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Abstract: The major theme of this paper is the interaction between structural properties of
Banach and Frechet spaces and the measure-theoretic properties of measures taking values in
these spaces. The emphasis shall be on the geometric/topological properties of the range of
vector measures, including mainly the issue involving localization of certain (distinguished)
sequences in these spaces inside the range of vector measures with or without bounded
variation. Besides a brief discussion of the properties determined by the range of a vector
measure, the paper concludes with a list of problems belonging to this area which are believed
to be open.
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1. INTRODUCTION

Ever since the discovery of Liapunov’s convexity theorem in 1941, asserting
that the range of a countably additive (c.a) non-atomic measure taking values
in a finite dimensional is convex, the theory of vector measures has come to
occupy a central position, both within and outside of functional analysis where
the theory has been successfully employed in control theory and other related
areas of applied mathematics. Considering that our aim in this survey shall
be motivated chiefly by the role it has played in modern functional analysis
involving the geometric and structural properties of Banach spaces, we shall
not include any discussion regarding those aspects of vector measure theory
whose scope falls outside the domain of functional analysis. In fact, we shall
confine ourselves mainly to those areas of the theory that have witnessed a
fruitful interplay of ideas between Banach space geometry and vector measure
theory. An attempt to generalize the scalar-valued measure theory to the
Banach space context typically leads to a study of Banach spaces which are
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already familiar objects of study in functional analysis. A case in point is
the Radon-Nikodym theorem from classical measure theory which is known to
hold good precisely in those Banach spaces X for which Krein-Milman theorem
holds for all subsets of X which are closed and bounded. Equivalently—
and more pertinently—this property is characterized by the property that
X-valued 1-summing maps on C[0, 1] coincide with nuclear maps.

As the title of the article suggests, we shall confine ourselves mainly to
the interplay between the geometry of a Banach space and the properties of
the range of vector measures taking values in these spaces. Specifically, we
shall see that the problem of ‘localizing’ certain distinguished sequences from
a Banach space X inside the range of X-valued measures of a certain type
leads to interesting classes of Banach spaces with nice coincidence properties
in terms of operator ideals. This is indeed the case for the ‘distinguished’
set consisting of all null sequences in X, which can be characterized by the
property that all ¢;-valued 1-summing maps on X are already nuclear (see
Theorem 3.2). This is the subject matter of Section 3 where the ‘localization
problem’ involving absolutely p-summable sequences has been thoroughly in-
vestigated. Section 4 deals with the problem of deciding whether a sequence
which lies inside the range of a vector measure actually lies inside the range
of a vector measure with better properties. Here we also address ourselves
to a conjecture proposed by the author in [31], stating that a Banach space
X is necessarily finite dimensional if each sequence lying inside the range of
an X-valued vector measure already lies inside the range of such a measure
having bounded variation.

Apart from the situation described above, there are also instances where
the scalar-valued results carry over to the Banach space setting without any
trade-off: the Banach-Saks property of the range of a c.a. X-valued measure
holds good, regardless of the Banach space one chooses for X. However, the
obverse phenomena involving the failure of an R"-valued measure-theoretic
fact in each infinite-dimensional Banach space are aplenty: Liapunov’s the-
orem quoted above or the fact that the closed unit ball of the target space
is the range of a vector measure of bounded variation are some of the cases
in point. It turns out that these so-called finite-dimensional phenomena-at
least in most of the cases of interest-when studied in the setting of Fréchet
spaces lead naturally to the class of nuclear Fréchet spaces which have been
extensively studied in the literature. Recalling the well-known fact that the
classes of nuclear spaces and Banach spaces intersect precisely in the class
of finite dimensional spaces, it is reasonable to assert that nuclear Fréchet
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spaces provide the ultimate infinite-dimensional setting in which these finite
dimensionality phenomena hold. All these issues are discussed in Section 5
whereas the last portion of this section addresses those aspects of vector mea-
sure theory whereby the equality of (the closed convex hull of) the ranges of
two vector measures determines the extent to which the two measures share
certain common properties. This section concludes with a list of problems
that appear to remain open in the theory of vector measures.

We conclude this introduction by admitting that the survey is by no means
complete, nor is the bibliography in any way close to being comprehensive.
Among the main omissions from inclusion in the text of this paper is the issue
involving the (weak) Liapunov property of a Banach space X: the closure of
the range of an X-valued measure (of bounded variation) is convex. The close
connection of this property with the so-called compact range property is an
important theme in the theory surrounding the ‘range of vector measures’.
Nor is included any discussion regarding non-commutative analogues of this
theory in the context of Von Neumann algebras and their projection lattices.
These and related issues are planned to be discussed in a subsequent work
that shall appear elsewhere.

2. NOTATION AND TERMINOLOGY

We shall throughout let X, Y stand for Banach spaces, unless otherwise
specified, with X* and By denoting, respectively, the continuous dual and
the closed unit ball of X. By an X-valued (vector)-measure, we shall mean a
function p : ¥ — X defined on the g-algebra ¥ of a set {2 which is countably
additive (c.a): For each sequence {4, } C ¥ with A, N A,, = ¢ we have

(U] = Soan, W
n=1 n=1

Taking note of the fact that a union of sets is independent of the ordering
of sets involved, it is easily seen that the series on the right-hand side in (1)
above converges unconditionally. We shall say that u is of bounded variation
if its total variation, tv(u) is finite, i.e., if tv(p) = |u|(Q2) < oo where, for E €
Y, p|(E) = sup Xacallpu(A)]|, the supremum being taken over all partitions
of E into a finite number of pairwise disjoint members of 3. The space of
all (bounded) sequences from X which are included inside the range of an X-
valued measure (respectively of bounded variation) shall be denoted by R(X)
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(respectively Rp,(X)) with the norm on R(X) being given by

(@) || = inf ||l (2)

where the infimum is taken over all vector measures p with (z,) C rg(p) =
{p(A); A € £}, the range of p and where

lall = sup{la™ o p|(€) - 2™ € Bx~}. (3)
For (z,,) € Ry, (X), we put
(), =inf to(e) = inf (@), (@)

where the infimum ranges over all vector measures p with (x,) C rg(p). It
turns out that (R(X), ||-||) and (Rpy(X), || - |lsv) are Banach spaces. See [28,
Prop. 3.1] and [24, Prop. 2.1].

In the course of our work, we shall also make use of the spaces Ryp,(X).
The space Ryp,(X) shall denote the collection of all bounded sequences T =
() from X such that (z,,) C rg(p) for some Y-valued measure p of bounded
variation where Y is a Banach space containing X (isometrically) as a sub-
space. As observed in [33], the formula

|Z|wpw = inf {tv(p) : there exists a vector measure of bounded variation
Mo X — EOO(BX*)7 (mn) - rg(ﬂ)}

defines a complete norm on Ry, (X). For Y = X**, we shall write Rpp,(X)
for Rypy(X). Also, we see that Ry, (X) coincides with Ry, (X) for Y = X
. We shall also have occasion to use the space Ry(X) (respectively, R.(X))
consisting of all bounded sequences in X which are contained inside the range
of an X**-valued measure (respectively, X-valued measure having relatively
compact range). We note the following chain of inclusion relations:

va(X) C RbbU(X) C vav(X) C R(X) C fm(X), (6)

where £ (X) denotes the (Banach) space of all bounded sequences from X.
Whereas all other inclusions are obvious, the proof of the inclusion Ry, (X) C
R(z) is based on the following useful characterization of membership in these
(vector-valued) sequence spaces.

PROPOSITION 2.1. ([25]) Given a bounded sequence T = (z,,) in a Banach
space X and the (bounded) linear map T = Ty : {1 — X induced by T :
T(Z) = Ypanty, @ = (ay,) € 41, the following statements hold:
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(i) T € Rpy(X) if and only if T is strictly integral.
(ii) T € Rppy(X) if and only if T is integral.
(iii) T € Rypy(X) if and only if T' is absolutely summing.
Before we explain the idea involved in the proof of this result, we pause to

collect some definitions involving nuclear and (p,q)-summing maps and their
basic properties that will be used in the sequel.

DEFINITION 2.2. Given a bounded linear operator T : X — Y, we shall
say that T is

(a) Nuclear (T' € N(X,Y)) if there exist bounded sequences {f,}52,; C
Bx«, {yn}2; C By and {\,}22 € ¢ such that

T(x) =Y An{®, fn) yn, T € X.

n=1

(b) oo-nuclear (T' € Noo(X,Y)) if there are sequences {f,}>>, C X*,
{yn}22, C Y with lim, f,, =0, €1((yn)) < oo such that

o0

T(x) = Z(x,fn> Yn, Vo € X.

n=1

The norm vo on No(X,Y) is defined by

o) =it fsup 1] - ()} @)

where the infimum ranges over all sequences {f,}°°; and {y,}°°; admissible
in the above series. (Noo(X,Y), V) then becomes a Banach space. (See |9,
Ch. 5]). It can be easily checked that a sequence T = (x,) lies inside the
range of an X-valued measure with relatively compact range if and only if the
induced map T5 : {1 — X, Tx(@) = Y 02 | apxy is co-nuclear.

