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Abstract : We construct canonically a general connection AF (Γ,∇) on Fp : FY → FM from
a general connection Γ on a fibred manifold p : Y → M by means of a projectable classical
linear connection ∇ on Y , where F : Mf → VB is a vector bundle functor. In the case
of a not necessarily vector bundle functor F : Mf → FM we find some simple equivalent
condition on the existence of a general connection A(Γ,∇) on Fp : FY → FM from a
general connection Γ on Y → M by means of a projectable classical linear connection
∇ on Y . We present a construction of a classical linear connection AF (∇) on FY from
a projectable classical linear connection ∇ on Y for any fiber product preserving bundle
functor F : FMm → FM. We characterize bundle functors F : FMm,n → FM which
admit a construction of a classical linear connection A(∇) on FY from a projectable classical
linear connection ∇ on Y . We characterize gauge bundle functors F : VBm,n → FM which
admit a construction of a classical linear connection A(D,∇) on FE from a linear general
connection D on E → M by means of a classical linear connection ∇ on M .

Key words: General connection, classical linear connection, (vector) (gauge) bundle functor,
fiber product preserving bundle functor, Weil algebra, natural isomorphism, natural (gauge)
operator.

AMS Subject Class. (2000): 58A05, 58A20, 58A32.

0. Introduction

From now on, let Mf be the category of all manifolds and all maps, Mfm

be the category of m-dimensional manifolds and their embeddings, FM be
the category of all fibred manifolds (i.e. surjective submersions between mani-
folds) and their fibred maps, FMm be the category of all fibred manifolds with
m-dimensional bases and their fibred maps covering embeddings, FMm,n be
the category of fibred manifolds with m-dimensional bases and n-dimensional
fibres and their fiber embeddings, VB be the category of all vector bundles
and their vector bundle maps, and VBm,n be the category of vector bundles
with m-dimensional bases and n-dimensional fibres and their vector bundle
embeddings.
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A general connection on a fibred manifold p : Y → M is a section Γ : Y →
J1Y of the first jet prolongation J1Y → Y of p : Y → M . Equivalently, Γ
can be treated as the corresponding lifting map

Γ : TM ×M Y → TY,

see [10]. If E → M is a vector bundle, then a general connection Γ : E → J1E
is called linear if it is a vector bundle map. In particular if E = TM is the
tangent bundle of M , a linear connection Γ : TM → J1TM is a classical linear
connection on M (it can be equivalently defined by its covariant derivative
∇XY on vector fields, or equivalently defined as the corresponding section
of the affine bundle of connections QM = π−1(idTM ) ⊂ T ∗M ⊗ J1TM ).
Given a fibered manifold p : Y → M , a classical linear connection ∇ on Y is
called projectable if there exists a (unique) p-related with ∇ classical linear
connection ∇ on M

The theory of canonical constructions on connections has its origin in the
works of C. Ehresmann, [3], [4]. Some canonical constructions on connections
have motivations in quantum mechanics, higher order dynamics, field theories
and gauge theories of mathematical physics, [6], [19], [21]. That is why, canon-
ical constructions on connections have been studied in many papers, [1], [2],
[5], [7]–[10], [12]–[20], [22]. Roughly speaking, a canonical construction on con-
nections is a rule A transforming given connections Γ1, . . . , Γk on a manifold
Y or fibred manifold Y → M into a connection A(Γ1, . . . , Γk) on a functor
bundle FY of Y , which is well defined (i.e., the definition of A(Γ1, . . . , Γk)
is independent of the choice of local coordinates on Y ). Such constructions
have reflection in the corresponding natural operators in the sense of Kolář-
Michor-Slovák [10]. The theory and precise definitions of bundle functors and
natural operators (canonical constructions) can be found in the fundamental
monograph [10].

In the first part of the paper, we study the following two problems.

Problem 1. Let F : Mf → VB be a vector bundle functor. To construct
a general connection AF (Γ,∇) on Fp : FY → FM from a general connection
Γ on p : Y → M by means of a projectable classical linear connection ∇ on Y .

Problem 2. To characterize (not necessarily vector) bundle functors
F : Mf → FM such that there exists a general connection A(Γ,∇) on
Fp : FY → FM induced from a general connection Γ on p : Y → M by
means of a projectable classical linear connection ∇ on Y .
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We remark that in [14], we studied the problem whether for a given general
connection Γ : Y → J1Y on a fibred manifold p : Y → M one can construct
canonically a general connection A(Γ) : FY → J1(FY → FM) on Fp : FY →
FM , where F : Mf → VB is a vector bundle functor with the point property
F ({point}) = {0}. We proved that a construction A(Γ) in question exists if
and only if F is product preserving.

In the second part of the paper we study the following three problems.

Problem 3. Let F : FMm → FM be a fiber product preserving bundle
functor. To construct a classical linear connection AF (∇) on FY from a
projectable classical linear connection ∇ on Y → M .

