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1. INTRODUCCIÓN GENERAL 

El desarrollo del entorno industrial en la fabricación requiere cada vez mas el 

empleo de procesos de fabricación más automatizados, confiables y disponibles. De 

este modo, siempre será posible responder a la demanda estable o estacional con una 

producción repetitiva y niveles de calidad estables. El sector agroalimentario es un 

buen ejemplo en el que esta realidad, está cada vez más presente. Las máquinas que 

desarrollan una sola operación (single-stage machines) están siendo reemplazadas por 

otras máquinas que desarrollan varias operaciones (multi-stage machines)  

En el caso de una utilización de máquinas de una sola etapa, la composición 

del sistema productivo se realiza con la asociación serie de todas las máquinas que 

sean necesarias para alcanzar las transformaciones necesarias. Si por criterios de 

capacidad, es requerido, se puede disponer de sistemas paralelos en una misma etapa 

que permitan alcanzar la producción requerida (work in process) por el mercado en el 

tiempo que la requiere (time takt) evitando la aparición de cuellos de botella. 

Cuando se utilizan máquinas multietapa, desde la entrada hasta la salida de la 

máquina, todas las operaciones que se realizan en ella están completamente 

eslabonadas. Este hecho es de gran importancia, ya que para que la etapa n+1 funcione 

correctamente, la etapa n debe hacer realizado su trabajo correctamente. Normalmente 

este tipo de máquinas trabajan con grandes series de producciones ya que su capacidad 

de producción no es fácilmente modificable, como si ocurre en el caso de utilización 

de máquinas de una sola etapa. 

Si en ambos escenarios de utilización de máquinas se analiza la fiabilidad (1) y 

disponibilidad (2), se debe estudiar: 

 𝐹𝑖𝑎𝑏𝑖𝑙𝑖𝑑𝑎𝑑, 𝑅(𝑡) =
º    é   

º     
  (1) 

𝐷𝑖𝑠𝑝𝑜𝑛𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑 , 𝐴 =      (2) 

Donde MTBF es el tiempo medio entre fallos y MTTR es el tiempo medio de 

reparación: 
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𝑀𝑇𝐵𝐹 = 𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅      (3) 

Aplicando estos conceptos los sistemas de fabricación compuestos por 

máquinas de una etapa o máquinas multietapa, el objetivo de la fabricación es 

mantener el mayor nivel de fiabilidad y disponibilidad posible durante el tiempo de 

producción.  

En este sentido, la aparición de fallos inesperados por causas conocidas o 

desconocidas, en primer lugar, interrumpe la fabricación que impide la respuesta en 

tiempo a la demanda. En segundo lugar, provoca la pérdida de la producción en curso, 

con los costes de oportunidad asociados.  

Tanto en el caso de utilización de máquinas de una etapa como en el caso de 

máquinas multietapa, el estudio de la fiabilidad, se centra en estudiar: 

 Máquinas de una etapa: La fiabilidad de cada etapa y posteriormente 

presentar un sistema serie para el estudio de la fiabilidad del proceso 

completo. 

 Máquinas multi etapa: La fiabilidad de cada componente, ya que como 

todas las etapas están eslabonadas, le fallo en un componente supone el 

fallo de la máquina. Esta tesis doctoral se centrará en este tipo de máquinas. 

Centrando el foco de atención en las máquinas multietapa, si se desarrollase el 

concepto de fiabilidad, como la calidad extendida en el tiempo, sería preciso recurrir a 

modelos estadísticos, como el Lognormal, Poissón, exponenencial, Weibul, otros.  De 

este modo, se podría estudiar la fiabilidad de todos los componentes, que no es más 

que intentar modelizar sus individuales leyes de degradación que provocan el fin de su 

vida útil por funcionamiento. Lo cierto es que los componentes utilizados en los 

sistemas de producción industrial, no ofrecen información sobre la fiabilidad de los 

equipos en el tiempo ( ejemplos de casos clásicos como, número de horas de 

funcionamiento de bombillas led o endurancia mecánica-eléctrica en contactores para 

el accionamiento de motores) Añadido a lo anterior, aún sin ese dato proporcionado, 

también se requeriría información sobre las condiciones de operación, adecuada 

selección del componente para tipo de trabajo que deberá realizar con altos niveles de 

repetitividad.  Es evidente que quien mejor puede desarrollar el estudio de la 
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degradación de un producto y proporcionar una ecuación (1) para un componente, es 

quien lo pretende fabricar. 

En definitiva, sería deseable que todos los componentes de la máquina 

pudieran disponer de un valor real de su MTTF, relacionado con unas condiciones de 

operación estables ambientales, eléctricas y/o mecánicas. Para que el valor de la 

disponibilidad (2) fuera el mejor posible, el valor de MTTR debería ser el menos 

posible, nunca pudiendo ser cero. Para conseguir este valor bajo de MTTR es 

imprescindible tener presente este concepto en el diseño y fabricación de la máquina y 

por tanto, a utilización de conceptos como DFMA (desing for Manufactuting and 

Assembly) y si fuera preciso un análisis de FMEA (Failure Mode and Effect Analysis) 

El desarrollo de esta tesis se centra en el estudio de la selección de estrategias 

de mantenimiento preventivo y predictivo para las maquinas multietapa en el sector 

agroalimentario. Para ello se ha desarrollado un trabajo experimental basado en una 

máquina multietapa termo formadora de terrinas.  

ANTECEDENTES 
 

La figura (1) muestra la maquina objeto de evaluación que ha sido estudiada en 

dos artículos publicados y un tercero actualmente en fase “minor revisión”.  Este tipo 

de maquinas se suelen utilizar para generar terrinas llenas de aceite o vinagre. En el 

caso de necesitar un relleno de mayor densidad, se debe modificar el sistema de 

dosificación. 
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Figura (1).  Máquina Termoformadora de terrinas, multietapa. 

Esta máquina está compuesta por las siguientes etapas: 

 ETAPA 1. Dispensador del polímero para el termoformado del molde de la terrina.  

 ETAPA 2. Precalentamiento del polímero de la terrina. 

 ETAPA 3. Termoformado por compresión y vacío del molde de la terrina. En el 

caso de esta máquina el molde del termoformado es para conformar 6 moldes 

idénticos de terrinas. Esta cantidad permite definir las siguientes etapas. 

 ETAPA 4. Dosificación de los 6 moldes termoformados por bombas peristálticas, 

controladas por servoaccionadores que controlan principalmente la posición. 

 ETAPA 5. Dispensador del polímero de la tapa de la terrina. Alineación y control 

por sensor de mácula. 

 ETAPA 6. Adhesión del polímero de la tapa al molde termoformado tras la 

dosificación. 

 ETAPA 7. Corte de las terrinas conforme a la geometría acordada. 
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La figura (2) muestra la imagen de la máquina en estudio con las etapas 

definidas. 

 

Figura (2).  Etapas en la máquina termoformadora de terrinas. 

En la parte inferior de la máquina se encuentra un eje maestro que tiene en su 

extremo izquierdo un codificador que envía la posición de 0 a 1000 en cada ciclo 

completo de trabajo, constantemente al autómata que controla el funcionamiento de 

esta máquina. La existencia de este eje maestro y el codificador permiten el desarrollo 

de estrategias de mantenimiento predictivo. 

Para este tipo de máquina el tiempo de ciclo, esto es el tiempo invertido entre 

dos salidas consecutivas de “un conjunto de 6 terrinas” por la última etapa, es 4 

segundos. Para coordinar los tiempos de trabajo necesarios en cada etapa, están 

previsto motores de avance y distancias que permiten el normal funcionamiento de la 

máquina de forma coordinada, resolviendo el problema de cuellos de botella.  

El producto final que se obtiene es mostrado en la figura (3) 
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Figura (3).  Terrina fabricada por la termoformadora. 

 En resumen, el funcionamiento de esta máquina como ejemplo de máquinas 

multietapas industriales, refleja las siguientes características: 

 Exige constante coordinación entre todas las etapas. 

 Siempre trabaja de la misma forma. 

 Normalmente son máquinas fabricadas a medida para una producción 

determinada, con un grado de customización alto. Por tanto, no son máquinas 

que se fabriquen en serie. 

 El alto grado de customización hace que no existan estrategias de 

mantenimiento ya que son específicas para cada tipo de maquina en función de 

su customización. 

 Trabajan con grandes lotes de producción, solo empleando tiempos 

intermedios para aprovisionamiento de consumibles. 

 Tiempo de ciclo muy bajo. 

 Diversidad de componentes de diferente naturaleza, eléctricos, electrónicos, 

mecánicos y neumáticos. 

Para el normal funcionamiento de estas máquinas, por tanto, hay que evitar: 

 La aparición de fallos inesperados durante el encargo de un lote de producción. 

 La inadecuada selección de componentes. 

 La inadecuada ubicación o estudio de las condiciones de funcionamiento del 

componente. 
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 El desconocimiento de una estrategia o estrategias de mantenimiento que 

permitan mantener el apropiado nivel de disponibilidad en la máquina para 

atender “sin fallos inesperados” la producción encargada. 

En consecuencia, es necesario plantearse los siguientes objetivos para 

conseguir el normal funcionamiento de la máquina: 

 Disponer de estrategias de mantenimiento confiables, rápidas que permitan 

planificar actuaciones preventivas de mantenimiento y posibiliten avisos de 

potenciales fallos mediante estrategias predictivas. 

 Disponer de una metodología para el análisis de la condición general de 

operación de los componentes, así como indicadores basados en los tiempos de 

reparación (Mean Time to Repair MTTR) de todos los componentes. 

 Disponer de una estrategia para conocer el nivel de confianza de los 

componentes, basado en sus tiempos hasta el fallo (Mena Time To Failure 

MTTF) 

 Disponer de una metodología global y dinámica para establecer una estrategia 

de mantenimiento para cada componente en función de su comportamiento y 

MTTR. 

Para alcanzar los objetivos planteados se proponen los siguientes artículos, 

mostrados en la tabla (1) 

OBJETIVO TRABAJO 
Disponer de estrategias de mantenimiento confiables, 

rápidas que permitan planificar actuaciones preventivas 
de mantenimiento y posibiliten avisos de potenciales 

fallos mediante estrategias predictivas. 

Paper -I: Maintenance Strategies for Industrial 
Multi-Stage Machines: The Study of a 

Thermoforming Machine. 

Disponer de una metodología para el análisis de la 
condición general de operación de los componentes, así 
como indicadores basados en los tiempos de reparación 

(Mean Time to Repair MTTR) de todos los componentes. 

Paper -II: Analysis of the Influence of 
Component Type and Operating Condition on the 
Selection of Preventive Maintenance Strategy in 
Multistage Industrial Machines: A Case Study 

Disponer de una estrategia para conocer el nivel de 
confianza de los componentes, basado en sus tiempos 

hasta el fallo (Mena Time To Failure MTTF) 
Disponer de una metodología global y dinámica para 
establecer una estrategia de mantenimiento para cada 

componente en función de su comportamiento y MTTR. 

Paper -III: An approach for predictive 
maintenance decisions for components of an 

industrial multistage machine that fail before their 
MTTF. A case Study. 

 

Tabla (1).  Síntesis de objetivos y artículos realizados para alcanzarlos. 
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La norma UNE-EN 13306 estudia la terminología del mantenimiento. En ella 

se definen las estrategias de mantenimiento preventivo, predictivo, y correctivo.  Así 

mismo, la norma UNE-EN 15341 estudia el mantenimiento e indicadores clave de 

rendimiento del mantenimiento. Estas normas han sido consultadas para que los 

trabajos realizados estén en línea con ambas. Ante divergencia o novedad, los trabajos 

han remarcado la causa de la divergencia o dicha novedad. 

El desarrollo e implantación de una metodología para la toma de decisiones 

sobre las estrategias de mantenimiento en máquinas multietapa, es una temática que no 

está desarrollada en estas máquinas, aunque si es estudiada para otro tipo de máquinas 

o entornos.  

La presencia de este tipo de máquinas en la industria de la manufactura y de la 

alimentación es cada vez mayor. El grado de customización para conseguir máquinas 

“ad hoc”, que se ajusten perfectamente a las necesidades de cada usuario, es 

alcanzable en la producción de este tipo de máquinas. Debido a esto, la inexistencia de 

estrategias y metodologías de mantenimiento que pueden ser utilizadas en este tipo de 

máquinas, representa un avance para la manufactura, caracterizada por ausencia de 

fallos inesperados y alta repetitividad, esto es, que los productos fabricados sean 

iguales. El objeto de esta tesis y los artículos realizados es ofrecer una respuesta a esta 

necesidad. 
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PRESENTACIÓN TEMÁTICA DE LOS ARTÍCULOS. 

Paper -I: Maintenance Strategies for Industrial Multi-Stage Machines: The 

Study of a Thermoforming Machine.  

Antecedentes y conceptualización. 

Este primer artículo presenta la problemática descrita en la máquina estudiada, 

centrando la atención en desarrollar alternativas de mantenimiento preventivo y 

predictivo en una máquina termoformadoras de terrinas, que es un tipo de máquina 

multietapa. Para ello, evalúa dos estrategias de mantenimiento preventivo programado: 

Preventive Programing Maintenance (PPM) e Improve Preventive Programing  

Maintenance (IPPM), comparando los resultados que ofrecen ambas estrategias de 

mantenimiento en términos de disponibilidad y eficiencia de los componentes.  

PPM se basa en el conocimiento individual de todos los tiempos que requiere 

un componente en ser reemplazado desde que presenta un fallo con independencia de 

la naturaleza del fallo.  

IPPM se basa en la estrategia PPM, destacando que se considera cero el 

tiempo TTPR como residual, esto es, lo tiene el usuario de la m´quian en su propio 

stock de seguridad. Como es normal, en función de cómo afecte en el MTTR el valor 

de TTPR esta estrategia ofrece mejoras en los resultados de eficiencia y 

disponibilidad, pero más allá de eso, es una herramienta que permite detectar qué 

componentes que pueden ocasionar una parada larga en el funcionamiento de la 

máquina. En este trabajo, solo se advierte la diferencia, no se indica cómo seleccionar 

una u otra estrategia PPM o IPPM. 

Dado que las estrategias de mantenimiento preventivo solo se pueden basar en 

el conocimiento previo de tiempos individuales de mantenimiento de los componentes, 

estas estrategias no son capaces de avisar con antelación de un fallo inesperado que 

puede afectar a toda la producción en curso. Debido a eso, se desarrollan dos 

estrategias de mantenimiento predictivo: Algorithm Life Optimization Programing 

(ALOP) y Digital Behaviour Twin (DBT). Ambos algoritmos son desarrollados siendo 

sus características principales: 
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ALOP es un algoritmo estadístico, que compara valores muestreados de 

sensores específicamente distribuidos por la máquina y establece unas desviaciones. 

Utiliza como escala de medida el tiempo igual a 100 ciclos. Calcula el MTTF de cada 

componente en tiempo real. Así mismo, proporciona avisos sobre valores de sensores 

que exceden los límites admisibles o tolerables por la máquina y que no tendiendo 

porque provocar un fallo, pueden afectar a la “repetitividad” de su trabajo. La escala 

sobre la cual se referencian todos los cálculos es la temporal, cada 100 ciclos.  El 

algoritmo paso a paso está desarrollado en el artículo. 

DBT es un algoritmo no estadístico, que basa su funcionamiento en el 

conocimiento del patrón normal y repetitivo de funcionamiento de la máquina. Utiliza 

también las medidas de los mismos sensores que ALOP, pero añade una más, el valor 

del codificador que tiene el eje maestro. De este modo, en toda posición (desde 0 a 

1000) todos los sensores deben proporcionar unos valores considerados como 

normales, así como los actuadores que controlan los motores o la neumática den están 

activados o desactivados. Una vez conocido el patrón, el funcionamiento se basa en 

hacer lecturas cada 10 posiciones del encoder y comprobar que los estados de los 

actuadores son los correctos, así como las medidas de los sensores son normales.  

La sección dos del artículo describe la metodología utilizada, que se basa en la 

aplicación de los siguientes pasos: 

 Conceptualización de la máquina. En esta sección se seleccionaron los 

componentes más importantes, cuya confiabilidad, eficiencia y disponibilidad se 

iban a estudiar. 

 Análisis de las causas y consecuencias de un fallo en los componentes 

seleccionados. 

 Propuesta de tiempos de mantenimiento individuales por componente, así como 

ecuaciones para el cálculo de confiabilidad, eficiencia y disponibilidad. 

 Proposición y ubicación de sensores adecuados cuyos valores estén asociados al 

buen funcionamiento de los componentes. 

 Proposición y desarrollo de algoritmos para estrategias ALOP y DBT. 
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 Ubicación de un eje lineal maestro para el caso de DBT, mediante el cual se 

relaciona el estudio con la posición del encoder y posteriormente se convierte a 

unidades de tiempo. 

 Configuración de la función de registrador de datos del controlador lógico 

programable (PLC) y registro de todos los valores relevantes en cada estrategia. 

 Registro de los fallos y errores detectados en ALOP y DBT.  

 Evaluación de los resultados obtenidos. 

Aportaciones del artículo. 

 Las estrategias de mantenimiento preventivo PPM e IPPM basadas en los tiempos 

individuales de mantenimiento de los componentes, permiten modelizar la 

disponibilidad y eficiencia de la máquina y en caso de IPPM detectar componentes 

cuyo fallo puede ocasionar un alto valor de TLP (time lost production) y por tanto 

un tiempo de inoperatividad de la máquina alto. 

 El algoritmo de mantenimiento predictivo ALOP puede proporcionar el valor en 

tiempo real de MTTF de cada componente, así como avisos de inminentes fallos. 

No obstante, dado que el cálculo está referenciado al tiempo, es posible que se 

produzcan desviaciones que puedan ocasionar “falsos avisos” dado que algunos 

sensores pueden proporcionar valores muy distintos si solo se toma la escala 

temporal, para establecer medidas. Si es válido si la medida del sensor debe está 

siempre en el mismo valor y no sufre cambios bruscos en sus valores. 

 El algoritmo de mantenimiento predictivo DBT, permite conocer el 

comportamiento normal de la máquina y referenciarlo a la escala de la posición de 

un encoder. De este modo, se puede monitorizar con mucha precisión, el 

funcionamiento de los actuadores y sensores y, por tanto, detectar con mucha 

rapidez cualquier fallo en un sensor, componente o actuador que no cumpla con el 

patrón de funcionamiento normal. Es un procedimiento sencillo que solo es posible 

utilizarlo en máquinas con un encoder. 

 Los algoritmos ALOP y DBT detectan posibles fallos antes de que ocurran, 

pudiendo establecerse estrategias de parada antes de que afecte a un lote de 

producción en curso.  
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 El algoritmo DBT puede proporcionar cuantos ciclos de producción van a ser 

atendidos dentro de los márgenes admisibles para garantizar repetitividad en la 

producción. Esta información es muy útil antes de lanzar una orden de producción 

en dicha máquina. 
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Paper -II: Analysis of the Influence of Component Type and Operating Condition 

on the Selection of Preventive Maintenance Strategy in Multistage Industrial 

Machines: A Case Study.  

 

Antecedentes y conceptualización. 

Una vez conocidas las posibles estrategias de mantenimiento para este tipo de 

máquinas, el objeto de este artículo es proporcionar decisiones sobre qué tipo de 

mantenimiento preventivo debe tener cada componente. Para ello, se realiza un 

análisis por tipo de componente y se define una condición global de operación (GOC) 

basado en la temperatura, humedad (IP, IEC-62262) y grado de protección contra 

golpes mecánicos (IK, IEC-62262) para cada componente. Así mismo en función de 

los valores de MTTR, TLP y TTPR de cada componente se establecen dos indicadores 

de desempeño (KPI´s) que permiten modelizar una matriz para la toma de decisiones 

sobre qué estrategia de mantenimiento es más adecuada para cada componente. 

La sección dos del artículo describe la metodología utilizada, que se basa en la 

aplicación de los siguientes pasos: 

 En primer lugar, se selecciona el MSTM como caso de estudio. Luego se 

caracteriza la máquina de termoformado multietapas y posteriormente se 

identifican todos los componentes y se clasifican por tipo de componente. 

 Definición del concepto Condición Global de Operación (GOCi) como parámetro 

de interés para proponer una estrategia de mantenimiento. 

 Definición de tiempos de mantenimiento para cada componente y definición de 

eficiencia y disponibilidad. 

 Estudio y registro de los tiempos de mantenimiento individuales de cada 

componente en el MSTM. Evaluación de los resultados de aplicar las estrategias 

PPM e IPPM en una misma máquina en términos de MTTR, TLP, eficiencia y 

disponibilidad. Evaluación para cada tipo de componente. 

 Definición de Indicadores Clave de Desempeño (KPIs) como resultado de las 

expresiones propuestas en base a los tiempos de mantenimiento definidos y 

estudiados en el paso cuatro. 
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 Propuesta de matriz multidimensional para evaluar la estrategia de mantenimiento 

sugerida para cada componente en un mismo MSTM como combinación de una 

Condición Global de Operación (GOCi), indicadores clave de desempeño y tipo de 

componente.  

 Evaluación de los resultados obtenidos. 

Aportaciones del artículo. 

 La definición de una condición global de operación e indicadores de desempeño 

basados en los tiempos individuales de mantenimiento de cada componentes 

permite desarrollar un procedimiento para la toma de decisiones sobre la mejor 

estrategia de mantenimiento. 

 La aplicación de la matriz propuesta para la toma de decisiones sobre le 

mantenimiento de cada componente, refleja unos niveles de eficiencia y 

disponibilidad muy parecidos a los que se obtendrían con la única aplicación de la 

estrategia IPPM.  

 Existen ciertas indefiniciones en la propuesta para algunos componentes, esto es, 

la decisión de la estrategia que propone la matriz de decisiones está entre PPM o 

IPPM. Para estos casos se evalúa el impacto de la cantidad de componentes que 

pasarías a ser PPM o IPPM en el caso de que la decisión se declinara por PPM o 

IPPM. UN estudio complementario de costes facilitaría la decisión más objetiva 

posible, sin olvidar, en ningún caso el valor real de TLP de cada componente. 

 El estudio de la localización de un componente en una MSTM y su condición 

global de operación influye notablemente en la estrategia de mantenimiento que 

precisa. 
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Paper -III: An approach for predictive maintenance decisions for components of 

an industrial multistage machine that fail before their MTTF. A case Study.  

 

Antecedentes y conceptualización. 

Este trabajo centra la atención en proponer un procedimiento para la utilización 

de una estrategia de mantenimiento predictivo en una máquina multietapa. El 

mantenimiento predictivo no es una estrategia que pueda utilizarse como única 

estrategia de mantenimiento en una MSTM. Siempre es imprescindible tener un 

control de los tiempos hasta el fallo MTTF de cada componente, así como unos 

tiempos de reparación MTTR. El objeto de este artículo es desarrollar una 

metodología general para que, partiendo de la aplicación de la estrategia PPM para 

todos los componentes de una MSTM que empieza a operar, existan diferentes 

posibilidades de cambio de estrategia en función de, si el componente falló antes de su 

MTTF fijado inicialmente, si el fallo es debido a causas conocidas o desconocidas y a 

los valores de los indicadores de desempeño. Este artículo también define el concepto 

nivel de confianza del componente para que se pueda evaluar si el comportamiento 

previsible del componente coincide con el real y por tanto, sus valores de MTTF son 

confiables y permiten establecer estrategias de mantenimiento preventivo.  

