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0. Introduction

A linear semibasic tangent valued p-form on a vector bundle E → M is a
section ϕ : E → ∧pT ∗M ⊗TE such that ϕ(X1, . . . , Xp) is a linear vector field
on E for any vector fields X1, . . . , Xp on M . (We recall that a vector field
X : E → TE on a vector bundle p : E → M is linear if it is a vector bundle
map between vector bundles p : E → M and Tp : TE → TM . Equivalently,
the flow ExptX is formed by vector bundle (local) isomorphisms.)

A very important example of a semibasic linear tangent valued 1-form is
a linear general connection Γ on a vector bundle E → M . (We recall that
a general linear connection on a vector bundle E → M is a semibasic linear
tangent valued 1-form Γ : E → T ∗M⊗TE on E → M such that Γ(X) projects
onto X for any vector field X on M , [3].) Connections play important roles in
differential geometry, field theories of mathematical physics, and differential
equations, [3], [2], [6].

Let A be a Weil algebra and TA : Mf → FM be the corresponding Weil
functors on the category Mf of all manifolds and maps. Let E → M be a
vector bundle. Then TAE → TAM is a vector bundle, too. Restricting the
well know facts of lifting of tangent values forms on manifolds to Weil bundles,
we obtain.

Proposition A. ([1]) For any linear semibasic tangent valued p-form
ϕ : E → ∧pT ∗M ⊗ TE there exists an unique linear semibasic tangent valued
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p-form T Aϕ : TAE → ∧pT ∗TAM ⊗ TTAE on TAE → TAM such that

T Aϕ
(
af(a1) ◦ T AX1, . . . ,af(ap) ◦ T AXp

)

= af(a1 · · · ap) ◦ T A
(
ϕ(X1, . . . , Xp)

)(∗)

for any vector fields X1, . . . , Xp on M and any a1, . . . , ap ∈ A, where we denote
the flow lift of a field Z on N to TAN by T AZ and where af(a) : TTAN →
TTAN is the canonical affinor on TAN corresponding to a ∈ A.

The Frolicher-Nijenhuis bracket [[ϕ,ψ]] of linear semibasic tangent valued
p- and q- forms on E → M is again a linear semibasic tangent valued (p + q)-
form on E → M .

Proposition B. ([1]) We have

(∗∗) [[T Aϕ, T Aψ]] = T A([[ϕ,ψ]])

for any linear semibasic tangent valued p- and q-forms ϕ and ψ on E → M .

The gauge bundle functor TA : VB → FM (on the category VB of all
vector bundles and vector bundle maps) obtained from TA : Mf → FM
is an example of product preserving gauge bundle functors F : VB → FM.
In [5], for any Weil algebra A and any A-module V with dimR(V ) < ∞ we
constructed a product preserving gauge bundle functor TA,V : VB → FM,
and we proved.

Proposition C. ([5]) Any product preserving gauge bundle functor F :
VB → FM is isomorphic to TA,V for some (A, V ) in question.

In [5], we also observed that TAE = TA,V E for V = A, and that TA,V p :
TA,V E → TA,V M = TAM (M is treated as the zero vector bundle over M)
is a vector bundle (even A-module bundle) for any vector bundle p : E → M .
Thus we have the following natural problems.

Problem 1. For a product preserving gauge bundle functor F : VB →
FM to construct canonically a linear semibasic tangent valued p-form Fϕ :
FE → ∧pT ∗FM ⊗ TFE on Fp : FE → FM from a linear semibasic tangent
valued p-form ϕ : E → ∧pT ∗M ⊗ TE on a vector bundle p : E → M such
that a formula similar to (∗) holds.
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Problem 2. For a product preserving gauge bundle functor F : VB →
FM to prove a formula similar to (∗∗).