(¢) (p, q)-(absolutely) summing (p > q > 1), if there exists ¢ > 0 such that

n 1/p n l/q
(Z ||Tmi||p> <c s (Z |<xi,f>|q> (8)
i=1 € j

forallz; e X, 1<i<n,n>1.
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Denoting the least such ¢ by m,4(T), it turns out that II, ,(X,Y"), the
space of (p,q)-summing maps is a Banach space when equipped with the
(p, @) - summing norm 7, 4. The special case p = ¢ corresponds to p-summing
maps (= absolutely summing maps for p = 1) which shall be denoted by
I1,, = II,, ;,. For basic properties of (p, ¢)-summing maps, we refer to [9, Ch. 10].
Here we merely recall that p-summing maps between Hilbert spaces coincide
with Hilbert-Schmidt maps and that, according to Grothendieck’s theorem [9,
Ch. 1], all bounded linear maps from L;(u) to La(v) are absolutely summing
(see also [30, Ch. 5].

We shall also say that a Banach space X satisfies Grothendieck’s Theorem
(or X has (GT)) if L(X, l2) = I11(X, ¢2). In view of Grothendieck’s theorem
quoted above, L has (GT). It turns out that X* has (GT) if and only if
L(X,¢1) = IIa(X,¢1). For a detailed account including further examples of
(GT)-spaces, see [30].

PROPOSITION 2.3. ([16, Ch. 2], [23, Ch. 1]) Let X and Y be Banach spaces
and assume that 1 < p, ¢ < co. Then the following assertions hold:
(a) N(X,Y) CI,(X,Y) 2: mp(T) <v(T), VI € N(X,Y).
(b) I,(X,Y) CI(X,Y) 3t mo(T) < mp(T), VT € I,(X,Y), (p < q)-

() TP (X,Y) C N(X,Y) 2 v(TS) < m(T)ma(S), VS € Iy(X, Z),
VT € IL(Z,Y).

(d) IIp(X) C Er(X), ¢ =max(p,2).
(e) T o Ty (X) C Ex(X), (3 =3+ 5).

Here we recall that for operator ideals A and B, the symbol A o B(X,Y') has
been used for the component of A o B on the pair (X,Y):

AoB(X,Y)={T: X — Y : there exists a Banach space Z and

9
Ty € A(X,Z), Ty € B(Z,Y) such that T = TyT}}, ©)

whereas E,(X) stands for those operators on X which have p-summable eigen-
values.

We shall also be making use of the following vector-valued sequence spaces.

DEFINITION 2.4. For p > 1, the vector-valued sequence spaces ¢,[X] and
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0,{X} are defined by:

n=1

0,[X] = {m = (o1 C X 1 Y [wn,2")P < o0, Va" € X*} ,
- (10)
{X} = {:c = @)yl CX 2 ) aal” < oo} :

n=1

which turn into Banach spaces when equipped with the norms €, and o,
respectively, where

0 1/p
&(7) = sup (Z |<xn,x*>\p> . 2" € By- p, T € 4,[X],
n=1

0 1/10
op(T) = (Z ||w||p> , € bp{x}.
n=1

Clearly, (,{X} C ¢,[X] with €,(Z) < 0,(Z) for all z € {,{z} and equality
holds precisely when X is finite-dimensional. The latter statement is the
famous Dvoretzky-Rogers theorem to which we shall return in Section 3. The
elements of ¢,[X] shall be referred to as weakly p-summable sequences whereas
those of £,{X} shall be called absolutely p-summable sequences. An easy
consequence of the uniform boundedness principle shows that the space oo [ X]
coincides with the space of all X-valued bounded sequences and that a simple
computation shows that it can be identified with L(¢1, X), the space of all
bounded linear maps via the map

0oo[X] 2 % = (20)%% — Ty € L(£1, X). (12)

We are now ready to give a

Proof of Proposition 2.1: We shall essentially make use of the ’ideal’ prop-
erty of absolutely summing maps and the fact that an operator is absolutely
summing if and only if its composite with an isometric embedding is absolutely
summing.

Let us now show how the proof works in the case of (iii) and then comment
how the proof can be adapted to prove the statements (i) and (ii). To this end,
suppose that T = (z,,) € Rypy(X). We can assume, without loss of generality,
that there exists a c. a. measure of bounded variation p : ¥ — £ (A) for some
index set A such that X embeds isometrically into ¢ (A) and (x,) C rg(p).
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Choose A,, € ¥ Such that pu(A4,) = z,, n>1. Let Q : Loo(v) — loo(A)
be the associated integration map corresponding to a control measure v of u,
defined by Q(f) = [ fdu. Since p is of bounded variation, Theorem 3 of [8,
Ch. VI] tells us that @ is absolutely summing. To see that 7% : ¢ — X is
absolutely summing, we note that Ix o Tz = Q o P where P : {1 — Loo(v) is
defined by P(@) = > apxa,. Here Ix is the canonical embedding of X into
an £ (A) space. It follows that Iy o T and hence T% is absolutely summing.
For the converse, we use the well-known fact (see [28, Prop. 1.3]) that to
every absolutely summing map @ : C(2) — X, there corresponds an X-
valued measure g of bounded variation such that Q(Bg(q)) = rg(it). Indeed,
assuming that 7% is absolutely summing, the Pietsch factorization theorem
yields that Iy oTy = QP, where P : {1 — Loo(v) is a bounded linear operator
and @ : Loo(v) — loo(N) is absolutely summing. Since Lo (v) is isometric to
a C(9) space for compact Hausdorff space €2, the result quoted above yields
the existence of an /o, (A)-valued measure p of bounded variation such that
Q(B1_,,) = rg(). This gives (z,) = (Ix o Te(en)) = (QP(en)) € rg(|Plln).
Here e, is the nth unit vector in ¢; and this completes the argument.
Regarding the proofs of (i) and (ii), we follow the same line of reasoning
except that the space £o(A) in (iii) shall be replaced by X in (i) and by X**
in (ii). Combining this with the fact that @ as an absolutely summing map on
a C(K) space is already strictly integral, it follows that T = Q o P is strictly
integral in case of (i) and the fact that T% is integral in case of (ii) follows
from the Pietsch factorization theorem applied to the map T% which admits a
(sub)factorization Jx o Ty = @ o P. Here Jx is the evaluation map of X into

With the above result at our disposal, it is now easy to justify the statement
immediately preceding Proposition 2.1. Indeed, let T € Ry, (X). By (iii) of
the above proposition, 7' = T% is absolutely summing and hence 2-summing.
Hence in particular, T' factors over the Hilbert space H. But it is well-known
(see[1], see also [30]) that the unit ball of H is the range of an H-valued vector
measure v. Thus if T' = 15T, then T5 o v is an X-valued measure such that
T erg(Thov).

In what follows we shall, however, write ¢,{X} for the space c¢o(X) of
all null sequences in X, rather than identify it with the space of all bounded
sequences. It is also clear that for X = K, the scalar field, ¢,[X] = (,{X} =
¢y, the usual sequence space of all scalar sequences which are absolutely p-
summable. We shall use e; (i > 1) to denote the ith unit vector in ¢, or in
¢;. An infinite sequence shall be denoted by ()02, and occasionally also by
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() and the symbol ), shall be taken to mean that n varies from 1 to oo.

3. BANACH SPACE SETTING

As already mentioned in the introduction, the property involving con-
tainment of a distinguished set S(X) of sequences from X inside the range of
vector measures (with or without bounded variation) taking values in (a space
containing) X is closed linked to the structure of the Banach space X. In this
section, we shall explore the extent to which the geometry of X is determined
by the indicated property when S(X) = co(X), £p[X], {,{X}, 2 < p < 0.
Restricting p to the range 2 < p < oo is justified by the following theorem of
Anantharaman and Diestel.

THEOREM 3.1. ([1, Th. 3], see also [37]) Regardless of the Banach space
X, it always holds that ¢3[X] C R(X). Indeed, given (x,) € {2[X], then
(xn) C rg(p) where p is the X -valued measure defined by

wE) =23 /E ra(t)dtzy), (13)

for any Lebesgue measurable subset E C [0, 1].

Contrary to the case S(X) = ¢3[X] covered by the above theorem which
holds good for all Banach spaces X, we shall see below that it is possible to
completely describe the (sub) class of Banach spaces X that result by choosing
for S(X) the (sequence) space co(z) or £,{ X}, for p > 2. We begin with

a) S(X) = co(X).

In this subsection, we shall deal with necessary and sufficient conditions
to ensure the containment of null sequences in X inside the range of measures
with or without bounded variation. We begin with

THEOREM 3.2. ([28]) For a Banach space X, the following statements are
equivalent:

(i) co(X) C R(X).
(ii) X™ is isomorphic to a subspace of an L; space.

(ili) N(X,01) =T1,(X, 61).
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The proof of this result is accomplished by combining the following well-
known facts from the theory of vector measures and Banach space theory:

(a.1) ([27, Prop. 2]). Given T" € II; (X, ¢1), so that T'(z) = ((z, x}))5>; where
x € X, (x}) C X*, the map

[e.e]

R(X) 2:T=(zp) = » (zn,25) €R (14)

n=1
defines a continuous linear functional on R(X).

