Prolongation of Linear Semibasic Tangent Valued Forms to Product Preserving Gauge Bundles of Vector Bundles

WŁodzimierz M. Mikulski
Institute of Mathematics, Jagiellonian University, Kraków, Reymonta 4, Poland
e-mail: mikulski@im.uj.edu.pl

(Presented by Manuel de León)

AMS Subject Class. (2000): 58A05

0. Introduction

A linear semibasic tangent valued p-form on a vector bundle $E \rightarrow M$ is a section $\varphi: E \rightarrow \wedge^{p} T^{*} M \otimes T E$ such that $\varphi\left(X_{1}, \ldots, X_{p}\right)$ is a linear vector field on E for any vector fields X_{1}, \ldots, X_{p} on M. (We recall that a vector field $X: E \rightarrow T E$ on a vector bundle $p: E \rightarrow M$ is linear if it is a vector bundle map between vector bundles $p: E \rightarrow M$ and $T p: T E \rightarrow T M$. Equivalently, the flow Expt X is formed by vector bundle (local) isomorphisms.)

A very important example of a semibasic linear tangent valued 1-form is a linear general connection Γ on a vector bundle $E \rightarrow M$. (We recall that a general linear connection on a vector bundle $E \rightarrow M$ is a semibasic linear tangent valued 1-form $\Gamma: E \rightarrow T^{*} M \otimes T E$ on $E \rightarrow M$ such that $\Gamma(X)$ projects onto X for any vector field X on $M,[3]$.) Connections play important roles in differential geometry, field theories of mathematical physics, and differential equations, [3], [2], [6].

Let A be a Weil algebra and $T^{A}: \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}$ be the corresponding Weil functors on the category $\mathcal{M} f$ of all manifolds and maps. Let $E \rightarrow M$ be a vector bundle. Then $T^{A} E \rightarrow T^{A} M$ is a vector bundle, too. Restricting the well know facts of lifting of tangent values forms on manifolds to Weil bundles, we obtain.

Proposition A. ([1]) For any linear semibasic tangent valued p-form $\varphi: E \rightarrow \wedge^{p} T^{*} M \otimes T E$ there exists an unique linear semibasic tangent valued
p-form $\mathcal{T}^{A} \varphi: T^{A} E \rightarrow \wedge^{p} T^{*} T^{A} M \otimes T T^{A} E$ on $T^{A} E \rightarrow T^{A} M$ such that

$$
\begin{align*}
\mathcal{T}^{A} \varphi\left(\mathbf{a} f\left(a_{1}\right) \circ \mathcal{T}^{A} X_{1}\right. & \left., \ldots, \mathbf{a} f\left(a_{p}\right) \circ \mathcal{T}^{A} X_{p}\right) \\
& =\mathbf{a} f\left(a_{1} \cdots a_{p}\right) \circ \mathcal{T}^{A}\left(\varphi\left(X_{1}, \ldots, X_{p}\right)\right) \tag{*}
\end{align*}
$$

for any vector fields X_{1}, \ldots, X_{p} on M and any $a_{1}, \ldots, a_{p} \in A$, where we denote the flow lift of a field Z on N to $T^{A} N$ by $\mathcal{T}^{A} Z$ and where $\mathbf{a} f(a): T T^{A} N \rightarrow$ $T T^{A} N$ is the canonical affinor on $T^{A} N$ corresponding to $a \in A$.

The Frolicher-Nijenhuis bracket $[[\varphi, \psi]]$ of linear semibasic tangent valued p - and q - forms on $E \rightarrow M$ is again a linear semibasic tangent valued $(p+q)$ form on $E \rightarrow M$.

Proposition B. ([1]) We have

$$
\begin{equation*}
\left[\left[\mathcal{T}^{A} \varphi, \mathcal{T}^{A} \psi\right]\right]=\mathcal{T}^{A}([[\varphi, \psi]]) \tag{**}
\end{equation*}
$$

for any linear semibasic tangent valued p - and q-forms φ and ψ on $E \rightarrow M$.
The gauge bundle functor $T^{A}: \mathcal{V B} \rightarrow \mathcal{F} \mathcal{M}$ (on the category $\mathcal{V B}$ of all vector bundles and vector bundle maps) obtained from $T^{A}: \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}$ is an example of product preserving gauge bundle functors $F: \mathcal{V B} \rightarrow \mathcal{F} \mathcal{M}$. In [5], for any Weil algebra A and any A-module V with $\operatorname{dim}_{\mathbf{R}}(V)<\infty$ we constructed a product preserving gauge bundle functor $T^{A, V}: \mathcal{V} \mathcal{B} \rightarrow \mathcal{F} \mathcal{M}$, and we proved.

Proposition C. ([5]) Any product preserving gauge bundle functor F : $\mathcal{V B} \rightarrow \mathcal{F} \mathcal{M}$ is isomorphic to $T^{A, V}$ for some (A, V) in question.

In [5], we also observed that $T^{A} E=T^{A, V} E$ for $V=A$, and that $T^{A, V} p$: $T^{A, V} E \rightarrow T^{A, V} M=T^{A} M(M$ is treated as the zero vector bundle over $M)$ is a vector bundle (even A-module bundle) for any vector bundle $p: E \rightarrow M$. Thus we have the following natural problems.

Problem 1. For a product preserving gauge bundle functor $F: \mathcal{V B} \rightarrow$ $\mathcal{F} \mathcal{M}$ to construct canonically a linear semibasic tangent valued p-form $\mathcal{F} \varphi$: $F E \rightarrow \wedge^{p} T^{*} F M \otimes T F E$ on $F p: F E \rightarrow F M$ from a linear semibasic tangent valued p-form $\varphi: E \rightarrow \wedge^{p} T^{*} M \otimes T E$ on a vector bundle $p: E \rightarrow M$ such that a formula similar to $(*)$ holds.