Problem 4. To characterize bundle functors F : FMm,n → FM, which
admits a canonical construction of a classical linear connection A(∇) on FY
from a projectable classical linear connection ∇ on Y → M .

Problem 5. To give an example of a bundle functor F : FMm,n → FM
which does not admit any construction of a classical linear connection A(∇)
on FY from a projectable classical linear connection ∇ on Y → M .

We inform that the most important example of a fiber product preserving
bundle functor is the r-jet prolongation functor Jr : FMm → FM. All fiber
product preserving bundle functors F : FMm → FM have been classified in
[11].

Fiber product preserving bundle functors on FMm play a similar role
as product preserving bundle functors (Weil bundles) on manifolds. On the
Weil bundle TAM we have the classical linear connection ∇A from a given
classical linear connection ∇ on M , the complete lift of ∇ in the sense of
A. Morimoto [17]. To construct ∇A from ∇, A. Morimoto defined a lot of
canonical lifts of functions, vector fields and forms. Unfortunately, in the
case of Jr : FMm → FM any natural operator lifting projectable vector
fields X on Y → M to JrY is the constant multiple of the flow operator,
[10]. Also (one can show) that any natural lifting of functions f : Y → R to
πr

0 : JrY → Y is the vertical lift fV = f ◦ πr
0 : JrY → R composed with a

function R → R. In other words, Jr is a very rigid functor. Thus it is very
unexpected the positive answer to Problem 3 for F = Jr. It must use quite
different method than the one by A. Morimoto [17].

In the special case m = 0, we have FM0,n = Mfn under the identification
Y → {point} with Y . Any classical linear connection on Y is projectable on
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Y → {point}. Thus the solution of Problem 4 gives a characterization of bun-
dle functors (natural bundles) F : Mfn → FM which admits a construction
of a classical linear connection A(∇) on N from a classical linear connection ∇
on N . This (in particular) shows the reason why a prolongation of connections
∇ on N to TAN exists.

In the third part we solve the following problems.

Problem 6. To characterize all gauge bundle functors F : VBm,n → FM,
which admit a canonical construction of a classical linear connection A(D,∇)
on FE from a linear general connection D on an VBm,n-object E → M by
means of a classical linear connection ∇ on M .

Problem 7. To give an example of a gauge bundle functor F : VBm,n →
FM which does not admit any canonical construction of a classical linear
connection A(D,∇) on FE from a linear general connection D on an VBm,n-
object E → M by means of a classical linear connection ∇ on M .

We inform that in [15], we proved that there is no canonical construction
of a classical linear connection A(D) on FE from a linear general connection
D on a VBm,n-object E → M . So, the using of an auxiliary classical linear
connection ∇ on M is unavoidable in Problem 6.

All manifolds and maps are assumed to be of class C∞.

PART I. Some constructions on general connections

1. Some definitions

Let B : FM→Mf be the base functor, B(Y → M) = M , B(f, f) = f .

Definition 1. A bundle functor over manifolds is a covariant functor
F : Mf → FM satisfying B ◦ F = id and the localization condition: for
every inclusion of an open subset iU : U → M , FU is the restriction p−1

M (U)
of pM : FM → M over U and FiU : FU → FM is the inclusion p−1

M (U) →
FM , [10]. If a bundle functor F has values in the category VB, we say that
F : Mf → VB is a vector bundle functor.

A simple example of a vector bundle functor is the tangent functor T :
Mf → VB sending a manifold M into its tangent bundle TM over M and
any map f : M → M1 into the tangent map Tf : TM → TM1 over f . An
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example of a bundle functor F which is not vector is the tangent functor
T r : Mf → FM for r ≥ 2 sending any manifold M into the r-tangent bundle
T rM = Jr

0 (R,M) and any map f : M → M1 into the induced fibred map
T rf : T rM → T rM1 covering f , T rf(jr

0γ) = jr
0(f ◦ γ), jr

0γ ∈ T rM . More
examples of bundle functors over manifolds can be found in [10].

Let F : Mf → FM be a bundle functor.

Definition 2. An FMm,n-natural operator (a canonical construction)
transforming connections Γ on FMm,n-objects Y → M and a projectable
classical linear connection ∇ on Y → M into general connections A(Γ,∇)
on fibred manifold Fp : FY → FM is a family of FMm,n-invariant regular
operators (functions)

A : Con(p : Y → M)×Conproj−clas−lin(p : Y → M) → Con(Fp : FY → FM)

for any FMm,n-object p : Y → M , where Con(p : Y → M) is the set of
all general connections on p : Y → M and Conproj−clas−lin(p : Y → M)
is the set of all projectable classical linear connections on p : Y → M . The
invariance means that for any general connections Γ and Γ1 on FMm,n-objects
p : Y → M and p1 : Y1 → M1 (respectively) and projectable classical linear
connections∇ and∇1 on p : Y → M and p1 : Y1 → M1 (respectively), if Γ and
Γ1 are f -related and∇ and∇1 are f -related for some FMm,n-map f : Y → Y1

covering f : M → M1, then A(Γ,∇) and A(Γ1,∇1) are (Ff, Ff)-related. The
regularity means that A transforms smoothly parametrized families of pairs
of connections into smoothly parametrized families of connections.

