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Abstract:
Microrobots, specifically swimming robots, have attracted significant at-
tention in the last decades showing high potential in the biomedical field,
such as minimally invasive surgery, drug delivery or monitoring. However,
working at the microscale implies a paradigm shift and the need to face new
challenges. Conventional design or propulsion methods are no longer ade-
quate at micrometer scales when interacting in environments characterized
by a low Reynolds number (RE), i.e., environments dominated by viscous
forces. However, research lines focused on bio-inspired swimming robots
propelled autonomously are in the minority.

In this context, this thesis focuses on the modeling, design and control
of an eukaryotic artificial flagellum-like small swimming robot to navigate
in conditions similar to those of the human cardiovascular system. Firstly,
the model of an N-link articulated swimming robot for medium and low
Re conditions is presented, and a new propulsion waveform is proposed.
Secondly, locomotion and control design study of the swimmer is carried out
based on the mentioned model, proposing a nested control strategy for path
following. Finally, an N-segment swimming robot simulator and a flexible
3-link prototype are developed to validate and verify the model and the
designed control strategies. Additionally, the modeling and validation of the
human cardiovascular system are addressed by presenting a new electrical
and hydraulic model.





Resumen:
Los microrobots, y concretamente los robots nadadores, han atraído una
gran atención en las últimas décadas mostrando un alto potencial en el
campo biomédico, como la cirugía mínimamente invasiva, la administración
de fármacos o la monitorización. Sin embargo, trabajar en la microescala
implica un cambio de paradigma y la necesidad de afrontar nuevos retos.
Los métodos convencionales de diseño o propulsión dejan de ser adecuados
a escalas micrométricas al interactuar en entornos caracterizados por un
bajo número de Reynolds (Re), es decir, entornos dominados por las fuerzas
viscosas. Sin embargo, son minoritarias las investigaciones orientadas a
robots nadadores de propulsión autónoma con carácter bioinspirado.

En este contexto, esta tesis se centra en el modelado, diseño y control de
un robot nadador tipo flagelo artificial eucariótico de pequeñas dimensiones
capaz de navegar en condiciones similares a las que se dan en el sistema
cardiovascular humano. En primer lugar, se presenta el modelo de un
robot nadador articulado de N segmentos para entorno con medio y bajos
Re, y se propone una nueva forma de onda para la propulsión. Sobre
el modelo presentado se lleva a cabo un estudio de la locomoción y el
diseño del control, proponiendo una estrategia de control anidada para el
seguimiento de trayectorias. Para la validación del modelo, así como de las
estrategias de control diseñadas, se desarrolla un simulador de robot nadador
de N segmentos y un prototipo de 3 segmentos flexibles. Adicionalmente,
se aborda el modelado y validación del sistema cardiovascular humano
presentando un nuevo modelo eléctrico e hidráulico.
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The art of war, Sun Tzun

Contents

1.1 Problem statement and motivation . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions and related publications . . . . . . . . . . . . . 4

1.4 Overview of contents . . . . . . . . . . . . . . . . . . . . . . 7





1.1. Problem statement and motivation 3

This chapter presents the motivation, objectives and main contributions of this
Thesis.

1.1 Problem statement and motivation

Technological advances in recent years have shown great potential in many
applications, encouraging new synergies and the creation of new research areas.
Advances in micro/nano-scale science and technology have increased the demand
and expectations for new microsystems capable of accessing small spaces, manipu-
lating and interacting directly with entities of equivalent size and with high-impact
applications in healthcare, biotechnology and manufacturing, among others. In this
scenario, as cross-disciplinary research, microrobots have attracted significant atten-
tion, exhibiting high application potential in the biomedical field, such as minimally
invasive surgery, drug delivery, and sensing.

However, working at the micro-scale implies a paradigm shift and the need to
face new challenges, from mechanical design to the performance of the applications,
as well as control strategies. Conventional actuation principles cannot be applied in
those applications because microrobots have to navigate within environments char-
acterized by a low Reynolds number, meaning within environments dominated by
viscous forces. In this way, many lines of research are currently focused on the study
of locomotion methods. However, those focusing on autonomous actuation methods
are the minority and reproduce strategies found in nature, that is, bioinspired, to
achieve further optimization.

This work constitutes the basis of a line of research in microrobots at the Uni-
versity of Extremadura, directed and supervised by Dr. Blas M. Vinagre Jara and
Dr. Inés Tejado Balsera. In other words, the present Thesis presents contributions to
propulsion methods and control motion strategy of microrrobots from a bioinspired
perspective to improve the motion performance.

1.2 Objectives

The Thesis is considered of interest from several points of view. From a scientific
perspective, it is intended to develop a mathematical model and simulation tool
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to represent an N-link swimming flagellum-type articulated eukaryotic artificial
swimming microrobot. In addition, from the viewpoint of control theory, the
possible contributions in analysis and methods to control the system mentioned
above. Finally, from the engineering and biomedical engineering point of view, in
the applications of minimally invasive surgery and search and rescue robots. The
general objective can be divided into the following partial aims:

1. Study and simulation of the robot working environment and robot-environment
interactions.

2. Mathematical modeling, physical modeling and control of artificial flagellum-
type swimming robot with a planar wave.

3. Design of an artificial flagellum-type swimming robot prototype.

4. Modeling of an experimental platform for robot testing in environments that
emulate the fundamental characteristics of a swimming robot.

1.3 Contributions and related publications

The main contributions of this Ph.D. Thesis are the following:

1. The proposal of a new beating waveform for propulsion of swimming micro-
robots based on a fractional order power law for amplitude modulation, as
well as validation and the study of the propulsion performance.

2. The development of a simulator and testbed of an N-link flagellum-type artic-
ulated eukaryotic artificial swimming microrobot in the MATLAB®/Simulink
environment to validate the designed control strategies. Following the litera-
ture, it allows the configuration of the swimmer’s size, the number of links in
which its flagellum is divided, the mode of propulsion among four types of
traveling waves and the control strategy applied to the distributed actuators.

3. The fabrication of an IPMC-based flagellum-type articulated eukaryotic artifi-
cial swimming robot and design of a controller robust to actuators of different
lengths to propel the robot at low Re regimes. Also, addressing the design of
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a small-scale swimming robot whose links are integrated into the same piece
of material and work as actuators or passive flexible links.

4. The proposal of a novel electrical model of the cardiovascular system. It
extends the classical Windkessel model of four elements to the left common
carotid artery, motivated by 1) having an experimental platform for the de-
velopment of dimensionless tests with swimming robots and 2) the need to
have a complete model from a medical point of view for validation purposes,
as well as to describe other cardiovascular phenomena in this area, such as
atherosclerosis, one of the main risk factors for cardiovascular diseases.

These results have been spread in the journals, books and conferences cited
next.

Journals papers

• J. E. Traver, C. Nuevo-Gallardo, P. Rodríguez, I. Tejado, and B. M. Vina-
gre, “Modeling and control of IPMC-based artificial eukaryotic flagellum
swimming robot: Distributed actuation,” Algorithms, vol. 15, no. 6, 2022

• J. E. Traver, C. Nuevo-Gallardo, I. Tejado, J. Fernández-Portales, J. F. Ortega-
Morán, J. B. Pagador, and B. M. Vinagre, “Cardiovascular circulatory system
and left carotid model: A fractional approach to disease modeling,” Fractal
and Fractional, vol. 6, no. 2, p. 64, 2022

• J. E. Traver, I. Tejado, C. Nuevo-Gallardo, M. A. López, and B. M. Vinagre,
“Performance study of propulsion of n-link artificial eukaryotic flagellum
swimming microrobot within a fractional order approach: from simulations to
hardware-in-the-loop experiments,” European Journal of Control, vol. 58, pp.
340–356, 2021

Book chapters

• J. E. Traver, C. Nuevo-Gallardo, I. Tejado, and B. M. Vinagre, “Frequency
domain modeling of an IPMC-based artificial eukaryotic flagellum swimming
robot,” in Proceedings of the International Conference on Fractional Differ-
entiation and its Applications (ICFDA’21), A. Dzielinski, D. Sierociuk, and
P. Ostalczyk, Eds. Cham: Springer International Publishing, 2022, pp. 58–64
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• J. E. Traver, I. Tejado, C. Nuevo-Gallardo, J. Prieto-Arranz, M. A. López, and
B. M. Vinagre, “Evaluating an AEF swimming microrobot using a hardware-
in-the-loop testbed,” in Robot 2019: Fourth Iberian Robotics Conference, M. F.
Silva, J. Luís Lima, L. P. Reis, A. Sanfeliu, and D. Tardioli, Eds. Springer
International Publishing, 2020, pp. 524–536

Conference papers

• J. E. Traver, I. Tejado, J. Prieto-Arranz, C. Nuevo-Gallardo, M. A. López,
and B. M. Vinagre, “Improved locomotion of an AEF swimming robot using
fractional order control,” in 2019 IEEE International Conference on Systems,
Man and Cybernetics (SMC), 2019, pp. 2567–2572

• J. E. Traver, I. Tejado, J. Prieto-Arranz, and B. M. Vinagre, “Comparing
classical and fractional order control strategies of a cardiovascular circulatory
system simulator,” IFAC-PapersOnLine, vol. 51, no. 4, pp. 48–53, 2018, 3rd
IFAC Conference on Advances in Proportional-Integral-Derivative Control
PID 2018

• J. E. Traver, J. F. Ortega, I. Tejado, B. Pagador, F. Sun, R. Pérez-Aloe, B. M.
Vinagre, and M. F. Margallo, “Simulador cardiovascular para ensayo de robots
de navegación autónoma,” in Actas de las XXXVIII Jornadas de Automática.
Servicio de Publicaciones de la Universidad de Oviedo, 2017, pp. 633–640

• J. E. Traver, I. Tejado, and B. M. Vinagre, “A comparative study of planar
waveforms for propulsion of a joined artificial bacterial flagella swimming
robot,” in Proceedings of the 2017 4th International Conference on Control,
Decision and Information Technologies (CoDIT’17), 2017, pp. 550–555

• J. E. Traver, B. M. Vinagre, and I. Tejado, “New waveforms for propulsion
of planar artificial bacterial flagella microrobots.” VI reunión del Capítulo
Español de la Sociedad Europea de Biomecánica, 2016

• J. E. Traver, B. M. Vinagre, and I. Tejado, “Robot nadador tipo flagelo bacte-
riano plano: estudio y simulación del mecanismo de propulsión,” in Actas de
las XXXVII Jornadas de Automática, 2016, pp. 1075–1082

In all, the work reported in this Thesis has been disseminated in:
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• Three journals papers.

• Two book chapters.

• Six conference papers.

1.4 Overview of contents

This Thesis is organized as follows:

• Chapter 1 contains this introduction about the Thesis.

• Chapter 2 presents the current state of the art of microrobots, and their wide
variety of applications. In addition, the theoretical foundations on which this
Thesis is based are described.

• Chapter 3 states the modeling of the flagellum-type articulated eukaryotic
artificial swimming robot for medium and low Re environments and a new
motion-beating waveform for propulsion.

• Chapter 4 explains the motions and design of the bioinspired swimming robot
from an engineering and robotics point of view and how control theory can be
used to adapt existing techniques for swimming robot navigational control,
specifically path following.

• Chapter 5 details the model and design of the prototypes and experimental
platform.

• Chapter 6 contains all the simulated and experimental results obtained in this
work.

• Concluding remarks and future works will be presented in chapter 7.

• Appendix A details the variables to describe the articulated eukaryotic flagellum-
type swimming robot model.

• Appendix B explains the analysis of the electrical circuit of experimental
platform.
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State of the art and theoretical

foundations

“The grass is always greener on the other side.”

English proverb
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In this chapter, a brief introduction to the field of microrobotics is given, pre-
senting the most relevant studies since its beginnings in the mid-19th century and
discussing the main challenges that this new field must overcome to consolidate and
continue to advance. The aim is to provide a snapshot of the current state of research
in the field. The lists below are far from aiming at completeness, failing to mention
hundreds of other published texts. The main reason they are not mentioned here is
that their subjects are of minor importance for this Thesis. As one can see from the
surveys below, numerous kinds of microrobots have been reported during the last
decades as propulsion and actuation methods. However, few references and works
are related to articulated eukaryotic artificial flagellum swimming robots, especially
in Spain. This fact justifies the final purpose of this Thesis.

In addition, the theoretical foundations on which this Thesis is based are de-
scribed. Firstly, the field of microrobotics is explained, especially for robots that
must work in fluid environments. Also, the work and research taken as a basis for
studying the articulated eukaryotic artificial flagellum swimming robot are intro-
duced. Secondly, the ionic polymer metal composite (IPMC) is presented, which
has started a new revolution in soft robotics, with particular attention to micro-
swimming robots and soft artificial muscles for medical uses, supporting many
current applications. In the third place, a general description of the cardiovascular
system (CVS) is realized, and the available models and modeling perspectives are
presented.

2.1 Definition of microrobotic

The microscopic, the small, is not a new term or concept in popular culture.
It is a concept that has been with us since the invention of the microscope in
the 17th century and that launched the field of biology, and microbiology, more
specifically, with the identification of cells and microorganisms. However, it took
several centuries after the invention of the microscope for the scientific community
to stop looking at the microscopic and start questioning how to be and operate in the
microscopic environment. There is no clear consensus on when microtechnology
started. However, an inflection point was the annual meeting of the American
Physical Society in Pasadena, USA, where the lecture titled There'~s Plenty of
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Room at the Bottom was given by Richard P. Feynman, the 1965 Nobel Prize
Laureate in physics, and he is considered the father of modern nanotechnology. He
introduced the concept of manipulating matter at the atomic level and encouraged
physicists to explore the possibilities of the microscopic environment. «Why cannot
we write the entire 24 volumes of the Encyclopedia Brittanica on the head of a
pin? Could we swallow a mechanical surgeon and put it inside the blood vessel
and it goes into the heart and looks around?» These, among others, are some of the
questions he used to reflect on the great possibilities of the small and the plenty
of room at the bottom.

These crazy ideas, unrealizable until then, were not so for the film industry with
the release of Fantastic Voyage in 1966, which brought together on the big screen
two completely unrelated terms: robotics and microscopic, outlining the field of
micorobotics and spreading those crazy ideas of Dr. Feynman to the whole of
society. The film narrated the mission of a group of doctors who had to miniaturize
themselves to the microscopic scale and enter the brain of a scientist to get him
out of the coma that he was in due to an assassination attempt. This film would be
the beginning of a new theme that continues to this day with Innerspace in 1987,
the episode “One little ship” of Star trek: deep space nine in 1998 or Ant-man in
2015.

However, the field of mobile microrobotics did not begin to develop until the
end of the 20th century, when the advances and intensification of the use of mi-
croelectromechanical systems (MEMs) have offered the possibilities and tools for
development, integration and miniaturization, together with the combination of
other fields, such as control theory, materials engineering, artificial vision or image
acquisition in the medical field [17]. This has allowed it to establish itself as a
discipline in its own right, and it is currently one of the engineering disciplines
with the greatest projection. As a result of technological development, in recent
decades, it has experienced rapid growth with extraordinary advances that aim to
revolutionize the way of working in many fields of application, such as medicine,
biotechnology, bioengineering, manufacturing, and mobile sensors networks for
environmental and health monitoring. Such microsystems will offer access to con-
fined and/or hard-to-reach spaces, such as inside the human body and manipulate
or interact with microscopic entities directly. Working areas where the human or
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macroscale robot capabilities (sensing, precision and size) do not achieve desired
characteristics. To this technological challenge, it is expected to wonder how these
microrrobots should be; the answer, as so many other times, can be observed in
nature, which has produced centuries-perfected micromachines capable of living,
interacting and learning at the microscale. The biomimetic swimming microrobots
have attracted the most attention in the development of current microrobotics, and
this is why the leading applications are focused on fluidic environments.

But what is a microrobot? There is no standardization of the term microrobot.
However, a macroscopic-scale mobile robot could be defined as a self-contained,
untethered, programmable robot able to interact with the environment and learn from
it. An equivalent definition is employed in [18, 19], stating that a mobile microrobot
is «a mobile robotic system where its untethered mobile component less than 1 mm
and larger than 1 µm and its mechanics is dominated by microscale physical forces
and effects». It is important to remark that the range of dimensions is indicative,
since many authors also consider any device with a size close to that of an insect
and with biomechanical properties similar to those of an insect. On the other hand,
systems close to micrometers can fall into the category of nanorobots. Nanorobotics
is a counterpart discipline also on the rise, but more focused on systems below the
micrometers or close to the molecular scale. Although there is no clear limit to the
dimensions covered by both disciplines, the set of forces and interactions to which
robots are subjected is more clearly defined: at the microscopic scale, volume forces
have no impact on surface or perimeter forces. In the case of swimming microrobots,
viscous forces are much higher in magnitude than inertial forces, implying a low
Reynolds number (Re), a dimensionless parameter that quantifies the ratio of inertial
and viscous forces. The flows developed are practically stationary and defined in
Stokes’s regime. The motion remains deterministic; a stochastic (Brownian) motion
is not identified yet. Therefore, two essential characteristics must be inherent to a
microrobot:

1. Overall size: a microrobot must be able to access confined and confined spaces
with minimal invasion, which implies untethered operations and relatively
small dimensions according to the application.

2. Scaling effect on robot mechanics: microrobot dynamics and interaction
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Table 2.1: Classification of mobile robots according to size and dominant forces.
Robot type Overall size Environment forces

Conventional robots � cm
Volume-based forces.
Re� 1.
Classical mechanics, deterministic behavior (no Brownian motion).

Milirobots from cm to mm
Volume- and Surface-based forces.
Re ∼ 1 or
Classical mechanics, deterministic behavior (negligible Brownian motion).

Microrobots from mm to µm
Surface- or perimeter-based forces.
Re ≈ 1 or� 1
Classical mechanics, deterministic behavior (negligible Brownian motion).

Nanorobots � µm
Intermolecular forces.
Re� 1.
Quantum mechanics, stochastic behavior (Brownian motion).

with the environment are governed by the microscale’s physical forces and
effects. Therefore, volume forces, such as inertia, gravity or buoyancy, will
be negligible with respect to the magnitude of surface forces (viscous forces,
friction, surface tension or adhesion) [18, 19].

Moreover, the technology required for developing macro, micro or nanoscale
robots is also different in each case. Microrobots will be designed with submillimeter
scale components (microactuators, microsensors and micromechanisms), applying
micromanufacturing methods, at the limits of current engineering, different from
those used at the macroscale and nanorobotics techniques, more similar to molecular
engineering techniques.

Table 2.1 outlines the different classifications of mobile robots based on their
dimensions and the prevailing dynamics and interaction forces. The millirobots
cover the range of miniaturized robots that are not yet small enough for volume-
based forces not to be considered, but surface forces begin to have the same impact.
Fluid dynamics is not completely stationary, reaching turbulent flows, resulting
in an environment with Re close to unity. It is the interface between classical
mobile robots and microrobotics. As for nanorobots, the assumption of continuum
mechanics begins to be invalid, so quantum mechanics is necessary to describe their
behavior. It changes from deterministic to stochastic due to intermolecular forces
and Brownian motion. If fluid dynamics is no longer accurately described by the
Navier-Stokes equation, then Re is not relevant.
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Depending on the application and in a broad sense, there are two approaches for
the design, development and control of mobile microrobots:

1. Off-board: the mobile and untethered components of the microrobot are
remotely actuated, sensed, controlled and/or powered. In this approach, only
the tools have reduced dimensions, while the complementary system for
management and control has only the restrictions of the application to be
performed.

2. On-board: analogous to classical robots, the microrobots are autonomous, self-
contained and untethered. All components, such as propulsion mechanisms,
specific operation tools, sensors, computation, and wireless communication,
are integrated into it, so they are designed at smaller scales.

The first approach simplifies the challenges of miniaturization and allows the
possibility of taking advantage of technological developments already achieved.
However, they only have a mili, micro or nanoprecision in a reduced workspace,
but it does not always imply a significant limitation in specific applications, such as
single-cell analysis [20], cell orientation control [21, 22], in vitro fertilization [23]
or micro/nanorobotic assembly and manufacturing [24, 25, 26]. It is precisely the
advantage of reusing existing systems and reducing the number of components to be
miniaturized that has encouraged research to focus mainly on this second approach,
highlighting magnetic microrobots. In contrast, the second approach requires further
technological development of each component in the microrobot, which involves
significant challenges in its design and manufacture. Therefore, its development and
progress are linked to technological advances in manufacturing, sensing, energy and
communication methods. However, it offers great advantages, such as the design of
microrobots capable of unrestricted movement (regardless of energy considerations)
in large workspaces and any location, without relying on external systems. They
have exhibited great potential in various applications, including targeted therapy
[27, 28], microsurgery [29, 30], biosensing [31, 32] or pollutant treatment [33, 34]
among others [35].

Furthermore, and independently of the previous approaches, microrobots can
also be classified according to the type of materials used in their construction as
biological, artificial, or biohybrid [36]. The first group employs techniques close to
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nanorobotics. It integrates natural material in their designs, such as cardiac muscle
cells or microorganisms, to achieve a symbiosis that augments or complements the
functionalities of the microrobot, which means propulsion, sensing or energy har-
vesting, and they succeed in being highly biocompatible at the same time. Artificial
microrobots refer to those that are manufactured by synthetic materials or materials
lacking biological activity, such as polymers, magnetic materials, metals, silicon, as
well as alloys. The majority of the designs are based on them due to the versatility of
material.Biohybrid microrobots combine the advantages of both latter types, namely
biocompatibility and artificial tools’ multifunctionality. However, they also present
disadvantages in their design, which are restricted by the materials used for their
fabrication.

A further classification can be established according to the energy source for
robot porpulsion, which mainly considers biohybrid, chemical fuel, thermal gradient,
electric field, light, acoustic waves and magnetic fields [37, 38, 39].

2.2 Brief history of mobile microrobotics

The interest and need for manipulation, measurement and interaction at small
scales began to acquire great attention in the late 20th century, emerging a new field
within robotics, the microrobotics. Although the concept was used in the mid-20th
century, the technology was not ready until the end of the 20th century to meet
the technological challenges. Thanks to advances in micro- and nanotechnology,
the microrobotics field began to respond and established the tools to fill these
gaps. Advances in MEMS devices and the increase in their development and
implementation have allowed and encouraged research in numerous technical and
scientific disciplines. Although it is a relatively new field, its importance has
multiplied, as seen in Figure 2.1, which shows the trend of publications and citations
of articles related to the field of microrobotics in the last century according to
registered data on the Web of Science database. The number of publications has
duplicated every decade since 1990, reaching the order of 450 publications per
year, which covers a multitude of research lines and a wide range of applications
[24, 32, 40, 41, 42, 43, 44, 45, 46].

The first studies that considered the principles on which microrobots would be
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Figure 2.1: The publication trends in the microrobotic field show the number of
publications from 1964 to 2021 (including 2021). Data retrieved from the Web of Science.
The query used in the search were: microrobot (topic) OR micro-robot (topic) OR
micro-machine (topic) OR micro swimmer (topic) OR microswimmer (topic) OR
micro-swimmer (topic). On the research areas: Engineering OR Instruments
Instrumentation OR Automation Control Systems or Physics OR Robotics OR Mathematics
OR Mechanics. For document types: Meeting OR Articles OR Review Articles. The search
is available at https://www.webofscience.com/wos/alldb/summary/12ba7260-5e
79-48bb-bda1-f2aedeaf8f5a-1dbe0589/relevance/1

developed began in the 1950s. In particular, the most popular propulsion methods
take nature as inspiration, imitating the flexible behavior of the eukaryotic flagellum
and the tail of fishes [47, 48, 49, 50] and the helical motion of the flagellum of
bacteria [38, 51, 52]. Within the flexible flagella group, multiple proposals have
been studied to generate beating waveforms to propel microrobots from both an
off-board [46, 53, 54, 55] and on-board [56, 57, 58, 59, 60, 61, 62] perspective. In
the second group, all efforts were focused on developing rigid helical flagella whose
motion was imposed by magnetic fields [52, 63, 64, 65, 66, 67, 68, 69]. In addition
to the above methods, many other proposals were addressed, such as steerable
magnetic dragging [70, 71, 72, 73, 74, 75, 76], where the microrobots are dragged
and steered through magnetic fields or electric fields [25, 77, 78, 79]. On the other
hand, other types of methods relied on friction forces to achieve propulsion, such
as earthworm movement [80, 81, 82, 83, 84, 85, 86, 87, 88] or stick-slip crawling
[74, 89].

 https://www.webofscience.com/wos/alldb/summary/12ba7260-5e79-48bb-bda1-f2aedeaf8f5a-1dbe0589/relevance/1
 https://www.webofscience.com/wos/alldb/summary/12ba7260-5e79-48bb-bda1-f2aedeaf8f5a-1dbe0589/relevance/1
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All these studies continued in the following decades, approaching new features
and exploring new technologies that allow miniaturization or the simplification of
the propulsion mechanism. Among a large number of proposals, most of them
belong to the off-board approach due to the existing methods and techniques that
were directly used in developing the microrobots. Methods based on magnetic fields
received particular attention and experienced significant advances, and interest due
to the scalability of the microrobots [44, 90, 91, 92]. There were also numerous
alternatives to the magnetic field approach, but their impact was less significant,
such as lasered-powered microwalkers [93], or optically driven bubble microrobots
[94, 95], chemically propelled design based on microtubular jet [96], catalytic motor
[97], electro-osmotic [98] and even bio-hybdrid cell-driven including magnetic
material in cell [99] and chemotactic steering of magnetic microrobots [100].

As for on-board designs, these were mainly technologies whose miniaturization
was feasible and easy, such as piezoelectric materials, shape-memory alloy (SMA),
ionic polymer-metal composite (IPMC) or ionic conducting polymer film (ICPF).
However, the latest studies also focus on the use of biocompatible fuels providing
sufficient energy to the microrobots to move without the need for chemical or
external fuels, which represents another attractive solution for practical applications
due to their biocompatibility and sustainability [39] or even designing microrobots
using cardiomyocyte cell as motor [101].

In the last decade, significant progress has been made in developing different
designs, fabrication, and actuation techniques for the propulsion of microrobots.
However, there are still numerous challenges that need to be addressed to make the
Fantastic Voyage a reality so that microrobots can perform predetermined tasks
for countless industrial, environmental and biomedical applications, such as nano-
and microscale object manipulation and assembly, targeted drug and gene delivery,
and nanosurgery.
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2.3 Challenges of microrobotics

All entities, regardless of size or operation mode, are subject to the same physical
forces and governed by the same physical laws as on the macroscopic level. No
new laws are used to describe the dynamics of microsystems, but their interpretation
and magnitude of phenomena at such dimensions can change dramatically with
scale because the magnitude of forces is usually size dependent. Even as sizes
continue to decrease further in the microscale, approaching the nanoscale, another
limit is encountered. Classical physics will not be able to explain the phenomena and
dynamics of robots, and it will be necessary to resort to quantum physics. Likewise,
structures will have sizes close to cells so that the assumption of the continuum
begins to lose its validity, and it is necessary to go deeper into the behavior of fluids
and how external actions affect them [18, 19, 24, 102, 103, 104]. Effects negligible
at the macroscopic level become important at the micrometer scale and vice versa.

However, at the technological level, this new field presents a new way of thinking,
designing and acting, which involves many new challenges, since the interpretation
and meaning of phenomena in these dimensions are radically different. This section
describes the main challenges facing this new field. The reader can learn more about
the concepts shown below in [32, 36, 45, 91].

2.3.1 Design and modelling

Design and modeling remain an unfinished task despite numerous research whose
results provide a wide range of models and designs of microrobots. It will continue
to be a challenge as new applications are addressed, as they will demand new models
and designs to cover their requirements. Taking biological organisms as a reference
again, an integrated system where all components (locomotion principles, material,
and power sources) are connected and synchronized is necessary. This challenge has
been addressed from many perspectives: from designing a single multitasking robot
to a swarm of robots with parallel and distributed functions, allowing them to per-
form complex tasks. Especially the methodology of programmable modular design
is receiving significant interest due to the versatility that the design of individual
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components offers. Modular microrobots can be assembled into fully equipped mul-
tifunctional and larger systems. Despite the complexity of programmable modular
design, it is a simple and robust strategy for rapidly adapting the system to dynamic
changes in the environment. However, both concepts, programmable and modular
assembly, are still in their infancy in this field, and there is a need for thoroughly
understanding and controlling them and the related processes. From a global system
perspective, they must function by sensing environmental stimuli and reacting to
them. Therefore, real-time sensing and feedback control are critical elements for
proper functioning, but these are new challenges where traditional knowledge must
be adapted to new requirements.

2.3.2 Materials and Fabrication

The fabrication material of microrobots is one of the main concerns in their man-
ufacture and is always influenced by the final application. Likewise, the fabrication
material of microrobots is also a fundamental part of locomotion and energy source
because their physical properties or design will limit their application and function-
alities. Therefore, the material is a vital aspect for optimum performance. However,
a critical aspect that all must meet is resistance to interacting with the environment,
which is organic in some applications. Mechanical resilience and durability are also
highly critical, particularly in load-bearing applications. In addition, in medical
applications, it is essential that they meet higher requirements, such as biocompati-
bility and biodegradability, and are even desired to be multifunctional, smart and
compatible with existing micro and nanofabrication processes. According to the
most recent research, elastomers or polymeric composites are likely an intermediate
alternative to developing more specific and suitable materials.

Regarding to fabrication, microelectromechanical systems (MEMS) technology
has been a significant step forward. However, it still requires many custom and
novel micro/nanoscale fabrication methods and prototyping tools that could be
based on optical lithography, two-photon stereo-lithography, self-folding thin films,
micro/nanomachining, micro/nanoprinting, and micro/nanomolding.
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2.3.3 Functionality

The most disputed challenge is functionality. The potential applications of
microrobots are undoubtedly linked to the development of technology. The case
of recognition or diagnostic diseases applications is already viable for milirobots.
However, it is still necessary to develop image processing to map the environment
or an organ using visual simultaneous localization and mapping (SLAM) or optical
flow to predict the movement of organs or tissues accurately. The most common and
viable application for microrobots is cargo transport, such as the controlled release
of drugs, targeted therapy or gene delivery. For this purpose, a whole microrobot
can be fabricated as a big container or porous surface, slowly providing the dose to
a specific target. Likewise, the surface can be modified by incorporating biomarkers
enabling the sensing of disease diagnosis.

On the other hand, microrobots could also have microtools to perform surgical
functions. In the case of microgrippers, they would allow ablation and biopsy for
diagnostic purposes. The propulsion mechanisms can be used for a second purpose,
such as cauterization or cleaning obstructed blood vessels, in the latter case making
use of flexible or helical flagella. This would be a significant advance in the medical
field, improving noninvasive surgical operations, such as the extirpation of tumors or
biopsy in deep tissue areas. From a collaborative perspective, a great functionality
is the coordination of swarms for the formation of scaffolds or joints, which allows
the repair or recovery of damaged areas.

2.3.4 Mobility

As discussed above, all entities are subject to the same physical forces and
governed by the same physical laws as on the macroscopic level. No new laws
are used to describe the dynamics of microsystems, but their interpretation and
magnitude of phenomena at such dimensions can change dramatically with scale
because the magnitude of forces is usually size dependent. Although numerous
locomotion methods have been proposed to overcome the implications of the scale
change, there are still many open challenges, such as increasing the locomotion
precision and speed for accurate and shorter operations, minimizing the power
consumption during locomotion and increasing safety. Of particular interest are
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medical applications where tissue damage could create an adverse reaction in the
body, and precise motion is required near organs with relative movements, such as the
lungs. These locomotion methods must ensure a robust adaptation to variations.

In addition, the modes of locomotion are also vital factors in mobility. Therefore,
it would also be optimal to have methods to determine the most efficient mode of
locomotion based on the characteristics of the environment. Likewise, speed control
is another critical factor in the optimal and efficient development of the functions of
microrobots.

2.3.5 Powering

Undoubtedly, one of the most challenging issues in the field of microrobotics is
power and, obviously, the methods for obtaining or generating the energy necessary
for locomotion and performing its corresponding actions, which differ drastically
from their macroscopic counterparts. At the same time, it is the main bottleneck
in microrobot design and applications, trying to find the optimum balance between
maximum power supply to support long operating hours and minimum space. On the
other hand, minimizing energy consumption for sensing, locomotion, data transfer,
and computation would help this major challenge. However, the latest research is
starting to focus on generating the driving force directly from the surroundings, such
as self-electrophoresis, self-thermophoresis, self-diffusiophoresis and microbubble-
based propulsion.

The first solution proposed is based on traditional methods of using materials
capable of storing energy, such as silver oxide batteries, guaranteeing several hours
of exclusively maintaining the necessary resources, being reduced to minutes when
all functionalities are activated. As an alternative solution to traditional methods,
wireless power transmission techniques such as inductive powering and radio fre-
quency, microwave radiation, and piezoelectric ultrasound systems were addressed.
However, in all of the above technologies, the performance or ability to transmit
energy is strongly dependent on the size of the microrobot or the separation distance,
so their efficiency is highly reduced.

In this respect, the concept of energy efficiency plays a crucial role in this field
since this could be a limiting step for the overall success of this new field. Therefore,
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achieving autonomous microrobot actuation for long locomotion periods is a great
challenge. Maximizing the power efficiency and minimizing the power consumption
of systems are crucial for long-term operations, which could be enabled by optimal
design of microrobot locomotion, sensing, and control methods.

2.3.6 Localization

Knowing the position and location is a fundamental part of precise and safe
control of the movement of microrobots, especially if they operate in sensitive areas,
such as the human body. Numerous methods have been proposed and validated to
achieve local localization, but it remains a significant challenge due to the small size
of microrobots. In this aspect, robot swarms have the advantage of facilitating their
localization by vision or image processing. The main methods used for this aspect
are fluoroscopy, Positron emission tomography (PET), Near-infrared spectroscopy
(NIR), and ultrasound. These techniques could even be combined to achieve greater
accuracy.

2.3.7 Communication

Communication and information transfer are yet to be addressed for microrobots
inside the human body or for swarm robots that must receive and send large volumes
of data. It is also an essential component for real-time robot manipulation and
control. A first proposal was to use magnetic actuation as wireless communication
but was discarded because it offered limited bandwidth and only in open loop.

Again, biological organisms can be a reference to establish the principles of
social behaviors in swarms of microrobots. For example, microscopic species exhibit
collective behaviors in response to environmental stimuli sensed and transmitted
between individual species through physical interactions and/or chemical secretions.
Quorum sensing is another cell-to-cell communication process used in bacteria
to share information among the population and elicit a collective reaction. An
intriguing property of quorum sensing is that the population density is monitored in
real-time by the whole colony and a communal response is elicited as a result.
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2.3.8 Safety

Although it is a very application-dependent concept, safety is a fundamental and
mandatory principle. The integrity of the microrobots and the environment must
be guaranteed at different levels during all microrobot phases of operation. This
safety must be guaranteed from different perspectives: design, manufacturing and
integration. Therefore, the correct selection of materials, locomotion, actuation
method, and power supply is paramount. On the other hand, the safety principle
will restrict manufacturing methods, materials, locomotion methods or some of the
positioning techniques indicated above, such as those based on ionizing radiation,
which should only be used when necessary. In medical applications, the robotic
components, remote or autonomous actuation, or sensing methods should be within
the health legislation limits so that they do not cause any discomfort, damage, or
pain to the patients. Synthetic microrobots should be made of biocompatible and
biodegradable soft materials; whereas biohybrid ones should not be pathogenic or
create any negative immunological response. In the case of the magnetic fields
generation, they are considered safe, with no significant health risk. However, blood
is also conductive, so sufficiently high magnetic fields can reduce blood flow due to
induced voltage, according to Faraday’s law.

2.3.9 Testbench

The development of test platforms that can emulate the conditions of the envi-
ronment in which the microrobots will operate is becoming increasingly important.
From a medical perspective, it is possible to use medical phantoms for in vitro
or ex vivo organ or tissue testing, allowing a closer-to-reality experience. In this
sense, organs-on-chips could become test platforms to emulate the clinical and
physiological part of the human body environment.

2.4 Theoretical framework

This section aims to explain the concepts, theories, models and research support-
ing this Thesis’s work.
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2.4.1 Hydrodynamics at microscale

Many microscale applications involve operating in fluid environments, specifi-
cally medical applications. The properties or composition of the fluid environment
remain unchanged at any scale, but their dynamics, behavior and interaction with
other objects or fluids are affected by shrinking because below scaling laws are also
applicable to fluid particles [18, 19, 105, 106, 107, 108].

