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1. Introduction and preliminaries

Let m be an integer with 0 < m < n and Gn,m stand for the Grassmann
manifold of all m- dimensional linear spaces of Rn. For V ∈ Gn,m, we denote
pV : Rn −→ V the orthogonal projection onto V , then {pV ;V ∈ Gn,m} is
compact in the space of all linear maps from Rn to Rm, and the identification
of V with pV induces a compact topology for Gn,m. Fixing V0 ∈ Gn,m, we can
define an orthogonally invariant Radon probability measure γn,m on Gn,m by

γn,m(A) = vn {g ∈ O(n) ; g(V0) ∈ A} for A ∈ Gn,m

where vn denotes the unique Haar measure on the orthogonal group O(n) of
Rn normalized so that vn (O(n)) = 1. The uniqueness implies that γn,m is
independent of V0 (see [6]). In other words,

γn,m = fV0∗vn with fV0(g) = g(V0) for g ∈ O(n)

and fV0∗vn is the image of the measure vn under the map fV0 .
For a Borel probability measure µ on Rn, supported on the compact set

Sµ, and for V ∈ Gn,m, we define µ̃, the projection of µ onto V by

µ̃(E) = µ
(
p−1

V (E)
)

for all E ⊆ V . Thus if f : V −→ R is continuous then
∫

V
f(u)dµ̃(u) =

∫

Rn

f
(
pV (x)

)
dµ(x).
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If ν is a Borel probability measure on Sµ, one defines, for p > 0

Tµ,ν(p) = lim inf
r−→0

1
log r

log
∫

Sµ

µ
(
B(x, r)

)pdν(x)

the lower generalized p-spectral dimension of µ. It is closely related to the
Rényi dimension in its integral version (see [9]) and if ν is a Gibbs measure for
the measure µ, i. e there exists a measure ν on Sµ and constants K > 0,K > 0
and tq ∈ R such that for every x ∈ Sµ and every 0 < r < λ

Kµ
(
B(x, r)

)q(2r)tq ≤ ν
(
B(x, r)

) ≤ Kµ
(
B(x, r)

)q(2r)tq .

Tµ,ν represents the Cµ function of Olsen’s multifractal formalism [8]. This
quantity appears as a generalization of the lower p-spectral dimension defined
in [5]. For p ≥ 0,

Dp(µ) = lim inf
r→0

1
p log r

log
∫

Sµ

µ
(
B(x, r)

)pdµ(x).

In particular, in the case µ = ν one has

Tµ,µ(p) = pDp(µ)

In [5], Hunt and Kaloshin proved the following statement:

Theorem (HK). Let 0 < p ≤ 1. If Dp(µ) ≤ m, one has

Dp(µ̃) = Dp(µ) for γn,m-almost all V ∈ Gn,m.

In this paper, we investigate the relationship between Tµ,ν(p) and Teµ,eν(p).
Which allows us to compare the multifractal spectra of the measure µ and
that of its projections.

2. Projection results

In this section, we show that the generalized p-spectral dimension is pre-
served under almost every orthogonal projection.

Theorem 2.1. Let p be a real number.

1. If 0 < p ≤ 1 and Tµ,ν(p) ≤ pm, then

Teµ,eν(p) = Tµ,ν(p) for γn,m-almost all V ∈ Gn,m.
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2. If p > 1, one has

inf
(
Tµ,ν(p),m

) ≤ Teµ,eν(p) ≤ Tµ,ν(p) for γn,m-almost all V ∈ Gn,m.

Remark. The first assertion of this theorem is a generalization of that
of Hunt and Kaloshin. In fact, in the case µ = ν, assertion 1 is the main
theorem of Hunt and Kaloshin. Assertion 2 extends the result of Hunt and
Kaloshin to the case p > 1 untreated in their work. Indeed, considering
the relation Dp(µ) = 1

pTµ,µ(p), the equality Dp(µ) = Dp(µ̃) remain valid
for γn,m-almost all V ∈ Gn,m, if p > 1 and Dp(µ) < m

p .

Proof of Theorem 2.1. The first assertion is proved in the same way as
Theorem (HK). The second property results from the following lemma.

Lemma 2.2. If p > 0, then

1. Tµ,ν(p) = inf{s ≥ 0 : Is,p(µ, ν) = ∞},
2. Tµ,ν(p) = sup{s ≥ 0 : Is,p(µ, ν) < ∞},

where

Is,p(µ, ν) =
∫

Sµ

(∫

Rn

dµ(y)
|x− y|s/p

)p

dν(x).

Proof. Let s be a number such that s < Tµ,ν(p). One has
∫

Rn

dµ(y)
|x− y|s/p

≤ 1 +
∑

n≥0

∫

2−n−1<|x−y|≤2−n

dµ(y)
|x− y|s/p

≤ 1 +
∑

n≥0

2(n+1)s/pµ
(
B(x, 2−n)

)

thus

Is,p(µ, ν) ≤
∫

Sµ

(
1 +

∑

n≥0

2(n+1)s/pµ
(
B(x, 2−n)

)
)p

dν(x).