2. Solution of Problem 1

Let F : Mf → VB be a vector bundle functor. We have

F0Rm=̃F (im,m+n)(F0(Rm)) ⊂ F(0,0)(R
m ×Rn) ,

where im,m+n : Rm → Rm ×Rn, x → (x, 0). Define

CF : (Rm×TF0Rm)×F0Rm F(0,0)(R
m×Rn) → (Rm×Rn)×TF(0,0)(R

m×Rn)

by

CF
((

a,
d

dτ |0
(Fp(f) + τu)

)
, f

)
=

(
(a, 0),

d

dτ |0
(f + τu)

)
,
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a ∈ Rm, u ∈ F0Rm ⊂ F(0,0)(Rm × Rn), f ∈ F(0,0)(Rm × Rn). From the
translation identification FRm = Rm × F0Rm we have the identification
TFRm = TRm × TF0Rm . Thus

Rm × TF0Rm = (TFRm)0 .

Similarly,

(Rm ×Rn)× TF(0,0)(R
m ×Rn) = (TF (Rm ×Rn))(0,0) .

Thus

CF : (TFRm)0 ×F0Rm F(0,0)(R
m ×Rn) → (TF (Rm ×Rn))(0,0) .

One can easily observe that

Lemma 1. (a) The mapping CF is fiber linear in the first factor.

(b) We have the lifting property

TFp(CF (w, f)) = w

for any (w, f) ∈ (TFRm)0 ×F0Rm F(0,0)(Rm ×Rn).

(c) We have the invariant condition

CF
(
TFϕ(w), F (ϕ× ψ)(f)

)
= TF (ϕ× ψ)(CF (w, f))

for any (w, f) ∈ (TFRm)0 ×F0Rm F(0,0)(Rm ×Rn) and any linear iso-
morphisms ϕ : Rm → Rm and ψ : Rn → Rn.

Let Γ be a general connection on a fibered manifold p : Y → M with
dim(M) = m and dim(Y ) = m + n. Let ∇ be a projectable classical linear
connection on Y with the underlying classical linear connection ∇ on M . Let
y ∈ Y , p(y) = x. The following lemma is almost clear.

Lemma 2. (a) There is a normal fiber coordinate system Ψ : (U, y) →
(Rm×Rn, (0, 0)) on Y of ∇ with center y covering a normal coordinate
system Ψ : (U, x) → (Rm, 0) on M of ∇ with center x and sending Γ(y)
into j1

0(θ), where θ is the zero section of Rm ×Rn → Rm.

(b) If Ψ is another such system then there are linear isomorphisms ϕ : Rm →
Rm and ψ : Rn → Rn such that Ψ = (ϕ× ψ) ◦Ψ near y.
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Example 1. Let F : Mf → VB be a vector bundle functor. Let Γ be a
general connection on a fibred manifold p : Y → M and ∇ be a projectable
classical linear connection on Y → M , dim(Y ) = m + n, dim(M) = m. We
are going to construct a general connection AF (Γ,∇) on Fp : FY → FM .
Let z ∈ FyY , y ∈ Y . Define AF (Γ,∇)(z) ∈ (J1

Fp(z)FY )z as follows. Choose a
system Ψ as in Lemma 2(a) and put

AF (Γ,∇)(z) = J1FΨ−1
(
j1
Fp (FΨ(z))(σ

F
FΨ(z))

)
,

where j1
Fp(f)(σ

F
f ) ∈ (

J1
Fp(f)(F (Rm ×Rn))

)
f

is the unique element such that
CF (u, f) = dFp(f)σ

F
f (u), f ∈ F(0,0)(Rm×Rn), u ∈ TFp(f)FRm (the existence

of such j1
Fp(f)(σ

F
f ) follows from Lemma 1(a)(b)). If Ψ is another such system,

then by Lemma 2(b) and the invariant condition from Lemma 1(c) we obtain
the same value AF (Γ,∇)(z). Thus the definition of AF (Γ,∇)(z) is correct.
The resulting map AF (Γ,∇) : FY → J1(FY → FM) is a general connection
on Fp : FY → FM .

Because of the canonical character of the construction AF (Γ,∇) we imme-
diately have

Proposition 1. (1) Given non-negative integers m and n with n ≥ 1,
the family of operators AF : (Γ,∇) → AF (Γ,∇) (described in Exam-
ple 1) is an FMm,n-natural operator.

(2) Let a = {aM} : F1 → F2 be an Mf -natural isomorphism of vector
bundle functors (i.e. aM : F1M → F2M is a base preserving vector
bundle isomorphism for any manifold M such that aM2◦F1f = F2f ◦aM1

for any map f : M1 → M2). Then for any FMm,n-object p : Y → M
any projectable classical linear connection∇ on Y → M and any general
connection Γ on Y → M , general connections AF1(Γ,∇) and AF2(Γ,∇)
are (aY , aM )-related.

