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1. INTRODUCTION

There is a smart way (see also [9]) to obtain coboundary operators for some
types of algebras, e.g. associative algebras or Lie algebras. We will explain it
in the following examples.

1.1. ASSOCIATIVE ALGEBRAS. Let V be any vector space and set MP =
MP(V) := Hom (V@D V) for p > 0, M~Y(V) := V, MP(V) := 0 for
p < —1. Hence MP(V) is the space of (p + 1)-linear maps from V to V. Set
M=MV) =@,z MP(V). If a is in MP then we write often o” for o and
say that of has degree p and dimension p + 1. Recall the definition of the
Gerstenhaber bracket (see [4]):

(1) [ap’ﬁq]G = (=1)P2 0P og B — B og AP,
where the element of og 8¢ € MP14 is defined by
aPoi B (vo, .., Uptq)

(2) - i
= Z(—l) Ta(vo, ..., i1, B(Vis. ., Vigg)s - s Upiq)-
=1

Let 7 € M' = Hom (V ® V, V). It is easy to check that [r,7]% = 0 if and
only if 7 is associative, i.e. mw(m(z,y),2) = 7(z,7(y,z)). In such a situation
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we say that associative algebras are canonical structures for the Gerstenhaber
bracket. Assume that V' is an associative algebra and set 7(a,b) = ab. One
can verify that the Hochschild coboundary operator dP : MP~' — MP

(d’a)(ar,. .. apt1) = ara(ag, ..., ap41)
P
+ Z(_I)Za(ala ey @i 1, Qi 1y 5 Gpy)
i=1
+ (—1)p+1a(a1, s 7a‘p)ap+17
can be written in a very simple form: d = [r,-]9.

1.2. LIE ALGEBRAS. Replace MP, M and [,:]¢ with AP :=
Hom(/\(p+1) V.V) (the space of (p + 1)-linear antysymmetric maps), A :=
®,>_1A?(V) and the Nijenhuis-Richardson bracket [-,-]VE respectively.
Recall that the Nijenhuis-Richardson bracket is defined by a formula similar
to (1) but with oy g instead of o, where

(3) apoNRﬁq (Ula s a”p-l—q—l—l) = Z(_l)(J’I)a(/B(UjU ‘e ﬂvjq+1)ﬂvi1a ce 7vip)a
J

the sum over all (g + 1)-shuffles J = {j; < ... < jg1} C{l,...,p+q+1}.
Here (—1)¢D) stands for the sign of the permutation (j,... g1 01y s lp)
of TUJ =1{1,...,p+q+1}, where I = {i; < ... <i,}. Then, for m € Al
one has: [, n]V® = 0 if and only if 7 satisfies the Jacobi identity

71—(71—(‘/an)7z) = 7r(m,7r(y,z)) - 7r(y,7r(m,z)).

The Chevalley-Eilenberg coboundary operator dP : AP~ — AP,

(dpa)(xla s aprrl) = Z(_l)]+1 a([xjax’i]amla s 7'f\ja s 7£\ia s 7$p+1)
7<i
p+1 ‘
+ Z(_l)J—i—l [‘,Ej’a(mla s 7‘f\ja s 7$p+1)]a
j=1

where 7(z,y) = [z,y] and the hats stand for omissions, has the same simple
form [r,-]V®. We say that Lie algebras are canonical structures for the
Nijenhuis-Richardson bracket.

Above examples can be generalized (see [1]) to the case of P-algebras,
where P is an arbitrary quadratic operad. In particular, it is the case of
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Leibniz algebras, which is a generalization of Lie algebra in which the bracket
needs no longer to be antisymmetric.

In this paper we will prove that also n-Lie algebras (a generalization
of Lie algebra in which the binary bracket is replaced with an n-linear

antisymmetric bracket [-, ..., -] satisfying an analog of Jacobi identity), and n-
Leibniz algebras (a non-antisymmetric version of n-Lie algebra) are canonical
structures for some brackets [-,-]* and [-,-]"*.

This setting allows us to define the corresponding cohomology operators as
brackets with the cannonical structure and to introduce a graded Lie algebra
structure on the cohomology spaces.

