$. Let E^* denote the fundamental vector field on $P^r(M, \mathcal{F})$ corresponding to E for any $\mathcal{F}ol_{m,n}$ -object (M, \mathcal{F}) . We have the (constant) $\mathcal{F}ol_{m,n}$ -natural operator $E^* : T_{Inf-Aut} \rightsquigarrow TP^r$ defined by $(E^*)_{(M,\mathcal{F})}(X) = E^*$ for any infinitesimal automorphism X of (M, \mathcal{F}) . Clearly, the $\mathcal{F}ol_{m,n}$ -natural operator E^* is of vertical type.

DEFINITION 2. A $\mathcal{F}ol_{m,n}$ -natural affinor on P^r is a $\mathcal{F}ol_{m,n}$ -invariant family of tensor fields of type (1, 1) (affinors)

$$B = B_{(M,\mathcal{F})} : TP^r(M,\mathcal{F}) \to TP^r(M,\mathcal{F})$$

on $P^r(M, \mathcal{F})$ for any $\mathcal{F}ol_{m,n}$ -object (M, \mathcal{F}) . The invariance means that affinors $B_{(M_1,\mathcal{F}_1)}$ and $B_{(M_2,\mathcal{F}_2)}$ are $P^r\psi$ -related for any $\mathcal{F}ol_{m,n}$ -map $\psi: (M_1,\mathcal{F}_1) \to (M_2,\mathcal{F}_2)$.

A $\mathcal{F}ol_{m,n}$ -natural affinor B on P^r is said to be of vertical type if B: $TP^r(M,\mathcal{F}) \to VP^r(M,\mathcal{F})$ for any $\mathcal{F}ol_{m,n}$ -object (M,\mathcal{F}) , where $VP^r(M,\mathcal{F})$ is the vertical bundle of $P^r(M,\mathcal{F}) \to M$.

EXAMPLE 3. We have the identity $\mathcal{F}ol_{m,n}$ -natural affinor Id on P^r such that $Id: TP^r(M, \mathcal{F}) \to TP^r(M, \mathcal{F})$ is the identity map for any $\mathcal{F}ol_{m,n}$ -object (M, \mathcal{F}) .

In the present article we solve the following two problems.

PROBLEM 1. To classify all $\mathcal{F}ol_{m,n}$ -natural operators $\mathcal{A} : T_{Inf-Aut} \rightsquigarrow TP^r$.

PROBLEM 2. To classify all $\mathcal{F}ol_{m,n}$ -natural affinors on P^r .

The solution of Problem 1 is given in Theorem 1. We prove that the set of all $\mathcal{F}ol_{m,n}$ -natural operators $\mathcal{A}: T_{Inf-Aut} \rightsquigarrow TP^r$ is a free finite-dimensional module over some algebra. We will introduce the module structure and construct explicitly a basis of this module. The solution of Problem 2 is given in Theorem 2.

For n = 0, $\mathcal{F}ol_{m,0}$ is the category $\mathcal{M}f_m$ of *m*-dimensional manifolds and their local diffeomorphisms. Thus we reobtain the respective results from [4] and [3]. The part of the present paper concerning Problem 1 (resp. Problem 2) is a respective modification (adaptation) of the paper [4] (resp. [3]).

Natural affinors play a very important role in the differential geometry. They can be applied to study torsions of connections [2]. In our situation given a $\mathcal{F}ol_{m,n}$ -natural affinor $B: TP^r(M, \mathcal{F}) \to TP^r(M, \mathcal{F})$ gives a torsion $\tau_B(\Gamma) = [B, \Gamma]$ of a principal connection $\Gamma: TP^r(M, \mathcal{F}) \to VP^r(M, \mathcal{F})$ on $P^r(M, \mathcal{F})$, where the bracket is the Frolicher-Nijenhuis one. That is why, natural affinors have been studied in many papers.

1. Preliminaries

LEMMA 1. Let $X, Y \in \mathcal{X}(M, \mathcal{F})$ be infinitesimal automorphisms of (M, \mathcal{F}) and $x \in M$ be a point. Suppose that $j_x^r X = j_x^r Y$ and X_x is not-tangent to \mathcal{F} . Then there exists a (locally defined) $\mathcal{F}ol_{m,n}$ -map $\psi : (M, \mathcal{F}) \to (M, \mathcal{F})$ such that $j_x^{r+1}(\psi) = j_x^{r+1}(id_M)$ and $\psi_* X = Y$ near x.

