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Abstract : In this paper, we will use results developed by Ansari and Enflo in the theory
of bounded linear operators with dense range. We define two maps, with regards to some
parameters, that control surjectivity default of a given operator, and prove analycity for the
first one and global continuity for the other one. Minimisation results are also obtained in
relation to this study.
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Introduction

LetH be a separable infinite dimensional complex Hilbert space and denote
by B(H), the algebra of bounded linear operators on H. Given any operator
T of B(H) with dense range, it is quite natural to estimate it’s surjectivity
default.

Such a study was firstly proposed by Ansari and Enflo [1] to produce
invariant subspaces results by considering the best approximate solutions of
the equations Tny = x0 with n ∈ N, for the case when x0 is not in the
range of T . Then, this subject was developed by many authors, for example
the contribution of Foias, Jung, Ko and Pearcy ([5], [3], [4]) that made an
important breakthrough in the search of hyperinvariant subspaces for some
classes of operators, and also [2].

For the sake of continuing this progress, we will work again on the bases
of this theory, that is the extremal vectors. Precisely, this paper gives some
results concerning minimisation problem in the research of extremal vectors
and study their dynamic regarding several parameters.
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1. Notations

In the sequel of this paper, B(x, r] will stand for the closed ball centered
on x with radius r and ∂B(x, r) for its boundary. As H is a complex Hilbert
space, denote by 〈·|·〉 its complex scalar product, and [·|·] the one of the natural
real prehilbertian structure of H. For any fixed vector u of H, consider the
hyperplane orthogonal to SpanR(u). Then denote by Du the open half-space
delimited by this vector space such that it does not contain u and by Eu its
complementary in H.

Let T be an operator of B(H) with dense range. For such an operator,
the vector 0 has a well-known pre-image. Let x0 be a nonzero vector of H
and ε be any real number such that 0 < ε < ‖x0‖. Since T has dense range,
we can find some image Ty in the ball B(x0, ε]. The idea is to pick up one
particular vector y such that Ty is in the previous ball. Precisely, Ansari and
Enflo consider the y of smallest norm such that ‖Ty − x0‖ 6 ε as it is shown
in Lemma 1.

Lemma 1. There exists a unique vector y0 that belongs to B(x0, ε] and
that satisfies the condition

‖y0‖ = inf {‖y‖; ‖Ty − x0‖ 6 ε} .

Proof. Set F := {y ∈ H; ‖Ty − x0‖ 6 ε}. This is a closed convex nonempty
subset of H. Indeed, since T has dense range, F is nonempty. Moreover, we
notice that

T−1 (B(x0, ε]) = {y ∈ H; ‖Ty − x0‖ 6 ε} = F
is also a closed set because T is a continuous map. To conclude, if y1 and
y2 are two vectors of H and t ∈ [0, 1], then ‖T (ty1 + (1 − t)y2) − x0‖ =
‖t(Ty1 − x0) + (1 − t)(Ty2 − x0)‖ 6 tε + (1 − t)ε 6 ε, so F is a convex set.
Consequently, the projection theorem in Hilbert spaces claims the existence
and unicity of y0.

Definition 1. Such a vector is called extremal vector associated with T ,
x0 and ε. It will be denoted by yx0,ε in the sequel.

We have chosen this last notation to stress the dependance of extremal
vectors on the two parameters. Indeed, two maps can be defined : either x0

is a fixed nonzero vector, and we define the map

yx0,· : ]0; ‖x0‖[ −→ H
ε 7−→ yx0,ε

;
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or ε is a fixed nonzero real number, and we define the map

y·,ε : H\B(0, ε] −→ H
x0 7−→ yx0,ε

.

2. Minimisation place precisions

As mentioned before, to find the extremal vector associated with some T ,
x0 and ε, is a minimisation problem. The computation of yx0,ε results from a
norm minimisation of a vector y such that Ty describes the whole ball B(x0, ε].
In fact, only the minimisation on its boundary is sufficient.

Lemma 2. (Ansari-Enflo) The extremal vector associated with T , x0

and ε is the vector y with the smallest norm such that

‖Ty − x0‖ = ε.