Drawing on the governing equations of fluid mechanics, the Navier-Stokes
equations establish the pressures, viscous and inertial forces governing a fluid flow,
expressed in vector form as:

∂ρ

∂t
= −∇

(
ρv

)
, (2.1)

∂ρv
∂t︸︷︷︸

Ratio of momentum
per unit volume

+ v ·∇ρv︸ ︷︷ ︸
Ratio of momentum loss

by convection, per unit volume

= − ∇P + µ∇2v︸       ︷︷       ︸
surface-based forces

per unit volume

+ ρF.︸︷︷︸
volume-based forces

per unit volume

The first equation describes the conservation of mass and the second, the conser-
vation of momentum, where v is the fluid velocity field, P is the fluid pressure, F
denotes other external forces per unit volume and ρ and µ are the density and the
dynamic viscosity of the fluid, respectively. Operator to ∇( · ) denotes the gradient
of a scalar function or vector. The conservation of mass offers a description of the
density change rate measured by an observer moving along with the fluid [106].
Considering and assuming that fluid is continuous, incompressible and Newtonian
(therefore, it has a constant density and viscosity), the conservation of mass principle
in equation (2.1) is simplified to

∇v = 0. (2.2)

The conservation of momentum principle can be interpreted as the external forces
exerted by the surroundings on a stationary fluid element equal to the time rate at
which momentum is created within the element. The external forces are decomposed
by: 1) surface-based forces exerted by the fluid stresses acting over the surface of the
element, and 2) volume-based forces, for example, gravity, exerted on the element
[106]. Analyzing the momentum conservation principle from a nondimensional
perspective offers an easier way to understand how the scale effect influences the
fluid dynamics and the interaction with the fluid. If x defines the position vector
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field, v f c is the characteristic velocity of the fluid. L is a characteristic length,
the following changes of variable can be used x̂ = x/L, ∇̂ = L∇, t̂ = t/(L/v f c),
v̂ = v/v f c and P̂ = PL/

(
µv f c

)
. In addition, if the gravitational force and Brownian

motion are not considered, it is permissible to say that there are no external forces
applied to the system or microswimmer and the fluid surrounding it, and therefore,
F = 0. Applying the above change of variables and considerations and arranging
the equations, the nondimensional form of the monument conservation principle ca
be written as: (ρv f cL

µ

)(
∂v̂
∂t̂

+ v̂ · ∇̂v̂
)

= −P̂ + ∇̂2v̂. (2.3)

The first term in parenthesis on the left-hand of the above expression is the
Reynolds number (Re = ρv f cL/µ), which is a dimensionless parameter that quanti-
fies the ratio between inertial and viscous forces. There are other definitions more
suitable for systems with low amplitude motion in high frequency (Reω = ρv f cL2/µ)
or when the speed varies rapidly across streamlines on a length scale ls, but slowly
along streamlines on a length scale ll (Rev = ρv f cl2s/(µll)) [107]. The Re varies with
scale in a proportion of L4; moreover, if the velocity is considered proportional to L,
it varies with L5. This means inertial effects (volume-based forces) are negligible
compared to viscous (surface-based forces) at the microscale. The conservation
of momentum equation (2.2) involves that the right-hand term can be neglected,
resulting in Stoke’s equations of motion that define a creeping flow as

∇̂v̂ = 0, (2.4)

− ∇̂P̂ + ∇̂2v̂ = 0. (2.5)

Creeping flow or Stokes flow has powerful properties, as deduced from its equation.
The main statements of the Stokes environment are [106, 107, 108]:

1. Linear relationship for forces and motions. Stokes’ equations are linear, so
the forces from or into the fluid to a particle will also be linear.

2. Inertialess. The magnitude of the mass makes the inertial forces irrelevant
as opposed to the viscous forces (∼ ∇̂2v̂), involving a low Re. On the other
hand, the time elapsed during the propagation of a disturbance convectively
from its origin is typically expressed as tconv ∼ L/v, while the time for the
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diffusion of a perturbation away due to viscosity is td f f ∼ ρL2/µ. Noting that
Re = tdi f f /tconv, it means that the fluid transport is also dominated by viscous
diffusion.

3. No dependence on time. The governing equations do not contain time deriva-
tives or other ways of considering past behavior. This involves that the
solutions for steady boundary conditions only require determining the fluid
state at a single time. In other words, the resulting forces at a specific moment
will only depend on other variables at the same instant of time.

4. Reciprocal theorem. It is a consequence of the linearity character of Stokes
equations (2.5) and is a particular case of the principle of virtual works. It
states that the virtual work developed by two stokes flows in the same region
is equal. For example, consider two stokes flows with different velocity and
stress fields, (v1, σ1) and (v2, σ2), the following relation can be written:∫

S
σ1v2dS =

∫
S
σ2v1dS (2.6)

where S is a closed surface bounding any fluid volume V .

5. Kinematic reversibility. A consequence of the above properties is that the
response of the fluid to a perturbation or movement of its boundaries is
instantaneous, as opposed to macroscale, where any motion or disturbance
experiences a propagation time to reach the entire system. This property has
an important implication in the motion of solid bodies since if an applied
force is reversed, the flow will also be reversed. This also means that if a
consecutive sequence of applied forces is reversed, the flow will also reverse
in the same sequence so that any solid body will follow backward exactly
its trajectory, and the initial state will be the same as the final state. In other
words, the fluid particles bounding the surfaces of a moving body follow the
same trajectory described by the body.

In conclusion, fluids at the microscale are characterized by low Re and described
as a Stokes’ flow, with no time dependency and where the evolution of motion only
depends on the spatial character of the forces that cause the movement of objects or
particles. Refer to [106, 107, 108] for a deeper explanation.
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2.4.1.1 Slender body motion

Considering microswimmers propelled in a Stokes’ flow, the total rate of momen-
tum must be zero according to the conservation of momentum (equation (2.2)). Then,
the fluid’s resulting forces exerted on the body must be zero [106, 107, 108, 109].
However, it needs to be clarified how to solve this statement based on the inertial
conception, where it is possible to separate the effects due to motion and fluid resis-
tance. Find a solution to the Stoles’ equation that provides a relationship between
fluid flow and body velocity that yields zero net force and momentum on the body
has been approached from many perspectives and by many authors, which has led
to the definition of theories and methods that apply different conditions to the body
under study [105, 108, 109, 110, 111, 112, 113, 114, 115].

The first studies were carried out by G.I. Taylor, who directly deducted the
velocity of a thin sheet as a consequence of its transversal deformation [109].
Although the results are valid, they only apply to small deformations. Alternative
approximations for higher amplitudes were studied based on the principle of the
smooth and slender body, which considers a body with a thin main dimension that
is larger enough than others, such as the flagellum of the microorganism. A few
years later, Gray and Hancock introduced local drag theory, denominated as resistive
force theory (RFT) [108, 111]. The RTF establishes that the force of an infinitesimal
element ds exerts on a fluid at a point s, denotes as ds where s is the arc length along
the slender filament of cross-section, is proportional to the local velocity v(s, t),
measured in a coordinate frame in which the fluid is at rest at infinity. Decomposing
the velocity in its normal and tangential components with respect to the local frame,
as shown in Figure 2.2, the force density can be expressed as:

df⊥(s, t)

df‖(s, t)

df(s, t)

ds = λ

rf

rh

µ

X

Y

Figure 2.2: Description of Resistive Force Theory for smooth and slender flagellum.
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d f⊥(s, t) = −µ c⊥v,s v⊥(s, t) ds,

d f ‖(s, t) = −µ c‖v,s v‖(s, t) ds,
(2.7)

where c‖v,s ∈ < and c⊥v,s ∈ < are the viscous friction coefficients that define the
relation between velocity and forces, concretely, in the tangential and normal direc-
tion of the infinitesimal element, respectively. As for drag coefficients, Gray and
Hancock defined them strictly based on the geometry of the body as follows:

C⊥v,s = −
2π

log( r f
2l ) + 1

2

,

C⊥v,s
C‖v,s

= 2.

where r f is the radius of the flagellum and λ is the wavelength of the deformation
along the flagellum, although other authors consider it as the infinitesimal element
length (l = λ). Likewise, their definition depends only on the geometrical shape of
the body and the fluid characteristics.

However, these coefficients were reviewed and slightly modified by different
authors [112, 113, 114]. All of them agree that the coefficients may need to be
weighted and that the ratio between them may be lower. Note also that the viscosity
parameter is not included in the coefficients as other authors present.

The RFT offers a simple method to determine the resulting forces of the motion
of a slender body in a viscous environment. Despite the advances that it is supposed
in the study of cell motion, it is a coarse description of the hydrodynamic interaction.
A more accurate definition of hydrodynamic interactions between the parts of a
smooth and slender body is captured by the general slender body theory (SBT)
[108, 113, 114]. It was first described by Hancock [110] and consists of applying
the solution of a three-dimensional slender filament to a two-dimensional flagellum
using an appropriate distribution of flow singularities.

Two approaches to the SBT have been proposed. The first approach proposes
to solve the flow dynamics as a natural extension of RTF and approximate the
complete solution as a series of logarithmically small terms. The first logarithmic
term corresponds to the RFT coefficient and the rests are calculated to determine
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the Stokelest distribution, which represents the flow behavior away from the slender
body and asymptotically coincides with the flow behavior close to the flagellum. It
is worth mentioning that the term Stokelest was first coined by Hancock [110] in
reference to the singularity inherent to viscous motion, which induces tangential
and normal component velocities. This approach offers accurate results, but due
to the small contribution of terms, it is necessary to solve many of them. The
second approach is to directly derive the integral equation that satisfies the unknown
distribution of singularities along the slender body. It states that if F(s) is the force
per unit length with which a slender body acts on a fluid, then the resulting fluid
motion can be represented by a distribution of Stokeslets along the centerline, of
strength F(s) per unit length, accompanied by dipoles. The fluid velocity field closely
matches slender body motions v such that the whole cross-section where s = s0

moves with velocity [113]:

v(s0) =
f⊥(s0)
4πµ

+

∫
x0>δ

G(x0 − x) · F(s0)ds (2.8)

where G is the Oseen tensor defined as G(r) = 1
8πµ

(
1
|r| +

r · r
|r|3

)
.

Although general SBT offers higher accuracy, a simple method that describes
the hydrodynamics at low Re is sometimes required rather than good accuracy.
However, restricting to the case of a slender body without a head, a comparison
between the two theories shows that the results obtained by RFT are consistent with
those obtained by SBT and a slightly weighting of the drag coefficients improves
the results [114, 116, 117]. As a complement to the previous theories, methods
based on finite element simulations have been developed that allow solving Stokes’
equations in a simpler way and with a higher computational cost. On the other hand,
it is important to mention that it is not necessary to capture all fluid flow details
for control design purposes, since control feedback can compensate for reasonable
modeling errors.

2.4.2 Living at low Reynolds number

The previous sections have discussed how the change of scale implies a shift of
paradigms in which it is necessary to redefine the traditional methods adapting to the
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new demands of this new field, where the forms of manufacture, operation, handling
and propulsion are no longer completely applicable. Focusing on the locomotion
of microrobots in fluid environments, as is mostly the case in medical applications,
these will have to swim in low Re environments so viscous forces will govern the
motion dynamics.

Swimming in a lowRe environment requires a new interpretation of macroscale
propulsion methods. Analyzing the Stokes’ equations from the perspective of
swimming motion, the following two interrelated conclusions can be stated:

• The propulsion method cannot be based on inertia since there is no temporal
dependence on the motion, and it is instantaneous. In other words, the
displacement of the swimmer is not influenced by the acceleration at which it
is moving.

• The swimming gait or beating waveform has to perform a time-asymmetric
motion, also known as nonreciprocal motion, to achieve net propulsion. At
low Re, the flow is kinematically reversible, which means the net displacement
only depends on the geometrical sequence of shapes. However, if the motion
is time-symmetric, the average displacement during one period will be zero
because the following sequence will cancel displacement due to the first
sequence of movements.

Both these statements are captured in the scallop theorem, which was postulated
by E. Purcell [118]. The theorem gets its name from the scallop motions, which
consist of opening its shell slowly and closing its shell quickly, propelling due to the
change of acceleration in the opening and closing movements. Based on the above
statements, the theorem states that scallop does not perform a suitable movement
for low Re environment, because it breaches the two statements. In the first place,
the different velocity in the movements does not have any effect, and second, the
motion is time-symmetric, so it is the same forward and backward.

E. Purcell introduced with this scallop theorem that any swimmer requires a
minimum of two joints with one degree of freedom (DoF) to perform a nonreciprocal
motion and thus achieve propulsion at low Re environments. A comparison between
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Figure 2.3: Motion comparison in Purcell’s three-link swimmer: (a) reciprocal (b)
nonreciprocal.

a nonreciprocal and reciprocal motion is illustrated in Figure 2.3 with the sim-
plest design that could implement those motions, which means Purcell’s three-link
swimmer. The nonrepetition of any previous and successive movement in a period
sequence characterizes nonreciprocal motion. As can be seen, the motion consists
of moving the end segments alternatively from an initial position without going
back to any previous state until having completed a cycle. The coding to identify
the spatial configuration of a nonreciprocal motion is shown in the figure’s center,
where the letter “U” is used if the displacement is positive, whereas “D” means that
it is negative or equal to zero. Therefore, the sequence UD-DD-DU-UU corresponds
to nonreciprocal motion, whereas UD-DD-DU-DD identifies a reciprocal motion.
Refer to [119] for more details on the coding to identify a nonreciprocal motion.

2.4.2.1 Propulsion methods

The scallop theorem imposes a strong geometrical constraint on the type of
swimming motion for propulsion at low Re. This reason has motivated the design of
most propulsion methods based on biological systems or microorganisms, such as
bacteria and eukaryotic cells. Nature offers various methods that perform an inherent
nonreciprocal motion, guaranteeing net propulsion and displacement. There are
three main types based on eukaryotic, Prokaryotic and Paramecium cells.

The motion of the Paramecium consists of a stick-slip crawling mechanism.
Its operation is similar to the action of an oar in a boat (see Figure 2.4a). To
push the boat, the oar is used at its widest part and returns to the initial position
through the area of minimum opposition to the flow, which means the narrowest area,
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ensuring that the movement is nonreciprocal. Eukaryotic cells, being spermatozoon
an example, perform a different method consisting of producing a beating waveform
or traveling wave through a flexible flagellum or tail (see Figure 2.4b). As for
prokaryotic cells, like Escherichia coli or Salmonella, they develop a helical motion
similar to a corkscrew (see Figure 2.4c), through a rigid or flexible flagellum. In the
last case, the shape is given by the rotational motion.

As it was commented, the last two methods have received great attention in
the microrobotics community, and as a result, they have suffered a more extensive
development in the previous decades. It should be noted that the term flagellum
refers to the flagellum attached to some bacteria conferring mobility capabilities
and the fundamental organelles in eukaryotic organisms that play a main role in the
locomotion method. However, the bacterial flagellum is utterly different from the
eukaryotic one from a structural and mechanical perspective. This thesis will focus
on the specific case study of microrobots with a flexible flagellum whose motion is
limited in the plane.

2.4.2.2 Flagellum structure

From a macroscopic perspective, the undulatory motions of eukaryotic flagella
can be described by flexible behavior. However, if they are observed on a small
scale, their structure reveals a completely different behavior. The flagellum structure
is based on a fixed geometry called axonema. It is characterized by having nine pairs
of microtubules arranged in a circular form and with a central pair (9 + 2), where
the microtubules are actin filaments with relatively high stiffness. Coupled and
distributed along the flagellum, there are binding proteins and dinein. The proteins
act as binding and contraction elements between the microtubules; that is, they

Power stroke

(a) (b)
(c)

Figure 2.4: Propulsion method bioinspired: (a) stick-slip crawling, (b) flexible flagellum
and (c) helical flagellum.
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Figure 2.5: Deformation produced on microtubules due to active actuation of molecular
motor and passive proteins.

perform a function analogous to that of a muscle by producing a bending moment in
the flagellum [120]. As for dinein, it is a molecular motor whose action causes the
longitudinal sliding between microtubules, as sketched in Figure 2.5a, and whose
energy is extracted from the hydrolysis of adenosine triphosphate (ATP). The result
of the action of this motor is the longitudinal sliding between microtubules. The
action of binding proteins prevents the sliding between microtubules and induces
their bending moment (see Figure 2.5b). This moment gives rise to the basic
undulatory movement observed in the flagellum of eukaryotic cells. Based on this
structure, it may be reasonable that the behavior of the flagellum can be interpreted
as an infinite flexible chain of infinitesimal cylindrical segments linked through
one DoF that allow an undulatory motion due to a bending moment at each joint
[111].

At the macroscopic scale, this type of movement is observed in robot snakes
or unrestricted articulated manipulator robot systems. Taking both systems as a
reference, numerous dynamics models have developed and can be found in the
literature, highlighting the manipulator models [121] and snake robots models
[122, 123, 124].

2.4.2.3 Waveforms for propulsion and locomotion

A second crucial factor for locomotion is the undulatory motions performed by
the flexible flagellum. In nature, there are numerous examples of self-propelled lo-
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comotion strategies from which propulsion methods are inspired [125]. Specifically
for low Re environments, the movements of bacteria and eukaryotic cells are the
most efficient methods from a propulsion perspective. Their motion is characterized
by the generation of a continuous beating wave motion (waves) with the flagellum
propagated backward from the head to the flagellum. Such motion only dissipates
a part of the energy in the environment and the rest of the energy is focused on
achieving propulsion through the motions, reaching a high-efficiency ratio [126].
This is why it is considered the most relevant and efficient waveform motion for
planar swimming robots. Moreover, this type of motion is exactly an asymmetric and
nonreciprocal periodic motion, which Purcell described as necessary for propulsion
in low Re [118].

The three classical waveforms present in biological swimmers are described next.
The first kind of planar wave is based on mimicking the motion of the flagella of
eukaryotic cells. It was first reported by Gray and Hancock in [111], and is described
as a traveling harmonic wave. The second and third waveforms characterize the
Carangiform fish’s motion, i.e., the bending of their bodies in a propulsive wave
that extends from head to tail end. This motion was classified by Lighthill [127]
under the body and caudal fin (BCF) locomotion and is described using a traveling
wave function. It should be highlighted that two properties are preserved during the
propulsion of Carangiform fishes:

1. The end of the flagellum attached to the swimmer’s head is always maintained
at zero amplitude. This will be referred to as the boundary condition.

2. The wave amplitude along the flagellum can be modulated. For spermatozoon,
it is approximately constant.

The following expression can mathematically describe these three waveforms

yw(x, t) = cw,t x + (cw,0 + cw,1x + cw,2x2) sin
(
2π
λ

(x − Vpt)
)
, (2.9)

where x and yw are the position and transversal displacement of the tail with respect
to the swimmer’s head, respectively, Vp defines the propagation velocity of the
wave and relates the wavelength (λ) and the frequency ( f ) employing Vp = λ f , cw,1

and cw,2 are the coefficients that govern the amplitude growth, and cw,t defines the
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Figure 2.6: Classical traveling waves for bioinspired swimmers with cw,t = 0: (a) harmonic
waveform and (b) linear and quadratic Carangiform waveforms

mean amplitude of the motion, and which strongly related to the swimming robot
turning ratio. For harmonic waves, the amplitude is only given by coefficient cw,0

(thus, cw,1 = cw,2 = 0). This allows the achievement of high propulsion thrust and,
consequently, the maximum displacement and velocity since the wave amplitude
is maintained along the displacement axis. For Carangiform swimmers, cw,0 = 0.
The two propulsion properties mentioned above are preserved during motion by
choosing adequate values for cw,1 and cw,2 coefficients.

Figure 2.6 depicts the three classical traveling waveforms. As shown in Fig-
ure 2.6a, the harmonic wave, unlike the other two, is characterized by a constant
amplitude along the flagellum. For the linear Carangiform waveform (Figure 2.6b),
the amplitude has a linear growth along the flagellum and the maximum amplitude
is reached at the end of this. However, this way of swimming implies a slow for-
ward thrust and velocity. On the other hand, the quadratic Carangiform waveform
(Figure 2.6b) allows a second-order polynomial growth of the amplitude, and thus a
better modulation of it through the two coefficients cw,1 and cw,2.

2.4.3 IPMC technology

Within many current applications, the ionic polymer metal composite (IPMC)
has revolutionized applications in soft robotics, with particular attention to mi-
croswimming robots and soft artificial muscles for medical uses [128]. In this sense,
IPMC is presented as an emerging material that stands out for its bending capacity
with a relatively low power supply (4–6 V), low density, potential biocompatibility
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and biodegradability, and underwater actuation, which makes it suitable for the
development of swimming microrobots and biomedical applications. However,
working with such materials involves multiple challenges, beginning with fabri-
cation techniques, behavior characterization and performance analysis for control,
which requires understanding the physical models and the influence of physical
parameters [129, 130]. Currently, there are few applications of this material in mi-
crosystems, primarily due to a lack of fabrication standards, as well as the reduced
number of models that describe its behavior that has been published [131, 132].
Likewise, only of few methods can be found in the specialized literature for man-
ufacturing. For example, an arbitrarily shaped IPMC bulk-machining method is
proposed in [133, 134], using MEMS technology [135] or molding and integrating
IPMC actuators into a soft silicone tube [136]. The most common method used
currently for macro applications is the classical chemical and subsequent mechanical
cutting method to fabricate and split an IPMC bulk sheet. Another concern is the
variability of material properties depending on the manufacturing process.

This section briefly presents the current state-of-the-art IPMC manufacturing
technology and physics-based models, namely, impedance and actuation models.

2.4.3.1 Overview of IPMCs

IPMC units are usually manufactured using Nafion, a thin ion-exchange layer
based on a perfluorinated ionomer membrane in a hydrated state with water as
a solvent, plated with platinum and establishing a couple of electrodes on both
surfaces. The ion-exchange layer is neutralized with Na+ counteriones to balance
the electric charge of the anions attached to the ionomer. Likewise, IPMC sheets can
also be manufactured using different types of ionomer membranes, like Flemion,
and using different types of counteriones, like Li+, Rb+, K+, Cs+, Ti+, Ba+, with
water, ethylene glycol, or glycerol as a solvent, and other organic cations for dry
IPMC actuators like TBA+ and TMA+. When a positive voltage is applied to one of
the electrodes, an ion migration is produced, moving the hydrated cations and water
molecules inside the polymer toward the opposite surface. This motion will increase
the gradient concentration, producing electrostatic and osmotic forces inside the
polymer and forcing the bending. Therefore, IPMCs are electrically driven materials
that undergo bending deformations in the presence of external voltages.
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2.4.3.2 Physics based models

Impedance and actuation models are usually used to describe the IPMC behaviors
[131]. Both models are useful for design and material characterization. Next,
governing equations and the mentioned models are presented. Let’s start with the
basic electrostatic equations:

E = −∇φ

D = κeE

∂D
∂x

= F(C+ −C−)

(2.10)

where φ, D, E, κe, F, C+, and C− are the electric potential field in the polymer,
electric displacement, electric field, electric permittivity, Faraday’s number, and the
cation and anion concentration, respectively. The ion-exchange dynamic can be
described using the continuity equation:

∇ · J = −
∂C+

∂t
(2.11)

where J is the ion flux vector inside the polymer and ∇ · J, the divergence. The ion
flux J is described as:

J = −d
(
∇C+ +

C+F
RT
∇φ +

C+∆V
RT

∇P
)

+ C+v (2.12)

where d is the ion diffusivity, R is the gas constant, T is the absolute temperature,
P is the pressure, and ∆V is the volumetric change. Combining (2.10)–(2.12) and
neglecting small term, the following partial differential equation (PDE) for charge
density ρ(x, z, t) is obtained:

∂ρ

∂t
+ d

∂2ρ

∂x2 +
F2dC−

κeRT
(1 −C−∆V)ρ = 0 (2.13)

Reference z axis is defined in the central polymer backbone, being h the distance
between the backbone and the electrode layer and parallel to x axis. It is assumed
that the induced stress, σ, is proportional to charge density ρ [137]:

σ = α0ρ (2.14)
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where α0 is the coupling constant. Then, using Laplace transform for ρ(x, z, t),
the original PDE (2.13) becomes into the following ordinary differential equation
(ODE):

sρ − d
∂2ρ

∂x2 + Kρ = 0 (2.15)

where K = F2dC−
κeRT . A symmetrical charge distribution is assumed around x = 0, thus

a solution for the charge density can be obtained as:

ρ(x, z, s) = 2c2(z, s) sinh(β(s)x) (2.16)

where β(s) =

√
s+K

d , and c2(x, s) is a generic function that depends on the boundary
conditions, which can be obtained from the impedance model in [138].

IPMC actuators can be split into several electrical units and described as an
electrical lumped model, where expressions relating current and electric potential
are given by:

∂φ±
∂z

= ±
r′1
W

is(z, s) (2.17)

∂is(z, s)
∂z

= −(ip(z, s) + ik(z, s)) (2.18)

where φ± is electric potential, the is, ip and ik denote the surface current on the
electrodes, the distributed current through the polymer due to ion motion and
the leaking current, respectively. Surface resistance appears due to the platinum
electrodes, generating a drop voltage along z and x axes. Resistances r1 = r′1/W,
r2 = r′2/W and Rp = R′p/W represent the impedances for one electrical unit, being
r′1 and r′2 the resistance per unit length (Ω · m) in the electrodes and R′p representing
the polymer resistance per unit length.

From (2.17), and using proper boundary conditions, an expression for the electric
potential for x = ±h can be obtained:

φ(±h, z, s) =
±V(s)

2
∓

∫ z

0

r′1
W

is(τ, s)dτ −
r′2
W

ip(z, s) (2.19)

where ±V(s) = 2φ±(0, s, ). Likewise, the electric field can be expressed as:

E(h, z, s) = −
φ(h, z, s)

h
γ(s)(s + K)

γ(s)s + K tanh(γ(s))
(2.20)
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where γ(s) = β(s)h. As for ion motion and leaking current can be expressed as
follows:

ip(z, s) = −sWκeE(h, z, s)

ik(z, s) =
φ+(z, s) − φ−(z, s)

R′p/W

(2.21)

Equations (2.18), (2.20) and (2.21) can be solved to obtain the surface current is(z, s)
with is(L, s) = 0, where L is the IPMC length. Total current can be expressed as
I(s) = i(0, s). Therefore using an expression for the electric potential regarding the
applied voltage, an expression for the global impedance can be obtained as:

Z(s) =
V(s)
I(s) =

2
√

B(s)
A(s) tanh(

√
B(s)L)

(2.22)

with
A(s) =

θ(s)
1 + r′2θ(s)/W

+
2W
R′p

, B(s) =
r′1
W

A(s)

θ(s) =
sWκeγ(s)(s + K)

h(sγ(s) + K tanh(γ(s))

(2.23)

2.4.3.3 Actuation model

Moment bending generation inside of the polymer can be expressed as follows:

M(z, s) =

∫ h

−h
xσ(x, z, s)Wdx (2.24)

An expression for the moment generation can be obtained as:

M(z, s) = −
2α0KWκe (γ(s) − tanh(γ(s))) φ(h, z, s)

(sγ(s) + Ktanh(γ(s)))
(2.25)

Considering Euler-Bernoulli beam theory for linear displacement, the bending
moment can be expressed as:

M = −EmI
∂2w
∂x2 (2.26)

where Em is the elastic modulus, I is the second moment of area, and w is the
deflection. Solving w with w(0, s) = 0 and w′(0, s) = 0 as boundary conditions, and
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considering that induced stress is proportional to charge density, it is possible to
obtain an expression to relate tip deflection with the applied voltage as follows:

H(s) =
w(L, s)
V(s)

= = −
L2α0W

2EI
Kκe (γ(s) − tanh(γ(s)))
(γ(s)s + K tanh(γ(s)))

2X(s)
1 + r′2θ(s)/W

(2.27)

where X(s) is given by:

X(s) = −
1 − sech(

√
B(s)L) − tanh(

√
B(s)L)

√
B(s)L

B(s)L2 (2.28)

Additionally, it is necessary to couple a mechanical model to obtain a reliable model
of the IPMC dynamics for the first vibration mode, being accurate enough if the
bandwidth is relatively low:

2.4.4 Cardiovascular system models

In the medical field, the design of experimental models and platforms that emulate
the hemodynamic conditions of the cardiovascular system has been an active topic
since the mid-19th century and its interest has increased in recent years. This is
motivated by the fact that cardiovascular diseases (CVD) are the leading cause of
death worldwide, according to the latest reports from the World Health Organization
(WHO). Moreover, the upward trend over the last thirty years continues to increase
for almost all countries [139]. In 2019, over 18 million people died from CVDs,
which represents 32% of all global deaths; more specifically, 85% of them were due
to heart attack and stroke [140]. This fact encouraged, and still does, research on
models, where experiments involving computational and mathematical models are
much simpler and less expensive to be performed in comparison with in vivo or in
vitro experiments. In this sense, this section presents a general description of the
CVS and a brief introduction of the main CVS models available in the literature,
which will be taken as a basis for modeling a hydraulic platform intended for
experimentation with a swimming robot.

2.4.4.1 Overview of the CVS

The following describes the CVS from a functional point of view, with particular
attention to the carotid artery. The cardiac cycle is explained through the left
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ventricle pressure-volume (PV) loops, diagrams that also allow the identification of
dysfunctions affecting the CVS.

The CVS can be simply described as a distribution network of blood vessels
that supplies blood to all the parts of a body thanks to the heart, which performs
as a pump. The path followed by the blood is a closed loop, starting in the heart,
continuing through the arteries, passing through the capillaries, where the exchange
of substances occurs, and returning to the heart via the veins. From a functional point
of view, the distribution network is divided into two stages: 1) systemic circulation,
which transports the oxygen and substances; and 2) pulmonary circulation, being
responsible for the oxygenation of the blood [141].

The heart, responsible for pumping the blood, is composed of a double atria-
ventricle chamber, where the ventricle is the pump and the atria is a preloaded
chamber. The compression or contraction of the ventricle generates the necessary
pressure to inject blood through the arteries. Specifically, the right side pumps the
blood into the pulmonary artery, which carries it to the lungs, and then it returns to
the left side, which pumps it again to the rest of the body. It should be noted that
the blood only flows in one-way because one-way valves are situated between the
chambers to prevent reflux, called atrioventricular valves, and at the output of the
ventricles, called semilunar valves.

Regarding systemic circulation, it begins in the ascending aorta, branching
into smaller arteries until it reaches the capillaries, covering the entire body. The
main branches are: 1) right and left subclavian arteries, supplying blood to the
thorax, head, neck, shoulder and arms; 2) right and left common carotid arteries,
carrying blood to the head and neck; and 3) descendent aorta, which continues to
the abdominal aorta. Finally, the return path is composed of veins that converge in
the vena cava, which ends in the heart. Within the systemic circulation, the carotid
arteries stand out for their high incidence of strokes [142].

The heart’s contraction results from a succession of electrical and mechanical
phenomena that occur during a heartbeat, known as the cardiac cycle [141]. The
cardiac cycle is divided into two alternate phases: diastole (dilation period) and
systole (contraction period), arranged and simplified into four stages. The cardiac
cycle starts with the chambers relaxed and the ventricles partially loaded, followed
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Figure 2.7: Example of PV loop and parameters that can be measured. The meaning of
acronyms are detailed in Table 2.2. Image based on [1, 2].

by: 1) the first stage is the atrial systole and ventricular diastole, in which the
atrium contracts, filling the ventricles; 2) the second stage is atrial diastole and
the beginning of ventricular systole, which means that the atrium relaxes until the
next cardiac cycle while the ventricles contract and the atrioventricular valves close,
increasing the pressure, but not achieving enough pressure to open semilunar valves;
3) the third stage is the end of ventricular systole, when ventricle pressure rises until
it exceeds arterial pressure, opening the semilunar valves and ejecting the blood
into the pulmonary and systemic circulation; and 4) the last stage is the ventricular
and atrial diastole, when the pressure in the ventricles decreases rapidly and all the
chambers are passively loaded due to their relaxation. Then, a new cycle starts with
the atrial systole.

A graphical way to describe and characterize the cardiac cycle is by means of a
left ventricle PV loop, which represents the left ventricle pressure (LVP) versus the
left ventricle volume (LVV) throughout the four stages, allowing to identify changes
in heart function, such as preload and afterload factors and contractility of the heart
[143]. Another advantage of PV loops is that they allow rapid detection of CVDs,
such as heart failure, myocardial and valve diseases. An example of a PV loop is
shown in Figure 2.7, where the different stages of a cardiac cycle corresponding
to the left ventricle (LV) are represented from a thermodynamic point of view: 1)
passive filling (referred to as A-B); 2) isovolumetric contraction (denoted as B-C);
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3) ejection (C-D); and 4) isovolumetric relaxation (D-A) [2]. Furthermore, these
diagrams also provide information on a wide range of variables, such as those listed
in Table 2.2.

Concerning the factors affecting the functioning of the heart, the preload factors
refer to the level of distension of the ventricle during diastole and are proportional
to end-diastolic volume (EDV) [141, 144]. According to Frank-Starling’s law, an
increase in ventricular preload leads to an increment of stroke volume (SV), which
implies an increase in EDV and the opening pressure of the semilunar valves. These
effects are shown in Figure 2.8a. Furthermore, an increase in preload is associated
with an increment in physical exercise and acceleration of heart rate (HR), while
occlusion of the veins or hemorrhages produces a reduction of preload.

The afterload is related to end-systolic volume (ESV), although preload factors
and inotropy also affect it. ESV is the pressure the ventricle must exert to open the
semilunar valves and propel the blood. In the PV loops, an increase in afterload
involves a reduction in SV and an increment in ESV, which also leads to an increase
of the EDV (see Figure 2.8b). An increased systemic resistance usually causes an
increase in afterload due to damage of the semilunar valves, stenosis or obstructions
in the circulation, as well as a loss of elasticity in the aortic artery.

With respect to inotropy, understood as the capacity of the ventricles to contract, a
rise of this factor implies a higher slope of the end-systolic PV relationship (ESPVR)

Table 2.2: Parameters measured from PV loops. Data extracted from [2].

Abbreviation Parameter Meaning

EDV End-diastolic volume Left ventricle volume in diastole.
ESV End-systolic volume Left ventricle volume in systolic.

ESPVR End-systolic PV relationship Maximal pressure of left ventricle.
EDPVR End-diastolic PV relationship Left ventricle pressure in diastole.

Ees End-systolic elastance Peak chamber elastance during a beat.
Ea Effective arterial elastance Relates EDP and EDV to ESV.
SV Stroke volume The difference between ESV and EDV.
SW Stroke work The area within the loop.
PE Potential energy The area within the loop and ESPVR.

PVA Pressure-volume area Sum of SW and potential energy PE.
ME Mechanical efficiency The ratio between SW and PVA.
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Figure 2.8: Effects on PV diagrams due to changes in: (a) preload, (b) afterload, and (c)
inotropy on left ventricular.

line, represented in Figure 2.8c. This variation allows to have a higher SV and
reduces EDV and ESV. Reduced ability to contract is observed as a consequence of
a prolonged state of hypoxia, hyponatremia or hypercapnia.

2.4.4.2 Approaches of CVS modeling

The CVS is a relatively complex system that needs knowledge from several
branches of physics and chemistry to understand all its behavior, which has led
to the development of models or simulators, in greater or lesser detail, to achieve
a global understanding of its operation. Numerous models have been proposed
and approached from different perspectives, such as the study of neuroregulation
mechanisms, gas exchange or the hemodynamics of the system. The models offer
the possibility to diagnose or predict the behavior of the CVS when a patient suffers
a cardiovascular dysfunction or pathology [145, 146, 147, 148, 149], or to study
the performance of auxiliary devices [4, 150, 151]. This reduces the diagnostic
time for certain pathologies or research time of functional evaluation devices under
development while reducing animal experimentation. On the other hand, they
allow to emulate the hemodynamic conditions and/or working conditions of the
robots. However, existing models have limitations at the level of both clinical use
and implementation on a real platform, due to their physical and computational
complexity. In addition, if modeling of pathologies, or even medical assistance
devices, is desired, it usually requires modification of numerous parameters of
the model, which are firmly related to each other, making it necessary sometimes
to perform new validations. This fact makes the models with a great number of
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parameters undesirable for real applications. In this regard, lumped parameter
models offer an advantage over the others, demonstrating a higher accuracy to
execution time ratio, which is suitable for real-time simulations and applications
[152, 153]. Despite this, lumped models are reduced to describe the main arteries
of the CVS [4, 147, 154, 155] or the entire circulatory system [156], complicating
the study of certain vascular areas due to a greater number of parameters. This is
the case of the carotid artery, for which no studies model its behavior simply and
accurately. Despite this, it is one of the main arteries affected by stenosis according
to clinical studies [157]. On the other hand, the development of real platform or
mock circulatory loops (MCL) has also received a great deal of attention due to
the advantages they offer in the clinical and engineering fields, allowing costly and
problematic clinical and animal testing to be avoided. Their possibilities of use
cover a large number of applications, which are not only limited to in vitro testing
of ventricular assist diseases (VAD) [158] or artificial heart ventricle (AHR) [159],
but also to the study of vascular grafts and lung or heart prostheses. It also supports
other disciplines, such as tissue engineering, by creating bioreactors, or education by
emulating physiological conditions and the anatomical structure of the circulatory
system and, in recent years, as a test base for swimming robots.

The MCLs described in the literature can be grouped into two categories ac-
cording to the type of flow developed: pulsed or nonpulsed system. The type of
category will be determined by the type of actuator. Nonpulsating flow systems use
centrifugal or axial pumps, while pulsating flow systems use piston pumps, eccentric
pumps, diaphragm pumps or pneumatic and hydraulic pressure chambers. The first
MCLs in the mid-20th century were focused on evaluating heart valve prostheses.
They tried to reproduce the CVS through discrete elements that emulated peripheral
resistance, the elasticity of the arteries through a conduit of different dimensions or
flexible tubes, and the atria as open deposits. An example of this is reported in[160],
where a pulsatile flow mechanism that imitates the heart’s contraction to push the
blood through a hydraulic compression circuit was presented. On the other hand,
other research aimed at developing more complete systems recreating the pulmonary
and systemic circulation, where elasticity was emulated through pressurized deposits
and resistance with membrane tubes [161, 162]. The subsequent studies published
addressed different implementation methods, although all of them were based on
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the approaches mentioned. It was not until the last few decades that there was a
change in the approach. As a result, research focused on studying a mechanism that
emulates the left ventricle, controlling its elastance and/or complying with Frank-
Starling’s law. In this way, it is possible to emulate not only normal hemodynamic
conditions, but also pathological ones [163, 164].

2.4.4.3 Electrical equivalences

To describe the CVS using a zero dimension (0-D) global parameter model, it
is firstly required to understand how it is possible to transfer the fluid dynamics of
an environment to a discrete system, such as electrical circuits. The key concept
is to analyze the CVS through segments or compartments, which means defining
the relationship between their output and input, which can be calculated either
empirically or theoretically.