 La sección dos del artículo describe la metodología utilizada, que se basa en la 

aplicación de los siguientes pasos: 

 La máquina de termoformada multietapa es seleccionada como caso de estudio. 

Esta máquina fue caracterizada, identificando todos los componentes y 

clasificándolos por tipo. 

 Definición de tiempos de mantenimiento confiables para cada componente. Muy 

importante un MTTF adecuado para cada componente. 

 Definición de posibles estrategias de Mantenimiento Preventivo y estrategias de 

Mantenimiento Predictivo adoptadas. 

 Se estudiaron los componentes que presentaron fallos ante su MTTF tras un año de 

funcionamiento. 
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 Todos los componentes con avisos de fallo son mostrados. Se utiliza el algoritmo 

predictivo DBT para identificar fallos antes de que ocurran de manera inesperada. 

El aviso del algoritmo no implica un cambio de estrategia de mantenimiento. El 

único propósito es el registro de datos para posterior comparación. 

 Propuesta de un procedimiento para tomar decisiones para posibles cambios en la 

estrategia de mantenimiento en los componentes estudiados buscando la causa del 

fallo y luego evaluando dos indicadores clave de desempeño (KPI) 

 Evaluación de los resultados obtenidos. 

Aportaciones del artículo. 

 Proporcionar una metodología para utilizar y dejar de utilizar el mantenimiento 

predictivo. 

 La aplicación de la metodología propuesta proporciona una herramienta completa 

para gestionar el mantenimiento de una maquina multietapa, teniendo cada 

componente su propia estrategia de mantenimiento. 

 Disponer de una metodología dinámica que se adapte a las circunstancias variables 

que puedan producirse durante el funcionamiento de una máquina, permite poder 

tomar decisiones en función de los acontecimientos, con el grado de conocimiento 

o desconocimiento que sea en cada caso. 

 La aplicación continua de este método sobre una misma máquina en el tiempo 

puede proporcionar un gran control sobre los fallos y por tanto de la disponibilidad 

de la máquina. 

 La definición y utilización del nivel de confianza de los componentes, permite 

conocer, comparar y optimizar la confiabilidad del valor del MTTF de los 

componentes, permitiendo la certera aplicación de estrategias de mantenimiento 

preventivo en la máquina. 

 La utilización del mantenimiento predictivo para conocer la causa de los fallos de 

los componentes permite el restablecimiento de la estrategia de mantenimiento 

preventivo en el componente y el descubrimiento de posibles fallos de diseño de la 

máquina. 
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Resultados, discusión y conclusiones 
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2. RESULTADOS, DISCUSIONES Y CONCLUSIONES DEL 

TRABAJO COMPLETO DE LA TESIS   

En este capítulo se evalúan los resultados, su discusión y las conclusiones 

obtenidas tras el desarrollo y explicación de los tres artículos. 

Este análisis es global y no tiene por qué coincidir con las conclusiones 

individuales de cada trabajo. Los objetivos que motivaron esta tesis han sido tratados 

en los tres artículos. 

Los resultados obtenidos en los trabajos son: 

 Obtención de dos estrategias de mantenimiento preventivo (PPM e IPPM) y dos 

estrategias de mantenimiento predictivo (ALOP y DBT) para la máquina en 

estudio. Todas las estrategias requieren caracterización de la maquina y ajuste de 

parámetros. 

 Obtención de una matriz para la toma de decisiones sobre el tipo de mantenimiento 

preventivo, basado en el tipo de componente, su condición global de operación e 

indicadores clave de desempeño basados en sus tiempos individuales de 

mantenimiento. 

 Obtención de un procedimiento general para gestionar el mantenimiento de cada 

componente de la maquina en estudio, proponiendo decisiones como adoptar o no 

mantenimiento predictivo cuando sea necesario, analizando los valores prefijados 

de MTTF que permiten frente a la realidad, evaluar la confiabilidad o nivel de 

confianza de los componentes y, de este modo, poder plantear de una forma segura 

la aplicación de estrategias de mantenimiento preventivo PPM e IPPM. 

Sobre los resultados obtenidos hay que hacer las siguientes consideraciones: 

La máquina en estudio es un tipo de máquina multietapa. Por tanto, los 

resultados obtenidos en los tres trabajos deben intentar replicarse en otras máquinas 

para conocer su reproducibilidad en un entorno más amplia de máquinas multietapa 

industriales. Las metodologías proporcionadas lo permiten, pero su efectividad sin su 

aplicación es una incógnita. 
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En relación con las estrategias de mantenimiento preventivas, no siempre es 

fácil acceder a valores confiables de todos los tiempos individuales de mantenimiento. 

Sin estos valores la aplicación de las estrategias propuestas PPM e IPPM no sería 

posible. La adopción de valores erróneos supondría un resultado erróneo en la 

estrategia de mantenimiento.  

En relación con los algoritmos ALOP y DBT, su utilización requiere la 

utilización de sensores específicos en la máquina. La posible aplicación de estos 

algoritmos en otras máquinas multietapa, supondría la definición y utilización de 

nuevos sensores cuyos valores podrían aportar información sobre el estado de los 

componentes. Así mismos ambos requieren la utilización de procesadore de datos y 

generadores de tablas de valores, así como entornos HMI (Human Inferface Machine) 

que permiten al operador ajustar su funcionamiento y visualizar los avisos en casa 

caso. 

Además, la utilización de ambos algoritmos va muy ligada al programa de 

control de proceso de la máquina que normalmente gestiona un autómata programable. 

En este caso, la utilización puede suponer la necesidad de un segundo autómata si la 

potencia de cálculo no es amplia para procesar el control del proceso y el control del 

mantenimiento. 

Sobre el estudio y definición de las condiciones de operación, junto a los 

indicadores clave de desempeño para definir la matriz de toma de decisiones sobre 

estrategias de mantenimiento preventivo PPM e IPPM: Sería muy interesante poder 

evaluar al “sensibilidad” de este método frente a cambios suaves o abruptos en los 

valores de TTPR (tiempo de aprovisionamiento del componente) De este modo, puede 

evaluarse si el método sigue ofreciendo una respuesta confiable en estas 

circunstancias. 

En el caso de las indefiniciones obtenidas por la matriz de toma de decisiones, 

lo adecuado sería poder realizar una evaluación del coste de los componentes y del 

tiempo de pérdida de producción requerido para la sustitución del componente 

averiado. 
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La posibilidad de definir cuando utilizar el mantenimiento predictivo para 

descubrir la causa de un fallo inesperado, es una ventaja para el usuario de la máquina. 

Pero el simple hecho de poder recurrir a dicho mantenimiento predictivo requiere su 

utilización un coste asociado, por tanto. Sería interesante conocer el coste requerido 

para implementar el mantenimiento predictivo basado en sensores y determinar si la 

estrategia de mantenimiento predictivo basado en a la sensorización es la más 

adecuada y menos costosa para este tipo de máquinas. 

La confiabilidad de un producto es un concepto fácil de definir, entender y muy 

difícil de calcular. Tal y como se indicó en la introducción, existen muchos modelos 

para calcular la confiabilidad de los componentes. En un entorno conservador, la 

mejor forma de aproximar su valor sería evaluando el tiempo de operación disponible 

del componente en la zona II de la curva de la bañera, renunciando a la zona III donde 

la tasa de fallos sube rápidamente. Si esto se hiciera así, el modelo exponencial sería 

muy utilizable, dado que la tasa de fallos seria constante, λ, pero dado que λ es la 

inversa de MTBF, al final dependería de la suma de MTTF y MTTR.  

La relación con lo anterior, poder disponer de un valor acertado de MTTF 

supondría le conocimiento necesario para establecer un valor de fiabilidad límite para 

programar la sustitución de un componente. Dado que los fabricantes de los 

componentes, en general, no aportan información clara sobre estos valores, no queda 

otra posibilidad que recurrir a la experiencia acumulada y posteriormente tras la 

aplicación del método propuesto en el tercer trabajo, alcanzar un valor real por 

aproximaciones sucesivas. 

Las conclusiones que se extraen de este trabajo, una vez discutidos los 

resultados obtenidos son: 

La primera conclusión que se debe obtener es que el trabajo realizado está 

basado en un tipo de máquina multietapa. Sería realmente interesante poder realizar 

estas pruebas en otras máquinas multietapa lo cual requeriría, la caracterización de 

cada máquina, evaluación de tiempos individuales y selección del algoritmo para el 

mantenimiento predictivo. Por tanto, todos los resultados obtenidos son para un caso y 
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con lo experimentado solo se puede concluir con que sería interesante poder aplicarlo 

en otras máquinas multietapa. 

La segunda conclusión que puede obtenerse es que basar las estrategias de 

mantenimiento preventivo sobre los tiempos individuales de mantenimiento de cada 

componente, permite poder evaluar los tiempos de reparación MTTR y cómo afecta el 

tiempo de aprovisionamiento TTPR en dicho MTTR. Todas las máquinas multietapa 

pueden ser caracterizadas en este sentido y por tanto el mantenimiento preventivo 

propuesta puede ser utilizado en otras máquinas multietapa.  

Si se pretende evaluar el mantenimiento preventivo de una máquina multietapa 

y se quiere minimizar la aparición de fallos debidos al desgaste debido al 

funcionamiento normal de los componentes, es preciso recurrir a la ley exponencial y 

obtener los valores de MTTF y MTTR de cada componente. 

En relación con la alternativa de mantenimiento preventivo IPPM presentada, 

sería correcto indicar que los análisis del coste del componente y del impacto 

económico del TLP, aportarían información relevante para una toma de decisiones 

más medida, esto es, que antes de tomarla, se evaluase económicamente su adopción. 

Sobre las estrategias de mantenimiento predictivo, es importante remarcar que 

se han basado en el análisis de los valores de sensores asociados a componentes, cuyos 

valores evaluados en el tiempo, proporcionan información sobre el estado de los 

componentes. La utilización de los llamados gemelos digitales (digital twin) aportaría 

muy buena información y gestión del mantenimiento de estas máquinas, pero para 

ellos habría que modelizar el comportamiento físico de cada máquina. Debido a que 

estás máquinas son productos “ad hoc”, utilizar el modelo digital sería enormemente 

costoso. Con seguridad, la adopción de una estrategia IPPM sería más rentable. El 

concepto desarrollado del algoritmo DBT, proporciona un patrón de comportamiento 

normal, que no requiere aprendizaje y permite una evaluación rápida y precisa, más 

aún si se referencia a la posición de un encoder. El algoritmo ALOP, dado que basa su 

medición en la escala temporal, solo debe ser utilizado para sensores cuyas medidas 

sean constantemente iguales. En caso de amplias divergencias entre los valores 

posibles del sensor, el algoritmo ALOP puede proporcionar “falsos avisos”. 
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El estudio de las condiciones de operación de los componentes es ventajoso al 

aportar información sobre el tipo de mantenimiento que debe llevar y los riesgos 

inevitables de fallos que tiene debido a su localización en la máquina y por tanto los 

riesgos de que se produzcan fallos inesperados por tener una condición de operación 

desfavorable o muy desfavorable. 

La aplicación sucesiva en el tiempo de la metodología propuesta en el tercer 

trabajo permite, por aproximaciones sucesivas, localizar posibles fallos de diseño, 

obtener valores confiables de MTTF en cada componente y en consecuencia 

programar actuaciones de mantenimiento coordinadas con los tiempos de producción. 

La evaluación del nivel de confianza en los componentes también puede 

permitir, ante fallos repetitivos en los mismos componentes, si los trabajos de 

mantenimiento se están efectuando correctamente. 
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Abstract: The study of reliability, availability and control of industrial manufacturing machines
is a constant challenge in the industrial environment. This paper compares the results offered by
several maintenance strategies for multi-stage industrial manufacturing machines by analysing a
real case of a multi-stage thermoforming machine. Specifically, two strategies based on preventive
maintenance, Preventive Programming Maintenance (PPM) and Improve Preventive Programming
Maintenance (IPPM) are compared with two new strategies based on predictive maintenance, namely
Algorithm Life Optimisation Programming (ALOP) and Digital Behaviour Twin (DBT). The condition
of machine components can be assessed with the latter two proposals (ALOP and DBT) using sensors
and algorithms, thus providing a warning value for early decision-making before unexpected faults
occur. The study shows that the ALOP and DBT models detect unexpected failures early enough,
while the PPM and IPPM strategies warn of scheduled component replacement at the end of their
life cycle. The ALOP and DBT strategies algorithms can also be valid for managing the maintenance
of other multi-stage industrial manufacturing machines. The authors consider that the combination
of preventive and predictive maintenance strategies may be an ideal approach because operating
conditions affect the mechanical, electrical, electronic and pneumatic components of multi-stage
industrial manufacturing machines differently.

Keywords: maintenance; sensors; multi-stage machine; maintenance algorithm; thermoforming

1. Introduction

The industrial production environment is becoming increasingly competitive, reliable
and optimised. Industrial environments comprise several coordinated production lines
and supplementary services that work towards achieving their production objectives.

Production processes are usually made up of several operation steps. Depending
on the design of the production system, a common solution proposes using the same
single-stage machines for each operation step. These days, there is another increasingly
popular alternative based on multi-stage machines, in which the same machine carries out
all the production phases.

From a maintenance viewpoint, in case of using single stage machines for different
operation steps, any failure in one of the machines in a phase does not necessarily imply
a production stoppage, although it may mean a temporary loss of the line’s production
capacity. However, in industrial production systems based on multi-stage machines, a
multi-stage machine is a machine that performs different consecutive operations within a
production process. In this case, a failure in any machine component means a complete
stoppage of the production line. As a result, the study of component reliability and
availability is critical in this type of machine.

Multi-stage machines are used in many industrial processes such as ultrasonic cleaning
machines, terrine thermoforming machines, transfer solutions in packaging, fruit sorters,
control solutions at logistic warehouse inputs and outputs.

Sensors 2021, 21, 6809. https://doi.org/10.3390/s21206809 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2353-1539
https://orcid.org/0000-0002-9743-8281
https://doi.org/10.3390/s21206809
https://doi.org/10.3390/s21206809
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21206809
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21206809?type=check_update&version=2


Sensors 2021, 21, 6809 2 of 22

Maintenance and availability monitoring strategies have evolved with time and
changes in machine manufacturing technology. Preventive maintenance strategies are
currently known to be the most popular [1]. In industrial machines, besides maintenance
strategies based on predictive maintenance [2,3], statistical studies have also been carried
out for prescriptive maintenance [3], conceptualisation based on Cyber-Physical Systems,
artificial intelligence, Big Data [4] or even Digital Twin (DT) modelling [5].

1.1. Preventive Programming Maintenance (PPM)

This is the most popular maintenance strategy in the industrial environment.
Taghipour, S. [6] studied this strategy by monitoring the degradation of components
in production lines, using an exponential model to obtain the best maintenance strategy.
Duffuaa, S. [7], however, related the study of PPM to monitoring and process decisions on
a single-stage machine.

The study of the reliability of multi-stage machines provides interesting information
for decision-making and PPM strategies. This strategy has already been used in studies by
Panagiotis, H. [8] and Ahmadi, A. [9], which showed a model of machine reliability moni-
toring in which decisions on preventive or corrective maintenance were made based on
observed reliability, although they did not consider the cost of maintenance. Zhen Hu [10]
uses the health index to assess the remaining component lifetime on manufacturing lines.

David, J. [11] suggested PPM modelling based on knowledge of all the times involved
in the repair and commissioning of the machine. Each component has its own Mean Time
To Repair (MTTR) depending on its availability, installation difficulty and configuration
(see Equation (1)). This analysis may reflect critical values that may affect the maintenance
strategy for each component.

Liberopoulos, G. [12] analysed the reliability and availability of a process based on
the reliability and availability of each component susceptible to failure or wear and tear.

1.2. Improvement Preventive Programming Maintenance (IPPM)

This is based on the PPM strategy. This maintenance strategy minimises component
replacement times and increases component safety stock, resulting in a minimum MTTR
value and increasing component availability. Gharbia, A. [13] analysed the relationship
between stock cost and scheduled preventive maintenance time. This maintenance strategy
is widely used on intensively operated multi-stage machines. A shutdown due to an
unexpected failure entails high opportunity costs. IPPM is used for all components or for
components with a high replenishment time.

1.3. Algorithm Life Optimisation Programming (ALOP)

This is a proposed maintenance strategy that aims to improve the maintenance of
the machines by making decisions based on analysing sensor signals and a predictive
algorithm of the state of the most relevant components.

Knowledge of the wear and tear of components is a difficult task to model. Studies by
A Molina and G Weichhart used information from specific sensors at strategic locations on
machines or systems, which provided information related to production status, such as
Desing S3-RF (sustainable, smart, sensing, reference framework) [14,15]. Decisions were
made by computing the data obtained. As a complement, Molina, A. [16] developed the
Sensing, Smart and Sustainable studies, where he introduced the environmental factor in
the monitoring and managing of Cyber-Physical Systems (CPS).

Satish T S Bukkapatnam suggested the use of specific sensors for anomaly–fault detec-
tion in processes [17]. P Ponce proposed studies using sensors and artificial intelligence [18]
for the agri-food industry. Ponce, P., Miranda, J. and Molina, A. [19] proposed using sen-
sors, the interrelation of their measurements with the machine components and a data
computation system as a strategy to learn about the real state of the machine components.
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1.4. Digital Behaviour Twin (DBT)

Introducing Industry 4.0 in production processes paves the way for Smart Manufac-
turing [20,21] in the industry. In manufacturing multi-stage machines, DBT allows the
study of new strategies based on collecting and processing data and defining standard
behaviour patterns, which are then compared with real behaviours. This strategy provides
essential information for decision-making based on the analysis of current behaviour and
comparison of sensor readings.

Using smart devices, cloud computing [22], the study of Machine to Machine (M2M)
strategies [23], while maintaining a high level of security and data quality based on in-
ternational standards [24,25] is indispensable to achieve the full potential of Industry 4.0.
Alsharif, M. and Rawat, D.B. [26] propose cloud-base service architecture form managing
machine learning models that best fit different Internet of Things (IoT) device operational
configurations for security. The necessary traceability in the value chain is possible with
the application of the so-called Industry 4.0 [27–29].

Moreover, the conception of Cyber-Physical Systems (CPS) [30–32], Mixed-Criticality
Systems (MCS) [33] or Industrial Cyber-Physical Systems (ICPS) [34] have prompted a
change in the definition of systems, their monitoring and study to obtain the best infor-
mation and interaction in real-time between a physical system and the monitoring, data
computation, communication and interrelation with other systems [35]. K Meng’s paper,
called Smart Recovery Decision-Making (SRDM) [36], uses data computation for end-of-life
prediction of products.

Decision-making based on accumulated knowledge by the design and assessment
of behavioural models is possible thanks to Behavioural Design Encapsulations defined
by Stary, C. [37]. They are based on the reconfiguration of patterns with the accumulated
knowledge of experience.

The emergence of the DT concept has made it possible to know and digitally simulate
the behaviour of the physical model, and therefore improve control over the reliability
and availability of equipment, as JdA Bertazzi [38] points out. However, for its applica-
tion in multi-stage machines, a study and precise modeling of the physical behavior is
required, in addition to subsequent adjustments and, finally, the verification that the model
responds in the same way as the real model to external changes, boundary conditions or
production [39–42].

Some studies define Evolutionary Digital Twin (EDT) as a parallel and complementary
digital approach to DT and the real model [43]. Thus, knowledge of reality is also used as a
source of learning for the system. This study allows the response of the model to be more
flexible and adaptive to changes through supervised learning.

In a study by Wright, L. and Davison, S. [44], a DT is defined as an executable virtual
model of a physical part or system. The digital model must then include the equations of
the physical system and sensors that provide feedback on the real behaviour. Therefore, a
DT can report on the correct or incorrect performance, decision-making or even prediction
of the machine’s lifetime. The study also indicates that to achieve a behavioural model with
DT, it must have sensors, be accurate in its calculations and be quick to suggest decisions.

Studies by Chakraborty, S. and Adhikari, S. [45] propose the modelling of a DT through
the parallel study of response prediction and reality learning. A DT is used to simulate
the behaviour of machines [46]. The study by Ritou, M. [47] defines the concept of “digital
shadow” as a model that extracts information from the physical system, computes the
values and proposes decisions on the state of the machines.

Few references dedicated to maintenance management in industrial manufacturing
multi-stage machines have been found during the search for references.

1.5. Methodology of the Case Studied

This paper, however, studies a real case of a multi-stage thermoforming machine with
a capacity of six terrines per cycle and a cycle time of 4 s. Four maintenance strategies
were studied for one year: two usual preventive maintenance strategies (PPM and IPPM)
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and two predictive maintenance proposals (ALOP and DBT), adapted to Multi-Stage
Machines technology.

The work carried out in this research is based on the use of four different maintenance
strategies whose operation was observed for one year. The thermoforming multi-stage
machine was working continuously 8 h a day, Monday to Friday, for a year. To carry out
the work, the following steps were followed in order:

1. Conceptualisation of the machine. In this section, the most important components,
whose reliability, efficiency and availability were to be studied, were selected;

2. Analysis of the causes and consequences of a failure in the selected components. (See
Table 1);

3. Proposition of individual maintenance times per component, as well as equations for
calculating reliability, efficiency and availability;

4. Proposition and location of appropriate sensors whose values are associated with the
proper functioning of the components;

5. Proposition and development of algorithms for ALOP and DBT strategies;
6. Location of a master linear axis for the case of DBT, by means of which the study is

related to the position of the encoder and subsequently converted to units of time;
7. Configuration of the Programmable Logic Controller (PLC) datalogger function and

record all the relevant values in each strategy;
8. Recording of the failures and errors detected in ALOP and DBT;
9. Evaluation of the results obtained.

Table 1. Basic decomposition of components and faults in a multi-stage thermoforming machine.

Item Component Type Fault Source Consequence of
Failure

1 Master power switch Power Machine/Static Ambient condition, Power supplier event Stop

2 PLC Control/Static Ambient condition, Power supplier event Stop

3 HMI Control/Static Ambient condition, Power supplier event, Crash Stop

4 Chromatic sensor Sensor/Static Ambient condition, Power supplier event, Crash Malfunction

5 Plug-in relay Control device/Static Ambient condition, Power supplier event Stop

6 Command and signalling Control Ambient condition, Power supplier event, Crash Stop

7 Safety limit switch Security/Static Ambient condition, Power supplier event Stop

8 Safety relay Security/Static Ambient condition, Power supplier event Stop

9 Safety button Security/Static Ambient condition, Power supplier event, Crash Stop

10 Temperature controller Control/Static Ambient condition, Power supplier event Stop

11 Solid state relay Actuator/Static Ambient condition, Power supplier event Malfunction

12 Thermal resistance Actuator/Dynamic Global fatigue Malfunction

13 Thermocouple sensor Control/Dynamic Global fatigue Malfunction

14 Tape drive Actuator/Static Ambient condition, Power supplier event Stop

15 Tape Motor Motor/Dynamic Global fatigue Malfunction

16 Bronze cap Mechanism/Dynamic Global fatigue Malfunction

17 Linear axis Mechanism/Dynamic Global fatigue Malfunction

18 Lineal bearing Mechanism/Dynamic Global fatigue Malfunction

19 Pneumatic valve Actuator/Dynamic Pressure failure, Failure valve Malfunction

20 Pneumatic cylinder Actuator/Dynamic Pressure failure, Cylinder failure Malfunction

21 Pressure sensor Control/Static Ambient condition, Power supplier event Stop

22 Servo drive peristaltic pump Actuator/Dynamic Ambient condition, Power supplier event Stop

23 Peristaltic pump Actuator/Dynamic Global fatigue Malfunction

24 Terrine cutter Mechanism/Dynamic Global fatigue, Mechanical hit Malfunction

25 Absolute encoder Control/Dynamic Ambient condition, Power supplier event.
Mechanical hit Stop
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The objectives proposed in this study are:

1. Obtain a systematic approach to managing the maintenance of multi-stage machines,
so that it can allow their use not only in the case studied;

2. Evaluate and compare the results that are obtained with the different of mainte-
nance strategies;

3. Propose a maintenance strategy for the detection of unexpected failures that cause
manufacturing without expected quality or production stoppage.