Proof. Let y0 be the extremal vector associated with T , x0, ε, and suppose
that ‖Ty0− x0‖ < ε. On the one hand, we can write α = ε−‖Ty0− x0‖ > 0.
On the other hand, there exists a real number δ > 0 such that B(y0, δ] ⊂ F .
Indeed, every vector z belonging to B(y0, δ] satisfies : ‖Tz − x0‖ 6 ‖T (z −
y0)‖ + ‖Ty0 − x0‖ 6 ‖T‖δ + ε − α 6 ε for an appropriate choice of δ > 0
provided that δ 6 α

‖T‖ holds. Consequently, (1− δ
2)y0 has a smaller norm than

y0, which is impossible. The proof is complete.

We now give a restriction for the minimisation. In that way, we need the
following result asserting the collinearity between the two vectors T ?(Tyx0,ε−
x0) and y0.

Lemma 3. (Ansari-Enflo) There exists a negative number r0 such that

T ?(Ty0 − x0) = r0y0. (2.1)

Proof. This lemma is based on the following result coming from real pre-
hilbertian structures on a complex Hilbert space H :

Lemma 4. Let ρ be a non negative number. Let u, v be two nonzero
vectors of H such that for all z ∈ H, [u|z] < −ρ‖z‖ ⇒ [v|z] > ρ‖z‖ holds.
Then, there exists a negative number r with |r| > ρ

‖u‖ such that v = ru.



38 j. verliat

Proof. Let z be a vector such that [u|z] < −ρ‖z‖ 6 0 : then z belongs
to Du. Since v satisfies [v|z] > ρ‖z‖ > 0, it belongs to Ez. Consequently, v
belongs to the intersection of all Ez when z describes Du. So there exists a
negative number r such that v = ru. Then using z = v we get ‖v‖ > ρ, as
‖v‖ = |r|‖u‖, we obtain |r| > ρ

‖u‖ .

Therefore, we only need to check that u = T ?(Ty0−x0) and v = y0 satisfy
this lemma’s hypothesis in the particular case when ρ = 0. Observe that

ψ(t) = ‖(Ty0−x0)+ tTz0‖2 = ‖Ty0−x0‖2 +2t[Ty0−x0|Tz0] + t2‖Tz0‖2 > 0

and ψ′(0) = 2[Ty0 − x0|Tz0] < 0, thus ψ decreases on [0, t0] for some t0 > 0,
that is: ‖T (y0+tz0)−x0‖2 = ψ(t) 6 ψ(0) = ‖Ty0−x0‖2 = ε2. The minimality
of y0 asserts that

‖y0‖2 6 ‖y0 + tz0‖2 = ‖y0‖2 + 2t[y0|z0] + t2‖z0‖2,

consequently ϕ(t) := ‖y0 + tz0‖2 defines a decreasing map on [0, t0], implying
ϕ′(0) > 0, i.e., [y0|z0] > 0.

This result, proved in [1], provides the following new reduction of the
minimisation place. We are only satisfied with the minimisation on a kind of
cap of the sphere ∂B(x0, ε). More precisely:

Proposition 1. The extremal vector yx0,ε is the vector of the smallest
norm such that Tyx0,ε belongs to

Vx0,ε := ∂B(x0, ε) ∩ B(0,
√
‖x0‖2 − ε2].

Proof. Lemma 3 implies the existence of a negative number r0 such that
T ?(Ty0 − x0) = r0y0. This entails [Ty0 − x0|Ty0] = [T ?(Ty0 − x0)|y0] =
r0‖y0‖2 < 0, meaning that the angle formed by vectors Ty0 − x0 and Ty0 is
obtuse. For a better understanding, we can put forward the following picture,
explaining the situation in the two dimensional case:
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Vectors y, such that Ty are situated on the right hand side of the two half
straight lines drawn from x0 endpoint, are not suitable. Indeed, in this case
Ty − x0 and Ty form an obtuse angle. Thus, such a vector cannot be the
extremal vector y0 and it will not be considered in the minimisation. The
infinite dimensional case is similar: the only vectors y that play a rôle in the
minimisation are the ones such that Ty are situated on one side of a half cone
given by the straight lines through x0 and orthogonal to tangents through 0
of the circle centered on x0 with radius ε. The two dimensional case can be
helpful:

©©©©©©©©©©*
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Use Pythagorean theorem to observe that those vectors norms are
√
‖x0‖2−ε2.

3. Regularity with regard to ε

Fix now a vector x0 ∈ H and consider extremal vectors associated with T ,
x0 and ε where ε ∈]0, ‖x0‖[. We focus now on the map defined in Section 1 :

yx0,· : ]0; ‖x0‖[ −→ H
ε 7−→ yx0,ε

.