3. Solution of Problem 2

Let F : Mf → FM be a (not necessarily vector) bundle functor. Suppose
that there exists a FMm,n-canonical construction of a general connection
A(Γ,∇) on Fp : FY → FM from a general connection Γ on p : Y → M
by means of a projectable classical linear connection ∇ on Y . Then by the
composition of the restrictions of

A(Γ0,∇0) : TFRm ×FRm F (Rm ×Rn) → TF (Rm ×Rn) ,
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where Γ0 is the trivial general connection on p : Rm×Rn → Rm and ∇0 is the
projectable classical linear connection on Rm×Rn with vanishing Christoffel
symbols, with the projection

(TF (Rm×Rn))(0,0)=̃(Rm×Rn)×T (F(0,0)(R
m×Rn)) → T (F(0,0)(R

m×Rn)) ,

we have the general connection

Γo : T (F0Rm)×F0Rm F(0,0)(R
m ×Rn) → T (F(0,0)(R

m ×Rn))

on F(0,0)p : F(0,0)(Rm × Rn) → F0Rm. This connection is Gl(m) × Gl(n)-
invariant because of the Gl(m)×Gl(n)-invariance of AF , Γ0 and ∇0.

Conversely suppose that there exists a Gl(m) × Gl(n)-invariant general
connection

Γo : T (F0Rm)×F0Rm F(0,0)(R
m ×Rn) → T (F(0,0)(R

m ×Rn))

on F(0,0)p : F(0,0)(Rm ×Rn) → F0Rm. Then we have the map

Co : (TFRm)0 ×F0Rm F(0,0)(R
m ×Rn) → (TF (Rm ×Rn))(0,0)

given by
Co((a, u), f) = ((a, 0), Γo(u, f)),

(a, u) ∈ (TFRm)0=̃Rm×TF0Rm, f ∈ F(0,0)(Rm×Rn), Fp(f) = π(u), where
π : TFRm → FRm is the tangent projection, (Rm × Rn) × TF(0,0)(Rm ×
Rn)=̃(TF (Rm×Rn))(0,0). This map Co has the properties as CF in Lemma 1.
Then similarly as in the Example 1 we can construct a general connection
A(Γ,∇) on Fp : FY → FM . Thus we have proved

Theorem 1. Let F : Mf → FM be a bundle functor. The following
conditions are equivalent:

(i) There exists a canonical construction (an FMm,n-natural operator) of
a general connection A(Γ,∇) on Fp : FY → FM from a general con-
nection Γ on a fibred manifold p : Y → M with dim(Y ) = m + n and
dim(M) = m by means of a projectable classical linear connection ∇ on
Y .

(ii) There exists an Gl(m)×Gl(n)-invariant general connection Γo on F(0,0)p :
F(0,0)(Rm ×Rn) → F0Rm.
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Remark 1. (i) Let F : Mf → FM be a bundle functor. Assume that:
(a) F(0,0)(Rm ×Rn) and F0Rm are vector spaces; (b) the map F0(im,m+n) :
F0Rm → F(0,0)(Rm ×Rn) is linear; (c) the map F(0,0)p : F(0,0)(Rm ×Rn) →
F0Rm is linear (then linear epimorphism); (d) the actions of Gl(m)×Gl(n) on
F(0,0)(Rm×Rn) and of Gl(m) on F0Rm are by linear isomorphism. Then we
have a Gl(m)×Gl(n)-invariant general connection Γo on F(0,0)p : F(0,0)(Rm×
Rn) → F0Rm by Γo

(
d
dτ |0(u + τw), f

)
= d

dτ |0
(
f + τF (im,m+n)(w)

)
, u,w ∈

F0Rm, f ∈ F(0,0)(Rm ×Rn), Fp(f) = u.
(ii) An example of a (not necessarily vector) bundle functor F satisfying

conditions (a)–(d) is a Weil functor TA corresponding to a Weil algebra A. So,
we can construct a general connection A(Γ,∇) on TAp : FY → FM from a
general connection Γ on p : Y → M by means of a projectable classical linear
connection on Y . In [19], J. Slovák gave an example of a general connection
A(Γ) on TAp : FY → FM from a general connection Γ on p : Y → M without
using a projectable classical linear connection ∇ on Y .

Open problem. If exist a Gl(m)×Gl(n)-invariant general connection on
F(0,0)p : F(0,0)(Rm ×Rn) → F0Rm for any bundle functor F : Mf → FM?

PART II. Some constructions on projectable linear connections

4. Some definitions

Let B : FM → Mf be the base functor and τ : FMm → Mf be the
total space functor, τ(Y → M) = Y , τ(f, f) = f .

