Weighted Composition Operators on Weighted Bergman Spaces

SANJAY KUMAR, KANWAR JATINDER SINGH

Department of Mathematics, University of Jammu, Jammu-180 006, India sks_jam@yahoo.co.in, kjeetindriya@yahoo.co.in

Presented by Fernando Cobos

Received May 4, 2007

Abstract: In this paper, we study boundedness, compactness and the essential norm of a class of weighted composition operators on weighted Bergman spaces.

 $Key\ words\colon$ Bergman spaces, Carleson measure, essential norm, weighted composition operators.

AMS Subject Class. (2000): 47B33, 46E30, 47B07.

1. INTRODUCTION

Let $H(\mathbb{D})$ denotes the space of holomorphic functions on the unit disc \mathbb{D} . Take $1 \leq p < \infty$ and $\alpha > -1$. Then $f \in H(\mathbb{D})$ is said to be in the weighted Bergman space $A^p_{\alpha}(\mathbb{D})$ iff

$$||f||_{A^p_{\alpha}}^p = \int_{\mathbb{D}} |f(z)|^p (1-|z|^2)^{\alpha} \mathrm{d}A(z) < \infty,$$

where dA(z) denote the normalised area measure on the unit disc \mathbb{D} .

Let φ be a holomorphic function from the unit disc \mathbb{D} into itself. Then the composition operator C_{φ} is defined as follows

$$C_{\varphi}(f)(z) = f(\varphi(z))$$
 for all $f \in H(\mathbb{D})$.

Again, let $\psi : \mathbb{D} \to \mathbb{D}$ be a fixed holomorphic map. Then the holomorphic Toeplitz operator T_{ψ} is defined as follows

$$T_{\psi}f(z) = \psi(z)f(z)$$
 for all $f \in H(\mathbb{D})$.

Let D denote the differential operator. Then we define the operator $DC_{\varphi}T_{\psi}$ as

$$DC_{\varphi}T_{\psi}(f) = (\psi f \circ \varphi)'$$
 for all $f \in H(\mathbb{D})$.

245

Again, the operator $T_{\psi}DC_{\varphi}$ is defined for $f \in H(\mathbb{D})$ by $T_{\psi}DC_{\varphi}(f) = \psi(f \circ \varphi)'$.

Fix any $a \in \mathbb{D}$ and let $\sigma_a(z)$ be the Möbius transformation of \mathbb{D} which interchanges 0 and a and is defined by

$$\sigma_a(z) = \frac{a-z}{1-\overline{a}z}, \qquad z \in \mathbb{D}.$$

If $K_a(z) = \frac{1}{(1-\overline{a}z)^2}$ denotes the Bergman kernel, then

$$k_a(z) = -\sigma'_a(z) = \frac{1 - |a|^2}{(1 - \overline{a}z)^2}$$

is the normalised kernel function for the Bergman space A^2 and $||k_a||_{A^2} = 1$.

We know that on a general space of analytic functions, the differential operator D is typically unbounded. On the other hand, the composition operator C_{φ} is bounded on various spaces of analytic functions on \mathbb{D} (see [4], [13], [16]), though the products DC_{φ} and $C_{\varphi}D$ are possibly still unbounded there. Hibschweiler and Portnoy [7] defined the products DC_{φ} and $C_{\varphi}D$ and investigated boundedness and compactness of DC_{φ} and $C_{\varphi}D$ between weighted Bergman spaces using the Carleson-type measures. J.S. Choa and S. Ohno [2], J.H. Shapiro and W. Smith [14] have given some examples showing that T_{ψ} need not be bounded (compact) on the Bergman space A^2 , but their product $T_{\psi}C_{\varphi}$ is bounded (compact) on A^2 . Motivated by the work of Hibschweiler and Portnoy [7], we define new operators $DC_{\varphi}T_{\psi}$ and $T_{\psi}DC_{\varphi}$ and study their boundedness and compactness between weighted Bergman spaces using the Carleson-type conditions. Moreover, in Section 3, we also find estimates for the essenital norm of $T_{\psi}DC_{\varphi}$.

2. Bounded and compact weighted composition operators

In this section, we characterize boundedness and compactness of $DC_{\varphi}T_{\psi}$ by using Carleson measures.

