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Abstract : The notion of ball proximinality and the strong ball proximinality were recently
introduced in [2]. We prove that a closed * subalgebra A of C(Q) is strongly ball proximinal
in C(Q) and the metric projection from C(Q), onto the closed unit ball of A, is Hausdorff
metric continuous and hence has continuous selection.
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1. Introduction

If X is a normed linear space, let X1 = {x ∈ X : ‖x‖ ≤ 1}, the closed unit
ball of X. For x in X and r > 0, we set

B(x, r) = {y ∈ X : ‖x− y‖ < r}

and if A is a subset of X then the distance of x from the set A is denoted by
d(x,A). That is,

d(x,A) = inf{‖x− z‖ : z ∈ A}.
If A and B are bounded, nonempty subsets of a Banach space, we denote by
dH(A, B) the Hausdorff metric distance between A and B, given by

dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}.

By C(Q), we denote the classical Banach space of all complex valued, contin-
uous functions, defined on a compact, Hausdorff space Q, endowed with the
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sup norm. By a closed * subalgebra of C(Q) we mean a closed subalgebra A
of C(Q) such that f is in A then f̄ , the complex conjugate of f , is also in A.

If C is a closed subset of X, we say C is proximinal in X if for every x in
X, the set

PC(x) = {y ∈ C : ‖x− y‖ = d(x,C)}
is a non-empty set. For any δ > 0 we set

PC(x, δ) = {z ∈ C : ‖x− z‖ < d(x,C) + δ}.

Motivated by a result of Saidi [9], the notion of ball proximinality was
introduced in [2].

Definition 1.1. A subspace Y of a normed linear space X is ball prox-
iminal in X if the closed, convex set Y1 is proximinal in X.

It is easily verified (see [9] and [2]) that if Y is ball proximinal in X, then
Y is proximinal in X. That the converse is not true, was shown relatively
recently by a counterexample of Saidi, in [9]. Thus, ball proximinality implies
proximinality, while the converse is not true.

Following [3], we say a proximinal set C of a normed linear space X is
strongly proximinal if for each x in X and ε > 0, there exists δ > 0 such that

s(x, δ) = sup{d(z, PC(x)) : z ∈ PC(x, δ)} < ε. (1.1)

Definition 1.2. A ball proximinal subspace Y of X is called strongly ball
proximinal if Y1 is strongly proximinal in X.

Let X be Banach space and x0 be in X. We say the metric projection
PY is lower semi-continuous at x0 if, given ε > 0 and z in PY (x0), there
exists δ = δ(ε, z) > 0 such that the set B(z, ε) ∩ PY (x) is non-empty, for any
x in B(x0, δ). If δ can be chosen to be independent of z in PY (x0) in the
above definition, that is, given ε > 0, there exists δ > 0 such that the set
B(z, ε)∩PY (x) is non-empty, for any x in B(x0, δ) and any z in PY (x0), then
we say PY is lower Hausdorff semi-continuous at x0 . The map PY is upper
semi-continuous at x0 if given any open neighborhood U of zero in X, there
exists δ > 0 such that

PY (x) ⊆ PY (x0) + U

for each x in B(x0, δ). Replacing the arbitrary open set U by an open ball
in the above, yields the notion of upper Hausdorff semi-continuity. More
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precisely, the map PY is upper Hausdorff semi-continuous at x0, if given ε > 0
there exists δ > 0 such that

PY (x) ⊆ PY (x0) + εX1

for each x in B(x0, δ). We say PY is lower (upper, lower Hausdorff, upper
Hausdorff) semi-continuous on X if it is lower (upper, lower Hausdorff, upper
Hausdorff) semi-continuous at each point of X. The set valued map PY is
said to be Hausdorff metric continuous if it is both lower and upper Hausdorff
semi-continuous.

Remark 1.1. It immediately follows from the above definitions that if a
subspace Y of a Banach space X is strongly proximinal, then the metric
projection PY is upper Hausdorff semi-continuous on X. Also, we observe
that while upper semi-continuity implies upper Hausdorff semi-continuity, the
implication is the other way round for the corresponding lower semi-continuity
concepts. We observe that for a proximinal subspace Y , upper semi-continuity
of the metric projection does not imply the existence of a continuous selection
for the set valued map PY but (by the Michael’s selection theorem), lower
semi-continuity of PY guarantees the existence of a continuous selection for
PY .