The next result, proved in [1], holds:

Proposition 2. (Ansari-Enflo) The map ε 7→ y0 is analytic over
]0, ‖x0‖[.

Proof. Observe that it suffices to prove the analycity of ε 7→ rε, where
rε is the negative number given by Lemma 3. Indeed, Equation 2.1 implies
(rεI − T ?T )y0 = −T ?x0, and since rεI − T ?T is invertible (because for all
r < 0, T ?T − rI > −rI > 0), y0 = −(rεI − T ?T )−1T ?x0 holds. Focus now on
the converse map of ε 7→ rε, that is rε 7→ ε, which is well defined since y0 is
unique. As ε2 = ‖Ty0 − x0‖2 = ‖ − T (rεI − T ?T )−1T ?x0 − x0‖2, this entails
the analycity of the map rε 7→ ε2, which is moreover injective. Consequently,
rε 7→ ε is analytic.
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4. Regularity with regard to x0

In this section, we fix the real number ε to be positive, and study extremal
vectors associated with T , ε and x0 where x0 is a vector in H\B(0, ε]. In a
first part, we will obtain the continuity of the map defined in Section 1:

y·,ε : H\B(0, ε] −→ H
x0 7−→ yx0,ε

.

To prove this result, we firstly consider the map x0 7→ ‖yT,x0,ε‖:

Proposition 3. The map x0 7→ ‖yx0,ε‖ is continuous on the open set

H\B(x0, ε).

Proof. Let µ be a positive number. The analycity of ε 7→ yx0,ε im-
plies the continuity of ε 7→ ‖yx0,ε‖. Thus, there exists ν > 0 such that
|‖yx0,ε±ν‖ − ‖yx0,ε‖| < µ. Let x ∈ B(x0, ν]. Then B(x0, ε − ν] ⊂ B(x, ε] ⊂
B(x0, ε + ν]. Consequently, minimality’s definition involves ‖yx0,ε+ν‖ 6
‖yx,ε‖ 6 ‖yx0,ε−ν‖. So, vectors x of the ball B(x0, ν] satisfy

‖yx0,ε‖ − µ 6 ‖yx,ε‖ 6 ‖yx0,ε‖+ µ

which completes the proof.

This result will help us to prove the global continuity of the map x0 7→ yx0,ε.
The proof use Proposition 3, the Pythagorean theorem and a Banach space
theorem, concerning a decreasing intersection of closed sets whose diameters
converge to 0.

Theorem 1. With the same hypotheses as in Proposition 3, the map
x0 7→ y0 is continuous at all point of the open set H\B(0, ε].

Proof. We restrict the study of the continuity at the vector x0. Let x
(n)
0

be a sequence converging in H to x0. We set y
(n)
0 := y

x
(n)
0 ,ε

. Notice that for
all positive number ν, there exists an integer N such that

∀n > N, y
(n)
0 ∈ {y ∈ H; ‖Ty − x0‖ 6 ε + ν} .

Furthermore, the vector yx0,ε belongs to this set. For this reason a decreasing
sequence (νn)n of positive numbers converging to 0, and such that for all
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integer k > n, y
(k)
0 ∈ {y ∈ H; ‖Ty − x0‖ 6 ε + νn} can be constructed. Set:

Fn :=
{

y ∈ H; ‖Ty − x0‖ 6 ε + νn and ‖y‖ 6 sup
k>n

{
‖y(k)

0 ‖, ‖yx0,ε‖
}}

.

This is a closed convex set, and y
(n)
0 ∈ Fn. With the Pythagorean theorem,

its diameter is bounded by the real number

2×
√

sup
k>n

{
‖y(k)

0 ‖, ‖yx0,ε‖
}2
− ‖yx0,ε+νn‖2 .

Therefore (Fn)n∈N is a decreasing sequence of closed sets whose diameters
converge to 0. Completeness of the Hilbert space H involves

⋂

n∈N
Fn = {yx0,ε} .

Consequently the sequence (y(n)
0 ) converges to yx0,ε.

In this part, we study a particular case of the previous application. Here,
T and ε are fixed as before, and x0 is a fixed vector in H\B(0, ε]. Study now
the application ] ε

‖x0‖ , +∞
[
−→ R

t 7−→ ‖ytx0,ε‖
.

Proposition 4. The map t 7−→ ‖ytx0,ε‖ is increasing on
] ε

‖x0‖ , +∞
[
.