(a.2) ([18]). X is isomorphic to a subspace of an L!-space if and only if there
exists ¢ > 0 such that for all finite subsets H and G of X, we have

Do llall < e Iyl (15)

xeH yeqG

whenever

> Kwa®) <> [{y,2*)], for all 2* € X*. (16)

zeH yeG

(a.3) ([28, Lemma 3.3]). co(L>®(N\)) C R(L*>(\)) for every positive measure
A. Further, the inclusion also holds for quotient spaces of L>°(\).

(a.4) The dual of ¢o(X) is £1{X*}.

Regarding the containment of c¢o(X) in Ry, (X) and in Ry, (X), it turns
out that whereas there are no infinite dimensional Banach spaces X for which
the inclusion: ¢o(X) € Rpy(X) holds, Hilbert spaces are (isomorphically)
the only Banach spaces X such that cg(X) C Ry (X). We describe these
conditions in the following theorems.

THEOREM 3.3. ([24]) For a Banach space X, the following statements are
equivalent:

(i) co(X) C Rpp(X).
(i) co(X) C Rppo(X).
(iii) L(X,41) = N(X,4y).
(iv) dim(X) < oo.
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THEOREM 3.4. ([25]) For a Banach space X, the following statements are
equivalent:

(i) X is Hilbertian.

(ii) Bx C Rypw(X).

(iil) Loo[X] S Rypy(X).
(iv) co(X) C Rypo(X).

(v) HQ(X l1) = N(X, &y).

An alternative approach to the above theorem based on the eigenvalue
theorem on nuclear operators appears in a recent work of the author [37]
which also deals with other interesting results involving vector measures.

Proof of Theorem 3.4. (Sketch) To begin, we note that (ii) = (iii) = (iv).
Thus, to complete the proof, we show that (i) = (ii), (iv) = (v) and (v)=-(i).

(i) = (ii). Applying Grothendieck’s theorem to X which is assumed to be
a Hilbert space, we have

L(Zl(A)’X) = Hl(gl(/\)vX)a

where the index set A is chosen such that it has the same cardinality as that
of Bx. Combining this equality with Proposition 2.1 (iii) gives that Bx is
included inside the range of a vector bv-measure, i.e., Bx C Rypy(X).

(iv) = (v). Let T € II3(X, ¢1). Then, upon combining Proposition 2.3 (c)
with Proposition 2.1 (iii), it is not difficult to see that the map

[e.9]

Yr(S) =D (wn, )

n=1

defines a continuous linear functional on Iy (41, X) = I1;(¢1, X). Note that T
and S can be written as

= i(x’ zy)en, Sla)= ianxm
n=1 n=1

where z € X, a € {1, (2,)02; C X and (z,)5%; C X*. Further, it is easy to
see that the inclusion in (iv) is already continuous, so that @7 is continuous
when restricted to ¢o(X). In view of (a.4) used in the proof of Theorem 3.2,
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there exists (y*)22; € (co(X))* = £1{X*}—the space of absolutely summable
sequences in X *—such that for each & = (z,)22; € co(X),

Yr(@) =Y (an,2h) = Y (2, yn)-
n=1 n=1

This gives (¢3)%%; = (45)3%1, s0 that 350 ]l = S22 il < oo, which
yields that T' € N (X, (;).

(v) = (i). Here, we make use of the ‘Eigenvalue Theorem’ [14] which states
that “A Banach space X is (isomorphically) a Hilbert space precisely when
nuclear maps on X have absolutely summable eigenvalues’. (See also [16]).
By the closed graph theorem, there exists ¢ > 0 such that v(S) < c¢ma(S),
for all S € IIa(X,¢1). We show that L(¢;,X) = IIy(¢1X). To this end, let
T € L({1,X). Then for T), =T ¢, we get, using trace duality

mo(Ty,) = sup{trace(T,,Sy) : Sp € L(X,(}), ma(Sy) <1}
< ¢ sup{trace(T,,Sy) : S, € L(X,£}), v(S,) <1}
=c||Tall <c|T]|, Vn=1.

In other words, we get

mo(T) = supma(T),) < c||T|.
n>1

This gives
L6y, X) = a(f, X). (17)

Finally, let T" € N(X). Then T = T3DT) where D : o, — {; is a diagonal
(nuclear) operator and T} : X — {o, T : {1 — X are bounded linear opera-
tors. By (17), Ty € Ty(f1, X), so that T = Ty DT} € Mo N(X) C TP (X) (by
Proposition 2.3 (a)). In other words, N(X) = ng) (X), so that by virtue of
Proposition 2.3 (e), we conclude that all nuclear maps on X have absolutely
summable eigenvalues. By the ‘Eigenvalue Theorem’ stated above, this is true
precisely when X is a Hilbert space!

Alternatively, one may argue as follows. It suffices to show that every
separable subspace of X is Hilbertian. Thus let Y be a separable subspace
of X. Then there exists a quotient map from ¢; onto Y which is, by (17),
absolutely 2-summing and so factors over a Hilbert space. So Y as a quotient
of a Hilbert space is (isomorphically) a Hilbert space.
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The author is indebted to the referee for suggesting this alternative line of
argument, bypassing the use of 'Eigenvalue Theorem’. |1
b) S(X) = 6,{X}, 1 <p < cc.

The description of analogous conditions guaranteeing the containment of
absolutely p-summable sequences in X inside the range of vector measures,
with and without bounded variation is given in the following theorem.

THEOREM 3.5. ([38]) For a Banach space X and p, ¢ > 1 with %—i—% =1,
we have:

(i) €,{X} C R(X) if and only if there exists ¢ > 0 such that

n 1/q n
(Z meq> <cm <Zw2‘ ®e;: X — €’f> ,
i=1

i=1
for all (z)I'y C X*, n>1.
(i) €p{X} C Ryp(X) if and only if there exists ¢ > 0 such that

n 1/q n
(Z ‘|$:||q> < cm (Zl’f ®e: X — E’f) )
1=1

i=1
for all (z})i—1 C X*, n>1.
(iii) £,{X} C Rupy(X) if and only if there exists ¢ > 0 such that

n 1/q n
(anz‘uq) <o (Zmei:Xw)
i=1

i=1
for all (z})y C X*, n>1.

i /%

)

Moreover, it turns out that each of the equivalent conditions in (iii) above
is equivalent to X* having (¢)-Orlicz property, where ¢ is conjugate to p.
This means that each unconditionally convergent series in X™* is absolutely
g-convergent. Here, we recall that for ¢ > 2, (¢)-Orlicz property of a Banach
space X is the same as cotype ¢ which means that almost sure (a.s.) conver-
gence in X implies g-absolute convergence. However, the equivalence breaks
down for ¢ = 2. Both these fundamental facts are due to M. Talagrand who
proved these results in his seminal work: Inventiones Math. 107 (1992), 1—40



270 M. A. SOFI

and 110 (1992), 545—-556. Furthermore, an application of Dvoretzky-Rogers
theorem yields that dim X < oo as long as p > 2. Finally, considering that
the proofs of the statements above are more or less similar, we settle for the
proof of (iii) only.

Indeed, assume that X* has (q)-Orlicz property and fix = (z,,) € £,{X}.
We show that (anx,) € Rppy(X) for all @ = (o) € cp, so that by virtue
of [19, Th. 1], it follows that Z € Rpp(X). Now, given T = > > x} @
en € K(X, 1), we see that (z})) € ¢1[X*] so that (¢)-Orlicz property of X*
combined with Holder’s inequality yields ¢ > 0 such that

o 0o 1/p o) 1/q
>zl 2l < <Z||fvn||p> (Z!xflﬂq)
n=1 n=1

n=1
< cop(@)er((7)),

which proves that the map v : K(X,¢) — (1{X*} given by ¢(T) =
(len|lz)oe, is well-defined and continuous. Dualising and denoting by I
the class of integral operators, we get (by virtue of [13, Chap. 19])

' loo{ X} — T, X)

where
() (T) = ((a37), $(T)) = Y a3 (ah) | 2nl| = trace(ST),
n=1

and S =" e @ ||z |lz* € I(€1, X**). This shows that *((z}*)) = 9, so
that in particular, ¢* actually maps c¢o(X) into I(¢1, X) and that

V*(y) = Zez ® |lznllyn, ¥ = (yn) € co(X).
n=1

An application of Proposition 3.1 (ii) shows that (||zn|yn) € Rppw(X). In
particular, (a,x,) € Rppy(X) for all @ = (ay,) € ¢ and this completes the
argument.