There are many examples of Banach spaces which are proximinal in their
second dual. For instance, it is known for long that ( see [1], [4], [6] and [11] ),
C(Q) is proximinal in its bidual. In this paper we show that, techniques used
in [4] and [7], can be adapted to prove stronger proximinality and continuity
properties of the corresponding metric projections, from C(Q) onto the closed
unit ball of a closed * subalgebra. More precisely, we prove that every closed *
subalgebra A of C(Q) is strongly ball proximinal ( and hence ball proximinal).
Further, we show that the metric projection from C(Q) onto the closed unit
ball of A is Hausdorff metric continuous and hence has a continuous selection.
In particular this would imply that C(Q) is strongly ball proximinal in its
bidual and the metric projection from (C(Q))∗∗ onto (C(Q))1 is Hausdorff
metric continuous.

2. Preliminaries

We need some notations and definitions in the sequel, which are given
below. Some of these definitions are from [7] and some others are slight
modifications of definitions in [7].
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We denote the space of complex scalars by C and the closed unit disc of
C by D. That is, D = {z ∈ C : |z| ≤ 1}. By D(β,R), we denote the closed
disc in C with center β and radius R.

Suppose F is a map from Q into compact subsets of C. Define the distance
of an f ∈ C(Q) from F by the relation

%(f, F ) = sup
t∈Q

sup
y∈F (t)

|f(t)− y|. (2.1)

Let t ∈ Q. By r1(t, F ), we denote the restricted Chebychev radius of the
set F (t), with respect to D. That is,

r1(t, F ) = inf
z∈D

sup
y∈F (t)

|z − y|. (2.2)

Finally we set,
R1(F ) = sup{r1(t, F ) : t ∈ Q}. (2.3)

We observe that for each f ∈ C(Q)1, supy∈F (t) |f(t) − y| ≥ r1(t, F ), for each
t ∈ Q, therefore by (2.2) and (2.3) we get

%(f, F ) ≥ r1(t, F ) (2.4)

for each f ∈ C(Q)1. Hence,

d(F,C(Q)1) = inf
f∈C(Q)1

%(f, F ) ≥ R1(F ). (2.5)

We define a set valued map HF from Q into the class of closed convex subsets
of D by

HF (t) = {z ∈ D : F (t) ⊂ D(z,R1(F ))}, t ∈ Q, (2.6)

where F is a map from Q into compact subsets of C. Here after we assume
that the set valued map F is upper semi-continuous on Q.

The following property of uniformly convex spaces, given in Proposition
2 in [7], turns out to be relevant for our discussion. A simpler proof of this
property for the space C is given below. Also, the selection of η turns out
to be independent of the choice of α and β (See Lemma 2.1 below) in this
case. This intersection ball property of C is repeatedly used in the proof of
our main results.

Lemma 2.1. For fixed R > 0, and ε > 0, let η = (ε(2R + ε))
1
2 . Then for

any α, β in C, there exists γ ∈ C such that |α− γ| ≤ η and

D(α,R + ε) ∩D(β,R) ⊂ D(γ,R).
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Proof. We may assume, without loss of generality, that α = 0, β is real. We
further assume β is positive, the arguments being similar when β is negative.
If β ≤ η, we take γ = β. So we only consider the case, where β > η.

For any z in C and r > 0, let S(z, r) = {w ∈ C : |z − w| = r}. Note that
S(β, R) ∩ S(0, R + ε) = {z, z} for some z in C and that x, the real part of z,
is positive and attains its minimum when β = η. It is easily verified, using a
diagram, that

D(β, R) ∩D(0, R + ε) ⊆ D(η,R) ∩D(0, R + ε)

and γ can be chosen to be η.

We now list some facts about the set valued map HF . Lemma 2.2 was
proved in [7], in a more general context. However, the proof for the complex
valued maps that we deal with is simpler, and we present it here.

