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1. Introduction and definitions

Throughout this paper, L(X) denote the algebra of all bounded linear
operators acting on a Banach space X. For T ∈ L(X), let T ∗, N(T ), R(T ),
σ(T ), σp(T ) and σap(T ) denote respectively the adjoint, the null space, the
range, the spectrum, the point spectrum and the approximate point spectrum
of T . Let α(T ) and β(T ) be the nullity and the deficiency of T defined by

α(T ) = dimN(T ) and β(T ) = codimR(T ) .

If the range R(T ) of T is closed and α(T ) < ∞ (resp. β(T ) < ∞), then T
is called an upper semi-Fredholm (resp. a lower semi-Fredholm ) operator.
In the sequel SF+(X) (resp. SF−(X)) will denote the set of all upper (resp.
lower ) semi-Fredholm operators. If T ∈ L(X) is either upper or lower semi-
Fredholm, then T is called a semi-Fredholm operator, and the index of T is
defined by ind(T ) = α(T ) − β(T ). If both α(T ) and β(T ) are finite, then
T is a Fredholm operator. An operator T is called Weyl if it is Fredholm
of index zero. For T ∈ L(X) and n ∈ N define cn(T ) and c′n(T ) as follows
cn(T ) = dimR(Tn)/R(Tn+1) and c′n(T ) = dimN(Tn+1)/N(Tn). The descent
q(T ) and the ascent p(T ) are given by

q(T ) = inf
{
n : cn(T ) = 0

}
= inf

{
n : R

(
Tn

)
= R

(
Tn+1

)}
,

p(T ) = inf
{
n : c′n(T ) = 0

}
= inf

{
n : N

(
Tn

)
= N

(
Tn+1

)}
.

Key words: semi-B-Fredholm operator, generalized a-Weyl’s theorem, single-valued ex-
tension property.
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(We shall, henceforth, shorten T −λI to T −λ ). A bounded linear operator T
is called Browder if it is Fredholm of finite ascent and descent. The essential
spectrum σe(T ), Weyl spectrum σw(T ), and Browder spectrum σb(T ) of T ∈
L(X) are defined by

σe(T ) = {λ ∈ C : T − λ is not Fredholm} ,

σw(T ) = {λ ∈ C : T − λ is not Weyl} ,

σb(T ) = {λ ∈ C : T − λ is not Browder} .

Evidently
σe(T ) ⊆ σw(T ) ⊆ σb(T ) .

For a subset K ⊆ C, we write accK (resp. isoK) for the accumulation (resp.
isolated) points of K.

We say that Weyl’s theorem holds for T ∈ L(X) if

σ(T ) \ σw(T ) = E0(T ) ,

where E0(T ) is the set of isolated point of σ(T ) which are eigenvalues of finite
multiplicity, and that Browder’s theorem holds for T ∈ L(X) if

σw(T ) = σb(T ) .

For T ∈ L(X), let SF−
+ (X) be the class of all T ∈ SF+(X) with indT ≤ 0.

The essential approximate point spectrum σSF−+
(T ) and the Browder essential

approximate point spectrum σab(T ) are defined by

σSF−+
(T ) =

{
λ ∈ C : T − λ is not in SF−

+ (X)
}

,

σab(T ) =
⋂
{σap(T + K) : TK = KT and K ∈ K(X)} ,

where K(X) is the ideal of compact operators on X. Recall that [25] a complex
number λ is not in σab(T ) if and only if T − λ ∈ SF−

+ (X) and p(T − λ) < ∞.
We say that a-Wey’s theorem holds for T ∈ L(X) if

σap(T ) \ σSF−+
(T ) = Ea

0 (T ) ,

where Ea
0 (T ) is the set of isolated points of σap(T ) which are eigenvalues of

finite multiplicity, and that a-Browder’s theorem holds for T ∈ L(X) if

σSF−+
(T ) = σab(T ) .
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In [9, 26], it is shown that for any T ∈ L(X) we have the implications:

a-Weyl’s theorem ⇒ Weyl’s theorem ⇒ Browder’s theorem ,

a-Weyl’s theorem ⇒ a-Browder’s theorem ⇒ Browder’s theorem .