The purpose of the present paper is to solve the above problems for all
fiber product preserving gauge bundle functors F : VB → FM. We may of
course assume F = TA,V . Given a ∈ A we have a canonical affinor af(a) :
TTA,V E → TTA,V E on TA,V E. Given a linear vector field Z on E its flow
ExptZ is formed by (local) vector bundle isomorphisms and we have the flow
prolongation T A,V Z = ∂

∂t |t=0
(TA,V (ExptZ)) of Z to TA,V E. We prove

Theorem A. Given a linear semibasic tangent valued p-form ϕ : E →
∧pT ∗M ⊗ TE on a vector bundle E → M there is an unique linear semibasic
tangent valued p-form T A,V ϕ : TA,V E → ∧pT ∗TAM ⊗TTA,V E on the vector
bundle TA,V E → TAM satisfying

T A,V ϕ
(
af(c1) ◦ T AX1, . . . ,af(cp) ◦ T AXp

)

= af(c1 · · · cp) ◦ T A,V
(
ϕ(X1, . . . , Xp)

)

for any vector fields X1, . . . , Xp on M and any c1, . . . , cp ∈ A.

In the proof of Theorem A, the linear semibasic p-form T A,V ϕ will be
explicitly constructed. Next, for the Frolicher-Nijenhuis bracket we prove.

Theorem B. We have

[[T A,V ϕ, T A,V ψ]] = T A,V ([[ϕ,ψ]])

for any linear semibasic tangent valued p- and q- forms ϕ and ψ on E → M .

In the last section we apply the above results to linear general connections
on vector bundles.

All manifolds and maps are assumed to be of class C∞.

1. Weil bundles

Let A be a Weil algebra, see [3]. Given a manifold M we have the Weil
bundle

TAM =
⋃

z∈M

Hom
(
C∞

z (M), A
)
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over M corresponding to A, where Hom(C∞
z (M), A) is the set of all algebra

homomorphisms ϕ from the (unital) algebra C∞
z (M) = {germz(g)| g : M →

R} into A. Given a map f : M → N we have the induced (via pull-back) map
TAf : TAM → TAN . The correspondence TA : Mf → FM is a product
preserving bundle functor on the category Mf of all manifolds and maps, [3].

It is well-known that any product preserving bundle functor F : Mf →
FM is isomorphic to TA for some Weil algebra A, [3].

2. Generalized Weil bundles

Let A be a Weil algebra and V be an A-module with dimR(V ) < ∞. In
[5], similarly to Weil bundles, given a vector bundle E = (E

p→ M) we defined
an A-module bundle

TA,V E =
{
(ϕ, ψ)| ϕ ∈ Hom

(
C∞

z (M), A
)
, ψ ∈ Homϕ

(
C∞,f.l.

z (E), V
)
, z ∈ M

}

over TAM , where Homϕ(C∞,f.l.
z (E), V ) is the A-module of all module homo-

morphisms ψ over ϕ from the C∞
z (M)-module C∞,f.l.

z (E) = {germz(h) | h :
E → R is fibre linear} into V . Given another vector bundle G = (G

q→ N)
and a vector bundle homomorphism f : E → G over f : M → N we
have the induced A-module bundle map TA,V f : TA,V E → TA,V G over
TAf : TAM → TAN by

TA,V f(ϕ, ψ) = (ϕ ◦ f∗
z
, ψ ◦ f∗z ),

(ϕ,ψ) ∈ TA,V
z E, z ∈ M , where f∗

z
: C∞

f(z)(N) → C∞
z (M) and f∗z : C∞,f.l.

f(z) (G) →
C∞,f.l.

z (E) are given by the pull-back with respect to f and f . The correspon-
dence TA,V : VB → FM is a product preserving gauge bundle functor, see [5]
(see also [4] for examples of modules over Weil algebras).

In [5], we proved that any product preserving gauge bundle functor
F : VB → FM is isomorphic to TA,V for some (A, V ) in question.