Proof. A direct modification of the proof of Lemma 42.4 in [1].

PROPOSITION 1. Any $\mathcal{F}ol_{m,n}$ -natural operator $\mathcal{A}: T_{Inf-Aut} \rightsquigarrow TP^r$ is of order $\leq r$.

Proof. A replica of the proof of Proposition 42.5 in [1]. We use Lemma 1 instead of Lemma 42.4 in [1]. \blacksquare

The following lemma can be found in some previous our paper (in printing). For the reader convenience we cite its proof.

LEMMA 2. Any vector $v \in T_w P^r(M, \mathcal{F})$, $w \in (P^r(M, \mathcal{F}))_x$, $x \in M$ is of the form $\mathcal{P}^r X_w$ for some $X \in \mathcal{X}(M, \mathcal{F})$. Moreover $j_x^r X$ is uniquely determined.

Proof. We can assume that $(M, \mathcal{F}) = (\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ and w is over 0. Since $P^r(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ is in usual way a sub-principal bundle of $P^r\mathbf{R}^{m+n}$, then by well-known manifold version of the lemma, we find $X \in \mathcal{X}(\mathbf{R}^{m+n})$ such that $v = \mathcal{P}^r X_w$ and $j_0^r X$ is determined uniquely. Any infinitesimal automorphism Y of $(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ gives $\mathcal{P}^r Y_w$ which is tangent to $P^r(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$. On the other hand the dimension of $P^r(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ and the dimension of the space of r-jets $j_0^r Y$ of infinitesimal automorphisms Y of $(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ are equal. Then the lemma follows from the dimension argument because the flow operator is linear.

2. The $\mathcal{F}ol_{m,n}$ -NATURAL OPERATORS $\mathcal{B}: T_{Inf-Aut} \rightsquigarrow T^{(0,0)}P^r$

If (in the definition of $\mathcal{F}ol_{m,n}$ -natural operators $\mathcal{A} : T_{Inf-Aut} \rightsquigarrow TP^r$) we replace the space $\mathcal{X}(P^r(M,\mathcal{F}))$ by the space $C^{\infty}(P^r(M,\mathcal{F}))$ of mappings $P^r(M, \mathcal{F}) \to \mathbf{R}$, we obtain the concept of $\mathcal{F}ol_{m,n}$ -natural operators $\mathcal{B}: T_{Inf-Aut} \rightsquigarrow T^{(0,0)}P^r$ lifting infinitesimal automorphisms of (M, \mathcal{F}) into maps $P^r(M, \mathcal{F}) \to \mathbf{R}$.

EXAMPLE 4. We have the following general example of $\mathcal{F}ol_{m,n}$ -natural operators $T_{Inf-Aut} \rightsquigarrow T^{(0,0)}P^r$. Let

$$\lambda: J_0^{r-1}(T_{Inf-Aut}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})) \to \mathbf{R}$$

be a map, where $J_0^{r-1}(T_{Inf-Aut}(\mathbf{R}^{m+n},\mathcal{F}^{m,n}))$ is the vector space of all (r-1)jets $j_0^{r-1}X$ at $0 \in \mathbf{R}^{m+n}$ of infinitesimal automorphism $X \in \mathcal{X}(\mathbf{R}^{m+n},\mathcal{F}^{m,n})$. Then given an infinitesimal automorphisms X on a $\mathcal{F}ol_{m,n}$ -object (M,\mathcal{F}) we have $\mathcal{B}^{<\lambda>}(X): P^r(M,\mathcal{F}) \to \mathbf{R}$ given by

$$\mathcal{B}^{<\lambda>}(X)(j_0^r\psi) = \lambda(j_0^{r-1}(\psi_*^{-1}X))$$

for all $j_0^r \psi \in (P^r(M, \mathcal{F}))_x$, $x \in M$, where $\psi : (\mathbf{R}^{m+n}, \mathcal{F}^{m,n}) \to (M, \mathcal{F})$ is a $\mathcal{F}ol_{m,n}$ -map with $\psi(0) = x$. The correspondence $\mathcal{B}^{<\lambda>} : T_{Inf-Aut} \to T^{(0,0)}P^r$ is a $\mathcal{F}ol_{m,n}$ -natural operator of order $\leq r-1$ transforming infinitesimal automorphisms of (M, \mathcal{F}) into maps $P^r(M, \mathcal{F}) \to \mathbf{R}$.