DEFINITION 1. Take $0 . A positive measure <math>\mu$ on \mathbb{D} is called a *p*-Carleson measure in \mathbb{D} if

$$\sup_{I \subset \partial \mathbb{D}} \frac{\mu(S(I))}{|I|^p} < \infty, \qquad (2.1)$$

where |I| denotes the arc length of I and S(I) denotes the Carleson square based on I,

$$S(I) = \left\{ z \in \mathbb{D} : 1 - |I| \le |z| < 1, \ \frac{z}{|z|} \in I \right\}.$$

246

Again, μ is called a compact *p*-Carleson measure if

$$\lim_{|I| \to 0} \frac{\mu(S(I))}{|I|^p} = 0.$$
(2.2)

DEFINITION 2. Let φ be a holomorphic mapping defined on \mathbb{D} such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$. Take $p \geq 1$ and let $\alpha > -1$. Then the counting function for the weighted Bergman spaces A^p_{α} is

$$N_{\varphi,\alpha,p}(\omega) = \sum_{\varphi(z)=\omega} |\varphi'(z)|^{p-2} (1-|z|^2)^{\alpha}$$

for $0 \neq \omega \in \mathbb{D}$.

Recall that the pseudohyperbolic metric ρ is defined by

$$\rho(z,\omega) = \left| \frac{z-\omega}{1-\overline{z}\omega} \right|, \qquad z,\omega \in \mathbb{D}.$$

Let D(a) denotes the pseudohyperbolic disc $\{z : \rho(a, z) < 1/8\}$. The following results are well known.

THEOREM 2.1. ([5, Theorem A]) Take $1 . Let <math>\mu$ be a finite positive Borel measure on \mathbb{D} . Then the following statements are equivalent:

- (1) The inclusion map $i: A^p_{\alpha} \to L^q(\mathbb{D}, d\mu)$ is bounded.
- (2) The measure μ is an $(\alpha + 2)q/p$ -Carleson measure.
- (3) For all $a \in \mathbb{D}$ we have

$$\int_{\mathbb{D}} |k_{a,\alpha}(z)|^q \mathrm{d}\mu(z) \le C \,,$$

where $k_{a,\alpha}(z) = (1 - |a|^2)^{(\alpha+2)/p} (1 - \overline{a}z)^{-2(\alpha+2)/p}$.

THEOREM 2.2. ([16, Theorem 8.2.5]) Take $1 . Let <math>\mu$ be a finite positive Borel measure on \mathbb{D} . Then the following statements are equivalent:

- (1) The inclusion map $i: A^p_{\alpha} \to L^q(\mathbb{D}, \mu)$ is compact.
- (2) The measure μ is a vanishing $(\alpha + 2)q/p$ -Carleson measure.

(3) For all $a \in \mathbb{D}$ we have

$$\lim_{|a|\to 1} \int_{\mathbb{D}} |k_{a,\alpha}(z)|^q \mathrm{d}\mu(z) = 0.$$

The proof of the following lemma follows on similar lines as in [4, Proposition 3.11].

LEMMA 2.3. Given $1 \leq p, q < \infty$. Take $T = DC_{\varphi}T_{\psi}$ or $T_{\psi}DC_{\varphi}$. Let φ be a holomorphic mapping defined on \mathbb{D} with $\varphi(\mathbb{D}) \subseteq \mathbb{D}$ and $\psi \in H(\mathbb{D})$ be such that $T : A^p_{\alpha} \to A^q_{\alpha}$ is bounded. Then $T : A^p_{\alpha} \to A^q_{\alpha}$ is compact (respectively, weakly compact) if and only if whenever $\{f_n\}$ is a bounded sequence in A^p_{α} converging to zero uniformly on compact subsets of \mathbb{D} , then $||T(f_n)||_{A^q_{\alpha}} \to 0$ (respectively, $\{T(f_n)\}$ is a weak null sequence in A^q_{α}).

We state a result of Luccking [10, Theorem 2.2] for the case n = 1 and $1 \le p \le q$.

THEOREM 2.4. Take $1 \le p \le q$ and let $\alpha > -1$. Let $\mu \ge 0$ be a finite measure on \mathbb{D} . Then the followings are equivalent:

- (1) $||f'||_{L^q(\mu)} \leq C ||f||_{A^p_{\alpha}}$ for all $f \in A^p_{\alpha}$.
- (2) $\mu(D(a)) = O(1 |a|^2)^{q(\alpha + 2 + p)/p}$ as $|a| \to 1$.