Conversely, assume that £,{ X} C Ry, (X). By Proposition 3.1 (ii) the map
Y p{X} — I(41,X) where ¢(Z) = Tj, is well-defined and also continuous.
Noting that each z in £,{ X} is a limit of its ‘nth-sections’ in £,{ X} and that
N(41,X) is a closed subspace of I(¢1,X), it follows that 1 actually maps
(,{X} into N(¢1,X). Taking conjugates gives: ¢* : L(X,(7*) — £, {X*}
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where ¢*(S)(z) = trace (Iz0S), forall S € L(X, ¢}*) and & € £,{X}. Finally,
let Y°>° |« be unconditionally convergent in X*. Then for S =377 =¥ ®
n € L(X, 1), we have 4*(S)(@) = Y00 (an, o), for all 7 — () € f{X},

which yields that ¢*(S) = (x},) € £,{X*} and, therefore, X* has (¢q)-Orlicz
property.

Remark 3.6. Theorem 3.5 (iii) provides a refinement of the results of C.
Pineiro [28] and [26] pertaining to the description of Banach spaces X such
that co(X) C Rppy(X) or €,[X] C Rpp(X) for p > 2. The special case of our
theorem corresponding to p = 2 was treated by Pineiro in [25].

It is an important theme in the theory of operator ideals to know when
the adjoint of a p-summing map acting between Banach spaces is ¢-summing
for some ¢ > p. For instance, it is well-known that the adjoint of a 2-summing
map on a Banach space X is 2-summing precisely when X is a Hilbert space.
The question involving the adjoint of a 1-summing (absolutely summing) map
is treated below as an alternative necessary and sufficient condition for the
inclusion: ¢,{X} C R(X) which is obtained by combining (i) and (iii) of
Theorem 3.5.

THEOREM 3.7. ([38]) For a Banach space X and 1 < p < oo, the following
statements are equivalent:

(i) Lo X} C R(X).
(if) (X, 6) C (X, 6).

Here q is conjugate top: = + = = 1.

1
q

D=

Proof. (Sketch) We begin by noting that the proof of the of Theorem
3.5(iii) can be suitably generalized to assert the following operator-analogue
of this equivalence:

For a bounded linear map T : X — Y, it holds that T maps sequences
(x) T = (zy) iIn X from ,{X} into (T(z,)) € Ru(Y) if and only if
T*:Y* — X* is (q,1)-summing.
We use (x) to show that (i) < (ii).

(i) = (ii). Let T € II;(X,Y) and & = (zy,) € {,{X} be arbitrarily chosen.
In view of (x), it suffices to show that (T'(x,)) € Ry (X). Note that (i) implies
that £,{X} C R.{X} and thus, it follows that z € R.(X) and, therefore, by
[28, Prop. 1.4] applied to Z, there exists an unconditionally convergent series
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> Ym in X such that x, € >0 [—ym,yn) ={z € X 12 =" | 0mym, for
some @ = (o) € By, }. By the definition of T', we have "> [|[Tym| < oo,
which yields that the map T, : ¢ — Y induced by z = (2z,) = (Tzy) is
nuclear and, a priori, strictly integral, so that by Proposition 2.1 (i), (T'z,,) €
va(Y)'

(ii) = (i). Here we invoke Theorem 3.5 to prove our assertion. To this
end, fix n > 1 and («f); C X*. Then for S =Y 2f ®e¢; € II1(X,(}), we

=11

have S € TI¢ ; (X, ). Now (i) yields that there exists ¢ > 0 such that
Ta1(T*) =74 (T) < e m(T), VT € I (X, £}), n > L. (18)

By the given hypothesis, S* € II, 1 (¢%, X*) which translates into the estimate

m 1/q m
(Z ||5*(5ti)|q) < 7g,1(S7) sup {Z (@, B)] : B € Bego} (19)
i=1 =1

for all (a;)™ C ¢2, and m > 1.
Combining (18) and (19) and noting that S*(e;) = =}, 1 <i < n, we get

n 1/q n
(ZHﬁHq) <cm (Zﬁ@ei:X—%?)
i=1

i=1
which was required to be proved. |

Proceeding on similar lines gives,

THEOREM 3.8. ([38]) For a Banach space X, we have
(i) Ep{X} C Rbbv(X) if and on]y if L(X,fl) = Hg,l(Xv 61)
(ii) £{X} C Rupw(X) if and only if Ip(X, ¢1) C 112 | (X, £1).

Remark 3.9. (i) From the proof of Theorem 3.7, it is clear that there is
nothing sacrosanct about ¢; in the above two theorems. In fact, it is easily
seen that these statements hold with ¢; replaced by any Banach space and
consequently, #1 serves as a ‘test space’ for the stated inclusions.

(ii) It is interesting to note that Theorems 3.7 and 3.8 when applied to
p = oo yield the case of A = ¢y(X) already encountered in Theorems 3.2,
3.3 and 3.4. This follows because, as per our notation, f,.{X} denotes the
space co(X) of all null sequences in X, in which case the dual of /o{X}
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gets identified with ¢;{X*}. Combining this with the easily checked fact that
Hf(X , £1) coincides with nuclear maps N (X, ¢1), the desired conclusions follow
as given in the following corollary.

COROLLARY 3.10. For a Banach space X, we have

(i) co(X) C R(X) if and only if T1; (X, ¢1) = N (X, ¢1). Further, this is true
if and only if X* is a subspace of an L' (j)-space.

(i) co(X) C Rpyp(X) if and only if L(X,¢1) = N(X,¢1). Further, this holds
exactly when dim X < oo.

(i) co(X) C Rypy(X) if and only if lIo(X,¢1) = N(X,¥¢1). Further, this
holds precisely when X is Hilbertian.

Remark 3.11. The above discussion leaves open the question of describing
those Banach spaces X with bounded sequences in X being contained inside
the range of X-valued measures (without bounded variation)—the case of
bounded variation having already been treated in Theorems 3.3 and 3.4. Tt
is interesting to note that the classes of Banach spaces X described by these
theorems are exactly those in which the stated property holds for all bounded
sequences precisely when it holds for all null sequences in X. However, that is
far from being the case in the absence of bounded variation: a Banach space
X in which bounded sequences can be localized inside the range of an X-
valued measure is necessarily reflexive (in fact, even super-reflexive) whereas
there are non-reflexive spaces, e.g., ¢o, o, in which all null sequences are
included inside the range of vector-measures. In other words —in the absence
of bounded variation— the property of null sequences in X being contained
inside the range of an X-valued measure does not imply the same property
for all bounded sequences in X. To the best of our knowledge, the problem
explicitly stated below is open:

(P) Characterize Banach spaces X such that each bounded sequence in X
(respectively; the unit ball of X) is contained inside the range of an X-valued
measure. (See [7] for some partial results of J.M.F. Castillo and F. Sanchez.)
Closely related to the above problem is the one where it is demanded that the
unit ball Bx be (equal to) the range of an X-valued measure. Fortunately,
there is a complete description of those spaces X for which the stated equality
holds. This was achieved by Anantharaman and Diestel already in 1991.

THEOREM 3.12. ([1]) The closed unit ball Bx of X is the range of an
X-valued measure if and only if X™* is isometrically isomorphic to a reflexive
subspace of L' (1) for some probability measure .
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As a consequence of the well known fact that L, embeds in L isometrically,
if 1 <p <2, we see that for 2 < p < oo, the closed unit ball of £} or of £, is
the range of a vector measure. The same holds for L,(u)-spaces. Combining
Theorem 3.12 with an old and important theorem of L. E. Dor (Israel J. Math.
24(3-4) (1976), 260 - 268) that £3 does not embed isometrically in Ly for p > 2,
it follows that the closed unit ball of £} is not equal to the range of a measure
for 1 < p < 2. As another useful consequence, we recover a well-known fact
that the closed unit ball of every 2-dimensional normed space is the range of
a vector measure. This follows in view of the ‘2-universality’ of L;[0,1]—a
fact due originally to Lindenstrauss—which means that L;[0,1] contains an
isometric copy of each 2-dimensional space.

Using Gaussian random variables, L. R. Piazza [32] was able to explicitly
construct an fo-valued measure whose range coincides with the closed unit
ball of /5. His construction exploits the rotational invariance of the Gaussian
distribution which yields the remarkable property of Gaussian variables that
if g1, 92, ..., gy are independent standard Gaussian variables on a probability
space (2, X, P) and if a1, ag, . . . , ay, are real scalars, then > | a;¢; is Gaussian
with variance 02 = Y"1 | a?. Combining this property with the fact that the
equality

( / rg<w>rpdp<w>)’l’ | 7|t\pef dt

holds for all standard Gaussian variables g and for all 0 < p < 0o, we see that

() éwwmw)y (e

n

forany 0 <p<ooand o =), a?. To show that By, is indeed the range of
a measure, he defines i : 3 — {5 by

u(A) = (m /A gndP)

The first equality noted above shows that p is a well-defined (c.a.) measure
with ||(A)|2 < 1. Finally, given a = (a,) € By,, the above-noted properties
of Gaussian variables combined with the orthonormality of the sequence {g}
in Lo(P) yields that for all ¢ > 0,

0 —t2
" <Z angn > t> = exp (2> a.

n=1

[eS)
n=1
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Taking ¢ = 0, we get range (u) = By,.

