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1. INTRODUCTION

It is known that the fibres of an almost contact metric submersion of type
I (in the sense of Watson [W]) are almost Hermitian manifolds. On such
manifolds, K;-curvature identities, ¢ = 1,2, 3, have been studied by A. Gray
in [G].

In [W-V1], Watson and Vanhecke have interrelated the K;-curvatures the-
ory with that of almost Hermitian submersions. Let a be a real number, since
Janssens and Vanhecke [J-V] have defined the C'(a)-curvature tensors on al-
most contact metric manifolds, it seems interesting to examine the analogues
interrelations in the field of almost contact metric submersions. That is, in
this paper, the main purpose is the following problem:

Let f : M — B be an almost contact metric submersion of type 1. Suppose
the total space satistying a C(«)-curvature property, what is the corresponding
curvature property on the base space and what kind of K;-identity do have
the fibres?

This paper is organized in the following way. In §2, we recall some basic
facts on almost contact metric manifolds and Riemannian submersions.

In order to obtain the desired interrelations, the ¢-linearity of the con-
figuration tensors 7" and A is an important tool. Then, in §3, we determine
the defining relations of some almost contact metric structures for which the
¢-linearity of T' and A can be obtained.

Key words: almost contact metric submersions, almost contact metric manifolds,
curvature tensors.
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In §4, among the main results, we settle the defining relations of all classes
of almost contact metric structures that satisfy the cosymplectic curvature
property. Then, we show that for such classes, the cosymplectic curvature
property on the total space, which resembles to the Kohler identity as observed
in [J-V], transfers to the base space while the fibres have, as corresponding,
the Kohler identity for a type I submersion. Theorems 4.4 and 4.7 show that
the Kenmotsu and Sasakian curvature properties are related to the Ko and
K3-curvature identities under supplementaries conditions on the configuration
tensors T and A.

We follow the terminology of O’Neill [O’N] as follows. Arbitrary vector
fields of x (M), the Lie algebra of smooth vector fields, will be denoted by D,
E and G. Vector fields of the horizontal distribution H (M), of the tangent
bundle of M will be denoted by X, Y and Z while those of the vertical
distribution V(M) will be U, V and W.

I am grateful to the referee for his judicious comments.

2. PRELIMINARIES

Let M be a differentiable manifold of odd real dimension 2m + 1. An
almost contact structure on M is a triple (¢,&,n) where:

(1) ¢ is a distinguished vector field,
(2) nis a 1-form such that n(¢) = 1, and
(3) ¢ is a tensor field of type (1, 1) satisfying

#*D = —D +n(D)¢ for all D € x(M).

If M is equipped with a Riemannian metric g such that

9(¢D, ¢E) = g(D, E) — n(D)n(E),

then (g, ¢, &, n) is called an almost contact metric structure. So, the quintuple
(M?m+1 g, $,&,n) is an almost contact metric manifold. Any almost contact
metric manifold admits a fundamental 2-form, ®, defined by

(D, E) =g(D,¢E).
The differential dn of 7 is obtained by

2dn(D, E) = Dn(E) — En(D) — n([D, E]) .
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We denote by V the Riemannian connection of M and recall the defining
relations of almost contact metric structures which will be used in this paper.
An almost contact metric manifold is said to be:

1
2
3
4
b}
6

cosymplectic if V¢ =0;

nearly cosymplectic if (Vpp)D =0;

closely cosymplectic if (Vp¢)D =0 =dn;

nearly Kenmotsu if (Vp¢)D +n(D)¢D =0 = dn;
Kenmotsu if (Vpp)E = g(¢D, E)é —n(E)¢D;

(
(
(
(
(
(6) Sasakian if (Vp¢)E = g(D,E){ —n(E)D .

)
)
)
)
)
)

Looking through the first five structures, it appears that they have in
common the following relation

(VDP)E = - {g(¢D, E)¢ — n(E)pD},

where «, is a real number. Indeed, taking a = 0, we get one of the defining
relations of cosymplectic, nearly cosymplectic and closely cosymplectic struc-
tures. If @ = 1, we obtain one of the defining relations of a Kenmotsu or a
nearly Kenmotsu structure. If « is neither 1 nor zero, then the above equation
defines an a-Kenmotsu structure as defined in [J-V].