Definition 3. A bundle functor on FMm is a covariant functor F :
FMm → FM such that B◦F = τ satisfying the the localization condition: for
any inclusion of an open subset iU : U → Y , FU is the restriction p−1

Y→M (U) of
pY→M : FY → Y and FiU is the inclusion p−1

Y→M (U) → FY . A bundle functor
F : FMm → FM is fiber-product preserving if F (Y1 ×M Y2) = FY1 ×M FY2

(modulo a fibred diffeomorphism) for any FMm-objects Y1 → M and Y2 → M
over the same base.

A more important example of a fiber product preserving bundle functor
on FMm is the r-jet prolongation functor Jr : FMm → FM sending any
FMm-object Y → M into its r-jet prolongation bundle JrY = {jr

xσ | σ : M →
Y is a section of Y → M, x ∈ M} over Y , and any FMm-map f : Y → Y1

covering (embedding) f : M → M1 into its induced map Jrf : JrY →
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JrY1, Jr(jr
sσ) = jr

f(x)(f ◦ σ ◦ f−1), jr
xσ ∈ JrY . Fiber product preserving

bundle functors F : FMm → FMm have been completely described in [11]
in terms of triples (A,H, t), where A is a Weil algebra of order r, H is a
group homomorphism from the rth jet group Gr

m into group Aut(A) of all
automorphisms of A and t is a Gr

m-invariant algebra homomorphism from the
algebra Dr

m = Jr
0 (Rm,R) into A. An example of not fiber product preserving

bundle functor on FMm is the tangent functor T : FMm → FM sending
any FMm-object Y → M into TY → Y and any FMm-map f : Y → Y1 into
Tf : TY → TY1. More examples of bundle functors F : FMm → FM can
be found in [11].

Let F : Fm,n → FM be a bundle functor (defined quite similarly as bundle
functors on FMm).

Definition 4. An FMm,n-natural operator (a canonical construction)
transforming projectable classical linear connections ∇ on an FMm,n-object
Y → M into classical linear connections A(∇) on FY is a family of FMm,n-
invariant regular operators (functions)

A : Conproj−clas−lin(Y → M) → Conclas−lin(FY )

for any FMm,n-object Y → M , where Conclas−lin(FY ) is the set of all classi-
cal linear connections on FY . (The invariance and regularity is defined quite
similarly as in Definition 2.)

5. Solution of Problem 3

Let p : Y → M be a fibred manifold with m-dimensional base and n-
dimensional fibers. Let ∇ be a projectable classical linear connection on Y
with the underlying classical linear connection ∇ on M . The following lemma
is almost clear.

Lemma 3. (a) There exists a fibred normal coordinate system Ψy :
(U, y) → (Rm × Rn, (0, 0)) on Y of ∇ with center y covering a nor-
mal coordinate system Ψx : (U, x) → (Rm, 0) on M of ∇ with center
x.

(b) If Ψy
1 is another such fibered normal coordinate system then there exists

a linear isomorphism Φ : Rm × Rn → Rm × Rn the form Φ(x, y) =(
ϕ(x), ψ1(x) + ψ2(y)

)
, (x, y) ∈ Rm ×Rn such that Ψy

1 = Φ ◦Ψy near y.
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Let F : FMm → FM be a fiber product preserving bundle functor. Let
(A,H, t) be the triple of F . Then F (Rm×Rn) = (Rm×Rn)××An, where A is
the maximal ideal of A. The following lemma is clear under the classification
result of [11].

Lemma 4. Let Gl(m,n) be the linear group of fibred linear isomorphisms
Φ : Rm × Rn → Rm × Rn which are (of course) of the form Φ(x, y) =(
ϕ(x), ψ1(x) + ψ2(y)

)
. Given Φ ∈ Gl(m,n) (of the above form) we have

FΦ((x, y), a) =
((

ϕ(x), ψ1(x) + ψ2(y)
)
,H(jr

0ϕ)
(
ψ2 ⊗ idA(a) + t(jr

1ψ1)
))

,

(x, y) ∈ Rm×Rn, a ∈ An = Rn⊗A. In particular, the action of Gl(m,n) on
the standard fiber F(0,0)(Rm ×Rn) is by affine isomorphisms.

Example 2. Let F : FMm → FM be a fiber product preserving bundle
functor. Let∇ be a projectable classical linear connection on a fibred manifold
p : Y → M , dim(Y ) = m + n, dim(M) = m. We are going to construct a
classical linear connection AF (∇) on FY . Let v ∈ FyY , y ∈ Y . Let ∇F be the
classical linear connection on the affine space F(0,0)(Rm×Rn) with vanishing
Christoffel symbols (in any affine coordinates). Because of Lemma 4, ∇F is
Gl(m, n)-invariant. Let Ψy be a normal fibred coordinate system from Lemma
3. Let Ψy

∗∇ be the image of ∇ by Ψy. Thus on F (Rm×Rn) = (Rm×Rn)×
F(0,0)(Rm × Rn) we have the classical linear connection (Ψy

