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Abstract : A finite group whose irreducible characters are rational valued is called a rational
or a Q-group. In this paper we obtain various results concerning the structure of a Sylow
2-subgroup of a solvable Q-group.
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1. Introduction and preliminary results

Let G be a finite group and χ be a complex character of G. LetQ(χ) denote
the subfield of the complex number C generated by all the values χ(x), x ∈ G.
By definition χ is called rational if Q(χ) = Q, where Q denotes the field of
rational numbers. A finite group G is called a rational group or a Q-group,
if every complex irreducible character of G is rational. Equivalently G is a
Q-group if and only if every x in G is conjugate to xm where m ∈ N is prime
to the order of x. This will imply that for every x ∈ G of order n we have
NG(〈x〉)
CG(〈x〉)

∼= Aut(〈x〉) a group of order ϕ(n) where ϕ is the Euler ϕ-function.
The symmetric group Sn and the Weyl group of the complex Lie algebras
are examples of Q-groups. Elementary abelian 2-groups and extra-special 2-
groups are also Q-groups. Rational groups have been studied extensively, but
their classification is far from being complete. It is proved in [5] that if G is a
solvable Q-group, then π(G) ⊆ {2, 3, 5}. Also by [4] non-abelian composition
factors of any finite Q-group can only be either SP6(2) or O+

8 (2). In [2] the
structure of Frobenius Q-groups has been found.

An important problem concerning Q-groups is to classify them through
the structure of a Sylow 2-subgroup. Any non-trivial Q-group is of even order
and there is a long standing conjecture that a Sylow 2-subgroup of a Q-group
is also a Q-group [9, page 13]. The following results determine the structure
of Q-groups with a specified Sylow 2-subgroup.
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Result 1. ([9, page 21] and [1, page 60]) Let G be a Q-group with an
abelian Sylow 2-subgroup P . Then P is an elementary abelian 2-group and
G is a supersolvable {2, 3}-group. Moreover the commutator subgroup G′

of G is a normal Sylow 3-subgroup of G and G splits over G′ with P as a
complement. In other words G is a 2-nilpotent group.

Let D2n denote the dihedral group of order 2n. It is proved in [9, page
25] that if G is a Q-group with a Sylow 2-subgroup P isomorphic to D2n,
then n = 1, 2 or 4. If n = 1 or 2, then P is abelian and the structure of G
follows from Result 1. But as far as the authors know the structure of G in
case n = 4 is not mentioned anywhere. However in [1, page 61] it is proved
that if G is a solvable group with a Sylow 2-subgroup isomorphic to D8, then
π(G) ⊆ {2, 3}.

Result 2. ([9, page 35] and [1, page 62]) Let G be a Q-group with a
Sylow 2-subgroup P isomorphic to the quaternion group Q8. Then G contains
a normal elementary abelian p-group Ep, where p = 3 or 5, and G = Ep : P ,
where “ :” denotes semi-direct product. In other words G is a 2-nilpotent
group. Moreover if G is non-nilpotent, then G is isomorphic to a Frobenius
group with complement isomorphic to Q8, the quaternion group of order 8.

Motivated by the above results in this paper we obtain some properties of
Q-groups having certain Sylow 2-subgroups. We also determine when exten-
sions of certain groups is a Q-group. Finally we find conditions on solvable
Q-groups having an extra-special Sylow 2-subgroup.

2. Sylow 2-subgroups of Q-groups

In this section we study Q-groups with certain conditions on their Sylow
2-subgroups.

Lemma 1. If a generalized quaternion group P is the Sylow 2-subgroup
of a Q-group G, then P is isomorphic to the quaternion group of order 8.

Proof. The generalized quaternion group of order 2n+1, n ≥ 2, has the fol-
lowing presentation: P =

〈
x, y : x2n

= 1, y2 = x2n−1
, y−1xy = x−1

〉
. Sup-

pose G is a Q-group and P is a Sylow 2-subgroup of G. By definition we have[
NG(〈x〉) : CG(〈x〉)] = ϕ(2n) = 2n−1. Therefore |NG(〈x〉)| = 2n−1×|CG(〈x〉)|,

hence the 2-part of |NG(〈x〉)| is at least 2n−1 × 2n = 22n−1. Since a Sylow
2-subgroup of G has order 2n+1, we must have 22n−1 ≤ 2n+1, hence n ≤ 2.
Thus |P | = 8 and P ∼= Q8 is the quaternion group of order 8.
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Proposition 1. Let G be a solvable Q-group of even order with exactly
one conjugacy class of involutions. Then a Sylow 2-subgroup of G is either
elementary abelian or isomorphic to the quaternion group of order 8.