Applying the Navier-Stokes’ equations to a blood vessel segment and taking into
account the considerations given in [165, 166], it is possible to define the relationship
between pressure and flow within the segment as:

Kcl
d p̂
dt

+ q2 − q1 = 0

ρl
A

dq̂
dt

+
ρKRl
A2 q̂ + p2 − p1 = 0,

where p̂ and q̂ are the average segment pressure and flow rate, respectively, p1

and p2 and q1 and q2 are the pressures and the flow rate at the inlet and outlet,
respectively, A denotes the average section of the blood vessel, l is the length of the
segment, ρ is the density of the blood, and Kc and KR are variables dependent on the
elastic properties of the blood vessel and the viscosity of the blood (see [165, 167]
for more information).

The system of equations (2.29) implies that the flow and pressure of the segment
considered is limited by the boundary conditions (q1,2 and p1,2). However, the 0-D
model does not have boundary conditions, since there is no continuous dependence
on space, but rather an input/output relationship. Therefore, to solve such a system
of equations, it is necessary to establish initial conditions (p0 = p1 and q0 = q1) and
also to make the following simplifications: p̂ ≈ p2 y q̂ ≈ q1. These assumptions,
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Figure 2.9: Lumped electrical model equivalent to a short blood vessel segment.

valid for relatively short blood vessel segments, result in a 0-D global parameter
model [165].

Equations of this type are found in the analysis of resistor-inductor-capacitor
(RLC) electrical circuits, which demonstrate the same dynamics [167]. This is
shown by analyzing the circuit depicted in Figure 2.9, whose dynamics is defined by
the following relationships:

C
dV2

dt
+ I2 − I1 = 0

L
dI1

dt
+ RI1 + V2 − V1 = 0

By analogy to an electrical circuit, current represents blood flow, while pressure
corresponds to voltage. Likewise, from the sets of equations (2.29) and (2.29)
it is possible to establish the equivalence of the electrical components with the
variables that define the characteristics of the blood vessel considered as follows: the
resistances emulate the opposition of vessel to flow due to viscosity and variation
in the diameter of the vessels; the inductance shows the inertial effects that the
blood flow experiences as a result of flow variations; and the capacitor represents
the conservative term of the principle of mass conservation due to the elasticity of
the blood vessels. Assuming that the blood behaves like a Newtonian fluid, i.e., a
flow developed under a constant pressure gradient, the following definitions of the
equivalent electrical components can be written [165]:

R =
8πµl
A2 , L =

ρl
A
, C =

3πr3l
2Eh

, (2.29)

where µ is the viscosity of the blood, E is the Young modulus , and h and r are the
thickness and the radius of the vessel, respectively.
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“If you want to find the secrets of the universe, think in terms of energy, frequency
and vibration.”

Nikola Testa
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This chapter describes the dynamic model of a flagellum-type articulated artificial
eukaryotic swimming robot for medium and low Re environments. The medium Re
case is when inertial effects cannot be ignored and have an influence equivalent to
viscous forces. As for the low Re case, inertial forces become negligible compared
to viscous forces. The above cases correspond precisely to mili and micro-scale
robots, respectively. Nonlinear control strategies will be applied to both models
to simplify them and reduce their strong nonlinearity. In addition, a new motion-
beating waveform is proposed to improve the propulsion efficiency concerning
classical waveforms.

3.1 Model for medium Re environments

The motion of biological swimmers is essentially performed in two dimensions.
For this reason, the swimming robot motions described next will be constrained
to such dimensions. The general case on three dimensions can be handled with
similar techniques, although it is slightly more complex [168]. The global frame
(inertial frame) is restricted to two dimensions and defined by the vectors (ex, ey),
and obtaining ez as result of their cross product. Similarly, the body frame for the
local coordinates of the links from the center of mass (CM) is given by the vectors
(e‖, e⊥), which define the tangential and normal directions to the link orientation,
and it is also the result of their cross product. Taking this premise as a basis, the
following sections will analyze the kinematics and dynamics of the articulated
robot.

3.1.1 Kinematic

Let’s consider a swimming robot whose flagellum is formed by Nu links plus the
head and each link has up to N f DoF. The flexibility of each link is modeled by a
spring-damper system except the last link, which is rigid and represents the head,
as shown in Figure 3.1. The robot presents (Nu · N f ) + 3 DoF; N = (Nu · N f ) + 1
degrees correspond to the angles of the link and the head, and 2 degrees to the flat
position of the head. Let qi = (xi, yi) ∈ <2 denote the (CM) of i-link in the global
frame with i ∈ {1, . . . ,N}, li is the length, ri is the link radius, θi is the angle that
forms with the horizontal ex axis with counterclockwise positive directions, and
αi is the joint angle defined as αi = θi+1 − θi. The local coordinates of each link
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are related to the global frame through the following rotation matrix, being able to
express the robot kinematics in both reference frames:

RI
B,i =

[
e‖,i e⊥,i

]
=

cos θi − sin θi

sin θi cos θi

 . (3.1)

It should be noted that links’ angles represent the orientation with respect to the
global horizontal axis. In contrast, joint angles are the difference between the link
angle of two consecutive links. Additionally, the swimmer robot velocity along its
forward or tangential direction is defined as [123, 124]:

υx = q̇x cosψ + q̇y sinψ (3.2)

that means the projection of the robot velocity vector onto the robot orientation
vector. Likewise, the coordinates of any link can be expressed as a linear function
of the swimmer head position qN = (qx, qy) ∈ <2 in the global frame, where the
geometric dependence between them is:

qi =

xi

yi

 =

qx −
∑N−1

j=i

( l j
2 cos θ j +

l j+1
2 cos θ j+1

)
qy −

∑N−1
j=i

( l j
2 sin θ j +

l j+1
2 sin θ j+1

)  (3.3)

Yi
’

Xi
’

θN

θNuNf

θ2Nf

αNuNf

α2Nf

qNuNf

q2Nf

q(Nu−1)Nf

qNf

q(Nu−2)Nf

q(Nu−3)Nf

qN ≡ (xN , yN )

Inertial frame (FI)

ex

ey

ez

q1q1q2

kf,1kf,2

bf,2 bf,1

θ1θ2θ3

qNf

Figure 3.1: Diagram of planar flagellum-type articulated artificial eukaryotic swimming
robot.
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and whose matrix form is

X = eqx −
1
2

LWCθ (3.4a)

Y = eqy −
1
2

LWSθ (3.4b)

where X = [x1, . . . , xN]T ∈ <N , Y = [y1, . . . , yN]T ∈ <N , e = [1, . . . , 1]T ∈ <N is a
summation vector, L = diag(li) ∈ <N×N , Cθ = diag(cos θ) ∈ <N×N , Sθ = diag(sin θ)
∈ <N×N , θ = [θ1, . . . , θN]T ∈ <N is the angle link vector, diag( · ) is an operator that
produces a diagonal matrix with each individual element of its argument along its
diagonal and W ∈ <N×N is a matrix defined by:

W(i, j) =


1 if i = j
2 if j > 1
1 if j = N
0 Otherwise.

(3.5)

where i and j denote its row and columns, respectively. If the link position is
differentiated with respect to time, linear velocities are obtained as:

Ẋ = eq̇x + 1
2 LWSθθ̇ (3.6a)

Ẏ = eq̇y −
1
2 LWCθθ̇. (3.6b)

Similarly, differentiating the link velocity, link acceleration can be found expressed
in terms of link angle and the swimmer’s head acceleration:

Ẍ = eq̈x + 1
2 LW

(
Cθθ̇

2
+ Sθθ̈

)
(3.7a)

Ÿ = eq̈y −
1
2 LW

(
Cθθ̈ − Sθθ̇

2) (3.7b)

where θ̇2
= diag(θ̇) θ̇. Additionally, the swimming geometry imposes two holonomic

constraints resulting from the connections between two neighboring links at joint
i ∈ 1, . . . ,N − 1 as:

xi+1 − xi =
li
2 cos θi +

li+1
2 cos θi+1 (3.8a)

yi+1 − yi =
li
2 sin θi +

li+1
2 sin θi+1 (3.8b)
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Using a matrix notation, the holonomic constraints for all the links can be
expressed in a more intuitive way by

DX = 1
2 AL cos θ, (3.9a)

DY = 1
2 AL sin θ, (3.9b)

where cos θ = [cos θ1, . . . , cos θN]T ∈ <N , sin θ = [sin θ1, . . . , sin θN]T ∈ <N ,
and the matrices D ∈ <(N−1)×N and A ∈ <(N−1)×N represent a difference and a
summation matrix, respectively, defined by:

D(i, j) =


−1 if i = j

1 if (i + 1) = j
0 Otherwise.

and A(i, j) =


1 if i = j
1 if i = ( j + 1)
0 Otherwise.

(3.10)

Hence, the set of equations corresponding to the position (3.4a), velocity (3.6a) and
acceleration (3.7a) describes the direct kinematic problem of the swimmer’s robot,
taking also in account that the coordinates of any link can be expressed as a linear
function of the other link or the head position.

3.1.2 Environment interaction

As discussed in sections 2.4.1 and 2.4.2, self-propulsion of biological microor-
ganisms and swimmer robots is the result of a combination of two main factors:
1) the resulting forces exerted on the body by the fluid environment, and 2) the
swimming pattern motion. Therefore, a correct description of fluid-body interaction
is crucial to the swimming robot dynamics. For that purpose, the environment
dynamics is based on the RFT. Although it offers lower accuracy than other theories
discussed, it is sufficient for control strategies design. Moreover, if the environment
characteristic or the swimming robot size cannot ultimately ensure the properties of
a Stokes’ flow, even if the system is in a low Re environment, inertial effects may
affect the swimming robot dynamics. Thus, a complete model requires considering
two types of forces resulting from the fluid-body interaction: 1) resistive forces
due to creeping flow, and 2) reactive forces result from a fluid mass’s change in
velocity.

Recalling the hydrodynamics simplifications mentioned in section 2.4.1, the
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description of the above forces is also supported by the following assumptions:

1. The fluid is viscid, incompressible, and irrotational in the inertial frame.

2. The relative velocity in the surrounding of the CM is equal to the relative
velocity of the respective CM of each link.

3. The flagellum is circular in cross-section.

4. Each segment is considered isolated.

5. The border effects are neglected.

On the other hand, the fluid velocity is assumed to be known and defined by
v f = (v f ,x, v f ,y) ∈ <2 in the ex and ey directions, respectively. The swimming robot
is modeled in a neutrally buoyant position concerning the gravitational force. Thus
the buoyant force (Archimedes’ principle) compensates for the gravitational forces.
Although, without loss of generality, the interaction forces described below can be
extended to a tilted plane, considering further the gravitational and buoyant forces
in that case.

3.1.2.1 Resistive forces

The particularization of the RFT to a flexible articulated swimming robot also
implies that the resistive forces or viscous drags are only proportional to the relative
velocity of links to the fluid velocity, expressed in local-frame coordinates [111,
112, 123]. Taking s as the arc-length coordinate in the i-th link with 0 ≤ s ≤ li, as
depicted Figure 3.2, the local coordinates of a point from the CM link are:

qi(s) = qi + se‖,i (3.11)

and the velocity is obtained by differentiating with respect to time, which means

q̇i(s) = q̇i + sθ̇ie⊥,i. (3.12)
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Then, it follows that the viscous force density function based on the RFT (2.7)
applied to i-th link of a swimming robot is

d fv,i(s) = − c‖v,i

((
q̇i(s) − v f

)
· eT
‖,i

)
e‖,i

− c⊥v,i
((

q̇i(s) − v f
)

· eT
⊥,i

)
e⊥,i ds,

(3.13)

where the coefficients c‖v,i and c⊥v,i are defined in the tangential (e‖,i) and normal (e⊥,i)
direction of the link, respectively. It is worth mentioning that the terms within the
large parentheses refer to the local relative velocity expressed in the global frame.

Finally, integrating the force density function (3.13) over the link length of the
link (li) with respect to s, including the length terms within the friction coefficients,
and using a matrix notation, the viscous forces actuating on the i-link CM are defined
as Fv,x

Fv,y

 = −RI
B,i

c‖v 0
0 c⊥v

 (RI
B,i

)T
Ẋ − V f ,x

Ẏ − V f ,y

 , (3.14)

where Fv,x = [ fv,x,1, . . . , fv,x,N]T ∈ <N and Fv,y = [ fv,y,1, . . . , fv,y,N]T ∈ <N are the
viscous forces in the ex and ey directions, respectively, c‖v = diag(c‖v,i) ∈ <

N×N , c⊥v =

diag(c⊥v,i) ∈ <
N×N and V f ,x = ev f ,x ∈ <

N and V f ,y = ev f ,y ∈ <
N are the fluid

df⊥
f

df
‖
f

XY

Body frame (Fb) qi

vf

Figure 3.2: Interaction between body and environment: viscous forces.
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velocity vectors. Developing and arranging the above matrix product results inFv,x

Fv,y

 =

−c‖v
(
Cθ

)2
− c⊥v

(
Sθ

)2 (c⊥v − c‖v)SθCθ

(c⊥v − c‖v)SθCθ −c‖v
(
Sθ

)2
− c⊥v

(
Cθ

)2

 Ẋ − V f ,x

Ẏ − V f ,y

 , (3.15)

where it can already be observed, considering only the resistive forces, the swimming
robot propulsion. This means a positive force or thrust in the direction ex can only be
developed if c⊥v > c‖v and, consequently, if

(
Ẏ − V f ,y

)
> c⊥v (c⊥v − c‖v)−1Tθ

(
Ẋ − V f ,x

)
,

where Tθ = diag(tan θ) ∈ <N×N . This will be explained in more detail in a later
section.

Furthermore, resistance forces also induce a moment in each link due to the
flagellum division into a finite joint segment robot. By contrast, other studies neglect
the contribution of torque produced by the environment [123], because they assume
that it does not significantly affect the swimming robot’s motion. However, when the
modeling approach is based on a finite joint segment robot, [122, 124, 169, 170, 171],
the fluid moments should be present in the model because: 1) they affect the accuracy
of the model, 2) their influence is strictly related to the required actuation torques at
the joint, and thus in the available technology to fulfill the technical requirements,
and 3) the torque is also proportional to the system’s power consumption. Then, the
moment caused by the interaction between the swimming robot’s motion and the
environment is calculated by

ez · τv,i(s) =

∫ li
2

−li
2

ez ·
((

qi(s) − qi
)
× d fv,i(s)

)
ds (3.16)

Developing and solving the above expression, it is observed that the resistive viscous
torque is only due to the normal forces actuating during its rotation, which can be
expressed as

Tv = −c◦v θ̇, (3.17)

where Tv = [τv,1, . . . , τv,N]T ∈ <N and c◦v = diag(c◦v,i) ∈ <
N×N are the viscous

friction torque coefficients.
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3.1.2.2 Reactive forces

The reactive or added masses forces aim to model the inertial effects resulting
from the acceleration of the surrounding fluid. For this purpose, the employed
approach is based on Morison’s equations, which describe the force exerted on a
differential section as a function of the relative acceleration of the link with respect
to the fluid, expressed in the local-frame coordinates as [172]

d fa,i(s) = − c‖a,i

((
q̈i(s) − v̇ f

)
· eT
‖,i +

(
q̇i(s) − v f

)
·

d
dt

eT
‖,i

)
e‖,i

− c⊥a,i
((

q̈i(s) − v̇ f
)

· eT
⊥,i +

(
q̇i(s) − v f

)
·

d
dt

eT
⊥,i

)
e⊥,i ds,

(3.18)

where c‖a,i and c‖a,i are the added mass coefficients in the tangential (e‖,i) and normal
(e⊥,i) direction of the link, respectively. These coefficients also depend on the
environmental properties and the swimming robot’s shape.

Regarding the derivative of the local frame vector basis, it is given by

d
dt

RI
B,i =

d
dt

[
e‖,i e⊥,i

]
=

θ̇i 0
0 θ̇i

 − sin θi − cos θi

cos θi − sin θi

 (3.19)

In the same way as the resistive forces, the differential force function (3.18) can
be integrated over the link length (li) with respect to s to obtain the added masses
forces actuating on the CM of i-link, in matrix form, asFa,x

Fa,y

 = −RI
B,i

c‖a 0
0 c⊥a

 ( (RI
B,i

)T
Ẍ − V̇ f ,x

Ÿ − V̇ f ,y

 +

(
d
dt

RI
B,i

)T Ẋ − V f ,x

Ẏ − V f ,y

 ), (3.20)

where Fa,x = [ fa,x,1, . . . , fa,x,N]T ∈ <N and Fa,y = [ fa,y,1, . . . , fa,y,N]T ∈ <N are the
added masses forces in the ex and ey directions, respectively, c‖a = diag(c‖a,i) ∈ <

N×N

and c⊥a = diag(c⊥a,i) ∈ <
N×N . The above expression can also be expressed as

Fa,x

Fa,y

 =

−c‖a
(
Cθ

)2
− c⊥a

(
Sθ

)2 (c⊥a − c‖a)SθCθ

(c⊥a − c‖a)SθCθ −c‖a
(
Sθ

)2
− c⊥a

(
Cθ

)2

 Ẍ − V̇ f ,x

Ÿ − V̇ f ,y


+

 (c‖a − c⊥a )SθCθθ̇ −c‖a(Cθ)2θ̇ − c⊥a (Sθ)2θ̇

c‖a(Sθ)2θ̇ + c⊥a (Cθ)2θ̇ (c⊥a − c‖a)SθCθθ̇

 Ẋ − V f ,x

Ẏ − V f ,y

 .
(3.21)

Similarly to viscous forces, the first term indicates that the relative transversal
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accelerations of the flagellum also contribute to the swimming robot’s propulsion.
However, from the second term, it can be deduced that if the robot’s velocity is
greater than that of the fluid, that means greater kinetic energy. The propulsion will
be reduced due to some energy being transferred to the environment to equal the
velocity. In other works, the fluid acceleration is considered equal to zero because
they assumed that the flow in the global frame is constant and irrotational, meaning
the swimming robot is immersed in a stationary flow or can be interpreted as such.
In addition, in slender bodies, the tangential coefficient (c‖a) is usually considered to
be zero because its influence is negligible compared to normal one [171, 173].

The consideration of the added masses forces also implies a moment as a result
of the normal forces induced on the flagellum, which can be calculated as

ez · τa,i(s) =

∫ li
2

−
li
2

ez ·
((

qi(s) − qi
)
× d fa,i(s)

)
ds . (3.22)

Solving the previous equation, the added masses torque is, in matrix form, defined
as

Ta = −c◦aθ̈, (3.23)

where Ta = [τa,1, . . . , τa,N]T ∈ <N and c◦a = diag(c◦a,i) ∈ <
N×N are the viscous

friction torque coefficients.

3.1.3 Motion dynamics

The description of the swimming robot dynamics is based on the free body
diagram illustrated in Figure 3.3, where it can be observed that the forces involved
in the motions are mainly the following: 1) resistive and reactive forces due to
environment interaction, which act on the CM of the links, 2) internal constraint
forces (hx,i and hy,i) that keep the links together, 3) torques resulting from the springs
and dampers that represent the link flexibility, and 4) the torque resulting from the
actuators to move links. Using the second Newton’s law, the force balance for each
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link in the global frame is:

mi ẍi = fv,x + fa,x − hx,i + hx,(i−1), (3.24a)

miÿi = fv,y + fa,y − hy,i + hy,(i−1), (3.24b)

θNdf⊥
f

df
‖
f

hx(i−1)

hy(i−1)

τf

X’Y’

Body frame (FB)

ui−1

qi−1

qN ≡ (xN , yN )

LN

Inertial frame (FI)

ex

ey

ez

θi

qi

qi+1

ui

u(i+1)

df⊥
f

df
‖
f

hxi

hx(i+1)

hy(i+1)

hyi

L i

τf

Figure 3.3: Free body diagram of head and link of a flagellum-type articulated artificial
eukaryotic swimming robot.



3.1. Model for medium Re environments 61

where mi is the mass of i-link. Expressing the force balance equations in matrix
form, the following form is adopted when all the links are considered:

M Ẍ = Fv,x + Fa,x + DT Hx (3.25a)

M Ÿ = Fv,y + Fa,y + DT Hy (3.25b)

where M = diag(mi) ∈ <N×N , Hx = [hx,1, . . . , hx,N−1]T ∈ <N−1 and Hy =

[hy,1, . . . , hy,N−1]T ∈ <N−1 are the vector joint constraint forces in the ex and ey

directions, respectively.

Now, the head acceleration can be expressed as a function of the external forces
actuating on the head, described in the equations (3.25a) and (3.25b) , and constraint
forces, obtaining:

mnq̈x = fv,x,N + fa,x,N + hx,N = eT
(
Fv,x + Fa,x

)
(3.26a)

mnq̈y = fv,y,N + fa,y,N + hy,N = eT
(
Fv,y + Fa,y

)
(3.26b)

It should be noted that the head constraint forces are equivalent to the sum of all
the reaction forces to which the other links are subjected. For its part, the torque
balance for i-link is given by

ji θ̈i = ui − u(i+1) + τ◦v,i + τ◦a,i − k f ,i(θi − θi+1) + k f ,(i−1)(θi−1 − θi)

−b f ,i(θ̇i − θ̇i+1) + b f ,(i−1)(θ̇i−1 − θ̇i) +
li
2

sin θi
(
hx,i + hx,(i+1)

)
−

li
2

cos θi
(
hy,i + hy,(i+1)

), (3.27)

where ji is the moment of inertia of i-link, ui is the actuator torque exerted at the
ends of the link, and k f ,i and b f ,i are the bending stiffness and damping of flexible
links, respectively. Using a matrix notation, the torque balances can be expressed
as

Jθ̈ = DT QU + Ta + Tv − DT K f Dθ − DT B f Dθ̇ +
1
2

LSθAT Hx −
1
2

LCθAT Hy, (3.28)

where J = [ j1, . . . , jN] ∈ <N and U = [u1, . . . , uN−1] ∈ <N−1. As for the matrix
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Q ∈ <N×Nu , K f ∈ <
N×N and B f ∈ <

N×N are defined as follows;

Q(i, j) =

 1 if (k · N f ) = j for i = 1, . . . ,Nu

0 Otherwise.
,

K f (i, j) =

 k f ,i if i = j and i , N f · k for k = 1, . . . ,Nu

0 Otherwise.
and

B f ,(i, j) =

 b f ,i if i = j and i , N f · k for k = 1, . . . ,Nu

0 Otherwise.

(3.29)

Note that the matrix Q establishes which links are driven by the actuators.

In the same way, the torque balance can also be expressed as a function of the ex-
ternal forces. For this purpose, the constraint forces can be calculated from the force
balance (3.25a). Unlike before, the relation can be determined premultiplying by
DM−1 to convert the matrix to a square and nonsingular one, and thereby invertible.
After that, they are solved for Hx and Hy, obtaining:

Hx =
(
DM−1DT

)−1(
DẌ − DM−1

(
Fv,x + Fa,x

))
, (3.30a)

Hy =
(
DM−1DT

)−1(
DŸ − DM−1

(
Fv,y + Fa,y

))
, (3.30b)

where DẌ is the acceleration difference between links, which can be followed from
the holonomic constraints (3.9a). If they are differentiated twice with respect to time,
it is obtained:

DẌ = 1
2 AL

(
Cθθ̇

2
+ Sθθ̈

)
, (3.31a)

DŸ = 1
2 AL

(
Sθθ̇

2
− Cθθ̈

)
. (3.31b)

Then, inserting the kinematics acceleration (3.31a) and the constrains force equations
(3.30a) on torque balance (3.28), the expression can be rewritten as

Jθ̈ =DT QU + Tv + Ta − DT K f Dθ − DT B f Dθ̇

+
1
2

LSθAT
(
DM−1DT

)−1(1
2

AL
(
Cθθ̇

2
+ Sθθ̈

)
− DM−1

(
Fv,x + Fa,x

))
−

1
2

LCθAT
(
DM−1DT

)−1(1
2

AL
(
Sθθ̇

2
− Cθθ̈

)
− DM−1

(
Fv,y + Fa,y

))
.

(3.32)
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Therefore, the complete dynamics of the swimming robot is described by the head
of the swimming robot dynamics (3.26a) and the link dynamics (3.32). Developing
the above expression according to the environment forces described in section 3.1.2
and the robot kinematics studied in section 3.1.1, the model is written as follows:


Mθ −Pxe Pye

eTσx,2 Mx + eTσx,3e −eTσx,4e
−eTσy,2 −eTσy,3e My + eTσy,4e

︸                                                  ︷︷                                                  ︸
Ψ


θ̈

q̈x

q̈y

 =


ωθθ̇

2
− Vθθ̇ − DT K f Dθ

eTσx,1θ̇
2

+ eT (
σx,5 − δx,1

)
θ̇

eTσy,1θ̇
2

+ eT (
σy,5 + δy,1

)
θ̇

︸                                ︷︷                                ︸
Ω(θ,θ̇)

+


−PxV̇ f ,x + PyV̇ f ,y

eTσx,3V̇ f ,x − eTσx,4V̇ f ,y

eTσy,4V̇ f ,y − eTσy,3V̇ f ,x

︸                            ︷︷                            ︸
Π(V̇ f ,x,V̇ f ,y)

+


Nx

(
eq̇x − V f ,x

)
+ Ny

(
eq̇y − V f ,y

)
eT (

σx,6 − δx,2
)(

eq̇x − V f ,x
)

+ eT (
δx,3 − σx,7

)(
eq̇y − V f ,y

)
eT (

σy,6 + δy,2
)(

eq̇x − V f ,x
)

+ eT (
σy,7 − δy,3

)(
eq̇y − V f ,y

)
︸                                                                        ︷︷                                                                        ︸

E(qx,qy,V f ,x,V f ,y)

+


DT Q

0
0

︸ ︷︷ ︸
B

U

(3.33)

where the used variables for simplifications are defined in the Appendix A. The
model can also be expressed in an abbreviated form for ease of use as:

Ψ


θ̈

q̈x

q̈y

 = Ω(θ, θ̇) + Π(V̇ f ,x, V̇ f ,y) + E(qx, qy,V f ,x,V f ,y) + BU. (3.34)

However, the complexity of the model makes it unsuitable for analysis and control
design purposes. In addition, it is an underactuated system of which N + 2 DoF
only Nu can be actuated, those corresponding to the angle driven by actuators. The
position and the angle of the head of the swimming robot position and angle have to
be indirectly controlled. Hence, to simplify the model, two actions are done: first, to
separate the model into actuated and nonactuated dynamic equations, and second, to
reduce the link behavior to a second-order linear system. Both steps are explained
below.

In the case where only the inertial effects due to the motion of the robot are
considered, that means the fluid acceleration is neglected, and the model (3.34) can
be simplified: Φ becomes only nonzero terms on the diagonal, Π is equal to zero,
and Ω does not depend on the acceleration of the link angle.
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3.1.4 Decoupling dynamics

The swimming robot model given by (3.34) has a quite complex form for analysis
and control design purposes because there is no clear relationship between the
inputs and the output of the model. A more straightforward model form where a
clear relation between input-output can be analyzed and is more suitable for these
purposes. To this objective, a partial feedback linearization method will be applied.
This method is widely used for underactuated systems [121, 174], such as industrial
articulated robots and mobile robots [123, 124]. However, before applying the
method, the model must be divided into two parts representing the actuated and
nonactuated DoF.

Analyzing the model (3.34, it represents three clearly differentiated dynamics: 1)
the head of the swimming robot accelerations, q̈, affected by the motion of links,
2) (N f − 1)Nu flexibility DoF, which depends directly on the material properties
and indirectly on the driven link and fluid-body interaction; and 3) the link angular
acceleration, θ̈, which is directly driven by the actuators. Based on these dynamics,
the nonactuated part is composed of the first two dynamics, whereas the actuated
part is the third one, where the inputs U directly influence the link dynamics.
There are only Nu actuated DoFs, corresponding to actuator inputs, compared with
(N f − 1) · Nu + 3 nonactuated DoFs. Both dynamics are strongly related due to
the geometrical structure of the system and B matrix of the model. Hence it is not
feasible to separate the model into the nonactuated and actuated parts. Consequently,
a transformation or base change is necessary to establish a direct relationship
between each input to a single link. This is achieved by considering relative joints
instead of the angle links, which are related through the following expression:

αu

α f

θN

 = Φ = Tθ (3.35)

where αu = [αNu , α(2 · N f ), . . . , α(NuN f )]
T ∈ <Nu are the Nu joint angles, α f =

[α1, . . . , α(Nu−1), α(Nu+1), . . . , α(2Nu−1), α(N f Nu+1), . . . , α(N f Nu−1)]T ∈ <(N f−1)Nu , are
the joint angles corresponding to flexible links, and θN is the link angle of the
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head. Respect to the transformation matrix, T ∈ <N×N , is defined by

T(i, j) =



−1 if i ≤ Nu and j = iN f

1 if i ≤ Nu and j = iN f + 1
−1 if i > Nu and j = 1 + (i − 1 − Nu)N f

1 if i > Nu and j = 2 + (i − 1 − Nu)N f

1 if i = N and j = N
0 Otherwise.

(3.36)

In addition to applying the base change to the swimming robot model (3.34), if
the model (3.34) is also premultiplied by

(
T−1)T , the input matrix takes the desired

form. The first Nu variables (αu) are influenced directly with each control input and
the last variables (α f , θN , qx, qy) are totally independent of the control input, that
means

ΨT



α̈u

α̈ f

θ̈N

q̈x

q̈y


= ΩT(T−1Φ,T−1Φ̇) + ΠT(V̇ f ,x, V̇ f ,y) + ET(qx, qy,V f ,x,V f ,y) + BTU (3.37)

where the modified matrix are given as:

ΨT =


(
T−1)T MθT−1 −

(
T−1)T Px

(
T−1)T Py

eTσx,2T−1 Mx + eTσx,3 −eTσx,4e
−eTσy,2T−1 −eTσx,3e My + eTσy,4

 , BT =



INu×Nu

0(N f−1)Nu

0
0
0


,

ΩT(T−1Φ,T−1Φ̇) =


(
T−1)Tωθ(T−1Φ̇)2 −

(
T−1)T VθT−1Φ̇ −

(
T−1)T DT K f DΦ(

T−1)T eTσx,1(T−1Φ̇)2 + eT (
σx,5 − δx,1

)
T−1Φ̇

eTσy,1(T−1Φ̇)2 + eT (
σy,5 + δy,1

)
T−1Φ̇

 ,

ΠT(V̇ f ,x, V̇ f ,y) =


−
(
T−1)T PxV̇ f ,x +

(
T−1)T PyV̇ f ,y

eTσx,3V̇ f ,x − eTσx,4V̇ f ,y

eTσy,4V̇ f ,y − eTσy,3V̇ f ,x

 and

ET(qx, qy,V f ,x,V f ,y) =


(
T−1)T Nx

(
eq̇x − V f ,x

)
+

(
T−1)T Ny

(
eq̇y − V f ,y

)
eT (

σx,6 − δx,2
)(

eq̇x − V f ,x
)

+ eT (
δx,3 − σx,7

)(
eq̇y − V f ,y

)
eT (

σy,6 + δy,2
)(

eq̇x − V f ,x
)
− eT (

σy,7 − δy,3
)(

eq̇y − V f ,y
)
 .
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Note that the result of
(
T−1)T B is the identity matrix and is the key to obtaining the

desired mapping input.

Now, the actuated and nonactuated dynamics are represented by independent
equations with the new coordinates and the model may be partitioned for simplifica-
tion purposes. Introducing the state variable γ = [α f , θN , qx, qx]T , which arranges
the nonactuated DoFs, the partitioned model is

Ψα,1
T α̈u + Ψ

γ,1

T γ̈ −Ωα

T −Πα

T − Eα

T = U (3.38a)

Ψα,2
T α̈u + Ψ

γ,2

T γ̈ −Ω
γ

T −Π
γ

T − Eγ

T = 0(N f −1)Nu+3 (3.38b)

where Ψα,1
T ∈ <

Nu×Nu , Ψ
γ,1

T ∈ <
Nu×((N f−1)Nu+3), Ωα

T ∈ <
Nu , Πα

T ∈ <
Nu , Eα

T ∈ <
Nu

are the terms of matrix corresponding to the actuated dynamics (3.37), that means the
first Nu rows, and Ψα,2

T ∈ <
((N f−1)Nu+3)×Nu , Ψ

γ,2

T ∈ <
((N f−1)Nu+3)×((N f−1)Nu+3), Ωα

T ∈

<((N f−1)Nu+3), Πα

T ∈ <
(N f−1)Nu+3, Eα

T ∈ <
(N f−1)Nu+3 are the part belonging to the

nonactuated dynamics, in this case the last three rows. Here, it is worth noting that
ΨT(α) only depends on the relative joint angles and not on the absolute orientation
of the head, θN , because the head angle is a cyclic coordinate [123, 175].

Finally, the swimming robot dynamics is expressed through the equations (3.38a)
and (3.38b), which capture the links and head of the swimming robot dynamics,
respectively, making the latter independent the system inputs.

3.1.5 Partial feedback linearization

Let us consider the partitioned model of the previous section. Now, it will be
simplified by applying feedback linearization. The main idea of this technique is to
transform the system into a linear one and simplify it, making a state representation
change that will allow the cancellation of the nonlinearities of the system. Concretely,
an input will be chosen that linearizes the dynamics of the actuated DoF (3.38a)
into a second-order linear system. This linearization will make the analysis of the
system more convenient. However, it should be remarked that this methodology
also involves a significant limitation: it is very sensitive to parameter and modeling
uncertainties [174].
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Firstly, the unactuated dynamics (3.38b) is solved for γ:

γ̈ =
(
Ψ

γ,2

T

)−1(
Ω

γ

T + Π
γ

T + Eγ

T −Ψα,2
T α̈

)
. (3.39)

Secondly, substituting γ̈ into in the actuated dynamics (3.38a) gives

(
Ψα,1

T −Ψ
γ,1

T

(
Ψ

γ,2

T

)−1
Ψα,2

T

)
α̈ + Ψ

γ,1

T

(
Ψ

γ,2

T

)−1(
Ω

γ

T + Π
γ

T + Eγ

T

)
−Ωα

T −Πα

T − Eα

T = U (3.40)

Observing the above expression of the link dynamics, the following law control is
defined:

U =
(
Ψα,1

T −Ψ
γ,1

T

(
Ψ

γ,2

T

)−1
Ψα,2

T

)
ν + Ψ

γ,1

T

(
Ψ

γ,2

T

)−1(
Ω

γ

T + Π
γ

T + Eγ

T

)
−Ωα

T −Πα

T − Eα

T (3.41)

where ν = [ν1, . . . , νNu]T ∈ <Nu is the new control input, which enables to define
the swimming robot model dynamics (3.38) as:

α̈ = ν,

γ̈ = J(γ, γ̇,α, α̇) + E(γ,α)ν
(3.42)

where
J(γ, γ̇,α, α̇) =

(
Ψ

γ,2

T

)−1(
Ω

γ

T + Π
γ

T + Eγ

T

)
∈ <(N f−1)Nu+3,

E(γ,α) = −
(
Ψ

γ,2

T

)−1
Ψα,2

T ∈ <
(N f−1)Nu+3×Nu

(3.43)

Finally, introducing the state variable x = [αT
u ,γ

T , α̇T
u , γ̇

T ]T ∈ <2N+4, the swim-
ming robot model may be rewritten in a control-affine system structure as:

ẋ =


α̇u

γ̇

α̈u

γ̈

 =


α̇u

γ̇

ν

J(γ, γ̇,αu, α̇u) + E(α,γ)ν

 = f (γ, γ̇,αu, α̇u) +

N−1∑
i=1

gi(αu,γ)νi (3.44)

where

f (γ, γ̇,αu, α̇u) =


α̇u

γ̇

0(N−1×1)

J(γ, γ̇, αu, α̇u)

 , gi(αu,γ) =


0(N−1×1)

0(3×1)

ei

Ei(αu,γ)

 , (3.45)



68 3. Planar swimming robot modeling

with i ∈ [1, . . . ,Nu], ei is the unit vector of the ith column of the identity matrix INu
,

and Ei(α,γ) denotes the ith column of E(α,γ).

In summary, the swimming model described in (3.34) has been transformed into
a simpler form (3.44) and canceling the nonlinearities of the dynamics of the links
by doing a partial feedback linearization through the input transformation. As will
be seen in the following sections, this new description of the system will facilitate
its study and analysis.

3.2 Modeling for low Re environment

In the previous section, the swimming robot dynamics was analyzed under the
assumption that a strictly low Re environment cannot be guaranteed and, therefore,
it cannot be assured that inertial effects do not influence the dynamics. However, if
the above assumptions are met, the model changes drastically from underdamped to
overdamped dynamics, a behavior that characterizes the system without inertia.

In this case, the second Newton’s law must be equal to zero because the forces
resulting from inertial contribution are neglected. Only the resistive and joint
constraint forces are considered since they are the only ones that do not depend on
acceleration. Therefore, the force balance for each link (3.25a) results in

0 = Fv,x + DT Hx (3.46a)

0 = Fv,y + DT Hy (3.46b)

Similarly, dynamics of the swimming robot head (3.26a) is deducted for a strictly
low Re and expressed as:

0 = fv,x,N + hx,N = eT Fv,x (3.47a)

0 = fv,y,N + hy,N = eT Fv,y (3.47b)

With the torque equation of balances (3.27) is reduced to

0 = DT QU + Tv − DT K f Dθ − DT B f Dθ̇ +
1
2

LSθAT Hx −
1
2

LCθAT Hy. (3.48)
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Now, the joint constraint forces (3.30a) are only functions of the viscous forces
as a result of link motions since the inertial effects vanished from (3.46a), obtaining:

Hx = −
(
DDT

)−1
DFv,x, (3.49a)

Hy = −
(
DDT

)−1
DFv,y. (3.49b)

Inserting the constraint forces into the torque balance equation, the link dynamics is
described in a strictly low Re as

(
− Tv + DT B f D −

1
2

LSθK?δx,1 −
1
2

LCθK?δy,1
)
θ̇ = DT QU − DT K f Dθ

+
(1
2

LSθK?δx,2
1
2

LCθK?δy,2
)(

eq̇x − V f ,x
)

−
(1
2

LSθK?δx,3
1
2

LCθK?δy,3
)(

eq̇y − V f ,y
)
,

(3.50)

where K?, among other variables, are defined in the Appendix A. Finally, the
complete dynamics of the swimming robot (3.33) is redefined as


V?