∗∇) × ∇F . (We
recall that given classical linear connections ∇1 on M and ∇2 on N we have
the product ∇1 × ∇2 of ∇1 and ∇2. This is a classical linear connection on
M ×N defined as follows. Let λ1 : TM → J1TM and λ2 : TN → J1TN be
the corresponding to ∇1 and ∇2 fiber linear sections. Then the fiber linear
section λ : TM ×TN → J1(TM ×TN) corresponding to ∇1×∇2 is given by
λ(u, v) = j1

(p,q)(X1 ×X2), u ∈ TpM , v ∈ TqN , p ∈ M , q ∈ N , λ1(u) = j1
p(X1),

λ2(v) = j1
q (X2).) We define

AF (∇)v = QF (Ψy)−1
(
((Ψy

∗∇)×∇F )FΨy(v)

)
,

where we treat classical linear connections on Y as sections of the connection
natural bundle QY . If Ψy

1 is another fibred normal coordinate system in
question, then because of Lemma 3(b) and the Gl(m,n)-invariance of ∇F we
obtain the same AF (∇)v. Thus the definition of AF (∇)v is correct. Thus we
have the resulting classical linear connection AF (∇) on FY .

Because of the canonical character of the construction AF (∇) we have
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Proposition 2. (1) The family of operators AF : ∇ → AF (∇) (de-
scribed in Example 2) is an FMm,n-natural operator.

(2) Let a = {ap} : F1 → F2 be an isomorphism of fiber product preserving
functors (i.e. ap : F1Y → F2Y is a fibred diffeomorphism covering idY

for any FMm-object p : Y → M such that F2f ◦ ap1 = ap2 ◦ F1f for
any FMm-map f : Y1 → Y2 covering f : M1 → M2). Then for any
projectable classical linear connection ∇ on an FMm,n-object p : Y →
M , connections AF1(∇) and AF2(∇) are ap-related.

6. Solution of Problem 4

Let F : FMm,n → FM be a (not necessarily fiber product preserv-
ing) bundle functor. Suppose that we have a construction A of a classi-
cal linear connection A(∇) on FY from a projectable classical linear con-
nection ∇ on Y . Then we have the connection A(∇0) on F (Rm × Rn) =
(Rm × Rn) × F(0,0)(Rm × Rn), the trivialization by translations, where ∇0

is the flat projectable classical linear connection on Rm ×Rn with vanishing
Christoffel symbols. Then by the Gauss formula we have the classical linear
connection ∇′ on F(0,0)(Rm ×Rn) = {(0, 0)} × F(0,0)(Rm ×Rn) induced by
A(∇0) via the product (Rm ×Rn)× F(0,0)(Rm ×Rn). The connection ∇′ is
Gl(m, n)-invariant because of ∇0 is.

Conversely, suppose we have a Gl(m,n)-invariant classical linear connec-
tion ∇′ on F(0,0)(Rm ×Rn). Then similarly as in Example 2 (starting from
∇′ instead of ∇F ) we can construct a classical linear connection A(∇) on FY
from a projectable classical linear connection ∇ on Y . Thus we have proved

Theorem 2. Let F : FMm,n → FM be a bundle functor. The following
conditions are equivalent:

(a) There exists a canonical construction (FMm,n-natural operator) of a
classical linear connection A(∇) on FY from a projectable classical lin-
ear connection ∇ on Y .

(b) There exist a Gl(m,n)-invariant classical linear connection ∇′ on the
fiber F(0,0)(Rm ×Rn).

Remark 2. We can apply Theorem 2 to vector bundle functors F : FMm,n

→ VB. In this situation Gl(m, n) acts on the vector space F(0,0)(Rm ×Rn)
by linear isomorphisms. Then the flat classical linear connection ∇F on
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F(0,0)(Rm × Rn) is Gl(m,n)-invariant. So, we have the classical linear con-
nection AF (∇) on FY from a projectable classical linear connection ∇ on
Y .

In the case m = 0 we have FM0,n = Mfn. Thus we have the following
corollary of Theorem 2.

Corollary 1. ([16]) Let F : Mfn → FM be a bundle functor (natural
bundle). Then the following conditions are equivalent:

(a) There exists a canonical construction (a Mfn-natural operator) of a
classical linear connection A(∇) on FN from a classical linear connection
∇ on a n-dimensional manifold N ;

(b) There is a GL(n)-invariant classical linear connection ∇̃ on F0Rn.

Remark 3. In particular, if F = TA : Mf → FM is the Weil bundle
functor for some Weil algebra A = R × A then TA

0 Rn = (A)n is the vector
bundle. More, the action GL(n) on TA

0 Rn is linear. Then the standard
flat classical linear connection on the vector space TA

0 Rn is GL(n)-invariant.
Then by Corollary 1, there exists a canonical construction of a classical linear
connection A(∇) on TAN from a classical linear connection ∇ on N . That
is why the Morimoto prolongation [17] of classical linear connections to Weil
bundles is possible.