2. DEFINITIONS AND EXAMPLES

Here we formulate precise definitions of objects of our interest and give
some basic examples.

DEFINITION. Leibniz algebra (see [10, 11]) is a vector space g together
with a bilinear map {-,-} : g x g — g satisfying the following version of Jacobi
identity:

(4) {z. v} 2} = {2, 4y, 21} —{v, {=, 2}}.

Note that the identity (4) says exactly that every operator {z,-} : g — g is
a derivation of (g, {-,-}). This notion was introduced by J-L. Loday who called
them Leibniz algebras. Leibniz algebras are drawing now more attention,
especially in noncommutative geometry.

DEFINITION. n-Leibniz algebra is a vector space A with an n-linear map
[..., ]t Ax ... x A— A satisfying so called fundamental identity:

[al,. .. ,an_l,[bl, N ,bn]]

5 n
( ) :Z[bl,...,bi,l,[al,...,an,l,bi],bprl,...,bn].
=1

DEFINITION. n-Lie algebra is a vector space A with an n-linear
antisymmetric bracket [-, ..., ] satisfying (5).

This notion was first introduced by Fillipov [3]. It also appears in the
formulation of generalized Hamiltonian mechanics (see [12, 13]).
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EXAMPLE 1. ([3]) Let V be an (n + 1)-dimensional oriented Euclidian
space. Then V with the bracket given by the vector product

[V, .., 0p] i= V1 X ... X Uy
is an n-Lie algebra.

ExXAMPLE 2. ([3]) Let A be an associative commutative algebra and D,
..., Dy, € Der (A) be commuting derivations of A . Define the Jacobian map
Jac, : A" A — A,

Jacp(ar,...,an) = det(D;(a;))ij=1,..n
Then (A, Jac ) is an n-Lie algebra.

EXAMPLE 3. ([5]) Let A be an n-Leibniz algebra and set g := A®(™=1),
On the space g define a bracket {-,-} by

{11®...0Tn-1,11 ® ... @ Yp—1}
(6) n—1
= Zyl R..U-1®[T1, Tn—1,Y] OUYi+1 Q... @ Yp_1.
i=1

Then (g,{-,-}) is a Leibniz algebra.

ExAMPLE 4. ([7, 8]) Let M be a smooth manifold and {-,...,-}
N\ C>® (M) — C°°(M) be a skew-symmetric n-bracket defined on the algebra
of smooth functions on M which satisfies the fundamental identity and also
the following Leibniz rule

{f1f27927"'7gn} = fl{f27927"'7gn}+f2{f1a92a---7g’n}-

Then the pair (M,{-,...,-}) is called Nambu-Poisson manifold. Thanks to
Leibniz rule, every such a bracket is given by an n-vector field 7 on M so that

{W’dfl/\/\dfn}: {fla"'afn}'

It is shown in [7] that if n > 3 then n-Poisson manifolds give rise to a Leibniz
bracket [[-,-]] on the space of (n—1)-forms on M so that the following formula
holds

[[dfl Ao Ndfp_1,dgr AL A dgn—l]]

n—1
= ngl Ao oNdgioa Nd{fr,. . fuc1,9if ANdgiga Ao ANdgn_.
i=1
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DEFINITION. ([4]) An algebra (A,[-,]) is a Z-graded Lie algebra if

1. It is a graded algebra, i.e. is a direct sum of vector subspaces, A =
@D, cz Ap, such that [Ay, Ag] C Apiy.

2. The bracket [-,-] in A is graded skew-symmetric, i.e.

[xay] = - (_1)pq [yax]a
forz € Ay, y € Ay, and

3. satisfies the so called the graded Jacobi identity:

(7) [z, 9], 2] = [z, [y, 2]] = (=1)"[y, [z, 2]].
forz € A,, y € A, and z € A,.