THEOREM 2.5. Take $1 \leq p < \infty$ and $\alpha > -1$. Let φ be a holomorphic self-map of \mathbb{D} with $\varphi' \in A^p_{\alpha}$ and $\psi \in A^p_{\alpha}$ such that $\psi' \in A^p_{\alpha}$. Let $d\mu(\omega) =$ $|\psi(\omega)|^p N_{\varphi,\alpha,p}(\omega) dA(\omega)$. Suppose $\mu(D(a)) = O(1 - |a|^2)^{(\alpha+2+p)}$ as $|a| \to 1$. Then $DC_{\varphi}T_{\psi} : A^p_{\alpha} \to A^p_{\alpha}$ is bounded if and only if $|\psi'|^p N_{\varphi,\alpha,p} dA$ is a Carleson measure on A^p_{α} .

Proof. First suppose that $|\psi'|^p N_{\varphi,\alpha,p} dA$ is a Carleson measure on A^p_{α} . Then for $f \in A^p_{\alpha}$

$$\begin{split} \|DC_{\varphi}T_{\psi}(f)\|_{A^{p}_{\alpha}}^{p} &= \int_{\mathbb{D}} |(\psi f \circ \varphi)'(z)|^{p}(1-|z|^{2})^{\alpha} \mathrm{d}A(z) \\ &= \int_{\mathbb{D}} |(\psi f)'(\varphi(z))|^{p} |\varphi'(z)|^{p}(1-|z|^{2})^{\alpha} \mathrm{d}A(z) \end{split}$$

248

By making a non-univalent change of variables as done in [13, p. 86], we see that

$$\begin{split} \|DC_{\varphi}T_{\psi}(f)\|_{A^{p}_{\alpha}}^{p} &= \int_{\mathbb{D}} |(\psi f)^{'}(\omega)|^{p} N_{\varphi,\alpha,p}(\omega) \mathrm{d}A(\omega) \\ &\leq \int_{\mathbb{D}} |f(\omega)|^{p} |\psi^{'}(\omega)|^{p} N_{\varphi,\alpha,p}(\omega) \mathrm{d}A(\omega) \\ &+ \int_{\mathbb{D}} |f^{'}(\omega)|^{p} |\psi(\omega)|^{p} N_{\varphi,\alpha,p}(\omega) \mathrm{d}A(\omega) \end{split}$$

Since $|\psi'|^p N_{\varphi,\alpha,p} dA$ is a Carleson measure on A^p_{α} , the first term in the above inequality is bounded by some constant times $||f||^p_{A^p_{\alpha}}$. Again, by Theorem 2.4, we get that the second term is bounded by some constant times $||f||^p_{A^p_{\alpha}}$. Therefore, $DC_{\varphi}T_{\psi}: A^p_{\alpha} \to A^p_{\alpha}$ is bounded.

For the converse, assume $DC_{\varphi}T_{\psi}$ is bounded. Then there exists a constant C>0 such that

$$\|DC_{\varphi}T_{\psi}(f)\|_{A^p_{\alpha}}^p \le C\|f\|_{A^p_{\alpha}}^p \qquad \text{for all } f \in A^p_{\alpha}.$$

Also, there exists a constant M > 0 such that for $f \in A^p_{\alpha}$

$$\begin{split} \|DC_{\varphi}T_{\psi}(f)\|_{A^{p}_{\alpha}}^{p} &\geq M \int_{\mathbb{D}} |(\psi f)^{'}(\omega)|^{p} N_{\varphi,\alpha,p}(\omega) \mathrm{d}A(\omega) \\ &\geq M \bigg\{ \int_{\mathbb{D}} |f(\omega)|^{p} |\psi^{'}(\omega)|^{p} N_{\varphi,\alpha,p}(\omega) \mathrm{d}A(\omega) \\ &\quad - \int_{\mathbb{D}} |f^{'}(\omega)|^{p} |\psi(\omega)|^{p} N_{\varphi,\alpha,p}(\omega) \mathrm{d}A(\omega) \bigg\} \\ &\geq M \bigg\{ \int_{\mathbb{D}} |f(\omega)|^{p} \mathrm{d}\nu(\omega) - \int_{\mathbb{D}} |f^{'}(\omega)|^{p} |\psi(\omega)|^{p} N_{\varphi,\alpha,p}(\omega) \mathrm{d}A(\omega) \bigg\} \,, \end{split}$$

where $d\nu(\omega) = |\psi'(\omega)|^p N_{\varphi,\alpha,p}(\omega) dA(\omega)$. Since $DC_{\varphi}T_{\psi}$ is bounded, by using Theorem 2.4, we obtain

$$\int_{\mathbb{D}} |f(\omega)|^{p} \mathrm{d}\nu(\omega) \leq K ||f||_{A_{\alpha}^{p}}^{p}$$

for some constant K > 0. Thus by Theorem 2.1, $|\psi'(\omega)|^p N_{\varphi,\alpha,p}(\omega) dA(\omega) = d\nu(\omega)$ is a Carleson measure on A^p_{α} .