2. Case Studied

Production in small packages, known as single use, is increasingly present in the
industrial environment. Commonly used products such as oil, vinegar, etc., are already
marketed on a large scale by many industries that produce them in large production
batches. Figure 1 shows an image of the multi-stage thermoforming machine studied in
this article.
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Figure 1. A thermoforming multi-stage machine of 6 terrines per cycle.

This multi-stage thermoforming machine consists of:

• A structural, fixed part, usually not subject to wear and tear but must be adequately
protected against corrosion and meet health and food standards;

• Electronic components, power actuators, servo drives, motors, gearboxes, variable
speed drives, electrical and electronic devices, including the HMI operator terminal,
which are usually 4.3, 7 and 10 inch touch screens;

• Mechanical components subject to movement, such as bearings, shafts, belts and cams.
They are generally designed with fatigue-resistant materials but may be damaged by
wear and tear and environmental conditions;

• The peristaltic and pneumatic drive system, with which the filling of the terrines and
the upward and downward movements of sets of cylinders for adhesion, sealing,
glueing and cutting of the terrines are produced, respectively. These systems have
bronze bushings, which often suffer from wear and tear;

• A polymer roll dosing system for the top and bottom of the tray. The movement of
these rollers is carried out as required at any given moment.

Improvements in process monitoring and technology have made this type of machine
controllable by PLC that receive status signals from the field and act on the power actuators
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for the coordinated execution of all movements. The same technology can be used to
manage the availability of the machine or its components.

Table 1 shows a basic decomposition of the components of the machine subject to
failure in this paper. A distinction is made between static or moving elements, the possible
fault source and the consequence of its failure.

Multi-stage thermoforming machines are one of many multi-stage machines in indus-
trial manufacturing processes. These machines comprise several sub-processes ranging
from the management of the polymer film to the container and lid, including the dosage
and final cut. Figure 2 shows the steps of this machine ordered sequentially.
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Figure 2. Sub-process in thermoforming and terrine filling machines.

Production capacity can vary from 6 to 12 terrines in the last step, depending on
whether the machine is designed for manufacturing 3, 6, 9 or up to 12 tubs simultaneously.
Normally, production is carried out with thermoforming moulds of 2, 4, 6 and 12 tubs,
composed of one or two rows according to the design of the multi-stage thermoforming
machine, then in one cycle, up to 12 tubs can be manufactured simultaneously. This affects
the size, the mould of the thermoformer, the number of peristaltic pumps, the rails for the
row passage, the lid’s thermal bonder and the tub cutter’s size. Here, the thermoforming
mould used is for six tubs, and the cycle time is 4 s.

Figure 3 shows the terrine used. It is possible to see the lid and the tub. When the lid
is added by Step six, terrine is obtained.
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Figure 3. Example of terrine obtained in the thermoforming multi-stage machine studied.

Standard operation requires the constant coordination of all sub-processes since a fail-
ure in one of them means production stoppage. There is a master linear axis (see Figure 1)
in the lower part of the machine that runs from the thermal conditioner of the polymer
for the thermoformer container to the cutter for finished tubs, which permits coordinated
movements with cams in synchronised positions to ensure the process is controlled at a
constant speed.
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It can be understood that a critical component failure can lead to a failure of the whole
machine either because it works without the necessary quality or because it cannot continue
with the commissioned work.

The times involved in the study of the failures [11,12], are:

• TTRP: Time to replace a component;
• TTC: Time to configure;
• TTMA: Time to mechanical adjustment;
• TTPR: Time to provisioning;
• MTTR: Mean time to repair;
• MTTF: Mean time to failure;
• MTBF: Mean time between failure;
• TTLR: Line restart time, defined by expert knowledge;
• TLP: Time lost production.

MTTR = TTRP + TTC + TTMA + TTPR (1)

TLP = MTTR + TTLR (2)

MTBF = MTTR + MTTF (3)

with these times, two concepts are used: efficiency (4) and availability (5). Both concepts
will be used as indicators of success in the preventive control of machine failures.

Efficiency = 1− TLP
MTTR + MTTF

(4)

Availability =
MTBF

MTBF + MTTR
(5)

3. Maintenance Strategies for the Multi-Stage Thermoforming Machine

The maintenances assessed in an initial phase on this multi-stage thermoforming
machine have been PPM and IPPM. High levels of availability and efficiency are achieved.
ALOP and DBT strategies have been assessed, and failures were detected before the static
value of MTTF (see Table 2) determined by PPM and IPPM.

3.1. PPM: Preventive Programming Maintenance

This strategy is based on using existing data from the usage of the machine. With
the information gained from the usage of the machine, each component has its own time
values (TTRP, TTC, TTMA, TTPR, MTTR, MTTF, MTBF, TTLP, TLP), and an individual
value for availability and efficiency.

The results of setting the line restart time, TTLR, at 14.400 s and using stable market
values (values obtained from manufacturers and experience) for the times in this machine
are shown in Table 2:

Using the exponential function given by expression 6, the reliability of all the compo-
nents is calculated in a time equal to MTTF. Figure 4 shows the results.

R(t) = e−λt (6)

where λ factor is the inverse value of MTBF [48] if we consider the constant fatigue
of components.
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Table 2. Thermoforming components times in seconds. Efficiency and availability in %.

Component MTTR TTRP TTC TTMA TTPR MTTF TLP Efficiency MTBF Availability

Master power switch 14,400 3600 0 0 10,800 9,999,999 28,800 99.71% 10,014,399 99.86%

PLC 435,600 3600 86,400 0 345,600 9,999,999 450,000 95.69% 10,4435,599 95.99%

HMI 435,600 3600 86,400 0 345,600 9,999,999 450,000 95.69% 10,435,599 95.99%

Chromatic sensor 176,520 3600 120 0 172,800 5,000,000 190,920 96.31% 5,176,520 96.70%

Plug-in relay 14,400 3600 0 0 10,800 5,000,000 28,800 99.43% 5,014,400 99.71%

Command and signalling 14,400 3600 0 0 10,800 5,000,000 28,800 99.43% 5,014,400 99.71%

Safety limit switch 14,400 3600 0 0 10,800 9,999,999 28,800 99.71% 10,014,399 99.86%

Safety relay 14,400 3600 0 0 10,800 9,999,999 28,800 99.71% 10,014,399 99.86%

Safety button 14,400 3600 0 0 10,800 9,999,999 28,800 99.71% 10,014,399 99.86%

Temperature controller 435,600 3600 86,400 0 345,600 9,999,999 450,000 95.69% 10,435,599 95.99%

Solid state relay 176,400 3600 0 0 172,800 5,000,000 190,800 96.31% 5,176,400 96.70%

Thermal resistance 25,500 14,400 0 300 10,800 3,700,800 39,900 98.93% 3,726,300 99.32%

Thermocouple sensor 14,700 3600 0 300 10,800 3,700,800 29,100 99.22% 3,715,500 99.61%

Tape drive 435,600 3600 86,400 0 345,600 9,999,999 450,000 95.69% 10,435,599 95.99%

Tape motor 187,200 14,400 0 0 172,800 5,000,000 201,600 96.11% 5,187,200 96.52%

Bronze cap 288,000 28,800 0 86,400 172,800 7,750,000 302,400 96.24% 8,038,000 96.54%

Linear axis 288,000 28,800 0 86,400 172,800 7,625,000 302,400 96.18% 7,913,000 96.49%

Lineal bearing 288,000 28,800 0 86,400 172,800 7,500,000 302,400 96.12% 7,788,000 96.43%

Pneumatic valve 176,400 3600 0 0 172,800 9,999,999 190,800 98.13% 10,176,399 98.30%

Pneumatic cylinder 176,400 3600 0 0 172,800 9,999,999 190,800 98.13% 10,176,399 98.30%

Pressure sensor 176,700 3600 300 0 172,800 5,000,000 191,100 96.31% 5,176,700 96.70%

Servo drive peristaltic pump 435,600 3600 86,400 0 345,600 9,999,999 450,000 95.69% 10,435,599 95.99%

Peristaltic pump 547,200 14,400 0 14,400 518,400 5,000,000 561,600 89.88% 5,547,200 91.02%

Terrine cutter 288,000 28,800 0 86,400 172,800 9,999,999 302,400 97.06% 10,287,999 97.28%

Absolute encoder 360,000 14,400 86,400 86,400 172,800 5,000,000 374,400 93.01% 5,360,000 93.71%
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3.2. IPPM: Improvement Preventive Programming Maintenance

Table 2 shows the TTPR value for all items. It is a significant value when calculating
the MTTR value (see Equation (2)).

The IPPM strategy is based on the TTPR of components that would considerably
reduce the value of MTTR, and consequently, in the efficiency and availability values.
Table 3 shows the results of substituting the TTPR for a residual search time in own
stock. Then if the component fails and needs to be replaced, the TTPR value affects the
MTTR very little and therefore increases the availability and efficiency of the machine (see
Equations (4) and (5)).

The results obtained reveal very high efficiency and availability values for PPM (see
Table 2) and IPPM. Components with a high TTPR value improve their efficiency and
availability values. Comparison of the results between the two provides a maximum
increase in efficiency in 9.26% and availability by 8.4%. Figure 5 shows a comparison of
these results.

In other components such as 2, 3, 10, 11, 14, 15, 21 and 22 there has also been an
increase in efficiency and availability above 3%.

The results obtained reveal that availability and efficiency improve with the imple-
mentation of the IPPM strategy.

The results show that electronic components such as the PLC, HMI, temperature
controller, solid state relay, pressure sensor, servo drive form peristaltic pump, peristaltic
pump and absolute encoder improve their availability with this strategy, while mechanical
components such as the bronze cap, linear axis, linear bearing, pneumatic valve, pneumatic
cylinder and terrine cutter partially improve their availability. Consideration of market
conditions, transport problems, supply problems or health scares can increase the value
of TTPR. These events do not affect the IPPM strategy because it is based on having
the components in stock. To avoid affecting the PPM strategy, the TTPR value should
be changed by frequently consulting the market for this time in all components. The
availability and efficiency of the machine can be maintained in this case and do not
decrease due to external causes if a failure occurs.
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Table 3. Comparison of efficiency and availability between PPM and IPPM.

Item Component
PPM IPPM Difference IPPM-PPM

Efficiency Availability Efficiency Availability Efficiency Availability

1 Master power switch 99.71% 99.86% 99.82% 99.96% 0.10% 0.10%

2 PLC 95.69% 95.99% 98.96% 99.11% 3.27% 3.12%

3 HMI 95.69% 95.99% 98.96% 99.11% 3.27% 3.12%

4 Chromatic sensor 96.31% 96.70% 99.63% 99.92% 3.32% 3.22%

5 Plug-in relay 99.43% 99.71% 99.63% 99.92% 0.21% 0.21%

6 Command and signalling 99.43% 99.71% 99.63% 99.92% 0.21% 0.21%

7 Safety limit switch 99.71% 99.86% 99.82% 99.96% 0.10% 0.10%

8 Safety relay 99.71% 99.86% 99.82% 99.96% 0.10% 0.10%

9 Safety button 99.71% 99.86% 99.82% 99.96% 0.10% 0.10%

10 Temperature controller 95.69% 95.99% 98.96% 99.11% 3.27% 3.12%

11 Solid state relay 96.31% 96.70% 99.63% 99.92% 3.32% 3.22%

12 Thermal resistance 98.93% 99.32% 99.21% 99.60% 0.28% 0.28%

13 Thermocouple sensor 99.22% 99.61% 99.50% 99.89% 0.28% 0.28%

14 Tape drive 95.69% 95.99% 98.96% 99.11% 3.27% 3.12%

15 Tape Motor 96.11% 96.52% 99.42% 99.71% 3.31% 3.19%

16 Bronze cap 96.24% 96.54% 98.35% 98.55% 2.11% 2.01%

17 Linear axis 96.18% 96.49% 98.32% 98.53% 2.14% 2.04%

18 Linear bearing 96.12% 96.43% 98.29% 98.51% 2.18% 2.07%

19 Pneumatic valve 98.13% 98.30% 99.82% 99.96% 1.69% 1.66%

20 Pneumatic cylinder 98.13% 98.30% 99.82% 99.96% 1.69% 1.66%

21 Pressure sensor 96.31% 96.70% 99.63% 99.92% 3.32% 3.22%

22 Servo drive peristaltic pump 95.69% 95.99% 98.96% 99.11% 3.27% 3.12%

23 Peristaltic pump 89.88% 91.02% 99.14% 99.42% 9.26% 8.40%

24 Terrine cutter 97.06% 97.28% 98.72% 98.87% 1.66% 1.59%

25 Absolute encoder 96.12% 96.43% 98.29% 98.51% 2.18% 2.07%

3.3. ALOP: Algorithm Life Optimisation Programming

The MTTF of each component can be changed with this strategy by analysing the
behaviour of measurements from various sensors. This strategy would enable optimising
the useful life of each component. This strategy is compatible with maintenance decisions,
and conclusions of the previous strategy can be applied by the algorithm.

Figure 6 shows this model, in which the PLC that manages the process is the same
equipment that manages the ALOP algorithm. It consists of sensors in specific parts of the
multi-stage thermoforming machine. The real-time processing of the values measured by
the sensors allows to know the status of the components and calculate the MTTF in real
time. This quality allows a failure to be detected before it occurs. Compared to the PPM and
IPPM strategies that keep the MTTF at a fixed value, this strategy detects failures before
a static time (remember static MTTF in the PPM and IPPM strategies). The possibility of
detecting failures before the fixed MTTF value proposed in PPM or IPPM causes the lower
efficiency and availability values of this strategy compared to the two previous strategies
(see Equations (4) and (5)).
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Figure 6. The setup of ALOP strategy.

Table 4 contains the sensors used in the multi-stage thermoforming machine and the
component group they affect.

All sensors provide an analogue output signal. A datalogger oversees monitoring,
recording and treating the signals in real-time.
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Table 4. Sensors and components used for the ALOP model.

Sensor Description Items Affected

SA1 % humidity inside the control panel 1, 2, 3, 4, 5, 8, 10, 11, 14, 22, 24, 25

SA2 Cª temperature inside control panel 1, 2, 3, 4, 5, 8, 10, 11, 14, 22, 24, 25

SA3 Voltage RMS in IGBT 1, 2, 3, 4, 5, 8, 10, 12, 14, 15, 19, 20, 21, 22, 23, 25

SA4 Pressure sensor for thermoformer tub MODEL DPM2A of PANASONIC 10, 12, 13, 16, 18, 19, 20, 21

SA5 Pressure sensor for peristaltic pumps MODEL DPM2A of PANASONIC 22, 23

SA6 Micro laser measurement, side front MODEL HGC of PANASONIC 14, 15, 16, 17, 18

SA7 Micro laser measurement, side rear MODEL HGC of PANASONIC 14, 15, 16, 17, 18

Mathematical Model of the Algorithm

The adoption of this model is based on the accumulated experience in the usage of
the PPM and IPPM strategies in the multi-stage thermoforming machine. ALOP was im-
plemented when specific components with available lifetimes according to their proposed
MTTF in PPM or IPPM were experiencing unexpected failures. Poor knowledge of the
causes of such failures and the impossibility of solving this problem with PPM or IPPM led
to the creation of ALOP in an attempt to correct the MTTF value according to the reality
measured by sensors reporting to the process control PLC.

This algorithm proposes the calculation of reliability parameters such as MTTF by
using the values of distributed sensors that provide information on physical magnitudes
whose normality values are recorded. The aim is to compare and adjust the times before
failure to then adjust the MTTF value for each component and calculate the component’s
reliability using the exponential model. As a complement to the algorithm, a warning
factor (WF) indicating an unacceptable value of a sensor will be proposed.

The application of this ALOP model focuses on components not kept in stock that cause
machine downtime and whose failure causes a considerable TLP value (see Equation (2)).
Components such as command and signalling (buttons, switches), a master power switch,
plug-in relay and safety components do not apply to this model due to being components of
very low cost and high availability of stock.

Equations (7) and (8) are proposed for the calculation of MMTFi(t). A step-by-step
algorithm will then be proposed to enable decision-making:

MTTFi(t) = [MTBFi,0 − (t− t0)]fc(i) −MTTRi (7)

where MTBFi is the mean time between failures of component “i”. This value is shown
in Table 2, which results from adding the MTTF and MTTR values for each component
proposed in the PPM and IPPM strategies. MTTRi is the mean time to repair a failure of
equipment “i”. fc(i) is a correction factor for component “i” that depends on the measure-
ments of its associated sensors and is calculated every 100 machine cycles (Since the cycle
time is 4 s (see the beginning of Section 2) and therefore 100 cycles correspond to 400 s, it is
considered a reasonable time to take measurements on the sensors) and corresponds to the
following equation:

fc(i) =
n

∏
j=1

σ(t)j,i

σ(t+100)j,i
(8)

where σ(t)i,j is the standard deviation at time “t” of the measurement of sensor “j” whose
evolution can provide information on the reliability and availability status of component
“i”. σ(t+100)j,i is the standard deviation at time “t + 100” of the measurement of sensor “j”,
the evolution of which can provide information on the reliability and availability status of
component “i”.

The risk function described in D M Frangopol’s study [49] is then used for
each component:

fr(t,i) = (1− R(t,i)) Cfi (9)
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where fr(t,i) is the risk in economic terms based on the reliability of component “i” at time
“t” and R(t,i) is the reliability of component “i” at time “t”, which is calculated using the

exponential model R(t,i) = e
−λ

t , where λ coincides with 1
MTBFi−LC

where MTBFi−LC is the
mean time between failures of the previous assessment time of component “i”. Cfi is
considered constant and is the cost in economic terms of the TLP due to a failure to be
repaired in component “i”.

The risk factor fr(t,i) is used to advance sourcing decisions for component “i” even
if the algorithm has not yet suggested it. It is essential to define risk margins for each
component so the value of fr(t,i) must be within the margins set by the user. The lower the
reliability of a component R(t,i), the higher its failure function F(t,i) = 1− R(t,i). Therefore,
the product between F(t,i) and the constant value Cfi will become larger and larger until it
reaches Cfi(R(t,i) = 0). Here, the component fails, and the value of fr(t,i) is maximum (see
Equation (9)). The comparison between fr(t,i) is used as an indicator for the acquisition of
component “i”.

The warning level or technical alarm WF is an inadmissible value for each sensor,
set as a technical warning threshold indicating which components may be affected by the
warning. This warning may lead to a decision to procure the component or replace it if it is
in stock. A Gaussian distribution criterion based on the confidence level of the sample of
values is used for verification. The following equation is used:

WF > SAj ± ci × σj (10)

where ci expresses the confidence level or permissiveness of accepting or not accepting
deviations from the mean measured value of each sensor. Following the Gaussian Normal
distribution criterion, the smallest value of “c” is 0.67 [50], corresponding to a confidence
level of 50% of the measured values. Each sensor can have a different value of ci depending
of the dispersion of its measurements. In this study, ci = 0.67 was used for all “j” sensors,
because it is a restrictive criterion in the Gaussian distribution, so that the algorithm will be
more sensitive to variations that are far from the mean value of the sensor measurement.

Proposed ALOP algorithm:

STEP 1. The time for evaluation and recalculation of values is set as t = 1000 s.
STEP 2. From t = 0, values are taken from the “j” sensors measurements, SAj. every 10 s.
STEP 3. SAj And σj is calculated every 100 s.
STEP 4. At t = 1000 s, fc(i) is calculated for each component “i”.
STEP 5. The values MTBFi,1000 and MTTFi,1000, Ri,1000, Effi,1000, AVi,1000 are calculated.
STEP 6. The value of MTTFi,1000 is compared with MTTRi and subsequently with TTPRi.
STEP 7. The risk factor fr(1000,i) of component “i” is calculated. It is compared to the cost

of component “i”:

IF fr(1000,i) > Component cos ti → Component supply ′′I′′

→ Component supply ′′I′′
(11)

IF fr(1000,i) < Component cos ti → No decisions (12)

STEP 8. If MTTFi,1000 < MTTRi , the notification for acquiring component “i” is initiated.
STEP 9. If there are no warnings in Steps 7 and 8, compliance with the following is verified:

IF WFj < SAj,1000 ± c x σj,1000 → No decisions (13)

IF WFj > SAj,1000 ± c x σj,1000 → Technical warning (14)

STEP 10. At t = 1000 s, MTBF0 values are updated to MTBF1000 since the 1000 s that has
elapsed is to be deducted from the mean time to failure of component “j”.

STEP 11. Start the algorithm again at Step 2.
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This algorithm was adjusted successively over 1 year. In the conclusions, the results
of ALOP will be compared with DBT and the effectiveness of their respective algorithms.

3.4. DBT: Digital Behaviour Twin

This strategy proposes using a real-time model that maps the outputs to actuators
of the process control (PLC). The monitoring of these variables reports the real operating
status of the machine in the order to know which commands are being executed, which
field signals are being measured and their values. This strategy uses the position of
the absolute encoder, which measures the position of the main shaft of this multi-stage
machine. Depending on the position in each cycle, the commands representing the expected
behaviour of the process are activated in a coordinated order.

Figure 7 shows the schematic of the DBT model setup for this strategy. It uses the
same sensors as ALOP (see Table 4). In this strategy, the activations and deactivations
of the actuators are monitored, and the sensor values and the position of the absolute
encoder are compared with a so-called normal behaviour pattern. An essential difference
to the ALOP strategy is the use of a different measurement scale. ALOP assesses the sensor
measurements according to the time algorithm, whereas DBT uses the assessment of the
sensor measurements in terms of the position taken by the absolute encoder (see item 25,
Table 2).

Sensors 2021, 21, 6809 14 of 22 
 

 

3.4. DBT: Digital Behaviour Twin 
This strategy proposes using a real-time model that maps the outputs to actuators of 

the process control (PLC). The monitoring of these variables reports the real operating 
status of the machine in the order to know which commands are being executed, which 
field signals are being measured and their values. This strategy uses the position of the 
absolute encoder, which measures the position of the main shaft of this multi-stage ma-
chine. Depending on the position in each cycle, the commands representing the expected 
behaviour of the process are activated in a coordinated order. 

Figure 7 shows the schematic of the DBT model setup for this strategy. It uses the 
same sensors as ALOP (see Table 4). In this strategy, the activations and deactivations of 
the actuators are monitored, and the sensor values and the position of the absolute en-
coder are compared with a so-called normal behaviour pattern. An essential difference to 
the ALOP strategy is the use of a different measurement scale. ALOP assesses the sensor 
measurements according to the time algorithm, whereas DBT uses the assessment of the 
sensor measurements in terms of the position taken by the absolute encoder (see item 25, 
Table 2) 

The DBT strategy proved to be efficient in this paper and can, therefore, be consid-
ered appropriate for developing maintenance strategies for other industrial multi-stage 
machines. The position of the main shaft of the machine is known through the encoder. 
The decision-making provided by the proposed DBT algorithm is performed on the time 
scale by converting the encoder position to time. 