In the case 0 < p ≤ 1, we have

Is,p(µ, ν) ≤ 1 +
∑

n≥0

2(n+1)s

∫

Sµ

µ
(
B(x, 2−n)

)pdν(x).
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Then for a suitable choice of δ > 0 such that s + δ < Tµ,ν(p), one has

Is,p(µ, ν) ≤ 1 + 2s
∑

n≥0

2−nδ < ∞.

Now consider the case p > 1, remember that for every a, b ≥ 0,

(a + b)p ≤ 2p−1(ap + bp).

It results that

(∫

Rn

dµ(y)
|x− y|s/p

)p

≤ 2p−1 + 2p−1


∑

n≥0

2(n+1)s/pµ
(
B(x, 2−n)

)



p

For α > 0, Hölder inequality implies
( ∫

Rn

dµ(y)
|x− y|s/p

)p

≤ 2p−1 + 2p−1


∑

n≥0

2(n+1)s+nαpµ
(
B(x, 2−n)

)p





∑

n≥0

2
−nαp
p−1




p−1

Further, if δ > 0 such that s + δ < Tµ,ν(p) we obtain

Is,p(µ, ν) ≤ 2p−1 + C
∑

n≥0

2n(αp−δ)

where C is constant depending only of p. Statement 1 follows by considering
α < δ/p. To establish statement 2, fix p > 0. For ε > 0, one has

Is,p(µ, ν) ≥ ε−s

∫

Sµ

(µ
(
B(x, ε)

)pdν(x)

Let s > Tµ,ν(p) and δ > 0 such that s− δ > Tµ,ν(p), then for small ε we have
Is,p(µ, ν) ≥ ε−δ, hence Is,p(µ, ν) is infinite.

In order to prove the second statement of Theorem 2.1, it is sufficient to
prove this implication

Tµ,ν(p) ≤ m =⇒ Tµ,ν(p) ≤ Teµ,eν(p). (1)

Let s < Tµ,ν(p). One has



multifractals and projections 87

∫

Gn,m

Is,p(µ̃, ν̃)dγn,m(v) =
∫

Sµ

∫

Gn,m

(∫

Rn

dµ(y)
|pv(x− y)|s/p

)p

dγn,m(v)dν(x).

By Minkowski inequality [10],

∫

Gn,m

(∫

Rn

dµ(y)
|pv(x− y)|s/p

)p

dγn,m(v)

≤
(∫

Rn

( ∫

Gn,m

dγn,m(v)
|pv(x− y)|s

)1/p

dµ(y)

)p

.

Since s < m, ∫

Gn,m

dγn,m(v)
|pv(x− y)|s =

C

|x− y|s ,

(See [7], Corollary 3.12) where C is a constant depending only on m, n and
s. Hence ∫

Gn,m

Is,p(µ̃, ν̃)dγn,m(v) ≤ CIs,p(µ, ν),

which shows that Is,p(µ̃, ν̃) is finite for γn,m-almost all v ∈ Gn,m and implica-
tion (1) follows from Lemma 2.2.

3. Application

In the following section, we compare the multifractal spectrum of a mea-
sure µ and its projections µ̃ more precisely. In fact, Theorem 2.1 allows us
to establish a relationship between the Hausdorff dimension of the singular-
ity spectrum of µ̃ and the Legendre transform of the generalized prepacking
dimensions Λµ introduced by Olsen [9]. Before detailing our results, let us
recall the multifractal formalism introduced by Olsen.

For E ⊂ Rn, q, t ∈ R and δ ≥ 0, we denote

P
q,t
µ (E) = lim

δ→0
sup

∑

i

µ
(
B(xi, ri)

)q(2ri)t

where the supremum is taken over all centered δ-packing of E

P q,t
µ (E) = inf

E⊆Si Ei

∑

i

P
q,t
µ (Ei)
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It is the multifractal generalization of packing measure. The premeasures P
q,t
µ

assign in the usual way a dimension to each subset E of Rn

P
q,t
µ (E) =

{
∞ for t < ∆q

µ(E),

0 for ∆q
µ(E) < t.

The number ∆q
µ(E) is an extension of the prepacking dimension ∆(E) of E.

Then we are able to define the function Λµ(q) = ∆q
µ(Sµ). Remark that Λµ is

convex and decreasing (see [8]). This function is related to the multifractal
spectrum of the measure µ. More precisely, if f∗(x) = infy

(
xy+f(y)

)
denotes

the Legendre transform of the function f , and if

Xµ(α) =
{

x ∈ Sµ : lim sup
r→0

log µ
(
B(x, r)

)

log r
≤ α

}
.

is the set of singularity, it has been proved in [8] and [1] a lower bound estimate
of the singularity spectrum using the Legendre transform of the function Λµ.
Let recall that the singularity spectrum or the multifractal spectrum of a
measure µ is the Hausdorff dimension of the set Xµ(α). Theorem 2.1 allows
us to prove a similar inequality for µ̃ and to compare the multifractal spectrum
of µ and that of its projection.

