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1. Introduction

Let H(D) denotes the space of holomorphic functions on the unit disc D.
Take 1 ≤ p < ∞ and α > −1. Then f ∈ H(D) is said to be in the weighted
Bergman space Ap

α(D) iff

‖f‖p
Ap

α
=

∫

D
|f(z)|p(1− |z|2)αdA(z) < ∞ ,

where dA(z) denote the normalised area measure on the unit disc D.
Let ϕ be a holomorphic function from the unit disc D into itself. Then the

composition operator Cϕ is defined as follows

Cϕ(f)(z) = f(ϕ(z)) for all f ∈ H(D) .

Again, let ψ : D → D be a fixed holomorphic map. Then the holomorphic
Toeplitz operator Tψ is defined as follows

Tψf(z) = ψ(z)f(z) for all f ∈ H(D) .

Let D denote the differential operator. Then we define the operator DCϕTψ

as
DCϕTψ(f) = (ψf ◦ ϕ)

′
for all f ∈ H(D) .
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Again, the operator TψDCϕ is defined for f ∈ H(D) by TψDCϕ(f) = ψ(f ◦ϕ)
′
.

Fix any a ∈ D and let σa(z) be the Möbius transformation of D which
interchanges 0 and a and is defined by

σa(z) =
a− z

1− az
, z ∈ D .

If Ka(z) = 1
(1−az)2

denotes the Bergman kernel, then

ka(z) = −σ
′
a(z) =

1− |a|2
(1− az)2

is the normalised kernel function for the Bergman space A2 and ‖ka‖A2 = 1.
We know that on a general space of analytic functions, the differential

operator D is typically unbounded. On the other hand, the composition oper-
ator Cϕ is bounded on various spaces of analytic functions on D (see [4], [13],
[16]), though the products DCϕ and CϕD are possibly still unbounded there.
Hibschweiler and Portnoy [7] defined the products DCϕ and CϕD and inves-
tigated boundedness and compactness of DCϕ and CϕD between weighted
Bergman spaces using the Carleson-type measures. J.S. Choa and S. Ohno
[2], J.H. Shapiro and W. Smith [14] have given some examples showing that Tψ

need not be bounded (compact) on the Bergman space A2, but their product
TψCϕ is bounded (compact) on A2. Motivated by the work of Hibschweiler
and Portnoy [7], we define new operators DCϕTψ and TψDCϕ and study their
boundedness and compactness between weighted Bergman spaces using the
Carleson-type conditions. Moreover, in Section 3, we also find estimates for
the essenital norm of TψDCϕ.

2. Bounded and compact weighted composition operators

In this section, we characterize boundedness and compactness of DCϕTψ

by using Carleson measures.

Definition 1. Take 0 < p < ∞. A positive measure µ on D is called a
p-Carleson measure in D if

sup
I⊂∂D

µ(S(I))
|I|p < ∞ , (2.1)

where |I| denotes the arc length of I and S(I) denotes the Carleson square
based on I,

S(I) =
{

z ∈ D : 1− |I| ≤ |z| < 1 ,
z

|z| ∈ I

}
.
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Again, µ is called a compact p-Carleson measure if

lim
|I|→0

µ(S(I))
|I|p = 0 . (2.2)

Definition 2. Let ϕ be a holomorphic mapping defined on D such that
ϕ(D) ⊆ D. Take p ≥ 1 and let α > −1. Then the counting function for the
weighted Bergman spaces Ap

α is

Nϕ,α,p(ω) =
∑

ϕ(z)=ω

|ϕ′(z)|p−2(1− |z|2)α

for 0 6= ω ∈ D.

Recall that the pseudohyperbolic metric ρ is defined by

ρ(z, ω) =
∣∣∣∣

z − ω

1− zω

∣∣∣∣ , z, ω ∈ D .

Let D(a) denotes the pseudohyperbolic disc {z : ρ(a, z) < 1/8}. The
following results are well known.

Theorem 2.1. ([5, Theorem A]) Take 1 < p ≤ q < ∞. Let µ be a finite
positive Borel measure on D. Then the following statements are equivalent:

(1) The inclusion map i : Ap
α → Lq(D, dµ) is bounded.

(2) The measure µ is an (α + 2)q/p-Carleson measure.

(3) For all a ∈ D we have

∫

D
|ka,α(z)|qdµ(z) ≤ C ,

where ka,α(z) = (1− |a|2)(α+2)/p(1− az)−2(α+2)/p.