THEOREM 2.6. Take $1 \leq p < \infty$ and $\alpha > -1$. Let φ be a holomorphic self-map of \mathbb{D} with $\varphi' \in A^p_{\alpha}$ and $\psi \in A^p_{\alpha}$ such that $\psi' \in A^p_{\alpha}$. Suppose $|\psi(\omega)|^p N_{\varphi,\alpha,p}(\omega) = o(1 - |\omega|^2)^{\alpha}$ as $|\omega| \to 1$. Then $DC_{\varphi}T_{\psi} : A^p_{\alpha} \to A^p_{\alpha}$ is compact if and only if $|\psi'|^p N_{\varphi,\alpha,p} dA$ is a vanishing Carleson measure on A^p_{α} .

Proof. First suppose that $DC_{\varphi}T_{\psi}: A^p_{\alpha} \to A^p_{\alpha}$ is compact. Then by using the similar argument as in [13, p. 86], there exists a positive constant C > 0 such that for $f \in A^p_{\alpha}$

$$\|DC_{\varphi}T_{\psi}(f)\|_{A^{p}_{\alpha}}^{p} \geq C \int_{\mathbb{D}} |(\psi f)'(\omega)|^{p} N_{\varphi,\alpha,p}(\omega) \mathrm{d}A(\omega) \,.$$

So, we have

$$\begin{split} \int_{\mathbb{D}} |f(\omega)|^{p} |\psi'(\omega)|^{p} N_{\varphi,\alpha,p}(\omega) \mathrm{d}A(\omega) \\ &\leq C \left\{ \|DC_{\varphi}T_{\psi}(f)\|_{A_{\alpha}^{p}}^{p} + \int_{\mathbb{D}} |f'(\omega)|^{p} |\psi(\omega)|^{p} N_{\varphi,\alpha,p}(\omega) \mathrm{d}A(\omega) \right\}. \end{split}$$

In the above inequality, if we take $f = k_{a,\alpha} \in A^p_{\alpha}$, then

$$\int_{\mathbb{D}} |k_{a,\alpha}(\omega)|^{p} |\psi'(\omega)|^{p} N_{\varphi,\alpha,p}(\omega) \mathrm{d}A(\omega)$$

$$\leq C \left\{ \|DC_{\varphi}T_{\psi}(k_{a})\|_{A^{p}_{\alpha}}^{p} + \int_{\mathbb{D}} |k_{a,\alpha}'(\omega)|^{p} |\psi(\omega)|^{p} N_{\varphi,\alpha}(\omega) \mathrm{d}A(\omega) \right\}.$$
(2.3)

Since $DC_{\varphi}T_{\psi}$ is compact and the unit vectors $k_{a,\alpha}$ tends to zero uniformly on compact subsets of \mathbb{D} as $|a| \to 1$, by Lemma 2.3, we have $\|DC_{\varphi}T_{\psi}(k_{a,\alpha})\|_{A^p_{\alpha}}^p \to 0$ as $|a| \to 1$.

Also, for a given $\epsilon > 0$, we can find 0 < r < 1 such that

$$|\psi(\omega)|^p N_{\varphi,\alpha,p}(\omega) \mathrm{d}A(\omega) \le \epsilon (1 - |\omega|^2)^{\alpha} \quad \text{on } |\omega| \ge r.$$
 (2.4)

Now take the integral

$$\begin{split} \int_{\mathbb{D}} |k_{a,\alpha}'(\omega)|^p |\psi(\omega)|^p N_{\varphi,\alpha}(\omega) \mathrm{d}A(\omega) &= \int_{r\mathbb{D}} |k_{a,\alpha}'|^p |\psi(\omega)|^p N_{\varphi,\alpha}(\omega) \mathrm{d}A(\omega) \\ &+ \int_{\mathbb{D}\backslash r\mathbb{D}} |k_{a,\alpha}'(\omega)|^p |\psi(\omega)|^p N_{\varphi,\alpha}(\omega) \mathrm{d}A(\omega) \,. \end{split}$$

Also,

$$\int_{r\mathbb{D}} |k'_{a,\alpha}(\omega)|^{p} |\psi(\omega)|^{p} N_{\varphi,\alpha}(\omega) dA(\omega)$$

$$\leq \left(\max_{|\omega| \leq r} |k'_{a,\alpha}(\omega)| |\psi(\omega)| \right)^{p} \int_{\mathbb{D}} N_{\varphi,\alpha}(\omega) dA(\omega) \qquad (2.5)$$

$$\leq M \left(\max_{|\omega| \leq r} |k'_{a,\alpha}(\omega)| \right)^{p} \left(\max_{|\omega| \leq r} |\psi(\omega)| \right)^{p} \to 0 \quad \text{as} \quad |a| \to 1$$

because $k'_{a,\alpha} \to 0$ uniformly on compact subsets of \mathbb{D} .