θ −N?
xe N?

ye
eTδx,1 eTδx,2e −eTδx,3e
−eTδy,1 −eTδy,2e −eTδy,3e

︸                                   ︷︷                                   ︸
Ψ?


θ̇

q̇x

q̇y

 =


−DT K f Dθ

0
0

︸         ︷︷         ︸
Ω?(θ,θ̇)

+


−N?

xV f ,x + N?
yV f ,y

eTδx,2V f ,x − eTδx,3V f ,y

−eTδy,2V f ,x + eTδy,3V f ,y

︸                            ︷︷                            ︸
E?(qx,qy,V f ,x,V f ,y)

+


DT Q

0
0

︸ ︷︷ ︸
B

U.
(3.51)

The model confirms that the swimming robot dynamics, and hence the propulsion,
at a strictly low Re level, is only established by the viscous forces resulting from the
movements of the links, focusing on the crucial role played by the waveform in the
motion of the swimming robot.

3.2.1 Decoupling dynamics

Despite the swimming robot model for low Re described in (3.51) being simpler,
it is still rather complex for study, analysis and design control purposes. Therefore,
the same procedure used in sections 3.1.4 and 3.1.5 is applied to this model next.
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Applying the change of variable defined in (3.35), the partitioned model is

Ψ?α,1
T α̈ + Ψ?γ,1

T γ̈ −Ω?α

T − E?α

T = U (3.52a)

Ψ?α,2
T α̈u + Ψ?γ,2

T γ̈ −Ω?γ

T − E?γ

T = 0(N f −1)Nu+3×1 . (3.52b)

3.2.2 Partial feedback linearization

Now, as in the case of medium Re, the partitioned model is considered to be
simplified. The design control input to apply a feedback linearization is:

U =
(
Ψ?α,1

T −Ψ?γ,1

T

(
Ψ̂

γ,2

T

)−1
Ψ?α,2

T

)
ν̂ + Ψ?γ,1

T

(
Ψ̂

γ,2

T

)−1(
Ω?γ

T + E?γ

T

)
−Ω?α

T − E?α

T (3.53)

where ν? is the new input control that enables to define the swimming model
dynamics (3.52) as

α̇u = ν?,

γ̈ = J?(γ, γ̇,α, α̇) + E?(γ,α)ν?
(3.54)

with

J?(γ, γ̇,αu, α̇u) =
(
Ψ?γ,2

T

)−1(
Ω?γ

T + E?γ

T

)
∈ <(N f−1)Nu+3, (3.55a)

E?(γ,αu) = −
(
Ψ?γ,2

T

)−1
Ψ?α,2

T ∈ <
(N f−1)Nu+3×Nu (3.55b)

Finally, introducing the state variable x? = [αT
u ,γ

T ]T ∈ <N+2 the swimming robot
model ca be rewritten in a control-affine system structure as

ẋ? =

α̇u

γ̇

 =

 ν

J?(γ, γ̇,αu, α̇u) + E?(αu,γ)ν

 = f?(γ, γ̇,αu, α̇u) +

N−1∑
i=1

g?i(αu,γ)νi (3.56)

where

f?(γ, γ̇,αu, α̇u) =

 0(N−1×1)

J?(γ, γ̇, αu, α̇u)

 , g?i(αu,γ) =

 ei

E?i(αu,γ)

 . (3.57)
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3.3 Fractional waveform for propulsion and locomotion

The section 2.4.2.3 has described the classical waveforms used for the propulsion
of flagellum-type articulated robots. These require defining a set of coefficients to
define their geometry, which are intimately linked to the propulsion velocity, as
will be seen in later chapters. A new alternative beating waveform is the fractional
beating waveform, which is based on a fractional-order power law for amplitude
modulation as follows

yw(x, t) = cw,t x + (cw,3xαw) sin
(
2π
λ

(x − Vpt)
)
, (3.58)

where cw,3 defines the amplitude at the end of the tail, and αw ∈ R
+ (0 < α < 1)

is the fractional order coefficient of the wave, whose value determines the form of
growth. This one retains the motion properties obtained with the classical traveling
waveforms but presents some advantages in terms of propulsion. In particular, when
αw = 0, the resulting waveform is harmonic, whereas when αw = 1, it results in
the Carangiform waveform. The way of swimming with this waveform can also be
viewed as a generalization of those given by previous waves, merging the features
from harmonic to Carangiform waveforms.

Figure 3.4 shows the waveform obtained for different parameter values αw. It
can be seen that the waveform is similar to a traveling harmonic wave for values

Figure 3.4: Appearance of the fractional growth waveform for different values of αw and
with cw,3 = 0.
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Figure 3.5: Comparison of amplitude growth for the different beating waveforms.

of αw close to zero. However, for values close to one, the obtained waveform is
closer to Carangiform swimming, whereas values between zero and one merge the
characteristics of both waves. Therefore, the wave growth can be equal to or faster
than the classical waveforms, as illustrated in Figure 3.5. Furthermore, considering
that the maximum amplitude of the waveform is achieved in one wavelength, at
the point corresponding to the 20% of the wavelength, the wave given by (3.58)
reaches the 72% of the maximum desired amplitude for αw = 0.2, whereas with the
waveform given by (2.9) only a percentage of 20% and 37% is reached for linear
and quadratic Carangiform waveforms, respectively. Likewise, the lower the value
of αw, the higher the percentage of amplitude growth achieved at the considered
point. Notice that the growth of the waveform amplitude is always of 100% for the
harmonic case.
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3.4 Summary

This chapter has presented a mathematical model of a planar swimming robot
model with Nu flexible links plus the head and driven by Nu − 1 actuated joints
suitable for medium Re environment. Likewise, the model is particularized for
a strictly low Re environment, where inertial forces are negligible and brownian
effects are not yet present. For better handling and analysis of the model for design
control purposes, the models are partially feedback linearized to a simpler form
after making a variable change that allows handling the actuated and nonactuated
dynamics separately. Moreover, modeling the dynamics of an articulated swimming
robot has highlighted the importance of flagellum or tail motion, which is a crucial
factor in improving mechanical design, locomotion and performance. For this
purpose, a novel beating waveform is presented. It is based on a fractional order
power law for amplitude modulation, which makes it possible to preserve the motion
properties obtained by applying classical traveling waveforms and controlling the
stroke and propulsion with a single parameter.





4
Locomotion analysis and control

“You have to make the rules, not follow them.”

Isaac Newton
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The motivation to understand and reproduce the movement of biological swim-
mers and reptiles, such as eukaryotic cells and snakes, respectively, has given rise
to numerous works and research focused on the mathematical description of their
behavior. However, the primary studies are based on empirical studies and simula-
tions of fishes [176, 177, 178] and snakes [123, 179, 180, 181] at the macroscale.
At the micro-scale, on the other hand, the studies are reduced to a mathematical
description and analysis of the forces resulting from swimmer motion and interac-
tion with the environments, always from a mathematical or biological point of view
[111, 113, 182, 183]. Likewise, technological development and miniaturization in
recent years have increased the interest in this type of swimmer and the possibility
of reproducing how they can move. Even so, understanding this type of motion still
needs to be fully covered. There are still many gaps in the design of bioinspired
artificial swimming robots reproducing the functionalities of biological systems. In
this scenario, this chapter aims to contribute to the understanding of the motions and
design of bioinspired swimming robots from an engineering and robotics point of
view and how existing control techniques can be adapted for the swimming robot
navigation, namely path following.

4.1 Propulsion

Turning the attention to the beating waveform presented in the section 2.4.2.3,
this section discusses what effect the beating waveform has on propulsion and
locomotion and how the type of motion influences these. For this purpose, the
motion will be considered to occur in an environment with a low Re enough to
entirely neglect the forces arising from the inertial effects. Likewise, this is a
common assumption for slowly moving underwater vehicles [184] and bioinspired
robots [123, 124].

The propulsion of swimming robots is defined to be along the ex direction.
Therefore, the force propelling the robot’s head can be expressed as the sum of all
forces actuating on it. Recalling the force balances at the head of the swimming
robot described in equation (3.46a), the propulsive force is expressed as a function
of the viscous forces acting along the tail, which are directly proportional to the
motion velocity according to the definition of the RFT give by (3.13). Then, the
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propulsive force density is

d fp,x(s) =

( (
c⊥v,s − c‖v,s

)
q̇y,s sin θ cos θ − q̇x

(
c⊥v,s sin2 θ + c‖v,s cos2 θ

) )
ds, (4.1)

where q̇y,s is the velocity displacement of the considered infinitesimal element in
the ex direction and ẋn is the propulsion velocity in such a ex direction, which also
corresponds to the head velocity. Then, the total propulsive force exerted by the
flagellum over one wavelength, λ, propelling the head forward is

Fp,x =

∫ λ

0

(
c⊥v,s − c‖v,s

)
q̇y,s sin θ cos θ − q̇x

(
c⊥v,s sin2 θ + c‖v,s cos2 θ

)
ds (4.2)

From expression (4.2) is deducted that the propulsive force consists of two clear
terms: the first one is proportional to the velocity of the infinitesimal element, or of
the links, if it were discretized, in the ey direction, normal to the direction of motion,
and the second term is a function of the velocity in the ex direction, coincident with
the direction of motion. Moreover, taking the common factor cos2 θ from (4.2), the
propulsive force can be written in a more readable form as:

Fp,x =

∫ λ

0

( (
c⊥v,s − c‖v,s

)
q̇y,s tan θ −

(
c⊥v,s tan2 θ + c‖v,s

)
q̇x

) 1
1 + tan2 θ

ds. (4.3)

In this form, the contribution of each term to propulsive force can be observed
easier. Focusing on the second term, it never contributes to the forward propulsion
of the swimming robot but rather opposes it because the waveform is assumed to
involve motion in the enormalx direction and the viscous drag coefficients are always
positive, by definition. Then, if the swimming robot moves with a positive velocity,
the term is always positive and then its contribution is negative to the propulsion.
However, this is an expected behavior since the swimmer’s motion is naturally
subjected to a force opposite to the motion direction due to viscous drag. Therefore,
any propulsive force in the ex direction must be produced by the transversal motion
of the flagellum. Analyzing the first term of (4.3), several assumptions must be met
to achieve a positive thrust force and, consequently, a net horizontal displacement:

• The friction must be anisotropic and c⊥v,s > c‖v,s, a property that also appears to
be inherent in the smooth and slender bodies observed in nature [109, 111, 122,
123, 169, 170]. In the case of isotropic friction, the normal and transversal
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contribution of sideways motions cancel one another, not contributing to
propulsion. It is worth mentioning that isotropic friction also implies an
uncontrollable system because any input cannot generate a motion that moves
the system from one state to another.

• Transverse movements of the flagellum contribute to maintaining propulsion,
while the sign of sign(θ) and sign(q̇y,s) does not change.

• The transverse velocity must be greater than the normal velocity, satisfying
the relation q̇y,s > q̇x tan θ.

• The waveforms must be time-varying to produce a continuous contribution to
propulsive propulsion.

In compliance with the above considerations, the propulsion forces described in
(4.3) establish that anisotropic friction forces map transversal velocity of flagellum
into force components in the direction of motion, achieving the maximum thrust of
each infinitesimal element or link when the tilted angle reaches the ±π/2 rad.

Knowing that the resulting thrust during an entire period must cancel the drag
force of the head, the following expression can calculate the forward speed reached
by the swimmer:

nw Fp,x = c‖v,n q̇x, (4.4)

where c‖v,n is the viscous drag coefficient of the head and nw is the number of
simultaneous waves along the flagellum. Substituting the propulsive force (4.3) into
the head drag force per wave cycle (4.4), the swimming robot velocity per wave
cycle is obtained. Two approaches can be used to solve this relation according to the
ratio between the transverse amplitude and the flagellum length. The first approach
uses small deformations if the amplitude displacement is relatively small and the
flagellum length is comparable to the wavelength. The second approach uses large
deformations when both conditions cannot be fulfilled. Both cases are detailed
below, considering that the swimming robot moves only forward, i.e., cw,t = 0.
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Small deformations
In the case of small oscillations, the transverse velocity is interpreted as the derivative
of the waveform with respect to time, d

dt yw, and the tangent of the angle as the
derivative with respect to space, d

dx yw. Then, the force (4.3) is written as

Fp,x =

∫ λ

0

( (
c⊥v,s − c‖v,s

) d
dt

yw
d
dx

yw − c‖v,n,sq̇x

)
ds. (4.5)

In addition, it can be assumed that the infinitesimal element of length can approx-
imate that of surface, ds ≈ dx, and the infinitesimal terms of second order are
neglected, without making a large error [111, 185, 186]. Hence, arranging (4.3) and
(4.4) the forward swimming robot velocity per wave cycle is

q̇x =

(
c⊥v − c‖v

c‖v

)(
λ +

c‖v,n
nw c‖v

)−1 ∫ λ

0

d
dt

yw
d
dx

yw dx. (4.6)

From the above expression, it follows that the velocity is, regardless of the beating
waveform, proportional to the relative ratio of normal to tangential viscous resistance.
Moreover, it is inversely proportional to wavelength and head drag, although the
latter’s influence is less dependent on the number of simultaneous waves along the
flagellum. In other words, velocity increases as the wavelength decreases and the
number of simultaneous waves increases. It is worth remarking that the swimmer
head’s design also has a key role in the velocity [55]. Regarding the integral term,
it indicates that beating waveform must not only be time-varying but also must be
space-varying.

Big deformations
However, if the deformations cannot be considered small enough, the infinitesimal
element of surface is replaced by ds =

√
1 + y′2w dx. For this assumption, the

swimming robot velocity per wave is

q̇x = (c⊥v − c‖v)

∫ λ

0
d
dt yw

d
dx yw

(
1 +

(
d
dx yw

)2)−1/2
dx

c‖v,n
nw

+
∫ λ

0

(
c‖v + c⊥v

(
d
dx yw

)2)((
1 +

(
d
dx yw

)2)−1/2
dx
. (4.7)

In this case, the space-varying behavior becomes of even greater importance.
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4.1.1 Classical beating waveform

Applying the above analysis to the classical beating waveforms, described in
the section 2.4.2.3, a direct expression that relates the geometrical parameters of
the planar wave motion with the forward velocity of the swimming robot can be
obtained. In particular, solving the velocity (4.6) for classical beating waveforms
(2.9) in the case of small deformations, the theoretical forward velocity has the
following form:

q̇x = Vp

(
c⊥v − c‖v

c‖v

) (
λ +

c‖v,n
nw c‖v

)−1 ((1
λ

c0c1 + c0c2 + λc1c2 +
1
2

c2
1 +

λ2

2
c2

2

)
π sin (4π f t)

−2π2
(
c0c1 +

1
3

c0c2 +
λ

2
c1c2 +

1
λ2 c2

0 +
λ

2
c2

1 +
λ2

5
c2

2

))
.

(4.8)

From the above result, there exists a strong dependency between the geometrical
parameters of the waveform and the forward velocity. Concretely, the velocity is
proportional to the wave’s squared amplitude and propagation velocity. In addition,
the velocity has a harmonic component associated with the linear and quadratic
Carangiform motion, producing an oscillating speed.

4.1.2 Fractional beating waveform

The same principles applied to classical waveforms can be extended to the
fractional order growth waveform to determine the forward thrust and velocity
according to the shape of the beating motion. However, the integration of (4.6)
with (3.58) presents analytical difficulties involving to use of numerical integration
to calculate the corresponding forward velocity. Thus, a numerical integration
algorithm is required for this purpose, as explained next.

The numerical integration algorithm is based on the adaptive Gauss-Kronrod
quadrature, which approximates the definite integral of a function as a weighted sum
of function values at optimum and specific points (referred to as “Kronrod points”)
within the integration interval [187]. It establishes that differential equations can
be handled as parametric functions and applies an iterative integration process over
time and space sequentially. This allows obtaining the solution of expression (4.7)
with no simplifications.
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It should be mentioned that this method was developed and implemented in
MATLAB®. In order to validate the numerical integration algorithm, it was first
applied to classical waveforms so that numerical results could be compared with the
analytical ones. For that purpose, the normalized root mean square error (NRSME)
was considered as a performance index. The value of NRSME obtained for the
three waveforms was of the order of 10−16, a result that can be neglected. Conse-
quently, the algorithm was validated to obtain forward propulsion thrust and velocity
corresponding to the proposed fractional waveform.

Figure 4.1 shows the forward velocity for the waveform given by (3.58) obtained
when applying the numerical integration algorithm for solving (4.7) for different
values of parameter αw. The velocities corresponding to the three classical beating
waveforms are plotted for comparison purposes. As can be observed, the maximum
velocity during swimming is reached with the harmonic wave, whereas the lowest
corresponds to the linear Carangiform. These results endorse the strong relationship
that exists between forward velocity and the growth profile of the amplitude. With
respect to the waveform with fractional growth, changes in the value of αw allow
achieving any velocity within the range established by the harmonic waveform and
the linear Carangiform, evincing a direct relation between the forward velocity,
propulsion, and parameter αw.

The forward velocities in Figure 4.1 were obtained for the parameters given
in Table 4.1. It is important to emphasize that, to achieve comparable results, the
following criterion was established. Taking into account that the wave reaches
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Figure 4.1: Comparison of forward velocity for different waveforms.
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Table 4.1: Waveform and environment parameters.
Parameter Value Description Unit Parameter Value Description Unit

cw,0 94 Amplitude of the harmonic wave mm f 0.5 Frequency Hz
r f 12.5 Radius of the flagellum mm λ 600 Wavelength mm
rn 12.5 Radius of the head mm nw 1 Simultaneous waves
ρ 964 Density of the environment kg/m3 µ 0.1 Viscosity of the environment Pa · s
nq 0.9 Modulation coefficient of Quadratic Carangiform mq 1 Modulation coefficient of Quadratic Carangiform
c‖v,n 6πµr7 Head normal viscous drag coefficient

the maximum desired amplitude at the end of the flagellum, for a given value of
parameter cw,0 for the harmonic wave and the length of the flagellum (value of nwλ),
the coefficients of the remainder waveforms were calculated as a function of the
parameters mentioned above as follows:

• Linear Carangiform waveform:

cw,1 =
cw,0

nwλ
(4.9)

• Quadratic Carangiform waveform: the second coefficient was set to modulate
the wave amplitude from nq to mq percent of wavelengths (see Figure 2.6 for
nq = 0.9 and mq = 1). According to that, the coefficients cw,1 and cw,2 were
defined as a function of cw,0 by:

cw,1 =
cw,0

nqλ
+

mq

mq − nq

 cw,0

mqλ
−

nqcw,0

m2
qλ

 , (4.10)

cw,2 =
mq

mq − nq

 cw,0

m2
qλ2
−

cw,0

nqmqλ2

 , (4.11)

where nq,mq ∈ <
+ and mq > nq.

• Fractional waveform:

cw,3 =
cw,0

(nwλ)α
(4.12)

The proposed fractional waveform defines a motion whose growth and amplitude
modulation can be controlled by only one parameter, αw. This can be an essential
and valuable property to be considered when searching for optimal propulsion
waveform, simplifying such a problem.
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4.1.3 Waveform discretization

In the analysis of previous sections, it has been considered that the flagellum
or tail of the swimming robot is composed of a relatively high number of small
rigid links, that behave similarly to a continuous flexible flagellum. However,
this assumption can only sometimes be realized in the physical implementation
of a swimming robot due to current technological and manufacturing limitations.
Therefore, a discretization method must be applied to the desired beating waveform
to translate such a motion from a continuous space to a discrete one based on N
links. It is worth mentioning that the analysis is still applicable to relatively large
links, although it comes at the cost of losing accuracy in the results.

Two discretization methods that address motion splitting are presented below,
considering the motion amplitude and the computational power required to perform
this splitting. However, for both cases, the method result will be the references of
the swimming robot’s actuators.

4.1.3.1 Projection method

The projection method is based on the assumption that the angular positions
of the links are sufficiently small. Therefore the projection of each link over the
propulsion axis is constant and approximately equal to the segment length. Then,
the link angle at each instant time is deduced as:

θ j,t = tan−1
(
yw(x j, t) − yw(x( j−1),t)

x j,t − x( j−1),t

)
, (4.13)

where j ∈ [0,Nu] means the considered link. This discretization method implies
light computational capacity, allowing online and offline execution. For the first
implementation, the equation (4.13) will be calculated for each link and time instant.
On the other hand, the offline implementation method requires defining the sampling
time and waveform period by providing a matrix, Θ[Nu][T ], which contains the
trajectory in time and space for the Nu links and which must be repeated for each
period of the waveform, where T is the number of samples for the waveform period
and the defined sampling time. Hence, Θ[Nu][T ] allows the reproduction of the
desired waveform with distributed actuators since it is the reference for the control of
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each actuator. As for the rotation term, it can be considered implicit in the definition
of the beating waveform or excluded from the discretization and added later as a
displacement in the motion, simplifying the implementation of the control algorithm.
It should also be remarked that this method involves a reduction of amplitude by
increasing the angle range; consequently, the projection of each link is reduced
and does not hold constant. However, it ensures the recreation of the complete
motion within one wavelength, even if the total length of the links is less than one
wavelength.

This method can also be described from an analytical perspective, providing
a continuous function that describes the angle of each link rather than a data set
containing the movements during a wave period and for a specific sampling time.
The link motion function has the same form as the beating waveform (2.9) and
(3.58). However, the amplitude and the space phase are calculated considering the
maximum amplitude with the link position along the flagellum. Then, the angle
links for classical beating waveform can also be described by:

θ( j, t) = φw,t +

(
φw,0 +φw,1

j∑
i=1

li
1
L

+φw,2

( j∑
i=1

li

)2 1
L

)
sin

2π
λ

( j∑
i=1

li − Vpt
) , (4.14)

and the fractional beating waveform is

θ( j, t) = φw,r + φw,3

( j∑
i=1

li

)αw 1
L

sin

2π
λ

( j∑
i=1

li − Vpt
) , (4.15)

where now φw,r defines the mean angle over which the motion is performed, whereas
φw,0, φw,1, φw,2 and φw,3 are the angles that sweep the links, instead of the amplitude
of the motion and L refers to the total length of the flagellum.

For illustration purposes, let’s consider a 6-link swimming robot. Figure 4.2
shows the desired (ideal) waveform and its discretization for the fractional wave
(3.58) with αw = 0.2. From this example, some shortcomings of the method can
be seen. First, the amplitude of the discretized wave is slightly smaller than that
of the ideal wave; specifically, it is reduced by a percentage of around 15% in this
case. Likewise, the length of the flagellum resulting after applying the method
is also slightly smaller than the original. In fact, the greater the amplitude of the
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Figure 4.2: Comparison of the ideal and discretized waveform by the projection method for
a 4-link swimming robot. Fractional beating waveform case for αw = 0.2.

desired waveform and the number of segments, the shorter the length. However,
these differences will become smaller as the link angle reduces or the number of
links increases, so its length will be shortened for a fixed length of the flagellum.

On the other hand, Figure 4.3 shows the angles of each link, where the phase
difference between the angles makes it possible to deduce how the wave advances
along the flagellum and the references for each link are sine waves with different
amplitude and phase. It must be said that, although the results analyzed above
correspond to a fractional waveform for αw = 0.2, they are entirely extensible to the
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Figure 4.3: Angle of link for a 6-link swimming robot. Fractional beating waveform case
for αw = 0.2.
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obtained with other values of α, waveforms and number of links from the viewpoint
of the discretization method.

4.1.3.2 Fitting method

The fitting method, in contrast to the previous one, provides a more accurate dis-
cretization of the waveform because it does not consider any assumptions about the
length of the links. Moreover, it offers a more suitable discretization for swimming
robots whose links have different lengths or when the wavelength is longer than
the length of the swimming robot. However, the increase in accuracy produces an
increased computational cost and consequently, the longer calculation time requires
the method to be performed offline.

As in the previous method, the angle for each link is calculated by applying
(4.13) and imposing the spacial length constraint of each link as:

l j =

√
(x( j+1) − x j)2 + (yw(x( j+1), t) − yw(x j, t))2, (4.16)

The result, similarly to the other method, is a dataset, Θ[Nu][T ], containing the angle
of each link for each time instant. However, to achieve such results, a numerical
resolution algorithm must be applied to solve the equation successfully. An iterative
process was implemented based on the Nelder-Mead’s simplex search method
(means of the command fminsearch in MATLAB®) considering a maximum error
of ±10% of the link length.

The fitting method applied to the fractional waveform for αw = 0.2 is illustrated
in Figure 4.4 in comparison with the ideal waveform motion. In this case, the links
are more closely matched to the waveform, achieving a shape closer to the ideal
and reaching the maximum amplitude. Recalling the expression for the propulsive
velocity (4.7), this method implies a higher velocity, not only because of the increase
in amplitude but also because of the higher contribution of the term corresponding
to the spatial derivative since the method reproduces more closely the waveform.

Regarding the link angles, shown in Figure 4.5, they lose their pure sinusoidal
behavior, although they still maintain an oscillating behavior, which is smoother
with this method.
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Figure 4.4: Comparison of the ideal and discretized waveform by the fitting method for a
6-link swimming robot and fractional beating waveform case for αw = 0.2.

4.1.3.3 Comparison of methods

A comparison between the two methods is depicted in Figure 4.6, where it can
be seen that the projection method exhibits a larger deviation from the desired
waveform as the link angle increases.

Figure 4.7 represents the link angles obtained by applying both methods and
shows how the link angles are more similar the closer to the first link, so that the
difference increases as the link considered is closer to the last one. In addition,
the error of each link also affects the consecutive links, as seen in the last link.
This error also impacts the phase lag between the link angles. Despite the fitting
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Figure 4.5: Angle of link for a 6-link swimming robot and fractional beating waveform
case for αw = 0.2.
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Figure 4.6: Comparison between methods for a 6-link swimming robot and fractional
beating waveform case for αw = 0.2.

method providing more accuracy, the projection method allows recalculating real-
time changes in waveform types, amplitude and frequency. The analysis still applies
to relatively large links, although it supposes the cost of losing accuracy in the
results.

4.2 Turning motion

It has been discussed how the definition of the waveform influences the propul-
sion force and speed. The turning motion is the third characteristic determined
by the waveform. Primarily, turning motions are controlled by the coefficient cw,t,
which defines the average amplitude over which the beating waveform is realized. In
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Figure 4.7: Comparison link angle obtained from both methods for a 6-link swimming
robot and fractional beating waveform case for αw = 0.2.
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order to understand how the turning motion is produced, the tangential and normal
forces must be analyzed when cw,t is nonzero.

For simplicity, the case of the harmonic beating waveform will be analyzed
without loss of generality since the analysis is extensible and equivalent to other
beating waveforms. Moreover, if small deformation is considered, the viscous forces
generated on an infinitesimal element of the flagellum in the ex direction is given by
(4.5) and in the ey is

Fp,y =

∫ λ

0

( (
c⊥v,s − c‖v,s

) d
dx

yw ẋn − c⊥v,s
d
dt

yw

)
dx. (4.17)

Solving the above expression for a flagellum of length λ and the harmonic beating
waveform (2.9), which means with cw,1 = cw,2 = 0, the resistive forces in ex and ey

direction, respectively, are

Fp,x =
(
c⊥v,s − c‖v,s

) 2π2c2
w,0Vp

λ − c⊥v,sλẋn (4.18a)

Fp,y =
(
c⊥v,s − c‖v,s

)
cw,t ẋn (4.18b)

From the propulsive forces resulting from the harmonic beating waveforms, it shows
that the turning term involves a force contribution in the ey direction, which is
directly proportional to the turning coefficient cw,t. Likewise, it does not influence
the propulsive force in ex direction. However, for the other beating waveforms,
it also contributes to the propulsion in the ex direction. This analysis can also
be deduced from Figure 4.8, where the two cases are represented: a motion with
a rotation coefficient equal to zero (Figure 4.8a) and another different from zero
(Figure 4.8b). When the undulatory motion of the elements or links of the flagellum
is produced over a line parallel to forward motion, the net propulsion forces are also

Straigth motion

(a)

Range link motion Propulsion force

Rotational
motion

φw,t

offset
mean angle

(b)

Figure 4.8: Graphical description of turning motion: (a) straight motion and (b) rotational
motion.
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in that direction. However, if the beating motion is performed over a nonzero mean
amplitude, the contribution of the net vertical forces is not compensated during the
motion. Thus, the motion gives rise to two forces: one parallel to the forward motion
and the other normal to it, which induces a rotation.

Therefore, it can be stated that a nonzero turning coefficient, cw,t, produces a
force normal to the forward motion, steering the motion of the swimming robot. A
positive value of the turning coefficient, cw,t > 0, produces a rightward turn, whereas
a negative one, cw,t < 0, implies a leftward turn. Moreover, the steering rate is
directly proportional to the turning coefficient and the forward velocity.

4.3 Locomotion

The control design for a swimming robot supposes a significant challenge. Due
to their strong under-actuated dynamics, the system only has Nu input with respect
to N + 2 DoF, making it impossible to control the heading and the position directly.
However, before establishing a locomotion control strategy, it is necessary to study
the controllability and observability of the system, in this case, of a swimming
robot. Both concepts play a crucial role in the choice and definition of the control
strategy. They will allow for discerning if it is possible to control the system to
obtain the desired behavior, in this case, to reach a predetermined destination and if
the system’s dynamics can be estimated using models (observers) without the need
to measure all its variables. Both aspects require differential geometry techniques
for the analysis of nonlinear systems from the point of view of control theory, so a
brief introduction to differential geometry techniques is given in Appendix A.3.

Therefore, the following sections will analyze the controllability and observabi-
lity of a swimming robot and propose a control strategy for path following.

4.3.1 Controllability

One of the properties more relevant in the study and design of a system in
control theory is its controllability. In plain words, it is described as the capacity
of admissible control input to do whatever we want with the given dynamic system.
Thus, this property ensures that a system can move from one configuration or
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operation point to another due to an external input performing specific admissible
manipulations.

Let consider the structure of the nonlinear system given by (3.44). Formally, it
is said controllable if, for an initial state xi ∈ <

n and final x f ∈ <
n, there exists

a time interval t1 > t2 and a set control functions u(t) such that x(t1) = xi and
x(t2) = x f , where x(t) is a unique solution [188]. In contrast to linear systems, where
controllability is proved by checking whether the system satisfies the Kalman rank
condition, nonlinear systems require more complex studies, which are still an active
area of research. General conditions are not necessary or sufficient to ensure system
controllability. Instead, it is studied by analyzing the local behavior of the system
near the equilibrium points (xe,ue), for which there are necessary and sufficient
conditions and different methods.

The most straightforward approach to verifying a nonlinear system’s controllabi-
lity is linearizing the system around an equilibrium point. However, in the case of
under-actuated systems, they usually do not have a controllable linearized system.
Even the structure can become an unmanageable canonical expression, but that
does not imply that the nonlinear system cannot be controllable (for example, the
model of maneuvering a car). Therefore, this approach is often unsatisfactory and
can result in a lack of much of the system’s information. A second approach relies
on Lie group theory, especially the accessibility algebra, which is quite a helpful
tool for finite dimension, but is useless for infinite-dimensional control systems.
However, first of all, some formal concepts related to controllability and accessibility
of nonlinear systems are need to be recalled [123, 188, 189, 190, 191]:

• Small-time local controllability (STLC). It is a stronger property than controllabi-
lity and defines that a system is small-time locally controllable at the equi-
librium point

(
xe,ue

)
if, for every real number η > 0, there exists a real

number ε > 0 such that, for every x1 :=
{
x ∈ Rn; |x − xe|

}
< ε and for

every x2 :=
{
x ∈ Rn; |x − xe| < ε

}
, there exists a measurable function

u : [0, η] −→ <m such that

|u − ue| ≤ η,∀t ∈ [0, ε],(
ẋ = f (x) +

∑m
i=1 gi(x)ui(t), x(0) = x1

)
=⇒

(
x(ε) = x2

)
.
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Therefore, if a system is STLC, then it can reach any state or configuration
in an arbitrary period of time with a suitable control input. However, it is a
property only considered from the equilibrium point since, in certain systems,
it is generally not possible to move instantaneously in one direction if it is
already moving in the opposite direction. For example, an aircraft in flight
is not STCL because there is no suitable control input to allow it to move
instantaneously in the opposite direction to its current one. Despite this, it is
a fundamental property in systems to which it is desired to apply a motion
planner control because it is always possible to find a suitable control input
or move the system to a state that satisfies the requirements of the motion
planner.

• Locally accessibility (LA). It is a weaker form of controllability that cor-
responds to being able to reach, from xi, a set of n-dimension space (not
necessarily the entire space) within some time t > 0. In the particular case of
a driftless system, when the drift field vector is zero ( f (x) = 0), this property
coincides with the STLC property by the Rashevsky–Chow’s theorem.

• Strong accessibility (SA). It is a slightly stronger property than the former and
imposes a fixed time t2 with t2 > 0 to reach the n-dimension space by the
system.

A simple illustration of above concepts is depicted in Figure 4.9 for a two-dimensional
configuration space.

ℜ2

xe xe

LA STLC
Figure 4.9: Illustrations of local accessibility (LA) and small-time local controllability

(STLC) in a two-dimensional space.
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The study of these concepts is performed by analyzing the drift, f , and control, g,
vector fields that define the directions in which the system can move or which states
can be reached from an initial state. Generally, these vectors only span a subset
of the entire accessible state space. However, through the motion combinations
along these vector fields, the system can cover other subsets that are not spanned
by the initial vector fields of the system. At this point, the distribution concept
takes particular interest allowing the study of the space that can reach with the
combinations of the drift and control vector fields. Lie brackets operator, which
is defined in the equation (A.17) of the Appendix A, approximates the net motion
resulting from the alternating combination of two vector fields.

Recalling some geometry control theory results, two conditions to go deeper into
the analysis and study of controllability are established.

1. A necessary, but not sufficient, condition meets the Lie algebra rank condition
(LARC) or accessibility rank condition at state (xi), defined as:

dim ∆(xi) = n. (4.19)

Let ∆ be the distribution constructed using the vector fields of the system,
{ f , g1, . . . , gm}, and all vector fields that can be obtained through the drift
vector, f (x), control vector fields, g(x), and taking any number of Lie bracket
of them (see Appendix A for more information). ∆ is the accessibility distri-
bution generated by

∆(x) = span
{
adk

f gi(x), adk
gi

g j(x) ∈ S ; k ∈ N, i, j ∈ {1, . . . ,m}
}
. (4.20)

If the system satisfies the LARC at state xi, it is locally accessible from xi.
If the drift vector field is not included in the accessibility algebra, then the
system is strongly accessible. In addition, if the state xi is an equilibrium
point, the system is also susceptible to being STLC.

A particular case is the driftless systems. Systems with drift vector fields
involve greater complexity than those without drift, since systems have dynam-
ics that are not directly influenced by the input control, imposing restriction
motions. However, it may only be possible to move in specific directions for
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an arbitrarily small time interval due to the imposed behavior of the drift vec-
tor fields. When the system is driftless, there are no such constraint motions in
any direction. In these cases, it is possible to prove that LARC becomes neces-
sary and sufficient to ensure STLC since all the states are directly proportional
to the input control.

2. A sufficient condition is to satisfy the LARC by good Lie bracket terms up
to degree i and that all bad Lie brackets of degree j ≤ i are θ-neutralized.Let
define B ⊂ ∆ as the set of formal iterated Lie brackets and B(x) ∈ <n as the
evaluation of B at x. The degree of a bracket with respect to a vector field f
and gi, denoted by δ f (B) and δi

g(B), respectively, is the number of times that
the corresponding vector fields defined by subscript and superscripted appear
in the bracket. A bracket is said to be bad if δ f (B) is odd and δi

g(B) are all
even (including zero). A bracket is good if it is not bad. The classification of
good and bad bracket is strongly related to the occurrence of the drift vector
field because the latter may involve directional constraint that obstructs the
controllability, despite the systems being accessible. An example is the drift
vector, which is bad because it only allows motion in its positive direction and
not in the negative. Nevertheless, the bad brackets may be θ-neutralized if
they can be written as a linear combination of good brackets of lower degree.
Moreover, a bad Lie bracket is also assumed to be neutralized if it is zero at
the equilibrium point. The θ-degree for the vector field B is defined by

δθ(B) =
1
θ0
δ f (B) +

m∑
i=0

δi
g(B) (4.21)

where θ0 ∈ (1,∞] is an arbitrary number. For example, given the following
set of lie brackets

LB1 = [ f , g1],

LB2 =
[
f , [ f , g1]

]
,

LB3 =
[
[ f , g1], [ f , g2]

]
,

LB4 =
[[

f , [ f , g1]
]
, [ f , g1]

]
,

LB5 =

[[
[ f , g1], [ f , g2]

]
,
[[

f , [ f , g1]
]
, [ f , g1]

]]
,
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Table 4.2 indicates what their θ-degree is and whether they are good or bad.
The brackets that meet some premise for being bad are highlighted in bold. It

Table 4.2: Example of Lie bracket analysis
Bracket δθ(B)(θ0=1) δ f (B) δ1

g(B) δ2
g(B) δi

g(B), (i > 3) Type

LB1 2 1 1 0 0 Good
LB2 3 2 1 0 0 Good
LB3 4 2 1 1 0 Good
LB4 5 3 2 0 0 Bad
LB3 9 5 3 1 0 Good

is shown that only LB4 is bad since δ f is odd and all δi
g are even. Regarding

its θ-neutralization, it can be neutralized by a set of brackets whose θ-degree
is less than 5, in the case that LB4 would not be neutralized by itself because
it is zero at the equilibrium point.