Problem 2. For a product preserving gauge bundle functor $F: \mathcal{V} \mathcal{B} \rightarrow$ $\mathcal{F M}$ to prove a formula similar to $(* *)$.

The purpose of the present paper is to solve the above problems for all fiber product preserving gauge bundle functors $F: \mathcal{V B} \rightarrow \mathcal{F M}$. We may of course assume $F=T^{A, V}$. Given $a \in A$ we have a canonical affinor a $f(a)$: $T T^{A, V} E \rightarrow T T^{A, V} E$ on $T^{A, V} E$. Given a linear vector field Z on E its flow Expt Z is formed by (local) vector bundle isomorphisms and we have the flow prolongation $\left.\mathcal{T}^{A, V} Z=\frac{\partial}{\partial t} \right\rvert\, t=0 ~\left(T^{A, V}(E x p t Z)\right)$ of Z to $T^{A, V} E$. We prove

Theorem A. Given a linear semibasic tangent valued p-form $\varphi: E \rightarrow$ $\wedge^{p} T^{*} M \otimes T E$ on a vector bundle $E \rightarrow M$ there is an unique linear semibasic tangent valued p-form $\mathcal{T}^{A, V} \varphi: T^{A, V} E \rightarrow \wedge^{p} T^{*} T^{A} M \otimes T T^{A, V} E$ on the vector bundle $T^{A, V} E \rightarrow T^{A} M$ satisfying

$$
\begin{aligned}
& \mathcal{T}^{A, V} \varphi\left(\mathbf{a} f\left(c_{1}\right) \circ \mathcal{T}^{A} X_{1}, \ldots, \mathbf{a} f\left(c_{p}\right) \circ \mathcal{T}^{A} X_{p}\right) \\
&=\mathbf{a} f\left(c_{1} \cdots c_{p}\right) \circ \mathcal{T}^{A, V}\left(\varphi\left(X^{1}, \ldots, X^{p}\right)\right)
\end{aligned}
$$

for any vector fields X_{1}, \ldots, X_{p} on M and any $c_{1}, \ldots, c_{p} \in A$.
In the proof of Theorem A, the linear semibasic p-form $\mathcal{T}^{A, V} \varphi$ will be explicitly constructed. Next, for the Frolicher-Nijenhuis bracket we prove.

Theorem B. We have

$$
\left[\left[\mathcal{T}^{A, V} \varphi, \mathcal{T}^{A, V} \psi\right]\right]=\mathcal{T}^{A, V}([[\varphi, \psi]])
$$

for any linear semibasic tangent valued p - and q - forms φ and ψ on $E \rightarrow M$.
In the last section we apply the above results to linear general connections on vector bundles.

All manifolds and maps are assumed to be of class C^{∞}.

1. Weil bundles

Let A be a Weil algebra, see [3]. Given a manifold M we have the Weil bundle

$$
T^{A} M=\bigcup_{z \in M} \operatorname{Hom}\left(C_{z}^{\infty}(M), A\right)
$$

over M corresponding to A, where $\operatorname{Hom}\left(C_{z}^{\infty}(M), A\right)$ is the set of all algebra homomorphisms φ from the (unital) algebra $C_{z}^{\infty}(M)=\left\{\operatorname{germ}_{z}(g) \mid g: M \rightarrow\right.$ $\mathbf{R}\}$ into A. Given a map $\underline{f}: M \rightarrow N$ we have the induced (via pull-back) map $T^{A} \underline{f}: T^{A} M \rightarrow T^{A} N$. The correspondence $T^{A}: \mathcal{M} f \rightarrow \mathcal{F M}$ is a product preserving bundle functor on the category $\mathcal{M f}$ of all manifolds and maps, [3].

It is well-known that any product preserving bundle functor $F: \mathcal{M} f \rightarrow$ $\mathcal{F M}$ is isomorphic to T^{A} for some Weil algebra $A,[3]$.

2. Generalized Weil bundles

Let A be a Weil algebra and V be an A-module with $\operatorname{dim}_{\mathbf{R}}(V)<\infty$. In [5], similarly to Weil bundles, given a vector bundle $E=(E \xrightarrow{p} M)$ we defined an A-module bundle
$T^{A, V} E=\left\{(\varphi, \psi) \mid \varphi \in \operatorname{Hom}\left(C_{z}^{\infty}(M), A\right), \psi \in \operatorname{Hom}_{\varphi}\left(C_{z}^{\infty, f . l .}(E), V\right), z \in M\right\}$ over $T^{A} M$, where $\operatorname{Hom}_{\varphi}\left(C_{z}^{\infty, f . l .}(E), V\right)$ is the A-module of all module homomorphisms ψ over φ from the $C_{z}^{\infty}(M)$-module $C_{z}^{\infty, f . l .}(E)=\left\{\operatorname{germ}_{z}(h) \mid h:\right.$ $E \rightarrow \mathbf{R}$ is fibre linear\} into V. Given another vector bundle $G=(G \xrightarrow{q} N)$ and a vector bundle homomorphism $f: E \rightarrow G$ over $f: M \rightarrow N$ we have the induced A-module bundle map $T^{A, V} f: T^{A, V} \bar{E} \rightarrow T^{A, V} G$ over $T^{A} \underline{f}: T^{A} M \rightarrow T^{A} N$ by

$$
T^{A, V} f(\varphi, \psi)=\left(\varphi \circ \underline{f}_{z}^{*}, \psi \circ f_{z}^{*}\right),
$$

$(\varphi, \psi) \in T_{z}^{A, V} E, z \in M$, where $\underline{f}_{z}^{*}: C_{\underline{f}(z)}^{\infty}(N) \rightarrow C_{z}^{\infty}(M)$ and $f_{z}^{*}: C_{\underline{f}(z)}^{\infty, f . l .}(G) \rightarrow$ $C_{z}^{\infty, f . l .}(E)$ are given by the pull-back with respect to \underline{f} and f. The correspondence $T^{A, V}: \mathcal{V B} \rightarrow \mathcal{F M}$ is a product preserving gauge bundle functor, see [5] (see also [4] for examples of modules over Weil algebras).