Proof. Let S be a Sylow 2-subgroup of G. By [9] the center Z(S) of S
is a non-trivial elementary abelian 2-group. If x and y are involutions in
Z(S), then by assumption x and y are conjugate in G. By a well-known
result [10, page 137], x and y are conjugate in NG(S) the normalizer of S
in G. But by [9] we have NG(S) = S. Therefore x and y are conjugate in
S implying x = y. Hence |Z(S)| = 2. Now assume |S| > 2. By a result
of J. Thompson cited in [8, page 511], S is isomorphic to a homocyclic or a
Suzuki 2-group. If S is homocyclic then S is isomorphic to the direct product
of cyclic groups of the same order, hence Z(S) = S must be an elementary
abelian 2-group. Otherwise if S is a Suzuki 2-group, then by [8, page 311],
S′ = φ(S) = Z(S) =

{
x : x ∈ S, x2 = 1

}
, implying that S has only one

involution. Therefore S must be isomorphic to a generalized quaternion group.
Since G is assumed to be a Q-group, hence, by Lemma 1, S is isomorphic to
the quaternion group of order 8 and the proposition is proved.

Proposition 2. Let G be a supersolvable Q-group. Then Sylow 2-sub-
groups of G are Q-groups.

Proof. Let G be a non-trivial supersolvable Q-group. Then there is a cyclic
normal subgroup 〈x〉 of prime order p in G where p is the largest prime in
π(G). Now NG(〈x〉)

CG(〈x〉) = G
CG(〈x〉)

∼= Zp−1 is a Q-group, hence p−1 ≤ 2. Therefore
π(G) ⊆ {2, 3}. By [10, page 158], if 3 | |G| then a Sylow 3-subgroup P of
G is normal in G. Hence G

P is a Sylow 2-subgroup of G which must be a
Q-group.

3. Extensions of abelian groups as Q-groups

In this section we will consider split extensions of groups and determine
when they are Q-groups. Let a group G act on a group H. The Cartesian
product H×G endowed with the following law of composition: (g, h) (g′, h′) =(
gg′, hg′h′

)
, g, g′ ∈ G, h, h′ ∈ H, is a group called the semi-direct product of

H with G and is denoted by H oG or H : G. The group L = H oG is also
called a split extension of H by G and we may regard H as a normal subgroup
of L such that L

H
∼= G.
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Lemma 2. Split Extension of an elementary abelian 2-group by another
elementary abelian 2-group is a Q-group.

Proof. Let E1 and E2 be elementary abelian 2-groups and G = E1oE2 be
their semi-direct product. Operations of E1 and E2 will be written additively.
Since G

E1

∼= E2, every non-identity element of G is of order 2 or 4. To prove
that G is a Q-group it is enough to prove that every element of order 4
in G is conjugate to its inverse. Let x = (g, v) ∈ G, where g ∈ E2 and
v ∈ E1. If x is of order 4, then v + vg 6= 0 and (g, v)−1 = (g, vg). Now
(1, v)−1(g, v)(1, v) = (g, vg), proving that x and x−1 are conjugate in G and
the lemma is proved.

Let V be a vector space over a finite field on which the group G acts.
Then we can form the usual semi-direct product V o G with the operation
(g, v)(h, u) = (gh, vh + u), where g, h ∈ G and u, v ∈ V . In the following we
will assume G is a certain group and find necessary and sufficient conditions
such that V oG is a Q-group.

Let p be an odd prime and V be a 2-dimensional vector space over the
Galois field GF (p). It is a well-known fact that there are a, b ∈ GF (p) such
that a2 + b2 = −1. If we set

i =
(

a b
b −a

)
, j =

(
0 1
−1 0

)
, k =

( −b a
a b

)
,

then it is easy to see that Q8 = 〈i, j, k〉 is isomorphic to the quaternion group
of order 8. Therefore V is an irreducible module for Q8 and we can form the
semi-direct product V oQ8. Our next result is the following.