4.3.1.1 Medium Re environment case

Once the differential geometry tools have been presented and the necessary and
sufficient conditions for controllability have been stated, the controllability of the
swimming robot model described in section 3.1 can be studied and analyzed.

Recalling the swimming robot model defined in (3.44), first, the equilibrium
points are calculated. For this purpose, the flow is considered at rest, which means
that the fluid velocity is zero (V f = 0), then the system has the equilibrium point:

(xe, νe)1 =
(
[αe, θe, qx,e, qy,e, 0N , 0, 0]T , 0T

Nu

)
(4.22)

where the variables αe, θe can take any value between [0, 2π] and the robot posi-
tion (qx,e, qy,e) can take any value in the space<2. In other words, the swimming
robot is at a point of equilibrium whenever it is at rest, regardless of its geomet-
rical configuration and global position. On the other hand, if the environment is
turbulent (V̇ f , 0,V f , 0) or stationary (V̇ f = 0,V f , 0) the model does not
have equilibrium point as a consequence of the flow dragging the robot. Therefore,
the swimming robot velocity, q̇x , 0 and q̇y , 0, will never be zero. In terms
of controllability, this also implies that the system is not STLC when subjected
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θN

θN−1

α1

q2

q1

q3 ≡ (x3, y3)

ey

ex

ez

Figure 4.10: The simplest configuration of a swimming robot, based on three links.

to environmental movements. However, it should be remembered that STLC is a
stronger property than controllability, so this condition supports that the system is
not STLC in such a scenario but cannot prove it is not controllable. On the other
hand, if the relative velocity is zero as a consequence of the fluid velocity coinciding
with the velocity of the swimming robot, there will be no admissible control input
to move the system from one state to another since the swimming acceleration is
zero. Therefore, the system is uncontrollable in this case.

The simplest configuration of a swimming robot is made of three rigid links,
which means two rigid links plus the head (N = 3, see Figure 4.10). This has the
minimum number of active joints to generate a nonreciprocal motion, as discussed
by E. Purcell [118] and described through Purcell’s swimmer, which is composed of
three links. An additional consequence of the rigid links is that the control vector
field is only a function of the angles of the actuated joints, g(α). On the other hand,
it is also considered that the movements are slow enough not to consider the added
forces due to the fluid. The controllability analysis will focus on such configuration.
Likewise, the results will also be valid and applicable to swimming robots with
a greater number of links. This is because any robot configuration with N > 3
can behave as a 3-link by fixing some joint angles at zero degrees and allowing
only the motion to three joints irrespective of different link lengths. Therefore,
the controllability of a 3-link swimming robot is sufficient, although not necessary,
condition for controllability with N > 3.

Taking as a starting point an environment at rest, that means, from every position
and shape of the swimming robot, the distribution ∆ should span a 10-dimensional
space in order to satisfy the necessary LARC given by (4.19). In Table 4.3, all
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Table 4.3: Accessibility distribution, ∆, for a swimming robot model with N = 3 (two links
plus the head) in medium Re case.

δθ(B)(θ0=1) Vectors
1 f , g1, g2;
2 [ f , g1], [ f , g2];
3

[
f , [ f , g1]

]
,

[
f , [ f , g2]

]
,[

g1, [ f , g1]
]
,

[
g1, [ f , g2]

]
,[

g2, [ f , g1]
]
,

[
g2, [ f , g2]

]
;

4
[

f
[
f , [ f , g1]

]]
,

[
f
[
f , [ f , g2]

]]
,

[
f
[
g1, [ f , g1]

]]
,[

f
[
g1, [ f , g2]

]]
,

[
f
[
g2, [ f , g1]

]]
,

[
f
[
g2, [ f , g2]

]]
;[

g1
[
f , [ f , g1]

]]
,

[
g1

[
f , [ f , g2]

]]
,

[
g1

[
g1, [ f , g1]

]]
,[

g1
[
g1, [ f , g2]

]]
,

[
g1

[
g2, [ f , g1]

]]
,

[
g1

[
g2, [ f , g2]

]]
;[

g2
[
f , [ f , g1]

]]
,

[
g2

[
f , [ f , g2]

]]
,

[
g2

[
g1, [ f , g1]

]]
,[

g2
[
g1, [ f , g2]

]]
,

[
g2

[
g2, [ f , g1]

]]
,

[
g2

[
g2, [ f , g2]

]]
;

vector functions than can be obtained through the drift vector field are gathered,
f (α, α̇,γ, γ̇) and the control vector field gi(α) with i ∈ {1, 2}, which could span the
dimensional space with the minimum θ-degree in (4.21). Moreover, the bad brackets
are highlighted in green.

From the Lie Algebra distribution presented above it can be observed that there
are 29 vectors to span the complete space of the system and only 3 bad brackets that
will have to be θ-neutralized. However, 10 independent vectors from these vectors
must be chosen to construct the accessible distribution. In particular, the vectors
chosen are as follows:

∆(xe) =

[
g1, g2, [ f , g1], [ f , g2],

[
f , [ f , g1]

]
,
[
f , [ f , g2]

]
,

[
g1, [ f , g2]

]
,
[

f
[
f , [ f , g1]

]]
,
[

f
[
f , [ f , g2]

]]
,
[

f
[
g1, [ f , g2]

]]]
(xe,νe)

=


0 0 −e1 −e2 0 0 0 0 0 0
0 0 −E1 −E2 K1 K2 K5 K7 0 K10

e1 e2 0 0 0 0 0 0 0 0
E1 E2 −K1 −K2 K3 K4 K6 K8 K9 K11


(xe,νe)

∈ <10×10,

where Ki ∈ <
3x1 is a nonzero matrix whose value is calculated from the Lie
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bracket. The matrix is denoted in this form to make it more readable. The accessible
distribution, ∆(xe), has full rank if it can be shown that all vectors are linearly
independent, and thereby, the det(∆(xe)) , 0 (where det() denotes determinant of
a matrix). This can be verified through a mathematical analysis software, such as
Wolfram Mathematica, due to the length and complexity of the equations.

Therefore, the necessary, but not sufficient, Lie algebra rank condition is satisfied.
Lie algebra rank condition satisfaction allows to claim that a 3-link swimming
robot is strongly accessible in (xe, νe) (strongly, because the drift vector field is not
included in ∆). However, to guarantee the system’s STLC, the second condition
must be verified, which implies that the bad brackets highlighted in Table 4.3
must be θ-neutralized. In other words, the three bad brackets must be a linear
combination of other vectors with an equal or lower θ-degree, if they are not zero at
the equilibrium point. The first bad bracket, f , vanishes at the equilibrium point as a
consequence of the equilibrium point definition. Regarding the other bad brackets[
g1, [ f , g1]

]
(xe,νe)

and
[
g2, [ f , g2]

]
(xe,νe)

are checked that they cannot be obtained from
a linear combination of the good brackets, consequently, the system does not satisfy
the sufficient condition to STLC.

In summary and as a conclusion of the above results, an N-link swimming robot
is not small-time locally controllable. However, it is important to remark that STLC
is a stronger property than controllability, which means that nonSTLC does not imply
that the system is not controllable, rather that its controllability cannot be analyzed
by this method. In addition, in the particular case when the equilibrium point fulfills
the condition α1 = . . . = αN−1, that means when all the links follow the head in
parallel (α = 0) or the swimming robot takes a C-shape configuration, a singular
conclusion results from the above analysis: the dimensions of the accessible algebra
∆ drop below the space dimension, implying that specific (geometric) configurations
make the system uncontrollable. This result is, in turn, consistent with claims in the
literature [111, 113, 123], which said that propulsion or locomotion of swimming
robots is the result of the motion of links when they are out of phase.

4.3.1.2 Low Re environment case

A paradigm shift occurs as described in section 3.2 when the swimming robot
is in a low Re environment. This has a significant impact on the controllability of
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the system. Therefore, based on the results obtained above, where the absence of
inertial effects implies the lack of the drift vector, and therefore, according to the
Rashevsky–Chow’s Theorem, it is only necessary to show that system complies with
LARC to prove that it is STLC.

Considering the same assumptions as in the previous case, the Lie Algebra
distribution, ∆̂ should span a 5-dimensional space in order to satisfy the necessary
LARC given by (4.19). In the Table 4.4, the main are vector functions are gathered
can be obtained through the control vector field gi(γ,α) with i ∈ {1, 2}. In addition,
all are good brackets.

The vector chosen to proof the controllability of the swimming robot is

∆(xe) =

[
g1, g2, [g1, g2],

[
g1, [g1, g2]

]
,
[
g2, [g1, g2]

]
,

]
(xe,νe)

=

e1 e2 0 0 0
E1 E2 K̂1 K̂2 K̂3


(xe,νe)

∈ <5×5,

where K̂i ∈ <
3x1 is a nonzero matrix whose value is calculated from the Lie bracket.

The above distribution has a full range can be verified through a mathematical
software like Wolfram Mathematica.

Finally, it is, therefore, demonstrated that an N-link swimming robot is small-
time locally controllable in low Re environments, even in the particular case when
the equilibrium point fullfils the condition: α = 0.

4.3.2 Observability

This section turns to the notion of observability, which is also one of the most
fundamental properties in the study and design of systems in control theory (for

Table 4.4: Accessibility distribution, ∆̂, for a swimming robot model with N = 3 (two links
plus the head).

δθ(B)(θ0=1) Vectors
1 g1, g2;
2 [g1, g2];
3

[
g1, [g1, g2]

]
,
[
g2, [g1, g2]

]
;
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a more profound and rigorous explication, the readers are encouraged to consult
[191, 192, 193, 194]). This property describes the possibility of inferring the system
states from observing its inputs and outputs. Therefore, this section is focused on
the output of the affine control system defined in (3.44).

First, it is necessary to introduce the indistinguishable concept of a state in order
to understand the observability definition. A pair of states x1 and x2 are said to
be indistinguishable (expressed as x1Ix2) for system (3.44), if for every admissible
input function u, the system output y(t, x1,u), t > 0, for initial state x1 and the
system output y(t, x2,u), t > 0 for initial state x2, are the same on their common
domain of definition. Then, the system is said to be observable if x1Ix2 implies
strictly x1 = x2 [191, 192, 193].

The considered definition of observability does not imply that every input func-
tion u distinguishes points ofM. If the output is a linear combination of the initial
state and the input (as it is for the linear systems) and if some input distinguishes
between two initial states, then every input will do. On the other hand, note that
observability is a global concept that requires showing the above definition for the
entire system domain since a nonlinear system may not be observable, but may
contain observable local domains. Therefore, the local concept of observability is
introduced, which is also stronger than the global one.

Let U be a subset ofM (U ⊂ M) and x1, x2 ∈ U. x1 is U-indistinguishable
from x2 (x1IUx2) if for every admissible constant control u := u(t), [t0, t1], with the
property that the solutions x(t, x1,u) and x(t, x2,u) both remain in U, the output
y(t, x1,u) and y(t, x2,u), respectively, are the same for t0 < t < t1 on their common
domain of definition. A system is locally observable at x1 if there exists a neighbor-
hoodW of x1 such that for every neighborhoodU ⊂W of x1 the relation x1IUx2

implies that x1 = x2 [191, 192, 193]. Local observability also implies observability
if the subsetU is defined equal toM, but generally it does not imply observability.
However, if a system is not locally observable at some x1, then it is not observable.

For the study of accessibility and small local time controllability, the accessibility
algebra of the system was an essential tool. Analogously, for the study of local
observability, the observation space is also necessary to show this property. Let
considers the system (3.44) with the output map defined by h(x). The observation
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space O is the linear space (over<) of functions onM containing h and all repeated
Lie derivatives (see Appendix A for more information), such as:

O(x) = span
{
Lk

vi
h j; i, k ∈ N, j = {1, . . . , p}

}
, (4.23)

where vi with i = {1, 2, . . .} is a vector field of the set
{
f , gi, . . . , gm} and p is

the number of system outputs. The observation space defines the observability
codistribution by the gradients of the elements of O, denoted as ∇O and defined
by

∇xO(x) = span
{
∇xξ(x) : ξ ∈ O

}
, (4.24)

where ξ are functions (vector fields) belonging to the observation space and form
the smallest linear subspace.

Once the observation space and observability codistribution of the system given
by the expression (A.11) of the Appendix A, are defined, the observability rank
condition (ORC) is defined as well. The ORC constitutes necessary and sufficient
condition to demonstrate the observability and it determines that:

dim ∇xO(x1) = n. (4.25)

Then, a system is said to be locally observable at x1 if it satisfies the observability
rank condition [191, 192, 193]. It should be noted that the above definition of ob-
servation space was formulated in terms of an admissible constant input. However,
it was shown in [194] that the observation space could be defined equally well in
terms of analytic inputs. Moreover, when the study of the system is focused on
input-output, an alternative observation space is more suitable, considering differen-
tiable controls and time derivatives. Especially, it is formed taking the successive
derivatives of the output system (h(x),L f h(x), . . . ,Lph(x)) as a function of initial
states, over all inputs and their successive derivatives (u,Lg1h(x), . . . ,Lp

gmh(x)).
This alternative observation space is formally defined as:

O?(x) = span
{ dk

dtk y j; k ∈ N, j = {1, . . . , p}
}

(4.26)

where the time derivative is actually the Lie derivative defined in the earlier sections
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and can also be rewritten as:

O?(x) = span
{
Lk

zi
h j; k ∈ N, j = {1, . . . , p}, i ∈ k,

}
(4.27)

with zi(x) = f (x) +
∑m

i=1 gi(x)uk
j, where uk is the k-derivative evaluated at t = 0. In

[194] is shown that the above observation space (4.27) spans the same space as that
defined by the first definition of observation space (4.23), which means:

O(x) = O?(x). (4.28)

On this basis, the observability codistribution (4.24) can also be formed from the
space (4.26) as

∇xO
?(x) = span

{
∇xξ

?(x) : ξ? ∈ O?
}
. (4.29)

Therefore, it redefines the observability rank condition (ORC) as

dim ∇xO
?(x1) = n. (4.30)

where n is the system dimension.

4.3.2.1 Medium Re environment case

Once the necessary and sufficient condition for observability of a nonlinear
system has been stated, the observability of the swimming robot model described in
section 3.1 is addressed. For this purpose, the simplest configuration of a swimming
robot is again considered, namely two rigid links plus the head (N = 3) and the
motions are slow enough not to consider the added forces due to the fluid.

Defining the output vector of the swimming robot given by (3.44) in the function
of the position and velocity of the robot, y = h(x) = [q̇x, q̇y, θ̇N , qx, qy, θN]T ∈ <6.
The observation space (4.26) is drawn up as:

O(x0) =
[
h1, h2, h3, h4, h5, h6,L f h1,Lg1h1,Lg2h1,L

2
f h1,

]
(t0)

(4.31)

where hi is the i-element of the vector h(x).
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The system is locally observable whether the ORC is satisfied, which implies
that codistribution has a full rank dimension equal to 2N + 4 (see equation (4.30)).
From the above observation, it can be obtained the following codistribution of
observability:

∇x(x0) =


03×3 03×2 03×3 I3×3

K3×3
1 K3×2

2 03×2 K3×3
3

K4×3
4 04×3 K4×2

5 K2×3
6


(t0)

∈ <(10×10) (4.32)

where Ki is a nonzero matrix whose value is calculated by applying the gradient to
observation space (4.31). By analyzing the observability codistribution and using a
mathematical analysis software, it can be shown that codistribution 4.32 has a full
range, satisfying the ORC (see equation (4.25)).

Therefore, it proves that an N-link swimming robot is observable, which means
that the complete state of the system can be determined through the inputs and
output variables of the system.

4.3.2.2 Low Re environment case

The observability analysis also changes when the swimming robot is within a
strictly low Re environment. A new output vector is defined for system (3.44), which
only considers the position in this case: ŷ = ĥ(x) = [θN , qx, qy]T ∈ <3. Therefore,
the observation space is also modified, defining it as

O(x0) =
[
ĥ1, ĥ2, ĥ3,Lg1 ĥ1,Lg2 ĥ1,

]
(t0)
. (4.33)

As in the previous section, it is shown that the observability codistribution
resulting from the previous observability space satisfies the ORC.

4.4 Path following control

The previous analyses conclude that an N-link swimming robot system is not
small-time local controllable (STLC) at a medium Re environment but is observable.
However, it should be remarked that STLC is a stronger property than controllability,
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which means that a nonSTLC system does not imply that it is not controllable,
simply that its controllability cannot be analyzed by this method. It is also confirmed
that the movements of the links must be out of phase for propulsion. Statements
consistent with the claims in the literature [111, 113, 123]. On the other hand, it has
been shown that a swimming robot in a low Re environment is STLC and observable
due to the absence of inertial forces. It is, therefore, reasonable to address the
problem of controlling the propulsion, heading and position and, in particular, to
consider the problem of allowing the robot to follow a path.

In designing a trajectory tracking control strategy, it is first necessary to clarify
that path following is understood as the task of following a predefined path inde-
pendent of time. In other words, there are no temporal constraints, and where a
trajectory or path describes the position of a moving object in 2 or 3-dimensional
space over time, by whatever the object is. Unlike conventional control strategies
for mobile robots, swimming robots require a new strategy because they are self-
propelled by the beating of the flagellum rather than by wheels or actuators that act
directly on the speed and heading of the system. This implies discarding the typical
control strategies of regulation or tracking. In order to address this type of control
for a swimming robot, a cascade control strategy approach is suggested, which is
schematized in Figure 4.11. The strategy is based on three lower control strategies
that divide the path following problem into simpler control tasks. The loops from
the inner to the outer are:

1. Joint controller, to ensure the correct link motion of the swimming robot
according to the desired beating waveform to reach the desired propulsion
speed.

φw,t

Figure 4.11: Path following control strategy.
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2. Speed controller, which aims to set the swimming robot’s speed through
modifying the beating waveform.

3. Heading controller, to steer the swimming robot following the desired path.

4. Path generation, that decomposes a given trajectory into points and straight
lines

4.4.1 Joint control

A nonreciprocal motion is only guaranteed when all the robot actuators follow
their reference with the same dynamics and tracking error. For this purpose, the joint
controller plays a key role. It is the first control law applied to the swimming robot
and must ensure tracking specifications regardless of the position of the actuator
along the flagellum (i.e., independently of its load) or the way of swimming (i.e.,
the kind of beating waveforms selected). On the other hand, the joint controller is
close to the hardware implementation of the swimming robot. Therefore, it has a
second objective: to make the following control strategies hardware-independent. It
also means that if the technology of the swimming robot is changed, only the joint
controller needs to be adjusted, and all other controllers remain unchanged.

For comparison purposes, three types of controllers are considered in order to
analyze the power efficiency of motion based on them: 1) proportional-integral-
derivative (PID) controller, 2) noninteger order derivative (PDµ) controller, and
3) reference model strategy. Not all control strategies will be applied to each of
the prototypes described in later chapters. Furthermore, for tuning the proposed
controllers, the following assumptions will be made: 1) the dynamics for velocity of
the links is slow enough to consider that the influence between them is small enough
to be neglected, and 2) their dynamics was identified as an isolated first-order system
with the following transfer function:

P(s) =
α̇u,i(s)
νi(s)

=
kl,i

τl,is + 1
(4.34)

where kl,i and τl,i are each actuator’s gain and time constant, respectively.
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4.4.1.1 PID controller

A classical PID controller is considered to control the position of the links,
defined in parallel form as follows

νPID(t) = Kpe(t) + Kd
de(t)

dt
+ Ki

∫ t

0
e(τ)dτ (4.35)

where Kp = [kp,1, . . . , kp,Nu]T ∈ <Nu , Ki = [ki,1, . . . , ki,Nu]T ∈ <Nu and Kd =

[kd,1, . . . , kd,Nu]T ∈ <Nd are the proportional, integral and derivative gains, respec-
tively, e(t) = (αu,ref(t)−αu(t)), is the error signal and αu,ref is the joint angle reference
obtained from the discretization method detailed in the section 4.1.3 and referred
to as the beat waveform generator in the control strategy block diagram. An opti-
mization was carried out to estimate the best controller parameters using two tuning
methods: a) minimizing the integral time absolute error (ITAE), to evaluate the
performance of the system along the time (it penalizes the errors that are persistent
and neglects the initial errors) [195]; and b) minimizing the integral of absolute error
(IAE), to quantify the performance to be sensitive at low errors [195].

The tuning procedure for each method was implemented in MATLAB®. The
controller’s parameters were estimated by evaluating the desired criteria defined as
follows:

IT AE =

∫ ∞

0
t|e(t)|dt (4.36)

IAE =

∫ ∞

0
|e(t)|dt, (4.37)

An iterative process was used to determine the optimal parameters based on the
Nelder-Mead’s simplex search method (implemented by the function fminsearch),
minimizing the above indices.

4.4.1.2 PDµ controller

In the second place, PDµ controller is proposed. As is well known, fractional cal-
culus (FC), a branch of mathematical analysis dealing with derivatives and integrals
of noninteger order, emerged as an efficient and powerful mathematical tool offering
accurate modeling of many complex phenomena and control of complex systems by
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improving and generalizing well-established control methods and strategies. The
controller is designed in the following form:

νPDµ(t) = Kpe(t) + Kd
dµe(t)

dtµ
(4.38)

where Kp and Kd are the proportional and derivative gains of the PDµ, and µ ∈ (0, 1]
is the fractional order. It should be noted that this controller has the same number of
parameters as the PID controller, and therefore both are comparable.

The tuning methods used for this controller are the two described in the previous
section plus a third method: considering robustness to time constant variations for a
desired phase margin, which will be referred to as robustness criterion (RC). This
third method establishes three specifications to be satisfied to guarantee robustness
to time constant variations. The first two are based on the classic definition of phase
margin (φ) at a gain crossover frequency (ωcp). The third specification must ensure
that time constant variations do not produce changes in the crossover frequency and
phase margin, which means that [196]:

∂ |G( jω)|
∂ω

∣∣∣∣∣
(ωcp,τ0)

∆ω +
∂ |G( jω)|

∂τ

∣∣∣∣∣
(ωcp,τ0)

∆τ = 0, (4.39)

∆ω

∆τ
= −

∂ |G( jω)| /∂ω
∂ |G( jω)| /∂τ

∣∣∣∣∣
(ωcp,τ0)

(4.40)

∂ arg
[
G( jω)

]
∂ω

∣∣∣∣∣
(ωcp,τ0)

∆ω +
∂ arg

[
G( jω)

]
∂τ

∣∣∣∣∣
(ωcp,τ0)

∆τ = 0, (4.41)

∆ω

∆τ
= −

∂ arg
[
G( jω)

]
/∂ω

∂ arg
[
G( jω)

]
/∂τ

∣∣∣∣∣
(ωcp,τ0)

(4.42)

where G( jω) is the frequency response of the controlled system, that means G( jω) =

C( jω)P( jω) (C( jω) denotes that of the controller, and P( jω) is that of the model
of the considered link) and τ0 is the time constant to guarantee the controller’s
robustness.

Hence, the specifications for the RC method are the following:

1. Phase margin:
arg

[
G( jωcp)

]
= −π + φ (4.43)
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2. Gain crossover frequency: ∣∣∣G( jωcp)
∣∣∣ = 1 (4.44)

3. Robustness to time constant variations:

∂ |G( jω)| /∂ω
∂ |G( jω)| /∂τ

∣∣∣∣∣
(ωcp,τ0)

=
∂ arg

[
G( jω)

]
/∂ω

∂ arg
[
G( jω)

]
/∂τ

∣∣∣∣∣
(ωcp,τ0)

(4.45)

To determine the controller parameters for the RC method, the set of nonlinear
equations (4.43)–(4.45) was solved using the optimization toolbox of MATLAB®.
More precisely, the function lsqnonlin was used to find the constrained minimum
of a function of several variables. It solves a nonlinear least-squares problem of the
form min

x
|| f (x)||22, where f (x) is the function to minimize, and x is the minimum

sought.

4.4.1.3 Tuning approach by reference model

The reference model methodology establishes a method for tuning the parameters
of a proposed control structure to the desired ideal system dynamics using an
optimization method, as depicted in Figure 4.12 and described in [197].

First, the design specifications of the ideal system are defined, whose temporal
response will be used as a reference to refine the desired control strategy. Secondly,
the cost function to be used in the optimization process is chosen after proposing

Controller System

Optimization
process

Reference
model

−
+

ν(t)e(t)αu,ref(t) αu(t)

αref
u (t)

Figure 4.12: Reference model methodology.
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the desired control strategy. In this case, the cost function is:

J(Kpc) =

∫ ∞

0

(1
2

+
t
2

)
|e(t)| (4.46)

where Kpc denotes the control strategy parameters. Note that cost function (4.46) is
a combination of ITAE, to evaluate the performance of the system over time, and
IAE, to quantify the performance to be sensitive at low errors [195].

The optimization process is divided into two steps and is carried out by com-
bining both MATLAB® and Simulink®. The first step is implementing the sys-
tem with the proposed control strategy, whose gains are variable, in closed-loop,
along with the scheme corresponding to the reference model. The second step is a
MATLAB® script that implements an iterative process based on the Nelder–Mead
simplex search method, thanks to the function fminsearch, that runs the mentioned
Simulink® model calculating the cost function J given by (4.46). In particular, this
script varies the parameters of the controller until the values that minimize J are
found, which means the controller’s optimal values. In order to be able to find a
globally optimal solution, the iterative process was applied for a wide number of
initial conditions, which were randomly changed for each optimization.

4.4.2 Speed control

The speed controller aims to establish and achieve the desired propulsion speed
through the variation that defines the beating waveform, mainly the coefficient that
defines the beating amplitude and the propagation velocity of the wave. However,
it should be noted that the physical limitations of the length links and the actuator
dynamics constrain both parameters. Thereunder, the fractional beating waveform
performs a crucial role in controlling the speed through the fractional order coeffi-
cient, αw, changing the kind of beating waveform and remaining unchanged in the
rest of the parameters. This is why the speed control strategy is only applied to the
fractional beat waveform. In addition, this control must take into consideration the
discretization method used. As was previously commented, the projection method
allows the modification of the beating waveform parameters and recalculates the
joint angles online. However, the fitting method does not allow changes in real-time
due to the high computational cost. This implies the need to apply different control
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strategies for each discretization method. Furthermore, as a consequence, the speed
propulsion of the swimming robot is proportional to the different parameters that
define the beating waveforms; the fractional order coefficient is chosen as the control
variable while setting the maximum propagation speed allowed by the actuators.

In this work, the speed control only covers the first discretization method, which
is based on a classical proportional-integral (PI) controller whose law control is
given by:

αu,w(t) = Kp,α(ẋn,ref(t) − ẋn(t)) + Ki,α

∫ t

0
(ẋn,ref(τ) − ẋn(τ))dτ, (4.47)

where αu,w is the fractional order coefficient wave resulting from the law control,
Kp,α and Ki,α are the proportional and integral gains, respectively, and ẋn,ref(t) is the
desired swimming robot velocity.

4.4.3 Heading control

The swimming robot heading is the third requirement for the path following.
The heading controller aims to ensure the forward motion of the swimming robot
towards a given trajectory. It consists of two parts. The first one approaches the
problem of determining the turning angle to track a straight path. The second part
controls the head offset angle or the mean amplitude over which is performed the
beating waveform to generate normal forces to the motion axis and, consequently,
induce a rotation, as was commented in section 4.2.

The implementation of this control strategy is based on the assumption that
any path can be converted into a set of straight lines, which is the basic operation
of a path. Therefore, it is possible to apply the Line-of-sight (LOS) guidance
methodology, a popular method for straight line following applied in maritime
vehicles and surface-to-air missiles. LOS steers the system towards a straight line,
for which it considers three control points: two of them are the starting and target
point that form the straight line to follow, and the third is the position of the moving
system. Specifically, the angle between the trajectory and the system determines the
heading controller reference [123, 184].
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Let consider a straight line defined by two points, wk = [xw
k , y

w
k ]T ∈ <2 and

wk−1 = [xw
k−1, y

w
k−1]T ∈ <2. The local path frame is defined by the vector (ew,k

x , ew,k
y ,

ew,k
z ), where the last vector is the result of the cross product of the first ones, with

origin in wk−1. X-axis, ew,k
x , is rotated with respect to the global frame an angle

of:

βk = tan−1
( yw

k − yw
k−1

xw
k − xw

k−1

)
(4.48)

Then, the swimming robot’s position in the path frame is

qw = Rw,k
I

(
q − wk−1

)
∈ <2 (4.49)

where

Rw,i
I =

[
ew,k

x ew,k
y

]
=

cos βk − sin βk

sin βk cos βk

 . (4.50)

Now, with the transformation to the path frame, the swimming robot’s position
can be interpreted as

qw =

qw,k
x

qw,k
y

 =

sw

ew

 (4.51)

where sw is along-track distance (tangential to path), and ew cross-track error (normal
to path) [184]. For guidance purposes, only the second component is relevant since
it indicates how far the object is from the straight line, while ew = 0 means that it
has converged to it. Therefore, the objective of guidance control is to ensure that

lim
t→∞

ew(t) = 0 (4.52)

This problem is addressed by two different methodologies in the literature: enclosure-
based steering and lookahead-based steering. Both methods aim to steer the swim-
ming robot towards the trajectory, guaranteeing the above condition. However, the
latter presents computational advantages in contrast to the other. Focusing on the
lookahead-based method, it establishes the control law as

θw,k
N,ref = β + tan−1

(
−ew

4

)
(4.53)
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wk

wk−1

ew

△

(
qw,k−1
x , qw,k−1

y

)

ey

ex

sw

Inertial frame

(
qx, qy

)

Figure 4.13: Graphical description of line-of-sight guidance.

where the first component corresponds to the path-tangential angle, whereas the
second is the velocity-path relative angle, which guarantees that the swimming robot
moves towards a point on the path that is located a lookahead distance, 4, 4 > 0
[184]. The meaning of both components can be observed depicted in Figure 4.13,
from which it can be stated that small values of 4 involve aggressive steering. Once
the turning angle is calculated, the next step is to steer the swimming robot toward
that angle. For that purpose, a proportional controller is proposed with the following
control law:

φw,t = Kp,h
(
θw,k

N,ref − θ
w,k
N

)
= Kp,h

(
β + tan−1

(
−ew

4

)
− θw,k

N

)
(4.54)

where θN,ref is the desired heading, θN is the moving average of the head angle, Kp,h

is an error proportional gain. The reason for considering the moving average of the
head angle is motivated by the oscillating motion of the swimming robot. Notice
that θ(N−1),h is the angle offset that is added to the motion of the last link, which is
equivalent to the cw,t x term described in the definition of the beating waveform to
induce a rotation in the swimming robot motion.

4.4.4 Path generation

Finally, the last step of the trajectory tracking control is the classification of
the trajectory by straight or curved sections. In this application, accuracy is less
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Figure 4.14: Graphical description of acceptance region.

important than reaching the target. Therefore, segmenting a set of points that
form straight sections will be adopted as a waypoint guidance methodology. The
orientation of these straight sections will be the reference of the heading control,
which will ensure trajectory tracking.

The waypoints guidance methodology is thoroughly applied for ships and un-
derwater vehicles. The waypoint selection process can incorporate many factors,
such as obstacle avoidance, mission planning, and efficient trajectory from an en-
vironmental flow point of view, among others. Furthermore, each waypoint must
be feasible in the sense that it must be possible to maneuver to the next waypoint
without exceeding the maneuverability of the swimming robot. After decision and
optimization processes, the final result will be a trajectory described by a set of
waypoints, which are defined in the global frame and stored in an internal memory
or in an external device with wireless communication.

Once the trajectory is segmented into points, the swimming robot will follow
the straight line from a waypoint until the next one is reached. At that time, a new
straight line is defined according to the new waypoint, and the heading controller
steers the swimming robot toward the new line. The switching operation between
waypoints is based on the acceptance region method [123, 184]. It consists of
proceeding to the next waypoint as soon as the system position enters inside an
acceptance region. The acceptance region, as illustrated Figure 4.14, is composed of
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a circle of radius ra and the right half-plane of the reference system with origin in the
current waypoint. Furthermore, when a new waypoint is considered, the path frame
is redefined, and the reference of heading control is updated. This method ensures
that when the system reaches the acceptance region, it connects to the next waypoint
and propels itself along the new straight line, regardless of how the waypoints are
defined.

The path following based on waypoints is implemented by the following algo-
rithm:

Algorithm 1 Path following based on waypoints algorithm
Define the initial position of the swimming robot, w0;
Set the straight line between (w0,w1) and the path frame (ew,1

x , ew,1
y ,ew,1

z );
if υx , 0 then

Waiting for speed;
end if
Update reference of heading control;
i = 2;
while i , (k + 1) do

{where k is the number of waypoints}
Calculate qw;
if qw ∈ wacceptance region

i then
i = i + 1;
Set the straight line between (wi−1,wi) and the path frame (ew,i

x , ew,i
y ,ew,i

z );
Update reference of heading control;
The heading control steers the swimming robot toward the new line;

end if
end while
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4.5 Summary

This chapter presents an analysis of the influence of the beating waveform
performed by the flagellum on the propulsion and the control strategy for path
following. The motion analysis states a strong relationship between the amplitude
coefficients of the waveform and the wave propagation velocity with the propulsive
velocity of the swimming robot. In this respect, the fractional beating waveform
can control the propulsion speed using a single parameter, the fractional coefficient.
In particular, this coefficient makes it possible to produce equivalent propulsive
forces from harmonic motion to linear Carangiform. Regarding path following,
the control strategy is based on nested control loops that address link position
control, propulsion speed, and heading control. In addition, path following control is
combined with waypoint guidance methodology, which defines the heading control
reference by dividing the path into straight segments.
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This chapter details the model and the design of the prototypes of articulated
swimming robot developed based on the model presented in chapter 3. In particular,
two prototypes will be presented: the first consists of a series of rigid links of
1 DoF modules that include a DC motor, and the second is a series of flexible
links on a IPMC sheet. In addition, a novel CVS model is presented that covers
the following three contributions. Firstly, a new electrical model that extends the
classical Windkessel model of four elements to the left common carotid artery. This
is motivated by the need to have a complete model from a medical point of view
for validation purposes, as well as to describe cardiovascular phenomena in this
area, such as atherosclerosis, one of the main risk factors for cardiovascular diseases.
Secondly, the hydraulic model, equivalent to electrical one, is obtained and, thus,
a viable platform for research and clinical trials is designed based on it. Thirdly,
the CVS platform allows to emulate low Re conditions to test and evaluate the
performance of swimming robots.

5.1 6-link swimming robot

This section deals with the design of a flagellum-type articulated artificial eukary-
otic swimming robot with six rigid links, starting from its model (as a particulariza-
tion of the one previously presented), a simulator to validate control strategies before
prototyping and, finally, the description of the prototype to be manufactured.

5.1.1 Model

Here, the particular case of the model detailed in Chapter 3 for six rigid links at
a medium Re environment is presented. Recalling the swimming robot dynamics
(3.33) for the swimming robot parameters give in Table 4.1 and Table 5.1, the
dynamics model is reduced to:



Ψ11 Ψ12 Ψ13 Ψ14 Ψ15 Ψ16 Ψ17 0 0
Ψ12 Ψ22 Ψ23 Ψ24 Ψ25 Ψ26 Ψ27 0 0
Ψ13 Ψ23 Ψ33 Ψ34 Ψ35 Ψ36 Ψ37 0 0
Ψ14 Ψ24 Ψ34 Ψ44 Ψ45 Ψ46 Ψ47 0 0
Ψ15 Ψ25 Ψ35 Ψ45 Ψ55 Ψ56 Ψ57 0 0
Ψ16 Ψ26 Ψ36 Ψ46 Ψ56 Ψ66 Ψ67 0 0
Ψ17 Ψ27 Ψ37 Ψ47 Ψ57 Ψ67 Ψ77 0 0

0 0 0 0 0 0 0 Ψ88 0
0 0 0 0 0 0 0 0 Ψ99
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−1 0 0 0 0 0
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0 0 0 0 0 1
0 0 0 0 0 0
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u5

u6


(5.1)
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where coefficients Ψi, Ωi and Eiare developed in Appendix A.4. As mentioned
above, this structure is still quite complex to analyze the dynamics of the swimming
robot, even if only six links are considered. Therefore, applying the change of
basis and the feedback linearization described in chapter 3, the control-affine system
structure is considered again. It represents the actuated and nonactuated DoFs
independently and linearizes the input-output dynamics. The considered state vector
is x = [α1, α2, α3, α4, α5, α6, θ7, qx, qy, α̇1, α̇2, α̇3, α̇4, α̇5, α̇6, θ̇7, q̇x, q̇y]T ∈ <18 and
the swimming robot model dynamics is given as

α̇1

α̇2

α̇3

α̇4

α̇5

α̇6

θ̇7

q̇x

q̇y

α̈1

α̈2

α̈3

α̈4

α̈5

α̈6

θ̈7

q̈x

q̈y



=



α̇1

α̇2

α̇3

α̇4

α̇5

α̇6

θ̇7

q̇x

q̇y

0
0
0
0
0
0
Jθ

Jqx

Jqy

︸︷︷︸
f (x)

+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
Eθ,1 Eθ,2 Eθ,3 Eθ,4 Eθ,5 Eθ,6

Eqx,1 Eqx,2 Eqx,3 Eqx,4 Eqx,5 Eqx,6

Eqy,1 Eqy,2 Eqy,3 Eqy,4 Eqy,5 Eqy,6

︸                                                 ︷︷                                                 ︸
g(x)



ν1

ν2

ν3

ν4

ν5

ν6


(5.2)

Table 5.1: Waveform and environment parameters.
Parameter Value Description Unit Parameter Value Description Unit

Nu 6 Actuated links - N f 0 Flexible links -
ri 12.5 Link radius mm li 100 Link length mm
r7 12.5 Head radius mm l7 100 Head length mm
R 68.7 Link mass g n 22.9 Head mass g

v f ,x 0 Fluid velocity in x-axis m/s v f ,y 0 Fluid velocity in y-axis m/s
v̇ f ,x 0 Fluid acceleration in x-axis m/s v̇ f ,y 0 Fluid acceleration in y-axis m/s
c‖v,i 0.0276 Tangential viscous friction coefficient - c⊥v,i 0.05530 Normal viscous friction coefficient -
c‖a,i 0 Tangential added mass coefficient - c⊥v,i 0 Normal added mass coefficient -



5.1. 6-link swimming robot 121

In this case, the expression of coefficients Ji and Ei are omitted due to length. It is
should be remarked that the input is influenced only and directly by the joint angle
and the dynamics that are nonactuated.