3. Local description of generalized Weil bundles

A local vector bundle trivialization (x1, . . . , xm, y1, . . . , yn) : E|U=̃Rm ×
Rn on E induces a fiber bundle trivialization

(x̃1, . . . , x̃m, ỹ1, . . . , ỹn) : TA,V E|U=̃Am × V n
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by x̃i(ϕ,ψ) = ϕ(germz(xi)) ∈ A, ỹj(ϕ,ψ) = ψ(germz(yj)) ∈ V , (ϕ,ψ) ∈
TA,V

z E, z ∈ U , i = 1, . . . , m, j = 1, . . . , n.
Let f : E → G be a vector bundle map. If in some vector bundle coordi-

nates

(1) f(x, y) =
(
ϕ(x),

( n∑

j=1

ψk
j (x)yj

)p

k=1

)

x ∈ Rm, y = (yj) ∈ Rn, then in the induced coordinates we have

(2) TAf(a,w) =
(
TAϕ(a),

( n∑

j=1

TAψk
j (a)wj

)p

k=1

)
,

a ∈ Am, w = (wj) ∈ V n.

4. The affinors af(c)

Let c ∈ A. We have an affinor af(c) : T (Am × V n) → T (Am × V n) on
Am × V n given by

(3) af(c)
(
(a, v), (b, w)

)
=

(
(a, v), (cb, cw)

)

for ((a, v), (b, w)) ∈ (Am × V n)× (Am × V n) = T (Am × V n).

Lemma 1. We have

TTA,V f ◦ af(c) = af(c) ◦ TTA,V f

for any vector bundle map f : Rm ×Rn → Rq ×Rp.

Proof. The proof is standard. We propose to use (2).

Thus according to the general theory of [3], for any vector bundle E → M
we have a canonical affinor af(c) on TA,V E with the form (3) in every vector
bundle coordinates.
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5. Linear semibasic tangent valued p-forms

Let E → M be a vector bundle. A linear semibasic tangent valued p-form
on E → M is a section ϕ : E → ∧pT ∗M ⊗ TE such that ϕ(X1, . . . , Xp) is a
linear vector field on E for any vector fields X1, . . . , Xp on M . Thus a linear
semibasic tangent valued p-form ϕ on the trivial vector bundle Rm×Rn over
Rm has the form

(4) ϕ =
m∑

i=1

ϕi ⊗ ∂

∂xi
+

n∑

j,k=1

ϕk
j ⊗ yj ∂

∂yk

for some unique p-forms ϕi, ϕk
j : TRm×Rm · · ·×Rm TRm → R on Rm, where

x1, . . . , xm, y1, . . . , yn are the usual vector bundle coordinates on Rm × Rn.
More precisely,

ϕ(x, y)(v1, . . . , vp) =
m∑

i=1

ϕi(v1, . . . , vp)
∂

∂xi
(x, y)

+
n∑

j,k=1

ϕk
j (v1, . . . , vp)yj ∂

∂yk
(x, y) ∈ T(x,y)(R

m ×Rn),

y = (yj) ∈ Rn, x ∈ Rm, v1, . . . , vp ∈ TxRm.

6. The solution of Problem 1

Theorem 1. Let A be a Weil algebra and V be an A-module, dimR(V ) <
∞. Let ϕ : E → ∧T E be a linear semibasic tangent valued p-form on a vector
bundle E → M . There is an unique linear semibasic tangent valued p-form
T A,V ϕ on TA,V E → TAM such that

T A,V ϕ
(
af(c1) ◦ T AX1, . . . ,af(cp) ◦ T AXp

)

= af(c1 · · · cp) ◦ T A,V
(
ϕ(X1, . . . , Xp)

)(5)

for any vector fields X1, . . . , Xp on M and any c1, . . . , cp ∈ A, where T AX is
the flow lift of X to TAM and T A,V Z is the flow lift of a linear vector field
on E to TA,V E.