 
Figure 7. The setup of the DBT maintenance strategy. 

In this machine, a work cycle starts at position 0 and ends at position 999 of the ab-
solute encoder. All sensor measurements are linked to machine actuators. They are then 
recorded and stored according to the encoder position. As a result, a behavioural pattern 
is obtained with sensor measurement values within the maximum and minimum thresh-
olds and is considered the standard behavioural reference for the multi-stage thermoform-
ing machine. During the normal operation of the machine, the real values are compared 
with the standard to determine whether the machine is working correctly. The strategy 
also studies the trend of sensor values and whether they show a potential risk to compo-
nent lifetime or manufacturing quality. 

Figure 7. The setup of the DBT maintenance strategy.

The DBT strategy proved to be efficient in this paper and can, therefore, be consid-
ered appropriate for developing maintenance strategies for other industrial multi-stage
machines. The position of the main shaft of the machine is known through the encoder.
The decision-making provided by the proposed DBT algorithm is performed on the time
scale by converting the encoder position to time.

In this machine, a work cycle starts at position 0 and ends at position 999 of the
absolute encoder. All sensor measurements are linked to machine actuators. They are then
recorded and stored according to the encoder position. As a result, a behavioural pattern is
obtained with sensor measurement values within the maximum and minimum thresholds
and is considered the standard behavioural reference for the multi-stage thermoforming
machine. During the normal operation of the machine, the real values are compared with
the standard to determine whether the machine is working correctly. The strategy also
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studies the trend of sensor values and whether they show a potential risk to component
lifetime or manufacturing quality.

If the encoder position indicates it and a “z” Actuator (ACZ) is activated, this input
is represented with value one or zero if not activated. The SAi sensors in Table 4 provide
measurements throughout the cycle regardless of activations or non-activations of the ACZ
actuators. All SAi sensors have a nominal, minimum and maximum value. The decision to
assess or replace the component is made based on the analysis of the measurement trend
of its associated SAi sensors and the maximum and minimum values allowed for these
measurements.

Table 5 shows the pattern of behaviour of the machine from encoder position 0 to 999.
The study has evaluated both the state of the actuators and the value of the sensors every
10 incremental positions of the encoder.

Table 5. Normal pattern of behaviour of multi-stage thermoforming machine.

EP (Encoder Position) 0 10 100 200 300 400 450 500 600 700 800 900 970 980 990 999

AC1: Cam bottom dead centre 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1

AC2: Drag start point 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AC3: Blown Time 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

AC4: Start of heater operation 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0

AC5: Dosing point 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

AC6: Top point cams 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

AC7: Home pushers 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

AC8: Start blowing 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

SA1: Humidity % inside Control Panel 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60

SA2: Temperature inside Control Panel 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

SA3: Voltage supplier inside Control Panel 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230

SA4: Pressure sensor Thermoforming step (bar) 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0

SA5: Pressure sensor after Peristaltic Pump (bar) 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0

SA6: Laser measure hp heat seal front (Data in mm) 0 0 0 0 5.0 5.0 5.0 5.0 0.0 0 0 0 0 0 0 0

SA7: Laser measure hp heat seal rear (Data in mm) 0 0 0 0 5.0 5.0 5.0 5.0 0.0 0 0 0 0 0 0 0

The relevance of sensor measurements can be recognised by using the encoder position.
Therefore, this strategy allows maintenance to be managed by adjusting the operating

time of components at the end of their useful life or when they may be damaged by external
causes and need to be replaced.

DBT Mathematical Model

Since the normal behaviour pattern and the nominal, maximum and minimum values
of the sensors at all encoder positions are known, Artificial Intelligence procedures are not
necessary. This feature is considered an advantage of this strategy.

Proposed DBT algorithm:

STEP 1. The assessment procedure starts every 10 encoder positions (EP10 to EP1000).
STEP 2. An assessment is carried out every 10 positions:

• Actuator values ACz (binary value zero or one);
• Values of SAi sensors (analogue signals)

STEP 3. Pattern checks:

• The ACz activations reading for the Encoder Position (EP) 10 value should
coincide with the valid pattern (see Table 5) If not→ PLC or encoder fault.

• The SAi sensor reading for the EP10 value should coincide with the valid
standard (see Table 5) If not→ Step 4.
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• The ACz activations reading for the SAi value should coincide with the valid
pattern (see Table 6) If not→ Step 4.

STEP 4. Checking deviations of SAi sensors:

If SAi, ∈ (SAi,VN − |dmin|, SAi,VN + |dmax|) → No decisions. (15)

If SAi, /∈ (SAi,VN − |dmin|, SAi,VN + |dmax|) → Assessment of

components associated with SAi sensor → Step 5
(16)

where dmax and dmin are the maximum and minimum deviations allowed in the
measurements of the “i” sensors.

STEP 5. The trend is assessed by analysing the mean and standard deviation of the last
1000 cumulative measurements of the SAi value of sensor “i”, whose value is other
than zero.

SAi(10−1000) =
EP=1000

∑
EP=10

SAi−EP

1000
(17)

Table 6. Comparison of unexpected failures detected for ALOP and DBT.

Item Component ALOP True ALOP False DBT True

1 Master power switch

2 PLC

3 HMI

4 Chromatic sensor 1 1

5 Plug-in relay 1 1 1

6 Command and signalling

7 Safety limit switch

8 Safety relay

9 Safety button

10 Temperature controller 1 1 1

11 Solid state relay 1 1

12 Thermal resistance 1 1 1

13 Thermocouple sensor 1 1 1

14 Tape drive

15 Tape Motor

16 Bronze cap 1

17 Linear axis

18 Linear bearing 1

19 Pneumatic valve

20 Pneumatic cylinder

21 Pressure sensor 1 1

22 Servo drive peristaltic pump

23 Peristaltic pump 1 1

25 Absolute encoder 1
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For this calculation, the SAi values that must have a defined value is different from
than zero according to the behavioural pattern will be considered.

σEP=1000
SAi

=
∑1000

10

(
SAi−EP − SAi (10−1000)

)2

1000− 1
(18)

Based on the above values and assuming a Gaussian probability distribution, it is
evaluated if the value is included in a statistical limit based on the previous measures.

(SAi,VN − |dmin|, SAi,VN + |dmax|) ∈
(

SAi(10−1000) ± 3 × σEP=1000
SAi

)
(19)

If the trend is maintained, the algorithm calculates the time remaining before the SAi
sensor measurement can indicate a failure and/or an undesired shutdown.

The result is studied on the encoder scale. Therefore, the result is obtained in the
number of cycles missing for the measurement of a sensor to go beyond its limits. NCTFSAi
is the number of cycles to failure indicated by the SAi sensor.

STEP 6. Decision taking.

Once the study of the trend of the SAi sensor values in the encoder position has been
completed, the relationship between the encoder position scale and the time is defined. In
this case (see beginning of Section 2):

1 work cycle ≡ 1.000 encoder positions from 0 to 999 = 4 s

MTTFSAi = NCTFSAi × TC (20)

Expression (20) can calculate the number of cycles that can be performed with the
sensor values within their maximum and minimum thresholds.

The DBT strategy and the encoder assessment scale in the maintenance management
of the multi-stage thermoforming machine makes it possible to ascertain:

• Deviations in the measurements of the “j” sensors, whose relationship is established
with the “i” items by Table 4;

• Whether the evolution of any of the “z” actuator activation/deactivation commands
is correctly coordinated and is proceeding according to the normal pattern;

• If any of the measurements of the “j” sensors conform to the encoder position;
• If any of the measurements of the “j” sensors conform to the activation pattern of the

“z” actuators at each encoder position;
• Whether the absolute encoder is providing the shaft position information correctly;
• Whether the process control, PLC, is executing the commands correctly according to

the encoder position.

It also makes it possible to:

• Take early decisions on machine components and prevent unwanted faults by assess-
ing the measurements of each sensor and observing the measurement trend;

• Know the planned production that can be performed without a failure;
• Adjust the dmax and dmin values for each SAi sensor, allowing the establishment of a

confidence margin where the output meets industry quality standards;
• Very precise control of deviations from nominal measurements of the “j” sensors by be-

ing assessed only when indicated by the position of the encoder and the “z” actuators
and the sensor shows a value other than zero (see Step 5 of the DBT algorithm).

4. Results and Conclusions

The ALOP and DBT strategies have been tested on the multi-stage thermoforming
machine working continuously 8 h a day, Monday to Friday, for a year. Table 6 shows the
number of unexpected failures, with information on the warnings of each algorithm and
which have warned of a real failure, and which have not.
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Unexpected failures can be detected with ALOP and DBT algorithms. However, the
ALOP algorithm has shown false warnings. The authors consider this may be due to ALOP
taking measurements from each sensor every 10 s, whereby the nominal measurement value
of the sensor or zero value may be recorded. As a result, the dispersion of measurements
may be excessive. Increasing this dispersion may cause false warnings (see expression 8).
For the DBT model, the trend of the measurements is only assessed on the measured value,
which will always be very close to the nominal value unless the sensor fails.

As a follow-up, the DBT algorithm has detected unexpected failures in mechanical
items 16 and 18. Failures in affected components are detected if the deviations in the SA6
and SA7 sensors are greater than 0.5 mm. The detection of possible failures in mobile me-
chanical equipment requires a maintenance strategy in which the assessment of deviations
is as accurate as possible, with DBT being the best alternative.

Item 25 (encoder) suffered an accidental mechanical shock. From that moment on, its
operation was not correct as the commands executed to the actuators started to be carried
out without the expected coordination. Step 3 of the DBT algorithm warned very quickly,
in less than one cycle. ALOP did not detect it because it uses the SA1, SA2 and SA3 sensors
for that component, and none of the three sensors noticed an anomaly in the measurements.
As a consequence, the machine was stopped by an operator.

As both algorithms detected failures in some components, the MTTF was reduced.
To manage the maintenance of this alteration, the MTTF value of components triggered
component replacement decisions as the mean time to failure was reduced and, therefore,
the component’s lifetime ended. Their Efficiency and Availability values changed (see
Equations (4) and (5)).

Figures 8 and 9 show the comparison of Efficiency and Availability in percentage
values of the components that presented unexpected failures detected by ALOP and DBT,
and their values obtained in PPM and IPPM (see Table 3).

The detection of failures before the MTTF stated in the PPM and IPPM strategies is
the consequence of the decrease in the efficiency and availability values of the affected
components. However, the relevance of the decrease in the values can be compared to the
advantages of detecting a failure before an unexpected stoppage and the opportunity costs
it may entail (proposed for future research).
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The study of maintenance strategies for multi-stage machines can be an avenue for
future research. Through the results obtained, a solution is offered for unexpected failure
detection, which for this type of machine is of great importance. With the results obtained,
these conclusions can be drawn:

• The algorithms proposed for the ALOP and DBT strategies show favorable results, and
their use can be proposed for managing the maintenance of other multi-stage machines;

• Because multi-stage machines require better maintenance control to detect unexpected
failures, ALOP and DBT can be proposed as suitable strategies for this type of machine;

• Unexpected failures can be detected with ALOP and DBT strategies. The authors
consider that both strategies complement PPM or IPPM, and their combined study
could be an avenue for future research;

• The accuracy of the measurement evaluation procedure of the DBT strategy allows
the detection of faults in moving mechanical components with very low deviations
from nominal values;

• Knowledge of a normal operating pattern of machines is a very reliable source of
knowledge for maintenance management. It allows the best assessment of component
lifetime by setting limit deviations (dmax and dmin) (See Step 4 in the DBT algorithm)
on sensor-measured values, based on the quality standards of each industry;

• The detection of unexpected mechanical or electronic components failures may be
due to alterations of environmental operating conditions and non-recommended
voltage values;

• The knowledge of the production that can be performed without failures is only
achieved with the DBT model;

• The IPPM application offers improvements of efficiency and availability and minimises
MTTR, but stock costs can grow;

• Improvements in the efficiency and availability of the electronic components (see
components 2, 3, 4, 10, 11, 14, 15, 21 and 22 in Figure 5) and partially the mechanical
components (see components 10, 16, 17, 18, 19 and 23 in Figure 5) are noticeable. As
with PPM, this strategy also fails to detect unexpected failures;

• Applying PM techniques based on the time scale is interesting if the SAi sensor values
provide constant and similar measurements throughout the process. Otherwise, the
dispersion in values may not correctly reflect reality. On multi-stage thermoforming
machines, it is very beneficial to evaluate the measurements on the scale of the encoder
positions and then decide on the time scale.

The authors consider the following avenues for future research:
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• Comparative study between the decrease in efficiency and availability by applying
ALOP and DBT strategies, and the benefits of detecting unexpected failures compared
with static value of MMTF provided by the PPM and IPPM strategies;

• Study of the application of different maintenance strategies for each kind of component
in the same multi-stage machine;

• Study of the cost of the different maintenance strategies in a multi-stage machine.
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Abstract: The study of industrial multistage component’s reliability, availability and efficiency poses
a constant challenge for the manufacturing industry. Components that suffer wear and tear must be
replaced according to the times recommended by the manufacturers and users of the machines. This
paper studies the influence of the individual maintenance values of Main Time To Repair (MTTR),
Time To Provisioning (TTPR) and Time Lost Production (TLP) of each component, including the type
of component and operation conditions as variables that can influence deciding on the best preventive
maintenance strategy for each component. The comparison between different preventive maintenance
strategies, Preventive Programming Maintenance (PPM) and Improve Preventive Programming
Maintenance (IPPM) provide very interesting efficiency and availability results in the components. A
case study is evaluated using PPM and IPPM strategies checking the improvement in availability and
efficiency of the components. However, the improvement of stock cost of components by adopting
IPPM strategy supposes the search of another more optimal solution. This paper concludes with the
creation of a multidimensional matrix, for that purpose, to select the best preventive maintenance
strategy (PPM, IPPM or interval between PPM and IPPM) for each component of the multistage
machine based on its operating conditions, type of component and individual maintenance times.
The authors consider this matrix can be used by other industrial manufacturing multistage machines
to decide on the best maintenance strategy for their components.

Keywords: maintenance strategies; preventive maintenance; operation condition; type of component;
global operation condition; multistage industrial machine; thermoforming

1. Introduction

The study of the reliability, availability and efficiency of industrial multistage compo-
nents poses a constant challenge for the manufacturing industry.

Manufacturing processes can be studied by adopting combinations of different ma-
chines that work in a coordinated way, either in series or parallel. The machines can be
single stage machines, i.e., machines in charge of one phase of production, or multistage
machines, which develop several phases of the production process.

Maintenance strategies must be different for each type of process and machine used.
With processes based on a series-parallel combination of single stage machines, an unex-
pected stoppage caused by the failure of a component does not necessarily stop production
altogether, but it may decrease the value of production capacity. With processes based on
multistage machines, except for redundancy of these multistage machines, a stop caused
by a component failure can cause the entire production process to stop.

Because of this condition in multistage machines, the components, their operating
condition and their reliability for the performance of the work they must carry out must
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be carefully studied. The preventive maintenance strategy [1] is one of the most popular
strategies in the industry. According to Colledani [2], equipment availability, product
quality and system productivity are strongly related. Moreover, Colledani stated that
preventive maintenance policies significantly affect the completion time of a batch [3].

Cheng-Hung [4] proposed a Dynamic Dispatch and Preventive Maintenance model
(DDPM) that considers dispatching-dependent deterioration and machine health-dependent
production rates for C, a dynamic decision model. Colledoni [5,6] cited in his works that
opportunistic maintenance affected the performance in multistage manufacturing systems.
Similarly, Xiaojun [7] proposed opportunistic preventive maintenance for Serial-Parallel
Multistage Manufacturing Systems (SP-MMSs).

Recent works of Azimpoor [8] reveal that a machine’s lifetime is divided into two
stages in a failure process, showing defect arrival and then failure arrival. So, the main-
tenance schedule can be a combination of orders to repair and inspect machines. In this
way, Ruiz Hernández [9] believed that poor maintenance could not reinstate the machine
to an “as-new” status and this had to be considered when designing maintenance policies.
Additionally, Guanghan [10] cited four degradations stages of multistage machines: normal
stage, slow degradation, fast degradations and fail.

An effective maintenance policy typically seeks high-quality mechanical reliability, and
the minimum possible maintenance cost [11–15]. Xiaojun [16] studied the Condition-Based
Maintenance (CBM) policy in multistage manufacturing systems and the positive effects
on the quality of the machine work with the most appropriate preventive maintenance
decisions. Qipeng [17] proposed using Multistage Stochastic Mixed-Integer Program-
ming (MSMIP) to seek optimal operations regarding maintenance outage scheduling of
the machine.

Yingsai [18] studied preventive maintenance based on a policy to improve operation
efficiency by modelling an algorithm to obtain the optimal parameters to ascertain the
frequencies of inspections and maintenance. Similarly, Grossmann [19] concluded that
a Markov decision-making process model is an interesting framework for modelling the
stochastic dynamic decision-making process of condition-based maintenance.

Qing [20] proposed preventive maintenance based on quality rework loops for de-
tecting random machine failures. Qiuhua [21] proposed using a constraint to a two-stage
assembly flow shop against a fixed preventive maintenance time, using the Weibull probabil-
ity distribution to calculate the optimal maintenance interval. This ensures the production
flow is continuous and ensures the reliability of the machine.

1.1. Preventive Programming Maintenance

Preventive programming maintenance is used in most manufacturing industries. The
work of Jun-Hee [22] proportionated preventive maintenance scheduling to minimise the
risk of failure in a single-process machine. Other studies by Taghipour [23] and Duffuaa [24]
developed models based on integrating the maintenance schedule into the production to
improve the machine’s quality and performance.

The study of the availability to show the performance level of a multistage system
was developed by Arvanitoyannis [25]. Ahmadi [26] used Reliability-Centred Maintenance
(RCM) based on condition-based maintenance to decide which maintenance action must be
undertaken. Zhen [27] studied the health index to obtain and measure the reliability of a
complex production process to reflect the in-time operation state of the production process.

Jiři [28] studied the losses in production and analysed the priority in the corrective and
preventive maintenance as the fastest return to the normal activity of the machine. He also
used the main time between failure and main time to failure and other delayed times to
minimise the cost and improve the availability of the machine. Liberopoulos [29] analysed
all the times involved in main time to repair in a single-parallel multistage machine. He
also proposed the use of time lost for production as an indicator of the availability of
the process.
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1.2. Improved Preventive Programming Maintenance

The improved preventive programming is based on the PPM strategy. This strategy
minimises the TTPR of all the components by improving the safety of own stocks to
reduce the MTTR and improve efficiency and availability ratios. Ren [30] analysed the
product-service system (PSS) as an important challenge to providers to perform preventive
maintenance based on historical data combined with real-time operational data.

Gharbi [31,32] analysed the effects of joint production and preventive maintenance con-
trols for manufacturing systems, using a make-to-stock strategy and age-based on preventive
maintenance, minimising the inventory cost according to unreliable manufacturing periods.

Hongbing [33] studied the optimisation of preventive maintenance by a joinder of
maintenance and production considering the maintenance costs, processing costs and
completion rewards using the Markov model to form a decision process.

García and Salgado [34] studied the modelling of a multistage machine and preventive
maintenance strategies to improve the machine’s efficiency and availability.

Ferreira [35] introduced the reactive and proactive concepts to evaluate the compo-
nents obsolescence and then a new Key Performance Indicators (KPIS) for a matrix decision
for industrial maintenance evaluation.

This paper studies a real case based on a MultiStage Thermoforming Machine (MSTM).
The objective is focused on the selection of the most appropriate preventive mainte-

nance strategy for the components of the studied machine. For that purpose, the preventive
maintenance strategies PPM and IPPM are studied, and their results compared. Initially
the machine works with PPM strategy. Looking for the improvement of efficiency and
availability, IPPM strategy is proposed for use. Results show that a combination of different
maintenance strategies is more interesting from a cost point of view. In the aim to reach the
objective, the authors propose a methodology for selecting PPM or IPPM strategy for the
components depending on the location of the component and new indicators, defined in
Step 5 in Section 2. This research proposes a n dimensional matrix for that purpose.

2. Materials and Methods

The work carried out in this article is based on the analysis of one year working of the
MSTM. The results obtained with PPM and IPPM strategies are different, so a multicriteria
decision method is studied for selecting the appropriate preventive maintenance strategy
for different components in the same machine. The result of this multicriteria analysis is
the multidimensional matrix proposed and adopted for the machine.

The methodology used in this research and its ordered executed steps, is as follow:

• Step One: First, the MSTM is selected as case study. Then the thermoforming multi-
stage machine is characterised and subsequently all the components are identified and
classified by component type. See Section 3.1;

• Step Two: Definition of the concept Global Operation Condition (GOCi) as an interest-
ing parameter to propose a maintenance strategy. See Section 3.2;

• Step Three: Definition of maintenance times for each component an efficiency and
availability definition. See Section 3.3;

• Step Four: Study and collection the individual maintenance times for each component
in the MSTM. Evaluation of the results of applying the PPM and IPPM strategies
in the same machine in MTTR, TLP, efficiency and availability terms. Evaluation
for each component type. See Sections 3.4 and 3.4.1 for PMM strategy and 3.4.2 for
IPPM strategy. The results provided by the Section 3.4 are not part for the results of
this research, due to the fact that the objective of this research is the selection of the
appropriate preventive maintenance strategy for each component and the results of
this section are the efficiency and availability values for both strategies;

• Step Five: Definition of Key Performance Indicators (KPIs) as the result of pro-
posed expressions based on maintenance times defined and studied in step four.
See Section 3.5.1;
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• Step Six: Proposal of a multidimensional matrix for evaluating the maintenance
strategy suggested for each component in the same MSTM as a combination of a Global
Operation Condition (GOCi), key performance indicators and type of component. See
Section 3.5.2;

Results, discussion, conclusions, and futures research are shown in Sections 4–6.
This paper is organised following the outlined steps.

Other Considerations

If the analysed machine will present a lot of unexpected failures in different types of
components, the authors suggest using FMECA analysis to achieve a better design and
manufacture of the multistage machine.

The definition of the maintenance strategies is lined up to EN 13306:2001. Also, the
new KPIs proposed are not the same that technical groups in EN 15341:2007 but allow new
and interesting results.

3. Case Studied
3.1. Definition of A Multistage Thermoforming Machine and List of Studied Components

Thermoforming and tub-filling machines are one case among the many that exist. This
study covers this type of machine. Figure 1 shows the MSTM and the components’ placement.
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Figure 1. A multistage thermoforming machine of 6 terrines per cycle and its type of components.

These machines comprise several steps, from managing the polymer film, the container
and the lid to the dosage and final cut.

The cycle time in this machine is 4 s, during which six terrines are manufactured.
Standard operation requires the constant coordination of all steps since a failure in one of
them means the global failure and loss of the ongoing production.

There is a master linear axis in the lower part of the machine from the thermal condi-
tioner of the polymer for the container thermoformer to the cutter for finished tubs, which
ensures the coordinated operation of the entire machine (see Figure 1).

A structural, fixed part is usually not subject to wear and tear but must be protected
against corrosion and meet health and food operation conditions. This multistage machine
has many component types. The classification of the components is as follows:
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• Electrical components;
• Electronic components;
• Mechanical components;
• Pneumatic components.