For a bounded linear operator T and a nonnegative integer n define Tn to
be the restriction of T to R(Tn) viewed as a map from R(Tn) into R(Tn) ( in
particular T0 = T ). If for some integer n the range space R(Tn) is closed and
Tn is an upper (resp. a lower) semi-Fredholm operator, then T is called an
upper (resp. lower ) semi-B-Fredholm operator, see [7]. In this case the index
of T is defined as the index of the semi-Fredholm operator Tn, see [6]. Moreover
if Tn is a Fredholm operator, then T is called a B-Fredholm operator. A semi-
B-Fredholm operator is an upper or a lower semi-B-Fredholm operator. An
operator T ∈ L(X) is said to be a B-Weyl operator if it is a B-Fredholm
operator of index zero. The semi-B-Fredholm spectrum σSBF (T ) and the
B-Weyl spectrum σBW (T ) of T are defined by

σSBF (T ) = {λ ∈ C : T − λI is not a semi-B-Fredholm operator} ,

σBW (T ) = {λ ∈ C : T − λI is not a B-Weyl operator} .

We say that generalized Weyl’s theorem holds for T if

σ(T ) \ σBW (T ) = E(T ) ,

where E(T ) is the set of all isolated eigenvalues of T , and generalized Brow-
der’s theorem holds for T if

σ(T ) \ σBW (T ) = π(T ) ,

where π(T ) is the set of all poles of T (see [6, Definition 2.13]). Generalized
Weyl’s theorem and generalized Browder’s theorem has been studied in [5, 6].
Similarly, let SBF+(X) be the class of all upper semi-B-Fredholm operators,
and SBF−

+ (X) the class of all T ∈ SBF+(X) such that ind(T ) ≤ 0. Also let

σSBF−+
(T ) = {λ ∈ C : T − λ is not in SBF−

+ (X)} ,

called the semi-essential approximate point spectrum, see [6]. We say that T
obeys generalized a-Weyl’s theorem if

σSBF−+
(T ) = σap(T ) \Ea(T ) ,

where Ea(T ) is the set of all eigenvalues of T which are isolated in σap(T ) ([6,
Definition 2.13]). From [6], we know that
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generalized a-Weyl’s theorem ⇒ generalized Weyl’s theorem
⇒ Weyl’s theorem ,

generalized a-Weyl’s theorem ⇒ a-Weyl’s theorem .

For T ∈ L(X) we say that T is Drazin invertible, if there exists B, U ∈
L(X) such that U is nilpotent and TB = BT , BTB = B and TBT = T + U .
It is known that T is Drazin invertible if and only if it has finite ascent and
descent, which is also equivalent to the fact that T = T0 ⊕ T1, where T0 is
invertible and T1 is nilpotent, see [14, Proposition A] and [17, Corollary 2.2].
The Drazin spectrum is defined by

σD(T ) = {λ ∈ C : T − λ is not Drazin invertible } .

As in [21], define the set LD(X) by

LD(X) =
{

T ∈ L(X) : p(T ) < ∞ and R
(
T p(T )+1

)
is closed

}
.

An operator T ∈ L(X) is said to be left Drazin invertible if T ∈ LD(X). The
left Drazin spectrum σLD(T ) of T is defined by

σLD(T ) = {λ ∈ C : T − λ is not in LD(X)} .

It is known, see [6, Lemma 2.12], that

σSBF−+
(T ) ⊆ σLD(T ) ⊆ σap(T ) .

We say that λ ∈ σap(T ) is a left pole of T if T − λ ∈ LD(X), and that
λ ∈ σap(T ) is a left pole of T of finite rank if λ is a left pole of T and
α(T − λ) < ∞. We denote by πa(T ) the set of all left poles of T , and by
πa

0(T ) the set of all left poles of finite rank. We say that T obeys generalized
a-Browder’s theorem if

σSBF−+
(T ) = σap(T ) \ πa(T ) .

It is known [6], that

generalized a-Browder’s theorem ⇒ a-Browder’s theorem ,

generalized a-Browder’s theorem ⇒ generalized Browder’s theorem .