Proof. The construction of the linear semibasic tangent valued p-form
satisfying (5) will be given in Sections 7 and 8. The proof will be end in the
end of Section 8.
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7. Local description of T A,V ϕ

Let ϕ be a linear semibasic tangent valued p-form on E = Rm×Rn → Rm

of the form (4), then we define T A,V ϕ on TA,V E = Am × V n by

T A,V ϕ =
m∑

i=1

(
TAϕi ◦ (η × · · · × η)

)⊗A T A ∂

∂xi

+
n∑

j,k=1

(
TAϕk

j ◦ (η × · · · × η)
)⊗A T A,V

(
yj ∂

∂yk

)
,

(6)

where TAϕk
j : TA(TRm ×Rm · · · ×Rm TRm) → TAR = A is the extension of

ϕk
j : TRm ×Rm · · · ×Rm TRm → R and η : TTARm → TATRm is the flow

isomorphism and T A,V Z is the flow prolongation of a linear vector field Z on
E → M to TA,V E and where the flow lift T A ∂

∂xi is the vector field on Am

and then on Am × V n . More precisely,

(T A,V ϕ)(a,w)(u1, . . . , up)=
m∑

i=1

TAϕi
(
η(u1), . . . , η(up)

)T A ∂

∂xi
(a,w)

+
n∑

j,k=1

TAϕk
j

(
η(u1), . . . , η(up)

)T A,V
(
yj ∂

∂yk

)
(a,w),

u1, . . . , up ∈ TaA
m, a ∈ Am, w ∈ V n.

We prove the following proposition.

Proposition 1. The linear semibasic tangent valued p-form T A,V ϕ on
Am × V n → Am given by (6) is the unique linear tangent valued p-form
satisfying (5) for any vector fields X1, . . . , Xp on Rm and any c1, . . . , cp ∈ A.

To prove Proposition 1 we need.

Lemma 2. We have

(7) T A,V (f ⊗ Z) = TAf ⊗A T A,V Z

for any f : Rm → R and any linear vector field Z on Rn, where (of course)
(f ⊗ Z)(x, y) = f(x)Z(x, y) ∈ T(x,y)(Rm × Rn), (x, y) ∈ Rm × Rn, and

(TAf ⊗A T A,V Z)(a,w) = TAf(a)T A,V Z(a,w) ∈ V(a,w)(Am × V n), (a,w) ∈
Am × V n.
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Proof. We can prove (7) as follows. Let ψt = (ψk
l (t)) ∈ GL(Rn) be the

flow of Z. Then the flow of f ⊗ Z is Ψt : Rm ×Rn → Rm ×Rn, Ψt(x, y) =
(x, ψtf(x)(y)). Then (by (2)) we have

TA,V Ψt(a,w) =
(
a,

( n∑

l=1

TAψk
l (tTAf(a))wl

)n

k=1

)
,

a ∈ Am, w = (wl) ∈ V n. Therefore

T A,V (f ⊗ Z)(a,w) =
d

dt |t=0

(
TA,V Ψt(a,w)

)

=
(
0,

d

dt |t=0

( n∑

l=1

TAψk
l (tTAf(a))wk

)n

k=1

)

=
(
0, TAf(a)

d

dt |t=0

( n∑

l=1

ψk
l (t)wk

)n

k=1

)

= TAf(a)
d

dt |t=0
TA,V (idRm × ψt)(a,w)

= TAf(a)TA,V Z(a,w) = (TAf ⊗A T A,V Z)(a,w).

The proof of Lemma 2 is complete.