The assignment of the type of component has been made by applying the following criteria:

• Electrical components are all those that works in alternating voltage and current;
• Electronic components are all those that need analog signals of voltage or current

to work. Those components that use electronic control cards and power electronics
equipment in their operating principle, such as thyristors or insulated gate bipolar
transistors, are also included;

• Mechanical components are all those that move or are actuated abruptly. The peristaltic
pump is included in this group since its drive is carried out by a servomotor that
controls the proper dosage. Additionally, the thermocouple sensor is considered
as a mechanical component due to its location is inside of the mechanical base for
thermoforming creating tub (see step 3 in Figure 2) and inside of the mechanical
base for the thermal adhesion (see step 6 in Figure 2). Both mechanical bases are in
constant movement;

• Pneumatic components are all those that require pressurised air for their operation.
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Figure 2. Subprocess in the studied MSTM.

3.1.1. Electrical Components

They are usually inside the control panel, but those that entail human-machine inter-
face (HMI) are on the outer face of the door control panel. Table 1 shows the list of electrical
components in this MSTM, with the failure source and event.

Table 1. Electrical components in the studied MSTM with failure source and event.

Component Failure Source Failure Event

Master power switch Ambient condition, Power supplier event Stop
Plug-in relay Ambient condition, Power supplier event, Unexpected hit Malfunction

Command and signalling Ambient condition, Power supplier event Stop
Safety limit switch Ambient condition, Power supplier event, Unexpected hit Stop

3.1.2. Electronic Components

Electrical components are usually inside the control panel, e.g., the programming logic
controller (PLC) and solid-state relays, but some components can be on the outer face of
the control panel, as with the electrical components that have human-machine interactions.
Sensors are typically distributed around the machine and are subject to degrading and
unexpected hits. Table 2 shows the list of electronic components in this MSTM, with the
failure source and event.
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Table 2. Electronic components in the studied MSTM with failure source and event.

Component Failure Source Failure Event

PLC Ambient condition, Power supplier event Stop
HMI Ambient condition, Power supplier event Stop

Chromatic sensor Ambient condition, Power supplier event Stop
Safety relay Ambient condition, Power supplier event Stop

Temperature controller Ambient condition, Power supplier event, Unexpected hit Stop
Solid-state relay Ambient condition, Power supplier event Stop

Frecuency inverter Ambient condition, Power supplier event Malfunction
Pressure sensor Pressure failure, Global fatigue Malfunction

Servo drive peristaltic pump Ambient condition, Power supplier event Stop
Absolute encoder Ambient condition, Power supplier event, Unexpected hit Malfunction

3.1.3. Mechanical Components

Some are subject to movement, degrading and unexpected hits. They are selected with
fatigue-resistant materials but may be damaged by wear, environmental conditions, and
unexpected hits. Table 3 shows the list of mechanical components in this MSTM, with the
failure source and event.

Table 3. Mechanical components in the studied MSTM with failure source and event.

Component Failure Source Failure Event

Safety button Ambient condition, Power supplier event Stop
Thermal resistance Ambient condition, Power supplier event Malfunction

Thermocouple sensor Global fatigue Malfunction
Motor belt Ambient condition, Power supplier event Stop
Bronze cap Global fatigue Malfunction
Linear axis Global fatigue Malfunction

Linear bearing Global fatigue Malfunction
Peristaltic pump Ambient condition, Power supplier event Stop

Terrine cutter Global fatigue Malfunction

3.1.4. Pneumatic Components

These components are distributed all over the machine and are subject to degrading
and unexpected hits. Table 4 shows the list of pneumatic components in this MSTM, with
the failure source and event.

Table 4. Pneumatic components in the studied MSTM with failure source and event.

Component Failure Source Failure Event

Pneumatic valve Ambient condition, Power supplier event,
Global fatigue, Pressure failure Malfunction

Pneumatic cylinder
Ambient condition, Power supplier event,

Global fatigue, Pressure failure, Failure
pneumatic valve

Malfunction

3.2. Operation Conditions

Operation conditions are different depending on the situation and type de component
selected. In this study, the operation conditions assessed are:

• Work temperature;
• Work Humidity, studied by Ingress Protection rating (IP) according to IEC 62262 [36];
• Impact Protection rating (IK) according to IEC 62262 [36].

Table 5 shows the classification of operation conditions and three operation stages
defined in this study.
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Table 5. Type of operation conditions for temperature, humidity and IK.

Type of Operation Condition Temperature Humidity IK Rating

A Outdoor and ventilated situation Indoor with appropriate IP Indoor and mechanically
protected

B Indoor and ventilated situation Outdoor with appropriate IP Outdoor and protected against
mechanical shock

C Indoor and non-ventilated
situation Outdoor with not appropriate IP Outdoor and not protected

against mechanical shock

The authors propose a definition of Global Operation Condition (GOCi) for each
component as a decisive variable to select the appropriate preventive maintenance strategy
for the “i” component. This GOCi is defined by a sequence of three letters (A, B or C)
that mention the three operation conditions studied in Step 3 in Section 2 (see Table 5). In
general, the structure of a GOCi is expressed at it follows:

• First letter: Temperature condition (A, B or C);
• Second letter: Humidity condition (A, B or C);
• Third letter: IK rating condition (A, B or C).

So, if we consider, for example, a component with a BAA value of GOCi, it means
the following:

• First letter B: Indoor and ventilated situation;
• Second letter A: Indoor with appropriate IP;
• Third letter A: Indoor and mechanically protected.

3.3. Expressions Proposed for the Preventive Maintenance Study

As stated in Section 1, a failure of most components should lead to a global failure in
this type of machine. So, if the critical scenario is studied, the MSTM will present a global
failure if a component fails.

The times studied for the failures [28,29] are:

• TTRP: Time to replace a component;
• TTC: Time to configure;
• TTMA: Time to mechanical adjustment;
• TTPR: Time to provisioning;
• MTTR: Mean time to repair;
• MTTF: Mean time to failure;
• MTBF: Mean time between failure;
• TTLR: Line restart time, defined by expert knowledge;
• TLP: Time lost production.

MTTR (1), TLP (2), MTBF (3), efficiency (4) and availability (5) can be calculated
with these equations. Efficiency and availability are used as indicators of success in
preventive maintenance.

MTTR = TTRP + TTC + TTMA + TTPR (1)

TLP = MTTR + TTLR (2)

MTBF = MTTR + MTTF (3)

Efficiency = 1 − TLP
MTTR + MTTF

(4)

Availability =
MTBF

MTBF + MTTR
(5)
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3.4. Preventive Maintenance Strategies for Multistage Thermoforming Machines

The maintenance strategies studied for this MSTM are PPM and IPPM. The efficiency
and availability results improve by applying the IPPM strategy. However, applying the
IPPM strategy for all the components is not the best scenario for the end user because the
stock costs increase. The value of TTLR for both strategies is set at 14,400 s given by the
user experience of the machine.

3.4.1. Preventive Programming Maintenance

This strategy uses its own times per component (TTPR, TTC, TTMA, TTRP). All the
times are obtained for the usage of the machine. The results are shown in a different table
for each type of component.

Table 6 shows the electrical components times and the value of efficiency and avail-
ability calculated with Equations (4) and (5).

Table 6. Electrical components times in seconds. Efficiency and availability calculated in % with
PPM strategy.

Component MTTR TTPR MTTF TLP Efficiency Availability

Master power switch 14,400 10,800 9,999,999 28,800 99.71% 99.86%
Plug-in relay 14,400 10,800 4,999,999.5 28,800 99.43% 99.71%

Command and signalling 14,400 10,800 4,999,999.5 28,800 99.43% 99.71%
Safety limit switch 14,400 10,800 9,999,999 28,800 99.71% 99.86%

Table 7 shows the electronic components times and the value of efficiency and avail-
ability calculated with Equations (4) and (5).

Table 7. Electronic components times in seconds. Efficiency and availability calculated in % with
PPM strategy.

Component MTTR TTPR MTTF TLP Efficiency Availability

PLC 435,600 345,600 9,999,999 450,000 95.69% 95.99%
HMI 435,600 345,600 9,999,999 450,000 95.69% 95.99%

Chromatic sensor 176,520 172,800 4,999,999.5 190,920 96.31% 96.70%
Safety relay 14,400 10,800 9,999,999 28,800 99.71% 99.86%

Temperature controller 435,600 345,600 9,999,999 450,000 95.69% 95.99%
Solid-state relay 176,400 172,800 4,999,999.5 190,800 96.31% 96.70%

Frecuency inverter 435,600 345,600 9,999,999 450,000 95.69% 95.99%
Pressure sensor 176,700 172,800 4,999,999.5 191,100 96.31% 96.70%

Servo drive peristaltic pump 435,600 345,600 9,999,999 450,000 95.69% 95.99%
Absolute encoder 360,000 172,800 4,999,999.5 374,400 93.01% 93.71%

Table 8 shows the mechanical components times and the value of efficiency and
availability calculated with Equations (4) and (5).

Table 8. Mechanical components times in seconds. Efficiency and availability calculated in % with
PPM strategy.

Component MTTR TTPR MTTF TLP Efficiency Availability

Safety button 14,400 10,800 9,999,999 28,800 99.71% 99.86%
Thermal resistance 25,500 10,800 3,700,800 39,900 98.93% 99.32%

Thermocouple sensor 14,700 10,800 3,700,800 29,100 99.22% 99.61%
Motor belt 187,200 172,800 4,999,999.5 201,600 96.11% 96.52%
Bronze cap 288,000 172,800 7,750,000 302,400 96.24% 96.54%
Linear axis 288,000 172,800 7,625,000 302,400 96.18% 96.49%

Linear bearing 288,000 172,800 7,500,000 302,400 96.12% 96.43%
Peristaltic pump 547,200 518,400 4,999,999.5 561,600 89.88% 91.02%

Terrine cutter 288,000 172,800 9,999,999 302,400 97.06% 97.28%

Finally, Table 9 shows the pneumatic components times and the efficiency and avail-
ability value calculated with Equations (4) and (5).
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Table 9. Pneumatic components times in seconds. Efficiency and availability calculated in % with
PPM strategy.

Component MTTR TTPR MTTF TLP Efficiency Availability

Pneumatic valve 176,400 172,800 9,999,999 190,800 98.13% 98.30%
Pneumatic cylinder 176,400 172,800 9,999,999 190,800 98.13% 98.30%

Figure 3 shows a comparative average ratio for efficiency and availability in the PPM
strategy by component type.
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Electrical components have the higher average values of efficiency and availability,
with a maximum value of 99.71% in efficiency and availability.

Figure 4 also shows the maximum and minimum values for each type of compo-
nent. Here, the minimum efficiency and availability values of electronic and mechanical
components suggest using another maintenance strategy. The machine efficiency and
availability levels depend on the efficiency and availability of all the components. So, the
objective of the maintenance strategy is to achieve higher efficiency and availability for all
the components and not for just many components.

Machines 2022, 10, x FOR PEER REVIEW 10 of 19 
 

 

Figure 4 also shows the maximum and minimum values for each type of component. 
Here, the minimum efficiency and availability values of electronic and mechanical com-
ponents suggest using another maintenance strategy. The machine efficiency and availa-
bility levels depend on the efficiency and availability of all the components. So, the objec-
tive of the maintenance strategy is to achieve higher efficiency and availability for all the 
components and not for just many components. 

 
Figure 4. Maximum and minimum efficiency and availability values in % by type of component 
with the PPM strategy. 

3.4.2. Improve Preventive Programming Maintenance 
The IPPM strategy is based on reducing the TTPR time for all the components by 

increasing the security stocks for the components. The TTPR value in this strategy is a 
residual value consisting in the transport and picking time to machine of the component 
waiting for in the safety stock. 

Table 10 shows the electrical components times and the efficiency and availability 
values calculated with Equations (4) and (5). 

Table 10. Electrical component times in seconds. Efficiency and availability calculated in % with the 
IPPM strategy. 

Component MTTR TTPR MTTF TLP Efficiency Availability 
Master power switch 3900 300 9,999,999 18,300 99.82% 99.96% 

Plug-in relay 3900 300 4,999,999.5 18,300 99.63% 99.92% 
Command and signalling 3900 300 4,999,999.5 18,300 99.63% 99.92% 

Safety limit switch 3900 300 9,999,999 18,300 99.82% 99.96% 

Table 11 shows the electronic components times and the efficiency and availability 
values calculated with Equations (4) and (5). 

Table 11. Electronic component times in seconds. Efficiency and availability calculated in % with 
IPPM strategy. 

Component MTTR TTPR MTTF TLP Efficiency Availability 
PLC 90,300 300 9,999,999 104,700 98.96% 99.11% 
HMI 90,300 300 9,999,999 104,700 98.96% 99.11% 
Chromatic sensor 4020 300 4,999,999.5 18,420 99.63% 99.92% 
Safety relay 3900 300 9,999,999 18,300 99.82% 99.96% 
Temperature controller 90,300 300 9,999,999 104,700 98.96% 99.11% 
Solid-state relay 3900 300 4,999,999.5 18,300 99.63% 99.92% 

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

Electric Electronic Mechanical Pneumatic

Efficiency  % and 
availability %

Type of component

Efficiency,max %

Efficiency,min %

Availability,max %

Availability,min %

Figure 4. Maximum and minimum efficiency and availability values in % by type of component with
the PPM strategy.
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3.4.2. Improve Preventive Programming Maintenance

The IPPM strategy is based on reducing the TTPR time for all the components by
increasing the security stocks for the components. The TTPR value in this strategy is a
residual value consisting in the transport and picking time to machine of the component
waiting for in the safety stock.

Table 10 shows the electrical components times and the efficiency and availability
values calculated with Equations (4) and (5).

Table 10. Electrical component times in seconds. Efficiency and availability calculated in % with the
IPPM strategy.

Component MTTR TTPR MTTF TLP Efficiency Availability

Master power switch 3900 300 9,999,999 18,300 99.82% 99.96%
Plug-in relay 3900 300 4,999,999.5 18,300 99.63% 99.92%

Command and signalling 3900 300 4,999,999.5 18,300 99.63% 99.92%
Safety limit switch 3900 300 9,999,999 18,300 99.82% 99.96%

Table 11 shows the electronic components times and the efficiency and availability
values calculated with Equations (4) and (5).

Table 11. Electronic component times in seconds. Efficiency and availability calculated in % with
IPPM strategy.

Component MTTR TTPR MTTF TLP Efficiency Availability

PLC 90,300 300 9,999,999 104,700 98.96% 99.11%
HMI 90,300 300 9,999,999 104,700 98.96% 99.11%
Chromatic sensor 4020 300 4,999,999.5 18,420 99.63% 99.92%
Safety relay 3900 300 9,999,999 18,300 99.82% 99.96%
Temperature controller 90,300 300 9,999,999 104,700 98.96% 99.11%
Solid-state relay 3900 300 4,999,999.5 18,300 99.63% 99.92%
Frecuency inverter 90,300 300 9,999,999 104,700 98.96% 99.11%
Pressure sensor 4200 300 4,999,999.5 18,600 99.63% 99.92%
Servo drive peristaltic pump 90,300 300 9,999,999 104,700 98.96% 99.11%
Absolute encoder 187,500 300 4,999,999.5 201,900 96.11% 96.51%

Table 12 shows the mechanical components times and the efficiency and availability
values calculated with Equations (4) and (5).

Table 12. Mechanical component times in seconds. Efficiency and availability calculated in % with
the IPPM strategy.

Component MTTR TTPR MTTF TLP Efficiency Availability

Safety button 3900 300 9,999,999 18,300 99.82% 99.96%
Thermal resistance 15,000 300 3,700,800 29,400 99.21% 99.60%
Thermocouple sensor 4200 300 3,700,800 18,600 99.50% 99.89%
Motor belt 14,700 300 4,999,999.5 29,100 99.42% 99.71%
Bronze cap 115,500 300 7,750,000 129,900 98.35% 98.55%
Linear axis 115,500 300 7,625,000 129,000 98.32% 98.53%
Linear bearing 115,500 300 7,500,000 129,900 98.29% 98.51%
Peristaltic pump 29,100 300 4,999,999.5 43,500 99.14% 99.42%
Terrine cutter 115,500 300 9,999,999 129,900 98.72% 98.87%

Finally, Table 13 shows the pneumatic components times and the efficiency and
availability values calculated with Equations (4) and (5).

Table 13. Pneumatic component times in seconds. Efficiency and availability calculated in % with the
IPPM strategy.

Component MTTR TTPR MTTF TLP Efficiency Availability

Pneumatic valve 3900 300 9,999,999 18,300 99.82% 99.96%
Pneumatic cylinder 3900 300 9,999,999 18,300 99.82% 99.96%

As with Figures 3 and 5 shows a comparative average ratio for efficiency and avail-
ability in the IPPM strategy by component type.
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Figure 5. Average efficiency and availability values in % by component type with the IPPM strategy.

When comparing Figures 3 and 5, the efficiency and availability increase their values
in all components, especially in pneumatic components. Electronic and mechanical compo-
nents also increase their values. Figure 6 show the minimum and maximum new efficiency
and availability values when applying the IPPM strategy.
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Figure 6. Maximum and minimum efficiency and availability values in % by component type with
the IPPM strategy.

A simple comparison between Figures 4 and 6 show the increase obtained in pneu-
matic components by applying the IPPM strategy. Their efficiency and availability levels
improve to above 99.82% values. Electronic and mechanical components also improve
their minimum efficiency and availability values by 3.09% and 2.81% for electronic com-
ponents and 8.42% and 7.48% for mechanical components. Increasing the components’
minimum efficiency and availability values allows for improving MSTM efficiency and
availability globally.

3.5. Selection of Preventive Maintenance Strategies

The results obtained by applying the PPM and IPPM strategies show very interesting
efficiency and availability values, but in the same machine, as is well-known, all the
components do not have to use the same maintenance strategy. In this section, the authors
propose a singular study that allows for selecting the best strategy for each component.
This selection depends on parameters such as type of component, operation condition and
own time values of all the components.
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3.5.1. Parameter for the Selection under Study

An analysis of the results obtained when applying PPM and IPPM shows that compo-
nent type is an important parameter for deciding on preventive maintenance strategy. For
example, applying IPPM in electrical components does not show a remarkable increase, so
the conclusion could be not applying IPPM in electrical components.

The operation conditions in Table 5 denote the relevance of the adequate operation
conditions for all the components by selecting the appropriate tolerance to temperature
and an appropriate value of IP and IK ratings. A high-quality component working in
inadequate operation conditions, compared with their datasheet, could entail unexpected
failures and a decrease in efficiency and availability of the MSTM. Each component may
have an individual condition, shown by three letters A, B or C for this study.

Attending to the definition of each operation condition, it is easy to understand that
many combinations of operation conditions cannot exist simultaneously. For example,
a component cannot be located indoors and outdoors, so combinations such as AAA
are impossible.

Individual maintenance times of all the components allow for knowing the influence
of the MMTR and TLP times in the efficiency and availability of the MSTM, so for this
study, these KPIs are used:

KPI1 = (MTTR − TTPR)/MTTR (6)

KPI2 = TTPR /TLP (7)

Equation (6) states the influence of the TTPR in MTTR. For this KPI1 singular value is
used at 25% result.

Equation (7) also shows the influence of the TTPR in the TLP (see Equation (2)). A
Higher value of TTPR greater than TLR could entail a considerable stop time in the MSTM
and the assumption of undesirable opportunity costs. In this KPI2, the singular value used
is 70% result.

3.5.2. N-Dimensional Matrix for Preventive Maintenance Selection

Using the three parameters explained in the previous subsection, an n-dimensional
matrix is proposed to select the appropriate maintenance strategy for the component, where
n is set in five dimensions:

• Operation condition;
• Type of component;
• Value of Equation (6);
• Value of Equation (7);
• Combination of Equations (6) and (7) values.

To understand and use this 5-dimension matrix, the authors propose a plane conver-
sion in which the operation condition is the column, and the rest of the conditions are fixed
in mixed lines, as shown in Table 14.

Table 14. N-dimensional matrix for preventive maintenance selection in MSTM.

Type of Component KPI
Operation Condition

ABB ABC ACB ACC BAA CAA

Electrical

KPI1 > 25%
KPI2 < 70% II III II III II II

KPI1 < 25% I II II II I II
KPI2 > 70% III III III III III III

Electronic

KPI1 > 25%
KPI2 < 70% II III III III II III

KPI1 < 25% II III II III II III
KPI2 > 70% III III III III III III
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Table 14. Cont.

Type of Component KPI
Operation Condition

ABB ABC ACB ACC BAA CAA

Mechanical

KPI1 > 25%
KPI2 < 70% II III II III II III

KPI1 < 25% I III I III I III
KPI2 > 70% III III III III III III

Pneumatic

KPI1 > 25%
KPI2 < 70% II III III III III III

KPI1 < 25% II III II III III III
KPI2 > 70% III III III III III III

Selection I indicates PPM strategy; selection III indicates IPPM strategy, and; selection II shows an intermediate
situation between PPM and IPPM strategies, where there is a special consideration of the necessary constant for
analysing the TTPR of each component. Selection II is called “Interval PPM to IPPM strategy” in this paper.

4. Results

Applying the n-dimensional matrix for the preventive maintenance strategy in the
components of a multistage thermoforming machine allows for improving efficiency and
availability. Table 15 shows the application of the n-matrix in this study.

Table 15. Results and comparison of the application of n-dimensional matrix for maintenance
strategy decision.

PPM Strategy IPPM Strategy N-MATRIX PROPOSAL

Component Efficiency Availability Efficiency Availability Efficiency Availability Maintenance Strategy

Master power switch 99.71% 99.86% 99.82% 99.96% 99.71% 99.86% PPM
PLC 95.69% 95.99% 98.96% 99.11% 98.96% 99.11% IPPM
HMI 95.69% 95.99% 98.96% 99.11% 98.96% 99.11% IPPM
Chromatic sensor 96.31% 96.70% 99.63% 99.92% 99.63% 99.92% IPPM
Plug-in relay 99.43% 99.71% 99.63% 99.92% 99.43% 99.71% PPM
Command and signalling 99.43% 99.71% 99.63% 99.92% 99.43% 99.71% PPM
Safety limit switch 99.71% 99.86% 99.82% 99.96% 99.71% 99.86% PPM
Safety relay 99.71% 99.86% 99.82% 99.96% 99.71% 99.86% PPM
Safety button 99.71% 99.86% 99.82% 99.96% 99.71% 99.86% PPM
Temperature controller 95.69% 95.99% 98.96% 99.11% 98.96% 99.11% IPPM
Solid-state relay 96.31% 96.70% 99.63% 99.92% 99.63% 99.92% IPPM
Thermal resistance 98.93% 99.32% 99.21% 99.60% 98.93% 99.32% Interval PPM to IPPM
Thermocouple sensor 99.22% 99.61% 99.50% 99.89% 99.22% 99.61% Interval PPM to IPPM
Frequency inverter 95.69% 95.99% 98.96% 99.11% 98.96% 99.11% IPPM
Motor belt 96.11% 96.52% 99.42% 99.71% 99.42% 99.71% IPPM
Bronze cap 96.24% 96.54% 98.35% 98.55% 96.24% 96.54% PPM to IPPM Interval
Linear axis 96.18% 96.49% 98.32% 98.53% 96.18% 96.49% PPM to PPM Interval
Linear bearing 96.12% 96.43% 98.29% 98.51% 96.12% 96.43% PPM to PPM Interval
Pneumatic valve 98.13% 98.30% 99.82% 99.96% 99.82% 99.96% IPPM
Pneumatic cylinder 98.13% 98.30% 99.82% 99.96% 99.82% 99.96% IPPM
Pressure sensor 96.31% 96.70% 99.63% 99.92% 99.63% 99.92% IPPM
Servo drive peristaltic
pump 95.69% 95.99% 98.96% 99.11% 98.96% 99.11% IPPM

Peristaltic pump 89.88% 91.02% 99.14% 99.42% 99.14% 99.42% IPPM
Terrine cutter 97.06% 97.28% 98.72% 98.87% 97.06% 97.28% PPM to IPPM Interval
Absolute encoder 93.01% 93.71% 96.11% 96.51% 93.01% 93.71% PPM to IPPM Interval

The comparison of combined average values for all the components by efficiency and
availability is shown in Figure 7.