Theorem 2.2. ([16, Theorem 8.2.5]) Take 1 < p ≤ q < ∞. Let µ be a
finite positive Borel measure on D. Then the following statements are equiv-
alent:

(1) The inclusion map i : Ap
α → Lq(D, µ) is compact.

(2) The measure µ is a vanishing (α + 2)q/p-Carleson measure.
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(3) For all a ∈ D we have

lim
|a|→1

∫

D
|ka,α(z)|qdµ(z) = 0 .

The proof of the following lemma follows on similar lines as in [4, Propo-
sition 3.11].

Lemma 2.3. Given 1 ≤ p, q < ∞. Take T = DCϕTψ or TψDCϕ. Let ϕ be
a holomorphic mapping defined on D with ϕ(D) ⊆ D and ψ ∈ H(D) be such
that T : Ap

α → Aq
α is bounded. Then T : Ap

α → Aq
α is compact (respectively,

weakly compact) if and only if whenever {fn} is a bounded sequence in Ap
α

converging to zero uniformly on compact subsets of D, then ‖T (fn)‖Aq
α
→ 0

(respectively, {T (fn)} is a weak null sequence in Aq
α).

We state a result of Luecking [10, Theorem 2.2] for the case n = 1 and
1 ≤ p ≤ q.

Theorem 2.4. Take 1 ≤ p ≤ q and let α > −1. Let µ ≥ 0 be a finite
measure on D. Then the followings are equivalent:

(1) ‖f ′‖Lq(µ) ≤ C‖f‖Ap
α

for all f ∈ Ap
α.

(2) µ(D(a)) = O(1− |a|2)q(α+2+p)/p as |a| → 1.

Theorem 2.5. Take 1 ≤ p < ∞ and α > −1. Let ϕ be a holomorphic
self-map of D with ϕ

′ ∈ Ap
α and ψ ∈ Ap

α such that ψ
′ ∈ Ap

α. Let dµ(ω) =
|ψ(ω)|pNϕ,α,p(ω)dA(ω). Suppose µ(D(a)) = O(1 − |a|2)(α+2+p) as |a| → 1.
Then DCϕTψ : Ap

α → Ap
α is bounded if and only if |ψ′ |pNϕ,α,pdA is a Carleson

measure on Ap
α.

Proof. First suppose that |ψ′ |pNϕ,α,pdA is a Carleson measure on Ap
α.

Then for f ∈ Ap
α

‖DCϕTψ(f)‖p
Ap

α
=

∫

D
|(ψf ◦ ϕ)

′
(z)|p(1− |z|2)αdA(z)

=
∫

D
|(ψf)

′
(ϕ(z))|p|ϕ′(z)|p(1− |z|2)αdA(z) .
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By making a non-univalent change of variables as done in [13, p. 86], we see
that

‖DCϕTψ(f)‖p
Ap

α
=

∫

D
|(ψf)

′
(ω)|pNϕ,α,p(ω)dA(ω)

≤
∫

D
|f(ω)|p|ψ′

(ω)|pNϕ,α,p(ω)dA(ω)

+
∫

D
|f ′(ω)|p|ψ(ω)|pNϕ,α,p(ω)dA(ω) .

Since |ψ′ |pNϕ,α,pdA is a Carleson measure on Ap
α, the first term in the above

inequality is bounded by some constant times ‖f‖p
Ap

α
. Again, by Theorem

2.4, we get that the second term is bounded by some constant times ‖f‖p
Ap

α
.

Therefore, DCϕTψ : Ap
α → Ap

α is bounded.
For the converse, assume DCϕTψ is bounded. Then there exists a constant

C > 0 such that

‖DCϕTψ(f)‖p
Ap

α
≤ C‖f‖p

Ap
α

for all f ∈ Ap
α .

Also, there exists a constant M > 0 such that for f ∈ Ap
α

‖DCϕTψ(f)‖p
Ap

α
≥ M

∫

D
|(ψf)

′
(ω)|pNϕ,α,p(ω)dA(ω)

≥ M

{∫

D
|f(ω)|p|ψ′

(ω)|pNϕ,α,p(ω)dA(ω)

−
∫

D
|f ′(ω)|p|ψ(ω)|pNϕ,α,p(ω)dA(ω)

}

≥ M

{∫

D
|f(ω)|pdν(ω)−

∫

D
|f ′(ω)|p|ψ(ω)|pNϕ,α,p(ω)dA(ω)