Lemma 2.2. For each t in Q, HF (t) is a non- empty, compact, convex
subset of C. Further the set valued map HF is lower Hausdorff semi-continuous
on Q.

Proof. We shall first prove that the values HF (t) are non-empty. Select
any t in Q and consider

Hη
F (t) = {β ∈ D : F (t) ⊂ D(β, R1(F ) + η)},

for η > 0. The set Hη
F (t) is non-empty for each η > 0. Let {βn} ⊆ D be

a sequence such that F (t) ⊆ D(βn, R1(F ) + 1
n), for all n ≥ 1. Then {βn}

has a convergent subsequence that converges to, say, β. We claim that β is in
HF (t). Suppose not. Then there is a x in F (t) such that ‖β−x‖ ≥ R1(F )+η,
for some η > 0. Choose positive integer n such that 1

n < η
2 and ‖β−βn‖ < η

2 .
Then

‖β − x‖ ≤ ‖β − βn‖+ ‖βn − x‖ ≤ η

2
+ R1(F ) +

1
n

< R1(F ) + η,

which is a contradiction to our assumption. Thus β is in HF (t) and the set
HF (t) is non-empty.

That the set HF (t) is a closed, and hence, is a compact subset of D, follows
from the fact that the set F (t) is compact. It is easily verified that HF (t) is
a convex set for each t in Q.

We now show that the set valued map HF is lower Hausdorff semi-continuous.
Fix t0 in Q and select any β0 in HF (t0) and η, a positive number. Let ε > 0
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be so chosen that (ε(2R1(F ) + ε))
1
2 < η. Since F is upper semi-continuous

there exists a neighborhood Uε of t0 such that

F (t) ⊂ D(β0, R1(F ) + ε), if t ∈ Uε. (2.7)

Select any t in Uε. We will show that HF (t)∩B(β0, η) 6= ∅. Since the set Uε is
independent of β0 in HF (t0) and t0 in Q was selected arbitrarily, this would
imply HF is lower Hausdorff semi-continuous on Q.

Pick an element β1 in HF (t). Using (2.7), we have

F (t) ⊂ D(β0, R1(F ) + ε) ∩D(β1, R1(F )).

Now, by Lemma 2.1, there is a β in the line segment joining β0 and β1, such
that |β−β0| ≤ η and D(β, R1(F )) ⊇ F (t). Since β0 and β1 are in D, β is also
in D. It is now clear that β belongs to HF (t) and so β ∈ HF (t)∩B(β0, η).

We conclude this section with still another fact, that is needed in the
sequel, about lower Hausdorff semi-continuous maps.

Fact 2.1. Let f be in C(Q) and δ, a positive number. Assume T is a
lower Hausdorff semi-continuous set valued map from Q into the collection of
closed, convex non-empty subsets of C such that Cf (t) = D(f(t), δ) ∩ T (t)
is non-empty for each t in Q. Then the set valued map Cf is lower Hausdorff
semi-continuous on Q.

Proof. Fix t in Q and select any w in Cf (t). Since T is lower Hausdorff
semi-continuous on Q and f is continuous on Q, given η > 0, we can select a
neighborhood N of t ( independent of w) such that

|f(s)− f(t)| < η

2
and T (s) ∩D(w, η/2) 6= ∅

for any s in N . Select any z in this intersection. Then

|w − z| ≤ η

2
. (2.8)

Let s be in N and select z in T (s) to satisfy (2.8). If z is in Cf (s), we are
done. Otherwise, |z− f(s)| > δ. Let x be the point of intersection of the disk
D(f(s), δ) and the line segment joining f(s) and z. Clearly, |x− f(s)| = δ.

Now, w is in Cf (t) and so |w − f(t)| ≤ δ. Hence

|w − f(s)| ≤ |w − f(t)|+ |f(s)− f(t)| ≤ δ +
η

4
.
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Since |w − z| ≤ η
4 , we have

|z − f(s)| ≤ |z − w|+ |w − f(s)| < η

4
+ δ +

η

4
= δ +

η

2
.