Again, by condition (2.4), we have

$$\int_{\mathbb{D}\backslash r\mathbb{D}} |k'_{a,\alpha}(\omega)|^p |\psi(\omega)|^p N_{\varphi,\alpha}(\omega) \mathrm{d}A(\omega) \leq \epsilon \int_{\mathbb{D}\backslash r\mathbb{D}} (1 - |\omega|^2)^\alpha |k'_{a,\alpha}(\omega)|^p \mathrm{d}A(\omega)$$
$$\leq M\epsilon \|k'_{a,\alpha}\|_{A^p_{\alpha}}^p \leq M\epsilon \,. \tag{2.6}$$

From (2.5) and (2.6), we have

$$\limsup_{|a|\to 1} \int_{\mathbb{D}} |k_{a,\alpha}'(\omega)|^p |\psi(\omega)|^p N_{\varphi,\alpha}(\omega) \mathrm{d}A(\omega) \le M\epsilon$$

Since $\epsilon > 0$ was arbitrary, we get

$$\lim_{|a|\to 1} \int_{\mathbb{D}} |k'_{a,\alpha}(\omega)|^p |\psi(\omega)|^p N_{\varphi,\alpha}(\omega) \mathrm{d}A(\omega) = 0.$$

From condition (2.3), we have

$$\lim_{|a|\to 1} \int_{\mathbb{D}} |k_{a,\alpha}(\omega)|^p |\psi'(\omega)|^p N_{\varphi,\alpha}(\omega) \mathrm{d}A(\omega) = 0.$$

Therefore, by Theorem 2.2, we get that $|\psi'|^p N_{\varphi,\alpha,p} dA$ is a vanishing Carleson measure on A^p_{α} .

Conversely, suppose that $|\psi'|^p N_{\varphi,\alpha,p} dA$ is a vanishing Carleson measure on A^p_{α} . Let $\{f_n\}$ be a norm bounded sequence in A^p_{α} such that $||f_n||_{A^p_{\alpha}} \leq 1$ and $f_n \to 0$ uniformly on compact subsets of \mathbb{D} . Our aim is to prove that $DC_{\varphi}T_{\psi}$ is compact. By Lemma 2.3, it is enough to show that $||DC_{\varphi}T_{\psi}(f_n)||_{A^p_{\alpha}} \to 0$ as $n \to \infty$. Using the similar argument as in [13, p. 86], we have

$$\|DC_{\varphi}T_{\psi}(f_{n})\|_{A^{p}_{\alpha}}^{p} \leq C\left\{\int_{\mathbb{D}}|f_{n}(\omega)|^{p}|\psi'(\omega)|^{p}N_{\varphi,\alpha}(\omega)\mathrm{d}A(\omega)\right.$$
$$\left.+\int_{\mathbb{D}}|f_{n}'(\omega)|^{p}|\psi(\omega)|^{p}N_{\varphi,\alpha}(\omega)\mathrm{d}A(\omega)\right\}.$$
(2.7)

Since $|\psi'|^p N_{\varphi,\alpha,p} dA$ is a vanishing Carleson measure on A^p_{α} , so by Theorem 2.2, the first integral tends to zero as $n \to \infty$. By using the same arguments as in the direct part, we can prove that the second integral also tends to zero.

3. Essential Norm

In this section, we find estimates for the essential norm of operator $T_{\psi}DC_{\varphi}$. Suppose φ is a holomorphic mapping defined on \mathbb{D} . Let $\varphi(\mathbb{D}) \subseteq \mathbb{D}$ and $\psi \in H(\mathbb{D})$ be such that $\psi \varphi' \in A^p_{\alpha}$. We define the measure $\mu_{\varphi,\psi,p}$ on \mathbb{D} by

$$\mu_{\varphi,\psi,p}(E) = \int_{\varphi^{-1}(E)} |\psi(z)\varphi'(z)|^p (1-|z|^2)^{\alpha} \mathrm{d}A(z), \qquad (3.1)$$

where E is a measurable subset of the unit disc \mathbb{D} .