It is easy to check that if # € Ay is such that [x,7] = 0 then the map
87 2 Ay = Api1, 0z(x) = [, 2] is a coboundary map, i.e. 65 062 = 0. In
fact, from (7) we have

0= [[W,W],Z] = [71’, [71’,2]] - (—1)[71’, [71’,2]] = 207 (0x(2)).
It is known and easy to prove the following

THEOREM 1. Let A = GBPGZ Ap be a graded Lie algebra, m be an element
of Ay such that [r,n] = 0, 6» = 6% be a homomorphism [r,-] : A, = Apiq
and § : A — A be such that 6|4, = 0%. Set H?(A) = ker ¢” /im 6P~1. Then

L. 6[zP,y?] = [0z, y?] + (=1)P[z, 6y7].
2. The bracket on A factors to the map

[]: HP(A) x HI(A) — HP+(A).

Remark. The element 7 € A; satisfying the assumptions of the above
theorem will be called a canonical structure for the graded Lie algebra A.

Remark. Notice that the natural gradation by dimension in the spaces of
cochains of associative algebras, Lie algebras and also, as we will see, Leibniz
and n-Leibniz algebras is shifted by 1 with the comparison to the natural
gradation by degree of the associated graded Lie algebras.
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3. CANONICAL STRUCTURES

Here we build up some brackets and show that Leibniz algebras as well as
n-Leibniz algebras are canonical structures for these brackets.

3.1. LEIBNIZ ALGEBRAS. We are going to construct a bracket [-,-]” on a
space of multilinear maps for which Leibniz algebras are canonical structures.
It will come out that [-,-]” is an extension of Nijenhuis-Richardson bracket.

Let V, MP, M be as in Introduction. For o? € MP, g9 € M9, where
p,q >0, set of oy, f9 € MPTY,

of or, B4 (v1, ...y Vptgt1)

= Z(_l)(JJ)(_]')kap(U’iu cee 7vika5q(vj17 cee 7vjq+1)a Vigyrs--- ,’Uip),
where the sum is over all shuffles I = {i; < ... <y} C {1,...,p+q+1} = N.
Here j’s and k are defined by: {ji1 < ... <jg+1} = N\ 1, ig41 = jg+1 + 1 or,
in case jg4+1 =p+q+1, k:=pand (=1)D is the sign of the permutation
(J, 1) = (J1y- -+ Jge1s015---5%p) of N. If @™t € M~' =V and q > 0 then set
a oy f7:=0 and

B9op ot (V1,...,0q) == ﬁq(ofl,vl, ey Ug).
Now we turn M (V) into a graded Lie algebra by setting
(9) [ap’ﬁq]L = (=1)PaP of, B9 — B os, oP.

THEOREM 2. The algebra (M(V),[-,-]") is a graded Lie algebra. The
restriction of [-,-]" to the space of antisymmetric maps A(V) is the Nijenhuis-
Richardson bracket, i.e.

(10) [, B = [, BV FE

for a, € A(V) € M(V). Moreover, the equation [r,n]* =0 for 1 € M'(V)
reads as the Jacobi identity (4) for the bracket {z,y} = 7 (z,y).

Remark. After we had written this article we found that this theorem was
first proved in [1], Thm. 3.2.6. Nevertheless, we attach our original proof for
completeness of this article.
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Proof. According to (9) and (8) we have [r,7]* = =27 oy 7 and

mop ™ (71,22, 73) = w(7w(21,72),73) — (71, T(T2,73)) + 7(72, (1, 73)),

what proves the last assertion. The equality (10) is obvious. Now we are going
to prove the graded Jacobi identity for the bracket [-,-]*. We will show how to
shift (in an unique way) “antisymmetric expressions” to non-antisymmetric
ones and will argue that the graded Jacobi identity is satisfied for |-, -]*
it is so for [+, -]V E.

since

Figure 1.

We begin with introducing a rather formal language in which we treat
expressions we deal with as elements of a vector space. Consider a tree in
which leaves are labelled by positive integers and each interior node has a
label which is the name of a k-linear map V x ... x V. — V, where k is the
number of its children (see Figure 1). Every such a tree determines and
is determined by a simple expression. For example the tree on Figure 1
determines the simple expression «a(vy(z2,z3), 5(x1),z4), where 1,29, 23,24
are its free variables. All formulas in the definitions of the brackets [-,-]*
or [-,-]N® are linear combinations of such simple expressions. We call them
expressions. A simple expression is called homogeneous if its associated tree
has leaves labelled injectively. We say that an expression is homogeneous if it
is a linear combination of homogeneous simple expressions with the same set
of free variables.