The set of $\mathcal{F}ol_{m,n}$ -natural operators $\mathcal{B}: T_{Inf-Aut} \rightsquigarrow T^{(0,0)}P^r$ is (in obvious way) an algebra. Actually, given $\mathcal{F}ol_{m,n}$ -natural operators $\mathcal{B}_1, \mathcal{B}_2: T_{Inf-Aut} \rightsquigarrow T^{(0,0)}P^r$ we have $\mathcal{F}ol_{m,n}$ -natural operator $\mathcal{B}_1\mathcal{B}_2: T_{Inf-Aut} \rightsquigarrow T^{(0,0)}P^r$ given by

$$(\mathcal{B}_1\mathcal{B}_2)_{(M,\mathcal{F})}(X) = (\mathcal{B}_1)_{(M,\mathcal{F})}(X)(\mathcal{B}_2)_{(M,\mathcal{F})}(X)$$

for any infinitesimal automorphism X of a $\mathcal{F}ol_{m,n}$ -object (M, \mathcal{F}) , where in the right of the above formula we have the multiplication of real valued functions. Similarly we define the sum $\mathcal{B}_1 + \mathcal{B}_2 : T_{Inf-Aut} \rightsquigarrow T^{(0,0)}P^r$.

PROPOSITION 2. The map $\lambda \to \mathcal{B}^{<\lambda>}$ is an algebra isomorphism from the algebra of smooth maps $J_0^{r-1}(T_{Inf-Aut}(\mathbf{R}^{m+m}, \mathcal{F}^{m,n})) \to \mathbf{R}$ onto the algebra of all $\mathcal{F}ol_{m,n}$ -natural operators $T_{Inf-Aut} \to T^{(0,0)}P^r$.

Proof. Clearly, the map $\lambda \to \mathcal{B}^{<\lambda>}$ is an algebra monomorphism. Any $\mathcal{F}ol_{m,n}$ -natural operator $\mathcal{B}: T_{Inf-Aut} \rightsquigarrow T^{(0,0)}P^r$ of order $\leq r-1$ defines $\lambda: J_0^{r-1}(T_{Inf-Aut}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})) \to \mathbf{R}$ by

$$\lambda(j_0^{r-1}X) = \mathcal{B}(X)_{j_0^r(id_{\mathbf{R}^{m+n}})}.$$

By the order argument λ is well-defined. It is smooth because of the regularity of \mathcal{B} (standard argument using the Boman theorem, [1]). Then by the invariance with respect to local trivialization one can easily see that $\mathcal{B} = \mathcal{B}^{<\lambda>}$.

Quite similarly as Proposition 1, one can show that any \mathcal{B} in question is of order $\leq r-1$. Then the map $\lambda \to \mathcal{B}^{<\lambda>}$ is an isomorphism.

3. The $\mathcal{F}ol_{m,n}$ -NATURAL OPERATORS $\mathcal{A}: T_{Inf-Aut} \rightsquigarrow TP^r$ OF VERTICAL TYPE

Let $E_{\nu} \in \mathcal{L}(G_{m,n}^{r})$ ($\nu = 1, \ldots, \dim(G_{m,n}^{r})$) be a basis of $\mathcal{L}(G_{m,n}^{r})$. Then the fundamental vector fields $(E_{\nu})^{*}$ for $\nu = 1, \ldots, \dim(G_{m,n}^{r})$ form a basis over $C^{\infty}(P^{r}(M, \mathcal{F}))$ of the module of vertical vector fields on $P^{r}(M, \mathcal{F})$ for any $\mathcal{F}ol_{m,n}$ -object (M, \mathcal{F}) .