Generalized a-Weyl’s theorem has been studied in [6]. In particular it is
shown that generalized a-Weyl’s theorem implies generalized a-Browder’s the-
orem. It has been established for operator T on a Hilbert space for which the
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adjoint T ∗ is p-hyponormal or M-hyponormal [8]. In this paper, we study gen-
eralized a-Weyl’s theorem and generalized a-Browder’s theorem for operator
T acting on a Banach space such that T or T ∗ has the SVEP. In section 2,
we prove that the spectral mapping theorem holds for the semi-essential ap-
proximate point spectrum σSBF−+

(T ), for every f ∈ H(σ(T )), where H(σ(T ))
denotes the set of all analytic functions defined on an open neighbourhood U
of σ(T ). In section 3, we show that if T is a bounded linear operator such
that T ∗ has the SVEP, then T satisfies generalized a-Weyl’s theorem if and
only if it satisfies generalized Weyl’s theorem, and we show that generalized
a-Browder’s theorem holds for f(T ) for every f ∈ H(σ(T )), also we give a
necessary and sufficient condition for T to obey generalized Weyl’s theorem.
One class of operators which was introduced in [23], is the class P(X) of all
operators T ∈ L(X) for which for every complex number λ there exists an
integer dλ ≥ 1 such that the following condition holds

H0(T − λ) = N(T − λ)dλ .

In section 4, we give an application for the class P(X).

2. Spectral mapping theorem for the semi-essential
approximate point spectrum

We say that T ∈ L(X) has the single-valued extension property at λ0,
(SVEP for short) if for every open neighbourhood U of λ0, the only analytic
function f : U → X which satisfies the equation

(T − λ)f(λ) = 0

for all λ ∈ U is the function f ≡ 0. T ∈ L(X) is said to have the SVEP if T
has the SVEP at every point λ ∈ C (see [16]).

Recall that the Drazin spectrum σLD(T ), T ∈ L(X) satisfies the spectral
mapping theorem for analytic functions on an open neighbourhood of σ(T )
which is non-constant on each component of its domain of definition, see [22]
page 194. In this section we will show that under the hypothesis T or T ∗

has the SVEP; the spectral mapping theorem holds for the semi-essential
approximate point spectrum σSBF−+

(T ), for every analytic functions on an
open neighbourhood of σ(T ).

We start with the following:



56 m. amouch

Proposition 2.1. Let S, T,A, B ∈ L(X) be mutually commuting op-
erators, satisfying TA + BS = I. Then TS ∈ SBF+(X) if and only if
T, S ∈ SBF+(X).

Proof. The result follows from [21, Lemma 1] and [21, Lemma 8].

As an immediate consequence of the previous proposition we have the
following:

Corollary 2.1. Let P (X) = (X−λ1)n1 · · · (X−λm)nm be a polynomial
with complex coefficients. Then P (T ) = (T − λ1)n1 · · · (T − λm)nm is a upper
semi-B-Fredholm operator if and only if T − λi is a upper semi-B-Fredholm
operator for all i ∈ {1, . . . , m}.

Proof. Since for all relatively prime polynomials P, Q there exist polyno-
mials P1, Q1 such that PP1+QQ1 = 1, we have P (T )P1(T )+Q(T )Q1(T ) = I.
From Proposition 2.1 applied inductively for a relatively prime polynomials
(X − λi) and (X − λj) where i, j ∈ {1, . . . , m}, we get the desired result.

Let A(X) be the set of all T ∈ L(X) such that

ind(T − λ) ind(T − µ) ≥ 0 for all λ, µ ∈ C \ σSBF+(T ) .

Theorem 2.1. If T ∈ A(X), then

f(σSBF−+
(T )) = σSBF−+

(f(T )) for every f ∈ H(σ(T )) .