}
,

where dν(ω) = |ψ′
(ω)|pNϕ,α,p(ω)dA(ω). Since DCϕTψ is bounded, by using

Theorem 2.4, we obtain
∫

D
|f(ω)|pdν(ω) ≤ K‖f‖p

Ap
α

for some constant K > 0. Thus by Theorem 2.1, |ψ′
(ω)|pNϕ,α,p(ω)dA(ω) =

dν(ω) is a Carleson measure on Ap
α.
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Theorem 2.6. Take 1 ≤ p < ∞ and α > −1. Let ϕ be a holomor-
phic self-map of D with ϕ

′ ∈ Ap
α and ψ ∈ Ap

α such that ψ
′ ∈ Ap

α. Sup-
pose |ψ(ω)|pNϕ,α,p(ω) = o(1 − |ω|2)α as |ω| → 1. Then DCϕTψ : Ap

α →
Ap

α is compact if and only if |ψ′ |pNϕ,α,pdA is a vanishing Carleson measure
on Ap

α.

Proof. First suppose that DCϕTψ : Ap
α → Ap

α is compact. Then by using
the similar argument as in [13, p. 86], there exists a positive constant C > 0
such that for f ∈ Ap

α

‖DCϕTψ(f)‖p
Ap

α
≥ C

∫

D
|(ψf)

′
(ω)|pNϕ,α,p(ω)dA(ω) .

So, we have
∫

D
|f(ω)|p|ψ′

(ω)|pNϕ,α,p(ω)dA(ω)

≤ C

{
‖DCϕTψ(f)‖p

Ap
α

+
∫

D
|f ′(ω)|p|ψ(ω)|pNϕ,α,p(ω)dA(ω)

}
.

In the above inequality, if we take f = ka,α ∈ Ap
α, then

∫

D
|ka,α(ω)|p|ψ′

(ω)|pNϕ,α,p(ω)dA(ω) (2.3)

≤ C

{
‖DCϕTψ(ka)‖p

Ap
α

+
∫

D
|k′a,α(ω)|p|ψ(ω)|pNϕ,α(ω)dA(ω)

}
.

Since DCϕTψ is compact and the unit vectors ka,α tends to zero uniformly on
compact subsets of D as |a| → 1, by Lemma 2.3, we have ‖DCϕTψ(ka,α)|p

Ap
α
→

0 as |a| → 1.
Also, for a given ε > 0, we can find 0 < r < 1 such that

|ψ(ω)|pNϕ,α,p(ω)dA(ω) ≤ ε(1− |ω|2)α on |ω| ≥ r . (2.4)

Now take the integral
∫

D
|k′a,α(ω)|p|ψ(ω)|pNϕ,α(ω)dA(ω) =

∫

rD
|k′a,α|p|ψ(ω)|pNϕ,α(ω)dA(ω)

+
∫

D\rD
|k′a,α(ω)|p|ψ(ω)|pNϕ,α(ω)dA(ω) .
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Also,∫

rD
|k′a,α(ω)|p|ψ(ω)|pNϕ,α(ω)dA(ω)

≤
(

max
|ω|≤r

|k′a,α(ω)||ψ(ω)|
)p ∫

D
Nϕ,α(ω)dA(ω) (2.5)

≤ M

(
max
|ω|≤r

|k′a,α(ω)|
)p (

max
|ω|≤r

|ψ(ω)|
)p

→ 0 as |a| → 1

because k
′
a,α → 0 uniformly on compact subsets of D.

Again, by condition (2.4), we have
∫

D\rD
|k′a,α(ω)|p|ψ(ω)|pNϕ,α(ω)dA(ω) ≤ ε

∫

D\rD
(1− |ω|2)α|k′a,α(ω)|pdA(ω)

≤ Mε‖k′a,α‖p
Ap

α
≤ Mε . (2.6)

From (2.5) and (2.6), we have

lim sup
|a|→1

∫

D
|k′a,α(ω)|p|ψ(ω)|pNϕ,α(ω)dA(ω) ≤ Mε .

Since ε > 0 was arbitrary, we get

lim
|a|→1

∫

D
|k′a,α(ω)|p|ψ(ω)|pNϕ,α(ω)dA(ω) = 0 .

From condition (2.3), we have

lim
|a|→1

∫

D
|ka,α(ω)|p|ψ′

(ω)|pNϕ,α(ω)dA(ω) = 0 .