The differential geometry of almost contact metric manifolds is developped
in Blair’s monograph [Bl1] and its recent expansion [B12]. For the basic prop-
erties of Riemannian submersions, we refer the reader to the foundational
paper of B. O’Neill [O’N]. These primarly concern the orthogonal decomposi-
tion T(M) = V(M) & H(M) of the local vector fields of the total space into
vertical and horizontal vector fields.

An almost contact metric submersion is a Riemannian submersion whose
total space is an almost contact metric manifold. Regarding the structure of
the base space, B. Watson has studied in [W] two types of such submersions.

DEFINITION 2.1. Let (M2™+1, ¢.¢.n,g) and (M"?™ 1 ¢/, ¢'. 1, ¢') be al-
most contact metric manifolds. A Riemannian submersion

£ M2m+l M;2m’+1

that satisfies
f+oE = ¢’f*E and fx§ = f’a

is called an almost contact metric submersion of type 1 (see [W]).



294 T. TSHIKUNA-MATAMBA

When the base space is an almost Hermitian manifold (B’ Qm/,g’ ,J’), then
the Riemannian submersion f : M2™+! — B'>™ ig called an almost contact
metric submersion of type 11 if f,¢pE = J' f,E, where 2m/ is the real dimension
of the differentiable manifold B’ (see [W]). Hereafter, we will use a prime / to
designate objects and tensors on the base space. If a result does not depend
upon the type of submersions, we will not specify the dimension of the base
space; this is the case with Propositions 3.1 and 3.3.

Now, we recall some of the fundamental properties of such types of sub-
mersions (see [T-M1] or [W] for the proof):

PROPOSITION 2.1. Let f: M?™+l — M+ be an almost contact met-
ric submersion of type 1. We have

(a) f*n' =n;

(b) if U € V(M), then ¢U € V(M) ;
(c) if X € H(M), then ¢$X € H(M);
(d) £ € H(M);

(e) if U e V(M), then n(U)=0.

Proof. See [T-M1] or [W]. 1

PROPOSITION 2.2. Let f : M?™+! 5 B®™ be an almost contact metric
submersion of type 11. We have
(a) if U € V(M), then ¢U € V(M) ;
(b) if X € H(M), then ¢X € H(M);
(c) & € ker f.;
(d) if X € H(M), then n(X)=0.

Proof. See again [T-M1] or [W]. 1

By a basic vector field, one understands a horizontal vector field X which
is f-related to a vector fields X, of the base space. There is a one-to-one
correspondence between basic vector fields and vector fields of the base space.
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3. PROPERTIES OF THE CONFIGURATION TENSORS

The O’Neill configuration tensors 7" and A on the total space of a Rieman-
nian submersion are defined in [O’N] by setting

TpE =HVypVE +VVypHE,
ApE =VVypHE + HVypVE.
Here, H and V are respectively horizontal and vertical projections of the fibre

bundle, T'(M), of the total space on horizontal and vertical distributions.
We recall the fundamental properties of these tensors:

TyV =Ty U ; (3.1)
T =Tyg; (3.2)
TyE =0; (3.3)
9J(TvE,G) = —g(E, Ty G); (3.4)
HVyV =TyV; (3.5)
AxY = —AyX; (3.6)
Ap = Ayg; (3.7
AvE =0; (3.8)
9(AxE,G) = —g(E, AxG). (3.9)
If X is basic, then
HVyX = AxU and [U, X] is vertical. (3.10)

It is known that 7" is used in the geometry of the fibres and A is the integra-
bility tensor of the horizontal distribution.

Following Watson and Vanhecke [W-V2], the ¢-linearity and the ¢-sym-
metry of a smooth tensor field L of type (1,2) on an almost contact metric
manifold can be defined by:

(a) L is ¢-linear in the first variable if LypE = ¢LpE;
(b) L is ¢-linear in the second variable if Lp¢FE = ¢LpE;
(c) L is ¢-symmetric if LypE = LpoE.
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Since T and A are smooth tensors fields of type (1,2), we can examine
their ¢-linearity properties.

PROPOSITION 3.1. Let f : M?™*t! — B be an almost contact metric
submersion of type 1 or type II. If the configuration tensor T' (resp. A) is
¢-linear in one of the variables on the vertical (resp. horizontal) distribution,
then it is ¢-linear in the other.