The idea of the proof employed above actually provides an isometric em-
bedding of 5 into L,(12,%, P) for any 0 < p < oo via the map

00
(an) B mgl : Z angn
n=1

where m,, denotes the p-th moment of the Gaussian variable

1
1 o0 —¢2 P
my = | — tlPe=2 dt ) .
P <\/27T/—oo‘ ‘ >

On the other hand, the original proof of Banach (see S. Kaczmarz and H.
‘Steinhauss Theorie der Orthogonalreihen’, Chelsea, 1951) that the closed
unit ball of ¢ is the range of a measure instead makes use of Rademacher
averages and shows essentailly how to construct an isometric embedding of /o
into L1[0, 1] and consequently a quotient map of norm one from L [0, 1] onto
f5 which in turn yields that the unit ball of 5 can be realized as the range of
a measure.

Remark 3.13. We have not included the discussion of the case S(X) =
(,1X], 2 < p < oo, in our description of Banach spaces X for which the
inclusions £,[X] C R(X), Rupw(X), Rypp(X) hold. Whereas the first two
inclusions are a subject of discussion in C. Pineiro’s works [26] and [27], the
issue related to the inclusion £,[X] C Ry, (X) is discussed in detail in a recent
work of the author [36].

We give a sample of these results in

THEOREM 3.14. Given a Banach space X, p,q > 1 such that % +% =1,
we have

(i) ([26]) £,[X] C R(X) if and only if there exists ¢ > 0 such that for all
(z)y C X, (z7) C X* andn > 1,

> Nz af)| < em (Z zi @i X — f’f) e ((@i)iss)-
i=1 i=1
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(ii) ([27]) £,[X] € Rppy(X) if and only if there exists ¢ > 0 such that for all
(zi)y C X, (z), C X* and n > 1,

(ixf@xwX%E?)

i=1

e ((i)iz1)-

n
> aiap) < e
i=1

(iii) ([36]) £p[X] C Rpwp(X) if and only if there exists ¢ > 0 such that for all
()P C X, (z5)’, C X* and n > 1,

> i a})| < emy (Z i@z X — zf;) ep(()y).
=1 =1

Before we proceed further, we digress a little on the question involving
the possibility of replacing ¢; by ¢ in Corollary 3.10. It turns out that the
situation that results in the process in respect of Corollary 3.10 (i) as given
below, besides being interesting in its own right, shall also be seen to have
implications in the theory of vector measures (see the next section). Further,
the analogous situation resulting from ¢y replacing ¢; in Corollary 3.10 (ii)
and (iii) characterizes X as finite-dimensional! See [36] for details of proof
and applications.

THEOREM 3.15. ([36]) For a Banach space X, the following statements
are equivalent:

(i) (X, 62) = N(X, la).
(ii) X* has (GT) and (GL).

(GL) in (ii) above refers to the Gordon-Lewis property which means that for
each Banach space Y and T € 111(X,Y), the composed map Jy oT factorizes
over an Li-space. Here, Jy : Y — Y** denotes the natural injection.

4. REVERSE IMPLICATIONS

In this section, we address ourselves to the problem of describing (necessary
and) sufficient conditions that would ensure that a sequence sitting inside the
range of a vector measure already lies inside the range of a vector measure
with bounded variation. Thus, for example, given T € R(X), it makes sense
to know if, under suitable extra conditions, x € Ryp,(X) or better still, x €
Ry (X). In what follows, we describe these conditions. We begin with
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THEOREM 4.1. ([20]) For a Banach space X, the following statements are
equivalent:

(1) R(X) = Rup(X).

(i) Ha(X,01) =111 (X, 44).

(iii) Ha(X,le) =111 (X, £a).

(iv) I2(X,Y) =111 (X, Y), for some infinite-dimensional Banach space Y .

Proof. (Sketch) A detailed study of Banach spaces satisfying the property
IM2(Loo, X) = L(Lso, X) was carried out by Dubinsky, Pelcynski and Rosen-
thal in [10] where such spaces are characterized by each of the equivalent
properties (ii), (iii) and (iv) given above. However, the equivalence (i) < (ii)
can be proved by using the following results of Pineiro [20]:

For a Banach space X and a bounded sequence T = (z,,) C X, the following
statements are equivalent:

(A)

(a) T € Rypu(X).

(b) 21 |{(xp, x5)| < 00, V 2-summing maps: © € X — ({x,z})) € 4;.
(B)

(a) (an:vn) € R(X), Va=(a,) € c.

(b) Z |{(xp, x5)| < 0o, V I-summing maps: © € X — ({x,z})) € 41.

Indeed, assuming (i), it follows from Proposition 2.1 (iii) that T : ¢ — X
where T'(a) = Y 7 anZn, @ = (o) € £ is 1-summing for all sequence
() lying inside the range of some X-valued measure (with relatively com-
pact range), which can be identified with N (41, X), the class of oo-nuclear
mappings. This gives rise to the inclusion

Noo(fl,X) C H1(€1,X) = H2(€1,X>,

which is easily seen to be continuous, by the closed graph theorem. Dualising
the above inclusion yields

T (X, £%) € IL (X, £5).

In particular, we get
Io(X, 01) =TI (X, £7).
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Conversely, let z € R(X). By (A), it suffices to prove A (b). Now, consider
the map Tz : {1 — X. Clearly, Tz maps By, into the closed convex hull of
the range of an X-valued measure which, by virtue of [8, p. 274], is itself the
range of an X-valued measure. Thus (apzy,) = (anT'(€,))y is included inside
the range of an X-valued measure, so that by virtue of B (b),

oo
> (@, 7})| < oo,

=1

3

for all § = ((-,z})) € II1(X, ¢1) = IIx(X, ¢1), which is A(b). This completes
the proof. |

Next we treat the case involving the equality Ryp,(X) = Rppy (X).

THEOREM 4.2. ([25]) For a Banach space, it holds that R, (X ) = Rppy(X)
if and only if X* has (GT).

Proof. Assume that Ryp,(X) = Rpp(X). Then Theorem 2.1 combined with
cotype 2 property of £ yields

Mo(61,X) =111 (41, X) = 1(41, X).
By the open mapping theorem, there exists ¢ > 0 such that
i(T) < cmo(T), for all T € L(X,¢;)

which gives IIy(X, ¢1) = L(X, ¢1). In other words, X* is a (GT)-space.

Conversely, assume that X* has (GT) and let T € Ry, (X). By Theo-
rem 2.1, T = Ty € II;(41,X) = (¢, X). Thus, we can write T = T1T>
where 17 : lo — X and T, : {1 — {9 are bounded linear maps. This gives
T = T{Ty with T} + X* — ¢y and T3 : {3 — (. By the given hypoth-
esis, T7 € II;(X*, €2). But then T € II1(X*,lx) = I(X*, (), by virtue
of [9, Cor. 6.24]. Finally T itself is integral by [9, Th. 5.15]. Equivalently,
T € Ry (X), again by Theorem 2.1. i

An intriguing problem in the theory of vector measures that has been
around for quite some time now asks whether a subset of a Banach space X
lying inside the range of an X**-valued measure is already contained inside
the range of an X-valued measure. Restricting to sequences in place of subsets
of X, the problem amounts to asking whether the equality R,(X) = R(X) al-
ways holds! The analogous problem involving the equality Rpp, (X ) = Rpy(X)
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—in the presence of bounded variation—was answered in the negative by B.
Marchena and C. Pifieiro [19] who used the L-space constructed by Bour-
gain and Delbaen [6] which has the Radon-Nikodym property and also lacks
copies of ¢g. Pineiro’s construction depends upon the following theorem which
is interesting in its own right.

THEOREM 4.3. ([19]) For a Banach space X, the following statements are
equivalent for a bounded sequence (z,) C X:

(i) (xn) € RbbU(X)‘
(i) (apzn) € Rp(X), V (ay) € cp.
(iil) (nxn) € Rpp(X), V () € cp.

Remark 4.4. As already seen in the proof of Theorem 4.1, given (z,,) €
R(X), it follows that (anpz,) € R(X), for all (o) € ¢o. However, converse
is not true. Indeed, if X is a non-reflexive Loo-space, then (a,z,) € R(X),
for all bounded sequences (z,) C X and for all (c,) € ¢p. This follows from
Theorem 3.2 because X* is an Li-space. However, by non-reflexivity of X,
there exists a bounded sequence which is not in R(X). The above theorem
shows that the converse holds as long as the vector measures under reference
are assumed to have bounded variation.

We are now ready to present Pineiro’s counter example to the equality
Rippy (X)) = R (X).

Let X be the Lo .-space of Bourgain and Delbaen of the first class which
has (RNP) and the Schur property, and so contains an isomorph of ¢;. In
particular, X contains an unconditional basic sequence (), say.

CLAM. () € Rpp(X) but (z,) € Rpp(X).

To show that (x,,) € Rppy(X), by Theorem 4.3, it suffices to show that
(nTn) € Rppy(X), for all (ay,) € ¢g. Now X* is an Li-space, so by Theorem
3.2, (apzn) € R(X), for all (o) € co. Since (anxy,) is also an uncondi-
tional basis for X, Theorem 5 of [1] tells us that (anzy) € l2[X]. Further, it
was shown in [36, Cor. 3.2] that (2[X] C Ry, (X) which yields, by virtue of
Proposition 2.1, that the map S : /1 — X given by

S(ﬁ) = Zﬁnanxm B= (ﬁn) €l
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is absolutely summing. Since X is an L..-space, Corollary 6.24 of [9] gives
that S is, in fact, integral, which means that (a,z,) € Ry (X).