Therefore, by Theorem 2.2, we get that |ψ′ |pNϕ,α,pdA is a vanishing Carleson
measure on Ap

α.
Conversely, suppose that |ψ′ |pNϕ,α,pdA is a vanishing Carleson measure on

Ap
α. Let {fn} be a norm bounded sequence in Ap

α such that ‖fn‖Ap
α
≤ 1 and

fn → 0 uniformly on compact subsets of D. Our aim is to prove that DCϕTψ

is compact. By Lemma 2.3, it is enough to show that ‖DCϕTψ(fn)‖Ap
α
→ 0

as n →∞. Using the similar argument as in [13, p. 86], we have

‖DCϕTψ(fn)‖p
Ap

α
≤ C

{∫

D
|fn(ω)|p|ψ′

(ω)|pNϕ,α(ω)dA(ω)

+
∫

D
|f ′n(ω)|p|ψ(ω)|pNϕ,α(ω)dA(ω)

}
. (2.7)
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Since |ψ′ |pNϕ,α,pdA is a vanishing Carleson measure on Ap
α, so by Theorem

2.2, the first integral tends to zero as n → ∞. By using the same argu-
ments as in the direct part, we can prove that the second integral also tends
to zero.

3. Essential norm

In this section, we find estimates for the essential norm of operator TψDCϕ.
Suppose ϕ is a holomorphic mapping defined on D. Let ϕ(D) ⊆ D and

ψ ∈ H(D) be such that ψϕ
′ ∈ Ap

α. We define the measure µϕ,ψ,p on D by

µϕ,ψ,p(E) =
∫

ϕ−1(E)
|ψ(z)ϕ

′
(z)|p(1− |z|2)αdA(z) , (3.1)

where E is a measurable subset of the unit disc D.
Using [3, Lemma 2.1], we can easily prove the following lemma.

Lemma 3.1. Let ϕ be a holomorphic mapping defined on D such that
ϕ(D) ⊆ D. Take ψ ∈ H(D) such that ψϕ

′ ∈ Ap
α. Then

∫

D
gdµϕ,ψ,p =

∫

D
|ψ(z)ϕ

′
(z)|p(g ◦ ϕ)(z)(1− |z|2)αdA(z) ,

where g is an arbitrary measurable positive function in D.

The following two lemmas are proved in [5].

Lemma 3.2. Take 0 < r < 1 and denote Dr = {z ∈ D : |z| < r}. Let µ
be a positive Borel measure on D. Take

‖µ‖r = sup
|I|≤1−r

µ(S(I))
|I|p ,

‖µ‖ = sup
I⊂∂D

µ(S(I))
|I|p ,

where I run through arcs on the unit circle. Let µr denotes the restriction of
measure µ to the set D \ Dr. Further, if µ is a Carleson measure on Ap

α, so is
µr and ‖µr‖ ≤ C‖µ‖r, where C > 0 is a constant.

Lemma 3.3. For 0 < r < 1 and 1 < p < ∞ and let

‖µ‖∗r = sup
|a|≥r

∫

D
|ka,α(z)|pdµ(z) .
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Moreover, if µ is a Carleson measure on Ap
α, then ‖µr‖ ≤ C‖µ‖∗r.

Take f(z) =
∑∞

s=0 asz
s holomorphic on D. For a positive integer n, define

the operators Rnf(z) =
∑∞

s=n+1 asz
s and Qn = Id − Rn, where Id is the

identity map.
Recall that the essential norm of an operator T is defined as:

‖T‖e = inf{‖T −K‖ : K is compact operator}.

By using [5, Proposition 3], we get the following genealization of [4, Lemma
3.16, p. 134] for Ap

α.

Lemma 3.4. If T is a bounded linear operator on Ap
α, then

C lim sup
n→∞

‖TRn‖ ≤ ‖T‖e ≤ lim inf
n→∞ ‖TRn‖

for some positive constant C independent of T .

In the following theorem we give the upper and lower estimates for the
essential norm of the operator TψDCϕ.

Theorem 3.5. Let ϕ be a holomorphic mapping defined on D such that
ϕ(D) ⊆ D. Take ψ ∈ H(D) such that ψϕ

′ ∈ Ap
α. Suppose that the induced

measure µϕ,ψ,p is a Carleson measure on Ap
α. Further, suppose TψDCϕ is

bounded on Ap
α. Then there is a absolute constant M ≥ 1 such that

lim sup
|a|→1

∫

D

(1− |a|2)2+α

|1− aω|2(2+α)
dµϕ,ψ,p(ω) ≤ ‖TψDCϕ‖p

e

≤ M lim sup
|a|→1

∫

D

(1− |a|2)2+α

|1− aω|2(2+α)
dµϕ,ψ,p(ω) .