The space of all $\mathcal{F}ol_{m,n}$ -natural operators $T_{Inf-Aut} \rightsquigarrow TP^r$ transforming infinitesimal automorphisms of $\mathcal{F}ol_{m,n}$ -objects (M, \mathcal{F}) into vector fields on $P^r(M, \mathcal{F})$ is (in obvious way) a module over the algebra of $\mathcal{F}ol_{m,n}$ -natural operators $T_{Inf-Aut} \rightsquigarrow T^{(0,0)}P^r$. (Actually, given $\mathcal{F}ol_{m,n}$ -natural operators $\mathcal{A}: T_{Inf-Aut} \rightsquigarrow TP^r$ and $\mathcal{B}: T_{Inf-Aut} \rightsquigarrow T^{(0,0)}P^r$ we have $\mathcal{F}ol_{m,n}$ -natural operator $\mathcal{B}\mathcal{A}: T_{Inf-Aut} \rightsquigarrow TP^r$ given by

$$(\mathcal{BA})_{(M,\mathcal{F})}(X) = \mathcal{B}_{(M,\mathcal{F})}(X)\mathcal{A}_{(M,\mathcal{F})}(X)$$

for any infinitesimal automorphism X on a $\mathcal{F}ol_{m,n}$ -object (M, \mathcal{F}) , where in right of the above formula is the multiplication of vector fields by real valued functions.) Then by Proposition 2 it is the module over the algebra of all maps $J_0^{r-1}(T_{Inf-Aut}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})) \to \mathbf{R}$.

PROPOSITION 3. The (sub)module of all vertical type $\mathcal{F}ol_{m,n}$ -natural operators $\mathcal{A}: T_{Inf-Aut} \rightsquigarrow TP^r$ is free. The $\mathcal{F}ol_{m,n}$ -natural operators $(E_{\nu})^*$ in question form a basis over $\mathcal{C}^{\infty}(J_0^{r-1}(T_{Inf-Aut}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})))$ of this module.

Proof. Since the fundamental vector fields $(E_{\nu})^*$ on $P^r(M, \mathcal{F})$ form the basis of the module of vertical vector fields on $P^r(M, \mathcal{F})$, then any $\mathcal{F}ol_{m,n}$ -natural operator \mathcal{A} (of vertical type) in question is of the form

$$\mathcal{A}(X) = \sum \lambda_{\nu}(X)(E_{\nu})^*$$

for some uniquely determined maps $\lambda_{\nu}(X) : P^r(M, \mathcal{F}) \to \mathbf{R}$, where X is an infinitesimal automorphism of a $\mathcal{F}ol_{m,n}$ -object (M, \mathcal{F}) . Because of the invariance of \mathcal{A} with respect to $\mathcal{F}ol_{m,n}$ -maps, $\lambda_{\nu} : T_{Inf-Aut} \rightsquigarrow T^{(0,0)}P^r$ are $\mathcal{F}ol_{m,n}$ -natural operators.

4. A decomposition

PROPOSITION 4. Let $\mathcal{A}: T_{Inf-Aut} \rightsquigarrow TP^r$ be a $\mathcal{F}ol_{m,n}$ -natural operator of order $\leq r$. There is a unique smooth map $\lambda: J_0^{r-1}(T_{Inf-Aut}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})) \rightarrow \mathbf{R}$ such that $\mathcal{A} - \mathcal{B}^{<\lambda>}\mathcal{P}^r$ is of vertical type, where $\mathcal{P}^r: T_{Inf-Aut} \rightsquigarrow TP^r$ is the flow operator.

Proof. Let X be an infinitesimal automorphism of $(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$. We can write $\mathcal{A}(X)_{j_0^r(id_{\mathbf{R}^{m+n}})} = \mathcal{P}^r \tilde{X}_{j_0^r(id_{\mathbf{R}^{m+n}})}$ for some infinitesimal automorphism \tilde{X} (see Lemma 2). Suppose that $\tilde{X}_0 \neq 0$ and $X_0 \neq \mu \tilde{X}_0$ for all $\mu \in \mathbf{R}$. Then there is an $\mathcal{F}ol_{m,n}$ -map $\psi : (\mathbf{R}^{m+n}, \mathcal{F}^{m,n}) \to (\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ preserving $j_0^r(id_{\mathbf{R}^{m+n}})$ such that

$$J^r T \psi(j_0^r X) = j_0^r X$$
 and $J^r T \psi(j_0^r X) \neq j_0^r X$.