Let ¢ be a label function from the set of leaves of T' to N, where T is a
tree of above form. Define the weight h(w) € N of a node w inductively by

h(w) := ¢p(w), if wis a leaf,
h(w) := h(w,), otherwise, where w, is the right most child of w.
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In brief, h(w) is a label of the right most leaf in a subtree rooted at w. We
distinguish the set of trees of above form satisfying the following:

3.2. WEIGHT RULE (WR): For every node v, if wy, ..., w, are all
children of a node v then h(wy) < ... < h(wy).

Remark. The Weight Rule makes sense also in the case when N is replaced
by any ordered set as a set of possible labels of a considered tree.

We say that a homogeneous expression satisfies the Weight Rule if it is a
linear combination of simple expressions associated with a tree satisfying WR.
For example, a(x1, B(z2,3)), unlike a(B(x2,x3), 1), satisfies WR.

Two homogeneous simple expressions are said to be similar if its associated
trees are the same up to branch reordering. For example, a(z1, f(z3,x2), x4)
is similar to a(z4, 1, 8(x2,23)). It is clear that:

3.3. UNIQUE SHIFT: Every simple homogeneous expression is similar to
an unique one satisfying WR.

We begin reordering from the bottom of the associated tree and move up
to the root. In a similar way we can reorder a homogeneous expression,
remembering of changing the sign when necessary as if all occurring
maps in the expression were antisymmetric. For example the expression
a(y(Xa, X3), 8(X1), X4) turns to —a(B(X1),v(X2, X3), X4), which satisfies
WR. In fact the “unique shift” is a linear map from the space spanned freely
by all simple expressions to one spanned by simple expressions satisfying WR.

Now we are going to finish the proof. As we have already mentioned,
[-,-]VE satisfies the graded Lie identity and the proof of this assertion can
be made by direct computation. This means that the Jacobi identity for the
bracket [+, -]V, i.e.

([fo?, BINE ATIVE — [aP, [, 4 ]V

+ (=DPBY [ TN (@1, g ),
is in the kernel of the “unique shift” map.
Note that o” of, 8% (z1,...,Tp1q+1), and hence [o®, B9)E(z1,. .., Tpigi1),

are homogeneous expressions which satisfy WR. Hence the Jacobi identity for
the bracket [-,-]V% shifts, by the “unique shift”, to the same identity but for
[-,-]¥. This means that the latter is zero and so the Jacobi identity for [-,]*
is satisfied. |
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Let (g,{-,-}) be a Leibniz algebra and set w(z,y) = {z,y}. Hence
n € M'(g), [r,7]* = 0 and the coboundary operator §, = [r,-]* from
Theorem 1 is defined. Actually, 271 . MP=' 5 MP coincides with the
coboundary operator dP in the cohomology complex built for Leibniz algebras
(see [2]), in which the space of p-cochains is CLP(g,g) := MP~!(g) and the
formula for dP is as follows:

p ptl
(dpa)(ml,...,$p+1 Z Z :El,...,.’;3\1‘,...,:Ejfl,{xi,mj},...,merl)
1= 1j i+1
+ Z H—l{x,“ xla "a:i\’h""prrl)}
+ (—1)erl {am1,. . mp), Tpir } -

3.4. n-LEIBNIZ ALGEBRAS. First recall the definition of the cohomology
complex for n-Leibniz algebra (see [5, 13]).