5.1.2 Controllability and observability

In the previous chapter, it was indicated that an N-link swimming robot does not
meet the necessary conditions to verify that it is STLC. However, this property has a
more significant implication than the concept of controllability, so it is not possible
to rule out that the system is controllable. This section intends to verify the previous
study for the specific case of a 6-link swimming robot described by the parameters
listed in table 5.1. Considering the following accessibility distribution spanned from
the vector fields of system (3.44)

∆6−Link(xe) =

[
g1, g2, g3, g4, g5, g6 [ f , g1], [ f , g2], [ f , g3], [ f , g4], [ f , g5], [ f , g6],

[
f , [ f , g1]

]
,
[
f , [ f , g2]

]
,
[
f , [ f , g3]

] [
f , [ f , g4]

]
,
[
f , [ f , g5]

]
,
[
f , [ f , g6]

]]
(xe,νe)

∈ <19×19,

(5.3)

where the formulation of Lie brackets is described in section A.3 of the Appendix A,
the vectors are linearly independent, meeting the Lie algebra rank condition, as
can be verified with a mathematical analysis software. Nevertheless, as mentioned
above, this condition is necessary, but not sufficient to demonstrate the system’s
controllability. In addition, the bad bracket must be θ-neutralized, which means it
must be expressed as a linear combination of a bracket with a lower degree. However,
this condition is also not met, as it was previously studied for the case of an N-link
swimming robot.

In the observability study, the same conclusions are drawn as in the case of an
N-link swimming robot: the system is observable; in other words, it is possible
to deduce all the system states even if no sensors are available on the variables of
interest. The observation space considered for the analysis is the next:

O6−Link(x0) =
[
h1, h2, h3, h4, h5, h6

L f h1,Lg1h1,Lg2h1,Lg3h1,Lg4h1,Lg5h1,Lg6h1,

L2
f h1,L

3
f h1,L

4
f h1,L

5
f h1,

]
(t0)
,

(5.4)
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where y = h(x) = [q̇x, q̇y, θ̇7, qx, qy, θ7]T ∈ <6, hi is the i-element of the vector h(x),
and Li

f denotes the Lie derivative.

It is important to mention that the equilibrium point and initial condition are
considered as in N-link swimming robot case: the environment is at rest (V f = 0),
and the swimming robot is at rest in a configuration where all the link angles are
different (q̇x = q̇y = 0 and α1 , αi , . . . , α6 , 0 with i = 1, . . . , 6).

5.1.3 Simulator

A simulator based on physical modeling was developed in the MATLAB® and
Simulink® environment (using Simscape™ toolbox). The simulator of the swimming
robot is a modular design that allows a quick and easy robot configuration through
a graphical user interface (GUI, shown in Figure 5.1) where both robot geometry
and locomotion can be changed. Physical modeling is a way of modeling and
simulating systems with real physical components. It employs a physical network
approach, where Simscape blocks correspond to physical elements, such as pumps,
motors, and op-amps. These blocks can be joined by lines corresponding to the
physical connections that transmit power. This approach allows the description
of a system’s physical structure rather than using its underlying mathematics. For
more information, see basic principles of modeling physical networks. Concerning

Figure 5.1: GUI of the 6-link eukaryotic flagellum-type swimming robot (configurable
options are at the bottom).
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geometry, the following parameters can be selected for the robot: size, the number
of links the flagellum is divided into (a motor actuates each link), and the length
of each link. Furthermore, from a mechanical perspective, it is possible to modify
the properties of the actuators and measure the force, velocity, power supplied
and consumption of such actuators. Other configurable options, at the bottom of
Figure 5.1, are the following:

• Select a traveling wave. The desired motion can be selected using this set
of buttons. They carry out the discretization method (explained below) and
show a brief animation of the microrobot’s motion according to the rest of the
configuration parameters.

• Select an integration method. This option allows the selection of the integra-
tion method desired to calculate the forward propulsion thrust and velocity
following (4.3). Particularly, “Small amplitude” method considers small dis-
placements along the traversal axis and, consequently, the simplifications
made in Section 4.1 are applied. In the case of “Big amplitude” method, the
forward propulsion is calculated with no simplifications following (4.7).

• Type of controller. It shows the controller that will be applied to track the
references obtained from applying the discretization method to the selected
waveform. Three different controllers are available: a) P-D, b) PID and c)
PDµ, as explained in the above chapters.

• Implementation of controller. The above-chosen controller can be imple-
mented in five different forms in both continuous or discrete-time domains,
together with hardware, to perform hardwre-in-the-loop (HIL) experiments.
Moreover, for the case of a digital implementation, a direct or parallel form
can be chosen.

• Results. This set of buttons allows to show and analyze different variables
and parameters after simulations or HIL experiments. In particular, the
button “Force and power” plots the forward propulsion thrust generated due
to simulated motion and the energy supplied to the actuator of each link,
calculated as the product of the voltage applied by the current demanded.
“Motion controlled” shows an animation of both the ideal and the simulated
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waveform and presents the reference and response of each actuator to evaluate
the controller. Likewise, “Velocity and position” represents the forward
velocity obtained for the simulated motion and the velocity calculated for the
ideal discretized motion.

The flagellum is implemented through distributed actuators, which means a set
of links with 1 DoF joints. The link set is developed from a basic unit, repeated as
many times as the desired number of joints. The full description of the simulator
can be found in section A.5 of Appendix A

From a control perspective, the simulator allows a quick and easy check of the
goodness of the waveform, the discretization method and the different stages of the
path following control. Likewise, it allows the evaluation of the robot’s performance
from different perspectives. In addition, it is important to remark that the simulator
can be used as a HIL testbed (see more details also in A.5.3 of Appendix A).

5.1.4 Prototype

This section details the design and architecture of the swimming robot. Although
thanks to its modular design, the description will be centered on the head and a link,
the latter being replicated as many times as there are links. The design is inspired
by the flagella of eukaryotic cells and snake-type robots existing in the literature,
consisting of a series of links of 1 DoF modules actuated by motors that control the
position and a head that contains the wireless communication module. Figure 5.2
illustrates the prototype of the 6-link swimming robot designed.

5.1.4.1 Mechanical overview

A design requirement of the swimmer prototype is the ease of customization,
which is why the reason the design is based on a modular structure from mechanical
perspective, but also from the electrical and software points of view. Therefore,
links can be connected and disconnected quickly and repeatedly. In addition, not
only actuation modules are supported, any other device that matches the mechanical
connector, a 5V power supply and I2C bus compatibility can be connected between
modules, allowing freedom in design customization.
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Figure 5.2: 6-link eukaryotic flagellum swimming robot.

Each driving link module is a self-contained 1 DoF joint with a rotation operating
range of 180◦. A micro metal high-power brushed Maxon motor DCX 08M, with a
nominal speed of 11600 rpm, drives the modules. The pinion gear on the motor’s
output shaft transfers rotation through a 64:1 gearbox to increase joint torque.
Consecutively, the gearbox shaft is connected to a miter gear that transfers the
rotation to a 90◦ axis in accordance with the swimming robot’s dorsal axis. The
above combination provides an output torque of 41 mNm and a maximum speed
of 181 rpm. Additional information on the characteristics of the motors is given in
Table 5.2.

The housing of each link of the prototype is machined from thermoplastic
aliphatic polyester (PLA), providing a light and strong structure. Each link is
composed of three parts: top, middle and bottom. The connection point between
one link and the next is made at the top. The joint axis connects the top part to the
following link’s middle part. The middle part, which is designed to contain all the
components (miter gear, gearbox, bearing, motor, control board and power supply
and communication connector). The bottom part seals the middle part, allowing
the latter to be opened for easy installation of components and the connection point

Table 5.2: Actuator parameters.
Parameter Value Description Unit Parameter Value Description Unit

Rm 12.3 Armature resistance Ω Bm 9.09 × 10−7 Rotor damping Nm/(rad/s)
Lm 41.1 × 10−6 Armature inductance H Jm 3.79 × 10−9 Rotor inertia kgm2

Kem 0.0034 Back-emf constant V/(rad/s) Jg 4 × 10−10 Gear head inertia
ng 64 Gear ratio ηg 0.73 Gear efficiency
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(a) (b) (c)

Figure 5.3: Cross-section of the swimming robot: (a) head, (b) link, and (c) last link.

through a custom plug-and-play connector. The watertightness between the parts is
ensured by sealant, which guarantees that the prototype can be immersed without
water intrusion. On the other hand, the mechanical and electronic components
are assembled inside, minimizing the space and, therefore the swimming robot’s
dimensions. Figure 5.3b illustrates a cross-section of the prototypes modules.

As for the head and last link (see Figure 5.3a, Figure 5.3c, respectively), these
are the only modules that differ from other links. Both are based on the same design,
although they only allow connection at one end. With respect to the last link, it
contains the same components, but, in the lower part, a closing cap is connected.
Likewise, unlike other modules, it also contains a power connector to an external
cable that powers the swimming robot.

Lastly, concerning the mechanical design, the prototype was designed to scale
the microscopic behavior at the macroscale, considering current technology. That
implies two issues. Firstly, the value of Re has to be preserved to guarantee that the
results are comparable for both scales. Secondly, there were limitations concerning
the minimum possible size (it was limited due to the dimensions of the required
motors) and the maximum number of segments for a defined size. Thus, for the
prototype size given in Figure 5.2, to guarantee a low Re conditions, it is required to
increase the viscosity of the fluid where the robot navigates.

5.1.4.2 Electronic overview

The prototype electronics were designed to minimize the printed circuit board
(henceforth, PCB) footprint while facilitating software development. To this end,
each link has the same electronic design, mainly based on a dedicated microcontroller
and the necessary peripherals for motor control tasks, except for the head, whose



5.1. 6-link swimming robot 127

purpose differs from the others. The head has a microcontroller with more resources
to manage the control of all links and communication with a control software
running on an external platform. Likewise, it includes the LEDs to visually notify
the operating mode and warnings of malfunction.

The electronics of the link is schematized in Figure 5.4, where it can be seen that
it is composed of an Atmel ATmega32u4 microcontroller, a driver motor board, a
encoder and a limit switch. The microcontroller has an 8-bit architecture, a capability
of 16 million instructions per second (MIPS) at a clock frequency of 16 MHz, and
a hardware multiplier that improves the time of arithmetic operations. Its capacity
to execute the control task in the desired sampling time makes it suitable for this
application. The microcontroller is connected to the motor board and the encoder. It
allows to control the voltage applied to the motor through a pulse-width modulation
(PWM) signal, the rotation direction, and measure both the speed and the position
of the motor. On the other hand, the data exchange between the microcontroller and
the main board is done by means of two wires through I2C bus serial communication
bus. All links are connected via the power bus and the data communication bus,
which comprises a connection of 4 wires. As for the motherboard electronics, it
incorporates a dual processor. The first of these is a low-power 32-bit Arm® Cortex®,
which performs all the calculations and control of the link. The second is a NINA-
W10, a low-power chipset whose purpose is to interface between the previous

5 V
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SDA

Link board

Driver 
Motor

End stop

Encoder
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ATmega
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Figure 5.4: Electronic schematics of the links.
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microcontroller and the WiFi connectivity module. In addition, it integrates an
inertial sensor technology featuring a single chip solution with a 3-axis gyro, 3-axis
accelerometer, and 3-axis magnetometer to facilitate the measurement of the relative
positioning of the swimming robot. Likewise, as commented, three color LEDs are
also added externally to provide immediate feedback on module status.

It is worth mentioning that only the communication between the links is wired.
Communication with external control software takes place wirelessly. However, in
the current design, it is necessary to use a wired connection for the power supply at
5 V, although a battery could be used instead.

5.1.4.3 Firmware overview

The firmware of the prototype was designed from a research perspective, which
means it should be constantly reconfigured to support new physical configurations,
module types, and sensor types, allowing an easy adaptation for research in controls,
perception and planning. This is why the firmware was developed with a modular
structure.

In particular, the firmware was designed according to the mechanical design of
the swimming robot, that means the links and the head were implemented dedicated
and independent firmware. Therefore, from a control and computing perspective,
it is possible to divide the firmware into two abstraction layers, a low-level and a
high-level abstraction layer. The low-level abstraction layer refers to the firmware
implemented in the links, which has the purpose of controlling the link position.
For this purpose, it interacts with the prototype hardware, namely the sensors and
actuators, and implements the desired control strategy. On the other hand, the
high-level abstraction layer performs the control coordination between the set of
coupled links and manages the transmission of information between the links and
the external platform.

The link’s firmware can implement the desired control strategy for the link
position. In this sense, the control strategies are executed by allowing the selection
of the desired one, which operates at a sampling frequency of 125 Hz. However,
setpoints could be updated less frequently, typically at 20 − 50 Hz. On the other
hand, it is also possible to implement the controller in an external control software
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device that performs the computational load; in this case the firmware would acts
only as an interface between the external platform and the sensors and actuators.
Position feedback is measured through an optical encoder. The position reading is
performed by dedicated hardware that detects the motor rotation. The velocity is
estimated by differentiating numerically the position for a fixed period of time and
smoothing the result with a Kalman filter to reduce noise. Regarding the position
controller implementation, additional features are added to help to compensate
common gear-train nonlinearities and sensor noise, such as dead-band and friction.
The dead band helps to reduce oscillations due to gear backlash and sensor noise,
whereas the friction compensation to overcome static friction.

As for the high-level abstraction layer, it refers to the spindle firmware, whose
purpose is to transmit the reference of the link position controllers (or control signal
to be applied to the motors) independently of the control strategy employed. Unlike
the link’s firmware, it has a higher computational load, although it exclusively
establishes an interface between the links and the external control software. To this
end, the core of the head firmware implements an real-time operating system (RTOS)
software, concretely the FreeRTOS distribution, where the firmware is divided into
three main tasks: 1) executing motion control commands received from the external
control software, 2) sending the sensor measurement, and 3) calculating the relative
position of the head by means of the inertial measurement unit. The two first tasks
are the primary function that head firmware performs.

To ensure proper communication between the modules without interrupting
programmed actions, a master-slave communication hierarchy was established. All
communications are always initiated by a clearly defined master role assigned to
the external control software. On the other hand, the head and link modules are
configured as slaves, waiting for a communication to be initiated to execute the
received command and transmit the information from the sensors.

Communication packets are defined as a single meta-message containing all
the necessary and desired information for the swimming robot’s configuration
and actuation. As for the return packets, they only contain information about the
status of the swimming robot. Additionally, these messages could contain codes or
coding characters that allow the type of information received to be classified and
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the recipient of the information. Packets consist of three sections: header, payload
and CRC. The packet header contains the destination and payload size. The payload
section includes the commands or requests to be transmitted. Finally, the cyclic
redundancy check (CRC) section is used to verify the integrity of the packet data.

Communication is vital from a control dynamic perspective, in which the latency
time plays a key role, and therefore it must be minimal for the command execution
and sending of the sensor measurements. This reason has promoted the use of a dual-
processor system. On the one hand, the NINA-W10 module manages the wireless
communication with the external control software, and. on the other hand, the
communication with the link is performed by 32-bit Arm®Cortex®. Between them,
a parallel communication based on the (serial peripheral interface) SPI protocol.

As for the external control software, it is developed and implemented in C/C++.
It is an extension of the simulator described above, allowing the selection of the
output and source of information for the swimming robot prototype or the swimming
robot simulator. As in a simulation, recording any information sent or received from
the prototype is possible. The communication between the robot and the software is
done through UDP protocol, primarily to establish low-latency and loss-tolerating
connections and a WiFi connection.

5.2 IPMC-based 3-link swimming robot

This section deals with the design of a flagellum-type articulated artificial eu-
karyotic swimming robot with three flexible links fabricated on an unique IPMC
sheet.

5.2.1 Description

This second prototype is also based on an artificial eukaryotic flagellum. It
consists of three flexible planar links. Unlike the previous prototype, the links are
flexible based on IPMC technology, so the same links constitute the housing and
actuators. This technology offers the advantage of needing to be immersed in an
aqueous medium to function correctly, so it is optional to guarantee its watertightness.
However, due to its flat geometry, all the electronics needed to drive and monitor
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Table 5.3: Geometrical parameters of the IPMC-based AEF swimming robot.
Parameter Description Value Unit

LT Length of robot 31 mm
W Width of robot 3 mm
h Thickness 250 µm
Li Length of actuator 10 mm
N Number of links 3 -

the prototype is external. A picture of the prototype is shown in Figure 5.5. It
was manufactured over the same IPMC sheet attending to the mechanical design
depicted in Figure 5.5a. For that purpose, a micro laser etching machine was used to
cut the robot flagellum and isolate each of the segments electrically. The dimensions
are given in Table 5.3.

It is important to remark that each segment of the flagellum can behave as an
independent actuator when it is electrically powered or as a passive flexible link
when it is not. Inn this respect„ only the first segment will be used as a robot actuator
for robot modeling, so the rest will behave as passive links. On the contrary, for
control purposes, each link will be driven in order to reproduce a nonreciprocal
motion for propulsion. The deflection of any of the links can be measured at its tip
in both cases.

5.2.2 Experimental setup

The experimental setup used in this work for identification and control purposes
of the manufactured swimming robot is illustrated in Figure 5.6a, which consists
of:

LT

L1

L1 + g1

W

1st − Link 2nd − Link 3rd − Link

(a) (b)
Figure 5.5: The three-link IPMC-based AEF swimming robot: (a) mechanical design, (b)

image of the real prototype.
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• A water tank, used as an environment since the ultimate goal of the swimming
robot is to be able to swim in a fluid.

• Laser distance meters (OADM 20U2441), to measure the deflection of the
links.

• Gold electrodes, attached both sides of an actuator by means of a clamp, to
transmit the voltage from the supplier to the IPMC surface.

• A USB multifunction I/O data acquisition board of National Instruments
(NI-USB6259), which is connected to a computer in which LabVIEW™ 2020
SP1 runs to collect the data and generate the desired excitation voltage.

• A power stage, to provide sufficient power to the actuator from a power DC
supplier and the desired voltage indicated by the computer.

The laser distance meter is calibrated for a resolution of 0.8 mm/V and pointed
at the end of the desired link. Furthermore, the swimming robot is positioned in
the middle of the range, allowing it to measure a maximum displacement of 4 mm.
On the other hand, the voltage applied to the actuator is sampled with the USB
multifunction I/O data acquisition board at a frequency of 1 kHz. Likewise, the
output signal of the laser distance meter and the excitation voltage applied to IPMC
are measured at the same sampling frequency and then sent to the computer in order
to collect the data. Figure 5.6b shows an actual image of the robot pointed by the
laser during one of the experiments. Note that, although in the scheme only one

Power Supply

NI Data acquisition
(NI-USB6259)

                                  Water Tank

Gold electrodes

Laser distance

 meter

(OADM 20U2441)

Labview 2020

L1 L2 L3

A1

(a) (b)

Figure 5.6: Experimental setup: (a) scheme, (b) swimming robot prototype pointed by the
laser distance meter during an experiment.
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laser meter is shown pointing to the flagellum end, there are other two to measure
the deflection at each of the other two segments’ end, depending on the needs of the
application to be developed. Likewise, two additional pairs of electrodes are also
available for distributed actuation.

5.3 Cardiovascular system platform

A fundamental aspect for research and clinical diagnosis and validation of the
performance of swimming robots in low Re environments, and specifically within
the CVS, is to have a platform that allows emulating the such same conditions
so that the macroscopic results are equivalent to those at microscale. Given this
motivation, firstly this section presents an electrical model of the CVS extended
to the left common carotid artery. It is developed from the classical four-element
Windkessel model and the modifications introduced in [4]. Secondly, the electrical
model is reinterpreted from a fluid mechanics perspective by developing a hydraulic
simulator that allows to build a experimental platform to test swimming robots of
small dimensions, i.e. to emulate the conditions in which swimming robots would
navigate in the human circulatory system.

5.3.1 Electrical model

The model on which this work is based on the Windkessel model proposed in
[198, 199] and the modifications suggested in [4, 5, 200]. Moreover, this work
presents a model that extends the model of [4] to the left common carotid artery. The
choice of this kind of artery is motivated by the need to have a more complete model
from a medical point of view for validation purposes, as well as to describe other
cardiovascular phenomena in this area, such as atherosclerosis, one of the main risk
factors for CVDs [157]. It should be also noted that the whole model defined based
on the anatomic structure of the circulatory system, respecting the criteria used in
[199] for the definition of the four element Windkessel model.

The equivalent electrical circuit of the CVS and left common carotid artery is
shown in Figure 5.7, where a clear distinction is made between dynamics of the
systemic circulation and left carotid dynamic. The cardiovascular model focuses
mainly on the left chambers of the heart, assuming that the right ventricle and the
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Figure 5.7: Electrical model equivalent to the CVS with extension to left common carotid
artery.

pulmonary circulation act correctly and, hence, they are omitted. Resistance to
flow from the descending aorta through the capillary vessels, venous and pulmonary
circulation to reach the left atrium is identified through the resistors that feedback
the electrical system: RS denotes the systemic resistance, whereas RS LC represents
the resistance from the left common carotid. The contractile capacity of the heart
is modeled by the variable capacitor, C(t), whose capacitance is the inverse of the
LV elastance (E(t)). The elastance defines the elasticity of the heart as a function
of the pressure that it supports, according to the Frank-Starling’s law. A more
detailed description is provided in subsection 5.3.2. The aortic and mitral valves
are modeled as ideal diodes, DA and DM, in series with a resistance, RA and RM,
respectively. However, to achieve a more accurate response, the capacitor CA is
added to the first valve, which reflects the elasticity of ascending aorta and models
the pressure variation due to the open-close operation of the aortic valve. The rest of
elements model the elasticity, inertia and resistance of the descending aorta (CS , L
and RC) and the left common carotid artery (CLC , LLC and RLC). These elements, in
combination with RS and RS LC , define the afterload factors.

With respect to the dynamics of the CVS, it is described choosing as state varia-
bles the ones listed in Table 5.4 (which correspond to those indicated in Figure 5.7)
and applying Kirchhoffs’ laws to the electric circuit, except for the state x1, which
depends on the working mode of the diodes and the contractile capacity of the heart
C(t). The diodes allow to define the behavior of heart valves and give the system its
nonlinear character.

The combination of the conduction state of the diodes allows to describe the four
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Table 5.4: State variables of the cardiovascular model.
Variable Abbreviation Clinical meaning (unit)

x1(t) LVP(t) Left ventricular pressure (mmHg).
x2(t) LAP(t) Left atrial pressure (mmHg).
x3(t) AP(t) Descending aorta pressure (mmHg).
x4(t) AoP(t) Ascending aorta pressure (mmHg).
x5(t) F(t) Total flow (ml/s).
x6(t) LCP(t) Left common carotid artery pressure (mmHg).
x7(t) LCF(t) Carotid artery flow rate (ml/s).

stages of the cardiac cycle, establishing four different equivalent electrical circuits
for each stage and, therefore, a set of linear differential equations. This implies
a different analysis of the circuit for each of the stages of the cardiac cycle. To
overcome this drawback, the diodes are described as a ramp function, d(x), with
which the system can be described by a single definition throughout the entire
cardiac cycle. Taking into account these considerations, the complete model can be
expressed as:

ẋ1 =
1

C(t)
(
− Ċ(t)x1 +

1
RM

d(x1 − x2) −
1

RA
d(x4 − x1)

)
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( 1
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(5.5)

The detailed analysis of the electrical circuit in Figure 5.7 can be found in
Appendix B. It should be remarked that the above model defines an autonomous
switched time-varying system over different phases within the cardiac cycle. As for
the values of the parameters involved in the CVS for the different simulations, they
are included in Table 5.5.
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Table 5.5: Values of the parameters of the CVS model for validation purposes.
Parameter Value Physiological meaning Parameter Value

Resistors (Ω) Stergiopulos’ elastance
RS 1 Total peripheral resistance A 1.17
RS LC 10 Left common carotid peripheral resistance B 0.7
RM 0.005 Mitral valve resistance C 1.55
RA 0.001 Aortic valve resistance αE 1.9
RC 0.0398 Characteristic resistance βE 21.9
RLC 0.2 Left common carotid resistance

Capacitors (F) Atilios’ elastance
CR 8.8 Left atrial compliance A 1.23
CS 1.33 Systemic compliance B 3.50
CA 0.08 Aortic compliance C 3.02
CLC 0.09 Left common carotid

Inductors (H) Sheffer’s elastance
L 0.0005 Inertia of blood in aorta A 1.84
LLC 0.03 Inertia of blood in left common carotid B 2.68

Left ventricle C 0.15
Emax 2 Maximum volume in diastole Elastance based on Mittag-Leffler
Emin 0.06 Minimum volume in diastole A 14.45
V0 10 Reference volume at zero pressure (ml) B 4.58
HR 75 Heart rate (bpm) C 1.11

αE 0.24

5.3.2 Elastance

The elastance represents the state of contraction of the LV, relating the pressure
and volumes of the LV according to the Frank-Starling’s law, which is defined
as [4, 201]:

E(t) =
LVP(t)

LVV(t) − V0
, (5.6)

where LVV(t) is the left ventricle volume, LVV(t) is the left ventricle pressure, and
V0 is the reference volume that corresponds to the theoretical ventricular volume at
zero pressure.

The definition of elastance was addressed in different studies [3, 202, 203] trying
to adjust it empirically to a standard function. In particular, most of them agree that
the definition can be normalized and scaled between the points of maximum and
minimum functioning of the LV as:

EH(t) = (Emax − Emin)En(tn) + Emin, (5.7)

where Emax and Emin are constants related to ESV, EDV and ESPVR, and En(tn)
is the normalized elastance, with tn = t/Tmax, being Tmax = 0.2 + 0.15tc, where tc,
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Figure 5.8: Elastance according to Stergiopulos’s work [3]. The parameters used are shown
in Table 5.6.

calculated as tc = 60/HR, is the time period of the heart cycle. In certain pathologies,
the elastance can have the same morphology for a healthy or sick heart [204]. Then,
for some cardiac conditions, the elastance model (5.7) is modified to E(t) = δEH(t),
with 0 ≤ δ ≤ 1, where lower values of δ represent CVDs (the more severe the
disease, the lower the value of δ), whereas δ = 1 corresponds to the healthy state.

The elastance can be described mainly according to four different definitions as
detailed next: 1) Stergiopulos’ elastance, 2) Atilio’s elastance, 3) Sheffer’s elastance,
and 4) elastance based on the Mittag-Leffler function.

The Stergiopulos’ elastance definition is based on the studies carried out in [3],
where it is described it for a healthy person as:

En(tn) = C


(

tn
B

)αE

1 +
(

tn
B

)αE


 1

1 +
(

tn
A

)βE

 (5.8)

and whose waveforms are depicted in Figure 5.8. The first term in the brackets
describes the ascending part of the curve and the second, the descending part
one. The parameter C is the amplitude of elastance, related to the maximum
arterial pressure, αE and βE denote the ascending and descending slopes through
the LV relaxation time, respectively, and A and B are constants to define the relative
appearance of each curve within the heart period.
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Figure 5.9: Elastance according to: (a) Atilio, (b) Sheffers, and (c) Mittag-Leffler function.

The second definition was proposed in [202]. The Atilio’s elastance is defined
by (see Figure 5.9a):

En(tn) = CtB−1
n e−AtB

n (5.9)

A similar form was proposed in [203], but defining elastance as a polynomial of
increasing powers. The Sheffer’s elastance is depicted in Figure 5.9b, which is given
by:

En(tn) = −At3
n + Btn + Ctn. (5.10)

The last type of studied elastance is modelled based on the Mittag-Leffler function,
which has been proved to be effective to model the time-dependent relaxation
behaviour of viscoelastic materials. The Mittag-Leffler elastance is given by:

En(tn) = Ct(BαE)
n EαE

(−t(B/αE)
n

A

)
, (5.11)
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Figure 5.10: Elastance comparation.

where E is the one parameter Mittag-Leffler function. In this case, parameter αE mod-
ifies the ascending and descending part of the curve, as illustrated in Figure 5.9c.

Finally, a comparison between the four types of elastances is shown in Fig-
ure 5.10, where it can be seen that all the definitions are strongly related to each
other, but there are small differences between them, such as the slopes and the time
that the maximum elastance is reached. These small differences may define patholo-
gies or malfunctions of the heart. All of them have in common that the maximum
elasticy of contractile capacity is pondered by parameter δ, but the modification of
the slope requires a more complex adjustment. In this respect, the elastance based
on the Mittag-Leffler function allows both slopes to be easily modified thanks to a
single parameter (αE), as was shown in Figure 5.9c.

5.3.3 Hydraulic model

This section explains the equivalences between the electrical and hydraulic
elements, allowing to model the CVS from a mechanical point of view. Once the
relationships and equivalences between the electrical and hydraulic domains are
established, the modeling of the CVS, as well as the contractile behavior of the heart,
are addressed.
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5.3.3.1 Equivalences

In order to describe the hydraulic model through discrete elements, the following
set of equivalencies between the electric and hydraulic domains, among other
considerations, was defined.

The main electrical elements that are used are resistors, capacitors and induc-
tances, whose behaviour can be modelled by changes in section, tanks or long pipes
[205], as detailed below (see Figure 5.11). With respect to the diodes, they are
replaced by unidirectional flow valves. Hydraulic resistance occurs whenever there
is a difference in pressure, as in the situation of a fluid circulating from one pipe to
another with a smaller diameter. If the pressure on both sides of the narrowing is P1

and P2 and the flow is Q (see Figure 5.11a), the hydraulic resistance can be defined
as:

P1 − P2 = RHQ (5.12)

Capacitors in hydraulic terms are reservoirs, since they are capable of accumulating
energy in the form of potential energy. Considering the tank of Figure 5.11b, if q1

and q2 are the input and output flows, respectively, and V is the volume of fluid
inside the tank, it is deduced that:

q1 − q2 =
dV
dt

= A
dh
dt
, (5.13)

where h denotes the tank level and A is the tank section. On the other hand, the

P1 P1

P1 P2

P2

P2

Q

q1

q2

h

L

A

(b)(a) (c)

Figure 5.11: Hydraulic elements. (a) Resistor. (b) Capacitor. (c) Inductance.
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difference of pressure is:

P1 − P2 = hρg or h =
P1 − P2

ρg
, (5.14)

where g represents the acceleration due to gravity and ρ is the density of fluid.
Therefore, substituting (5.14) into (5.13), the following expression is obtained:

q1 − q2 =
A
ρg

dP
dt
, (5.15)

which has great similarity with the definition of a capacitor, being able to identify
the constant of the equivalent capacity as:

CH =
A
ρg

(5.16)

With regard to electrical inductance, it is similar to hydraulic inductance. It is
deduced from the inertial force required to accelerate the fluid in a pipe. Considering
P1 − P2 the pressure gradient to be generated as a consequence of the acceleration
for a section of area A (see Figure 5.11c), a fluid of mass m and with velocity ν,
applying Newton’s second law it can be defined:

m
dν
dt

= A(P1 − P2) (5.17)

If the pipe has a length of l, then the mass can be calculated as m = LρA. In this
case, equation (5.17) can be rewritten as follows:

lρ
dν
dt

= (P1 − P2), (5.18)

where q = Aν, so equation (5.18) becomes:

(P1 − P2) =
lρ
A

dq
dt

(5.19)

As this expression has the same relationship as the definition of an inductance, it
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is deduced that the equivalent hydraulic inductance constant is:

LH =
lρ
A

(5.20)

However, the pressure loss or inertia caused by relatively short pipe sections may be
considered irrelevant compared to the magnitudes studied.

With regard to the muscle contraction of the left ventricle, it is proposed to
emulate it through a piston pump, which will reflect a behaviour similar to that of
the heart, ignoring considerations related to morphology. The pump will be driven
by a motor and worm drive mechanical transmission. This configuration defines a
linear transmission and self-locking nature, that means the translation movement
can be only driven by the motor, while the movement is prevented from the opposite
side. In addition, it reduces the workload on the engine, since it does not have to
continuously support the load generated by the pressure variations, thus facilitating
subsequent control tasks. The pump dynamics can be described as a variable volume
tank, where the generated pressure (PP) and permissible volume (Vp) are determined
by:

Ṗp =
1

Cp
(Qi − Qo − Ap ẋp),

Vp = V0 + Ap

∫
ẋpdt, (5.21)

where Cp defines the piston capacity according to (5.16); Qi and Qo are the inlet
and outlet flows, respectively; Ap is the piston section, as shown in Figure 5.12; xp
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is the position of the piston according to the adopted sign criteria in the above figure;
and ẋp corresponds to the travel speed of the piston.

5.3.3.2 Model

Taking into account the considerations explained in the previous sections, the
following equivalences are considered so as ([205]): electric resistors, capacitances
and inductances are replaced by hydraulic resistors (denoted as RHi, where the
subscript i refers to the name used in the electric model), tanks with constant
sections (CHi) and long pipes (LHi, where l is the length of the pipe), respectively.
The diodes are changed by one-way valves. The hydraulic model of the CVS is
illustrated in Figure 5.13 and all their parameters are given in Table 5.6.

Regarding muscular contraction of the left ventricle, in the hydraulic model
C(t) is modelled by a pump with piston (tank of variable volume depending on the
position of the piston), as shown in Figure 5.12, in such a way that a control strategy
is required to emulate the behaviour of the heart [206]. Thus, the derivative of state
x1 in this case can be expressed as:

ẋ1 =
1

Cp
(Qi − Qo − Apν), (5.22)

where Cp is the capacitance of the piston, Ap is the sectional area of the piston, and
ν = ẋp is the displacement speed of the piston (this parameter modifies the pressure
of the piston chamber). Equation (5.22) can be also written as:

ẋ1 =
1

Cp

(
1

RHM

r(x2 − x1) −
1

RHA

r(x1 − x4)
)

(5.23)

−
Ap

Cp
ν
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The other state equations describing the hydraulic model of the CVS remain
inalterable. In contrast to the electric model, now the system has non autonomous
nature. Therefore, as commented, it is needed to apply a control strategy to the
displacement speed of the piston in order to emulate the contraction of the left
ventricle according to Frank-Starling’s law.

5.3.4 Control

The main control strategies in the literature are based on classical methodologies,
such as PID (Proportional, Integral and Derivative control) [206]. Although studies
have also been developed using more modern methodologies, which focus on
linearized nonlinear [206] or sliding mode [207] controllers. In this section, two
strategies will be considered to obtain normal conditions of a cardiac cycle with
the cardiovascular model, concretely feedback linearization and PID. In both cases,
fractional dynamics will be introduced into the controller substituting the derivative

Table 5.6: Parameters of the CVS model. Taken from [4, 5].
Parameter Value Physiological meaning (unit)

Resistors
RHS 133.32 (MPa/(m3/s)) Total peripheral resistance
RHS LC 133.32 (MPa/(m3/s)) Left common carotid peripheral resistance
RHM 0.67 (MPa/(m3/s)) Mitral valve resistance
RHA 0.13 (MPa/(m3/s)) Aortic valve resistance
RHC 5.30 (MPa/(m3/s)) Characteristic resistance
RHCLS 26.67 (MPa/(m3/s)) Left common carotid resistance

Capacitances
CHR 6.933 · 10−2 (m3/MPa) Left atrial compliance
CHS 6 · 10−4 (m3/MPa) Systemic compliance
CHA 9.97 · 10−3 (m3/MPa) Aortic compliance
CHLC 6.75 · 10−4 (m3/MPa) Left common carotid

Inductances
LHS 6.66 · 10−2 (MPa/(m3/s2)) Inertance of blood in aorta
LHS LC 3.99 (MPa/(m3/s2)) Inertance of blood in left common carotid

Left ventricle
Emax 266.64 (MPa/m3) Maximum volume in diastole
Emix 0.79 MPa/m3) Minimum volume in diastole
V0 10 (ml) Reference volume at zero pressure
HR 75 (bpm) Heart rate
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by the fractional order operator. In order to develop a simple, low-computer load
controller, a linearized controller will be used.

5.3.4.1 Feedback linearization controller

The main idea of this approach is to algebraically transform a nonlinear system
dynamics into a (fully or partly) linear one, so that linear control techniques can be
applied (see for example [174]).

Then, to linearize state variable x1, (equation (5.23)), it is possible to take the
system input ν as follows:

ν = −
Cp

Ap

(
u −

1
Cp

(
r(x2 − x1)

RHM

−
r(x1 − x4)

RHA

))
(5.24)

This allows to consider a linear relation between the system output (y = x1) and
variable u, being u the equivalent input of the linearized dynamics, and which is
considered of relative order one due to the fact that an integration between the output
and the equivalent input, that means ẏ = u, is obtained. Taking into account this
linear relation, the control law to be designed is:

u = ẏd − ẏ + λ(yd − y) = ė + λe, (5.25)

where yd is the desired output, e is the error, defined as e = yd − y1, and 1/λ is the
time constant of the error.

Hence, substituting (5.25) in (5.24), the following expression is obtained:

ν = −
Cp

Ap

(
ė −

1
Cp

(
r(x2 − x1)

RHM

−
r(x1 − x4)

RHA

)
+ λe

)
, (5.26)

which allows to follow the reference in accordance with the control law established.
This controller will be referred henceforth to as FBL.