Then

$$\mathcal{A}(X)_{j_0^r(id_{\mathbf{R}^{m+n}})} = \mathcal{P}^r(\psi_*\tilde{X})_{j_0^r(id_{\mathbf{R}^{m+n}})} \neq \mathcal{P}^r(\tilde{X})_{j_0^r(id_{\mathbf{R}^{m+n}})} = \mathcal{A}(X)_{j_0^r(id_{\mathbf{R}^{m+n}})}.$$

This is a contradiction. Consequently, we have

(*)
$$T\pi^r \circ \mathcal{A}(X)_{j_0^r(id_{\mathbf{R}^{m+n}})} = \lambda(j_0^{r-1}X)X_0$$

for some (not necessarily unique and not necessarily smooth) map

$$\lambda: J_0^{r-1}(T_{Inf-Aut}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})) \to \mathbf{R}$$

and all infinitesimal automorphisms of $(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ with coefficients (with respect to the basis of canonical vector fields on \mathbf{R}^{m+n}) being polynomials of degree $\leq r-1$, where $\pi^r : P^r(\mathbf{R}^{m+m}, \mathcal{F}^{m,n}) \to \mathbf{R}^{m+m}$ is the usual projection $j_0^r \psi \to \psi(0)$.

We are going to show that λ can be chosen smooth. Of course (since the left hand side of (*) depends smoothly on $j_0^r X$), the map

$$\Phi: J_0^{r-1}(T_{Inf-Aut}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})) \to \mathbf{R}$$

given by

$$\Phi(j_0^{r-1}X) = \lambda(j_0^{r-1}X)X^1(0)$$

is smooth and $\Phi(j_0^{r-1}X) = 0$ if $X^1(0) = 0$, where $X_0 = \sum_i X^i(0) \frac{\partial}{\partial x^i_0}$. Then (this is a known fact from the mathematical analysis) there is a smooth map

$$\Psi: J_0^{r-1}(T_{Inf-Aut}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})) \to \mathbf{R}$$

such that $\Phi(j_0^{r-1}X) = \Psi(j_0^{r-1}X)X^1(0)$. Then we can define new $\lambda = \Psi$. This new λ is equal to the old one for $X^1(0) \neq 0$. Then for the new λ we have (*) if additionally $X^1(0) \neq 0$. Then we have (*) for all X in question because of the smooth and density arguments.

Then $(\mathcal{A}(X) - \mathcal{B}^{<\lambda>}(X)\mathcal{P}^r X)_{j_0^r(id_{\mathbf{R}^{m+n}})}$ is vertical for all infinitesimal automorphisms X of $(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ with coefficients (with respect to the basis of vector fields) being polynomials of degree $\leq r-1$.

Since the union of orbits with respect to the $\mathcal{F}ol_{m,n}$ -maps preserving $j_0^r(id_{\mathbf{R}^{m+n}})$ of all $j_0^r X$ for infinitesimal automorphisms X with coefficients (with respect to the basis as above) being polynomials of degree $\leq r-1$ is dense in $J_0^r(T_{Inf-Aut}(\mathbf{R}^{m+n},\mathcal{F}^{m,n}))$ (see Lemma 1), the vector $(\mathcal{A}(X) - \mathcal{B}^{<\lambda>}(X)\mathcal{P}^r X)_{j_0^r(id_{\mathbf{R}^{m+n}})}$ is vertical for all infinitesimal automorphisms X of $(\mathbf{R}^{m+n},\mathcal{F}^{m,n})$ with coefficients (with respect to the basis) being polynomials of degree $\leq r$. Then $(\mathcal{A}(X) - \mathcal{B}^{<\lambda>}(X)\mathcal{P}^r X)_{j_0^r(id_{\mathbf{R}^{m+n}})}$ is vertical for all infinitesimal automorphisms X of infinitesimal automorphisms X of $(\mathbf{R}^{m+n},\mathcal{F}^{m,n})$ because of the order argument. Then $\mathcal{A}-\mathcal{B}^{<\lambda>}\mathcal{P}^r$ is of vertical type because of the $\mathcal{F}ol_{m,n}$ -invariance and the fact that P^r is a transitive bundle functor (i.e. $P^r(M,\mathcal{F})$ is the $\mathcal{F}ol_{m,n}$ -orbit of $j_0^r(id_{\mathbf{R}^{m+n}})$).