Now x lies in the line segment joining f(s) and z and |x− f(s)| = δ, we must
have |x− z| ≤ η

2 . Therefore,

|x− w| ≤ |x− z|+ |z − w| ≤ η. (2.9)

Observe that f(s) ∈ Cf (s) ⊂ T (s) and z is in T (s). Since T (s) is convex,
x is in T (s) and |x− f(s)| = δ and so x is in Cf (s). Since s in N and η > 0
were chosen arbitrarily, this with (2.9), implies that Cf is lower Hausdorff
semi-continuous at t. As t in Q was selected arbitrarily, this completes the
proof.

3. Main results

In this section we prove the main results of this paper. We show that if Q is
compact, Hausdorff space, then any closed * subalgebra A of C(Q) is strongly
ball proximinal in C(Q). Further, we prove that the metric projection from
C(Q) onto A1 is Hausdorff metric continuous.

We begin with some results that are needed in the sequel.

Theorem 3.1. Let Q be a compact, Hausdorff space. For each upper
semi-continuous map F from Q into compact subset of C there exists a best
approximation from C(Q)1. That is, there exists an f0 ∈ C(Q)1 such that

%(f0, F ) = inf
f∈C(Q)1

%(f, F ).

Moreover, for each such f0 we have the equality %(f0, F ) = R1(F ).

Proof. We recall that the set valued map HF is defined by (2.6). By
Lemma 2.2, HF (t) is a compact, convex and non-empty subset of D for each
t in Q and HF is lower Hausdorff semi-continuous on Q. Now by the Michael
selection theorem, there is a continuous selection f0 of the set valued map HF .
We will show that %(f0, F ) = inff∈C(Q)1

%(f, F ) = R1(F ) and hence, f0 is a
best approximation to F from C(Q)1.

By (2.5)
R1(F ) ≤ inf

f∈C(Q)1

%(f, F ) ≤ %(f0, F )
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and by Lemma 2.2, f0(t) ∈ HF (t) for each t ∈ Q. Now (2.6) and (2.1) imply
that %(f0, F ) ≤ R1(F ) and so %(f0, F ) = R1(F ). It now follows from (2.5) that
f0 is a best approximation to F from C(Q)1 and R1(F ) = inff∈C(Q)1

%(f, F ).

Remark 3.1. If F from Q into subsets of C is upper semi-continuous map
then it is clear from the above theorem that the distance of F from C(Q)1 is
R1(F ) and f is a best approximation to F from C(Q)1 if and only if f is a
continuous selection of the set valued map HF .

In what follows, we adhere to the notation given below. Throughout X and
Y would denote compact Hausdorff spaces and φ : Y → X be a continuous
surjection. Define Tφ : C(X) → C(Y ) by Tφ(f) = f ◦ φ for f ∈ C(X). Let
Z = Tφ(C(X)). Note that

‖f‖ = sup
x∈X

|f(x)| = sup
y∈Y

|f(φ(y))| = sup
y∈Y

|g(y)| = ‖g‖

and hence f is in C(X)1 if and only if g is in Z1.
For h in C(Y ), define a set valued map F = Fh on X by

F (x) = {h(y) : y ∈ φ−1(x)}, for x ∈ X. (3.1)

It is easily verified that F (x) is a compact subset of C for each x in X. If
g is in Z then g = Tφ(f), for some f in C(X). Note that g is constant on
φ−1(x) = {y ∈ Y ;φ(y) = x} for every x ∈ X. Now

‖h− g‖ = sup
y∈Y

|h(y)− g(y)|

= sup
x∈X

sup
y∈φ−1(x)

|h(y)− g(y)|

= sup
x∈X

sup
s∈F (x)

|s− f(x)|

= %(f, F ).

(3.2)

Let
S1(h) = sup

x∈X
inf
z∈D

sup
y∈φ−1(x)

|h(y)− z|. (3.3)

Then clearly we have

S1(h) = sup
x∈X

inf
z∈D

sup
s∈F (x)

|s− z| = sup
x∈X

r1(x, F ) = R1(F ). (3.4)
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It is easy to see that for each h ∈ C(Y ) and g ∈ Z1,

‖h− g‖ ≥ S1(h) and so S1(h) ≤ d(h, Z1). (3.5)

We now have

Theorem 3.2. For each h ∈ C(Y ), there exists g0 ∈ Z1 such that

‖h− g0‖ = d(h, Z1) = S1(h).