For this strategy, fractional dynamics is also introduced by doing

u = Dαe + λe, (5.27)
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where D is the fractional operator, and α ∈ R+ the differentiation order. This
controller will be referred henceforth to as FBL+FD.

5.3.4.2 PID controller

A PID controller proposed in [206] is used with gains: kp = 0.5, ki = 0.6, and
kd = 0.003. It is applied directly over the controlled variable x1. This controller will
be referred henceforth to as PID.

In order to compare with the previous PID controller and the PD control law used
in FBL, in this case fractional dynamics is introduced by using a three-parameter frac-
tional controller, namely, a fractional proportional-derivative (FPD) controller.
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5.4 Summary

This chapter has described two swimming robot prototypes and an experimental
platform designed for swimming robot testing. The design of both prototypes is
based on the articulated artificial eukaryotic flagellum. The first prototype con-
sisted of six rigid links plus the head. In addition, a simulator of this prototype
in MATLAB®/Simulink® environment was developed for testing purposes. The
second prototype consists of three IPMC-based flexible links. Unlike the previous
one, all the associated electronics are external and the prototype is essentially the
flagellum. A novel electrical model of the CVS has been presented to complement
both prototypes. This model extends the classic Windkessel model to the left com-
mon carotid artery, motivated by the need to have a complete model from a medical
point of view for validation. The model also serves as a simulator, based on physical
modeling, of a realizable platform as a testbed for swimming robots. In addition, it
allow to emulate a low Re environment and hemodynamic conditions of the CVS.
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“We are trying to prove ourselves wrong as quickly as possible, because only in that
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This chapter presents the simulation and experimental results obtained from the
two artificial eukaryotic flagellum swimming robot prototypes and the CVS model.
The experiments and simulations consist of a set of tests to analyze and evaluate the
performance of control strategies and propulsion according to the design beating
waveform. Regarding the CVS model, it is validated with experimental data obtained
from clinical trials performed on a pig and clinical indices that can be found in the
specialized literature.

6.1 6-link swimming robot

This section focuses on the analysis of propulsion performance and the trajectory
tracking control strategy based simulations, addressing each of the control loops. In
addition, an analysis of how the number of links influences the beating waveform
and propulsion is presented.

6.1.1 Joint controller

The joint control is the internal control loop required that must ensure to fulfill
tracking specifications. This section details the results of the application this control
by addressing actuator modeling, controller design and performance comparison
of the control strategies proposed in sections 4.4.1.1 and 4.4.1.2, namely PID and
PDµ.

6.1.1.1 Actuator modeling

The dynamics of each actuator depends on its position in the flagellum since the
supported load varies accordingly. This is because of the flagellum, but also because
of the viscous forces of the environment. Therefore, the actuators are described
from model 4.34 in position form, that means considering a pole at origin. For this
purpose, the described robot simulator was used with the properties of the actuators,
links and environment given in Tables 4.1, 5.1 and 5.2. In particular, to identify the
dynamics of each actuator, only the link under study was excited, with an unit step
input, considering a rigid link immersed in a viscous environment as the actuator
load. To be realistic, the length of this rigid link was set equal to the rest of the links’
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Figure 6.1: Sensitivity of parameters of system (4.34) with respect to the position of the
actuator along the flagellum.

length until the free end of the flagellum. The remaining actuators were fixed at zero
position.

Figure 6.1 illustrates the sensibility of parameters Kl and τl of (4.34) with respect
to the position of the actuator along the flagellum and, consequently, the change of
actuator load. As observed, the following relation between the system parameters
and the actuators’ position exists: the closer the actuator is to the robot’s head, the
smaller the value of K and the slower the actuator dynamics (that is, the higher the
value of τ). Therefore, robust control is necessary to allow each actuator to follow
its reference with the exact specifications of the remaining actuators to accurately
emulate the (nonreciprocal) motion of the desired waveform.

6.1.1.2 Design

The parameters of both the integer and the fractional order controllers obtained
after tuning are given in Table 6.1. The design specifications for the RC tuning
method were: a phase margin φ = 76◦ at the gain crossover frequency of ωcp =

200 rad/s (similar to those obtained with the other methods). The value used for
parameter τ0 corresponds to the first actuator, which means the most disadvantaged
case for the three tuning methods described in section 4.4.1.

The optimization procedures were applied to the most disadvantaged case in
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Table 6.1: Parameters of the continuous-time controllers.
Controller Method Kp Ki Kd Controller Method Kp Kd µ

IAE 382.55 3.89 3.43 IAE 499.93 7.79 0.95
PID ITAE 466.69 25.56 3.43 PDµ ITAE 499.68 30.31 0.78

RC 330.47 109.98 5.18 RC 382.32 24.50 0.90

the same way as the dynamics of actuators was identified, i.e., the first actuator,
considering the other joints fixed at zero position and tracking a sine wave motion
with the maximum allowed amplitude (π/2 rad) and velocity (2 Hz).

6.1.1.3 Joint control evaluation

Next, the performance of the designed controllers is evaluated in simulation in
terms of efficiency, which means the ratio between the mechanical power (Pm) ex-
erted by the link and the electrical power (Pe) supplied to the actuator, as follows:

η =
Pm(t)
Pe(t)

=
Fp,x(t)υx

V(t)I(t)
, (6.1)

where I refers to the current demanded by the motor, and V is the voltage applied
to the actuator. Notice that the higher the index η, the higher the efficiency of the
control strategy under evaluation.

The performance of a the swimming robot with the simulator when applying
the designed continuous-time controllers is summarized in Table 6.2. This table
includes not only ITAE and IAE but also the average of the electrical and mechanical
powers and the robot’s efficiency for the fractional waveform with the parameters
given in Tables 4.1, 5.1 and 5.2. The best results are in bold.

From these results, the following conclusions can be stated:

Table 6.2: Performance of the 6-link swimming robot when applying the designed
continuous-time controllers (simulation).

Controller 1st Link 2nd Link 3rd Link 4th Link 5rd Link 6th Link Pe Pm η∗∗

ITAE∗ IAE∗ ITAE∗ IAE∗ ITAE∗ IAE∗ ITAE∗ IAE∗ ITAE∗ IAE∗ ITAE∗ IAE∗ (W) (µW)∗∗∗

IAE 5.89 12.47 10.60 14.85 9.16 26.36 8.01 6.18 7.41 15.08 8.96 21.40 0.55 6.19 11.47
PID ITAE 5.28 11.90 8.85 13.62 9.04 26.13 6.61 5.27 6.52 14.27 8.30 20.76 0.47 6.19 13.44

RC 9.32 15.85 12.95 16.51 21.04 35.82 9.33 7.01 11.34 18.71 16.65 28.18 0.52 6.19 12.20
IAE 4.39 11.30 7.94 12.71 6.92 25.39 6.05 4.99 5.53 13.55 6.74 20.24 0.47 6.19 13.17

PDµ ITAE 4.18 12.06 7.27 12.01 6.80 27.41 5.62 4.82 5.21 14.24 6.50 21.89 0.30 6.19 20.63
RC 5.51 14.03 9.39 13.74 8.93 30.81 7.27 6.01 6.84 16.67 8.57 25.13 0.38 6.19 16.28

Notes: ∗ Values ×10−3 . ∗∗ Values ×10−6 . ∗∗∗ Values ×104 .
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• All control strategies, regardless of the chosen tuning method, perform suc-
cessfully.

• The best tracking in terms of errors for the six actuators is achieved with
the controllers designed by minimizing ITAE, in contrast to what one would
expect when applying the robust tuning method. Among these results, the
lowest tracking error is obtained when applying the robust PDµ controller.

• From what locomotion performance of the robot is concerned, the six con-
trollers provide approximately the same average of mechanical power, inde-
pendently of the tuning method applied. However, regarding the electrical
power, the PDµ designed by the ITAE method stands out against the others:
the robot controlled with this strategy can perform a nonreciprocal motion
with the lowest control requirements, reducing electrical consumption.

In terms of ITAE and IAE, notice that the tuning methods for both the PID and the
PDµ were applied to the actuator transfer function (4.34) with the time constant
corresponding to the first link (the worst case).

For illustration purposes, Figure 6.2 shows a comparison of the angle and tracking
error for both the first and sixth links of the robot when applying the robust PDµ

controller and the PID designed by minimizing ITAE (the best controllers in terms of
efficiency and tracking, respectively). It can be observed that both controllers allow
the link actuator to follow the reference correctly, regardless of the link. However,
the tracking error is higher with the PDµ, but with lower energy requirements.

6.1.2 Waveform evaluation

Once the joint control is designed, this section presents a simulation study
about how the number of segments and the value of parameter αw of the fractional
traveling wave (3.58) affect both the forward velocity and the propulsion thrust.
Alternatively, in other words, a performance study based on the waveforms is
presented next. First of all, it is essential to remark that the results given below
were obtained using the robot simulator with the parameters and properties given in
Tables 4.1, 5.1 and 5.2. Likewise, only the forward velocity was considered, but the
conclusions are also applicable to the forward propulsion since both variables are
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Figure 6.2: Error tracking for fractional waveform for different controllers and links.

directly proportional according to (4.2). The forward velocity of each waveform is
plotted in Figure 6.3 for both the ideal case (the ideal velocity for the discretized
waveform in Figure 6.3a) and the simulated case (the waveform carried out by the
robot in simulation in Figure 6.3b). As observed, only slight differences can be found
between the ideal and simulated results. However, a more significant difference
exists when comparing with those shown in Figure 4.1: the forward velocity is
slower; in fact, the reduction percentage is about 30 − 40%. This arises from the
limitations of real implementation, which means the finite length of the flagellum
and the discretization method established. However, the results are consistent since
the harmonic and linear Carangiform waveforms develop the highest and lowest
forward velocity, respectively. In contrast, a forward velocity within that range can
be obtained with the fractional waveform depending on the value αw to be set. These
results emphasize the importance of the oscillations’ growth at the beginning of
the flagellum. It should be noted that the oscillating character of velocity in the
harmonic wave is caused by the discretization method; theoretically, this value is
constant.

Concerning the influence of the number of links on the velocity, it can be
stated that the higher the number of links, the higher the velocity (see Figure 6.4a).
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Figure 6.3: Forward velocity generated by the four different kinds of waveforms: (a) ideal

motions, (b) simulated motions.

Increasing the number of links reduces the difference between the original waveform
and the simulated one caused by the applied discretization method and, consequently,
emulates a more faithful motion than the original. However, a high number of links
is not necessary to achieve near-ideal speed: as can be stated from Figure 6.4b, it
is possible to obtain a percentage of about 70 − 90% of the ideal velocity with a
set between four and eight links, respectively. This figure plots the ratio between
the forward velocity and the ideal motion versus the number of links for the seven
waveforms. Let us now focus on the fractional order waveform. For a given
velocity, this waveform achieves that velocity with a smaller number of segments,
saving energy. Thus, it can produce a higher velocity than the obtained with other
waveforms with a lower number of segments due to faster growth of oscillations.
Despite that, and due to the used discretization method, it requires a higher number
of links to achieve a velocity closer to the ideal, unlike the other waveforms. This is
because the beginning of the flagellum is not perfectly discretized, which causes the
growth to be smoothed and the amplitude to be reduced.
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Figure 6.4: Influence of the number of links on the forward velocity generated by the seven
different kinds of waveforms: (a) forward velocity, (b) growth ratio of velocity regarding

ideal discretized motion.

To sum up, the way of swimming with fractional growth proposed in this thesis
achieves the same velocity as classical waveforms with a lower number of links or
higher velocity with the same number of segments. The behavior is the same for the
ideal motion, but with slight differences.

6.1.3 Heading control

This section focuses on validating the turning motion and heading orientation
control proposed in chapter 4. For this purpose, two trials were simulated. The first
one consists of modifying the mean angle over which the motion is performed so
as to study the effect of φw,t as follows: the variable was set to φw,t = 5◦ during the
time interval t ∈ [10, 30]s, φw,t = −5◦ in the time interval t ∈ [50, 70]s and φw,t = 0
otherwise. The second test implements the heading controller and sets different
head angle references: concretely, it was set to θ7,ref = 5◦ during the time interval
t ∈ [10, 60]s, θ7,ref = −5◦ for t ∈ [110, 160]s and θ7,ref = 0 in the rest of the time.
Regarding the heading proportional gain, Kp,h was set to twice times the length of
the swimming robot, that meas Kp,h = 2(Nu + 1)li, for this second scenario.

Figure 6.5 shows the results corresponding to the first trial. As can be seen the
swimming robot moves forward, keeping the mean heading close to zero while φw,t

is zero because the normal reaction forces compensate each other. By contrast, when
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Figure 6.5: Turning motion trial.

φw,t , 0, they do not compensate each other, and a normal contribution appears,
producing a rotation of the swimming robot, as explained in section 4.2. It is also
observed that a stable orientation is not achieved due to the undulating motion of the
flagellum. However, the average value of the head angle presents propulsion over a
midline. Finally, the first simulation verifies that a positive (or negative) mean angle
produces a rotation.

In turn, Figure 6.6 shows the results of the second trial, which validate the heading
control. In this case, the heading control sets the mean angle φw,t to generate normal
reaction forces that induce the rotation necessary to turn swimmer about the desired
head angle. In addition, slow dynamics equivalent to an overdamped second-order
system is observed.

6.1.4 Path following controller

This section presents simulation results to evaluate the waypoint guidance
methodology, as well as the nested control loops proposed for path following in
chapter 4.

In order to test the path following control for waypoints, k = 7 was defined
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Figure 6.6: Heading control trial.

with global frame coordinates (0, 0), (0.2, 0), (0.2, 1), (1, 1), (1.5, 0), (2,−0.5) and
(2.5,−1), respectively. Figure 6.7 shows the motion of the CM of the swimming
robot; waypoint is indicated with a red cross. The figure also shows the heading
angle, θ7, the mean angle, φw,t, and their mean. At the transition between waypoints,
it is observed that the swimming robot experiences a jump state due to the waypoints
algorithm, which redefines the global frame at each new waypoint.

The path following strategy provides good results. The swimming robot has a
an adequate and smooth movement toward each waypoint. In addition, the mean
angle converges to zero, and the heading is achieved after each waypoint change.
In summary, the simulation results show that the proposed path following strategy
successfully steers the swimming robot toward each specified waypoint.

6.2 IPMC-based 3-link swimming robot

This section deals with the modeling control of the flexible 3-link swimming
robot fabricated in IPMC to perform a desired motion. For this purpose, a frequency
domain identification is performed, from which a model of each robot link is
obtained. The results are discussed to determine what type of actuation can be
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Figure 6.7: Path following trial.

applied to the swimmer to generate a planar waveform for propulsion. As a results,
two controllers are tuned to PID and a fractional-order integrator. Simulations are
carried out to analyze and compare the motion of the swimming robot.

6.2.1 Measuring frequency responses

The procedure described below was carried out by measuring the deflection of
each link when the first actuator was excited exclusively. To measure frequency
responses, a frequency sweep is programmed by meas of through a chirp signal with
an amplitude of 3 V, a frequency range from 100 mHz to 200 Hz, and a duration
of 200 s, to capture all possible dynamics of the system and decide which of them
can be neglected for control purposes. The chirp signal is applied directly to the
electrodes attached to the first actuator (A1) and the system response is the tip
deflection of the link under study (see Figure 5.6). Note that this experiments is
repeated for each of robot’s links to characterize their behavior. Figure 6.8 shows
the excitation signal and the deflection measured at the third link (L3). Likewise,
every experiment was repeated ten times to guarantee reproducibility and improve
the model parameter estimation. The time response shows that the swimming
robot reaches the maximum relative deflection in the resonance conditions and then
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Figure 6.8: Example of experimental signals: (a) excitation signal applied to the first
actuator for identification, (b) deflection measured at tip of the third link.

decreases.

Processing these data in MATLAB®, each frequency response was obtained
using Welch’s method dividing the data set into eight sections with a 50% overlap,
where each section was processed with a Hamming window. The eight modified
periodograms were computed and averaged. The average frequency response of
the experiments set obtained for each flagellum segment is shown in Figure 6.9.
Likewise, the maximum and minimum standard deviation is depicted for the response
of the third link (gray lines).

6.2.2 Dynamic model identification

The theoretical models of IPMC actuators that can be found in the literature
stand out for their complexity and the vast variability of their chemical parameters
due to the lack of technical standards in manufacturing methods. More precisely,
the existing models can be categorized as: 1) black-box models, based on empirical
responses [132]; 2) gray-box models, which combine the knowledge about materials
with experimental data, i.e., they are formulated based on physical principles while
empirical results are used to define more complex physical processes [131]; and 3)
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Figure 6.9: Frequency responses of the AEF swimming robot when exciting the first
segment the tip deflection of each IPMC link.

white-box models, whose components explain the physics and actuation responses
by partial differential equations [137, 208]. Considering that the last method is not
practical for real-time control due to the high computational efforts required, the
second approach was used as described below.

The measured frequency responses show that the system has two resonance
frequencies in the frequency range under study, regardless of the considered link.
Moreover, the farther a link is from the first link, the lower the resonance peak. On
the other hand, the magnitude curves are not flat at low frequencies: they fall with a
slope of −10 dB/dec, being the phase approximately 45◦. This behavior matches
perfectly with a fractional integrator of order 0.5, i.e.:

H(s) ≈ s−0.5 (6.2)

It is worth mentioning that this low-frequency dynamic was also tested for other
prototypes in [131, 132, 137, 209, 210], whose theoretical models present root
square of the Laplacian variable to define the electrical dynamics of IPMC. Based
on them, preliminary identification results of this swimmer prototypes were reported
in [211].

Theoretical studies on IPMCs usually model mechanical behavior and hydrody-
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namic interactions when the actuator is submerged by coupling a resonant system
for the first vibration mode in order to obtain a more reliable model. This consider-
ation can be accepted in this case since, as seen from the experimental frequency
responses, the first resonance mode predominates for frequencies below 50 rad/s,
which are high enough for the frequency range of interest for this application. There-
fore, that dynamics could be given by a second-order spring-mass-damper system of
the form:

G1(s) =
a0

b2s2 + b1s + 1
(6.3)

or by a fractional order system as

G2(s) =
a0

b1sα + 1
(6.4)

with α ∈ R+ (α ∈ (1, 2)), and being a0, b1, and b2 constants. Notice that both models
have the same number of parameters (i.e., three). Hence, the global dynamics of
the system will be obtained as the fractional-order integrator cascaded with the
mechanical model, that means Pi(s) = H(s)Gi(s), with i = {1, 2}, for the frequency
range of interest of [0.2, 50] rad/s.

For simplicity, the dynamics corresponding to the integrator was removed from
the measured frequency responses. Consequently, the identification procedure was
reduced to identify models of the form of (6.3) and (6.4) in the mentioned frequency
range. In particular, the average frequency response of the ten measurements
was used for identification. Concerning the identification process, Levy’s method
is implemented in MATLAB® (with function levy [212]) for both the integer
and the fractional-order models. The adjustment was performed by minimizing
J = (G( jω)D( jω) − N( jω))2, i.e., the quadratic error per sampling frequency (N( jω)
and D( jω) are the numerator and denominator of the transfer function of the model
to be identified, respectively). Fractional models were found sweeping α in the
interval (1, 2), with a step of 0.01, and choosing the best result from among the
stable models obtained. The model parameters derived from the above-described
identification process are indicated in Table 6.3. From these results, it can be stated
that: 1) as expected, the two models Gi(s) obtained for each link are stable; 2)
gains of the models (coefficient a0) are of the same order of magnitude; and 3) the
values obtained for parameter α for each of the models are very similar. Figure 6.10
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Table 6.3: Model parameters obtained from identification procedure
Model α a0 (×10−3) b2 (×10−3) b1 (×10−3)

First link
G1 - 13.70 1.62 12.60
G2 1.79 13.33 - 3.30

Second link
G1 - 51.00 1.61 12.72
G2 1.81 48.10 - 3.10

Third link
G1 - 376.09 2.13 23.31
G2 1.71 352.80 - 5.80

shows a comparison of the experimental data and the frequency response of the
identified model for each robot link (denoted as PLq( jω) = H( jω)G1Lq

( jω), being
Lq = {L1, L2, L3} the link and G1Lq

(s) the dynamics of each link with the form of
(6.3)). As can be observed, differences between experimental and model frequency
responses appear at frequencies higher than 50 rad/s, i.e., outside of the range of
interest.

In order to compare and evaluate the goodness of the obtained models, besides J,
additional performance indices were calculated:

1. Mean square error (MSE) per sampling frequency, defined as

MSE =

 N∑
k=1

(gk − ĝk)2

 /N, (6.5)
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Figure 6.10: Comparison of experimental and model frequency responses of the AEF
swimming robot by exciting the first actuator and measuring the deflection at the end of

each link.
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where gk and ĝk are the experimental and estimated frequency responses,
respectively, and N is the number of frequency samples.

2 Mean absolute deviation (MAD), defined as

MAD =

 N∑
k=1

|gk − ĝk|

 /N. (6.6)

3 Maximum deviation (MD), defined as

MD = max |gk − ĝk|. (6.7)

4 Coefficient of determination (R2 ∈ (0, 1)), defined as

R2 = 1 −

 N∑
k=1

(gk − ĝk)

 /
 N∑

k=1

(gk − ḡ)

 . (6.8)

where ḡ is the mean of the experimental frequency response.

The values of there indices are given in Table 6.4, where the best fits are in bold. To
this respect, except for the third link, the best results are obtained using the model
G1(s) given by (6.3). However, for the third link, that model is also the best in terms
of J and MD, but not if another of the remaining indices is considered.

Table 6.4: Performance indices after fitting models P1(s) and P2(s). Numbers in bold
correspond to the best fit.

Model J (×10−5) MSE (×10−7) MAD (×10−4) MD (×10−3) R2

First link
P1 2.4884 4.5210 5.4392 2.800 0.9153
P2 3.4992 5.0188 5.7149 3.3000 0.9059

Second link
P1 4.9163 59.7630 13.0000 24.0000 0.9630
P2 12.3680 104.2300 19.0000 28.5000 0.9354

Third link
P1 530.0000 1654.7000 69.0000 126.5000 0.9796
P2 550.0000 1392.7200 45.000 186.4000 0.9828
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6.2.2.1 Discussion of modeling results

According to the above results, it can be stated that the links have similar dy-
namics regardless of their position. However, there are differences in the gain; that
is, the displacement (deflection) increases across the flagellum. Specifically, the
tip displacement of the second link shows an increase in gain. In contrast, the tip
displacement of the third link also presents a lag with respect to the first link as a
consequence of the length, the flexible behavior of IPMC and the interaction with the
environment. These conclusions are illustrated in Figure 6.11, which schematizes
the relation between the first and the rest of the links. (At this point, it should be
recalled that the first link is active, while the other two behave as passive links). The
values of the gains and the phase lag of the third link can be directly deducted from
Table 6.3 as follows: K2 = 3.72, K3 = 7.37, and φ = 4◦. It should be noted that the
gain does not increase linearly due to the fact that the IPMC bends into a C-shape,
so the closer to the end is measured, the higher the displacement.

Hence, the displacement of each flagellum segment end, or any IPMC point,
is characterized by the same dynamics, which remains unchanged across the link
with mere gain variations for low-frequency applications. This conclusion is also
consistent with other studies reported in the literature, where IPMCs show changes
in model gain when the links do not have the same length or are manufactured from
different substrates (see, for example, [130, 132, 211, 213]).

Moreover, from the above conclusion, a nonreciprocal motion can be only
achieved with a single actuation if the geometrical and mechanical design of the
swimming robot has been analyzed previously and designed for that purpose. Other-
wise, the dynamics of consecutive links are subjected to the active link. In other

PL1
(jω) e−jφK2 K3

y1 y2 y3Vin

First link dynamics

Second link dynamics (PL2
)

Third link dynamics (PL3
)

Figure 6.11: Diagram block of a swimming robot model for single actuation.



6.2. IPMC-based 3-link swimming robot 167

words, the swimming robot cannot perform a nonreciprocal motion with a single
actuation; a distributed actuation is needed to obtain the desired waveform and,
consequently, for robot propulsion.

Finally, the dynamics considered for the control design is the one corresponding
to the third link, which takes the form:

PL3(s) =
1

s0.5

376.09 × 10−3

2.13 × 10−3s2 + 23.31 × 10−3s + 1
(6.9)

It is worth mentioning that this dynamics is chosen because it represents the worst
case. A further increase in the third link gain may cause the system to become
unstable, as the gain variation is not linear. On the contrary, a decrease in gain does
not compromise the system’s stability.

6.2.3 Propulsion control

As commented, two main issues are addressed when generating a nonreciprocal
motion, especially a planar traveling wave. Firstly, the desired waveform must be
adapted to the swimming robot dynamics and discretized for its geometry, consid-
ering that it is necessary to define a reference for each of the robot’s links. This
adaptation will fulfill the capabilities of the swimming robot in terms of amplitude
and velocity. The resulting waves will be the references of the IPMC links. Secondly,
a tracking controller must be applied to each link to follow the desired deflection.
The following consideration are necessary prior to the design of the control fro the
swimmer’s propulsion.

6.2.3.1 Preliminary issues

The methodology applied to discretize the motion is based on the projection
method described in section 4.1.3. The method divides the flagellum into the
same number of segments and lengths as the swimming robot, providing a matrix,
Θ[Nu][T ], that contains the trajectory as a function of time and space for the Nu

links of the robot. However, the above method is modified for this swimming robot
prototype to obtain the waveform amplitude instead of the link angle. The type of
waveform chosen is the linear Carangiform due to the physical limitations of IPMCs
(slow dynamics and low amplitude responses). Therefore, the linear Carangiform
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Table 6.5: Linear Carangiform waveform parameters for IPMC-based swimming robot.
Parameter Value Description Unit

c0 0 Amplitude coefficient µm
c1 200 Amplitude coefficient -
c2 0 Amplitude coefficient 1/µm
f 0.01 Frequency Hz
λ 32 Wavelength mm

waveform could be the most suitable for this type of material in contrast to others
requiring a greater range of motion, which means very low frequencies or the
impossibility of performing the motion. The values of the parameters that define the
linear Carangiform motion according to the waveform expression (2.9) are collected
in Table 6.5. The wavelength was defined using the criterion applied in the chapter 4:
it is equal to the robot’s length.

In order to track the calculated references, as commented above, a controller for
each link takes into account the following considerations is required. Firstly, from
the identification procedure, it has been deduced that the dynamics of the IPMC
links are very similar and that only variations in the gain are observed due to its
strong dependence on the link length. Secondly, it has been found that an equal
link length does not provide the optimal waveform and, consequently, the optimal
drive for a given number of links [55]. With this motivation, a controller robust to
variations in the system gain is considered to overcome the robot propulsion so that
it can also be applied after a link length optimization process.

6.2.3.2 Controller design

The methodology applied to design the controller for robot’s propulsion is based
on the reference model strategy and described in section 4.4.1, which adjusts the
step response of the controlled system to an ideal closed-loop system. The frequency
domain specifications for the ideal closed-loop are:

1. Gain crossover frequency: ωcp = 5 rad/s.

2. Phase margin: φ = 75◦.

Based on the above specifications, the ideal Bode transfer function of a noninteger
integrator is taken as the ideal reference model, whose open- and closed-loop forms
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are, respectively:

Lol(s) =

(
ωc

s

)γ
(6.10)

Lcl(s) =
1(

s/ωc
)γ

+ 1
(6.11)

where ωc denotes the gain crossover frequency, that is |Lol(s)| = 1, and γ ∈ (0, 2]
is the noninteger-order of the reference system. The gain and phase of the ideal
reference model (6.10) are given by [197, 214]:

|Lol( jω)| = −20γ log10

(
ω

ωc

)
dB/dec

arg
[
Lol( jω)

]
= −γπ/2 rad

The reference model has a constant phase at any frequency to ensure that the
controlled system is robust to gain variations and exhibits an iso-damping property
at a step response. Then, based on the above relationships, the system must have a
crossover frequency of ωc = ωcp = 5 rad/s and a noninteger order of γ = 1.16 to
meet the desired specifications.

In order to achieve this dynamics with the IPMC link model identified (model (6.9)),
a PID controller is considered in parallel form as:

CPID(s) = Kp +
Ki

s
+ Kd s (6.12)

where Kp, Ki, and Kd are the proportional, integral, and derivative gains, respectively.
The controller parameters were determined by the optimization process described in
section 4.4.1 as follows: Kp = 8.12, Ki = 53.36 and Kd = 0.61. It is important to
remark that other performance indices were tested, but results with minor variations
were obtained with respect to the ones presented.

Upon analyzing the design method for the IPMC link model, which also contains
noninteger order dynamics, the conclusion is drawn that the PID controller attempts
to approximate the dynamics of a noninteger order integrator to approach the system
to the desired dynamics. On this basis, a noninteger integrator is also considered for
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Figure 6.12: Frequency response of the designed integer and fractional order controllers.

comparison purposes with the form:

CI(s) =
K
sλ

(6.13)

where λ ∈ (0, 1] is its order. Unlike PID, the parameters of fractional integrator are
calculated analytically from the design specifications, which results in K = 15.62
and λ = 0.62. Moreover, this controller was approximated by the Oustaloup method
with four poles and four zeros in the frequency range [0.001, 100] rad/s as follows:

C∗I (s) =
32.08s4 + 1981s3 + 6511s2 + 1196s + 11.7

36.47s4 + 372.9s3 + 202.9s2 + 6.175s + 0.01
(6.14)

The Bode plots of the three designed controllers, namely CPID(s), CI(s), and
C∗I (s), are shown in Figure 6.12. As can be seen, the PID controller provides a phase
of 44◦ at 5 rad/s and a positive gain to the system at relatively high frequencies,
which will increase the speed of the system, but at the same time, the crossover
frequency specification will not be met. In contrast, the noninteger integrator has
a bit higher phase at 5 rad/s, namely 56◦, and a positive gain of 15 dB so that
the design specifications can be better fulfilled. As for the approximation of the
fractional integrator, it should be noted that it performs very close to CI( jω), with
only a small variation in the phase from the desired ωcp being observed.
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Figure 6.13 illustrates Bode plots of the open-loop system when applying the
designed controllers and the approximation. From these frequency responses, the
first remark that can be stated is that the PID controller does not meet the design
specifications. As it was noted, the controller increases the speed of the system
(ωcp = 38 rad/s) and the phase margin is 75◦. The reason for the frequency response
mismatch is that the optimization process was approached from a time perspective to
adjust the system’s time response for a step input. On the contrary, the system fulfills
the design specifications perfectly when applying the fractional-order integrator.
Furthermore, the phase is flat at crossover frequency and almost constant within an
interval around it. In other words, the system is robust to gain variations and the
overshoot of the response will be almost constant close to ωcp.

The issues mentioned above can also be observed from the results plotted in
Figure 6.14, which illustrates the step response of the reference model and that
corresponding to each link of the robot when applying the PID (see Figure 6.14a)
and the fractional integrator and its approximation (see Figure 6.14b). Regarding
the PID controller, the response for the third link shows a good fit with respect to
the reference model response. However, the characteristics do not hold for the other
links: the overshoot increases as the gain decreases, although the system is faster for
the second and third links compared to the other control strategies. This behavior is
not observed in the system for the fractional integrator, which also approximates the
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Figure 6.13: Frequency response of the reference model and the controlled system in
open-loop.
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Figure 6.14: Step response of each robot link when applying: (a) PID controller, (b)
noninteger-order integrator and its approximation.

step response of the reference model. In the case of applying the controller to other
links, the overshoot is maintained, ensuring robustness to gain variations. Regarding
the integrator, the responses show slight differences with respect to the ideal case,
with the system velocity and overshoot remaining unchanged for all three links.
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Table 6.6: Tracking performance indices.
Link IAE ITAE

CI(s) CPID(s) CI(s) CPID(s)
First link 4.67 0.68 434.90 42

Second link 13.87 2.28 1283.50 140.75
Third link 18.04 3.97 1861.70 269.74

6.2.4 Motion analysis

The swimming robot model was implemented in Simulink® on the basis of the
description given in the above section. Three equal IPMC links are concatenated
and modeled with the same dynamics since they have the same length. Specifically,
the link dynamics is defined as PLq(s) = H(s)G1Lq

(s), where the model parameters
of G1Lq

(s) for each link are contained in Table 6.3. A link’s total displacement is
calculated using its relative displacement and the angle of the previous link end.

Figure 6.15 shows the displacement of each link tracking its reference for the
designed control strategies (see Figure 6.15a) and the comparison between the ideal
linear Carangiform motion and the motion resulting from the distributed actuation
(see Figure 6.15b).

Firstly, let comment on the results of Figure 6.15a. Independently of the flagellum
segment, both controllers track the references closely, although the PID controller
achieves better tracking as the controller increases the system’s speed. However, the
tracking error increases due to the reference signal’s amplitude rise and the motion
of the previous link. In order to evaluate tracking performance of the controllers, the
ITAE and IAE indices were calculated. The results of these performance indices
obtained from the simulation are given in Table 6.6. It is important to remark that the
results of the noninteger-order controller correspond to its approximation. Therefore,
the indices validate the previous statement: the best performance is achieved at the
first link, where the effort demanded by the reference is lowest, and the second and
third links obtain worse tracking, although the error between them is similar, which
shows the robustness of the controller. In addition, the PID controller exhibits a
better tracking performance, although its behavior for a step response is worse.

Concerning the results of Figure 6.15b, the ideal linear waveform, the discretized
waveform obtained from the projection method described in section 4.1.3 and the
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realized waveform are illustrated. The swimming robot can perform a nonreciprocal
motion through a distributed actuation. However, a higher amplitude error and
lag exist on the response when applying the fractional integrator, which will affect
the robot’s propulsion. The nonreciprocal motion for the ideal waveform and the
obtained by applying each designed controller can be observed more clearly in
Figure 6.16, which represents a three-dimensional graph showing time, the normal
and transverse axis of the swimming robot. The ideal and simulated results for the
three cases show that the flagellum motions perform a wave that travels along the
flagellum and over time.

6.3 Cardiovascular system platform

This section presents the validations of the electrical CVS model and simulator
presented in chapter 5. Firstly, the electrical model is validated by three approaches:
1) a first validation in terms of the main hemodynamic indices and clinical waveform
data; 2) evaluating the model response to variations in the preload and afterload
factors; and 3) comparing the simulation results with experimental data obtained
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Figure 6.15: Swimming robot motion: (a) tracking results for the three robot links, (b)
comparison of the ideal, discretized, and realized linear Carangiform waveform.
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Figure 6.16: Three-dimensional representation of nonreciprocal motion for: (a) ideal
waveform, (b) simulated motion with CPID(s), (c) simulated motion with C∗I (s).

from a pig. Secondly, the hydraulic simulator is analyzed applying different control
strategies.

6.3.1 Electrical model validation

The models will be validated verifying that the results offered in nominal condi-
tions correspond to those indicated in section 2, and comparing with experimental
results. Secondly, the response to perturbations of preload and after-load conditions
will be evaluated.

6.3.1.1 Clinical parameters and experimental waveforms

Next, the model is validated comparing the hemodynamic parameters resulting
from the model simulation and those collected in the clinical literature, as well as
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from experimental data. Hence, this first validation will allows to conclude whether
the model provides reasonable and coherent results. Likewise, cardiovascular
waveforms corresponding to simulated and experimental data are compared to
confirm whether the dynamics is correct.

As for the experimental data, they were obtained from a clinical trial performed
on a pig, due to its similarities with human anatomy and hemodynamics. For data
collection, the animal was under sedation during the whole process and catheter-
ization methods were used to measure the variables listed in Table 5.4, with the
exception of the flow rate, which was measured indirectly by means of cardiac
output and the carotid artery flow rate because the specific instrumentation for such
a measurement was not available. In order to improve the reproducibility of data and
reduce signal noise at the post-processing step, the pressure signals and the cardiac
output were collected ten and five times, respectively. To make the experimental
data usable, they were previously filtered and, then, synchronized, since all the
signals were not collected at the same time, taking for the analysis the mean of the
ten repetitions. Data was collected with a sampling time of 4 ms.

On the one hand, the main indices used in the literature to describe the hemo-
dynamic status of a patient are listed in Table 6.7 and Tables 6.8 , as well as their
range of acceptable values according to the clinical literature [215]. The table also
contains the values obtained from the model simulation and the experiments. It can
be seen that the indices corresponding to both the model and the experiments are
close, consistent and within the range suggested in the literature.

On the other hand, cardiovascular waveforms of the model and the experiments
are shown in Figure 6.17 for a healthy state with the HR given in Table 5.6. As
can be observed, waveforms are consistent as explained next. The systolic LAP

Table 6.7: Hemodynamic parameters: comparison between values from literature, proposed
model and experiments.

Heart rate Systolic arterial Diastolic arterial Mean arterial Cardiac output Stroke volume
pressure pressure pressure pressure, MAP CO SV

Data from (mmHg) (mmHg) (mmHg) (l/s) (ml/beat) (mmHg)

Literature 50 - 90 90 - 140 60 - 90 70 - 105 4 - 8 60 - 100
Model 68 112 77 92 5.90 78.71
Experiments 67 - 70 89 62 68 3.18 46.83
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Figure 6.17: Hemodynamic waveforms of the CVS model (5.5) compared with
experimental data.

coincides with the diastolic LVP. In the case of the model response, the behavior is
close to the ideal case.

The AoP is delayed with respect to LVP as a consequence of the opening and
closure of the aortic valve and the propagation of the pressure wave along the artery.
In the model, the delay is lower because the AoP is modeled close to the aortic valve,
whereas in experiments the pressure sensor was relatively far away from it, the wave
propagation time is longer and, consequently, the delay between the LVP and the AoP
increases. The same behavior is observed in the LCP. However, small differences can
be noticed: the simulated waveforms magnify the pressure fluctuation, especially in
the ascending aorta and the LCP, in contrast to the experimental one, where these
fluctuations are smoother, and the AoP is higher during the systole contraction. It
is important to remark that these discrepancies are strongly related to the point

Table 6.8: Hemodynamic parameters: comparison between values from literature, proposed
model and experiments.