Proof of Proposition 1. We prove (5) as follows. By (6) and (7), by the
R-linearity of the flow lift of linear vector fields and the well-known formulas
for the flow lift T A of vector fields to TAM , we have

T A,V ϕ
(
af(c1) ◦ T AX1, . . . ,af(cp)T AXp

)

=
m∑

i=1

TAϕi
(
η(af(c1) ◦ T AX1), . . . , η(af(cp) ◦ T AXp)

)⊗A T A ∂

∂xi

+
n∑

j,k=1

TAϕk
j

(
η(af(c1) ◦ T AX1), . . . , η(af(cp) ◦ T AXp)

)⊗A T A,V
(
yj ∂

∂yk

)

=
m∑

i=1

c1 · · · cpT
A
(
ϕi(X1, . . . , Xp)

)⊗A T A ∂

∂xi

+
n∑

j,k=1

c1 · · · cpT
A
(
ϕk

j (X1, . . . , Xp)
)⊗A T A,V

(
yj ∂

∂yk

)

= af(c1 · · · cp) ◦ T A,V
(
ϕ(X1, . . . , Xp)

)
.
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The uniqueness of T A,V ϕ follows from the fact that the af(c) ◦ T AX for
all vector fields X and Rm and all c ∈ A generates (over C∞(Am)) the space
of all vector fields on Am, see [3].

8. Global description of T A,V ϕ

Let ϕ be a linear tangent valued p-form on E → M . Using vector bundle
coordinates we can define T A,V ϕ locally by (6). According to respective theory
of [3], to define T A,V ϕ globally on TA,V E → TAM it remains to show

Proposition 2. The construction T A,V given by (6) is invariant with
respect to vector bundle isomorphisms f : Rm ×Rn → Rm ×Rn. It means,
we have

(8) T A,V (f∗ϕ) = (TA,V f)∗T A,V ϕ

for any f as above.

Proof. The formula (8) is clear because of the uniqueness case of Proposi-
tion 1, the formula (5) for any vector fields X1, . . . , Xp on Rm and c1, . . . , cp ∈
A (see Proposition 1), and the naturality of the flow operators and the natu-
rality of the affinors af(c).

The proof of Theorem 1 is complete.

9. Some natural properties of T A,V ϕ

From the uniqueness of T A,V ϕ satisfying (5) we have

Proposition 3. Let ϕ1 and ϕ2 be linear semibasic tangent valued p-forms
on E → M and G → N . If they are f -related by a local vector bundle
isomorphism f : E → G, then T A,V ϕ1 and T A,V ϕ2 are TA,V f -related. In
other words, the correspondence ϕ → TA,V ϕ is a VBm,n-natural operator in
the sense of [3].

Proposition 4. Let ϕ be a linear semibasic tangent valued p-form on
E → M . Let (A1, V1) and (A2, V2) be two pairs in question. Suppose
that ν : V1 → V2 is a module isomorphism over an algebra isomorphism
µ : A1 → A2. Let ην,µ : TA1,V1E → TA2,V2E be the corresponding vector
bundle isomoprphism, see [4]. Then T A1,V1ϕ and T A2,V2ϕ are ην,µ-related.
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By the same arguments we easily see that

Proposition 5. Let V1 and V2 be A modules (finite dimensional over
R). Let ν : V1 → V2 be an A-module homomorphism (not necessarily isomor-
phism) over idA : A → A. Then T A,V1ϕ and T A,V2ϕ are ηidA,ν-related.

10. The bracket formula

Let (A, V ) be in question. Let U and W be linear vector fields on E → M .
Then [U,W ] is a linear vector field on E, too. Let a, b ∈ A.

Lemma 3. The following formula

(9) [af(a) ◦ T A,V U,af(b) ◦ T A,V W ] = af(ab) ◦ T A,V ([U,W ])

holds.

Proof. Because of the R-bilinearity of booth sides of (9) with respect to
U and W , we can assume that U is not vertical. Then using vector bundle
coordinate invariance of booth sides of (9) we can assume E = Rm ×Rn and
U = ∂

∂x1 . Then because of the R-linearity of both sides of (9) with respect to
W we can assume that W = f(x) ∂

∂xi or W = f(x)yj ∂
∂yk .

In the first case the formula (9) is the well-known (for Weil bundles) one

[
af(a) ◦ T A ∂

∂x1
,af(b) ◦ T A

(
f(x)

∂

∂xi

)]
= af(ab) ◦ T A

(
[

∂

∂x1
, f(x)

∂

∂xi
]
)

.