5. Solution of Problem 1

We know that any $\mathcal{F}ol_{m,n}$ -natural operator $\mathcal{A} : T_{Inf-Aut} \rightsquigarrow TP^r$ is of order $\leq r$ (see Proposition 1). Then summing up Propositions 3 and 4 we get.

THEOREM 1. All $\mathcal{F}ol_{m,n}$ -natural operators $T_{Inf-Aut} \rightsquigarrow TP^r$ form a free finite-dimensional module over the algebra of all smooth functions

$$J_0^{r-1}(T_{Inf-Aut}(\mathbf{R}^{m+n},\mathcal{F}^{m,n})) \to \mathbf{R}.$$

The operators \mathcal{P}^r and $(E_{\nu})^*$ for $\nu = 1, \ldots, \dim(G^r_{m,n})$ form a basis in this module, where (E_{ν}) is a basis of $\mathcal{L}(G^r_{m,n})$ and given $E \in \mathcal{L}(G^r_{m,n})$ the fundamental vector field on $P^r(M, \mathcal{F})$ is denoted by E^* .

6. A decomposition for $\mathcal{F}ol_{m,n}$ -natural affinors

PROPOSITION 5. Let B be a $\mathcal{F}ol_{m,n}$ -natural affinor on P^r . There is a unique real number λ such that $B - \lambda Id$ is of vertical type.

Proof. Using B we define a linear $\mathcal{F}ol_{m,n}$ -natural operator $\mathcal{A}: T_{Inf-Aut} \rightsquigarrow TP^r$ by $\mathcal{A}(X) = B(\mathcal{P}^r X)$ for any $X \in \mathcal{X}(M, \mathcal{F})$ (the linearity means that

 $\mathcal{A}(X)$ is linear in X). By Proposition 4 and the homogeneous function theorem [1], since \mathcal{A} is linear, there exists a unique real number λ such that $\mathcal{A} - \lambda \mathcal{P}^r$ is vertical. Then $(B - \lambda Id)(\mathcal{P}^r X_\sigma)$ is vertical for any infinitesimal automorphism $X \in \mathcal{X}(M, \mathcal{F})$ and $\sigma \in \mathcal{P}^r(M, \mathcal{F})$. Then $(B - \lambda Id)(v)$ is vertical for any $v \in TP^r(M, \mathcal{F})$ because of Lemma 2. Then $B - \lambda Id$ is vertical.

7. An example of $\mathcal{F}ol_{m,n}$ -natural affinors of vertical type

We have the following example.

EXAMPLE 5. Let

 $C: J_0^{r-1}(T_{Inf-Aut}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})) \to (J_0^r(T_{Inf-Aut}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})))_0$

be a linear map, where

$$J_0^{r-1}(T_{Inf-Aut}(\mathbf{R}^{m+n},\mathcal{F}^{m,n})) = \{j_0^{r-1}X \mid X \in \mathcal{X}(\mathbf{R}^{m+n},\mathcal{F}^{m,n})\}$$

and $(J_0^r(T_{Inf-Aut}(\mathbf{R}^{m+n},\mathcal{F}^{m,n})))_0 = \{j_0^r X \mid X \in \mathcal{X}(\mathbf{R}^{m+n},\mathcal{F}^{m,n}), X_0 = 0\}.$ Define a vertical $\mathcal{F}ol_{m,n}$ -natural affinor $B^C : TP^r(M,\mathcal{F}) \to VP^r(M,\mathcal{F})$ on P^r by

$$B^{C}(v) = VP^{r}\psi((\mathcal{P}^{r}\tilde{v})_{\theta}) , \ v \in T_{j_{0}^{r}\psi}P^{r}(M,\mathcal{F}) , \ j_{0}^{r}\psi \in P^{r}(M,\mathcal{F}),$$

where $\theta = j_0^r(id_{\mathbf{R}^{m+m}}) \in P^r(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ is the element and $\tilde{v} \in \mathcal{X}$ ($\mathbf{R}^{m+n}, \mathcal{F}^{m,n}$) is an infinitesimal automorphism of $(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ such that $j_0^r \tilde{v} = C(j_0^{r-1}((\psi^{-1})_*\bar{v}))$ and $v = (\mathcal{P}^r\bar{v})_{j_0^r\psi}$. One can standardly show that $B^C(v)$ is well-defined. More precisely (by Lemma 2), $j_{\overline{\psi}(0)}^r\bar{v}$ is uniquely determined by v. Then $j_0^{r-1}((\psi^{-1})_*\bar{v}) \in J_0^{r-1}(T_{Inf-Aut}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n}))$ is determined by v. Then $j_0^r(\tilde{v}) \in (J_0^r(T_{Inf-Aut}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})))_0$ is determined by v. Then $(\mathcal{P}^r\tilde{v})_{\theta}$ is determined by v and vertical. Then $B^C(v)$ is determined by v and vertical.