Proof. Let µ ∈ σSBF−+
(f(T )). Since f − µ has only a finite number of

zeros λ1, λ2, . . . , λm in σ(T ), it can be written as f(z)−µ = (z−λ1)n1 · · · (z−
λm)nmg(z), where g is a function analytic on a neighbourhood of σ(T ) and
g(z) 6= 0 for z ∈ σ(T ). Then by the spectral mapping theorem for the ordinary
spectrum we have f(T ) − µ = (T − λ1)n1 · · · (T − λm)nmg(T ), and g(T ) is
invertible. If µ /∈ f(σSBF−+

(T )), then λi /∈ σSBF−+
(T ) for all i ∈ {1, . . . , m},

because if there exists λj ∈ σSBF−+
(T ), j ∈ {1, . . . , }, then f(λj) − µ = 0,

hence µ = f(λj) ∈ f(σSBF−+
(T )). By Corollary 2.1, this implies that (T −

λ1)n1 · · · (T − λm)nm is upper semi-B-Fredholm. Hence, from Proposition 2.1
applied for (T −λ1)n1 · · · (T −λm)nm and g(T ), we get that f(T )−µ is upper
semi-B-Fredholm. Since ind(f(T ) − µ) =

∑m
i=1 ind(T − λi)ni ≤ 0, then µ is

not in σSBF−+
(f(T )). Which is a contradiction. Thus

σSBF−+
(f(T )) ⊆ f(σSBF−+

(T )) .
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Conversely, suppose that µ /∈ σSBF−+
(f(T )). That is f(T ) − µ is upper

semi-B-Fredholm and ind(f(T ) − µ) ≤ 0. By Proposition 2.1 applied for
f(T ) − µ and g(T )−1, we conclude that (T − λ1)n1 · · · (T − λm)nm is upper
semi-B-Fredholm. Hence, by Corollary 2.1, we get that T − λi is upper semi-
B-Fredholm for i ∈ {1, . . . , m}. Since ind(f(T )−µ) =

∑m
i=1 ind(T −λi)ni ≤ 0

and T ∈ A(X), then ind(T−λi) ≤ 0 for i ∈ {1, . . . , m}. So T−λi ∈ SBF−
+ (X).

Thus µ /∈ f(σSBF−+
(T )).

For T ∈ L(X), let ρSBF (T ) = C \ σSBF (T ). In the following proposition
we prove that if T or T ∗ has the SVEP, then T ∈ A(X).

Proposition 2.2. Let T be a bounded linear operator on X.

(i) If T has the SVEP, then ind(T − λ) ≤ 0 for all λ ∈ ρSBF (T ).

(ii) If T ∗ has the SVEP, then ind(T − λ) ≥ 0 for all λ ∈ ρSBF (T ).

Proof. (i) Let λ ∈ ρSBF (T ), then T − λ is semi-B-Fredholm. By [7,
Corollary 3.2], for µ ∈ C such that |λ − µ| is small enough we have T − µ is
semi-Fredholm and ind(T − λ) = ind(T − µ). If T has the SVEP, then from
[3, Corollary 2.7] we deduce that ind(T − µ) ≤ 0, and hence ind(T − λ) ≤ 0.
Which proves (i).

(ii) Suppose that T ∗ has the SVEP, then from [3, Corollary 2.7] we get
that ind(T − µ) ≥ 0, and hence ind(T − λ) ≥ 0.

As an immediate consequence of Theorem 2.1 and Proposition 2.2 we ob-
tain the following result.

Corollary 2.2. Let T ∈ L(X). If T or T ∗ has the SVEP, then

f(σSBF−+
(T )) = σSBF−+

(f(T )) for every f ∈ H(σ(T )) .

3. Generalized a-Weyl’s theorem and the SVEP.

Let T ∈ L(X) and d ∈ N. Then T has a uniform descent for n ≥ d if

R(T ) + N(Tn) = R(T ) + N(T d) for all n ≥ d .

If in addition, R(T ) + N(T d) is closed then T is said to have a topological
uniform descent for n ≥ d, see [12].

For an operator T ∈ L(X), we denote by F a(T ) the set of all isolated
points λ of σap(T ) for which T − λ is semi-B-Fredholm.
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The following Proposition was established in [6], however the arguments
used are different.

Proposition 3.1. Let T ∈ L(X). The following assertions hold.