Using [3, Lemma 2.1], we can easily prove the following lemma.

LEMMA 3.1. Let φ be a holomorphic mapping defined on \mathbb{D} such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$. Take $\psi \in H(\mathbb{D})$ such that $\psi \varphi' \in A^p_{\alpha}$. Then

$$\int_{\mathbb{D}} g \mathrm{d}\mu_{\varphi,\psi,p} = \int_{\mathbb{D}} |\psi(z)\varphi'(z)|^{p} (g \circ \varphi)(z)(1-|z|^{2})^{\alpha} \mathrm{d}A(z) \,,$$

where g is an arbitrary measurable positive function in \mathbb{D} .

The following two lemmas are proved in [5].

LEMMA 3.2. Take 0 < r < 1 and denote $\mathbb{D}_r = \{z \in \mathbb{D} : |z| < r\}$. Let μ be a positive Borel measure on \mathbb{D} . Take

$$\|\mu\|_{r} = \sup_{|I| \le 1-r} \frac{\mu(S(I))}{|I|^{p}},$$
$$\|\mu\| = \sup_{I \subset \partial \mathbb{D}} \frac{\mu(S(I))}{|I|^{p}},$$

where I run through arcs on the unit circle. Let μ_r denotes the restriction of measure μ to the set $\mathbb{D} \setminus \mathbb{D}_r$. Further, if μ is a Carleson measure on A^p_{α} , so is μ_r and $\|\mu_r\| \leq C \|\mu\|_r$, where C > 0 is a constant.

LEMMA 3.3. For 0 < r < 1 and 1 and let

$$\|\mu\|_r^* = \sup_{|a| \ge r} \int_{\mathbb{D}} |k_{a,\alpha}(z)|^p \mathrm{d}\mu(z) \,.$$

Moreover, if μ is a Carleson measure on A^p_{α} , then $\|\mu_r\| \leq C \|\mu\|_r^*$.

Take $f(z) = \sum_{s=0}^{\infty} a_s z^s$ holomorphic on \mathbb{D} . For a positive integer *n*, define the operators $R_n f(z) = \sum_{s=n+1}^{\infty} a_s z^s$ and $Q_n = Id - R_n$, where *Id* is the identity map.

Recall that the essential norm of an operator T is defined as:

 $||T||_e = \inf\{||T - K|| : K \text{ is compact operator}\}.$

By using [5, Proposition 3], we get the following genealization of [4, Lemma 3.16, p. 134] for A^p_{α} .

LEMMA 3.4. If T is a bounded linear operator on A^p_{α} , then

$$C\limsup_{n\to\infty} \|TR_n\| \le \|T\|_e \le \liminf_{n\to\infty} \|TR_n\|$$

for some positive constant C independent of T.

In the following theorem we give the upper and lower estimates for the essential norm of the operator $T_{\psi}DC_{\varphi}$.

THEOREM 3.5. Let φ be a holomorphic mapping defined on \mathbb{D} such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$. Take $\psi \in H(\mathbb{D})$ such that $\psi \varphi' \in A^p_{\alpha}$. Suppose that the induced measure $\mu_{\varphi,\psi,p}$ is a Carleson measure on A^p_{α} . Further, suppose $T_{\psi}DC_{\varphi}$ is bounded on A^p_{α} . Then there is a absolute constant $M \geq 1$ such that

$$\begin{split} \limsup_{|a|\to 1} \int_{\mathbb{D}} \frac{(1-|a|^2)^{2+\alpha}}{|1-\overline{a}\omega|^{2(2+\alpha)}} \mathrm{d}\mu_{\varphi,\psi,p}(\omega) &\leq \|T_{\psi}DC_{\varphi}\|_e^p \\ &\leq M \limsup_{|a|\to 1} \int_{\mathbb{D}} \frac{(1-|a|^2)^{2+\alpha}}{|1-\overline{a}\omega|^{2(2+\alpha)}} \mathrm{d}\mu_{\varphi,\psi,p}(\omega) \,. \end{split}$$

Proof. First we prove the upper estimate. By Lemma 3.4, we have

$$\|T_{\psi}DC_{\varphi}\|_{e}^{p} \leq \lim_{n \to \infty} \|T_{\psi}DC_{\varphi}R_{n}\|_{A_{\alpha}^{p}}^{p} = \lim_{n \to \infty} \sup_{\|f\|_{A_{\alpha}^{p}} \leq 1} \|(T_{\psi}DC_{\varphi}R_{n})f\|_{A_{\alpha}^{p}}^{p}$$