Proof. Suppose that TV = ¢TyV'; we have to show that Ty ¢V = ¢TyV.
Indeed, since U and V are vertical, it is known that ¢U and ¢V are also vertical
by virtue of Proposition 2.1 (b). On the other hand, T is symmetric on the
vertical distribution according to (3.1). Thus,

TypV = TyyU = ¢TyU = TV .

In the analogous manner, we can show that if Ty¢V = ¢TyV, then TyyV
= ¢TyV.

Consider the configuration tensor A. Since X and Y are horizontal vector
fields, then ¢ X and ¢Y are also horizontal vector fields by virtue of Proposition
2.1 (c); the fact that A is skew-symmetric on horizontal vector fields, according
to (3.6), gives rise to

ApxY = —AypX = —¢pAy X = —¢(—AxY) = pAxY .
|

The above proposition is a way to see that, on a given distribution, the
¢-linearity implies the ¢-symmetry of these tensors.

PROPOSITION 3.2. Let f : M2™+1 — M'?™*1 be an almost contact met-
ric submersion of type 1. Suppose the total space satisfying the condition

(Vpo)E = a-{g(¢D, E)¢ —n(E)$D},
then:
(a) TugpX = ¢TIy X — a-n(X)pU ;
(b) TygpV = ¢TyV +a - g(pU, V) ;
(c) AxoU = ¢pAxU ;
(d) Ax9Y = ¢AxY;
(e) Agf =0.
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Proof. (a) On the total space, the condition under consideration becomes

(Vud)X = a-{g(¢U, X)§ — n(X)oU} .

Since ¢U is vertical and X is horizontal, then g(¢U, X) = 0 and this implies
that (Vy¢)X = —a - n(X)¢pU. The vertical part of this last equation gives

(a).
The vanishing of 1 on the vertical vector fields, as shown in Proposition
2.1 (e), leads to

(Vup)V = a-g(¢U,V)E,

which gives the proof of (b) by taking its horizontal projection.
Concerning assertion (c), the condition on the total space becomes

(Vx)U = a{g(¢X,U)§ —n(U)pX}.

Since, by Proposition 2.1 (e), n(U) = 0, the condition reduces to (Vx¢)U = 0.
Taking the horizontal projection of this equation, we obtain the proof of (c).
To establish (d), we have (Vx@)Y = a- {g(¢X,Y){ —n(Y)pX}. The
vertical projection of this relation gives V(Vx¢)Y = 0 because ¢X and ¢ are
horizontal. Therefore, Ax¢Y = ¢pAxY.
(e) Since ¢p¢ =0, we have ¢pA£ = 0 from which A& = 0 follows. 1

PROPOSITION 3.3. Let f: M?>™*! — B be an almost contact metric sub-
mersion of type 1 or type 11. Suppose the total space satisfying the condition

(Vqu)E = Oa
then:

(a) TygV = ¢TyV ;
(b) Tyé =0;

(c) Ax¢Y = ¢pAxY ;
(d) Ax(=0.

Proof. (a) The condition under consideration on the total space gives
VU¢V - ¢VUV =0,

from which we deduce Tyy¢pV = ¢TyV by using the horizontal projection.
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(b) In the analogous manner, since ¢& = 0, we have ¢V € = 0 from which
the horizontal projection gives Tyy¢ = 0.

Asin (a), Vx¢Y — ¢V xY = 0. Thus, using the vertical projection of this
equation, we get Ax¢Y = ¢AxY which is the proof of (c).

The last assertion is trivial since Vx¢& =0. |1

PROPOSITION 3.4. Suppose that the total space of an almost contact met-
ric submersion of type 11 satisfies the condition

(Vp@)E = a-{g(¢D, E)¢ —n(E)¢D},
then:
(a) TygV = ¢TyV ;
(b) Ax¢Y = pAxY +a-g(¢pX,Y)E.

Proof. (a) On vertical vector fields, the condition on the total space is

(Vud)V =a-{g(¢U, V)¢ —n(V)$U};

since, according to Proposition 2.2 (a) and (c), respectively, ¢U and & are
vertical, H(¢U) = 0 = H (&) which imply that H(Vy¢)V = 0. Therefore
TydV = ¢Ty V.