Proposition 3. Let V be a 2-dimensional irreducible module over the
field GF (p), p an odd prime, for the quaternion group Q8. Then V oQ8 is a
Q-group if and only if p = 3 or 5.

Proof. First we will prove that the order of elements of the group V oQ8

is one of the numbers 1, 2, 4 or p. Elements of V o Q8 are of the forms
(g, v) where g ∈ Q8 and v ∈ V . It is obvious that for n ∈ N we have
(g, v)n = (gn, vgn−1+vgn−1+· · ·+vg+v) and hence O(I, o) = 1, O(−I, o) = 2,
O(x, v) = 4 for all x ∈ Q8 − {±I} and v ∈ V , finally O(I, v) = p for all
v ∈ V − {0}. Now for elements (g, v) and (h, u) of V oQ8 it can be verified
that (h, u)−1(g, v)(h, u) = (h−1gh,−uh−1gh + vh + u).

Now if we consider (x, v), v ∈ Q8 − {±I}, v ∈ V , then x and x3 = −x
are conjugate in Q8 and hence there exists y ∈ Q8 such that y−1xy = −x.
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Therefore from (y, u)−1(x, v)(y, u) = (y−1xy,−uy−1xy + vy + u) = (−x, ux +
vy+u) = (x, v)3 = (x3, vx2+vx+v) = (−x, vx) we will obtain ux+vy+u = vx,
thus u(x + I) = v(x− y) from which we will obtain u = 1

2v(I + x + yx − y).
Hence (x, v) and (x, v)3 for all x ∈ Q8 − {±I} and v ∈ V are conjugate in
V oQ8.

Now we will consider elements of order p, say (I, v), where v ∈ V − {0}.
Let m be an integer such that 0 < m < p and (x, u)−1(I, v)(x, u) = (I, v)m,
then vx = mv. Hence m is an eigenvalue of x ∈ G. But it is easy to see that
eigenvalues of elements of Q8 are either ±1 or roots of the equation t2 +1 = 0
in GF (p). If the only eigenvalues occurring are ±1, then p = 3 and if rots
of t2 + 1 = 0 occur we must have p = 5. The converse is obviously true,
i.e., if p = 3 or 5, then (I, v) is conjugate to (I, v)m for all 0 < m < p. The
proposition is proved now.

Next we consider the symmetric group Sn of degree n. In this case we
assume V is a vector space of dimension n over the Galois field GF (q) where
q is a power of the prime p. We assume Sn as the symmetric group of the
set {1, 2, . . . , n} and V has basis {e1, . . . , en}. Therefore the action of Sn on
V is as follows: eiπ = e(i)π for all 1 ≤ i ≤ n and π ∈ Sn. We consider the
semi-direct product V o Sn called the hyperoctahedral group and prove the
following result.

Proposition 4. V o Sn is a Q-group if and only if p = 2.

Proof. With regard to the above explanation we consider the element
(1, ei), 1 ≤ i ≤ n, of order p in V o Sn. This element must be conjugate
to (1, ei)m, where 0 < m < p. Therefore there exists (π, v) ∈ V oSn such that
(π, v)−1(1, ei)(π, v) = (1, ei)m from which we obtain eiπ = mei and therefore
e(i)π = mei which implies m = 1. Therefore p = 2. By [9, Corollary 96A, page
96] the hyperoctahedral group Bn is a Q-group and this is the group V o Sn

in the case p = 2, the proof is complete now.

Now let V be a vector space of dimension n over the Galois field GF (q),
q a power of the prime p. Let G = GLn(q) be the group of automorphisms of
V . Then G acts on V and we can form the semi-direct product V oG. Our
next result is concerned with the above consideration.

Lemma 3. Let q and n be positive integers. Then ϕ(qn − 1) = n if and
only if (n, q) = (1, 2), (1, 3) or (2, 2), where ϕ denotes the Euler ϕ-function.
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Proof. If n = 1, then ϕ(q − 1) = 1 and obviously q − 1 = 1 or 2 implying
q = 2 or 3. Therefore we will assume n ≥ 2. It can be proved that for any
positive integer m if q ≥ 3, then qm ≥ m2 and in the case of m ≥ 4 we have
2m ≥ m2. Now for any integer t it is easy to prove that ϕ(t) ≥ 1