Using the linearity of the flow operator, we deduce that $B^C : TP^r(M, \mathcal{F}) \to VP^r(M, \mathcal{F})$ is a vertical affinor on $P^r(M, \mathcal{F})$. Clearly the family B^C is a $\mathcal{F}ol_{m,n}$ -natural affinor on P^r .

8. Solution of Problem 2

THEOREM 2. Any $\mathcal{F}ol_{m,n}$ -natural affinor on P^r is of the form

$$B = \lambda Id + B^C$$

for a unique real number λ and a unique linear map $C : J_0^{r-1}(T_{Inf-Aut}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n}))) \to (J_0^r(T_{Inf-Aut}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})))_0.$

Proof. Because of Proposition 5, we can assume that B is vertical. Define a linear map

$$C: J_0^{r-1}(T_{Inf-Aut}(\mathbf{R}^{m+m}, \mathcal{F}^{m,n})) \to (J_0^r(T_{Inf-Aut}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})))_0$$

by $C(j_0^{r-1}X) = j_0^r \tilde{X}$, where \tilde{X} is an infinitesimal automorphism of $(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ such that $(\mathcal{P}^r \tilde{X})_{\theta} = B((\mathcal{P}^r \overline{X})_{\theta})$ and \overline{X} is an unique infinitesimal automorphism of $(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ such that $j_0^{r-1}X = j_0^{r-1}\overline{X}$ and \overline{X} has coefficients with respect to the basis of canonical vector fields $\frac{\partial}{\partial x^i}$ on \mathbf{R}^{m+n} being polynomials of degree $\leq r-1$.

Then $B((\mathcal{P}^r X)_{\theta}) = B^C((\mathcal{P}^r X)_{\theta})$ for all infinitesimal automorphisms of $(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ such that X has coefficients (with respect to the basis as above) being polynomials of degree r-1. Since the union of all orbits with respect to the $\mathcal{F}ol_{m,n}$ -maps preserving θ of jets $j_0^r X$ of infinitesimal automorphisms X of $(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ with coefficients (with respect to the basis as above) being polynomials of degree $\leq r-1$ is dense in $J_0^r(T_{Inf-Aut}(\mathbf{R}^{m+n}, \mathcal{F}^{m,n}))$ (see Lemma 1), $B((\mathcal{P}^r X)_{\theta}) = B^C((\mathcal{P}^r X)_{\theta})$ for all infinitesimal automorphisms X of $(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$. Then $B(v) = B^C(v)$ for all $v \in T_{\theta}P^r(\mathbf{R}^{m+n}, \mathcal{F}^{m,n})$ because of Lemma 2. Then $B = B^C$ because of the $\mathcal{F}ol_{m,n}$ -invariance and the fact that P^r is a transitive bundle functor (i.e., $P^r(M, \mathcal{F})$ is the $\mathcal{F}ol_{m,n}$ -orbit of θ).

References

- I. KOLÁŘ, P.W. MICHOR, J. SLOVÁK, "Natural Operations in Differential Geometry", Springer Verlag, Berlin, 1993.
- [2] I. KOLÁŘ, M. MODUGNO, Torsions of connectionons on some natural bundles, Differential Geom. Appl. 2 (1) (1992), 1–16.
- [3] J. KUREK, W.M. MIKULSKI, The natural affinors on the r-th order frame bundle, *Demonstratio Math.* {bt 41 (3) (2008), 701-704.
- [4] J. KUREK, W.M. MIKULSKI, Lifting vector fields to the r-th order frame bundle, Colloq. Math. 111 (1) (2008), 51–58.
- [5] R. WOLAK, "Geometric Structures on Foliated Manifolds", Publ. del Departamento de Geometria y Topologia, Universidad de Santiago de Compostela, 76, Santiago de Compostela, 1989.