That is, Z is ball proximinal in C(Y ).

Proof. Since (3.5) holds, it is enough to show the existence of a g0 ∈ Z1

such that
‖h− g0‖ = S1(h).

Let F = Fh be given by (3.1). By Theorem 3.1 there exists f0 ∈ C(X)1 such
that

%(f0, F ) = R1(F ).

Let g0 = Tφ(f0). Then g0 is in Z1. Now using (3.2) and (3.4) we have,

‖h− g0‖ = %(f0, F ) = R1(F ) = S1(h) (3.6)

and g0 is a nearest element to h from Z1. Hence Z is ball proximinal in C(Y ).

Remark 3.2. We observe from the above Theorem 3.2 that g = f ◦ φ in
Z1 is a nearest element to C(Y ) if and only if f is a nearest element to F
from C(X)1, where F is given by (3.1). Recall that by Remark 3.1, f is a
best approximation to F from C(X)1 if and only if ρ(f, F ) = R1(F ). Thus
g = f ◦φ in Z1 is a nearest element to h in C(Y ) if and only if ‖h−g‖ = S1(h)
or equivalently %(f, F ) = R1(F ).

We now proceed to show that Z is strongly ball proximinal in C(Y ) and
the metric projection from C(Y ) onto Z1 is lower Hausdorff semi-continuous.

Theorem 3.3. The space Z is strongly ball proximinal in C(Y ).

Proof. Let h be in C(Y ) and ε > 0 be given. Select δ > 0 such that
3δ(R1(F ) + 3δ)

1
2 < ε, where F = Fh is given by (3.1). Let g be in Z1 satisfy

‖h− g‖ < d(h,Z1) + δ = S1(h) + δ. We will show that there is a g0 such that
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‖h − g0‖ = S1(h) and ‖g − g0‖ < ε. By the above Remark 3.2, this would
imply Z1 is strongly ball proximinal. Let f in C(X)1 satisfy Tφ(f) = g. Then
by (3.2 ) and (3.4),

%(f, F ) = ‖h− g‖ < S1(h) + δ = R1(F ) + δ.

Hence for any z in F (x) and x ∈ X, we have

sup
x∈X

|f(x)− z| < R1(F ) + δ,

which in turn implies

D(f(x), R1(F ) + δ) ⊇ F (x),

for each x in X. Fix x in X and select any α in HF (x). Now by Lemma 2.1,
there is a sx in complex plane such that |sx − f(x)| < ε, sx lies in the line
segment joining α and f(x) and D(sx, R1(F )) ⊇ F (x). Since both f(x) and
α lie in D, so does sx and hence sx is in HF (x). Thus d(f(x),HF (x)) < ε. If
we set

Cf (x) = D(f(x), ε/2) ∩HF (x), for x ∈ X,

then Cf (x) is non-empty for each x in X and the set valued map Cf is lower
Hausdorff semi-continuous by Lemma 2.2 and Fact 2.3. By Michael’s selection
theorem, Cf has a continuous selection, say, f0. By Remark 3.2, f0 is a best
approximation to F from C(X)1 and %(f0, F ) = R1(F ). Further ‖f −f0‖ < ε.
Now let g0 = Tφ(f0). Then g0 is in Z1 and by (3.4),

‖h− g0‖ = %(f0, F ) = R1(F ) = S1(h)

and g0 is a nearest element to h from Z1. Also,

‖g − g0‖ = ‖f − f0‖ < ε

and this completes the proof.

Theorem 3.4. For any surjection map φ : Y → X where X and Y are
compact Hausdorff spaces and Z = Tφ(C(X)), the metric projection from
C(Y ) onto the closed unit ball of Z is lower Hausdorff semi-continuous and
hence it has a continuous selection.
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Proof. Given 0 < ε < 1, let h1, h2 be elements in C(Y ) with ‖h1−h2‖ < ε.
Then clearly,

dH(F (x), G(x)) ≤ ε, for all x ∈ X, (3.7)

where
F (x) = {s ∈ D : s = h1(y), y ∈ φ−1(x)}

and
G(x) = {t ∈ D : t = h2(y), y ∈ φ−1(x)}.