The average values show that a mixed preventive maintenance strategy for the com-
ponents in a machine is an efficient solution to reach reasonable values of efficiency and
availability. The IPPM strategy provides better results for all the components but can
increase the maintenance cost for the whole machine, due to PPM strategy does not need
stock of components and IPPM strategy that needs stock for all the components (see the
beginning of the Section 3.4.2.).
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Figure 7. Comparison of mixed average values in applying the PPM strategy, the IPPM strategy and
the n-dimensional matrix preventive maintenance proposal.

5. Results Discussion

The results obtained showed an optimisation procedure to select the appropriate
maintenance strategy for different components in a multistage machine. Table 16 shows
the efficiency and availability improvements comparing PPM and IPPM strategies for type
of component.

Table 16. Efficiency and availability improvements comparing PPM and IPPM strategies for type
of component.

Type of
Component

Efficiency
Maximum %

Efficiency
Minimum %

Availability
Maximum %

Availability
Minimum %

Efficiency
Average

Availability
Average

Electrical 0.10% 0.21% 0.10% 0.21% 0.16% 0.16%
Electronic 0.10% 3.09% 0.10% 2.81% 2.95% 2.82%

Mechanical 0.10% 8.42% 0.10% 7.48% 2.37% 2.22%
Pneumatic 1.69% 1.69% 1.66% 1.66% 1.69% 1.66%

For Electrical components, the possibility to not use IPPM strategy selected for a
component that only needs PPM strategy is an improve of the global maintenance strategy
for the machine. See maximum, minimum and average compared values of efficiency and
availability in electrical components.

In the case of Electronic and Mechanical components, the IPPM application improves
the efficiency and availability values; this is also demonstrated in Pneumatic components,
with minor improvement values in efficiency.

The application of n dimensional matrix can reduce maintenance costs. In this ma-
chine, the application of different strategies for each component supposes a change in
the number of components that require stock due to their strategy adopted. Table 15
shows the maintenance strategy proposed for n-matrix. Table 17 shows the number of
each component used in the MSTM and then compares the number of those that need
stock depending on their maintenance strategy adopted, PPM, IPPM and n-matrix. In the
outlined comparison data, the authors use two scenarios with n-matrix:

• Scenario one. The denominated “PPM to IPPM Interval“ used in Table 15 is declined
to PPM strategy, so the components do not need stock;

• Scenario two. The denominated “PPM to IPPM Interval“ used in Table 15 is declined
to IPPM strategy, so the components need stock.
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Table 17. Comparing the number of type of components that require stock due to the maintenance
strategy adopted.

Number of Type
Component Component

Number of Components Who Require Stock due to Their Maintenance Strategy Adopted

PPM Strategy IPPM Strategy N-Matrix (Scenario One) N-Matrix (Scenario Two)

1 Master power switch 0 1 0 0
1 PLC 0 1 1 1
1 HMI 0 1 1 1
1 Chromatic sensor 0 1 1 1
3 Plug-in relay 0 3 0 0
1 Command and

signalling 0 1 0 0
1 Safety limit switch 0 1 0 0
1 Safety relay 0 1 0 0
1 Safety button 0 1 0 0

4 Temperature
controller 0 4 4 4

4 Solid state relay 0 4 4 4
4 Thermal resistance 0 4 0 4
4 Thermocouple sensor 0 4 0 4
2 Frequency inverter 0 2 2 2
2 Motor Belt 0 2 2 2
8 Bronze cap 0 8 0 8
1 Linear axis 0 1 0 1
8 Linear bearing 0 8 0 8
4 Pneumatic valve 0 4 4 4
6 Pneumatic cylinder 0 6 6 6
2 Pressure sensor 0 2 2 2
1 Servo drive

peristaltic pump 0 1 1 1
3 Peristaltic pump 0 3 3 3
1 Terrine cutter 0 1 0 1
1 Absolute encoder 0 1 0 1

The application of n-matrix supposes a decrease in number of components that re-
quired stock due to the maintenance strategy adopted. According to Table 17, Figure 8
shows the global number of components that require stock due to their maintenance strategy.
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Figure 8. Comparison of the global number of components that require stock due to the maintenance
strategy adopted.

Depending on the scenario adopted with n-matrix, the decrease in the number of
components that require stock is between 12.12% and 53.03%. It is easy to understand that
this decrease will mean decreases in maintenance costs.

Additionally, as Figure 7 shows, the efficiency and availability ratios are maintained
in higher values. For more understanding, the authors consider relevant the analysis of
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efficiency and availability values with the application of PPM, IPPM and n-dimensional
matrix strategies as follows:

• The comparison of PPM and n-dimensional matrix strategies, shown in Figure 7,
indicates an improve of 1.65% in efficiency and 1.6% in availability.

• The comparison of IPPM and n-dimensional matrix strategies indicates a decrease of
0.51% in efficiency and 0.48% in availability.

• The comparison of PPM and IPPM shows the higher average values, situated at 2.16%
in efficiency and 2.08% in availability.

So, the decrease in values of efficiency and availability caused by the application of
n-matrix compared with IPPM strategies allows for applying the n-dimensional matrix for
the optimal strategy for each component.

The authors consider that the results shown in Table 14 indicate that the KPI1 and
KPI2, defined in Section 3.5.1, suggest a precise cost study for the best decision making.
This study can offer the negative impact of a component failure due to its main time to
repair and line restart time, as a new dimension for the proposed matrix.

Table 15 shows a Maintenance Strategy called PPM to IPPM Interval. For real case,
a strategy PPM or IPPM must be selected for this component, so the authors consider
important the cost analysis for this decision.

6. Conclusions

The preventive maintenance strategy for all the components of a multistage machine
depends on the individual maintenance times and depends on the operation condition
of each type of component. In this way, the definition of the Global Operation Condition
(GOCi.) for each component allows for the study of the optimal preventive maintenance
strategy used, PPM or IPPM.

The authors consider the application of the methodology used in this research rele-
vant, step by step, for other industrial multistage or single machines, due to the fact that
multistage and single machines need an appropriate preventive maintenance strategy for
all their components.

Obtaining an n-dimensional matrix to select the best preventive maintenance strategy
by type of component allows for maintaining a higher values of efficiency and availability
for type of components. A minor decrease compared with IPPM strategy (see Table 16)
is offset by the decrease on stock cost. The end users of the industrial multistage or
single machines always need information and procedures to applying the appropriate
maintenance strategy, so this contribution allows them to fulfill that need.

The location of a component in the machine allows for knowing the Global Operation
Condition (GOCi) depending on the individual maintenance times and makes it possible
to find the same type of components with different preventive maintenance strategies
proposed by the n-dimensional matrix. In this way, the results shown and discussed in this
research can be interesting for the industrial machinery manufacturer, by the preliminary
study of the optimal operation condition for each component of the machine.

For the preventive maintenance strategy, it is necessary to study the individual main-
tenance times as it shown in Section 3.3. Additionally, the analysis of the individual values
of TTPR, TLP, MTTR for each component allows for calculating the KPI’s used by the
n-dimensional matrix. These KPIs are different, as shown in EN 15341:2007, but allow
new results.

For a more precise decision with the PPM to IPPM Interval maintenance strategy
proposed by the n-dimensional matrix (see Table 15), it will be interesting to study the cost
of all the components as a new dimension of the matrix.

The authors consider the following future research:
With the applied methodology of this research and given the recent increase in materi-

als costs, it is suggested to study the analysis of the impact and variation in the cost of the
components to decide the best preventive maintenance strategy, using a new dimension
n-dimensional matrix.
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Selective study of the suitability of components with high TTPR in multistage machines
significantly influences the efficiency and availability of the industrial multistage machine.
This study can determinate the maximum TTPR to maintain the adequate preventive
maintenance strategy and then suggest the possible change of the component for another
with minor TTPR.

Application of n-dimensional matrix in other multistage industrial machines. Results
and comparison of the same used methodology in this research.

Adding predictive maintenance strategy in n-dimensional matrix for undefined inter-
val PPM and IPPM maintenance strategies.
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Abstract: Making the correct maintenance strategy decision for industrial multistage machines
(MSTM) is a constant challenge for industrial manufacturers. Preventive maintenance strategies
are the most popular and provide interesting results but cannot prevent unexpected failures and
consequences, such as time lost production (TLP). In these cases, a predictive maintenance strategy
should be used to maintain the appropriate level of operation time. This research aims to present a
model to identify the component that failed before its mean time to failure (MTTF) and, depending on
whether the cause of the failure is known, propose the use of a predictive maintenance strategy and
further decision-making to ensure the highest possible value from operating time. Also, it is necessary
to check the reliable value of MTTF before taking certain decisions. For this research, a real case
study of a MSTM was characterized component by component, setting the individual maintenance
times. The initial maintenance strategy used for all the components is the preventive programming
maintenance (PPM). If a component presents an unexpected failure, a method is proposed to decide
whether the maintenance strategy should be changed, adding a predictive maintenance strategy to
monitor said component. The research also provides a trust level to evaluate the reliable value of
MTTF of each component. The authors consider this approach very useful for machine manufacturers
and end users.

Keywords: predictive maintenance; multistage machine; sensorisation; decision-making; mean time
to failure; algorithm; system

1. Introduction

Multistage machines (MSTM) are quite common in the manufacturing processes
industry. These machines are more complex than single-stage machines. The diversity of
components and coordinated steps or successive transformations they perform entails the
need to establish an adequate maintenance strategy for each component.

It is very important to bear in mind that a failure in one of the components of a
multistage industrial machine can lead to a failure in the whole machine. Due to this
condition, the best maintenance policy must combine the most suitable strategies for each
component. Different components of the same multistage machine may well have different
maintenance strategies depending on their maintenance parameters that affect their mean
time to repair (MTTR). Once the component has been repaired or substituted, the machine
must return to its normal work rhythm and needs time to restart the line (TTLR).

The success in the use of these machines is to meet high demands without unexpected
failures that involve the loss of production in progress and a high operation recovery time.
Due to this, it is very important that the components of the machine are reliable. If these
components have an individual MTTF, this time must be reliable to establish maintenance
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policies that allow for optimizing the stop-operation time; it is necessary to have the
right components, and reliable MTTF. Also it is very important that the main devices and
location components used in the MSTM are correct, in order to eliminate avoidable failures.
If the MTTF is reliable, it is therefore possible to program the preventive maintenance,
so it is necessary to establish the adequate time to maintenance that does not affect the
scheduled production.

Preventive maintenance is the most popular strategy in industrial manufacturing
systems. Therefore, there must be an adequate level of stocks of components based on
a mathematical model proposed in the decision-making strategy. The optimal decision
process for setting time to production and time to maintenance programming is studied by
A. Gharbi [1], namely, how to develop a mathematical model based on the cost for optimal
decision making. A. Gharbi’s [2] research also found the most appropriate production rate
and preventive maintenance schedule that minimizes the total cost of maintenance and
inventory/backlog in periodic preventive maintenance.

As already known, for established scheduled preventive times, is important to define
what to do in these times. MTTR considers time to provisioning, time to replacement or
removal of component, time to configuration or setting and time to mechanical adjustments.
H. Jun-Hee [3] proposed in his research that periodic machine maintenance for single
machines and flow-shop scheduling models should be based on an algorithm, minimizing
the total weighted completion time. His work defines two principal maintenance actions,
setup operations and removal operations, in a production system based on a sequence
of single-stage machines. If a removal or setting time is required, a lateness time must
be considered. As an in-line process needs to be functioning with stage coordination, is
very important to measure the operation times and make the maintenance decisions. If
the functioning of the MSTM requires setting maintenance operations during the times of
normal operations, this can affect the cycle operation time of the whole machine, and some
lateness times must be studied before the maintenance of the machine begins. Other studies
have proposed how to realize the appropriate preventive maintenance with imperfect
actions, while continuing the normal operation condition, as J. Zuhua [4] showed how
to create function blocs in a Programming Logic Controller (PLC) with a previous data
acquisition system.

But the important question for preventive maintenance is how to accomplish it, and
what might be the appropriate procedure, depending on the system’s definition and its
complexity. Hernández, D.R. [5] modeled a discrete-time infinite horizon Markov Decision
Problem, and F. Chiacchio [6] a stochastic-hybrid reliability model. Other studies, such
as M. Fujishima [7], have calculated the optimal time to start preventive maintenance
before an unexpected failure. A recent study by A. Irfan [8] modelled a series-parallel
system, proposing a reliability model using a Lagrangian optimization method to guarantee
MTTF values and avoid unexpected failures. Also, when an unexpected failure occurs,
some essential information should be known. For example, the cause of the failure is
important, whether the cause stems from a poor design of the machine or an incorrect
location of the component, or whether the cause can be eliminated altogether to restore the
machine’s functioning with a higher level of availability and security. Also, it is important
to determine whether the cause is a normal or an occasional (infrequent) situation.

All the components of a machine are always subject, at least, to the laws of degradation.
Therefore, even working in its ideal operating conditions, the component will end up
failing. In this sense, it would be appropriate to be able to calculate the reliability, as in D.M.
Frangopol [9], of the component in the whole machine. However, this study is very complex
and normally the manufacturer of the components only defines normal working conditions
and sometimes the operating time. Therefore, it is necessary to study models that evaluate
whether the component is suitable for the machine and if it is, whether it is so in the
normal operation of the machine. G. Silva [10] proposes a model to decide on the most
suitable maintenance strategy for the obsolescence of electronic components by creating
a decision-making tool, and analyzing the risks, the obsolescence of the components and
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the consequences of a failure. Recent research by Garcia, F.J.Á. and Salgado, D.R. [11] has
proposed a matrix to decide the optimal preventive maintenance strategy based on the
individual maintenance times of all the components, their approximate location (global
operation condition (GOC)) in the machine, and two key performance indicators (KPIs).
The results of both papers describe situations where the component may have different
maintenance strategies. If a component fails multiple times, a failure mode and effect
analysis (FMEA) can be the solution for finding a design error in the machine, in the
component, or an inadequate component selection for the normal operation condition
required by the machine. In this way, T. Yuk-Ming [12] has highlighted the importance of
product design in the future reliability of the components that must work within certain
operating conditions. Product design and functional performance have been shown to be
the main research foci in this area.

Predictive maintenance strategies have been shown to be able to avoid unexpected
failures by monitoring the operation of the machine using sensors (P. Ponce [13]) and
machine learning algorithms to know the normal behavior of the components or of the
machine. Dolatabadi, S.H. [14] has provided an overview of past articles highlighting the
major expectations, requirements, and challenges for small and medium-sized enterprises
(SMEs) regarding the implementation of predictive maintenance (PdM). Normally, the PdM
based on algorithms have several steps: data acquisition, data manipulation, configuration,
aggregation, and prediction model (the condition monitoring sub-model); and maintenance
decision-making, scheduling, and status (the maintenance sub-model). Sometimes, the
main algorithm or calculating process is embedded in a PLC, as discussed in Cavalieri,
S. [15] and Bouabdallaoui, Y.S. [16].

The study by Garcia, F.J.Á. and Salgado, D.R. [17] described a way to present the
available strategies for multistage industrial machines. Their paper describes preventive
strategies (with or without stock) and developed predictive strategies like digital behavior
twin (DBT), composed of an algorithm with no need to learn normal behavior. S. Giv-
nan [18] studied the normal behavior of the components of an industrial machine for
early failure detection by using a machine learning model based on feed-forward neuronal
networks trained to identify normal and abnormal behavior. One of the best advantages of
the algorithms and the machine learning models is the time necessary to train the model
to identify the normal behavior of the machine. Industries need, to the degree possible,
simple, fast and reliable systems to take decisions about the availability of their machines
in order to avoid unexpected failures. M.M.L. Pfaff [19] developed and tested an adaptive
algorithm in a real environment. This algorithm created a dynamic limit value using an
adaptive characteristic value segmentation. The paper also studied the location of the
sensors for predictive maintenance and confirmed that location can significantly affect the
measurement result and, thus, has a direct impact on the outcome of the data analysis.
One of the advantages of this research is that there is no need to train the algorithm; the
application does not require in-depth process knowledge.

As the technical decisions to take maintenance actions can be provided by the analy-
sis of technical data, normal behavior trained, or not trained, by the adopted predictive
algorithm, some authors have mixed the machine learning study with the cost of the
maintenance to take global predictive maintenance decisions, as in E. Florian [20] and
S.Arena [21], by using, in this case, the Decision Tree technique (DTs) process of implement-
ing predictive maintenance (PdM) and also detecting potential failures (identified through
FMEA analysis) and evaluating direct and indirect maintenance costs. It is very important
to evaluate a FMEA analysis where a possible failure design of the machine can be the
reason of repeated failures.

The digital twin (DT) concept, based on cyber physical systems (CBS) (C. Stary [22]),
is a good way to study predictive maintenance and the behavior of the machine if it works
under different operating conditions. J. O’Sullivan [23] studied the adoption of digital
twins by the maintenance engineering industry to aid in predicting problems before they
occur. The algorithm used provided three alarm levels to identify action before a failure.
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But not all MSTM can be modelled with a digital twin, due to the fact that these machines
normally are highly customized and adapted to the needs of each end user, and therefore
since they are not mass-produced, they would require the development of their specific
digital twin.

New models embedded in industry 4.0 and created to control corrective maintenance
actions are based on a system built on the augmented reality (AR) or computer vision (CV).
These systems are used when the machine must be maintained with non-expert operators,
and the support of the system can drive the maintenance action with the most success, and
in the optimal time. As it can understand the machine, this supporting system minimizes
the MTTR and lets the availability of the machine remain in the highest degree possible.
Similarly, the work of Konstantinidis, F.K. [24] and Z. Haihua [25] also attempts to solve
unexpected failures that are not stored in the maintenance-experience database.

Little of the literature focuses on the simultaneous study of different preventive and
predictive maintenance strategies at the same time in the same system. In the case of
the MSTM, such studies are non-existent. An interesting paper of H. Wang [26] focuses
on a DT-enabled integrated optimization problem of flexible job shop scheduling and
flexible preventive maintenance (PM), considering both machine and worker resources.
This approach is interesting, particularly if it is possible to open a flexible window to
preventive maintenance actions and let the system constantly work with the monitoring of
predictive maintenance policy. The architecture of a DT-enhanced job shop is developed,
and then the end user has a method to take decisions for the maintenance actions.

This research aims to present a model to identify the component that has failed
before its MTTF and, depending on whether or not the cause of the failure is known and
the time to restart the normal functioning of the machine, propose the use of a predictive
maintenance strategy and further decision-making to ensure the highest possible value from
the machine’s operating time. For this research, a real case study has been characterized
component-by-component, studying the individual maintenance times to obtain the time
lost production (TLP) for each component. Figure 1 shows the features of a multistage
machine and the conditions on which the proposed maintenance strategies are based.

Figure 1. Features of a MSTM and main conditions of maintenance policy.

This approach determines the focus of the maintenance strategies, which are always
aimed at rapid response, and calculated to avoid unexpected failures, and minimize TLP.

2. Materials and Methods

The machine worked for a year with a preventive maintenance system based on
the previously characterized components. An algorithm for predictive maintenance was
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adopted in the beginning, but only to advise if a component had failed before its MTTF.
The authors used a digital behavior twin algorithm [17] for predictive maintenance in this
case. A comparison of the components that presented failures before their MTTF is given
below. The results allow future users to add predictive maintenance for the components
needing supervision to avoid unexpected failures and probable industrial costs for lost
production time and quality production.

Below is the methodology used in this research, ordered by steps:

• Step One: The multistage thermoforming machine was selected as the case study. This
machine was characterized, and all the components were identified and classified by
type. See Section 2.1.

• Step Two: Reliable maintenance times were defined for each component. Importantly,
an adequate MTTF was established for each component. See Section 2.2.

• Step Three: Possible preventive maintenance strategies were defined, and predictive
maintenance strategies adopted. See Section 2.3.

• Step Four: The components that presented a failure before their MTTF after a year of
working were studied. See Section 2.4.

• Step Five: For all of the components, the advice shown by the DBT predictive algo-
rithm was presented to ascertain which failures could be identified before occurring
unexpectedly. The advice does not entail a change of maintenance strategy. The only
purpose of these dates was for use in data logging. See Section 2.5.

• Step Six: The authors proposed a procedure to make decisions for possible mainte-
nance strategy changes in the components studied by looking for the cause of the
failure and then by evaluating two key performance indicators (KPIs). See Section 2.6.

The results, discussion, conclusions, and future research are shown in Sections 3–5.

2.1. The Case Study: A Multistage Thermoforming Machine

Thermoforming and tub filling machines are one of many cases, and this study covers
this type of machine. Figure 2 shows the MSTM and the placement of the components. The
seven steps are identified, together with the main operation in each of them.

Figure 2. A multistage thermoforming machine of six terrines per cycle and its type of components.
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This machine has a cycle time of 4 s, and the thermoforming mold allows the manu-
facture of 6 terrines for each cycle time. So, for each cycle time, seven steps constantly work
in coordination.

The proper sequence of steps depends on the programmable logic controller (PLC)
inside the electrical panel. The PLC receives all the information provided by sensors and
takes decisions for all the actuators at the correct moment.

All the steps may have electrical, electronic, mechanical, and pneumatic components
distributed for the whole industrial multistage machine. The adequate state of all the
components allows for the correct functioning of the machine and avoids unexpected
failures. It is easy to understand that the accumulated work time may affect the state of
the components. Due to this and other considerations such as ambient conditions, power
supplier events, normal degradation of mechanical components, compressed air system
failure or jams in the peristaltic pumping system (step 4), unwanted mechanical shocks can
be the origin of unexpected failures in the components and consequently in the industrial
multistage machine.

The components of this machine and their type can be seen in Table 1. Many compo-
nents may have a number greater than one. Also, the figure indicates the possible failure
source and the consequences of the failure event.

Table 1. List of components in the industrial multistage machine.

Type of Component Component Cause of Failure Failure Event

Electrical

Master power switch Ambient condition, Power supplier event Stop
Plug-in relay Ambient condition, Power supplier event, Unexpected hit Malfunction Stop

Command and signalling Ambient condition, Power supplier event Stop
Safety limit switch Ambient condition, Power supplier event, Unexpected hit Stop

Electronic

PLC Ambient condition, Power supplier event Stop
HMI Ambient condition, Power supplier event Stop

Chromatic sensor Ambient condition, Power supplier event Stop
Safety relay Ambient condition, Power supplier event Stop

Temperature controller Ambient condition, Power supplier event, Unexpected hit Stop
Solid state relay Ambient condition, Power supplier event Stop

Belt drive Ambient condition, Power supplier event Malfunction
Pressure sensor Pressure failure, Global fatigue Malfunction

Servo drive peristaltic
pump Ambient condition, Power supplier event Stop

Absolute encoder Global fatigue, Mechanical hit Malfunction

Mechanical

Safety button Ambient condition, Power supplier event Stop
Thermal resistance Ambient condition, Power supplier event Malfunction

Thermocouple sensor Global fatigue Malfunction
Belt motor Global fatigue Stop
Bronze cap Global fatigue Malfunction
Linear axis Global fatigue Malfunction

Linear bearing Global fatigue Malfunction

Peristaltic pump Ambient condition, Power supplier event, compressed air
system failure Stop

Terrine cutter Global fatigue Malfunction

Pneumatic Pneumatic valve Global fatigue Malfunction
Pneumatic cylinder Pressure failure, Failure valve Malfunction

2.2. Maintenance Times for Each Component

Once the industrial thermoforming machine has been characterized, the individual
maintenance times required for each component must be studied to adopt the most ap-
propriate preventive maintenance strategy policy accordingly. For this purpose, many
individual times and equations are used and presented in this study, which has been
provided by J. Jiři [27] and G. Liberopoulos [28].