(i) F a(T ) = πa(T ), and hence σLD(T ) = σap(T ) \ F a(T ) = accσap(T ) ∪
σSBF (T ).

(ii) If generalized a-Weyl’s theorem holds for T , then so does generalized a-
Browder’s theorem.

(iii) If T satisfies generalized a-Browder’s theorem, then T satisfies general-
ized a-Weyl’s theorem if and only if F a(T ) = Ea(T ).

Proof. (i) If λ ∈ F a(T ), then T − λ is semi-B-Fredholm and λ is isolated
in σap(T ), in particular T − λ is an operator of topological uniform descent
for n ≥ d. Hence from [12, Theorem 4.7], if |β − λ| is sufficiently small,
then c′n(T − β) = c′d(T − λ) for n ≥ d. Since λ is isolated in σap(T ), then
we can choose β such that β /∈ σap(T ), and hence T − β is injective. So
c′d(T − λ) = 0, that is p(T − λ) is finite. On the other hand, by [21, Lemma
12], R((T − λ)p(T−λ)+1) is closed. This implies that λ /∈ σLD(T ). That is
λ ∈ πa(T ). Thus F a(T ) ⊆ πa(T ). For the reverse inclusion suppose that
λ ∈ πa(T ), then λ is isolated in σap(T ), see [6, Remark 2.7]. Also, λ ∈ πa(T )
implies that λ /∈ σLD(T ), and hence λ /∈ σSBF−+

(T ). So T − λ is semi-B-
Fredholm. This implies that, λ ∈ F a(T ). So πa(T ) ⊆ F a(T ), and hence
πa(T ) = F a(T ). Since σLD(T ) = σap(T ) \ πa(T ), then σLD(T ) = σap(T ) \
F a(T ) = accσap(T ) ∪ σSBF (T ). This gives the proof of (i).

(ii) Suppose that generalized a-Weyl’s theorem holds for T , that is
σSBF−+

(T ) = σap(T ) \ Ea(T ). Since

Ea(T ) ∩ σSBF (T ) ⊆ Ea(T ) ∩ σSBF−+
(T ) = ∅ ,

then
Ea(T ) ⊆ isoσap(T ) ∩ ρSBF (T ) = F a(T ) .

Thus Ea(T ) ⊆ F a(T ). Since we have always F a(T ) ⊆ Ea(T ), then Ea(T ) =
F a(T ) and σSBF−+

(T ) = σap(T ) \ F a(T ), hence by (i) we conclude that T

satisfies generalized a-Browder’s theorem.
(iii) Suppose that T satisfies generalized a-Weyl’s theorem. If λ ∈ Ea(T ),

then λ ∈ σap(T )\σSBF−+
(T ). Since T satisfies generalized a-Browder’s thoerem

then λ ∈ πa(T ). Hence by (i) λ ∈ F a(T ). Thus Ea(T ) ⊆ F a(T ) and therefore
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F a(T ) = Ea(T ). Conversely Assume that Ea(T ) = F a(T ). Since T satisfies
generalized a-Browder’s theorem, then

σSBF−+
(T ) = σap(T ) \ πa(T )

= σap(T ) \ F a(T ) (by (i))

= σap(T ) \ Ea(T ) .

Hence T satisfies generalized a-Weyl’s theorem.

As mentioned above, generalized a-Weyl’s theorem implies generalized
Weyl’s theorem ([6]). In the following we give a sufficient condition to get
the reverse implication.

Theorem 3.1. Let T ∈ L(X).

(i) If T ∗ has the SVEP, then T satisfies generalized a-Weyl’s theorem if
and only if it satisfies generalized Weyl’s theorem.

(ii) If T has the SVEP, then T ∗ satisfies generalized a-Weyl’s theorem if
and only if it satisfies generalized Weyl’s theorem.