7. Solution of Problem 5

Let P(Rm × Rn) be the projective space. The group Gl(m,n) acts on
P(Rm ×Rn) by the projectivization.

Lemma 5. Let m ≥ 2. There is no Gl(m,n)-invariant classical linear
connection ∇′ on P(Rm ×Rn).

Proof. Suppose that∇′ is in question. Pfin = {[1, x2, . . . , xm, y1, . . . , yn] ∈
P(Rm×Rn) |(x2, . . . , xm, y1, . . . , yn) ∈ Rm−1×Rn} is the affine space of ”fi-
nite points”. P fin = Rm−1×Rn by the identification [1, x2, . . . , xm, y1, . . . , yn]
= (x2, . . . , xm, y1, . . . , yn). By the suppose, ∇′|Pfin is invariant by the trans-
lations τ(a,b) = [x1, x2 + a2x

1, . . . , xm + amx1, y1 + b1x
1, . . . , ym + bnx1]|Pfin

and and by the homotheties tid = [x1, tx2, . . . , txm, ty1, . . . , tyn]|Pfin . Then
∇′|Pfin has constant Christoffel symbols wchich are vanishing in the origin.
Then ∇′|Pfin is the usual flat connection with vanishing Christoffel symbols.
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On the other hand, if Φ ∈ Gl(m,n) sends (0, 1, 0, . . . , 0) into (1, 0, . . . , 0)
then the projectivization [Φ] is not locally affine on Pfin. Then ∇′ is not
[Φ]-invariant. Contradiction.

Example 3. Let P(T ) : FMm,n → FM be the projectivization of the
tangent functor,

P(T )(Y ) =
⋃

y∈Y

P(TyY ) , P(T )(Φ) =
⋃

y∈Y1

[TyΦ] : P(T )(Y1) → P(T )(Y2) .

Then P(T )(0,0)(Rm ×Rn) = P(Rm ×Rn) with the usual action of Gl(m,n).
Because of Lemma 5 there is no Gl(m,n)-invariant classical linear connection
∇′ on P(T )(0,0)(Rm × Rn). So, by Theorem 2, there is no canonical con-
struction of a classical linear connection A(∇) on P(T )(Y ) from a projectable
classical linear connection ∇ on Y .

PART III. Some gauge constructions on linear connections

8. Some definitions

Let B′ : VBm,n →Mf and B : FM→Mf be the base functors.

Definition 5. A gauge bundle functor on VBm,n is a covariant functor
F : VBm,n → FM satisfying B ◦ F = B′ and the localization property: for
every VBm,n-object p : E → M and every inclusion of an open sub-bundle
iU : E|U → E, F (E|U) is the restriction p−1

E (U) of pE : FE → M over U and
FiU is the inclusion p−1

E (U) → FE.

A simple example of a gauge bundle functor on VBm,n is the r-jet prolon-
gation functor Jr : VBm,n → FM sending any VBm,n-object E → M into the
rjet prolongation bundle JrE = {jr

xσ | σ : M → E is a section, x ∈ M} over
M and any VBm,n-map f : E → E1 covering f : M → M1 into the induced
map Jrf : JrE → JrE1. In fact, Jr : VBm,n → VB is a gauge vector bundle
functor. More examples of such functors can be found in [10].

Let F : VBm,n → FM be a gauge bundle functor.

Definition 6. A VBm,n-natural gauge operator transforming linear con-
nections D on VBm,n-object E → M and classical linear connections ∇ on M
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into classical linear connections A(D,∇) on FE is a family of VBm,n-invariant
regular operators

A : Conlin(E → M)× Conclas−lin(M) → Conclas−lin(FE)

for any VBm,n-object p : E → M , where Conlin(E → M) is the set of linear
general connections on E → M and Conclas−lin(M) is the set of all classi-
cal linear connections on M . (The invariance and regularity we mean quite
similarly as in Definition 2.)

9. Solution of Problems 6 and 7

Let F : VBm,n → FM be a gauge bundle functor. On the standard
fiber F0(Rm ×Rn), 0 ∈ Rm, we have the left action of GL(m) × GL(n) by
(B,C).f = F (B × C)(f), f ∈ F0(Rm ×Rn).

(I) Suppose we have a GL(m)×GL(n)-invariant classical linear connection
∇̃ on F0(Rm×Rn). Let D be a linear general connection on an VBm,n-object
p : E → M and let ∇ be a classical linear connection on M . We are going to
construct a classical linear connection A(D,∇) on FE. Let f ∈ FxE, x ∈ M .