Let A be an n-Leibniz algebra. Let g := A®(~1 be the Leibniz algebra
with the bracket {-,-} defined in Example 3. The p-cochain of A (p > 1) with
coefficients in A is a linear map from g®? @A to A. Set also TLO(A, A) := g
for the space of 0-cochains. The space of p-cochains is denoted by I'LP(A, A).
The coboundary map is given by

d’ :TLP(A, A) - TLPTH(A, A),
(do(xl ®...® x’nfl))(x) = _[xla e 7$n71a$]7

(deé)(Xl, s aXp—hY)

p—2 p—1

= (DX, Xy, X X X X, X1, Y)
= 1] i+1
+ Xla"'aj(\ia"'aXp—la{XiaY})

1

i=
+ (=P X1, .o Xp—15 [Y15- -+, Yn])
p—1

+ 3 (DX a(X L XL X))
i=1

1)P+1 Z[yl’ .. ,yi,l,a(Xl, e ,prl,yj),. .. ,yn],

(11)
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where X; e gfori=1,...,p—1,Y =41 ®...Qy, € A®" and for X € g of the
n
form X = 21®...Qx,—1 weset {X, Y} := > [y1,.. -, [T1,- o, Tn1,Yils -+, Yn)-

i=1

It turns out that the space of cochains for an n-Leibniz algebra can
be embedded into the space of cochains for its associated Leibniz algebra
g. At the same time the coboundary map is preserved. In detail, let

A :Hom (A, A) — Hom (g, g) be given by (see [2, 5])
n—1

(12)  Af)H @ Oya1) =D 11®... Oy 1©f(Y) ... Oyn_1 -
i=1

Then A induces a map A : TLP(A, A) — CLP(g,g) = MP !(g) given by

(M) (X'®...® XP)

(13) = p p 1 -1 p p
=Y e euX'®..eX' 'el)e.. .0,
=1

where a € PLP(A, A) and XP =27 ® ... ® 2P | € g. For p =0 it is assumed
that A(X) = X for X € TL°(A,A) = g. The embedding theorem can be
stated in the following form

THEOREM 3. ([2]) The following diagram is commuting

CI?(g,5) —2— CLP*(g,q)

[ [o

TLP(A, A) —2 TLP+(A, A)

COROLLARY 1. The map (11) induce a coboundary operator, i.e. dP o
dr=t =0.

Now we are going to introduce the structure of a graded Lie algebra on
the space of cochains I'L*(A, A). We only assume A to be a vector space.
Set g := A®("D [P = [P(A) := TLP* (A, A) and L := @, | L”. Let
a € LP, B €LY pq>0. For each subset J = {j; < ... < jg41} C N =
{1,...,ptg+1}set [ ={i1 <...<ip} =N\J. Let X' =2{®...Qz!,_, €g
fori=1,....,p+qgandletz € A. Set T := X' ®...@ XPti@s e g®Ptd g A.
Define Z9°(T) € LP*9(A) in the following way:
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1. If jo41 <p+q+1 (it implies that i, = p+ ¢ + 1) then set
n . .
Z30 =(-F Y a(X" @ ... @ X"®
s=1
(14) Ja+1 Ja+1 j j Ja+1
TR XN ®... @ X1 Q")

S

®H @... @it @ X @... @ X1 @),

where k is chosen in the unique way in which Zf;’ﬁ satisfies the Weight Rule,
where the order of the free variables in the above formula is the following:
ri<ad <. <zl <2? <. <2! | <z Hence i < j,41 and in case
k+1<pwehave k+1 <p.

2. If jg41 = p+q+ 1 then set

(15) Zi=(-1)a(X"®..0 X" (X" ®...0 X' @1)).
Define

(16) aon B(T) =Y (-1)"D z§7(T)
J

where the sum is over all (¢ + 1)-shuffles J C N.
The bilinear bracket [-,-]*" : LP(A) x L9(A) — LP*9(A) is defined by

(17) [aa B]RL = (_1)pqa OnL /6 - B OnL &.

Note that the expressions which define the bracket [-,-]"! satisfies WR. The
fundamental role in the proof of the graded Jacobi identity for [-,-]" plays
the following:

LEMMA 1. Let MP,LP A, g,/\ be as usual. Then the following diagram
commutes

MP(g) @ Ma(g) 155 mrrag)

awal [a

[-,]mL

IP(A) @ LI(4) —25 Lp+a(4A)

Proof. Let a € LP(A), € LY(A). Compare (AZ3P)(X!,..., XPHat])
occurring as a summand in (A o [a, B]") (XY, ..., XPTITY) with