Systolic Diastolic Max Min Systolic Diastolic
LVP LVP LVV LVV LAP LAP

Data from (mmHg) (ml) (ml) (mmHg) (mmHg) (mmHg)

Literature 100 - 140 4 - 15 77 - 195 19 - 72 ∼ 12 ∼ 12
Model 117 7 137 67 12 7
Experiments 82 9 − − 16 10.5
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Figure 6.18: PV diagrams for different pre and afterload conditions: (a) variation of
preload conditions through RM , and (b) variation of afterload conditions through RS .

where the pressure was measured, obtaining greater or lesser delay and variation in
pressure. Likewise, the contraction time is longer in the experimental data.

Regarding the pressure and flow waveforms in the left common carotid artery, the
main characteristics that are observed are the following: 1) a time lag with respect
to LVP; 2) a slight increase in pressure; 3) a greater dicrotic wave; and 4) a negative
flow and a second impulse of blood in ventricular diastole. Again, the differences
between the experimental and simulated data are mainly due to the point at which
the pressure was measured.

To sum up, the model results are consistent with hemodynamic parameters
obtained from the literature and experimental data, concluding that the proposed
model is valid and provides results comparable with medical data. However, a
larger study with a greater number of tests would allow more accurate results to be
obtained.

6.3.1.2 Preload and afterload dynamics

The second method of model validation consists of modifying the components
that are related with pre and afterload factors. If the model behaves as expected, the
ESPVR determined by Emax must be maintained for the different conditions, despite
the changes for pre and afterload.

To check this feature, a total of eight pre and afterload conditions, four of each,
have been performed and represented in Figure 6.18 using PV loops. Figure 6.18a
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shows the behavior of the model when variations in preload conditions are intro-
duced, in particular by modifying the value of the mitral valve resistance, RM. The
obtained dynamics corresponds with that explained in section 2.4.4.1: a reduction of
the EDV and a slight reduction of the opening and closure pressures of the semilu-
nar valves is observed. On the other hand, the variation of afterload conditions
through the parameter RS , shown in Figure 6.18b, results in a reduction of the ejec-
tion volume and an increase of the opening and closure pressures of the semilunar
valves.

Finally, it should be noted that the ESPVR, the line joining the V0 and ESV
points, shows the same slope under all conditions, and its value is consistent with the
characteristics of the LV (Emax and V0). Therefore, the results confirm the validity
of the model to reproduce the dynamics of the CVS and the behavior of the LV
under different conditions.

6.3.2 Hydraulic model validation

The previous section has demonstrated the validity of the model to represent the
dynamics of the CVS. This section aims to analyze the performance of different
controls and demonstrate how an appropriate waveform and control strategy allows
emulating a dysfunction in the CVS. The strategies that will be compared to obtain
normal conditions of a cardiac cycle were described in the section 5.3.4. Likewise, it
is necessary to mention that the following considerations were performed to improve
the performance of the simulations:

• Fractional derivatives were approximated by Oustaloup method with four
poles and four zeros in the frequency range [0.01, 100] rad/s.

• In order to avoid chattering, the controlled variable was filtered before apply-
ing the control strategy by the low-pass filter

F(s) =
100

s + 100
(6.15)

• For comparison purposes, the following hemodynamic parameters will be
measured in the waveforms obtained: systolic and diastolic pressure, mean
aortic pressure (MAP), cardiac ouput (CO), SV, systolic and diastolic pressure
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Figure 6.19: Tracking performance of the LVP when applying the proposed strategies with
reference provided by the elastance function.

of left ventricle, maximum and minimum volume of left ventricle, and systolic
and diastolic pressure of left atrial.

The waveforms of the hemodynamics obtained when applying the four strategies
are illustrated in Figure 6.19 and the parameter values are included in Table 6.9,
whereas the indices measured are given in Table 6.10. From the simulations results, it
can be stated that all strategies, even proportional control law in FBL, that means u =

λe, provide good enough tracking and hemodynamic performance. So, a fractional-
order α = 0.2 is chosen for comparison purposes. For all cases, the hemodynamic
parameters are coherent with real hemodynamics (see for example [141, 215, 216,
217]).

The results obtained by replacing the reference waveform LVPd by the electric
model of the CVS, that means the theoretical model, are plotted in Figure 6.20 for
integer-order controllers, and in Figure 6.21 for fractional order ones. As can be
observed, the tracking performance is better when using fractional derivatives.

With regard to the pressure in the common left carotid and the flow, shown in
Figure 6.22, they also show the expected behaviour.

The above results show that: 1) the control strategy applied shapes the resulting

Table 6.9: Controller parameters.
Strategy λ or kp ki kd α

FBL 40 − − −

FBL+FD 40 − − 0.2
PID 0.5 0.6 0.003 −

FPD 0.5 − 0.6 0.2
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Table 6.10: Hemodynamic parameters and MSE when applying the proposed strategies.
Systolic Diastolic Mean arterial Cardiac output Stroke Volume Systolic Diastolic Max Min Systolic Diastolic
pressure pressure pressure CO SV LVP LVP LVV LVV LAP LAP

Controller (mmHg) (mmHg) (mmHg) (l/s) (ml/beat) (mmHg) (mmHg) (ml) (ml) (mmHg) (mmHg)
FBL 107.6 71.2 83.33 5.47 73 116.2 6.42 138 65 13.12 8.74
FBL+FD 108.2 71.56 83.77 5.50 73.34 117 6.15 138.2 64.96 13.05 8.5
PID 107.8 71.28 83.45 5.48 73.1 116.2 6.16 138.3 65.21 13.03 8.56
FPD 107 71.05 83 5.44 72.57 115.1 6.58 137.9 65.33 13.04 8.79

Figure 6.20: Tracking performance of the LVP when applying integer order controllers
with the reference provided by the electrical model.

Figure 6.21: Tracking performance of the LVP when applying fractional-order controllers
with the reference provided by the electrical model.

reference waveform (LVPd) when using system-dependent reference generation,
which can be used to emulate pathologic behavior; 2) all strategies have good
tracking and hemodynamic performance; 3) FBL has high sensitivity to its parameter
λ, but low sensitivity to fractional-order α (even for α = 0, which corresponds to a
pure proportional control law, the results do not show large differences); and 4) when
reference is independent of the controlled system, the best tracking performance is
obtained with fractional controllers.
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Figure 6.22: Left common carotid artery pressure and flow waveforms.
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6.4 Summary

This chapter has presented the results from the two different prototypes and the
CVS model and platform.

Firstly, the path following control strategy was analyzed on the 6-rigid link
swimming robot. As a control strategy based on nested control loops, each of the
internal control loops was verified and evaluated, showing the validity and robustness
of the controller for different conditions. Additionally, an analysis of the influence
of the beating waveform is performed. The motion analysis states the existence
of a strong relationship between the amplitude coefficients of the waveform and
the wave propagation velocity with the propulsive velocity of the swimming robot.
In this respect, the fractional beating waveform offers the possibility to control
the propulsion speed by means of a single parameter, the fractional coefficient. In
particular, this coefficient makes it possible to produce equivalent propulsive forces
from harmonic motion to linear Carangiform.

Secondly, the flexible 3-link swimming robot dynamics was identified for control
purposes through its frequency response. The experiments were performed consid-
ering the first segment as actuator and the rest acting as passive flexible links, and
the deflection of each of the links was measured. Models consisting of a fractional
integrator in series with a resonant system of both fractional-and integer-order were
identified in the frequency range [0.1, 50] rad/s for each link. The results showed
that both models can be adequate for control purposes. Furthermore, the identifica-
tion process led to the conclusion that the tip displacement of any IPMC point is
characterized by the same dynamics, which remains unchanged along the link with
mere variations of the gain for low-frequency applications. From this conclusion,
it was also deduced that single actuation of the robot does not allow to produce a
nonreciprocal motion, since the dynamics of the second and third links are subject
to the dynamics of the first link. There are only differences in the gain and a slight
phase lag, which are not sufficient to generate a nonreciprocal motion. In addition, a
controller robust to gain variations was designed to control link deflection regardless
of link length allowing to address a distributed actuation with the same controller
design. It was tuned based on the methodology of the reference model and two
control strategies were proposed: a classical PID controller and a noninteger-order
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integrator. The results showed that the PID offers a better response to tracking
control as a consequence of the increased system speed, but does not meet the
design specifications. In contrast, the noninteger-order integrator meets the step
response specifications but provides worse results for the tracking problem. Finally,
the motions of the swimming robot were analyzed to validate that the robot performs
a nonreciprocal motion.

Finally, regarding the CVS model presented in the above chapter, it was validated
using the main clinical indices, and the cardiovascular waveform was compared with
experimental data obtained from clinical trials performed on a pig. Likewise, the
model showed consistency despite variations in the preload and afterload factors.



7
Conclusions & future works

“An expert is someone who knows some of the worst mistakes that can be made in his
subject, and how to avoid them.”’

Werner Heisenberg
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This Thesis is devoted to modeling and control the locomotion of microrobots,
specifically small artificial eukaryotic flagellum-like swimming robots, as well as
modeling an experimental platform that emulates the conditions of the cardiovas-
cular system and low Re environments for experimentation. Especially, this thesis
centers on two differential aspects of microrobotics that have not received that
much attention. Firstly, it focuses on autonomous actuation methods, which are less
explored than their counterparts, nonautonomous propulsion methods. Secondly,
bioinspired strategies are used to achieve the same function and properties as those
found in the natural world. Thus, we focus on functionalities found in nature to
perfect microrobotics devices and particularly designed applications.

Chapter 1 presented the motivation, objectives, and main contributions of this
Thesis. Currently, different research lines are focusing on the locomotion method of
microrobots.

A brief a introduction to the field of microrobotics is given in Chapter 2, pre-
senting the most relevant studies since its beginnings in the mid-19th century and
discussing the main challenges that this new field must overcome to consolidate and
continue to advance. In addition, theoretical foundations in microrobotics are also
given, especially for robots that must work in fluid environments.

Analysis and modeling are, in many cases, a prerequisite for controller design, so
it is reasonable to study and establish a theoretical model that represents the system’s
dynamics. Chapter 3 deals with the mathematical model of a planar swimming robot
model with Nu flexible links plus the head and driven by Nu − 1 actuated joints
suitable for medium Re environment. The model is particularized to a strictly low
Re environment, where inertial forces are negligible and brownian effects are not
yet present. In the case of the articulated swimming robot, the model highlights
the importance of flagellum motion, which is crucial for improving locomotion and
performance. For this purpose, a novel beating waveform is presented. It is based on
a fractional order power law for amplitude modulation, which makes it possible to
preserve the motion properties obtained by applying classical traveling waveforms
and to control the stroke and propulsion with a single parameter.

Special attention has been given in this Thesis to the influence of the beating
waveform on the propulsion and locomotion control of swimming robots. Chapter 4
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analyses and states the existence of a strong relationship between the amplitude
coefficients of the waveform and the wave propagation velocity with the propulsive
velocity of the swimming robot. Thereunder, the fractional beating waveform
offers the possibility to control the propulsion speed employing a single parameter,
the fractional coefficient. On the next sections, controllability and observability
are studied, generalizing the analysis to N-link swimming robots. The mentioned
analysis concludes that it is not possible to state that a swimming robot is controllable
in medium Re environments. Nevertheless, it is possible to affirm this for swimming
robots in low Re. Finally, a control strategy for path following was discussed.

Chapter 5 described the two swimming robot prototypes and the experimental
platform for swimming robot testing that have been developed in this Thesis as
follows. The first prototype consisted of 6 rigid links plus the head from which
a simulator was developed in MATLAB®/Simulink® environment. The second
prototype consisted of three ionic polymer-metal composite (IPMC) based flexible
links. However, unlike the previous one, all the associated electronics were external
and the prototype was essentially the flagellum. In addition to prototypes, a novel
electrical model of the cardiovasular system (CVS) was presented with two main
objectives. The first one was to complete existing cardiovascular models extending
the classic Windkessel model to the left common carotid artery. This is useful
medically because it allows the model to be validated. The second objective was
to build a simulator based on the model of a realizable platform. This platform
emulates a low Re environment and hemodynamic cardiovascular conditions and
serves as a testbed for swimming robots. The model of the simulator was developed
using physical modeling tools.

Experimental and simulation results were presented in Chapter 6 to extensively
validate the following: the novel beating waveform, the path following control, the
beating waveform generation on a flagellum made up of IPMC and the cardiovascular
system model proposed in this Thesis.

Firstly, the fractional order approach for the beating waveform propulsion pre-
sented improved locomotion for an rigid N-link artificial eukaryotic flagellum
swimming robot. The novel beating waveform was based on a fractional order
power law for amplitude modulation. It was demonstrated that it confers similar
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motion properties to the obtained applying classical beating waveforms but presents
some benefits in terms of propulsion. Secondly, regarding control strategy based on
nested control loops, each of the internal control stages was verified and evaluated,
showing the validity and robustness of the controller for different conditions. The
first control loop was based on fractional order control was designed with robustness
against load variation along the flagellum to improve locomotion. The second con-
trol loop was based on line-of-sight (LOS) guidance methodology, a popular method
for straight line following applied in maritime vehicles and surface-to-air missiles
whose validity was analyzed for this case. The third and last loop, uses waypoint
guidance methodology. This methodology divides the given path in straight lines
that define the robot’s course.

In the third place, a flexible 3-link artificial eukaryotic flagellum swimming robot
made up of IPMC was studied for the generation of beating waveform through single
and distributed actuation in low Re environments. The dynamics was identified for
control purposes through its frequency response. A model was identified for each
link. The model consisted of a fractional integrator in series with a resonant system
of both fractional and integer order for the frequency range [0.1, 50] rad/s. The
identification process led to two conclusions: 1) the tip displacement of all IPMC
links is characterized by the same dynamics, which remains unchanged along the
link with mere variations of the gain for low-frequency applications; and 2) single
actuation of the robot does not allow the reproduction of a nonreciprocal motion,
since the dynamics of the second and third links are subject to the dynamics of
the first link; there are only differences in the gain and a slight phase lag, which
are not sufficient to generate a nonreciprocal motion. Consequently, a controller
robust to gain variations was designed to control link deflection regardless of link
length, allowing distributed actuation with the same controller design. A classical
proportional-integral-derivative (PID) controller and a noninteger order integrator
were proposed. The control results showed that the PID offers a better response
to tracking control due to increased system speed, but does not meet the design
specifications. In contrast, the noninteger order integrator meets the step response
specifications but provides worse results for the tracking problem. Likewise, the
motion of the swimming robot composed of three links of the same length was
analyzed to validate. It was concluded that a distributed actuation (active or passive)



189

is necessary to develop a nonreciprocal motion.

Finally, the novel electrical model of the CVS was validated using the leading
clinical indices, and the cardiovascular waveform was compared with experimental
data obtained from clinical trials performed on a pig. Likewise, the model showed
consistency despite preload and afterload factor variations.

Future works will focus on: 1) the fabrication of the robot prototype and testbench
platform to validate all these results on the real system; and 2) studying the control
approach for a swimming robot with segments of different lengths.
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This appendix details the variables used for the description of the model of a
flagellum-type articulated eukaryotic swimming robot. In addition, a brief introduc-
tion to the differential geometry techniques for the study and analysis of nonlinear
systems from the point of view of control theory [191, 218], applied in chapter 4.

A.1 Variables for medium Re environment

This section arranges the equations that define the swimming robot dynamics,
described in chapter 3, and fully describes the variables that compose it. Starting
with Newton’s second law, the forces that affect the swimming robot’s head dynamics
(3.26a) are

mnq̈x = fv,x,N + fa,x,N + hx,N = eT
(
Fv,x + Fa,x

)
mnq̈y = fv,y,N + fa,y,N + hy,N = eT

(
Fv,y + Fa,y

) (A.1)

and the dynamics of the links (3.32) is

Jθ̈ =DT QU + Tv + Ta − DT K f Dθ − DT B f Dθ̇

+
1
2

LSθAT
(
DM−1DT

)−1(1
2

AL
(
Cθθ̇

2
+ Sθθ̈

)
− DM−1

(
Fv,x + Fa,x

))
−

1
2

LCθAT
(
DM−1DT

)−1(1
2

AL
(
Sθθ̇

2
− Cθθ̈

)
− DM−1

(
Fv,y + Fa,y

))
.
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Figure A.1: Free body diagram of articulated artificial eukaryotic flagellum swimming
robot
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Developing the above expression according to the environment forces and the robot
kinematics, the model has the following form:

Ψ


θ̈

q̈x

q̈y

 = Ω(θ̇) + Π(V̇ f ,x, V̇ f ,y) + E(qx, qy,V f ,x,V f ,y) − BU (A.3)

where

Ψ =


Mθ −Pxe Pye

eTσx,2 Mx + eTσx,3e −eTσx,4e
−eTσy,2 −eTσy,3e My + eTσy,4e

 , Ω(θ̇) =


ωθθ̇

2
− Vθθ̇ − DT K f Dθ

eTσx,1θ̇
2

+ eT (
σx,5 − δx,1

)
θ̇

eTσy,1θ̇
2

+ eT (
σy,5 + δy,1

)
θ̇

 ,

E(qx, qy,V f ,x,V f ,y) =


Nx

(
eq̇x − V f ,x

)
+ Ny

(
eq̇y − V f ,y

)
eT (

σx,6 − δx,2
)(

eq̇x − V f ,x
)

+ eT (
δx,3 − σx,7

)(
eq̇y − V f ,y

)
eT (

σy,6 + δy,2
)(

eq̇x − V f ,x
)

+ eT (
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)(
eq̇y − V f ,y

)
 ,

Π(V̇ f ,x, V̇ f ,y) =


−PxV̇ f ,x + PyV̇ f ,y

eTσx,3V̇ f ,x − eTσx,4V̇ f ,y

eTσy,4V̇ f ,y − eTσy,3V̇ f ,x

 , B =


DT Q

0
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(A.4)
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and the following simplifications correspond to the development of the environment
forces:

δx,1 =
(
c‖v(Cθ)2 + c⊥v (Sθ)2

)1
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WLSθ +
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(A.6)

A.2 Variables for low Re environment

In the case of the model for low Re, the model is simplified as described in
chapter 3, as well as the variables used. Firstly, the summation of forces on the
swimming robot head is equal to zero, according to Newton’s law applied for low
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Re environment:
0 = fv,x,N + hx,N = eT Fv,x

0 = fv,y,N + hy,N = eT Fv,y
(A.7)

and the dynamics of the links is reduced to

0 = DT QU + Tv − DT K f Dθ − DT B f Dθ̇ +
1
2

LSθAT Hx −
1
2

LCθAT Hy. (A.8)

Both equations define the swimming robot model in a low Re as

Ψ?


θ̇

q̇x

q̇y

 = Ω?(θ, θ̇) + E?(qx, qy,V f ,x,V f ,y) + BU (A.9)

where
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ye
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−eTδy,1 −eTδy,2e −eTδy,3e

 ,

Ω?(θ, θ̇) =


−DT K f Dθ

0
0

 ,

E?(qx, qy,V f ,x,V f ,y) =


−N?

xV f ,x + N?
yV f ,y

eTδx,2V f ,x − eTδx,3V f ,y

−eTδy,2V f ,x + eTδy,3V f ,y

 ,
V?

θ =c◦v + DT B f D −
1
2

LSθK?δx,1 −
1
2

LCθK?δy,1,

N?
x =

1
2

LSθK?δx,2 +
1
2

LCθK?δy,2,

N?
y =

1
2

LSθK?δx,3 −
1
2

LCθK?δy,3

K? =AT
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DDT
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A.3 Differential geometry tools

This section is only intended to briefly introduce the differential geometry tech-
niques for the study and analysis of nonlinear systems from the point of view of
control theory [191, 218]. For a more profound and rigorous explication, the readers
are encouraged to consult [174, 188, 191, 218, 219].

The system under consideration is multivariable, nonlinear with m inputs and p
outputs, following the form:

ẋ = f (x) +

m∑
i=1

gi(x)ui

y = h(x)

(A.11)

The system is properly defined on a state space different from Euclidean space<n.
Instead, it is defined in a curved n-dimensional subset of <m for some m, called
a manifoldM, where x = [x1, x2, . . . , xn]T ∈ <n are local coordinates onM (it is
also known as state vector), u = [u1, u2, . . . , um]T ∈ <m is the control law vector,
and y = [y1, y2, . . . , yp]T ∈ <p is the the vector of system outputs.

With respect to f (x) = [ f1(x), f2(x), . . . , fN(x)] ∈ <n and g j(x) = [g1(x), g2(x),
. . . , gn(x)]T ∈ <n, with j = {1, . . . ,m}, are vector fields on M, which assign
a tangent vector at x1 to any point xi with i ∈ ℵ in M. They are also called
the system’s drift and control vector fields. As for the scalar functions h(x) =

[h1(x), h2(x), . . . , hp(x)] : M −→ Y = <p are the output vectors, that give the
system status at a specific point x1. It is assumed that the vector fields, { f , g1, . . . , gm},
and the scalar functions h are smooth in their arguments. In other words, all of them
are analytic on their domain of definition, that means { f , g1, . . . , gm, h} ∈ C∞.

A.3.1 Lie derivative and Lie brackets

A nonlinear system can be interpreted as a set of dynamical systems described
by the vector fields and parameterized by the control laws. The system’s properties
depend on the combination of the different dynamical systems corresponding to
different control laws. Because the system’s dynamics are given by vector fields,
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this allows performing an algebraic operation to study the interconnections between
the different dynamics.

A linear function or operator that is of particular importance is the gradient of a
scalar function f (x) ∈ M. It is denoted by the operator ∇x and is defined as a row
vector of 1 × n, whose i-th element is the partial derivative of f (x) with respect to xi,
that is:

∇x f (x) =
∂ f
∂x

=

[
∂ f
∂x1

,
∂ f
∂x2

, . . . ,
∂ f
∂xn

]
. (A.12)

From the above definition, two main types of differential operations can be presented:
vector fields and the resulting vector from the gradient operation. The first type of
operation is the directional derivative along f (x), which is a new vector field from
the inner product of a scalar function, h(x), and the gradient vector of function, ∇x,
defined by

〈∇x f (x), h(x)〉 =
∂h
∂x

f (x) =

n∑
i=1

∂h
∂xi

fi(x). (A.13)

This operation is also known as Lie derivative denoted as L f h(x), so:

L f h(x) =
∂h
∂x

f (x). (A.14)

Likewise, this operation is possible in a recursive way, for instance, first taking the
Lie derivative of h(x) along a vector field f (x) and then along a vector field g1(x).
The recursive Lie derivative is defined as:

Lk
f h(x) = L f

(
Lk−1

f h(x)
)
, (A.15)

for any k ≥ 1, and setting L0
f h(x) = h(x).

The second type of operation is the Lie bracket (or product) of f (x) and g(x). In
simple words, the Lie bracket is a measure of the commutation shortage of the flow
of vector fields, where the flow is referred to as the general solution that satisfies
system (A.11) at time t and with x0 as initial conditions. The new vector fields are
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defined as

[
f , g

]
(x) =

∂g
∂x

f (x) −
∂ f
∂x

g(x). (A.16)

In the same way that the Lie derivative, repeated bracketing of a vector field g(x)
with the same vector field f (x) is formulated as:

adk
f g(x) =

[
f , adk−1

f g
]
(x), (A.17)

for any k ≥ 1, and setting ad0
f g(x) = g(x). The advantage of this formulation is that

it simplifies the previous notation. It is important to remark that, the Lie product
has three basic properties: it is bilinear, skew commutative and satisfies the Jacobi
identity.

Another procedure frequently used in the analysis of nonlinear and linear control
systems is the change of coordinates in the state space. Although this method
was applied in the previous section, it cannot be left unexplained here due to its
importance. It is well known that transforming the coordinates in the state space can
highlight some system’s desired properties or simplify specific control problems. A
nonlinear change of coordinates can be formulated as

z = Φ(x), (A.18)

where Φ(x) is a n-dimensional vector of scalar functions of n-variables. Moreover,
the transformation vector field must be nonsingular and analytic, which means that
it has an invertible matrix and continuous partial derivatives of any order. The first
property ensures the inversion to the original system description, whereas the second
ensures that the new system remains smooth. A transformation of this type is usually
called a global diffeomorphism on<n.

The effects of a change of coordinates in a nonlinear system are analyzed as
follows. Differentiating in both sides of the transformation vector field definition
with respect to time yields

ż =
dz
dt

=
∂Φ

∂x
dx
dt

=
∂Φ

∂x
[
f (x) +

m∑
i=1

gi(x)ui
]
, (A.19)



A.3. Differential geometry tools 219

expressing x = Φ−1(z), the new description of system (A.11) is now

ż = f (z) +

m∑
i=1

gi(z)ui

y = h(z),

(A.20)

where

f (z) =

[
∂Φ

∂x
f (x)

]
x=Φ−1(z)

= L f Φ
∣∣∣x=Φ−1(z)

gi(z) =

[
∂Φ

∂x
gi(x)

]
x=Φ−1(z)

= LgiΦ
∣∣∣x=Φ−1(z)

h(z) =
[
h(x)

]
x=Φ−1(z).

(A.21)

Note that if Φ(x) is linear, it is reduced to Φ(x) = Tx, where T is the transformation
matrix [191, 218].

A.3.2 Distributions

Previously, the vector field concept was introduced, which assigns an n-dimensional
vector to each point ofM. Now, given a family of smooth vector fields { f , g1, . . . , gm}

defined inM, the linear subspace spanning at any fixed point x1 ∈ M is called a
distribution. The term span means that another vector field defined in x1 can be
obtained as a linear combination. The notion of distribution is fundamental to the
analysis of nonlinear systems and it is denoted by

∆ = span
{
f , g1, . . . , gm

}
. (A.22)

Since distribution is a linear space, the properties and concepts of linear space
(addition, intersection, inclusion) are also related to it [191, 218]. The dimensions
of a distribution, ∆, at x1 ∈ M is the dimension of the subspace. In other words,
the number of independent smooth vector fields that form the distribution is equal
to its dimension. Therefore, the dimension of ∆ at a point x1 is the rank of the
matrix formed by these column vector fields. In addition, if the dimension does not
depend on the point, the distribution is called constant dimensional or nonsingular.
Associated with the concept of dimension, a distribution is said to be involutive
if the Lie bracket [ f , gi] ∈ ∆, whatever the vector fields f and gi are onM, that
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means:

f ∈ ∆, gi ∈ ∆ −→ [ f , gi] ∈ ∆. (A.23)

As will be seen later, the involutive property plays a fundamental role in the Frobe-
nius’ theorem.

In other instances, instead of distribution, a codistribution is considered. A
codistribution is the dual of a distribution. Recalling that a covector field (also
known by the name of one-form or linear form), h(x), could be understood as an
assignment from any point x ∈ M to an element of the dual space

(
<n)?. Similar to

the notation used for a distribution, a codistribution is defined as

O = span
{
h1, g2, . . . , gn

}
. (A.24)

Because of a codistribution is also a linear space (subspace of
(
<n)?), its properties

are also applied, as well as the dimension of codistribution at each point x ∈ M.

Another way to define a codistribution, O, where ∆⊥ is the annihilator of ∆ and
belongs to a subspace of

(
<n)?.

starting from a given distribution, ∆, is through the annihilator of ∆(x) (denoted
as ∆⊥ which belongs to a subspace of

(
<n)?), that is, a set of all covectors which

annihilate all vectors in ∆(x):

∆⊥ =
{
h? ∈

(
<n)? : 〈h?, v〉 = 0 for all v ∈ ∆(x)

}
(A.25)

A.3.3 Frobenius’ theorem

Frobenius’s theorem is a fundamental tool in the analysis and resolution of a nth-
order nonlinear system. It provides a necessary and sufficient condition for solving a
particular class of partial differential equations. It also establishes a correspondence
between the notion of involutive distribution and the existence of local partitions
of<n into a manifoldM, which allows the study of the concepts of reachable or
unreachable systems and observable or unobservable systems.
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Frobenius’s theorem states that a nonsingular distribution is completely inte-
grable if and only if it is involutive. The term completely integrable means that a
linear independent set of vector fields { f , g1, . . . , gm} ∈ <

n are integrable if and only
if there exists n − (m + 1) scalar functions h(x) that satisfy the system of partial
differential equations:

n∑
i=1

∂h
∂xi

fi(x) = L f h(x) = 0. (A.26)

A.3.4 Rashevsky–Chow’s theorem

The Rashevsky-Chow’s theorem states: letM be a connect smooth manifold
with a set of vector fields {g1, . . . , gm} ∈ M of a nonlinear system (A.11) and ∆ the
distribution constructed using the vector fields of the system and all vector fields than
can be obtained taking any number of Lie bracket of them. Then, if the distribution
∆ is completely nonholonomic (full-rank and bracket-generating):

∆ = TxM ∀ x ∈ M, (A.27)

where TxM defines the tangent space toM at x.

A.4 Particular case: 6-link swimming robot

This section details the variables used in chapter 5 on the description of thee
6-link swimming robot. Recalling model (5.1), the coefficients used are:
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A.5 Robot simulator

The flagellum is implemented by employing distributed actuators, i.e., a set of
segments linked by 1-DOF joints. The set of segments is developed using the basic
unit shown in Figure A.2, which is repeated as many times as the desired number of
joints. As observed, this basic unit consists of two elements: the actuator, modeled
as a DC motor (red frame), and a cylindrical-shaped segment with the corresponding
gears (green frame). On the one hand, the inputs of the basic unit are the voltage
that governs each joint, the power supply of the electronic circuit and motor, and the
bus signal, which simulates the physical communication medium in the prototype
and is a common connection between the segments. On the other hand, the output
of this basis unit is just the bus signal, whose main signals are: 1) the kinematic
variables of the segment (linear and angular velocity, angular position, and the
cross displacement); 2) mechanical variables (torque and power developed by the
actuator); and 3) the electrical variables (current and voltage applied, and power
supplied). It is worth mentioning that the basic unit has two Simscape physical
connection ports, namely, ports B (base) and F (follower), which allow the analysis
of the model as a complete mechanical system. More details of each element are
given below.

Figure A.2: Block diagram of Simulink of the basic unit of the flagellum of an AEF
microrobot.

A.5.1 Actuator model

The actuator is modeled as a DC motor with the corresponding electronics, as
shown in Figure A.3. The model’s electrical side (blue network) consists of an H-
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Figure A.3: Details of the actuator of the basic unit of the AEF microrobot simulator.

bridge governed by a logical and PWM signal, which controls the rotation direction
and the electrical power supplied to the motor. Furthermore, it incorporates the
passive components presented in the real design. The mechanical side (green and
red networks) is based on the planetary gearhead coupled at the motor, modeled as a
planetary gear block whose gear ratio and efficiency are configurable. Both sides are
linked through the electromechanical model of the DC motor. The mechanical power
(torque and velocity) developed by the DC motor is transferred to an ideal 1-DOF
joint through the interface, enabling the extension of the model from Simscape
Driveline to Simscape Multibody 3D and integrating the physical effects modeled on
both sides. In this scheme, it should be highlighted that the inertia block is connected
in parallel due to the software used for the implementation. Thus, Newton’s second
law violation during simulation is avoided.

To analyze and study the developed and supplied energy, power sensor blocks
are used in the mechanical and electrical sides of the motor to measure the power
required, which allows the calculation of the current demanded and the torque
exerted by the motor, as well as the voltage that determines the angular velocity.

For its part, the kinematic variables of the motor (angular position, velocity and
acceleration) are measured from the ideal joint with respect to a local reference
system. These variables, together with the voltage, establish the control strategy and
emulate the desired wave. All the measured variables are included in the data bus
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signal.

A.5.2 Link model

Figure A.4 illustrates the block diagram of the basic unit of one robot segment
developed on Simulink, in which three parts can be identified. The first part (red)
consists of the solid representing the frame of the motor, a cylinder with a radius d,
length Ls, the axis coupling and the bevel gear, which transmit the motion of the
motor to the following link allowing to govern its position. The second group of
blocks (blue) implements the viscous environment, where the viscous forces are
defined according to (3.15) and the measured variables are calculated and exerted
over the segment. In the third part (green), similarly to the actuator model, sensor
blocks are also used to obtain information about the system.

Particularly, both the normal and tangential velocity are registered, as well as,
and the vertical displacement of the segment in four positions (Ls/4, Ls/2, 3Ls/4, Ls),
with respect to a global reference system placed at the robot head. Finally, all the
measured variables are also included in the data bus signal.

A.5.3 Testbed for HIL experiments

It is important to mention that this simulator is prepared to be used as a testbed
to perform HIL experiment with the swimming robot so as to validate the designed

Bevel Gear

Figure A.4: Details of a segment of the basic unit of the AEF microrobot simulator.
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controllers. A scheme of the testbed is illustrate in Figure A.5. As can be seen, it
consist of the followign components:

• The simulator of the robot described above, which runs on Macintosh with
the following specifications: Intel Core i7 (six core) with a clock speed of 2.2
GHz and 16 Gb DDR4 RAM.

• The robot software. For the control operation requirements, the chosen
microcontroller is an Atmel ATmega32u4. It has an architecture of 8 bits,
a capability of 16 MIPS at a clock frequency of 16 MHz, and a hardware
multiplier that improves the time of arithmetic operations. Its capacity to
do the control task in the desired sampling time makes it suitable for this
application.

The data interchange between the microcontroller and the computer is done
using micro USB port type B through a serial protocol via universal asynchronous
receiver-transmitter (UART) configured as follows: BigEndian byte order, 32-bit
data, IEEE Standard 754 floating point for data representation, and 250000 baud rate.
On the computer side, an S-Function was written to receive/send data. As shown in
Figure A.5, the simulator sends the position error of each link to the microcontroller,
whereas this hardware calculates and sends back the control laws to the computer.
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Figure A.5: Connection scheme of the robot testbed to perform HIL experiments.
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This appendix details the analysis of the electrical circuit described in chap-
ter 5.

The mathematical description of the circuit is obtained applying the Kirchoff’s
circuit law to the electrical circuit depicted in Figure 5.7 and taking the state variables
given in Table 5.4. With respect to diodes, their behavior is defined by the ramp
function:

d(x) =

x, if x ≥ 0

0, if x < 0
(B.1)

Then, the dynamic equations of the model are obtained as follows. The state x1

is described recalling the Frank-Starling’s law, which states that:

E(t) =
LVP(t)

LVV(t) − V0
(B.2)

where LVV(t) =
∫

(IM − IA)dt is the charge in the capacitor, being IM and IA

the currents through the mitral diode DM and the aortic diode DA, respectively.
Therefore, the state x1 is defined as:

x1 = E(t)
( ∫

(IM − IA)dt − V0
)

(B.3)

Deriving the terms on both sides of the equality and recalling that E(t) = 1/C(t)
and Ė(t) = −Ċ(t)/C2(t), the differential equation for x1 can be written as:

ẋ1 = Ė(t)
( ∫

(Im − Ia)dt − V0

)
+ E(t)

d
dt

∫
(IM − IA)dt (B.4a)

ẋ1 =
1

C(t)

(
− Ċ(t)x1 +

1
RM

d(x1 − x2) −
1

RA
d(x4 − x1)

)
(B.4b)

Applying the Kirchoff’s first law to capacitor CR, it results that

IS = I2 + IM (B.5)

where IS , I2 and IM are the currents through the systemic resistance and return from
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left common carotid, the capacitor CR and the mitral diode DM , respectively. Using
the Ohm’s law, the currents can be expressed as a function of voltage as:

1
RS

(x2 − x3) +
1

RS LC
(x2 − x3) = CR ẋ2 +

1
RM

d(x1 − x2) (B.6)

Solving for ẋ2, it result:

ẋ2 =
1

CR

( 1
RS

d(x3 − x2) +
1

RS LC
(x6 − x2) −

1
RM

d(x2 − x1)
)

(B.7)

Similarly, the application of Kirchoff’s first law to the node x3 allows obtain-
ing:

x5 = x7 +
1

RS
(x3 − x2) + I3 (B.8)

where I3 is the current through the capacitor CS . Using the Ohm’s law for I3 and
solving for ẋ3, it results that:

ẋ3 =
1

CS

(
x5 − x7 −

1
RS

d(x3 − x2)
)

(B.9)

Doing the same analysis for capacitor CA, the sum of currents is:

IA = I4 + x5 (B.10)

where I4 is the current through CA. Applying the Ohm’s law and solving for ẋ4:

ẋ4 =
1

CA

( 1
RA

d(x4 − x1) − x5

)
(B.11)

For the differential equation of x5, the Kirchoff’s second law is employed in the
x4 − x5 − x3 mesh, formulating:

x4 = Lẋ5 + RC x5 + x3 (B.12)
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Solving for ẋ5, the dynamics of the state x5 is defined by:

ẋ5 =
1
L
(
x4 − x3 − RC x5

)
(B.13)

Recalling again the Kirchoff’s first law for the node x6, the currents involved
are:

x7 −
1

RS LC
(x6 − x2) − I6 = 0 (B.14)

where I6 is the current through capacitor CLC . Applying the Ohm’s law and solving
for ẋ6, it is obtained:

ẋ6 =
1

CLC

( 1
RS LC

(x2 − x6) + x7

)
(B.15)

Finally, the differential equation for the state x7 is solved using the Kirchoff’s
second law for the mesh corresponding to x3 − x6 − x7:

x3 = LLC ẋ7 + RLC x7 + x6 (B.16)

Solving for ẋ7, the state equation for ẋ7 is defined by:

ẋ7 =
1

LLC

(
x3 − x6 − RLC x7

)
(B.17)
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