In [5], we proved that any product preserving gauge bundle functor $F: \mathcal{V B} \rightarrow \mathcal{F M}$ is isomorphic to $T^{A, V}$ for some (A, V) in question.

3. Local description of generalized Weil bundles

A local vector bundle trivialization $\left(x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{n}\right): E \mid U \cong \mathbf{R}^{m} \times$ \mathbf{R}^{n} on E induces a fiber bundle trivialization

$$
\left(\tilde{x}^{1}, \ldots, \tilde{x}^{m}, \tilde{y}^{1}, \ldots, \tilde{y}^{n}\right): T^{A, V} E \mid U \cong A^{m} \times V^{n}
$$

by $\tilde{x}^{i}(\varphi, \psi)=\varphi\left(\operatorname{germ}_{z}\left(x^{i}\right)\right) \in A, \tilde{y}^{j}(\varphi, \psi)=\psi\left(\operatorname{germ}_{z}\left(y^{j}\right)\right) \in V,(\varphi, \psi) \in$ $T_{z}^{A, V} E, z \in U, i=1, \ldots, m, j=1, \ldots, n$.

Let $f: E \rightarrow G$ be a vector bundle map. If in some vector bundle coordinates

$$
\begin{equation*}
f(x, y)=\left(\varphi(x),\left(\sum_{j=1}^{n} \psi_{j}^{k}(x) y^{j}\right)_{k=1}^{p}\right) \tag{1}
\end{equation*}
$$

$x \in \mathbf{R}^{m}, y=\left(y^{j}\right) \in \mathbf{R}^{n}$, then in the induced coordinates we have

$$
\begin{equation*}
T^{A} f(a, w)=\left(T^{A} \varphi(a),\left(\sum_{j=1}^{n} T^{A} \psi_{j}^{k}(a) w^{j}\right)_{k=1}^{p}\right) \tag{2}
\end{equation*}
$$

$a \in A^{m}, w=\left(w^{j}\right) \in V^{n}$.

4. The affinors a $f(c)$

Let $c \in A$. We have an affinor af(c):T($\left.A^{m} \times V^{n}\right) \rightarrow T\left(A^{m} \times V^{n}\right)$ on $A^{m} \times V^{n}$ given by

$$
\begin{equation*}
\mathbf{a} f(c)((a, v),(b, w))=((a, v),(c b, c w)) \tag{3}
\end{equation*}
$$

for $((a, v),(b, w)) \in\left(A^{m} \times V^{n}\right) \times\left(A^{m} \times V^{n}\right)=T\left(A^{m} \times V^{n}\right)$.

Lemma 1. We have

$$
T T^{A, V} f \circ \mathbf{a} f(c)=\mathbf{a} f(c) \circ T T^{A, V} f
$$

for any vector bundle map $f: \mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{q} \times \mathbf{R}^{p}$.

Proof. The proof is standard. We propose to use (2).

Thus according to the general theory of [3], for any vector bundle $E \rightarrow M$ we have a canonical affinor $\mathbf{a} f(c)$ on $T^{A, V} E$ with the form (3) in every vector bundle coordinates.

5. Linear semibasic tangent valued p-forms

Let $E \rightarrow M$ be a vector bundle. A linear semibasic tangent valued p-form on $E \rightarrow M$ is a section $\varphi: E \rightarrow \wedge^{p} T^{*} M \otimes T E$ such that $\varphi\left(X_{1}, \ldots, X_{p}\right)$ is a linear vector field on E for any vector fields X_{1}, \ldots, X_{p} on M. Thus a linear semibasic tangent valued p-form φ on the trivial vector bundle $\mathbf{R}^{m} \times \mathbf{R}^{n}$ over \mathbf{R}^{m} has the form

$$
\begin{equation*}
\varphi=\sum_{i=1}^{m} \varphi^{i} \otimes \frac{\partial}{\partial x^{i}}+\sum_{j, k=1}^{n} \varphi_{j}^{k} \otimes y^{j} \frac{\partial}{\partial y^{k}} \tag{4}
\end{equation*}
$$

for some unique p-forms $\varphi^{i}, \varphi_{j}^{k}: T \mathbf{R}^{m} \times_{\mathbf{R}^{m}} \cdots \times_{\mathbf{R}^{m}} T \mathbf{R}^{m} \rightarrow \mathbf{R}$ on \mathbf{R}^{m}, where $x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{n}$ are the usual vector bundle coordinates on $\mathbf{R}^{m} \times \mathbf{R}^{n}$. More precisely,

$$
\begin{aligned}
& \varphi(x, y)\left(v_{1}, \ldots, v_{p}\right)= \sum_{i=1}^{m} \varphi^{i}\left(v_{1}, \ldots, v_{p}\right) \frac{\partial}{\partial x^{i}}(x, y) \\
&+\sum_{j, k=1}^{n} \varphi_{j}^{k}\left(v_{1}, \ldots, v_{p}\right) y^{j} \frac{\partial}{\partial y^{k}}(x, y) \in T_{(x, y)}\left(\mathbf{R}^{m} \times \mathbf{R}^{n}\right), \\
& y=\left(y^{j}\right) \in \mathbf{R}^{n}, x \in \mathbf{R}^{m}, v_{1}, \ldots, v_{p} \in T_{x} \mathbf{R}^{m} .
\end{aligned}
$$