(Aa)(XP, ..., X (AR (X, ... XTotr) X+ X')
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which occurs when expanding (Aa) or, (Af) (see (8), (13)), where J = {j; <

. < Jgt1} is fixed. Start with the case jo41 < p+ g+ 1. It is ease
to see that they are identical. Note also that the sign they follow is the
same (equal to (—1)%(—1)¢D). Next turn to the case jgi1 = p+q+1 =
m. The difference between (Aca)(X™,..., X% (AB)(X7,..., X%+1)) and
(AZSYPY (XY, ..., XPHat1) s easily seen to be

+ Zw?@---@fvzn_l@
U,V
(18) e .
a(X", X2, XP o )@ ® ... 00, 1 ®
BXT, .. XV g™ ... @z™

where the sign =+ is equal

(_l)psgn(jlﬂ"'ﬂjqamaila"'aip) :Sgn(jla"'ajqaila"'ﬂip)'

Hence (Aa) of, (AB) # Ao (o, B). The difference between A o (a 0,1, )
and (Aa) or, (Ap) is just the sum of expressions (18) over all g-shuffles
{71,---,4q} CA{1,...,p+q}. By symmetry, the difference between Ao(fBoyr )
and (AB) or, (A«) is the same but now the sign is sgn (i1,...,0p, J1,...,J¢) =
(—=1)P9sgn (j1,...,J¢,%1,--.,49p). This agree with the signs in the definition
(17) and ends the proof. 1

LEMMA 2. The equation [, 7]"!" for € L'(A) = Hom (A®", A) reads as
the fundamental identity (5) for the bracket [z1,...,zp] = 7(z1,...,2y) .

Proof. We have [r, 7] = 270, 7. Let T=X'@ X?Qz€g@g® A,
X=r'®...0z, ; €gfori=12 According to the definitions (14) and
(15), for Z = Z™™, we have

n

Z{l,?}(T) = Z’”(m% e 7m§—1a 7T(X1,.’L‘§),.’L‘§+1, e ,.’L‘%_l,ib),
s=1

Z{1,3}(T) = _W(X2a 7T(X1,{L‘)) = —W(ZB%, s 7:132 13 W(:E%a s axlfla Z))a
Z{2,3}(T) = _W(XlaW(X27$))'
Moreover,
monL ™= Z{12) — 413} T Z{2,3}

so o, ™ = 0 reads as the fundamental identity for the bracket 7. 1
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The direct implication of Theorem 1 and Lemmas 1 and 2 is the following

COROLLARY 2. n-Leibniz algebras are canonical structures for the bracket
[-,-]"*. Moreover, [-,-]** turns the cohomology space HI'L*(A, A) for an n-
Leibniz algebra A into a graded Lie algebra.

The above lemmas and the corollary adapt easily to the case of n-Lie
algebras, where we, like in the classical Chevalley-Eilenberg complex for Lie
algebras, impose some antisymmetric condition for cochains. In detail, let A
be an n-Lie algebra and set g := /\"71 A for its associated Leibniz algebra

with the bracket given by an analog of formula (6). We set the cohomology
complex (I'’P(A, A),dP) as follows:

I?(A,A) := Hom (g°?2 @ /n\A, A) for p > 2,
I''(A, A) := Hom (A4, A) and T°(4, A) /\ A.
Of course, I'P(A, A) C 'LP(A, A). Moreover, the following is true
LEMMA 3. [T*(4, A),T*(A, A" CT*(A, A).

Proof. Let a € TP*1(A, A) and 8 € T4t (A, A). Then Z9?(T), where T =
X1® .@XPT®z, in the formulas (14) and (15) is antisymmetric with respect

toxt,...,xt | foreachi=1,...,p+q—1. Moreover, ao, 1,3 (X!,..., XP*4 1)
is also antisymmetric with respect to m{’*’%...,mﬁt’{,m, although Z?’ﬁ(T)

alone is not. [

The last lemma implies that the space I'*(A, A) is a graded Lie subalgebra
of graded Lie algebra I'L*(A, A). Hence n-Lie algebras are canonical structures
for the bracket being the restriction of [, ]"* to T*(A4, A).
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