In particular, (z,) € R(X) and, by the same argument as used above,
(xn) € €2]X]. Finally, assume that (x,) € Rp,(X). Then the induced map
Tz : {1 — X is strictly integral. Since X has (RNP), invoking [9, Ch. VII, 6.9]
yields that T is nuclear and, a priori, compact. But then (x,) has a subse-
quence which is convergent to zero in view of (x,) € f2[X]. This contradicts
the fact that (x,) is normalized and the claim is established.

We conclude this section with another open problem which was explicitly
posed in [36]. This problem is motivated by the now well-known fact that a
Banach space X is finite-dimensional exactly when all X-valued measures are
of bounded variation. Before we put our problem in perspective, we collect
together a list of equivalent conditions for the equality R(X) = Rppy(X).

THEOREM 4.5. ([36], see also[19]) Given a Banach space X, the following
statements are equivalent:

(i) R(X) = Rupo(X).
i) Re(X) = Rp(X).

(iil) L(X,41) = I1(X, £1).
iv) L(X*, 61) = i (X7, 6).
) X

(v) X and X* have (GT).

Proof. (Sketch) It is shown in [11] that (i) < (ii) and (iii) < (iv). We
show that (i) = (iii) = (v) = (i). To show that (i) = (iii), we have R(X) =
Rypy(X) and Rypy(X) = Rppy(X). By virtue of Theorems 4.1 and 4.2, these
equalities translate into Ilo(X,#¢1) = II1(X,¢1) and Ta(X,41) = L(X, ¢1),
respectively. Combining these two equalities gives (iii). Now, assuming that
(iii) holds, we easily see that X* has (GT). Using the equivalence (iii) <
(iv), we get that X** and hence X has (GT). Finally, the implication (v) =
(i) follows by observing that (GT)* translates into Ryp,(X) = Ry (X) by
virtue of Theorem 4.2 whereas (GT)-property yields II; (X, ¢2) = L(X,¥{2).
In particular, II;(X,¢s) = IIa(X,¥¢2). Equivalently, R(X) = Ry (X), by
Theorem 4.1. Combining the two conclusions gives (i). I

Combining the above theorem with Theorem 3.1 yields the following in-
teresting corollary.
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COROLLARY 4.6. ([36]) A Banach space X with (GL)-property such that
R(X) = Rpp(X) is finite dimensional.

Proof. By the above theorem X has (GT) and (GT)*. Now (GT)-property
means L(X,¢3) = II;(X, ¢3). Combining with the (GL)-property, (GT)* gives,
by virtue of Theorem 3.10 N(X,/¢2) = II1(X,¢2). These two equalities to-
gether yield L(X,¢3) = N(X,¥2) which is possible only if dim X < oco. In-
deed, a nuclear operator into ¢ is a composite of two 2-summings maps (see
[9, Th. 5.31]). Thus a nuclear map on X is a composite of two 2-summing
maps and, therefore, is a Hilbert space by virtue of the ‘Eigenvalue Theo-
rem’ mentioned earlier combined with Proposition 2.3 (e). However, every
infinite-dimensional Hilbert space admits non-nuclear operators!

Remark 4.7. (i) The above corollary does not hold in the absence of the
(GL)-property. In fact, Pisier [29] constructed an infinite-dimensional Banach
space verifying the equivalent properties listed in Theorem 4.5. The above
corollary yields that Pisier space lacks (GL)-property.

(ii) It is possible to use Theorem 3.15 to provide what appears at best
to be a slightly different (though by no means a simpler) argument used in
the proof of Pelczynski’s famous theorem that the disc algebra A(D) does
not have the (GL)-property. After all, our argument uses the highly non-
trivial fact discovered by Bourgain that A(D) has (GT)*. For details of this
argument, see [36].

We conclude this section with the following conjecture which was proposed
in [36].

CONJECTURE. For a Banach space X, the equality R(X) = Ry, (X) holds
exactly when dim X < oco.

5. FRECHET SPACE SETTING

Having gained a fair amount of understanding as to the richness of vector
measure theory in the setting of Banach spaces where we have seen how the
geometrical properties of a Banach space influence the nature of range of
certain kinds of vector measures taking values in these spaces, it is time to
explore the extent to which it is possible to extend these ideas beyond the
class of Banach spaces. In this section, we treat the case of Fréchet-valued
measures and show that the theory retains its richness, at least in respect of
those aspects of the theory which, in the Banach space setting, characterize
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finite dimensionality. Remarkably, it turns out that the appropriate property
of Fréchet spaces verifying the Fréchet-analogue of these properties of vector
measures is nuclearity!

We begin with the Fréchet-analogue of Theorem 3.4.

THEOREM 5.1. ([2]) The following statements are equivalent for a Fréchet
space X:

(i) co(X) € Rypo(X).
(ii) X is Hilbertizable.

Here, ‘Hilbertizability’ is meant in the sense that the given Fréchet topol-
ogy of X is determined by a sequence of seminorms which arise from semi-inner
products. Further, the symbols Rypy, (X ), Rppy (X ) and Ry, (X) etc. are defined
for Fréchet spaces X in a manner similar to that already defined in Section 2
for Banach spaces. The case of Hilbert spaces as covered under Theorem 3.4
follows as a special case of this theorem.

The above theorem motivates the question of describing those Fréchet
spaces X for which the above inclusion holds with R, (X) replaced by Ry, (X)
or say by R(X). Whereas the case of R(X) seems to be unknown for Fréchet
spaces X, in the Banach space case treated in Theorem 3.2, the inclusion
co(X) C R(X) translates into the statement that X* is a subspace of an
L1-space.

Before we treat the Fréchet analogue of the inclusions co(X) C Ry, (X) and
co(X) € Rppy(X), we note that, by virtue of Theorem 3.3, the only Banach
spaces that result in the process are the finite dimensional ones. We also recall
[17] that the only Banach spaces X for which all X-valued measures are of
bounded variation are those which are finite dimensional. The Fréchet-space
version of this latter statement is an old result of C. Duchon which showed
that such spaces are necessarily nuclear.

THEOREM 5.2. ([11]) A Fréchet space X is nuclear if and only if each
X-valued (c.a.) measure has bounded variation.

Regarding the inclusion c¢o(X) C Ry, (X) for Fréchet spaces, we have the
following theorem of Bonet and Madrigal.

THEOREM 5.3. ([2]) For a Fréchet space X, the inclusion co(X) C Ry, (X)
holds if and only if X is nuclear.
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Before discussing the Fréchet analogues of the statement (iii) of Theo-
rem 3.5, let us recall that a Banach space X is said to have the Radon-Nikodym
property (RNP) if each X-valued measure of bounded variation which is ab-
solutely continuous w.r.t. a scalar measure has a Radon-Nikodym derivative.
In other words, if i : 3 — X is a measure of bounded variation and v : ¥ — R
is a scalar measure such that v(A) = 0 implies p(A) = 0, then there exists a
Bochner-integrable function f € L'(Q, X) such that

wE)= [ fdv, V E € X.
/

Surprisingly, it turns out that if u is chosen to be an arbitrary measure-not
necessarily of bounded variation-then the above property characterizes X has
finite-dimensional. The Fréchet space analogue of this result is a famous
theorem of G.E.F. Thomas. See also [17].

THEOREM 5.4. ([39]) For a Fréchet space X, the following statements are
equivalent:

(i) X is nuclear.

(ii) (RNP) holds for each X -valued (c.a.) measure.

Another important finite-dimensionality result involving vector measures
was obtained by C. Pineiro [26]. He showed that for p > 2, each weakly
p-summable sequence in a Banach space X lies inside the range of an X-
valued measure of bounded variation precisely when X is finite dimensional.
A strengthening of this result was obtained by the author with the weakly p-
summable sequences in X being replaced by absolutely p-summable sequences
for p > 2. This follows from Theorem 3.5 (iii) and the discussion following
it. A simultaneous generalization of this result and the theorem of Bonet
and Madrigal (Theorem 5.3) was achieved by the author in a recent work [37]
which makes use of some ideas from Banach space theory in the proof of this
theorem:

THEOREM 5.5. ([37]) A Fréchet space is nuclear if and only if £,{X} C
Ry, (X) for some (all) p > 2.

Proof. (Sketch) The proof makes use of the following facts (proved in [35])
which are also of independent interest.
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(A) (Rpy(X), Tpy) is a Fréchet space where 7, is the (l.c.) topology on
Ry (X) generated by the sequence of seminorms {|| - [|%?;n > 1}, defined by

|1Z)|% = inf{|p|n : (£,) C rg(p) for some X-valued measure p

of bounded variation. }

Here, |pln = [pln(Q) and |p|u(A) = sup {3 4cp lln(Ai)[n}, A € 35, where
the supremum ranges over all (finite) partitions P of A into pairwise disjoint

members of ).
(B) Given u = (z7,) € £1[X}], the map

oo

Ua(@) = (wn,a}), T =(2n) € Rp(X)

n=1

defines a continuous linear functional on Ry, (X).