6. The solution of Problem 1

Theorem 1. Let A be a Weil algebra and V be an A-module, $\operatorname{dim}_{\mathbf{R}}(V)<$ ∞. Let $\varphi: E \rightarrow \wedge^{T} E$ be a linear semibasic tangent valued p-form on a vector bundle $E \rightarrow M$. There is an unique linear semibasic tangent valued p-form $\mathcal{T}^{A, V} \varphi$ on $T^{A, V} E \rightarrow T^{A} M$ such that

$$
\begin{align*}
\mathcal{T}^{A, V} \varphi\left(\mathbf{a} f\left(c_{1}\right) \circ \mathcal{T}^{A} X_{1}\right. & \left., \ldots, \mathbf{a} f\left(c_{p}\right) \circ \mathcal{T}^{A} X_{p}\right) \\
& =\mathbf{a} f\left(c_{1} \cdots c_{p}\right) \circ \mathcal{T}^{A, V}\left(\varphi\left(X_{1}, \ldots, X_{p}\right)\right) \tag{5}
\end{align*}
$$

for any vector fields X_{1}, \ldots, X_{p} on M and any $c_{1}, \ldots, c_{p} \in A$, where $\mathcal{T}^{A} X$ is the flow lift of X to $T^{A} M$ and $\mathcal{T}^{A, V} Z$ is the flow lift of a linear vector field on E to $T^{A, V} E$.

Proof. The construction of the linear semibasic tangent valued p-form satisfying (5) will be given in Sections 7 and 8. The proof will be end in the end of Section 8.

7. Local description of $\mathcal{T}^{A, V} \varphi$

Let φ be a linear semibasic tangent valued p-form on $E=\mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ of the form (4), then we define $\mathcal{T}^{A, V} \varphi$ on $T^{A, V} E=A^{m} \times V^{n}$ by

$$
\begin{align*}
\mathcal{T}^{A, V} \varphi= & \sum_{i=1}^{m}\left(T^{A} \varphi^{i} \circ(\eta \times \cdots \times \eta)\right) \otimes_{A} \mathcal{T}^{A} \frac{\partial}{\partial x^{i}} \\
& +\sum_{j, k=1}^{n}\left(T^{A} \varphi_{j}^{k} \circ(\eta \times \cdots \times \eta)\right) \otimes_{A} \mathcal{T}^{A, V}\left(y^{j} \frac{\partial}{\partial y^{k}}\right), \tag{6}
\end{align*}
$$

where $T^{A} \varphi_{j}^{k}: T^{A}\left(T \mathbf{R}^{m} \times_{\mathbf{R}^{m}} \cdots \times_{\mathbf{R}^{m}} T \mathbf{R}^{m}\right) \rightarrow T^{A} \mathbf{R}=A$ is the extension of $\varphi_{j}^{k}: T \mathbf{R}^{m} \times_{\mathbf{R}^{m}} \cdots \times_{\mathbf{R}^{m}} T \mathbf{R}^{m} \rightarrow \mathbf{R}$ and $\eta: T T^{A} \mathbf{R}^{m} \rightarrow T^{A} T \mathbf{R}^{m}$ is the flow isomorphism and $\mathcal{T}^{A, V} Z$ is the flow prolongation of a linear vector field Z on $E \rightarrow M$ to $T^{A, V} E$ and where the flow lift $\mathcal{T}^{A} \frac{\partial}{\partial x^{i}}$ is the vector field on A^{m} and then on $A^{m} \times V^{n}$. More precisely,

$$
\begin{aligned}
\left(\mathcal{T}^{A, V} \varphi\right)(a, w)\left(u_{1}, \ldots, u_{p}\right)= & \sum_{i=1}^{m} T^{A} \varphi^{i}\left(\eta\left(u_{1}\right), \ldots, \eta\left(u_{p}\right)\right) \mathcal{T}^{A} \frac{\partial}{\partial x^{i}}(a, w) \\
& +\sum_{j, k=1}^{n} T^{A} \varphi_{j}^{k}\left(\eta\left(u_{1}\right), \ldots, \eta\left(u_{p}\right)\right) \mathcal{T}^{A, V}\left(y^{j} \frac{\partial}{\partial y^{k}}\right)(a, w),
\end{aligned}
$$

$u_{1}, \ldots, u_{p} \in T_{a} A^{m}, a \in A^{m}, w \in V^{n}$.
We prove the following proposition.
Proposition 1. The linear semibasic tangent valued p-form $\mathcal{T}^{A, V} \varphi$ on $A^{m} \times V^{n} \rightarrow A^{m}$ given by (6) is the unique linear tangent valued p-form satisfying (5) for any vector fields X_{1}, \ldots, X_{p} on \mathbf{R}^{m} and any $c_{1}, \ldots, c_{p} \in A$.

To prove Proposition 1 we need.
Lemma 2. We have

$$
\begin{equation*}
\mathcal{T}^{A, V}(f \otimes Z)=T^{A} f \otimes_{A} \mathcal{T}^{A, V} Z \tag{7}
\end{equation*}
$$

for any $f: \mathbf{R}^{m} \rightarrow \mathbf{R}$ and any linear vector field Z on \mathbf{R}^{n}, where (of course) $(f \otimes Z)(x, y)=f(x) Z(x, y) \in T_{(x, y)}\left(\mathbf{R}^{m} \times \mathbf{R}^{n}\right),(x, y) \in \mathbf{R}^{m} \times \mathbf{R}^{n}$, and $\left(T^{A} f \otimes_{A} \mathcal{T}^{A, V} Z\right)(a, w)=T^{A} f(a) \mathcal{T}^{A, V} Z(a, w) \in V_{(a, w)}\left(A^{m} \times V^{n}\right),(a, w) \in$ $A^{m} \times V^{n}$.