2

√
t. Hence

if ϕ(qn − 1) = n, then n ≥ 1
2

√
qn − 1 which implies q

n
2 < 2n + 1. First we

assume q ≥ 3. Since n ≥ 2 we obtain 2n+1 > q
n
2 ≥ n2

4 implying n2 < 8n+4,
hence n ≤ 8. If n ≥ 4, then from q

n
2 < 2n + 1 we obtain q = 2 which is not

the case. Therefore n = 3 or 2. If n = 3, then q = 3 and if n = 2, then q = 3
or 4, and in both cases ϕ(qn − 1) 6= n. Now we will assume q = 2. If n

2 ≥ 4,
then 2n + 1 > 2

n
2 ≥ n2

4 implies n ≤ 8, hence n = 8. But ϕ(28 − 1) 6= 8, so we
assume n < 8. Now case by case examination of the Euler ϕ-function yields
ϕ(22 − 1) = 2 as the only possibility. The Lemma is proved now.

Proposition 5. V o GLn(q), n ≥ 2, is a Q-group if and only if (n, q)
= (2, 2).

Proof. If H = V oGLn(q) is a Q-group, then by [9] the group H
N
∼= GLn(q)

is also a Q-group. Now for any λ ∈ GF (q)∗ the matrices λI and λ−1I must be
conjugate in GLn(q) from which we will obtain λ2 = 1 or λ = ±1. Therefore
q = 2 or 3. Now by [7, page 187] the group GLn(q) has an element h of order
qn − 1 such that N(〈h〉)

G(〈h〉)
∼= Zn. Therefore ϕ(qn − 1) = n. Now by Lemma 3

we obtain (n, q) = (2, 2). The converse of the proposition is obvious and the
Proposition is proved now.

4. Solvable Q−groups with extraspecial Sylow 2-subgroup

As we mentioned in the introduction an extraspecial 2-group is a Q-group
and it may appear as a Sylow 2-subgroup of a Q-group. In of [1, problem 83,
page 301] part 2 asks to classify rational Q-groups with an extra-special Sylow
2-subgroup. Now we recall the definition of an extra-special p-group and its
structure from [3].

Definition 1. A finite p-group P is called extra-special if P ′ = Z(P ) ∼=
Zp and P

P ′ is an elementary abelian p-group.

Every extra-special p-group is the central product of non-abelian p-groups
of order p3. The dihedral group D8 and the quaternion group Q8 are extra-
special 2-groups of order 8. If P is an extra-special 2-group, then there is an
m ∈ N such that |P | = 22m+1. Moreover either P ∼= D8 ◦ D8 ◦ · · · ◦ D8 or
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P ∼= Q8 ◦D8 ◦ · · · ◦D8, where ◦ denotes the central product and in both cases
m different groups are involved.

First we will prove the following two results about a general Q-group. We
recall that if G is a finite group, then the largest normal subgroup of odd
order in G is denoted by O(G).

Lemma 4. Let G be a Q-group with extra-special Sylow 2-subgroup P . If
G has a non-trivial center and O(G) = 1, then G = P .

Proof. Since Z(G) ⊆ Z(P ) = 〈x〉 is a group of order 2 and Z(G) is assumed
to be non-trivial, hence Z(G) = 〈x〉. Now G

〈x〉 is a Q-group with P
〈x〉 as a Sylow

2-subgroup. But P
〈x〉 is an elementary abelian 2-group, hence, by Result 1, G

〈x〉
is a supersolvable {2, 3}-group. Therefore there is a normal 3-subgroup N of
G
〈x〉 such that G

〈x〉 = N
(

P
〈x〉

)
. Let N be the pre-image of N in G and S be

a Sylow 3-subgroup of G. Then N = N〈x〉
〈x〉 and since x has order 2 we have

x /∈ S. But x ∈ Z(G), hence x ∈ CG(S) implying N = S 〈x〉 ∼= S×〈x〉. Now S
is a characteristic subgroup of N and hence S E G. Therefore S ≤ O(G) = 1
which implies S = 1 and hence N = 〈x〉. Consequently N = 1 which gives
the result G = P and the Lemma is proved.

Proposition 6. Let G be a Q-group with an extra-special Sylow 2-sub-
group P . If Z(G) 6= 1, then G is a solvable group and there is a normal
subgroup N of G with π(N) ⊆ {3, 5} such that G = NP and N ∩ P = 1.