If U = ∂
∂x1 and W = f(x)yj ∂

∂yk , then because of formula (7) and the fact

that [af(a) ◦ T A,V ∂
∂x1 , T A,V (yj ∂

∂yk )] = 0 (as af(a) ◦ T A,V ∂
∂x1 is a vector field

on Am and T A,V (yj ∂
∂yk ) is a vector field on V n) we have

[
af(a) ◦ T A,V ∂

∂x1
,af(b) ◦ T A,V

(
f(x)yj ∂

∂yk

)]

= [af(a) ◦ T A,V ∂

∂x1
, bTAfT A,V (yj ∂

∂yk
)]

= (af(a) ◦ T A ∂

∂x1
)(bTAf)T A,V (yj ∂

∂yk
)

=
(
bTTAf ◦ af(a) ◦ T A ∂

∂x1

)T A,V (yj ∂

∂yk
)
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= baTTAf(TA ∂

∂x1
)T A,V (yj ∂

∂yk
) = abTA(

∂

∂x1
f)T A,V (yj ∂

∂yk
)

= af(ab) ◦ T A,V
( ∂

∂x1
f(x)yj ∂

∂yk

)
= af(ab) ◦ T A,V

(
[

∂

∂x1
, f(x)yj ∂

∂yk
]
)
.

The proof of Lemma 3 is complete.

11. Solution of Problem 2

By using the pull-back with respect to p : E → M , a linear semiba-
sic tangent valued p-form K : E → ∧pT ∗M ⊗ TE on p : E → M can be
treated as the tangent valued p-form K ∈ Ωp(E, TE) on manifold E. Given
K ∈ Ωp(E, TE) and L ∈ Ωq(E, TE) we have the Frolicher-Nijenhuis bracket
[[K, L]] ∈ Ωp+q(E, TE) given by

[[K, L]](Z1, . . . , Zp+q)

=
1

p!q!

∑
σ

signσ
[
K(Zσ1, . . . , Zσp), L

(
Zσ(p+1), . . . , Zσ(p+q)

)]

+
−1

p!(q − 1)!

∑
σ

signσL
([

K(Zσ1, . . . , Zσp), Zσ(p+1)

]
, Zσ(p+2), . . .

)

+
(−1)pq

(p− 1)q!

∑
σ

signσK
([

L(Zσ1, . . . , Zσq), Zσ(q+1)

]
, Zσ(q+2), . . .

)

+
(−1)p−1

(p− 1)!(q − 1)!2!

∑
σ

signσL
(
K

(
[Zσ1, Zσ2], Zσ3, . . .

)
, Zσ(p+2), . . .

)

+
(−1)p−1)q

(p− 1)!(q − 1)!2!

∑
σ

signσK
(
L

(
[Zσ1 , Zσ2], Zσ3, . . .

)
, Zσ(q+2), . . .

)

for any vector fields Z1, . . . , Zp+q on manifold E, see [3].
Then easily seen that for linear semibasic tangent valued p- and q- forms

ϕ and ψ on E → M , [[ϕ,ψ]] is again a linear semibasic tangent valued (p+q)-
form on E → M .

Theorem 2. Let (A, V ) be in question. We have

(10) [[T A,V ϕ, T A,V ψ]] = T A,V ([[ϕ,ψ]])

for any linear semibasic tangent valued p- and q- forms ϕ and ψ on a vector
bundle E → M .
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Proof. Because of the invariance of both sides of (10) with respect to vector
bundle charts we may assume that E → M is the trivial vector bundle Rm ×
Rn → Rm. Using many times of formulas (5) and (9) and the formula defining
the Frolicher-Nijenhuis bracket we easily verify

[[T A,V ϕ, T A,V ψ]]
(
af(c1) ◦ T AX1, . . . ,af(cp+q) ◦ TAXp+q

)

= T A,V
(
[[ϕ,ψ]]

)(
af(c1) ◦ T AX1, . . . ,af(cp+q) ◦ TAXp+q

)

for any vector fields X1, . . . , Xp+q on Rm (treated also as linear vector fields
on Rm ×Rn) and any c1, . . . , cp+q ∈ A.