Proof. We can prove (7) as follows. Let $\psi_{t}=\left(\psi_{l}^{k}(t)\right) \in G L\left(\mathbf{R}^{n}\right)$ be the flow of Z. Then the flow of $f \otimes Z$ is $\Psi_{t}: \mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{m} \times \mathbf{R}^{n}, \Psi_{t}(x, y)=$ $\left(x, \psi_{t f(x)}(y)\right)$. Then (by (2)) we have

$$
T^{A, V} \Psi_{t}(a, w)=\left(a,\left(\sum_{l=1}^{n} T^{A} \psi_{l}^{k}\left(t T^{A} f(a)\right) w^{l}\right)_{k=1}^{n}\right)
$$

$a \in A^{m}, w=\left(w^{l}\right) \in V^{n}$. Therefore

$$
\begin{aligned}
\mathcal{T}^{A, V}(f \otimes Z)(a, w) & \left.=\frac{d}{d t} \right\rvert\, t=0\left(T^{A, V} \Psi_{t}(a, w)\right) \\
& =\left(0, \frac{d}{d t}{ }_{t=0}\left(\sum_{l=1}^{n} T^{A} \psi_{l}^{k}\left(t T^{A} f(a)\right) w^{k}\right)_{k=1}^{n}\right) \\
& =\left(0,\left.T^{A} f(a) \frac{d}{d t}\right|_{t=0}\left(\sum_{l=1}^{n} \psi_{l}^{k}(t) w^{k}\right)_{k=1}^{n}\right) \\
& \left.=T^{A} f(a) \frac{d}{d t} \right\rvert\, t=0 T^{A, V}\left(i d_{\mathbf{R}^{m}} \times \psi_{t}\right)(a, w) \\
& =T^{A} f(a) T^{A, V} Z(a, w)=\left(T^{A} f \otimes_{A} \mathcal{T}^{A, V} Z\right)(a, w)
\end{aligned}
$$

The proof of Lemma 2 is complete.
Proof of Proposition 1. We prove (5) as follows. By (6) and (7), by the R-linearity of the flow lift of linear vector fields and the well-known formulas for the flow lift \mathcal{T}^{A} of vector fields to $T^{A} M$, we have

$$
\begin{aligned}
& \mathcal{T}^{A, V} \varphi\left(\mathbf{a} f\left(c_{1}\right) \circ \mathcal{T}^{A} X_{1}, \ldots, \mathbf{a} f\left(c_{p}\right) \mathcal{T}^{A} X_{p}\right) \\
& \quad=\sum_{i=1}^{m} T^{A} \varphi^{i}\left(\eta\left(\mathbf{a} f\left(c_{1}\right) \circ \mathcal{T}^{A} X_{1}\right), \ldots, \eta\left(\mathbf{a} f\left(c_{p}\right) \circ \mathcal{T}^{A} X_{p}\right)\right) \otimes_{A} \mathcal{T}^{A} \frac{\partial}{\partial x^{i}} \\
& \quad+\sum_{j, k=1}^{n} T^{A} \varphi_{j}^{k}\left(\eta\left(\mathbf{a} f\left(c_{1}\right) \circ \mathcal{T}^{A} X_{1}\right), \ldots, \eta\left(\mathbf{a} f\left(c_{p}\right) \circ \mathcal{T}^{A} X_{p}\right)\right) \otimes_{A} \mathcal{T}^{A, V}\left(y^{j} \frac{\partial}{\partial y^{k}}\right) \\
& =\sum_{i=1}^{m} c_{1} \cdots c_{p} T^{A}\left(\varphi^{i}\left(X_{1}, \ldots, X_{p}\right)\right) \otimes_{A} \mathcal{T}^{A} \bar{\partial} \frac{\partial x^{i}}{n} \\
& \quad+\sum_{j, k=1}^{n} c_{1} \cdots c_{p} T^{A}\left(\varphi_{j}^{k}\left(X_{1}, \ldots, X_{p}\right)\right) \otimes_{A} \mathcal{T}^{A, V}\left(y^{j} \frac{\partial}{\partial y^{k}}\right) \\
& = \\
& \quad \mathbf{a} f\left(c_{1} \cdots c_{p}\right) \circ \mathcal{T}^{A, V}\left(\varphi\left(X_{1}, \ldots, X_{p}\right)\right) .
\end{aligned}
$$

The uniqueness of $\mathcal{T}^{A, V} \varphi$ follows from the fact that the $\mathbf{a} f(c) \circ \mathcal{T}^{A} X$ for all vector fields X and \mathbf{R}^{m} and all $c \in A$ generates (over $C^{\infty}\left(A^{m}\right)$) the space of all vector fields on A^{m}, see [3].

8. GLobal DESCRIPTION of $\mathcal{T}^{A, V} \varphi$

Let φ be a linear tangent valued p-form on $E \rightarrow M$. Using vector bundle coordinates we can define $\mathcal{T}^{A, V} \varphi$ locally by (6). According to respective theory of [3], to define $\mathcal{T}^{A, V} \varphi$ globally on $T^{A, V} E \rightarrow T^{A} M$ it remains to show

Proposition 2. The construction $\mathcal{T}^{A, V}$ given by (6) is invariant with respect to vector bundle isomorphisms $f: \mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{m} \times \mathbf{R}^{n}$. It means, we have

$$
\begin{equation*}
\mathcal{T}^{A, V}\left(f_{*} \varphi\right)=\left(T^{A, V} f\right)_{*} \mathcal{T}^{A, V} \varphi \tag{8}
\end{equation*}
$$

for any f as above.
Proof. The formula (8) is clear because of the uniqueness case of Proposition 1, the formula (5) for any vector fields X_{1}, \ldots, X_{p} on \mathbf{R}^{m} and $c_{1}, \ldots, c_{p} \in$ A (see Proposition 1), and the naturality of the flow operators and the naturality of the affinors $\mathbf{a} f(c)$.

The proof of Theorem 1 is complete.