(b) It is clear that (Vx¢)Y = a - g(¢X,Y )€ because n(Y) = 0. Thus,
V(Vxd)Y = V(a - g(¢X,Y))V(€) which implies that Ax¢Y = pAxY+
Q- g(¢X7 Y)f |

PROPOSITION 3.5. Let f : M?™+! — B'®™ be an almost contact metric
submersion of type 11. Suppose the condition

(Vo) E =a-{g(D, E){ —n(E)D}
fulfilled on the total space, then:

(a) TygV = ¢TyV ;
(b) Ax¢Y = pAxY +a-g(X,Y)E.

Proof. (a) Using vertical vector fields U and V, the condition becomes

(Vup)V =a-{g(U,V){—n(V)U}.
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Since ¢ and U are vertical we have H(£) = H(U) = 0 so that H(Vyp)V =0
which yields Ty ¢V = Ty V.
(b) Since n(Y) = 0, the condition becomes

(Vx@)Y =a-g(X,Y)E,
from which the vertical projection gives rise to

AxgY = pAXY +a - g(X,Y)E.

4. RIEMANNIAN CURVATURE PROPERTIES

Recall that the Riemannian curvature tensor R of a Kohler manifold sat-
isfies the Kj-identity (the Kohler identity) defined by

R(D,E,F,G) = R(D,E, JF,JG).

Others Kj-identities (i = 1,2,3) have been studied by A. Gray in [G], but
their interrelations with the theory of Riemannian submersions can be found
in [W-V1] and [W-V2].

Let (M?™, g, J) be an almost Hermitian manifold. The K;-curvature prop-
erties are defined in the following way:

(1) Ki: if R(D,E,F,G)=R(D,E,JF,JG);

(2) K,: if R(D,E,F.G)=R(JD,E,JF,G) + R(JD,JE,F,G)
+ R(JD,E,F,JG);

(3) Ks: if R(D,E,F,G)=R(JD,JE,JF,JG).

In their study of curvature tensors of almost contact metric manifolds,
D. Janssens and L. Vanhecke [J-V], have obtained the following properties of
the Riemannian curvature tensor:

(a) the cosymplectic curvature property, defined by
R(D,E,F,G) = R(D,E, ¢F, ¢G) ;
(b) the Kenmotsu curvature property, defined by
R(D,E,F,G) = R(D,E,¢F,$G) + g(D, F)g(E,G) — g(D,G)g(E, F)
—9(D,pF)g(E, $G) + g(D, ¢G)g(E, ¢F) ;
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(c) the Sasakian curvature property, defined by

R(D,E,F,G) = R(D,E,¢F,$G) —g(D, F)g(E,G) + g(D,G)g(E, F)
+g(D7¢F)g(Ea ¢G) _g(DaéG)g(Ea ¢F) :

The curvature tensors of an almost contact metric manifold are called
C(a)-curvature tensors where « is a real number. For instance, the cosym-
plectic curvature tensor is a C'(0)-curvature tensor, the Kenmotsu curvature
tensor is a C(—1)-curvature tensor and the Sasakian curvature tensor is a
C(1)-curvature tensor. For more details, we refer the reader to [J-V]. It is
clear that the cosymplectic curvature tensor resembles to the Kohler identity.

Now, we want to determine the classes of almost contact metric manifolds
which satisfy the cosymplectic curvature property.

THEOREM 4.1. Let (M?*™*! g, $,&,m) be an almost contact metric mani-
fold. If M satisfies the condition

(Vp)E =0,
then it has the cosymplectic curvature property.
Proof. For an almost contact metric manifold, the Ricci identity is given by
R(D, E)$ — $R(D, E) = [V, Vil ¢ = Vip.p)6> (4.1)

The condition on M being equivalent to V¢ = 0, the right hand side of (4.1)
vanishes. We get R(D, E)¢F — ¢R(D, E)F = 0 which gives

9(R(D, E)¢F, ¢G) = g(¢R(D, E)F, $G) = —g(R(D, E)F, ¢’ G)
from which we get
9(R(D, BE)$F, ¢G) = —g(R(D, E)F, -G) — g(R(D, E)F,n(G)¢) . (4.2)
It remains to show that g(R(D, E)F,n(G)¢) = 0. Indeed,
9(R(D, E)F,n(G)¢) = g(R(D, E)F,&)n(G);
but

9(R(D, E)F,§) = R(D, E, F,{) = —R(D, E, ¢, F) = —g(R(D, E)¢, F) .
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Since, in such a situation, Vpé = 0, we get R(D,E)¢ = 0 from which we
deduce g(R(D, E)F, &) = 0 so that (4.2) becomes

9(R(D, E)¢F, $G) = g(R(D, E)F,G);
hence R(D, E, ¢F, pG) = R(D, E, F,G) follows immediately. 1

THEOREM 4.2. Let f : M?™+1 M+ be an almost contact metric
submersion of type 1. Suppose that the total space satisfies the condition

(Vqu)E = Oa

then the base space has the cosymplectic curvature property and, on the fibres,
this property corresponds to the Kohler identity.