12. Applications to linear general connections

A linear general connection Γ on E → M is a linear semibasic tangent
valued 1-form Γ : E → T ∗M ⊗ TE such that Γ(X) covers X, [3]. One can
observe

Corollary 1. For a linear general connection Γ on E → M its lifting
T A,V Γ is a linear general connection on TA,V E → TAM .

A curvature of Γ is a linear semibasic (vertical) tangent valued 2-form

RΓ :=
1
2
P ◦ [[Γ, Γ]],

where P : TTE → V TE is the projection in direction given by the horizontal
distribution of Γ, [3]. From Theorem 2 and (6) we have.

Corollary 2. It holds

RT A,V Γ = T A,V (RΓ)

for any linear general connection Γ on a vector bundle E → M .

13. Final remarks

We give briefly another purposes, why we could make the constructions.

Remark 1. Let A be a Weil algebra and V be an A-module in question.
Let E → M be a vector bundle. One can observe that we have VB-natural
equivalence TA,V E = TAE ⊗A V (tensor product of the A-module bundles
TAE → TAM and (trivial) TAM × V → TAM).
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Remark 2. Let Γ be a linear general connection on a vector bundle E →
M . The connection T AΓ (from [3] or [1]) on the A-module bundle TAE →
TAM is A-linear. It means that the horizontal lift T AΓ(Y ) of a vector field
Y on TAM is an A-linear vector field on TAE → TAM (i.e., with the flow
formed by A-module bundle local isomorphisms). On the trivial A-module
bundle TAM × V over TAM we have the trivial A-linear general connection
ΓT AM×V . Thus we have the tensor product connection T AΓ⊗A ΓT AM×V on
TA,V E = TAE ⊗A V → TAM , defined quite similarly as tensor product of
(R-)linear general connections (see Proposition 47.14 in [3]).

Remark 3. Similarly, let ϕ : E → ∧pT ∗M ⊗TE be a semibasic linear tan-
gent valued p-form on a vector bundle E → M , and let ϕ : M → ∧pT ∗M⊗TM
be its underlying tangent valued p-form. By [1], we have the semibasic
(A-)linear tangent valued p-form T Aϕ : TAE → ∧pT ∗TAM ⊗ TTAE on
TAE → TAM with the underlying tangent valued p-form T Aϕ : TAM →
∧pT ∗TAM⊗TTAM . The A-linearity means that given vector fields Y1, . . . , Yp

on TAM , T Aϕ(Y1, . . . , Yp) is an A-linear vector field on TAE → TAM with
the underlying vector field T Aϕ(Y1, . . . , Yp). Let V be an A-module in ques-
tion. Clearly, T Aϕ(Y1, . . . , Yp)×0 (where 0 is the zero vector field on V ) is an
A-linear vector field (on the trivial A-module bundle TAM × V over TAM)
with the underlying vector field T Aϕ(Y1, . . . , Yp), too. Thus we have A-linear
vector field T A,V ϕ(Y1, . . . , Yp) := T Aϕ(Y1, . . . , Yp) ⊗A (T Aϕ(Y1, . . . , Yp) × 0)
on TA,V E = TAE ⊗A V , defined similarly as tensor product of linear vec-
tor fields covering some vector field. (More precisely, its flow is the tensor
product over A of the flows of T Aϕ(Y1, . . . , Yp) and T Aϕ(Y1, . . . , Yp) × 0.)
Consequently, we have semibasic (A-)linear tangent valued p-form T A,V ϕ :
TA,V E → ∧pT ∗TAM ⊗ TTA,V E on TA,V E = TAE ⊗A V → TAM .
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