9. Some natural properties of $\mathcal{T}^{A, V} \varphi$

From the uniqueness of $\mathcal{T}^{A, V} \varphi$ satisfying (5) we have

Proposition 3. Let φ_{1} and φ_{2} be linear semibasic tangent valued p-forms on $E \rightarrow M$ and $G \rightarrow N$. If they are f-related by a local vector bundle isomorphism $f: E \rightarrow G$, then $\mathcal{T}^{A, V} \varphi_{1}$ and $\mathcal{T}^{A, V} \varphi_{2}$ are $T^{A, V}$ f-related. In other words, the correspondence $\varphi \rightarrow T^{A, V} \varphi$ is a $\mathcal{V} \mathcal{B}_{m, n}$-natural operator in the sense of [3].

Proposition 4. Let φ be a linear semibasic tangent valued p-form on $E \rightarrow M$. Let $\left(A_{1}, V_{1}\right)$ and $\left(A_{2}, V_{2}\right)$ be two pairs in question. Suppose that $\nu: V_{1} \rightarrow V_{2}$ is a module isomorphism over an algebra isomorphism $\mu: A_{1} \rightarrow A_{2}$. Let $\eta^{\nu, \mu}: T^{A_{1}, V_{1}} E \rightarrow T^{A_{2}, V_{2}} E$ be the corresponding vector bundle isomoprphism, see [4]. Then $\mathcal{T}^{A_{1}, V_{1}} \varphi$ and $\mathcal{T}^{A_{2}, V_{2}} \varphi$ are $\eta^{\nu, \mu}$-related.

By the same arguments we easily see that
Proposition 5. Let V_{1} and V_{2} be A modules (finite dimensional over R). Let $\nu: V_{1} \rightarrow V_{2}$ be an A-module homomorphism (not necessarily isomorphism) over $i d_{A}: A \rightarrow A$. Then $\mathcal{T}^{A, V_{1}} \varphi$ and $\mathcal{T}^{A, V_{2}} \varphi$ are $\eta^{i d_{A}, \nu_{-} \text {-related. }}$

10. The bracket formula

Let (A, V) be in question. Let U and W be linear vector fields on $E \rightarrow M$. Then $[U, W]$ is a linear vector field on E, too. Let $a, b \in A$.

Lemma 3. The following formula

$$
\begin{equation*}
\left[\mathbf{a} f(a) \circ \mathcal{T}^{A, V} U, \mathbf{a} f(b) \circ \mathcal{T}^{A, V} W\right]=\mathbf{a} f(a b) \circ \mathcal{T}^{A, V}([U, W]) \tag{9}
\end{equation*}
$$

holds.
Proof. Because of the \mathbf{R}-bilinearity of booth sides of (9) with respect to U and W, we can assume that U is not vertical. Then using vector bundle coordinate invariance of booth sides of (9) we can assume $E=\mathbf{R}^{m} \times \mathbf{R}^{n}$ and $U=\frac{\partial}{\partial x^{1}}$. Then because of the \mathbf{R}-linearity of both sides of (9) with respect to W we can assume that $W=f(x) \frac{\partial}{\partial x^{i}}$ or $W=f(x) y^{j} \frac{\partial}{\partial y^{k}}$.

In the first case the formula (9) is the well-known (for Weil bundles) one

$$
\left[\mathbf{a} f(a) \circ \mathcal{T}^{A} \frac{\partial}{\partial x^{1}}, \mathbf{a} f(b) \circ \mathcal{T}^{A}\left(f(x) \frac{\partial}{\partial x^{i}}\right)\right]=\mathbf{a} f(a b) \circ \mathcal{T}^{A}\left(\left[\frac{\partial}{\partial x^{1}}, f(x) \frac{\partial}{\partial x^{i}}\right]\right)
$$

If $U=\frac{\partial}{\partial x^{1}}$ and $W=f(x) y^{j} \frac{\partial}{\partial y^{k}}$, then because of formula (7) and the fact that $\left[\mathbf{a} f(a) \circ \mathcal{T}^{A, V} \frac{\partial}{\partial x^{1}}, \mathcal{T}^{A, V}\left(y^{j} \frac{\partial}{\partial y^{k}}\right)\right]=0\left(\right.$ as $\mathbf{a} f(a) \circ \mathcal{T}^{A, V} \frac{\partial}{\partial x^{\mathrm{I}}}$ is a vector field on A^{m} and $\mathcal{T}^{A, V}\left(y^{j} \frac{\partial}{\partial y^{k}}\right)$ is a vector field on $\left.V^{n}\right)$ we have

$$
\begin{aligned}
& {\left[\mathbf{a} f(a) \circ \mathcal{T}^{A, V} \frac{\partial}{\partial x^{1}}, \mathbf{a} f(b) \circ \mathcal{T}^{A, V}\left(f(x) y^{j} \frac{\partial}{\partial y^{k}}\right)\right]} \\
& \quad=\left[\mathbf{a} f(a) \circ \mathcal{T}^{A, V} \frac{\partial}{\partial x^{1}}, b T^{A} f \mathcal{T}^{A, V}\left(y^{j} \frac{\partial}{\partial y^{k}}\right)\right] \\
& \quad=\left(\mathbf{a} f(a) \circ \mathcal{T}^{A} \frac{\partial}{\partial x^{1}}\right)\left(b T^{A} f\right) \mathcal{T}^{A, V}\left(y^{j} \frac{\partial}{\partial y^{k}}\right) \\
& =\left(b T T^{A} f \circ \mathbf{a} f(a) \circ \mathcal{T}^{A} \frac{\partial}{\partial x^{1}}\right) \mathcal{T}^{A, V}\left(y^{j} \frac{\partial}{\partial y^{k}}\right)
\end{aligned}
$$

$$
\begin{gathered}
=b a T T^{A} f\left(T^{A} \frac{\partial}{\partial x^{1}}\right) \mathcal{T}^{A, V}\left(y^{j} \frac{\partial}{\partial y^{k}}\right)=a b T^{A}\left(\frac{\partial}{\partial x^{1}} f\right) \mathcal{T}^{A, V}\left(y^{j} \frac{\partial}{\partial y^{k}}\right) \\
=\mathbf{a} f(a b) \circ \mathcal{T}^{A, V}\left(\frac{\partial}{\partial x^{1}} f(x) y^{j} \frac{\partial}{\partial y^{k}}\right)=\mathbf{a} f(a b) \circ \mathcal{T}^{A, V}\left(\left[\frac{\partial}{\partial x^{1}}, f(x) y^{j} \frac{\partial}{\partial y^{k}}\right]\right)
\end{gathered}
$$

The proof of Lemma 3 is complete.