Firstly, for any basis b = (b1, . . . , bn) of Ex and any basis l = (l1, . . . , lm)
of TxM , we construct a vector bundle trivialization Φb,l : E|U → Rm ×Rn

over some neighborhood of x as follows. Let Γ(D,∇) be the classical linear
connection on E induced by D and ∇, see [5], [10; Sect. 54.2]. Given v ∈ Ex,
we define a (smooth) section ṽ : U → E of E → M (on some neighborhood
U ⊂ M of x) by

ṽ(y) = expv

(
D(exp−1

x (y), v)
)
, y ∈ U ,

where expx : TxM → M is the (defined locally) exponent of ∇, and expv :
TvE → E is the (defined locally) exponent of Γ(D,∇). Analyzing the defini-
tion of Γ(D,∇) one can see that Γ(D,∇) is projectable on ∇. Then expv is
fibred over expx. So, ṽ is really a section. One can also observe that Γ(D,∇)
is invariant with respect to fiber homotheties of E. Then ṽ depends linearly on
v. Then the b̃i form a basis of sections of E|U → U . We choose the (unique)
normal coordinate system ϕl : U → Rm of ∇ with center x which maps l into
the usual basis of T0Rm = Rm. We define Φb,l : E|U → Rm ×Rn to be the
unique vector bundle isomorphism covering ϕl and sending basis b̃i of local
sections of E → M into the usual basis of sections of Rm ×Rn → Rm. One
can easily observe that if b′ and l′ are another bases in Ex and TxM then

(∗) Φb′,l′ = (B−1 × C−1) ◦ Φb,l ,
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where B is the matrix between bases l to l′ (i.e., l′ = l.B) and C is the matrix
between bases b to b′ (i.e., b′ = b.C).

Let f ∈ FxE. We choose b and l and Φb,l over ϕl as above. We have
classical linear connection ϕl∗∇ × ∇̃ on some neighborhood of the fibre over
zero of Rm × F0(Rm ×Rn) = F (Rm ×Rn). We put

A(D,∇)f = (QFΦb,l)−1
(
(ϕl)∗∇× ∇̃)FΦb,l(f)

)
,

where Q is the bundle functor of classical linear connections. Because of (∗)
and the GL(m)×GL(n)-invariance of ∇̃, the definition of A(D,∇)f is correct
(it is independent of the choice of (b, l)).

(II) Conversely, suppose we have a canonical construction (VBm,n-natural
gauge operator) A transforming linear general connections D on E → M and
classical linear connections ∇ in M into classical linear connections A(D,∇)
on FE. Let ∇o be the flat classical linear connection on Rm and Do be
the trivial linear general connection on Rm ×Rn → Rm. Then we have the
classical linear connection A(Do,∇o) on F (Rm×Rn) = Rm×F0(Rm×Rn).
Thus (by the Gauss formula) we have the classical linear connection ∇̃ on
F0(Rm × Rn). Since Do is GL(m) × GL(n)-invariant and ∇o is GL(m)-
invariant and A is invariant, then ∇̃ is GL(m) × GL(n)-invariant. Thus we
have proved

Theorem 3. Let F : VBm,n → FM be a gauge bundle functor. The
following conditions are equivalent:

(a) There exists a canonical construction (a VBm,n-natural gauge operator)
of a classical linear connection A(D,∇) from a linear general connection
D on E → M by means of a classical linear connection ∇ on M ;

(a) There exists a GL(m) × GL(n)-invariant classical linear connection ∇̃
on the standard fibre F0(Rm ×Rn) of F .

In the case of a vector gauge bundle functor F : VBm,n → VB we have the
action of GL(m)×GL(n) on the vector space F0(Rm×Rn). Let ∇̃ = ∇F be
the usual flat connection on F0(Rm ×Rn). It is GL(m) × GL(n)-invariant.
Therefore (because of Theorem 3) we have a VBm,n-natural gauge operator
AF transforming linear general connections D on VBm,n-objects E → M and
classical linear connections ∇ on M into classical linear connections AF (D,∇)
on FE. Because of the canonical construction we have
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Proposition 3. Let a : F1 → F2 be a natural isomorphism of two gauge
vector bundle functors F1, F2 : VBm,n → VB. Then for any linear general con-
nection D on E → M and any classical linear connection∇ on M , connections
AF1(D,∇) and AF2(D,∇) are aE→M -related.

Example 4. We modify Example 3 as follows. Let P̃(T ) = P(T ) ◦ B′ :
VBm,n → FM be the gauge bundle functor

P̃(T )(E) =
⋃

x∈M

P(TxM) , P̃(T )(f) =
⋃

x∈M

P(Txf) .

By Lemma 5 for n = 0 we have that there is no GL(m)-invariant classical
linear connection on P(Rm) for m ≥ 2. That is why, there is no GL(m) ×
GL(n)-invariant classical linear connection on P̃(T )0(Rm×Rn)=̃P(Rm). By
Theorem 3, there is no canonical construction of a classical linear connection
A(D,∇) on P̃(T )(E) from a linear general connection D on E → M by means
of a classical linear connection ∇ on M .
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[11] Kolář, I., Mikulski, W.M., On the fiber product preserving bundle func-
tors, Differential Geom. Appl., 11 (1999), 105 – 115.
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