So, by using Lemma 3.1, we have

$$\begin{split} \|(T_{\psi}DC_{\varphi}R_{n})f\|_{A_{\alpha}^{p}}^{p} &= \int_{\mathbb{D}} |\psi(z)(R_{n}f(\varphi(z)))'|^{p}(1-|z|^{2})^{\alpha} \mathrm{d}A(z) \\ &= \int_{\mathbb{D}} |\psi\varphi'(z)|^{p}|(R_{n}f)'(\varphi(z))|^{p}(1-|z|^{2})^{\alpha} \mathrm{d}A(z) \\ &= \int_{\mathbb{D}} |(R_{n}f)'(\omega)|^{p} di\mu_{\varphi,\psi,p}(\omega) \\ &= \int_{\mathbb{D}\setminus\mathbb{D}_{r}} |(R_{n}f)'(\omega)|^{p} \mathrm{d}\mu_{\varphi,\psi,p}(\omega) \\ &+ \int_{\mathbb{D}_{r}} |(R_{n}f)'(\omega)|^{p} \mathrm{d}\mu_{\varphi,\psi,p}(\omega) \,. \end{split}$$

Using [4, p. 133], we have

$$|R_n f(\omega)| = |\langle R_n f, K_\omega \rangle| = |\langle f, R_n K_\omega \rangle| \le ||f||_{A^p_\alpha} ||R_n K_\omega ||_{A^q_\alpha} \,.$$

Again, we have

$$|(R_n f)'(\omega)| = |\langle R_n f', K_{\omega} \rangle| = |\langle f', R_n K_{\omega} \rangle| \le ||f'||_{A^p_{\alpha}} ||R_n K_{\omega}||_{A^q_{\alpha}}.$$

Take 0 < r < 1 and $|\omega| \le r, \omega \in \mathbb{D}$. Also, take the Taylor expansion of $K_{\omega}(z) = \sum_{k=1}^{\infty} (k+1)\overline{\omega}^k z^k$. Using this Taylor expansion, we get the estimate $|R_n K_{\omega}(z)| \le \sum_{k=n+1}^{\infty} r^k (k+1)$ and so $|(R_n K_{\omega})'(z)| \le \sum_{k=n+1}^{\infty} kr^k (k+1)$. Thus for any $\epsilon > 0$, we can find *n* large enough such that

$$\int_{\mathbb{D}} |R_n K_{\omega}(z)|^q (1-|z|^2)^{\alpha} \mathrm{d}A(z) < \epsilon^q \,.$$

Therefore, for a fixed r, we have

$$\sup_{\|f\|_{A^p_{\alpha}} \le 1} \int_{\mathbb{D}_r} |(R_n f)'(\omega)|^p \mathrm{d}\mu_{\varphi,\psi,p}(\omega) \to 0 \quad \text{as} \quad n \to \infty \,.$$

Let $\mu_{\varphi,\psi,p,r}$ denotes the restriction of measure $\mu_{\varphi,\psi,p}$ to the set $\mathbb{D} \setminus \mathbb{D}_r$. So by using Lemma 3.3 and Theorem 2.1, we have

$$\begin{split} \int_{\mathbb{D}\setminus\mathbb{D}_r} |(R_n f)'(\omega)|^p \mathrm{d}\mu_{\varphi,\psi,p,r}(\omega) &\leq M \|\mu_{\varphi,\psi,p,r}\| \|(R_n f)'\|_{A^p_{\alpha}}^p \\ &\leq M \|\mu_{\varphi,\psi,p}\|_r^* \|f'\|_{A^p_{\alpha}}^p \leq M \|\mu_{\varphi,\psi,p}\|_r^*, \end{split}$$

where M is an absolute constant and $\|\mu_{\varphi,\psi,p}\|_r^*$ is defined as in Lemma 3.3. Therefore,

$$\lim_{n \to \infty} \sup_{\|f\|_{A^p_{\alpha}} \le 1} \left\| (T_{\psi} D C_{\varphi} R_n) f \right\|_{A^p_{\alpha}}^p \le \lim_{n \to \infty} M \|\mu_{\varphi, \psi, p}\|_r^*.$$