11. Solution of Problem 2

By using the pull-back with respect to $p: E \rightarrow M$, a linear semibasic tangent valued p-form $K: E \rightarrow \wedge^{p} T^{*} M \otimes T E$ on $p: E \rightarrow M$ can be treated as the tangent valued p-form $K \in \Omega^{p}(E, T E)$ on manifold E. Given $K \in \Omega^{p}(E, T E)$ and $L \in \Omega^{q}(E, T E)$ we have the Frolicher-Nijenhuis bracket $[[K, L]] \in \Omega^{p+q}(E, T E)$ given by

$$
\begin{aligned}
& {[[K, L]]\left(Z_{1}, \ldots, Z_{p+q}\right) } \\
&= \frac{1}{p!q!} \sum_{\sigma}^{\operatorname{sign} \sigma}\left[K\left(Z_{\sigma 1}, \ldots, Z_{\sigma p}\right), L\left(Z_{\sigma(p+1)}, \ldots, Z_{\sigma(p+q)}\right)\right] \\
&+\frac{-1}{p!(q-1)!} \sum_{\sigma} \operatorname{sign} \sigma L\left(\left[K\left(Z_{\sigma 1}, \ldots, Z_{\sigma p}\right), Z_{\sigma(p+1)}\right], Z_{\sigma(p+2)}, \ldots\right) \\
&+\frac{(-1)^{p q}}{(p-1) q!} \sum_{\sigma} \operatorname{sign} \sigma K\left(\left[L\left(Z_{\sigma 1}, \ldots, Z_{\sigma q}\right), Z_{\sigma(q+1)}\right], Z_{\sigma(q+2)}, \ldots\right) \\
&+\frac{(-1)^{p-1}}{(p-1)!(q-1)!2!} \sum_{\sigma} \operatorname{sign} \sigma L\left(K\left(\left[Z_{\sigma 1}, Z_{\sigma 2}\right], Z_{\sigma 3}, \ldots\right), Z_{\sigma(p+2)}, \ldots\right) \\
&+\frac{(-1)^{p-1) q}}{(p-1)!(q-1)!2!} \sum_{\sigma} \operatorname{sign} \sigma K\left(L\left(\left[Z_{\sigma_{1}}, Z_{\sigma 2}\right], Z_{\sigma 3}, \ldots\right), Z_{\sigma(q+2)}, \ldots\right)
\end{aligned}
$$

for any vector fields Z_{1}, \ldots, Z_{p+q} on manifold E, see [3].
Then easily seen that for linear semibasic tangent valued p - and q - forms φ and ψ on $E \rightarrow M,[[\varphi, \psi]]$ is again a linear semibasic tangent valued $(p+q)-$ form on $E \rightarrow M$.

Theorem 2. Let (A, V) be in question. We have

$$
\begin{equation*}
\left[\left[\mathcal{T}^{A, V} \varphi, \mathcal{T}^{A, V} \psi\right]\right]=\mathcal{T}^{A, V}([[\varphi, \psi]]) \tag{10}
\end{equation*}
$$

for any linear semibasic tangent valued p - and q - forms φ and ψ on a vector bundle $E \rightarrow M$.

Proof. Because of the invariance of both sides of (10) with respect to vector bundle charts we may assume that $E \rightarrow M$ is the trivial vector bundle $\mathbf{R}^{m} \times$ $\mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$. Using many times of formulas (5) and (9) and the formula defining the Frolicher-Nijenhuis bracket we easily verify

$$
\begin{aligned}
& {\left[\left[\mathcal{T}^{A, V} \varphi, \mathcal{T}^{A, V} \psi\right]\right]\left(\mathbf{a} f\left(c_{1}\right) \circ \mathcal{T}^{A} X_{1}, \ldots, \mathbf{a} f\left(c_{p+q}\right) \circ T^{A} X_{p+q}\right)} \\
& =\mathcal{T}^{A, V}([[\varphi, \psi]])\left(\mathbf{a} f\left(c_{1}\right) \circ \mathcal{T}^{A} X_{1}, \ldots, \mathbf{a} f\left(c_{p+q}\right) \circ T^{A} X_{p+q}\right)
\end{aligned}
$$

for any vector fields X_{1}, \ldots, X_{p+q} on \mathbf{R}^{m} (treated also as linear vector fields on $\mathbf{R}^{m} \times \mathbf{R}^{n}$) and any $c_{1}, \ldots, c_{p+q} \in A$.

12. Applications to linear general connections

A linear general connection Γ on $E \rightarrow M$ is a linear semibasic tangent valued 1-form $\Gamma: E \rightarrow T^{*} M \otimes T E$ such that $\Gamma(X)$ covers $X,[3]$. One can observe

Corollary 1. For a linear general connection Γ on $E \rightarrow M$ its lifting $\mathcal{T}^{A, V} \Gamma$ is a linear general connection on $T^{A, V} E \rightarrow T^{A} M$.

A curvature of Γ is a linear semibasic (vertical) tangent valued 2 -form

$$
\mathcal{R}_{\Gamma}:=\frac{1}{2} P \circ[[\Gamma, \Gamma]],
$$

where $P: T T E \rightarrow V T E$ is the projection in direction given by the horizontal distribution of Γ, [3]. From Theorem 2 and (6) we have.