Proof. (i) Suppose that T ∗ has the SVEP, then by [16, Proposition 1.3.2],
we have σap(T ) = σ(T ), and hence E(T ) = Ea(T ). If T satisfies generalized
Weyl’s theorem, then σBW (T ) = σ(T ) \ E(T ). To prove that generalized a-
Weyl theorem holds for T , it suffices to show that σBW (T ) = σSBF−+

(T ). For
this, suppose that λ /∈ σSBF−+

(T ), then T − λ is an upper semi-B-Fredholm
operator and ind(T − λ) ≤ 0. By Proposition 2.2, we have that ind(T −
λ) ≥ 0. So ind(T − λ) = 0. Which implies that T − λ is semi-B-Fredholm
of index 0, hence T − λ is B-Fredholm of index 0, that is λ /∈ σBW (T ).
This gives σSBF−+

(T ) ⊇ σBW (T ). The other inclusion is always true. So
σSBF−+

(T ) = σBW (T ). Since the revers implication is known[6], then the
equivalence between Weyl’s theorem and a-Weyl’s theorem holds for T .

(ii) Outlines the proof of the first statement.

In general, we cannot expect that generalized a-Weyl’s theorem holds for
operators satisfying the SVEP. Let T defined on l2 by

T (x1, x2, . . . ) =
(1

2
x2,

1
3

x3, . . .
)

.
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Then T has the SVEP and σ(T ) = σSBF−+
(T ) = Ea(T ) = {0}. Thus T does

not obey generalized a-Weyl’s theorem. However, generalized a-Browder’s
theorem holds for T whenever T or T ∗ has the SVEP as shown by the follow-
ingf:

Theorem 3.2. If T or T ∗ has the SVEP, then generalized a-Browder’s
theorem holds for f(T ) for every f ∈ H(σ(T )).

Proof. Suppose that λ ∈ σap(T ) \ σSBF−+
(T ), then T − λ is upper semi-B-

Fredholm and ind(T − λ) ≤ 0. The operator T − λ has a topological uniform
descent, so from [7, Corollary 3.2], if β is in σap(T ) such that |β − λ| is
sufficiently small, then T−β is upper semi-Fredholm operator and ind(T−β) ≤
0. Hence β ∈ σap(T ) \ σSF−+

(T ). By [24, Proposition 2.4], The SVEP for
T or T ∗ implies that a-Browder’s theorem holds for T that is σSF−+

(T ) =
σap(T ) \ πa

0(T ), hence β ∈ πa
0(T ). This implies that p(T − β) < ∞, by [12,

Theorem 4.7] p(T −λ) < ∞. Now, since T −λ is semi-B-Fredholm, then there
exists an integer n such that R((T − λ)n) is closed and (T − λ) |R((T−λ)n) is
Fredholm. We can assume that n ≥ p(T −λ), see the proof of Proposition 2.1
of [6]. Since we have R(T −λ) + N((T −λ)i+1) = R(T −λ) + N((T −λ)i) for
every i ≥ p(T −λ) and R((T −λ)n) is closed, then by [22, Lemma 17], we get
that R((T − λ)p(T−λ)+1) is closed. So λ ∈ πa(T ). Thus

σap(T ) \ σSBF−+
(T ) ⊆ πa(T ) .

For the reverse inclusion. If λ ∈ πa(T ), then by Proposition 3.1 (i), λ ∈ F a(T ),
that is λ is isolated in σap(T ) and T−λ is semi-B-Fredholm. From [7, Corollary
3.2], if we choose β ∈ C such that |λ − β| is small enough and β /∈ σap(T ),
then T −β is upper semi-Fredholm with ind(T −β) ≤ 0. So T −λ is an upper
semi-B-Fredholm operator and ind(T −λ) ≤ 0, that is λ /∈ σap(T )\σSBF−+

(T ).
Finally, σap(T )\σSBF−+

= πa(T ). Thus generalized a-Browder’s theorem holds
for T . To complete the proof, if f ∈ H(σ(T )), then by [16, Theorem 3.3.6],
f(T ) or f(T ∗) has the SVEP. Similarly we get the result.

Corollary 3.1. If T or T ∗ has the SVEP, then generalized a-Weyl’s
theorem holds for T if and only if F a(T ) = Ea(T ).