• TTRP Time to replace a component
• TTC Time to configure
• TTMA Time to mechanical adjustment
• TTPR Time to provisioning
• MTTR Mean time to repair
• MTTF Mean time to failure



Systems 2022, 10, 175 7 of 20

• MTBF Mean time between failure
• TTLR Line restart time, defined by expert knowledge
• TLP Time lost production

MTTR (1), TLP (2), and MTBF (3) can be calculated with these equations. Efficiency
and availability are used as indicators of success in preventive maintenance.

MTTR = TTRP + TTC + TTMA + TTPR (1)

TLP = MTTR + TTLR (2)

MTBF = MTTR + MTTF (3)

After defining the times and expressions, Table 2 presents the individual maintenance
times in seconds for each component in this research. For this machine, the end users and
original equipment manufacturer (OEM) have suggested, with their knowledge based on
the experience of use, manufacture and maintenance, the fixing of individual maintenance
as its shown in Table 2 and global TTLR at 14,400 s.

Table 2. Individual maintenance times in s for all the components in the industrial multistage machine.

Component MTTR TTPR MTTF TLP

Master power switch 14,400 10,800 9,999,999 28,800
PLC 435,600 345,600 9,999,999 450,000
HMI 435,600 345,600 9,999,999 450,000
Chromatic sensor 176,520 172,800 5,000,000 190,920
Plug-in relay 14,400 10,800 5,000,000 28,800
Command and signalling 14,400 10,800 5,000,000 28,800
Safety limit switch 14,400 10,800 9,999,999 28,800
Safety relay 14,400 10,800 9,999,999 28,800
Safety button 14,400 10,800 9,999,999 28,800
Temperature controller 435,600 345,600 9,999,999 450,000
Solid state relay 176,400 172,800 5,000,000 190,800
Thermal resistance 25,500 10,800 3,700,800 39,900
Thermocouple sensor 14,700 10,800 3,700,800 29,100
Belt drive 435,600 345,600 9,999,999 450,000
Belt motor 187,200 172,800 5,000,000 201,600
Bronze cap 288,000 172,800 7,750,000 302,400
Linear axis 288,000 172,800 7,625,000 302,400
Linear bearing 288,000 172,800 7,500,000 302,400
Pneumatic valve 176,400 172,800 9,999,999 190,800
Pneumatic cylinder 176,400 172,800 9,999,999 190,800
Pressure sensor 176,700 172,800 5,000,000 191,100
Servo drive peristaltic pump 435,600 345,600 9,999,999 450,000
Peristaltic pump 547,200 518,400 5,000,000 561,600
Terrine cutter 288,000 172,800 9,999,999 302,400
Absolute encoder 360,000 172,800 5,000,000 374,400

For this type of machine, both components used at the beginning, as well as those
that have presented failures, are completely new units, not ones restored by the technical
service of each component manufacturer. For necessary components replacements, only in
the case of the pneumatic cylinder is it possible to repair the unit by substituting internal
components for new components. All other components are replaced by new units.

2.3. Maintenance Strategies

In this section, two preventive maintenance strategies are presented, and one predic-
tive maintenance strategy is used:

• Preventive maintenance, based on the MTTF of each component, to avoid unexpected
failures during the work process.
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• Improved preventive maintenance, based on the above but minimizing the TTPR of
each component.

• Digital behavior twin (DBT) for predictive maintenance.

2.3.1. Preventive Programming Maintenance (PPM)

This strategy is based on the MTTF of each component and proposes inspecting and
replacing the component once the worked time reaches the MTTF. This is the maintenance
strategy adopted for all the components at the beginning of this study.

Once the decision to replace a component is taken, a decision based on its MTTF, lost
production time is necessary for the corresponding maintenance operation. As shown by
Equation (1), if the MTTR is higher than the value of TTPR, a new maintenance policy can
be used to minimize the MTTR. This policy entails an increase in security stocks. Figure 3
shows the ratio TTPR/MTTR in this machine. The values are provided by the machine
manufacturers and shown in [17].

Figure 3. Comparison between TTPR and MTTR for the components of the case study.

The significant influence of TTPR value in MTTR is notable. The authors consider
this ratio interesting. In Section 2.6, KPI1 and KPI2 will be defined by using TTPR value to
propose a change in preventive maintenance strategy.

2.3.2. Improved Preventive Programming Maintenance (IPPM)

This strategy is based on the PPM strategy. When a component has a higher value of
TTPR, this strategy can be used to minimize the TLP of the industrial multistage machine. In
this case, the TTPR is replaced by a residual time fixed in 300s, which is the time it takes the
end user of the machine to collect it from its replacement stock. Garcia, F.J.Á. and Salgado,
D.R. [11] proposed a matrix to decide on the most appropriate preventive maintenance
strategy but not on the component that needs a predictive maintenance strategy.
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2.3.3. Digital Behaviour Twin (DBT)

This strategy is based on the sensors placed on the machine. These sensors give their
values to a PLC, and the PLC uses an algorithm that triggers maintenance recommendations
to avoid unexpected failures. A human interface machine (HMI) is used to show these
recommendations.

This algorithm uses the signals received from the sensors and refers them to the
position of a central axis by means of an absolute encoder. Since the normal operating
condition is known, the algorithm detects normal operation without the need for learning,
provides warnings of possible faults, and can provide the number of work cycles performed
without faults.

Figure 4 shows the conceptualization of this strategy in the cited industrial
multistage machine.

Figure 4. Conceptualization of the DBT predictive maintenance strategy.

Garcia, F.J.Á. and Salgado, D.R. [17] described this predictive maintenance strategy in
detail. The objective of their research was not to define the predictive algorithm but to use
it to propose a method to decide on a change of maintenance strategy from preventive to
predictive.

This strategy has already been tested in this industrial multistage machine and allows
the detection of potential failures within each cycle of operation of the whole machine.

2.4. Recovered Data after a Year of the Machine Working

The industrial multistage machine worked without stopping, 8 h per day, Monday to
Friday, for one year, with the PPM in place and the DBT functioning only for data logging
advice. Table 3 shows the list of components with the corrected MTTF if the component
had failed before its MTTF and whether the cause of the failure was known or unknown.
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Table 3. Individual component failures occurring within one year of the machine’s working. Times in s.

Component Fails before MTTF Cause of Failure Corrected MTTF

Chromatic sensor 1 Known 3,998,750
Plug-in relay 1 Known 4,056,010
Temperature

controller 1 Known 7,934,710

Solid state relay 1 Known 4,678,034
Thermal resistance 1 Unknown 3,067,090

Thermocouple sensor 1 Unknown 2,890,760
Bronze cap 1 Unknown 6,500,453

Linear bearing 1 Unknown 6,375,010
Pressure sensor 1 Unknown 4,575,102
Peristaltic pump 1 Known 4,434,090

Terrine cutter 1 Unknown 8,750,778
Absolute encoder 1 Known 4,756,002

Table 3 shows that many components have presented failures before their MTTF.
Figure 5 shows the results by type of component. The pneumatic components have not
presented failures before their MTTF, unlike the rest of the components.

Figure 5. Component failures before their MTTF.

Table 4 shows the description of the cause of the failure of the components that
presented a failure before their MTTF and also indicates, for these components, whether
the cause is due to an occasional (infrequent) situation or a normal situation.

In the case of the plug-in relay, the authors believe that this component was not
completely new at the beginning of the experiment. To verify this, a quality test was
carried out. The rest of the components shown in Table 4, presented a failure-for-occasional-
situation. In Section 2.6 a procedure to avoid the same situation is proposed.

These failures were registered. The DBT algorithm used only for data logging the
advice for an unexpected failure will be compared below.
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Table 4. Registered known causes of failure in components that presented a failure before their MTTF.

Component Situation Description of the Known Cause of Failure

Chromatic sensor Occasional situation
The supplier of the film for the terrine lid changed the color without
prior notice and made it darker and more reflective. This caused the

sensor to stop seeing the mark correctly.
Plug-in relay Normal situation The number of commutations exceeded the mechanical endurance.

Temperature controller Occasional situation Mixed events of voltage RMS and high level of humidity.
Solid state relay Occasional situation The higher level of humidity and air dust caused a short circuit.
Peristaltic pump Occasional situation A higher density of fluid dosed in the terrine caused a jam.
Absolute encoder Occasional situation Accidental mechanical shock.

2.5. DBT Predictive Algorithm Warnings of Failure Recovered

The DBT algorithm matched the real failures that occurred when the machine was
working. Table 5 shows the warning of failures obtained for the DBT predictive maintenance
strategy. This table only shows components that presented failures.

Table 5. DBT warnings of failures by components within the operation time studied.

Component DBT Warning of Failures

Chromatic sensor 1
Plug-in relay 1

Temperature controller 1
Solid state relay 1

Thermal resistance 1
Thermocouple sensor 1

Bronze cap 1
Linear bearing 1
Pressure sensor 1
Peristaltic pump 1

Terrine cutter 1
Absolute encoder 1

The coincidence of warning of failures provided by DBT and shown in Table 5 and
components that failed before their MTTF, as shown in Table 3, suggests using the DBT algo-
rithm if a component requires predictive maintenance. Due to this coincidence, a scorecard
must be designed to make decisions about changes in the component maintenance strategy.

2.6. Method Proposal to Take Decisions for Maintenance Strategy Decisions

As Section 2.3.1 set forth, the PPM strategy had been adopted for all the components
at the beginning of the study. With all the accumulated dates compared to the actual event,
and the warning advice given by the DBT algorithm, this section explains how to make
decisions for a possible change of maintenance strategy.

The objective is to identify the components that need predictive maintenance. For this
purpose, there are two key questions:

• Has the component failed before its MTTF?
• Do we know why it failed?

Two key performance indicators are studied to ascertain whether the reason is known.
The expressions for KPI1 (4) and KPI2 (5) are the following:

KPI1 = (MTTR − TTPR)/MTTR (4)

KPI2 = TTPR /TLP (5)

KPI1 is used to ascertain the influence of TTPR in the MTTR for each component. If
this ratio presents a small value, the TTRP will be higher, which is considered an important
piece of information with reference to changing the maintenance strategy.

KPI2 is used to assess the influence of TTPR in Time TLP because this ratio shows the
availability and efficiency decrease for a higher value of TTPR.
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2.6.1. Procedure to Set KPI1 and KPI2 Values

The procedure to set initial values of KPI1 and KPI2 is the following:

• Calculate KPI1 interval between PPM and IPPM strategies.
• Calculate KPI2 interval between PPM and IPPM strategies.
• Calculate average value of KPI1 and KPI2, assuming PPM strategy.
• Calculate average value of KPI1 and KPI2, assuming IPPM strategy.
• Calculate average value of TTPR/MTTR ratio assuming PPM strategy.

Individual times for PPM strategy are shown in Table 2. In the case of IPPM strategy,
only TTPR is modified for a constant value fixed in 300s (see Section 2.3.2).

Table 6 shows all of the calculated values.

Table 6. Calculated ratios to define fixed values of KPI1 and KPI2.

Strategy Ratio Average KPI1 Average KPI2 Average TTPR/MTTR

PPM Value 22.92% 63.14% 77.08%
Interval [2.04–57.65%] [27.07–92.31%]

IPPM Value 96.04% 0.99% 3.96%
Interval [92.31–99.84%] [0.15–1.64%]

As can be observed, the intervals for KPI1 and KPI2 values in PPM and IPPM strategies
have no common points. For initial, fixed KPI’s points, we must be within the intervals
provided by PPM strategy. Whether KPI2 is considered the average ratio between TTRP
and MTTR due to the TLP depends on a constant value (TTLR equal to 14,400 s) and the
MTTR value (see Equation (2))

Figures 6 and 7 show the fixed KPI1 and KPI2 values for decision-making. A large
dispersion of KPI1 and KPI2 values is observed in the case study. The correct functioning of
the fixed values is evaluated by the minimization of TLP and stock cost in case of adopting
IPPM strategy. The final value fixed in the case of KPI1 is 25% and in the case of KPI2 is
70% (value obtained by comparing average KPI2 with average TTPR/MTTR).

Figure 6. Comparison of KPI1 values for each component in PPM and IPPM strategies, KPI1 interval
in PPM strategy and fixed value 25% of KPI1.
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Figure 7. Comparison of KPI2 values for each component in PPM and IPPM strategies, KPI2 interval
in PPM strategy and fixed value 70% of KPI1.

With the fixed values, decision-making to change maintenance strategy can be adopted. So:

• If KPI1 < 25% and KPI2 > 70%, the improved preventive maintenance strategy can be
proposed, with a previous GOC evaluating the component;

• If KPI1 > 25% and KPI2 < 70%, a preventive maintenance strategy change is unnecessary.

Of course, if a component presents a failure before its MTTF and the cause of the
failure is unknown, and the value of KPI1 < 25% and KPI2 > 70%, several changes must be
made in the maintenance strategy.

2.6.2. Proposed Method for Maintenance Strategy Adoption

Figure 8 shows the method proposed by a PPM strategy adopted for all the compo-
nents of the industrial multistage machine initially and the possible decisions to be taken
depending on the knowledge of the fault and the KPI values.

The proposed method can be used in this machine when assessing whether to change
the maintenance strategy if a component fails before its MTTF. However, feedback is useful
to control the real evolution of the machine in every possible way. The authors consider
that this feedback is only useful if the cause of the failure is known.

With the proposed method, all the components start operating with a PPM strategy,
and if any fail before their MTTF, a change to IPPM or IPPM with DBT may be appropriate.

As mentioned in Section 2.5, if it is necessary to use a predictive maintenance strategy,
DBT can be used, due to the good results offered with the advice shown in Table 5. In this
way if a component fails before its MTTF, and the cause is unknown, IPPM will be adopted
regardless of the value of KPIs. Later, an inspection of the location and other factors to find
the cause of the failure with DBT monitoring enables a new value of MTTF to be set. If the
cause of the failure is found, the method returns to starting point. If the component does
not fail before its new MTTF, the maintenance strategy will be PPM. Otherwise, the way
depends on the knowledge of the second failure.
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Figure 8. Proposed method to switch from a preventive maintenance strategy to a predictive strategy
with a DBT algorithm.

According to the proposed method it i considered that the principal object and benefit
of adopting a DBT predictive maintenance strategy is to determine the reason of a compo-
nent failure before its MTTF by using distributed sensors that are part of the DBT predictive
maintenance strategy. Also, when DBT monitoring is used, the behavior of the whole
machine is monitored to guarantee the correct functioning of the MSTM. So, as Figure 5
shows, if the cause of the failure is found, the replaced component returns to the starting
point of the proposed method and the DBT monitoring continues until the next failure of
the same component. Otherwise, the method does not continue towards the starting point,
and the model waits instead for a better result of the main actions proposed to find the
reason of the failure.

The final object of this dynamic method is the default selection of PPM strategy for
all components, and only IPPM if KPI1 < 25% and KPI2 > 70% at the same time if these
components fail before its MTTF. Nevertheless, the real situations involving these types
of machines, located in important factories and parts of a production process, indicates
to us the need for a predictive maintenance strategy if, due to an occasional (infrequent)
situation, a component fails before its initial MTTF.

3. Results

The application of the proposed method for possible maintenance strategy changes is
shown in Table 7. The initial maintenance strategy was PPM for all the components. The
next column shows the maintenance strategy to be adopted if the component fails before
its MTTF.

The results show different changes in maintenance strategies. The PPM strategy of all
the components that failed before their MTTF due to unknown causes was changed to IPPM
with DBT monitoring (pressure sensor, thermal resistance, thermocouple sensor, bronze
cap, linear bearing, and terrine cutter). The maintenance strategy of two components with
known causes of failure remained unchanged (plug-in relay and absolute encoder), and the
maintenance strategy of four components (chromatic sensor, temperature controller, solid
state relay, and peristaltic pump) was changed to IPPM.

Of course, the initial PPM strategy of components that did not fail remained the same.
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Table 7. Maintenance strategies for all components after a year in operation using the proposed method.

Component KPI1 KPI2
Maintenance Strategy after

a Year of Work

Master power switch 0.25 0.38 PPM
Plug-in relay 0.25 0.38 PPM

Command and signalling 0.25 0.38 PPM
Safety limit switch 0.25 0.38 PPM

PLC 0.21 0.77 PPM
HMI 0.21 0.77 PPM

Chromatic sensor 0.02 0.91 IPPM
Safety relay 0.25 0.38 PPM

Temperature controller 0.21 0.77 IPPM
Solid state relay 0.02 0.91 IPPM

Belt drive 0.21 0.77 PPM
Pressure sensor 0.02 0.90 IPPM + DBT monitoring

Servo drive peristaltic pump 0.21 0.77 PPM
Absolute encoder 0.52 0.46 PPM

Safety button 0.25 0.38 PPM
Thermal resistance 0.58 0.27 IPPM + DBT monitoring

Thermocouple sensor 0.27 0.37 IPPM + DBT monitoring
Belt motor 0.08 0.86 PPM
Bronze cap 0.40 0.57 IPPM + DBT monitoring
Linear axis 0.40 0.57 PPM

Linear bearing 0.40 0.57 IPPM + DBT monitoring
Peristaltic pump 0.05 0.92 IPPM

Terrine cutter 0.40 0.57 IPPM + DBT monitoring

Pneumatic valve 0.02 0.91 PPM
Pneumatic cylinder 0.91 0.91 PPM

4. Discussion

The proposed method for changing the maintenance strategy for all the components
that failed does not provide a static decision criterion. For example, the same component
can fail first due to an unknown cause, and again a second time due to a known cause.
The method allows taking different decisions according to whether or not the cause of the
failure is known.

The authors consider knowing the cause of the failure critical. An industrial multistage
machine must not operate with unknown failures. Also, once the cause is known, the
manufacturer must take action to avoid an unexpected failure due to the same cause. If
these actions are correct and there is feedback, the industrial multistage machine can restart
operating with adequate functionality guarantees.

The values of KPI1 and KPI2 are used to assess whether a change of preventive
maintenance strategy is required. As mentioned in Section 2.6, the extreme values of both
are fixed to show whether the preventive maintenance strategy should be changed from
PPM to IPPM. However, if the value of time to provisioning (TTPR) of a component goes
up or down, the value of its KPI1 and KPI2 will also change. In this scenario, if a failure
occurs in this component, the method will use another way to make decisions, in a further
evaluation.

A continuous application of this method for the same industrial multistage machine
will allow greater failure control and higher levels of operation time without failures.

If a component supplier is changed for market reasons, the proposed method must be
reassessed, and the KPIs and MTTR must be recalculated. Also, the value of MTTF must be
changed accordingly before the machine resumes its operation.

The authors consider the following assessment critical, ascertaining the trust level
in the component manufacturer by evaluating the ratio between the corrected and initial
MTTF of all the components that failed before their initial MTTF. Table 8 shows this ratio:
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Table 8. Trust levels in component manufacturers by comparing the initial and corrected MTTF in
components that failed before their initial MTTF.

Type of Component Component Trust Level

Electronic Chromatic sensor 79.98%
Electrical Plug-in relay 81.12%
Electronic Temperature controller 79.35%
Electronic Solid state relay 93.56%
Electronic Thermal resistance 82.88%
Electronic Thermocouple sensor 78.11%

Mechanical Bronze cap 83.88%
Mechanical Linear bearing 85.00%
Electronic Pressure sensor 91.50%

Mechanical Peristaltic pump 88.68%
Mechanical Terrine cutter 87.51%
Electronic Absolute encoder 95.12%

This assessment, therefore, allows for a long operating time with an adequate selection
of component manufacturers. Figure 9 shows the average trust level (ATL) by component
type. The authors consider that the compared values must be similar. This indicates that
the machine maintenance team is adequate for the whole machine. Obviously, the optimal
value of this ATL is 100%. As the pneumatic components did not fail before their MTTF,
they have not been included in Figure 9.

Figure 9. Average Trust level of components that failed before their initial MTTF.

The authors consider that one way to further this research would be if an ATL were to
be fixed for all the components for possible decisions to change component manufacturers.
Also, a new result would be obtained if the cost of the component were to be used in this
proposed future research.

5. Conclusions

The proposed method for possible maintenance strategy changes for components in
the same industrial multistage machine provides ways to change the maintenance strategy
for PPM to IPPM or IPPM with DBT monitoring. The authors consider that this method
will be useful for other industrial multistage machines.

The predictive maintenance strategy is used for constant component monitoring if an
unexpected failure has occurred, so if the cause is known and the measures for avoiding a
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new failure for the same cause are taken, the component will probably fail at its new MTTF
and will then go back to having preventive maintenance like PPM or IPPM.

If a component presents many consecutive failures before its initial MTTF and the
actions proposed by the method are taken, then the ATL of the component manufacturer
should be revisited to decide on whether to change the manufacturer with an objectively
higher quality in this component. In this case, this could be another way to start a failure
mode and effect analysis (FMEA) to redesign the function, location, and work of this stage
of the machine.

All the components can be included in the study of ATL by component type. In this
case, the average value will be higher than that shown in Figure 9. The authors only
included the components that failed to avoid wrong results in the machine maintenance
team’s evaluation.

As the trust level, or the ATL, depends on the ratio between initial MTTF and real
MTTF of the component or type of components, these values do not improve with a
maintenance strategy change; they only improve to 1 or 100% if the actions necessary to
take for avoid occasional (infrequent) situations that end with an unexpected failure work
correctly. In the case of trust level or ATL improvement up to 100% the authors suggest an
incorrect initial MTTF fixed at starting point of the machine’s use. The proposed method
suggests this way (see Figure 8)

Industrial multistage machines need a long working time without unexpected failures,
so a global method for taking the appropriate decisions for maintenance strategies is needed,
and adequate changes must be made to avoid such unexpected failures. The proposed
method allows reaching this objective. Nevertheless, some comments for its application in
the context of other multistage machines must be related:

• The case study is a multistage thermoforming machine. This machine has an absolute
encoder. Its position is constantly sent to the PLC for synchronization and management
of all the coordinated steps in the correct order. This encoder allows the use of a digital
behavior twin algorithm for predictive maintenance strategy. Not all of the multistage
machines have an encoder for this special function, so the normal behavior of the
machine must be referred to with a more precise physical analogue.

• Due to the fact that the cycle time is only 4 s, the algorithm for predictive maintenance
must be speedy and certain. Other machines with longer cycle times could use
predictive maintenance based on the time;

• As Figure 1 indicates, the preventive maintenance strategy depends upon the individ-
ual maintenance times. It would be interesting to evaluate the sensibility of the method
for an incipient change of TTPR in some components due to global market conditions.