From the definition of r1(x, F ), for any η > 0 there exists β in D such that

F (x) ⊆ D
(
β, r1(x, F ) +

η

2

)
.

Now (3.7) implies that

D
(
β, r1(x, F ) + ε +

η

2

)
⊇ G(x).

Since η > 0 is arbitrarily chosen, this implies that r1(x,G) ≤ r1(x, F ) + ε.
Interchange h1 and h2, we conclude, r1(x, F ) ≤ r1(x,G) + ε. Hence

|r1(x, F )− r1(x, G)| 5 ε for all x ∈ X. (3.8)

Clearly, (3.8) implies that

|R1(F )−R1(G)| 5 ε < 1 if ‖h1 − h2‖ < ε. (3.9)

For x in X, we have HF (x) = {β ∈ D : D(β, R1(F )) ⊇ F (x)}. If β
is in HF (x), then by (3.7), D(β, R1(F ) + ε) contains G(x) and by (3.9),
D(β,R1(G) + 2ε) contains G(x). Select any γ0 in HG(x) = {β ∈ D :
D(β,R1(G)) ⊇ G(x)}. Then

G(x) ⊆ D(β, R1(G) + 2ε) ∩D(γ0, R1(G)),

for all x in X. By Lemma 2.1, there exists γ in D such that

D(γ, R1(G)) ⊃ G(x) and |β − γ| ≤ α, (3.10)

where α = (ε(2R1(G) + ε))
1
2 . Clearly, γ is in HG(x) and α ≤ (ε(2R + ε))

1
2

where R = R1(F )+1. Let η(ε) = (ε(2R + ε))
1
2 . Then η(ε) > 0, η(ε) decreases

to zero as ε decreases to zero. Further, using (3.10), we have |β − γ| < η(ε).
Since β in HF (x) and x is in X were arbitrary chosen, we have HF (x) ⊂
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HG(x)+η(ε)D, for all x in X. Interchanging h1 and h2 in the above argument,
we can conclude that if ‖h1 − h2‖ < ε, then HG(x) ⊂ HF (x) + η(ε)D and

dH(HF (x),HG(x)) < η(ε), for all x ∈ X. (3.11)

We now show that the metric projection from C(Y ) onto Z1 is lower Haus-
dorff semi-continuous on C(Y ). We fix h1 ∈ C(Y ) and consider any g in
PZ1(h1) and δ0 > 0. We will show that there is ε > 0 such that if h2 is in
C(Y ) and ‖h1 − h2‖ < ε, then PZ1(h2) ∩ D(g, δ0) 6= ∅. We recall that, by
Remark 3.2, g is in PZ1(h1) if and only if there is a continuous selection f of
the set valued map HF , such that g = f ◦ φ. Clearly f(x) is in HF (x) for all
x ∈ X. Using (3.11), we choose 0 < ε < 1 such that for h2 in C(Y ) satisfying
‖h1 − h2‖ < ε, we have

dH(HF (x),HG(x)) <
δ0

2
for all x ∈ X. (3.12)

Note that the choice of ε is independent of g in PZ1(h1). For x in X, we now
set Cf (x) = HG(x) ∩ D(f(x), δ), where 2δ = δ0. It follows from (3.12) that
Cf (x) 6= ∅ for all x in X. Further, by Fact 2.1, the set valued map Cf is
lower Hausdorff semi-continuous on C(Y ).

By the Michael selection theorem, Cf has a continuous selection, say f1.
The map f1 is a continuous selection of HG and so by Remark 3.2, g1 = f1 ◦φ
is in PZ1(h2). Also ‖f − f1‖ 5 δ < δ0. This proves the lower Hausdorff semi-
continuity of the metric projection map PZ1 , at h1. Since h1 in C(Y ) was
chosen arbitrarily, PZ1 is lower Hausdorff semi-continuous on C(Y ).

Let Y be a compact, Hausdorff space and A be a closed * subalgebra of
C(Y ) containing the unit, that is the constant function 1. Then it is known
that ( see [8] and [10] ) there is a compact, Hausdorff space X and a continuous
surjection φ from Y onto X such that A = Z = Tφ(C(X)), where

Tφ(f) = f ◦ φ, for f ∈ C(X).