Let q be a real number. We consider the following conditions:

(H1) There exists a probability measure on Sµ such that

ν
(
B(x, r)

) ≤ K µ
(
B(x, r)

)q(2r)Λµ(q),

(H2) Λ′µ(q) exists,

(H3) T ′µ,ν(0) exists,

(H4) Λ∗µ
(− Λ′µ(q)

) ≤ m and T ′µ,ν(0) ≤ m,

(H5) There exists a probability measure ν in Sµ such that there exist K > 0
and K > 0 satisfying

Kµ
(
B(x, r)

)q(2r)Λµ(q) ≤ ν
(
B(x, r)

) ≤ Kµ
(
B(x, r)

)q(2r)Λµ(q)

for all x ∈ Sµ and r > 0 small enough. ν is a Gibbs state at the point q.

Theorem 3.1. Under the assumptions (H1), (H2), (H3) and (H4) one has

dimXeµ(
T ′eµ,eν(0)

) ≥ Λ∗µ
(− Λ′µ(q)

)
for γn,m-almost all V ∈ Gn,m,

where dim denotes the Hausdorff dimension.
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Before giving the proof of this theorem let us comment it.

Commentaries: 1) Under the hypothesis of Theorem 3.1 we have a rela-
tionship between the multifractal spectrum of the measure µ and that of its
projection µ̃. In fact, we have that dimXeµ(

T ′eµ,eν(0)
) ≥ dimXµ

(
T ′µ,ν(0)

)
for

γn,m-almost all V ∈ Gn,m, which constitute a natural prolongement of the re-
sults of Mattila, Howroyd and Falconer([2], [3] and [6]) about the relationship
between the dimension of a set or a measure and those of their projections.
2) Under the hypothesis (H5), we have Tµ,ν = −Cµ where Cµ is another
scaling µ-function introduced by L. Olsen in [8]. So, if we replace (H2) by
(H5) in Theorem 3.1, we have

dimXeµ(− C ′eµ(0)
) ≥

{−Λ′µ+
(q)q + Λµ(q) for q ≥ 0,

−Λ′µ−(q)q + Λµ(q) for q < 0.

Let us prove the Theorem 3.1. One of the ingredients to prove this theorem
is the following proposition.

Proposition 3.2. Let q be a real number. One has

Λ′µ−(q) ≤ −T ′µ,ν−(0) ≤ Λ′µ+
(q).

Remark. If we replace the condition (H1) by (H5) we have also

Λ′µ+
(q) ≤ −T ′µ,ν+

(0).

Proof of Proposition 3.2. It results from the lower bound

lim sup
r→0

log µ
(
B(x, r)

)

log r
≤ T ′µ,ν−(0) ν-a.e. established in [8],

and the lower bound

lim inf
r→0

log µ
(
B(x, r)

)

log r
≥ −Λ′µ+

(q) ν-a.e. established in [1],

that −T ′µ,ν−(0) ≤ Λ′µ+
(q). To prove the other inequality, that is

Λ′µ−(q) ≤ −T ′µ,ν−(0),

it is sufficient to show that

Λµ(p + q) ≥ Λµ(q)− Tµ,ν(p) (2)



90 f. bahroun, i. bhouri

for all p < 0.
Let ρ > 0 and ε > 0. It results from the definitions of Tµ,ν and

P
p+q,Λµ(q)−Tµ,ν(p)−ρ
µ that for r > 0 small enough,

1 ≤
∫

Sµ

µ
(
B(x, r)

)p
r−Tµ,ν(p)−ρdν(x),

and
P

p+q,Λµ(q)−Tµ,ν(p)−ρ
µ, r

2
(Sµ) < P

p+q,Λµ(q)−Tµ,ν(p)−ρ
µ (Sµ) + ε.

By applying covering Besicovich lemma [4], we have

(Kξ)−1 ≤ P
p+q,Λµ(q)−Tµ,ν(p)−ρ
µ (Sµ) + ε.

So
P

p+q,Λµ(q)−Tµ,ν(p)−ρ
µ (Sµ) > 0,

in other words,
Λµ(p + q) ≥ Λµ(q)− Tµ,ν(p)− ρ.

The arbitrary in ρ implies the inequality (2), which achieves the proof of the
proposition.

Proof of Theorem 3.1. We have, dimXeµ(α) ≥ inf
(
m,dimXµ(α)

)
for γn,m-

almost every V ∈ Gn,m, since pV

(
Xµ(α)

) ⊂ Xeµ(α). In particular, condition
(H4) implies

dimXeµ(
T ′µ,ν(0)

) ≥ dimXµ

(
T ′µ,ν(0)

)
for γn,m -almost all V ∈ Gn,m (3)

Hence, the proposition and the assumptions (H2) and (H3) give that Λ′µ(q) =
−T ′µ,ν(0). As a consequence, it follows from Theorem 2.1 that

Λ′µ(q) = −T ′eµ,eν(0) for γn,m -almost every V ∈ Gn,m. (4)

Thus, the result is a consequence from (3), (4) and the inequality

dimXµ

(−Λ′µ(q)
) ≥ Λ∗µ

(−Λ′µ(q)
)
,

established in [1].
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