The main contributions highlighted in this article are:

• Providing a method for deciding when to use predictive maintenance strategy and
when to stop it in different components of a MSTM.

• Providing a dynamic global method to establish the maintenance strategy of any
component of an MSTM.

• Providing a confidence level of a component or type of components in an MSTM that
indicates whether the MTTF of said component operating in said machine is reliable.

• Because of the above, obtaining information on the reliability of the components of a
MSTM to avoid unexpected failures during its operating time.

Table 9 shows the results of the comparison between the introduction citations and
the proposed method. Due to the singularity of this type of multistage machine, the cited
references are not alternative methods that can be used to provide other maintenance
strategies for the same machine in the same working conditions, with the same components
and the same evaluation time (1 year). Due to this, the comparison offered in the following
table focuses on the most significant aspects found in each citation that are related to the
methodology developed in this study. This comparison is, therefore, in qualitative terms,
and not able to offer numerical comparisons. The first column indicates the item or relevant
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aspect to be compared. The second column indicates the highlighted references compared.
The third column is a qualitative comparison between the cited item (column 1) in the
reference (column 2) and the method proposed in this article.

Table 9. Qualitative comments highlighted between the proposed method and the state of art.
(*) Improve options.

Item References Qualitative Comments after Comparison

Minimizing security stocks [1,2] Correct selection of fixed KPIs allows the optimization of stock
and provides the adequate preventive maintenance policy

Stops to settings, removal actions.
Imperfect maintenance [3,4]

Settings only at the start time of the machine functioning by the
temperature controller, thermal resistance,

and thermocouple sensor.
The maintenance actions must perform the machine functioning.

The system can evaluate if the actions in each component or
each type of component are imperfect by trust level or ATL.

Mathematical model for Preventive
maintenance [5–8] Complex, very theoretical and many variables to manage.

Simple, sensitive to variations of individual maintenance times.

MTTF reliable
Reliability and law degradation [9–11]

Initial MTTF fixed for all components;
reliability functions not used.

Possibility to change MTTF value if real MTTF lower or upper
than initial MTTF fixed.

Product design and operation conditions [12]
If a component exhibits repeated failures, an immediate FMEA

analysis procedure is initiated to find design errors or
component selection errors.

Mathematical model for Predictive
maintenance [13–18]

Uses PLC with embedded DBT algorithm. No need training
and learning time. Quick response

Very useful for a machine with fast cycle time.

Location components [19] (*) Possible improvement. Can be evaluated for this application

Mixed cost and technical analysis [20,21] (*) Possible improvement. Also is citated in future research.
Coincidence in the use of FMEAS analysis

Digital Twin [22,23]

The behavior of the machine always is the same and does not
need a real digital twin since the characterization is special for
each MSTM and operation conditions are always are the same.

Coincidence in the event failure advises, no training and
utilization of FMEAS analysis.

Augmented Reality and Computer Vision [24,25]

(*) Possible improvement. Not used.
ATL is used for evaluating the maintenance operator actions

required for maintenance policy. But it is used after a
maintenance action.

Preventive actions in flexible windows time.
Predictive maintenance always running

Method for decision-making
[26]

(*) Possible improvement to use flexible windows time for
preventive maintenance actions.

Predictive maintenance only works if a component fails before
its MTTF, and the cause of the failure is unknow.
Coincidence in the contribution of a method for

decision-making

Individual preventive maintenance Times [27,28] Used in the article and performed by developing KPIS for
preventive maintenance decisions

The method proposed is appropriate for the MSTM but can improve with respect to
some items.

Future research:

• Study the influence of a fixed ATL and cost assessment for possible component manu-
facturer changes;
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• Utilization of DBT monitoring for combined supervision in parallel of the same ma-
chine system to use Predictive Maintenance and use the advice for one machine to
start DBT monitoring in other machines of the system working in the same operating
conditions;

• Global cost analysis of the components, DBT monitoring system, and their influence
on possible maintenance strategies for all the components in an industrial multistage
machine;

• Mixed method for maintenance strategies using technical parameters and cost terms.
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Abstract: The agri-food industry has been greatly enhanced in recent years with the introduction 
of process control and the automation [1] of certain links in the production chain. The seasons 
of the year in which these machines must be operational and show robust and reliable operation, 
have short durations (2 to 4 months) and are therefore greatly affected by unexpected failures 
that cause stops on the production lines. This paper attempts to expose a comparative advantages 
that can be obtained in terms of availability and efficiency in the thermoforming process. With 
the introduction of Industry 4.0 [2, 4] and the S2 model [5] and actuator control and early action, 
it is possible to optimize availability and efficiency ratios on thermoformer machines. Results 
show that it’s possible to reduce unexpected failures by means of this optimization tools. Two 
improvement strategies are outlined. Maintenance Management improvement model improves 
response to failures but does not optimize the useful life of the components. Algorithm life 
optimization based on S2 model optimizes service life and improves response to failure. 

Keywords: Thermoforming process, Availability, Industry 4.0, IoT, Efficiency. 

1.  Introduction 
Online manufacturing processes require high levels of availability and reliability for high productions 
in short seasonal periods of the year. It is very important to control and define the stops times to avoid 
the sudden appearance of breakdowns causing unexpected stops and non-compliance with 
manufacturing commitments.  

In the agri-food sector [1] the manufacture of many products is carried out in periods of time closely 
linked to harvests and collections. This is a reality that must be borne in mind when designing and 
structuring the entire production process. Currently, factories must be prepared to meet an extraordinary 
volume of production and demand, always controlling quality and compliance with the correct sanitary 
measures required by the administration.  

The advantages of IoT [2] enable real-time management in the cloud, making decisions based on the 
comparison proposed by algorithms developed to maximize the useful life of the components, 
guaranteeing the reliability of these decisions.  

The final objective of this research is to obtain a relationship between the production function and 
the availability of the machines, so that the study of the reliability of their equipment provides an 
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availability status that allows guaranteeing production function and avoiding unexpected failures or not 
controlled during a production batch. In this way, the value chain [3] obtains the benefits of a more 
reliable service, with better quality and information [4] about their orders. 

2.  Case study and methodology 

2.1.   Thermoforming and tubs filling machines 
Thermoforming and tubs filling machines are one case among the many that exist. This type of machines 
is the object of this study. These machines are composed of several sub-processes from the management 
of the polymer film to the container and lid, as well as the dosage and final cut. 
 

 
Figure 1. Sub process in thermoforming and terrine filling machines. 

 
The sub processes involved in this machine are the following (see figure 1): 
 
• Polymer dispenser roll for the container of the tub. 
• Thermoformed thermal container conditioner. 
• Thermoformer by mechanical compression and pressure. 
• Rationing of the content by peristaltic pumps. 
• Polymer dispenser roll for the lid of the tub container. 
• Thermal adhesion of the lid of the tub to the thermoforming and filling container. 
• Individualized cutting of the tubs for their subsequent logistical packaging. 

 
The cycle time can vary between 6 and 12 tubs per second, depending on whether the machine is 

designed to manufacture 3, 6, 9 or up to 12 tubs simultaneously. Normally, the production is usually 
two rows simultaneously, then in a cycle, twice a series of 3, 6, 9 or 12 tubs can be manufactured. This 
affects the size, mold of the thermoformer, number of peristaltic pumps, rails for the row passage, size 
of the thermal bonder of the lid and size of the tub cutter. 

Normal operation requires the constant coordination of all sub processes since a failure in one of 
them, means the loss of ongoing production. 

From the thermal conditioner of the polymer for the thermoformer of the container, to the cutter for 
finished tubs, there is an axis in the lower part of the machine that with cams in synchronized positions, 
allow coordinated movements so that the process is controlled and at constant speed. 

2.2.  Description of the typical faults in the components 
Table 1 shows a basic decomposition of the components of the machine subject to failure in the present 
work. A distinction is made between static or moving elements, the possible origin of a failure and the 
consequence of its failure. 
  

STEP Nº1
Polymer dispenser 
roll for the 
container of the tub

STEP Nº2
Thermoformed 
thermal container 
conditioner

STEP Nº3
Thermoformed by 
mechanical compression 
and pressure.

STEP Nº4
Rationing of the 
content by 
peristaltic pumps

STEP Nº5
Polymer dispenser 
roll for the lid of 
the tub container

STEP Nº6
Thermal adhesion 
of the lid of the tub

STEP Nº7
Individualized 
cutting of the tubs 
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Table 1. Basic decomposition of components and faults.  

Nº Component Type Fault Source Failure 
1 Master power 

switch Power Machine/static Ambient condition, Power supplier event Stop 

2 PLC Control/static Ambient condition, Power supplier event Stop 
3 HMI Control/static Ambient condition, Power supplier event, 

Crash Stop 

4 Cromatic sensor Sensor/static Ambient condition, Power supplier event, 
Crash Malfunction 

5 Plug-in relay Control device/static Ambient condition, Power supplier event Stop 
6 Command and 

signalling Control Ambient condition, Power supplier event, 
Crash Stop 

7 Safety limit switch Security/Static Ambient condition, Power supplier event Stop 
8 Safety relay Security/Static Ambient condition, Power supplier event Stop 
9 Safety button Security/Static Ambient condition, Power supplier event, 

Crash Stop 

10 Temperature 
controller Control/static Ambient condition, Power supplier event Stop 

11 Solid state relay Actuator/Static Ambient condition, Power supplier event Malfunction 
12 Thermal resistance Actuator/Dynamic Global fatigue Malfunction 
13 Thermocouple 

sensor Control/Dynamic Global fatigue Stop 

14 Tape drive Actuator/Static Ambient condition, Power supplier event Stop 
15 Tape Motor Motor/Dynamic Global fatigue Stop 
16 Bronze cap Structure/Dynamic Global fatigue Stop 
17 Linear axis Structure/Dynamic Global fatigue Stop 
18 Lineal bearing Structure/Dynamic Global fatigue Stop 
19 Pneumatic valve Actuator/Dynamic. Pressure failure, failure 

valve Malfunction 

20 Pneumatic cylinder Actuator/Dynamic Pressure failure, cylinder failure  Malfunction 
21 Pressure sensor Control/static Ambient condition, Power supplier event Stop 
22 Servo drive 

peristaltic pump Actuator/Dynamic Ambient condition, Power supplier event Stop 

23 Peristaltic pump Actuator/Dynamic Global fatigue Stop 

2.3.   Analysis of times and ratios used 
The times involved in the favorable resolution of the failures and their mathematical expressions are the 
following:  

 
• TTRP Time to replace component 
• TTC Time to configure 
• TTMA Time to mechanical adjustment 
• TTPR Time to provisioning  
• MTTR Main time to repair 
• MTTF Main time to failure 
• MTBF Main time between failure 
• TTLR Line restart time, defined by expert knowledge 
• TLP Time lost production 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅 + 𝑀𝑀𝑀𝑀𝐶𝐶 +  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 +  𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅 (1) 

𝑀𝑀𝐿𝐿𝑅𝑅 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 +  𝑀𝑀𝑀𝑀𝐿𝐿𝑅𝑅     (2) 



9th Manufacturing Engineering Society International Conference (MESIC 2021) 
IOP Conf. Series: Materials Science and Engineering 1193  (2021) 012112

IOP Publishing
doi:10.1088/1757-899X/1193/1/012112

4

 
 
 
 
 
 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (3) 

With these times, two concepts are used, efficiency (4) and availability (5). Both concepts will be 
used as indicators of success in the preventive control of machine failures. 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝑇𝑇𝐿𝐿𝐿𝐿
𝑀𝑀𝑇𝑇𝑇𝑇𝑅𝑅+𝑀𝑀𝑇𝑇𝑇𝑇𝑀𝑀

  (4) 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸 =  𝑀𝑀𝑇𝑇𝑀𝑀𝑀𝑀
𝑀𝑀𝑇𝑇𝑀𝑀𝑀𝑀+𝑀𝑀𝑇𝑇𝑇𝑇𝑅𝑅

  (5) 

Setting the line restart time at 7200 seconds and with stable market values are used for the times in 
this machine, the following results are shown in table 2. 

 
Table 2. Complete display of times, efficiency and availability. Times in seconds. 

Component MTTR TTRP TTC TTMA TTPR MTTF TLP Efficiency MTBF Availability 
Máster power 

switch 14400 3600 0 0 10800 9999999 28800 99.71% 10014399 99.86% 

PLC 435600 3600 86400 0 345600 9999999 450000 95.69% 10435599 95.99% 
HMI 435600 3600 86400 0 345600 9999999 450000 95.69% 10435599 95.99% 

Cromatic sensor 176520 3600 120 0 172800 4999999 190920 96.31% 5176520 96.70% 
Plug-in relay 14400 3600 0 0 10800 4999999 28800 99.43% 5014400 99.71% 

Command and 
signalling 14400 3600 0 0 10800 4999999 28800 99.43% 5014400 99.71% 

Safety limit switch 14400 3600 0 0 10800 9999999 28800 99.71% 10014399 99.86% 
Safety relay 14400 3600 0 0 10800 9999999 28800 99.71% 10014399 99.86% 

Safety button 14400 3600 0 0 10800 9999999 28800 99.71% 10014399 99.86% 
Temperature 

controller 435600 3600 86400 0 345600 9999999 450000 95.69% 10435599 95.99% 

Solid state relay 176400 3600 0 0 172800 4999999 190800 96.31% 5176400 96.70% 
Thermal resistance 25500 14400 0 300 10800 3700800 39900 98.93% 3726300 99.32% 

Thermocouple 
sensor 14700 3600 0 300 10800 3700800 29100 99.22% 3715500 99.61% 

Tape drive 435600 3600 86400 0 345600 9999999 450000 95.69% 10435599 95.99% 
Tape Motor 187200 14400 0 0 172800 4999999 201600 96.11% 5187200 96.52% 
Bronze cap 288000 28800 0 86400 172800 7750000 302400 96.24% 8038000 96.54% 
Linear axis 288000 28800 0 86400 172800 7625000 302400 96.18% 7913000 96.49% 

Lineal bearing 288000 28800 0 86400 172800 7500000 302400 96.12% 7788000 96.43% 
Pneumatic valve 176400 3600 0 0 172800 9999999 190800 98.13% 10176399 98.30% 

Pneumatic cylinder 176400 3600 0 0 172800 9999999 190800 98.13% 10176399 98.30% 
Pressure sensor 176700 3600 300 0 172800 4999999 191100 96.31% 5176700 96.70% 

Servo drive 
peristaltic pump 435600 3600 86400 0 345600 9999999 450000 95.69% 10435599 95.99% 

Peristaltic pump 547200 14400 0 14400 518400 4999999 561600 89.88% 5547200 91.02% 

 
Using the exponential model (6) the reliability of all the components is calculated in a time equal to 

MTTF. Figure 2 show the results. 

 𝑀𝑀(𝑡𝑡) =  𝐸𝐸−𝜆𝜆𝑡𝑡 (6) 

Where λ factor is the inverse value of MTBF if we consider we are in constant fatigue of components. 
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Figure 2. Reliability calculated at MTTF with exponential model (6). 
 

Table 3. Proposed Strategies. 

Strategy Costs New materials MTTF MTTR S2 model YWF 
MMI Increased Not necessary Not modified Improved Not necessary Improved 
AOP Not necessary Necessary Improved Improved Necessary Optimized. 

 
Table 4. Results of maintenance management improvement model application. 

COMPONENT Without MMI With MMI AV MMI 
Efficiency Availability Efficiency Availability Efficiency Availability 

Máster power switch. 99.71% 99.86% 99.82% 99.96% 0.10% 0.10% 
PLC 95.69% 95.99% 98.96% 99.11% 3.27% 3.12% 
HMI 95.69% 95.99% 98.96% 99.11% 3.27% 3.12% 

Cromatic sensor. 96.31% 96.70% 99.63% 99.92% 3.32% 3.22% 
Plug-in relay 99.43% 99.71% 99.63% 99.92% 0.21% 0.21% 

Command and signalling 99.43% 99.71% 99.63% 99.92% 0.21% 0.21% 
Safety limit switch 99.71% 99.86% 99.82% 99.96% 0.10% 0.10% 

Safety relay 99.71% 99.86% 99.82% 99.96% 0.10% 0.10% 
Safety button. 99.71% 99.86% 99.82% 99.96% 0.10% 0.10% 

Temperature controller 95.69% 95.99% 98.96% 99.11% 3.27% 3.12% 
Solid state relay 96.31% 96.70% 99.63% 99.92% 3.32% 3.22% 

Thermal resistance 98.93% 99.32% 99.21% 99.60% 0.28% 0.28% 
Thermocouple sensor 99.22% 99.61% 99.50% 99.89% 0.28% 0.28% 

Tape drive 95.69% 95.99% 98.96% 99.11% 3.27% 3.12% 
Tape Motor 96.11% 96.52% 99.42% 99.71% 3.31% 3.19% 
Bronze cap 96.24% 96.54% 98.35% 98.55% 2.11% 2.01% 
Linear axis 96.18% 96.49% 98.32% 98.53% 2.14% 2.04% 

Lineal bearing 96.12% 96.43% 98.29% 98.51% 2.18% 2.07% 
Pneumatic valve 98.13% 98.30% 99.82% 99.96% 1.69% 1.66% 

Pneumatic cylinder 98.13% 98.30% 99.82% 99.96% 1.69% 1.66% 
Pressure sensor 96.31% 96.70% 99.63% 99.92% 3.32% 3.22% 

Servo drive peristaltic pump 95.69% 95.99% 98.96% 99.11% 3.27% 3.12% 
Peristaltic pump 89.88% 91.02% 99.14% 99.42% 9.26% 8.40% 

3.  Strategies to follow to improve results 
The following table shows the best strategies proposed to achieve better results. The objective is to 
reduce the lost production time as much as possible but guaranteeing the proper functioning of the 
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components.  
 

• MMI: Maintenance management improvement model. 
• AOP: Algorithm life optimization based on S2 model [5] with maintenance advises. 
 

The MMI strategy is based on having stocks in advance, then it supposes a better response to 
unexpected failures, but it does not allow optimizing the useful life of the components before being 
replaced. This aspect is resolved by the AOP strategy, which also improves MTTF. The use of new 
materials can increase the useful lifetime. 

The YWF parameter is defined as years without failures, and it is used to monitor that the mean time 
between failures corresponds to more than one productive year, so that any preventive action can be 
planned at the best times without causing production stoppages.   

4.  Maintenance management improvement (MMI) model 
This is a strategy based on the supply of components, would suppose a considerable reduction in the 
value of MTTR, and consequently, in the value of the efficiency and the availability. Table 4 shows the 
results of substituting the supply time for a residual search time in own stock. 

The comparison of proposed scenarios provides an average increase in efficiency more than 7.5% 
and availability by 8.5%. 
 

 

Figure 3. Improvements in efficiency and availability using MMI strategy. 
 

Table 5. Sensors and components used for the model. 

Sensor Description Components affected 
SA1 % Humidity inside control panel 1, 2, 3, 5, 8, 10, 11, 14 
SA2 Cª temperature inside control panel 1, 2, 3, 5, 8, 10, 11, 14 
SA3 Voltage RMS in IGBT 1, 2, 3, 4, 5, 8, 10, 12, 14, 15, 19, 20, 21, 22, 23 
SA4 Vacuum sensor for Thermoformer tub 10, 12, 13, 16, 18, 19, 20, 21 
SA5 Volumetric sensor for peristaltic pumps 22, 23 
SA6 Micro laser measurement, side front 14, 15, 16, 17, 18 
SA7 Micro laser measurement, side rear 14, 15, 16, 17, 18 

5.  Algorithm life optimization (AOP) with maintenance advises 
This strategy allows to modify the MTTF by analyzing the behaviour of measurements from various 
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sensors, a reasonable modification of the MTTF of each component can be established. In this way, it 
could be possible to optimize the useful life of each component. The operation of this strategy is 
compatible with maintenance decisions, so that conclusions of the previous strategy can be applied at 
certain times. Table 5 indicates proposed sensors and component group that they affect. 

All sensors provide an analog output signal. A datalogger oversees monitoring, recording, and 
treating the signals in real time.  

5.1.  Mathematical model of the algorithm 
The system records a value every 10 duty cycles. Later it calculates its average value and saves them 
(7). This operation is carried out 100 times, so that at the end of cycle 1000, 100 average values will be 
available for each parameter. 

 T1,SA1 =  ∑ SA1i,10
1
10

 ; T2,SA1 =  ∑ SAi,120
11
10

 ; … T100,SA1 =  ∑ SA1i,100
91
10

  (7) 

Each sample of 100 values is evaluated for whether there is a dispersion of values that indicates that 
an error may occur in the measurement or in the sensor. Rejection criteria such as Chauvenet or similar 
are used for them. Once the sample is validated, the statistical values corresponding to a Normal 
Gaussian distribution are calculated, as the average (8) and the variance (9) 

 𝑋𝑋�𝑆𝑆𝑀𝑀1,100 =  ∑ 𝑇𝑇𝑖𝑖,𝑆𝑆𝑆𝑆1100
1
100

  (8) 

 𝜎𝜎𝑆𝑆𝑀𝑀1,100
2 =  ∑ �𝑇𝑇𝑖𝑖,𝑆𝑆𝑆𝑆1−𝑋𝑋�𝑆𝑆𝑆𝑆1,100 �

2100
1

100−1
  (9) 

The following expression (10) is the dynamic adjustment factor, DFA of MTTF, and is obtained for 
each component. 

 𝐷𝐷𝑀𝑀𝐴𝐴 =   �𝑀𝑀− �𝑋𝑋�𝑆𝑆𝑆𝑆1,100−𝜎𝜎𝑆𝑆𝑆𝑆1,100 × 0,67��
𝑘𝑘

 (10) 

where: 
 
• A is the nominal value of the measurement in correct operation.  
• k is the model adjustment value that differs in each given sensor according to the amount of 

valid values that in each case may be correct. 
• The value 0.67 corresponds, according to the normal Gaussian distribution with a confidence 

level of 50%. A restrictive level is initially proposed. This value admits correction up to the 
value 3 which would suppose a confidence interval of 99.7%. 

 
To correct any anomaly that arises unexpectedly, it is proposed to use an alarm value (11) in each 

sensor that is active during the entire operating time of the machine. Each sensor has a coefficient S that 
defines the alarm level. 

 𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 𝑉𝑉𝐴𝐴𝐴𝐴𝑉𝑉𝐸𝐸 𝑆𝑆𝐴𝐴1 = 𝑆𝑆 × 𝐴𝐴 (11) 

The final objective of this model is to obtain the reliability of each component every 1000 cycles by 
adding sensors whose evolution of values and dispersions may indicate a malfunction of the system. 
Exponential or Weibull calculation models can be used for this purpose, depending on the actual state 
of wear of each component. 

6.  Results and conclusions 
Most of the machines that process products and have complex threads, must have an adequate 
management of their maintenance that, as far as possible, leads to high rates of efficiency, availability, 
and reliability. 
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Strategy MMI can only minimize the established times for provisioning, repair, configuration and/or 
mechanical adjustments. Its use brings extra costs, benefits but the improvement is limited. In this case 
an average increase in efficiency more than 7.5% and availability by 8.5%. 

Strategy AOP make it possible to optimize the operating time of the components, monitoring sensor 
values whose value management can extend the useful life of the components and predict the ideal 
replacement time based on known repaired or programmed stop times. 

The implementation of process availability and quality control techniques provide factories with the 
ability to adapt on demand, respond with constant quality and report in real time the status of compliance 
with their commitments. Therefore, factories increase their competitiveness in the market. 
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