Proof. We begin by establishing that the structure of the total space trans-
fers to the base space [T-M2]. Let X and Y be basic vector fields, that is,
they are f-related to the vector fields X, and Y, respectively of the base
space. In [C2, Proposition 2.3], it is shown that H(V x¢)Y is basic associated
to (V'x_¢')Y.. Thus, since (Vx¢)Y = 0, we deduce that (V'y ¢')Y; = 0.
Therefore, according to the preceding Theorem 4.1, the base space has the
cosymplectic curvature property.

Now, consider the vector fields U, V, W and S tangent to the fibres. For
a Riemannian submersion, the Gauss equation is given by

R(U,V,W,S) = R(UV,W.S) — g(TuyW, Ty S) + g(Ty W, Ty S) . (4.3)
This equation can be transformed in
R(U.V,¢W. $5) = R(U.V.dW.$S) — g(Tr¢W, Ty ¢5) 4)
+ 9(Ty W, Ty ¢S) -

Since T' is ¢-linear in the second variable, as shown in Proposition 3.3 (a), we
have

9(Tu W, Ty ¢S) = g(¢Tu W, ¢Tv S) = —g(Tu W, $°TvS)
= g(TuW, Ty S) — g(Tu W, n(Ty S)§) ;
but n(Ty S) = g(&,TvS) = —g(S, Tv¢) = 0 because Ty¢ = 0. Therefore,
9(Ty oW, Ty ¢S) = g(Tu W, Ty S) ,
9g(Tv oW, Ty pS) = g(Tv W, Ty S) -
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In such a case, (4.4) leads to
R(U, V. ¢W,$S) = R(U,V, W, $S) = g(TyW. Tv'S) + g(Ty W, Ty S) . (4.5)
Subtracting (4.5) from (4.3) we get
R(U,V,W,S) — R(U,V,¢W, $S) = R(U,V, W, 8) — R(U,V, $W, $S) .

Since R(U,V,W,S) = R(U,V, W, $S), then R(U,V,W,S) = R(U,V, $W, $5)
which shows that the fibres have the Ki-curvature identity. 1

The above theorem can be viewed as a way to establish the following

THEOREM 4.3. Let f : M?™+1 — M'*™*! be an almost contact metric
submersion of type I. Suppose the following conditions satisfied:

(a) the total space satisfies the cosymplectic curvature property ;
(b) the configuration tensor T' is ¢-linear on the vertical distribution;

(¢) Tré = 0 for all vertical vector fields U.

Then the fibres have the Kohler identity.

THEOREM 4.4. Let f : M?>™+! — M'*™*1 bhe an almost contact metric
submersion of type 1 satisfying the following conditions:

(a) the total space satisfies the Kenmotsu curvature property ;
(b) the configuration tensor T is ¢-linear on the vertical distribution;

(¢) Tré = 0 for all vertical vector fields U .

Then the fibres verify the Ko-curvature identity.

Proof. Since T is ¢-linear and Tyé = 0, by calculation we get
9Ty W, Ty ¢S) = g(TuW,TvS) and g(Tyu¢W.TvS) = —g(TuW.TvS).
By virtue of the Kenmotsu curvature property, we have

R(U,V,W,S8) = R(U,V, ¢W. ¢S) + R(¢U, V, oW, S) (4.6)
+ R($U, V. W, $S) . '
So the Gauss equation gives

(1) R(U,V,¢W, $S) = R(U,V,$W, $S) — g(Te W, Tv-S) + g(Ty W, Ty S) ,
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(2) R($U.V,dW,S) = R(¢U,V,¢W,S) + g(TyW,Ty'S) + g(Ty W, Ti:S) ,
(3) R(¢U,V.W,$S) = R($U,V, W, $S) — g(Ty W, Tv'S) — g(Tyy W, Ty; S) .