The following corollary follows from Theorems 3.3 and 3.4.

Corollary 3.1. Every closed * subalgebra A of C(Q), containing the
unit, is strongly ball proximinal and the metric projection PA1 is Hausdorff
metric continuous.

It is also known that C(Q)∗∗ is a C(K) space, for a compact, Hausdorff
space K and C(Q) is a * subalgebra of C(K), containing the unit. Now the
corollary below is an immediate consequence of Corollary 3.1 above.
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Corollary 3.2. If Q is compact, Hausdorff, then C(Q) is strongly ball
proximinal in its bidual and the metric projection from C(Q)∗∗ onto C(Q)1 is
Hausdorff metric continuous.

4. * subalgebras without unit

We now consider the case of closed * subalgebras without unit. Our meth-
ods here are motivated by those used in the proof of Theorem 2 in [4]. Let Y be
a compact, Hausdorff space and A be any closed * subalgebra of C(Y ). Then
it is known that (see [8] and [10]) there is a compact, Hausdorff space X, w in
X and a continuous surjection φ from Y onto X such that A = Tφ(C0(X)),
where

Tφ(f) = f ◦ φ, for f ∈ C(X)

and
C0(X) = {f ∈ C(X) : f(w) = 0}.

Let F be a map from X into compact subsets of C. Then r1(x, F ), for
x ∈ X, R1(F ), %(f, F ) for f in C0(X) ⊆ C(X) and set valued map HF , are
defined by equations (2.1) to (2.6), in the beginning of Section 2. Further we
set

r0(F ) = sup
z∈F (w)

|z|

and
R1(F ) = max{R1(F ), r0(F )}. (4.1)

We define the set valued map HF from X into closed convex subset of D
by

HF (x) =
{

HF (x) if x 6= w
0 if x = w

(4.2)

Now we have the following lemma, which replaces Lemma 2.2 in this part of
the discussion.

Lemma 4.1. For each x in X, HF (x) is a non- empty, compact, con-
vex subset of C. Further the set valued map HF is lower Hausdorff semi-
continuous on X.

Proof. Clearly HF (x) is a non-empty, compact, convex subset of C, follows
from the corresponding statement for HF (x). Using Lemma 2.2, it is enough
to show that HF is lower Hausdorff semi-continuous at w. Fix η, a positive
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number. Let ε > 0 be so chosen that (ε(2R1(F ) + ε))
1
2 < η. Since F is upper

semi-continuous there exists a neighborhood Uε of w such that

F (x) ⊂ F (w) + εD, if x ∈ Uε (4.3)

We now discuss two cases.

Case i) R1(F ) = R1(F ). In this case R1(F ) ≥ r0(F ). Hence

F (w) ⊆ D(0, r0(F )) ⊆ D(0, R1(F ))

and this with (4.3) implies

F (x) ⊆ D(0, R1(F ) + ε), if x ∈ Uε.

Now proceeding as in the proof of Lemma 2.2, we find β in D such that |β| < η
and β is in F (x).

Case ii) R1(F ) = r0(F ). In this case, r0(F ) ≥ R1(F ). Thus for any x in Uε

and α in F (x), we have

F (x) ⊆ D(α, R1(F )) ⊆ D(α, r0(F )).

Note that F (w) ⊆ D(0, r0(F ) and using (4.3),

F (x) ⊆ D(0, r0(F ) + ε), if x ∈ Uε.

Now we again proceed as in the proof of Lemma 2.2, we find β in D such that
|β| < η and β is in F (x).

Thus in either case, the map HF is lower Hausdorff semi-continuous at w.
Since HF (w) = {0}, this implies the map is lower Hausdorff semi-continuous
at w.

We now prove the analog of Theorem 3.1.

Theorem 4.1. Let Q be a compact, Hausdorff space, w ∈ Q and C0(Q) =
{f ∈ C(Q) : f(w) = 0}. If F is an upper semi-continuous map from Q into
the set of compact subsets of C, then

d(F, C(Q)1) = inf{%(f, F ) : f ∈ C0(Q)1} = R1(F )

and there exists an f0 ∈ C0(Q)1 such that

%(f0, F ) = R1(F ).