Proof. If T or T ∗ has the SVEP, then by the preceding theorem generalized
a-Browder’s theorem holds for T , and by (iii) of Proposition 3.1, we deduce
the result.
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We have noted that σLD(T ) satisfies the spectral mapping theorem for
analytic functions f on an open neighbourhood of σ(T ) which is non-constant
on each component of its domain of definition. Following we show that under
the hypothesis T or T ∗ has the SVEP; the condition that f is non-constant
on each component of its domain of definition can be left out.

Theorem 3.3. If T or its adjoint T ∗ has the SVEP, then

f(σLD(T )) = σLD(f(T )), for every f ∈ H(σ(T )) .

Proof. By Theorem 3.2, generalized a-Browder’s theorem holds for T and
f(T ), for every f ∈ H(σ(T )). So σLD(T ) = σSBF−+

(T ) and σLD(f(T )) =
σSBF−+

(f(T )). If T or T ∗ has the SVEP then by Corollary 2.2, we have
f(σSBF−+

(T )) = σSBF−+
(f(T )). Hence

f(σLD(T )) = f(σSBF−+
(T ))

= σSBF−+
(f(T ))

= σLD(f(T )) .

4. Applications

In this section we will study generalized a-Weyl’s theorem and generalized
a-Browder’s theorem for some classes of operators. For this let us introduce
some basic notions which will be used later.

The analytic core of an operator T ∈ L(X) is the subspace

K(T ) :=
{

x ∈ X : Txn+1 = xn, Tx1 = x, ‖xn‖ ≤ cn‖x‖

for some c > 0 (n = 1, 2, . . . ), xn ∈ X
}

.

The quasi-nilpotent part of T is the subspace

H0(T ) :=
{

x ∈ X : lim
n→∞ ‖T

nx‖ 1
n = 0

}
.

The spaces K(T ) and H0(T ) are hyperinvariant under T and satisfy T−n(0) ⊂
H0(T ), K(T ) ⊂ Tn(X) for all n ∈ N, TK(T ) = K(T ). For their further
properties, see [18, 19].
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The class of operators T ∈ L(X) for which K(T ) = {0} was introduced
and studied by M. Mbekhta in [19]. It was shown that for such operators, the
spectrum is connected and the SVEP holds.

Theorem 4.1. If there exists λ such that K(T − λ) = {0}, then f(T )
satisfies generalized a-Browder’s theorem, for every f ∈ H(σ(T )). Moreover,
if in addition N(T−λ) = 0, then generalized a-Weyl’s theorem holds for f(T ).

Proof. Since T has the SVEP, then by Theorem 3.2, generalized a- Brow-
der’s theorem holds for f(T ). Let α ∈ σ(f(T )), then f(z) − α =

∏n
i=1(z −

λi)g(z), where λ1, λ2, . . . , λn ∈ σ(T ) and g is an analytic function on an open
neighbourhood of σ(T ), without zeros in σ(T ). Since g(T ) is invertible, then
we deduce that

N(f(T )− α) = N

(
n∏

i=1

(T − λi)

)
=

n⊕

i=1

N(T − λi) .

On the other hand, from [19, Proposition 2.1], we get that σp(T ) ⊆ {λ}. If
we suppose that N(T − λ) = {0}, then σp(T ) = ∅. Which implies that

N(f(T )− λ) = {0}.

That is σp(f(T )) = ∅. Thus, F a(f(T )) = Ea(f(T )) = ∅. Since f(T ) satisfies
generalized a-Browder’s theorem, then by (iii) of Proposition 3.1, generalized
a-Weyl’s theorem holds for f(T ). Which completes the proof.

Let P(X) be the set of all operators T ∈ L(X) such that for every complex
number λ there exists an integer dλ ≥ 1 for which the following condition holds

H0(T − λ) = N(T − λ)dλ .

It is known that if H0(T − λ) is closed for every complex number λ, then T
has the SVEP, see [2, 15]. So that, the SVEP is shared by all the operators of
P(X). The class of operators P(X) is considerably large, it contains, in par-
ticular, the classes consisting of generalized scalar, subscalar and algebraically
totally paranormal operators on a Banach space, hyponormal, p-hyponormal
(0 < p < 1) and M-hyponormal operators on a Hilbert space (see [23]).