Proof. First we prove the upper estimate. By Lemma 3.4, we have

‖TψDCϕ‖p
e ≤ lim

n→∞ ‖TψDCϕRn‖p
Ap

α
= lim

n→∞ sup
‖f‖

A
p
α
≤1
‖(TψDCϕRn)f‖p

Ap
α

.
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So, by using Lemma 3.1, we have

‖(TψDCϕRn)f‖p
Ap

α
=

∫

D
|ψ(z)(Rnf(ϕ(z)))

′ |p(1− |z|2)αdA(z)

=
∫

D
|ψϕ

′
(z)|p|(Rnf)

′
(ϕ(z))|p(1− |z|2)αdA(z)

=
∫

D
|(Rnf)

′
(ω)|p diµϕ,ψ,p(ω)

=
∫

D\Dr

|(Rnf)
′
(ω)|pdµϕ,ψ,p(ω)

+
∫

Dr

|(Rnf)
′
(ω)|pdµϕ,ψ,p(ω) .

Using [4, p. 133], we have

|Rnf(ω)| = |〈Rnf, Kω〉| = |〈f, RnKω〉| ≤ ‖f‖Ap
α
‖RnKω‖Aq

α
.

Again, we have

|(Rnf)
′
(ω)| = |〈Rnf

′
, Kω〉| = |〈f ′ , RnKω〉| ≤ ‖f ′‖Ap

α
‖RnKω‖Aq

α
.

Take 0 < r < 1 and |ω| ≤ r, ω ∈ D. Also, take the Taylor expansion of
Kω(z) =

∑∞
k=1(k + 1)ωkzk. Using this Taylor expansion, we get the estimate

|RnKω(z)| ≤ ∑∞
k=n+1 rk(k + 1) and so |(RnKω)′(z)| ≤ ∑∞

k=n+1 krk(k + 1).
Thus for any ε > 0, we can find n large enough such that

∫

D
|RnKω(z)|q(1− |z|2)αdA(z) < εq .

Therefore, for a fixed r, we have

sup
‖f‖

A
p
α
≤1

∫

Dr

|(Rnf)
′
(ω)|pdµϕ,ψ,p(ω) → 0 as n →∞ .

Let µϕ,ψ,p,r denotes the restriction of measure µϕ,ψ,p to the set D \Dr. So
by using Lemma 3.3 and Theorem 2.1, we have

∫

D\Dr

|(Rnf)
′
(ω)|pdµϕ,ψ,p,r(ω) ≤ M‖µϕ,ψ,p,r‖‖(Rnf)

′‖p
Ap

α

≤ M‖µϕ,ψ,p‖∗r‖f
′‖p

Ap
α
≤ M‖µϕ,ψ,p‖∗r ,
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where M is an absolute constant and ‖µϕ,ψ,p‖∗r is defined as in Lemma 3.3.
Therefore,

lim
n→∞ sup

‖f‖
A

p
α
≤1
‖(TψDCϕRn)f‖p

Ap
α
≤ lim

n→∞M‖µϕ,ψ,p‖∗r .

Thus, ‖TψDCϕ‖p
e ≤ M‖µϕ,ψ,p‖∗r. Taking r → 1, we have

‖TψDCϕ‖p
e ≤ M lim

r→1
‖µϕ,ψ,p‖∗r

= M lim sup
|a|→1

∫

D
|ka,α(ω)|pdµϕ,ψ,p(ω)

= M lim sup
|a|→1

∫

D

(1− |a|2)2+α

|1− aω|2(2+α)
dµϕ,ψ,p(ω) ,

which is the desired upper bound.
As for the lower bound, consider the function ka,α. Then ka,α is a unit

vector and ka,α → 0 uniformly on compact subsets of D. Also fix a compact
operator K on Ap

α. Then ‖K(ka,α)‖Ap
α
→ 0 as |a| → 1.

Therefore,

‖TψDCϕ‖p
e ≥ ‖TψDCϕ −K‖p

Ap
α
≥ lim sup

|a|→1
‖(TψDCϕ)ka,α‖p

Ap
α

= lim sup
|a|→1

∫

D

(1− |a|2)2+α

|1− aω|2(2+α)
dµϕ,ψ,p(ω) .

Thus we get the result.
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