In view of Theorem 5.3, it suffices to assume that £,{X} C R, (X) and
show that X is nuclear. We begin by noting that the o,-topology on ¢,{X}
and Ty, on Ry, (X) are both stronger than the uniform topology 7. It follows
that the inclusion map: £,{X} — Rp,(X) has a closed graph and is, therefore,
continuous by the closed graph theorem combined with (A). This yields that
X 5 C L{ X} where %—l—% = 1. Indeed, given u = () € ¢! [X3], (B) yields
that w y, 1s Continuous on Ry, (X) and hence its restriction on £,{ X} is also
continuous. But (£,{X})* = {,{X}. Thus there exists v = (y;) € {e{X"}
such that

Z(ajn,y;> = () Z Zn,xy), for each T = (z,,) € (,{X}.
n=1 n=1

In other words, @ = (x})) = (y;;) = v and the desired inclusion is established.

We now show that for each n > 1, there exists m > n such that the
canonical map: imy, @ Tn — T, is (g, 1)-summing where X, = X*(U?) is the
linear span of U in X* equipped with the norm

lz*||y, = sup{[(z*,z) : z € U,}, x, € X,.

To this end, fix n > 1 and note that ¢;[X,] embeds continuously into
A [X75]. As shown above, we have £1[X 3] C £,{X}}, which gives that the (in-
clusion) map ¢ : £1[Xp] — £,{ X} has a closed graph. Now being a complete
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(DF) space, X} is fundamentally £,-bounded by [35]. In other words, bounded
subsets of {,{X}3} are contained and bounded in some /,{X,}. Taking the
lead from Bonet-Madrigal [2], we can show that for m > n, the canonical
mapping 4my : Xn — X, is nuclear. Indeed, we can write

(X5} = U tal Xa}.

n=1

Now let Z denote éq{Xg} equipped with the inductive topology induced
by the inclusions: £o{ Xy} C £e{X3}. Let I: {{X3} — Z denote the identity
map and let ¢ : {,{X};} — Z be the canonical inclusions. Clearly, the
composite map Toi : £1[X,] — Z, having a closed graph is continuous by the
closed graph theorem applied to the Banach space £![X,,] and the (LB)-space
Z [21, Th. 24.31 and 24.36]. Finally, Grothendick’s factorization theorem [10,
Th. 24.33] applied to the continuous linear maps Iot) and {vy}, yields m > 1
such that

P(0[Xn]) = Toy ([ Xn]) € Pm(le{Xm}) = €{Xm}-

Equivalently, the map ¢ : ¢1[X,] — (,{X,,} is well-defined and also con-
tinuous or, in other words, the canonical map i,,, : X,, — X,, is absolutely
(¢, 1)-summing. Finally noting that ¢ < 2, so that by virtue of [15, Cor. 5.7], a
composite of sufficiently many (g, 1)-summing maps produces a nuclear map,
we conclude that X is a nuclear space in view of [22, Ch. 4].

We conclude this section with a sample of recent results on (spectral)
measures taking values in (the space of continuous linear operators on) a
Kothe echelon space [3]. Let us recall that a Kothe matrix is an infinite
matrix (a,(i))75,—1 of positive numbers such that

0<an(i) <agi(i), i,meN.

The Kothe (echelon) space associated to the Kéthe matrix A = (a, (7)) and
p € [1,00) is the linear space

1/p
M(A) =T = (z,) ew: ¢P(z) = <Zan(i)|a}i|p> <00, YneN},

equipped with the Fréchet space topology generated by the sequence of (semi)

norms {q,({’ ) ine N}. Here w stands for the space of all scalar-valued se-
quences. For a detailed account concerning these spaces, see [13] and [21].
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The first result is the Kothe space analogue of a well known fact about vec-
tor measures in ¢, spaces: Every {,-valued measure has a relatively compact
range if and only 1 < p < 2.

THEOREM 5.6. ([3])

(i) Let1 < p < 2. Then every \,(A)-valued measure has relatively compact
range.

(ii) Let 2 < p < oo. Then every \,(A)-valued measure has relatively com-
pact range if and only if X\,(A) is Montel.

The connection between the structural properties of a (Kéthe) sequence
space and the measure-theoretic properties of the (canonical) spectral measure
is treated in the next theorem. Recall that a vector measure P : > 5 —
Ls(X) taking values in the space of continuous linear operators on a Hausdorff
locally convex space X is a spectral measure if P(ENF) = P(E) P(F) for all
E,F € with ENF = (). Here Ls(X) means that L(X) is equipped with
the topology of pointwise convergence whereas L;(X) shall be understood to
mean that L(X) is endowed with strong topology (of uniform convergence on
bounded subsets of X). We shall also say that P is boundedly o-additive if
it is c.a. additive as an Ly(X)-valued measure. We can now state

THEOREM 5.7. ([3]) A Fréchet normal sequence space X\ is Montel if and
only every Ls(\)-valued measure is boundedly o-additive.

It turns out that it suffices to check the condition of boundedly o-additivity
in the above theorem for a special spectral measure, the so-called canonical
spectral measure which is defined by

P:2N S L))
P(E)(X) = axp, =€
and E € 2. For details, see [3, Prop. 3.1].

The next result characterizes the situation when the measure P has finite
variation.

THEOREM 5.8. ([3]) Let p € (1,00). The canonical spectral measure P :
2N — Ly (\y(A)) has bounded variation if and only if A\,(A) is nuclear.
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Remark 5.9. The case p = 1 has been excluded in Theorem 5.8 because,
regardless of the nuclearity of A;(P), the canonical spectral measure P : 2% —
Ls(M1(A)) always has bounded variation. Indeed, for a given fixed x € A1(A)
and an arbitrary finite partition {E;}7_; of N, we have for each n > 1

Zq(l) Zzan )il —Zan |xl|_Qn (z).

j=li€E;
Thus, it follows that P has bounded variation.

Remarkably, it is still possible to characterize nuclearity of A\;(P) in terms
of the canonical spectral measure provided it is assumed to have bounded
variation in Ly(A1(P)) instead of in Lg(A1(P)). More precisely, we have the
following partial converse.

THEOREM 5.10. ([3]) Let the Kéthe space A\1(A) be Montel. Then \(A)
is nuclear if and only if the canonical spectral measure P : 2% — Ly(\1(A))
has bounded variation.

Remark 5.11. A study of the function-space theoretic analogues of the
above results in the context of canonical spectral measures has also been
carried out in the setting of Kothe function spaces in a recent work by J.
Bonet, W.J. Ricker and S. Okada [4].

6. RANGE-DETERMINED PROPERTIES

In this final section, we briefly touch upon an important aspect of the
general theme of this paper which was not discussed in the previous sections.
The section then concludes with some open problems involving the range of
vector measures discussed earlier. Most of the results treated in this section
are due to L. Rodriguez Piazza and his collaborators which deal with the
properties of a vector measure determined by its range.

Given a pair of vector measure u, v taking values in a Banach space X, it
makes sense to ask if u and v share some common properties in the event that
their ranges coincide: rg(u) = rg(v). For the property of bounded variation,
it turns out that the indicated equality completely determines if p and v are
simultaneously of bounded/unbounded variation. In this direction, we have
the following remarkable theorem of L. R. Piazza [32].
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THEOREM 6.1. ([32], see also [33]) Given vector measure pu and v taking
values in a Banach space, then rg(u) = rg(v) implies that tv(u) = tv(v).
More generally, it suffices to assume that rg(u) is a translate of rg(v).

Regarding the property of finite o-variation (which means that there exists
a sequence {A,} C Y with Q = (J;7; A, such that |u[(A4,) < oo, for all
n > 1), we have the following analogous result.

THEOREM 6.2. ([33], see also [34]) For X-valued vector measures j1 and v
such that rg(p) = rg(v), it holds that v has o-finite variation if and only if v
does.

Notwithstanding these positive results in the presence of the equality of
ranges, the situation is seen to change dramatically if rg(u) is assumed only
to be a subset of rg(v). In fact, Anantharaman and Diestel [1] showed that
there exist cp-valued measures p and v with rg(u) C rg(v) such that v is of
bounded variation but p is not! The next theorem characterizes such Banach
spaces where ‘monotonicity’ of total variation holds under inclusion of vector
measure ranges.

THEOREM 6.3. ([32]) Let X be a Banach space. Then for all X- valued
measures p and v such that rg(u) C rg(v) with v being of bounded variation,

it follows that p is also of bounded variation if and only if X is a subspace of
L.

More precisely, there exists ¢ > 0 such that tv(u) < ctv(v) if and only if
X is c-isomorphic to a subspace of an L'-space.

However, as opposed to total variation, monotonicity of o-finite variation
is possible only in trivial situations.