Therefore, summing 1, 2 and 3, we obtain

R(U,V,¢W, $S) + R(¢U, V. W, S) + R(¢U, V. W, $S) = R(U,V, W, S)
~R(U,V, W, S)+R(U,V, $W, $S)+R(pU, V, oW, S)+R(pU, V., W, $S) ;

with (4.6) in mind, we get
R(U,V,W,S) = R(U,V, W, $S) + R(QU, V, $W, S) + R($U, V, W, $S5) ,
which shows that the fibres verify the Ks-curvature identity. |1

Now we are going to examine the analogous properties in the case of almost
contact metric submersions of type II.

THEOREM 4.5. Let f : M?™+1 — B'®™ be an almost contact metric
submersion of type 11. Suppose the condition

(Vpg)E =0

fulfilled on the total space, then the fibres verify the cosymplectic curvature
property which corresponds to the Ky-curvature identity on the base space.

Proof. By Theorem 4.1, the total space satisfies the cosymplectic curva-
ture property. As in Theorem 4.2, setting D = U and E = V in the given
condition on the total space, we obtain (@Ué)v = 0, hence the fibres verify
the cosymplectic curvature property.

To see that the base space verifies the Kohler identity, let X, Y, Z and P
be basic vector fields. As in Theorem 4.2, the Gauss equation is

R(X7Y7 Za P) = RI(X*7Y;<’Z*’P*) - 29(AXY,AZP,)

(4.7)
+ 9(Ay Z, AxP) + g(Ax Z, Ay P),

which gives

R(X,Y,¢Z,¢P) = R/(X.,Ys, ' Zo, §' P.) — 29(AxY, Apz¢P)

4.8
© o(AydZ, AxdP) + g(AxdZ, Ay bP) . (48)
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Taking account the fact that, in the context of Proposition 3.3, the configu-
ration tensor A is ¢-linear on the horizontal distribution and Ax& = 0, then
(4.8) can be rewritten in the following way

R(Xa Ya ¢Za ¢P) = RI(X*7K'<1¢IZ*7¢,P*) - 2g(AXYa AZP)

(4.9)
+ g(Ayz, AXp) + g(AXZ, Ayp) .
Thus, subtracting (4.9) from (4.7), we get
R(X,Y, Za P) - R(X7 Ya ¢Z7 ¢P) =
(4.10)

R’(X*, Y*, Z*, P*) - R’(X*a Y*7 qb’Z*a ¢IP*) °

Since the total space satisfies the cosymplectic curvature property, then
R(X,Y,Z,P) = R(X,Y,¢Z,¢P), which implies that R'(X,,Y:, Z,, Py) =
R(X.,Y.,¢'Z., ¢'Py).

The base space being an almost Hermitian manifold, it follows that it
verifies the Ki-curvature identity. [

THEOREM 4.6. Let f : M?™+' — B be an almost contact metric
submersion of type 11 that satisfies the following conditions:
(a) the total space satisfies the cosymplectic curvature property,
(b) the configuration tensor A is ¢-linear on the horizontal distribution, and
(c) Ax¢ =0 for all horizontal vector fields X .

Then, the fibres have the cosymplectic curvature property and, on the base
space, this property corresponds to the Kohler identity.

Proof. Similar to the preceding. |1

THEOREM 4.7. Let f : M?>™' — B'® be an almost contact metric
submersion of type 11 such that
(a) the total space M has the Sasakian curvature property,
(b) the configuration tensor A is ¢-linear on the horizontal distribution, and
(c) Ax¢ =0 for all horizontal vector fields X .

Then the fibres have the Sasakian curvature property which corresponds to
the K3-curvature identity on the base space.
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Proof. Similar to that of Theorem 4.4. |1

An almost contact metric structure is said to be nearly-K-cosymplectic if

In [C1,

(VD¢)D = 07
Vne =0.

Theorem 2.3], D. Chinea has proved that if the total space of an

almost contact metric submersion of type I is nearly-K-cosymplectic, then the
configuration tensor 1" satisfies

TydV = Ty V = ¢V
Tyé=0.

On the other hand, it is well known that for a submersion of this class, the fi-
bres are nearly Kohler [C2, Theorem 2.1]. Since the total space has the cosym-
plectic curvature property, the fibres have the Kohler identity and therefore

are Kohler.
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