Proof. We use induction on O(G). If O(G) = 1, then by Lemma 4 we
have G = P and N = 1 will work in the proposition. Therefore we may
assume O(G) 6= 1. We know that G

O(G) is a Q-group with a Sylow 2-subgroup
isomorphic to P . Since Z(G) is always an elementary abelian 2-group we
obtain Z(G) 6= O(G) from which we deduce that Z

(
G

O(G)

)
6= 1. Hence

by induction we have G
O(G) = NP where N E G

O(G) and N ∩ P = 1. But

N = O
(

G
O(G)

)
= 1 and therefore G = O(G)P . Now we set N = O(G), hence

G = NP . Since G
N is a solvable group and N has odd order we deduce that G

is a solvable group. Now, by [5], G is a {2, 3, 5}-group and hence π(N) ⊆ {3, 5}
and the proposition is proved.

Next we turn to solvable Q-groups with an extra-special Sylow 2-subgroup.
First of all let us determine the structure of the solvable Q-groups with Sylow
2-subgroups isomorphic to the dihedral group D8.
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Theorem 1. Let G be a rational solvable group with a Sylow 2-subgroup
isomorphic to D8. Then G contains a normal 3-subgroup N such that G

N is
isomorphic to either D8 or S4.

Proof. By [1, page 61] we have |G| = 8 · 3n, where n is a non-negative
integer. The number of Sylow 3-subgroups N3 of G is either 1 or 4. If N3 = 1,
then a Sylow 3-subgroup N of G is normal in G and G

N
∼= D8. Assume that

N3 = 4 and Ω = {Q1, Q2, Q3, Q4} is the set of distinct Sylow 3-subgroups
of G. If N denotes the kernel of the action of G on Ω by conjugation, then
G
N is isomorphic to a subgroup of S4. Since G is assumed to be a Q-group,
therefore G

N is also a Q-group. Since |NG(Qi)| = 2 · 3n and N = ∩4
i=1NG(Qi),

hence 4 | ∣∣ G
N

∣∣. Now it is easy to see that the rational subgroups of S4 with
order divisible by 4 are isomorphic to one of the groups Z2 × Z2, D8 or S4.

If G
N
∼= Z2 × Z2, then |N | = |NG(Qi)|, for all 1 ≤ i ≤ 4, which is a

contradiction because the Qi’s are distinct. If G
N
∼= D8 or S4, then we are

done and the Theorem is proved now.

Theorem 2. Let G be a solvable Q-group with an extra-special Sylow
2-subgroup. Then one of the following possibilities holds:

(a) G is a 2-nilpotent group.

(b) There is a proper normal subgroup N of G such that G
N = P : E(2),

where P is a 3-group and E(2) is an elementary abelian 2-group.

Proof. We use induction on |G|. Let P be a Sylow 2-subgroup of G which
by assumption is extra-special. By [5] we have π(G) ⊆ {2, 3, 5}. Let E be a
minimal normal subgroup of G.

Case 1: |E| is even. Therefore E is a proper elementary abelian 2-subgroup
of G and we may assume E ≤ P . Since 1 6= E E P , hence E ∩ Z(P ) 6= 1.
But Z(P ) = P ′ is of order 2. Therefore Z(P ) = P ′ ⊆ E. Thus P

E is an
abelian group and it is a Sylow 2-subgroup of G

E . Hence G
E is a Q-group with

an abelian Sylow 2-subgroup, hence by Result 1, G
E = P : E(2) where P is a

3-subgroup of G
E , and hence of G, and E(2) is an elementary abelian 2-group.

Therefore case (b) of the theorem holds.
Case 2: |E| is odd. Hence G

E is a Q-group with an extra-special Sylow
2-subgroup isomorphic to P .

If a minimal normal subgroup A
E of G

E has even order, then by Case 1,
(G

E )/(A
E ) ∼= G

A = P : E(2) where P is a 3-group and E(2) is an elementary
abelian 2-group as stated on part (b) of the theorem.
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If a minimal normal subgroup A
E of G

E has an odd order, then (G
E )/(A

E ) ∼= G
A ,∣∣G

E

∣∣ < |G| and |A| is odd. Therefore by induction we reach a point such that
there is a normal subgroup N of G with G

N isomorphic to a Sylow 2-subgroup
of G. This implies that G is a 2-nilpotent group, and case (a) of the theorem
holds.
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