THEOREM 6.4. ([33]) Let X be a Banach space. Then for all X- valued
measures p and v such that rg(u) C rg(v) with v having o-finite variation, it
follows that p also has o-finite variation precisely when X is finite dimensional.

Continuing in the same vein, we have

THEOREM 6.5. ([33]) For X-valued measures p and v such that ¢o(rgpu)
is a translate of co(rgv), it follows that p is Bochner differentiable w.r.t. |u|
if and only if v is Bochner differentiable w.r.t. |v|.
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Here, differentiability is understood in the sense in which it is meant in
Theorem 5.4 where the conclusion can be equivalently stated by saying that
w is differentiable w.r.t. to v. Unfortunately, the above theorem does not
hold for Pettis differentiability. Indeed, there are ¢,-valued measures p and v
satisfying the assumptions of Theorem 6.5 with only one of them being Pettis
differentiable. For an example of this phenomenon, see [34].

An alternative approach to Theorems 6.1 and 6.5 and based on the idea
of conical measures is included in another important contribution by L. Ro-
driguez Piazza and C. Romero Moreno [34] which also provides a far reaching
generalization of Theorem 6.1 in the language of (p, ¢)-summing norms of the
integration maps associated with p and v, respectively. On the other hand,
the p-nuclear analogue of Theorem 6.5 for p > 1 which states that under the
assumptions of Theorem 6.5, p- nuclear norms of the associated integration
maps coincide, yields this theorem as a special case by taking p = 1. This fol-
lows from the fact that a vector measure is Bochner differentiable if and only if
the associated integration map is nuclear. Here, we recall that corresponding
to a vector measure p : », — X, there exists the ‘integration map’

L'(p) — X,
defined by
1(f) = /Q fdu, feI'(u),

where L'(u) denotes the space of those > -measurable functions f : Q — R
such that f € LY(€, (u, z*)), for each x* € X* and that for each E € 3_, there
exists a (unique) vector [ fdu € X such that

E
</Efdu, x*>:/Efd<p, o), Va*e X

THEOREM 6.6. ([31]) Let p: Y, — X, v: >, — X be vector measures
such that co(rgu) = ¢o(rgv). Then

I(LY () = 1, (LY (v)).

In other words, the range of a vector measure determines (closure of the
range of) its integration map.

We conclude this paper with a list of open problems.
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7. OPEN PROBLEMS

We saw in Section 3 that the situation is reasonably satisfactory in respect
of sequences from a ‘distinguished’ set S(X) of sequences from a Banach space
X being localized inside the range of a vector measure of a certain type. This
was seen to be the case particularly for S(X) = co(X), £,{X} and also for
0p[X], 1 < p < oo. The case S(X) = ¢p(X) also characterizes the situation
when compact subsets of X can be located inside the range of vector measures
of certain types. This is based upon the well-known fact that a compact set
is contained inside the closed convex hull of a (norm) null sequence combined
with another fundamental fact from the vector measure theory which states
that the closed convex hull of a set K is the range of a vector measure whenever
K is such. This motivates the problem involving weakly compact sets (resp.,
weakly null sequences) being contained inside the range of vector measures:

PROBLEM 1. Describe those Banach spaces such that weakly compact sub-
sets (resp. weakly null sequences) of X are contained inside the range of vector
measures taking values in (a) X; (b) X*; (c) a superspace containing X,
with or without bounded variation.

Comments. Theorem 3.12 shows that L,-spaces for 2 < p < co enjoy the
property that weakly compact subsets of these spaces lie inside the range of
a vector measure. However, there also exist non-reflexive Banach spaces for
which this property holds. In fact, the separable L., space of Bourgain and
Delbaen which was discussed in Section 4 has this property as was noted in
[1]. Moreover, it appears to be unknown if weakly compact subsets of ¢y lie
inside the range of ¢p-valued vector measures, even when all compact subsets
of ¢y are known to be contained inside the range of ¢y-valued vector measures
(see Theorem 3.2).

PROBLEM 2. Does there exist a weakly compact subset of ¢y which is not
included inside the range of a c¢o-valued measure?

Our next problem is based on Theorem 3.2 and the trivial observation that
if X has the property that each null sequence in X is included inside the range
of an X-valued measure, then so does each absolutely p-summable sequence
in X for each p > 1. Thus one can ask:

PROBLEM 3. Does there exist a Banach space X such that for each p > 1,
each absolutely p-summable sequence in X lies inside the range of an X-valued
measure but X* ¢ L?
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Comments. Corollary 3.10 shows how Theorem 3.2 is subsumed in the
framework provided by Theorem 3.5 (i) which deals with the case of S(X) =
¢,{X}. In some sense, one can say that the inclusion ¢y(X) C R(X) is the
‘limiting case’ of the inclusions ¢,{X} C R(X) for p > 1 as p — oo. In other
words, the above problem asks whether the inclusion £,{X} C R(X) for all
p > 1 implies that ¢o(X) C R(X). In a similar way, Corollary 3.10 combined
with Theorem 3.4 and Theorem 3.5 (ii) motivate the next problem.

PROBLEM 4. Given a Banach space X such that (,{X} C Ry, (X) for
each p > 1, prove or disprove that X is a Hilbert space.

Our next problem pertains to the chain of inclusions (6) already encoun-
tered in Section 2:

Ry (X) C Rppy(X) C Rypy(X) C R(X) C loo(X).

Whereas easy examples show that the last three inclusions are proper, it was
unknown for a long time if it is also the case for the inclusion Ry, (X) C
Rppy(X). In Section 4, we saw how the Bourgain-Delbaen space could be
used to show that the indicated inclusion is indeed proper. This leads to the
investigation of those Banach spaces X for which the inclusion is an equality.

PROBLEM 5. Characterize Banach spaces X such that Ry, (X) = Ry, (X).

We can also formulate

PROBLEM 6. Characterize Banach spaces X such that R(X) = Ry(X).

Comment. As already commented upon in the paragraphs preceding The-
orem 4.3, it is still unknown if the equality in Problem 6 holds for all Banach
spaces.

The following two problems pertain to the ‘preservation’ of differentiability
of a vector measure when its range coincides with the range of another measure
which is differentiable.

PROBLEM 7. Describe Banach spaces X such that whenever p and v are
X-valued measures with ¢o(rg(u)) = co(rg(v), then p is Pettis-differentiable
if and only if v is.

Comments. For Bochner differentiability, there are no issues involved:
Theorem 6.5 tells us that regardless of the Banach space X, u and v are
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simultaneously Bochner differentiable or Bochner non-differentiable. However,
that is not exactly the case for Pettis differentiability as was noted in the
discussion following Theorem 6.5. Further, there is nothing sacrosanct about
Bochner/Pettis differentiability: one may as well pose the following problems.

PROBLEM 8. Does the range determine McShane differentiability? In
other words, does Theorem 6.5 hold with Bochner differentiability replaced
by McShane differentiability?

Here ‘McShane differentiability’ is understood in the obvious sense that
the density function of the vector measure is McShane integrable.
On similar lines, we have

PROBLEM 9. Characterize Banach spaces X such that

(i) co(X) C Rp(X).
(ii) £p{X} C Rp(X),1<p<oc.
(iii) £p[X] C Rp(X), 1 <p < 0.

Here, Rp(X) is used to denote the space of all X-valued (bounded) sequences
which lie inside the range of a vector measure which is differentiable in the
sense of ‘D’ where ‘D’ stands for an integration theory like Bochner, Pettis,
McShane or Birkhoff integration.

Comments. Bochner differentiability of the measures involved need not
be included in the above problem because there are no (infinite-dimensional)
Banach spaces verifying inclusion (i), and also (ii) and (iii) at least for p > 2.

We conclude with the following Fréchet analogues of Theorems 3.1, 3.2
and 6.6.

PrROBLEM 10. Characterize Fréchet spaces X such that

(i) £2[X] C R(X).
(i) co(X) C R(X).

PROBLEM 11. Is it true that for a given Fréchet space X it holds that
whenever pu,v are X-valued measures such that co(rg(p)) = co(rg(v)), it
follows that I,,(L'(u)) = I, (L' (v)), where I, I,, are the associated integration
maps?
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The following problem is motivated by Theorem 6.4.

PROBLEM 12. Isit true that monotonicity of o-finite variation in a Fréchet
space X holds exactly when X is nuclear?

In other words, is it true that nuclearity of X is equivalent to the following
condition:

Whenever p and v are X -valued measures such that rg(u) C rg(v), then
u has finite o-variation if v has it.

Here, finite o-variation of u is understood in the same sense as for Banach
spaces, namely that there exists a sequence {A,} C > with Q = (J77, 4,
such that |u|,(A4,) < oo for all n > 1, where |ul,, is defined as in the proof of
Theorem 5.5.

The last problem pertains to the circle of ideas involving spectral measures
and is motivated by the desire to realize certain distinguished subsets of op-
erators on a (Kothe) sequence space as included inside the range of a spectral
measure.

PROBLEM 13. Describe linear topological properties of a (Kothe) sequence
space A such that all compact sets of (compact operators on) A are contained
inside the range of a (boundedly o-additive) spectral measure in Lg(\).
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