Thus, $||T_{\psi}DC_{\varphi}||_{e}^{p} \leq M ||\mu_{\varphi,\psi,p}||_{r}^{*}$. Taking $r \to 1$, we have

$$\begin{split} \|T_{\psi}DC_{\varphi}\|_{e}^{p} &\leq M \lim_{r \to 1} \|\mu_{\varphi,\psi,p}\|_{r}^{*} \\ &= M \limsup_{|a| \to 1} \int_{\mathbb{D}} |k_{a,\alpha}(\omega)|^{p} \mathrm{d}\mu_{\varphi,\psi,p}(\omega) \\ &= M \limsup_{|a| \to 1} \int_{\mathbb{D}} \frac{(1-|a|^{2})^{2+\alpha}}{|1-\overline{a}\omega|^{2(2+\alpha)}} \mathrm{d}\mu_{\varphi,\psi,p}(\omega) \,, \end{split}$$

which is the desired upper bound.

As for the lower bound, consider the function $k_{a,\alpha}$. Then $k_{a,\alpha}$ is a unit vector and $k_{a,\alpha} \to 0$ uniformly on compact subsets of \mathbb{D} . Also fix a compact operator K on A^p_{α} . Then $||K(k_{a,\alpha})||_{A^p_{\alpha}} \to 0$ as $|a| \to 1$.

Therefore,

$$\begin{aligned} \|T_{\psi}DC_{\varphi}\|_{e}^{p} &\geq \|T_{\psi}DC_{\varphi} - K\|_{A_{\alpha}^{p}}^{p} \geq \limsup_{|a| \to 1} \|(T_{\psi}DC_{\varphi})k_{a,\alpha}\|_{A_{\alpha}^{p}}^{p} \\ &= \limsup_{|a| \to 1} \int_{\mathbb{D}} \frac{(1 - |a|^{2})^{2+\alpha}}{|1 - \overline{a}\omega|^{2(2+\alpha)}} \mathrm{d}\mu_{\varphi,\psi,p}(\omega) \,. \end{aligned}$$

Thus we get the result.

Acknowledgements

The authors would like to thank the referee for many valuable suggestions.

References

- ARAZY, J., FISHER, S.D., PEETRE, J., Möbius invariant function spaces, J. Reine Angew. Math. 363 (1985), 110-145.
- [2] CHOA, J.S., OHNO, S., Products of composition and analytic Toeplitz operators, J. Math. Anal. Appl. 281 (2003), 320-331.
- [3] CONTRERAS, M.D., HERNANDEZ-DIAZ, A.G., Weighted composition operators on Hardy spaces, J. Math. Anal. Appl. 263 (2001), 224–233.

- [4] COWEN, C., MACCLUER, B., "Composition Operators on Spaces of Analytic Functions", CRC Press, Boca Raton, FL, 1995.
- [5] ČUČKOVIC, Z., ZHAO, R., Weighted composition operators on the Bergman spaces, J. London Math. Soc. (2) 70 (2004), 499-511.
- [6] HALMOS, P.R., "Measure Theory", Graduate Texts in Mathematics, 18, Springer-Verlag, New York, 1974.
- [7] HIBSCHWEILER, R.A., PORTNOY, N., Composition followed by differentiation between Bergman and Hardy spaces, *Rocky Mountain J. Math.* 35 (2005), 843-855.
- [8] KOO, H., SMITH, W., Composition operators between Bergman spaces of functions of several variables, to appear in *Contemp. Math.*
- KUMAR, R., PARTINGTON, J.R., Weighted composition operators on Hardy and Bergman spaces, in Oper. Theory Adv. Appl., 153, Birkhäuser, Basel, 2005, 157–167.
- [10] LUECKING, D.H., Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Amer. J. Math. 107 (1985), 85–111.
- [11] MACCLUER, B.D., SHAPIRO, J.H., Angular derivatives and compact composition operators on the Hardy and Bergman spaces, *Canad. J. Math.* 38 (1986), 878–906.
- [12] SHAPIRO, J.H., Essential norm of a composition operators, Ann. of Math. (2) 125 (1987), 375-404.
- [13] SHAPIRO, J.H., "Composition Operators and Classical Function Theory", Springer-Verlag, New York, 1993.
- [14] SHAPIRO, J.H., SMITH, W., Hardy spaces that support no compact composition operators, J. Funct. Anal. 205 (1) (2003), 62-89.
- [15] TJANI, M., Compact composition operators on Besov spaces, Trans. Amer. Math. Soc. 355 (11) (2003), 4683-4698.
- [16] ZHU, K., "Operator Theory in Function Spaces", Marcel Dekker, Inc., New York, 1990.