For p-hyponormal and M-hyponormal operators in Hilbert space, it is
shown in [8] that generalized a-Weyl’s theorem holds for f(T ) for every f ∈
H(σ(T )). In the following we will give more for Banach space operators.



generalized a-weyl’s theorem and the svep 63

Theorem 4.2. Let T a bounded operator on X. If there exists a function
h ∈ H(σ(T )) non constant in any connected component of its domain, and
such that h(T ∗) ∈ P(X∗), then generalized a-Weyl’s theorem holds for f(T ),
for every f ∈ H(σ(T )).

Proof. Suppose that h(T ∗) ∈ P(X∗), then by [23, Theorem 3.4], we have
T ∗ ∈ P(X∗). First, we will show that generalized a-Weyl’s theorem holds
for T . Since T ∗ has the SVEP, then by Corollary 3.1, it suffices to show
that F a(T ) = Ea(T ). For this let λ ∈ Ea(T ), then λ is isolated eigenvalue
of σap(T ). Since T ∗ has the SVEP, then σap(T ) = σ(T ), see [16]. So X∗ =
H0(T ∗−λ)⊕K(T ∗−λ), where the direct sum is topological. Since T ∗ ∈ P(X∗),
then H0(T ∗ − λ) = N(T ∗ − λ)d for some integer d, and hence X∗ = N(T ∗ −
λ)d ⊕K(T ∗ − λ). Since

(T ∗ − λ)d(X∗) = (T ∗ − λ)dK(T ∗ − λ) = K(T ∗ − λ) ,

then K(T ∗ − λ) = R(T ∗ − λ)d, and hence

X∗ = N(T ∗ − λ)d ⊕R(T ∗ − λ)d.

So T −λ | R(T −λ)d is surjective. This implies that T −λ is semi-B-Fredholm.
So Ea(T ) ⊆ F a(T ). Since we have always that F a(T ) ⊆ Ea(T ), then F a(T ) =
Ea(T ). Now, from [23, Theorem 3.4], if T ∗ ∈ P(X∗), then f(T ∗) ∈ P(X∗)
for every f ∈ H(σ(T )). Hence, by the same argument we conclude that
generalized a-Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).

As an easy consequence of the previous theorem, we have the following
corollary.

Corollary 4.1. If T ∗ ∈ P(X∗), then generalized a-Weyl’s theorem holds
for f(T ), for every f ∈ H(σ(T ).

Following we give condition for T ∈ P(X) which forces f(T ) to obey
generalized Weyl’s theorem for f ∈ H(σ(T ).)

Theorem 4.3. If T ∈ P(X) be such that σ(T ) = σap(T ), then generalized
a-Weyl’s theorem holds for f(T ), for every f ∈ H(σ(T )).

Proof. Suppose that T ∈ P(X) and σ(T ) = σap(T ). First we will prove
that generalized a-Weyl’s theorem holds for T . Since T has the SVEP, then by
Corollary 3.1, it suffices to show that F a(T ) = Ea(T ). For this let λ ∈ Ea(T ).
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Then λ is isolated in σap(T ) = σ(T ). By [18, Theorem 1.6] X = H0(T − λ)⊕
K(T − λ), where the direct sum is topological. Since there exist an integer n
such that H0(T − λ) = N(T − λ)n, then X = N((T − λ)n)⊕K(T − λ). This
implies that (T − λ)n(X) = (T − λ)K(T − λ) = K(T − λ). Thus

X = N((T − λ)n)⊕R((T − λ)n) .

So (T − λ)n is Fredholm of index 0, and so is T − λ, see [13]. Hence T − λ
is B-Fredholm. Finally, Ea(T ) ⊆ F a(T ). The other inclusion is clear. Thus
Ea(T ) = F a(T ). Similarly, we prove that f(T ) satisfies generalized Weyl’s
theorem, because f(T ) ∈ P(X) and

σ(f(T )) = f(σ(T )) = f(σap(T )) = σap(f(T )) .
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