Proof. For more simplicity, consider the map t 7→ ‖y(1+t)x0,ε‖ instead of
the one of that Proposition.

Firstly, observe that
V(1+t)x0,ε ⊂ B(x0, ε]

for all t ∈ R?
+ sufficiently small, for example if t belongs to

[
0, ε2

‖x0‖2
]
. Indeed,

if x′ ∈ V(1+t)x0,ε, then we obtain ‖(1 + t)x0 − x′‖ = ε and ‖x′‖2 6 (1 +
t)2‖x0‖2 − ε2. Writing x′ = (1 + t)x0 + k for k ∈ H, we can develop: ‖x′‖2 =
(1 + t)2‖x0‖2 + 2(1 + t)[x0|k] + ε2 6 (1 + t)2‖x0‖2 − ε2, so

ε2 + (1 + t)[x0|k] 6 0
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holds. Furthermore x′ − x0 = tx0 + k, so ‖x′ − x0‖ 6 ε is equivalent to
t‖x0‖2 + 2[x0|k] 6 0. Since t‖x0‖2 + 2[x0|k] 6 t‖x0‖2− 2 ε2

1+t , it is sufficient to
find non negative numbers t such that

(1 + t)t‖x0‖2 − 2ε2 6 0.

A short study of this polynomial shows it vanishes twice, one of its zero is

negative and the other one is positive, equals to 1
2

(√‖x0‖2+8ε2

‖x0‖ − 1
)
. We only

have to check that the previous bound is less or equal to this one:
√
‖x0‖2 + 8ε2

2‖x0‖ − 1
2

=
4ε2

‖x0‖(
√
‖x0‖2 + 8ε2 + ‖x0‖)

> ε2

‖x0‖2

because ε < ‖x0‖.
Consequently, using minimality argument of Proposition 1, we obtain

‖yx0,ε‖ 6 ‖y(1+t)x0,ε‖. Since x0 is arbitrary, ‖y(1+t1)x0,ε‖ 6 ‖y(1+t2)x0,ε‖ for
all t1 6 t2, and the map is increasing on

[
0, ε2

‖x0‖2
]
. The same idea applied

to x1 = (1 + ε2

‖x0‖2 )x0 instead of x0 shows that t 7→ ‖y(1+t)x1,ε‖ is increas-

ing on
[
0, ε2

‖x1‖2
]
. Applying this argument again, every map t 7→ ‖y(1+t)xn,ε‖

is increasing on
[
0, ε2

‖xn‖2
]
, where the sequence (xn)n is defined by x0 and

xn+1 = (1 + ε2

‖xn‖2 )xn. We get ‖xn+1‖ = (1 + ε2

‖xn‖2 )‖xn‖ = ‖xn‖ + ε2

‖xn‖ .

As the sequence (‖xn‖)n is increasing, and the map f : x 7→ x + ε2

x has no
fixed point, (‖xn‖)n tends to infinity as n tends to infinity. Therefore the
map t 7→ ‖y(1+t)x0,ε‖ is increasing on [0, +∞[. Taking another x0 in the same
direction but with a norm closed to ε, we obtain that this map is increasing
on

]
ε

‖x0‖ − 1,+∞[
, and the proof is complete.

Counter-example in the two dimensional case. We show now
that Proposition 4 cannot be generalized to all directions thanks to a counter-
example in the particular case of dimension two. LetH be the two dimensional
complex Hilbert space C2.

Example 1. Consider T = IC2 be the identity operator of B(C2). Let
x0 =

(
2
−2

)
and u =

(
0
2

)
be two vectors of C2. Let ε = 1. Then, the map

t 7→ ‖yx0+tu,ε‖ is decreasing on [0; 1] and increasing on [1; +∞[.

Proof. We know that the extremal vector yx0+tu,ε belongs to T−1
(
∂B(x0 +

tu, ε)
)
, which is determined by the equation ‖Ty − x0 − tu‖2 = ε. Writing
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y =
(
λ
µ

)
, it means that λ and µ satisfy (λ−2)2 +(µ+2−2t)2 = 1. This is the

equation of a circle C centered on C =
(

2
2t−2

)
with radius r = 1. Therefore

‖yx0+tu,ε‖ = d(O,C ) = OC − r =
√

4 + 4(t− 1)2 − 1 = 2
√

(t− 1)2 + 1− 1

where d stands for the distance in C2. A short study of the function t 7→
2
√

(t− 1)2 + 1− 1 completes the proof.
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