That is, f0 is a best approximation to F from C0(Q)1.
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Proof. First observe that

r0(F ) ≤ %(f, F ), if f ∈ C0(Q)1.

This with (2.5) implies that

R1(F ) ≤ inf{%(f, F ) : f ∈ C0(Q)1} = d(F, C0(Q)1). (4.4)

By Lemma 2.2, HF is lower Hausdorff semi-continuous on Q, where the set
valued map HF is defined by (4.2). By the Michael selection theorem, there
is a continuous selection f0 of the set valued map HF . Note that r0(F ) ≥
r1(w,F ). It is now clear that %(f0, F ) = R1(F ) and hence, f0 is a best
approximation to F from C0(Q)1.

Let X and Y be compact, Hausdorff spaces. For h in C(Y ), define F = Fh

by (3.1) and S1(h) by (3.3). Let

S0(h) = sup
y∈φ−1(w)

|h(y)|.

Define S1(h) = max{S1(h), S0(h)}. It is easily seen that if F = Fh then

S0(h) = r0(F ) and S1(h) = R1(F ). (4.5)

Let φ be a continuous surjection from Y onto X and define the map Tφ

from C0(X) into C(Y ) by

Tφ(f) = f ◦ φ, if f ∈ C0(X).

Then Tφ is an isometry and let A = Tφ(C0(X)). Select any g in A. Then
there is a f in C0(X) such that g = Tφ(f). For h ∈ C(Y ) and F = Fh, we
have

‖h− g‖ = sup
y∈Y

|h(y)− g(y)|

= sup
x∈X

sup
y∈φ−1(x)

|h(y)− g(y)|

= sup
x∈X

sup
s∈F (x)

|s− f(x)|

= %(f, F ).

(4.6)
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and if g is in A1 then

‖h− g‖ = sup
y∈Y

|h(y)− g(y)|

= sup
x∈X

sup
y∈φ−1(x)

|h(y)− g(y)|

≥ max {sup
x∈X

inf
z∈D

sup
y∈φ−1(x)

|h(y)− z|, S0(h)}

= S1(h).

(4.7)

Hence
S1(h) ≤ d(h,A1). (4.8)

We now have

Theorem 4.2. For each h ∈ C(Y ), there exists g0 ∈ A1 such that

‖h− g0‖ = d(h,A1) = S1(h).

That is, A is ball proximinal in C(Y ).

Proof. Because of (4.7), it is enough to show the existence of a g0 ∈ A1

such that
‖h− g0‖ = S1(h).

Let F = Fh be given by (3.1). By Theorem 4.2 there exists f0 ∈ C0(X)1 such
that

%(f0, F ) = R1(F ). (4.9)

Let g0 = Tφ(f0). Then g0 is in A1. Now using (4.5) and (4.6) we have,

‖h− g0‖ = %(f0, F ) = R1(F ) = S1(h)

and g0 is a nearest element to h from A1. Hence A is ball proximinal in
C(Y ).

Hereafter using similar arguments as in Theorems 3.3 and 3.4 we conclude

Theorem 4.3. Let X,Y and A be as above. Then A1 is strongly prox-
iminal in C(Y ) and the metric projection PA1 is Hausdorff metric continuous
on C(Y ).
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If Q is a compact Hausdorff space and J a closed subspace of C(Q). Then
J is an M-ideal in C(Q) (see [5]) if and only if there is a closed subset E of Q
such that J = {f ∈ C(Q) : f ≡ 0 on E}. ([8] and [10]) Recall that the second
dual of C(Q) is again a C(K) space for a compact, Hausdorff K. Hence J is a
closed * subalgebra of C(K) (and C(Q)). The following corollary now follows
from Theorem 4.4.

Corollary 4.1. Let Q be a compact Hausdorff space and J, an M-ideal in
C(Q). Then J is strongly ball proximinal in C(Q)∗∗ and the metric projection
from C(Q)∗∗ onto J1 is Hausdorff metric continuous.
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