Corollary 2. It holds

$$
\mathcal{R}_{\mathcal{T}^{A, V},}=\mathcal{T}^{A, V}\left(\mathcal{R}_{\Gamma}\right)
$$

for any linear general connection Γ on a vector bundle $E \rightarrow M$.

13. Final remarks

We give briefly another purposes, why we could make the constructions.
Remark 1. Let A be a Weil algebra and V be an A-module in question. Let $E \rightarrow M$ be a vector bundle. One can observe that we have $\mathcal{V} \mathcal{B}$-natural equivalence $T^{A, V} E=T^{A} E \otimes_{A} V$ (tensor product of the A-module bundles $T^{A} E \rightarrow T^{A} M$ and (trivial) $\left.T^{A} M \times V \rightarrow T^{A} M\right)$.

Remark 2. Let Γ be a linear general connection on a vector bundle $E \rightarrow$ M. The connection $\mathcal{T}^{A} \Gamma$ (from [3] or [1]) on the A-module bundle $T^{A} E \rightarrow$ $T^{A} M$ is A-linear. It means that the horizontal lift $\mathcal{T}^{A} \Gamma(Y)$ of a vector field Y on $T^{A} M$ is an A-linear vector field on $T^{A} E \rightarrow T^{A} M$ (i.e., with the flow formed by A-module bundle local isomorphisms). On the trivial A-module bundle $T^{A} M \times V$ over $T^{A} M$ we have the trivial A-linear general connection $\Gamma_{T^{A} M \times V}$. Thus we have the tensor product connection $\mathcal{T}^{A} \Gamma \otimes_{A} \Gamma_{T^{A} M \times V}$ on $T^{A, V} E=T^{A} E \otimes_{A} V \rightarrow T^{A} M$, defined quite similarly as tensor product of (R-)linear general connections (see Proposition 47.14 in [3]).

Remark 3. Similarly, let $\varphi: E \rightarrow \wedge^{p} T^{*} M \otimes T E$ be a semibasic linear tangent valued p-form on a vector bundle $E \rightarrow M$, and let $\underline{\varphi}: M \rightarrow \wedge^{p} T^{*} M \otimes T M$ be its underlying tangent valued p-form. By [1], we have the semibasic $\left(A\right.$-)linear tangent valued p-form $\mathcal{T}^{A} \varphi: T^{A} E \rightarrow \wedge^{p} T^{*} T^{A} M \otimes T T^{A} E$ on $T^{A} E \rightarrow T^{A} M$ with the underlying tangent valued p-form $\mathcal{T}^{A} \underline{\varphi}: T^{A} M \rightarrow$ $\wedge^{p} T^{*} T^{A} M \otimes T T^{A} M$. The A-linearity means that given vector fields Y_{1}, \ldots, Y_{p} on $T^{A} M, \mathcal{T}^{A} \varphi\left(Y_{1}, \ldots, Y_{p}\right)$ is an A-linear vector field on $T^{A} E \rightarrow T^{A} M$ with the underlying vector field $\mathcal{T}^{A} \varphi\left(Y_{1}, \ldots, Y_{p}\right)$. Let V be an A-module in question. Clearly, $\mathcal{T}^{A} \underline{\varphi}\left(Y_{1}, \ldots, Y_{p}\right) \times 0$ (where 0 is the zero vector field on V) is an A-linear vector field (on the trivial A-module bundle $T^{A} M \times V$ over $T^{A} M$) with the underlying vector field $\mathcal{T}^{A} \underline{\varphi}\left(Y_{1}, \ldots, Y_{p}\right)$, too. Thus we have A-linear vector field $\mathcal{T}^{A, V} \varphi\left(Y_{1}, \ldots, Y_{p}\right):=\mathcal{T}^{A} \varphi\left(Y_{1}, \ldots, Y_{p}\right) \otimes_{A}\left(\mathcal{T}^{A} \underline{\varphi}\left(Y_{1}, \ldots, Y_{p}\right) \times 0\right)$ on $T^{A, V} E=T^{A} E \otimes_{A} V$, defined similarly as tensor product of linear vector fields covering some vector field. (More precisely, its flow is the tensor product over A of the flows of $\mathcal{T}^{A} \varphi\left(Y_{1}, \ldots, Y_{p}\right)$ and $\mathcal{T}^{A} \underline{\varphi}\left(Y_{1}, \ldots, Y_{p}\right) \times 0$.) Consequently, we have semibasic $\left(A\right.$-)linear tangent valued p-form $\mathcal{T}^{A, V} \varphi$: $T^{A, V} E \rightarrow \wedge^{p} T^{*} T^{A} M \otimes T T^{A, V} E$ on $T^{A, V} E=T^{A} E \otimes_{A} V \rightarrow T^{A} M$.

References

[1] Cabras A., Kolář, I., Prolongation of tangent valued forms to Weil bundles, Arch. Math. Brno, 31 (1995), 139-145.
[2] De Leon, M., Rodrigues, P.R., "Generalized Classical Mechanics and Field Theory", North-Holland, Math. Studies 112, North-Holland Publishers Co., Amsterdam, 1985.
[3] Kolář, I., Michor, P.W., Slovák, J., "Natural Operations in Differential Geometry", Springer-Verlag, Berlin, 1993.
[4] Kureš, M., Mikulski, W.M., Liftings of linear vector fields to product preserving gauge bundle functors on vector bundles, Lobachevskii Math. J., 12 (2003), 51-61.
[5] Mikulski, W.M., Product preserving gauge bundle functors on vector bundles, Colloq. Math., 90 (2) (2001), 277-285.
[6] Vondra, A., Higher order differential equations represented by connections on prolongations of a fibered manifold, Extracta Math., 15 (3) (2000), 421-512.

