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Abstract

Water resource management in ungauged catchments is complex due to uncer-

tainties around the hydrological parameters that characterize streamflow behaviour.

These parameters are usually defined by regionalization approaches, in which the

hydrological response patterns of ungauged basins are inferred from those of gauged

basins. Regression-based methods using physical properties derived from carto-

graphic data sources are widely used. The current remote sensing techniques offer

new opportunities for the regionalization of hydrological parameters since the hydro-

logical response depends on the physical attributes related to the spectral responses

of a given land surface. Moreover, machine learning approaches have not been spe-

cifically applied to the regionalization of hydrological parameters in forested areas.

This work studies the capability of a catchment's spectral signature based on

Sentinel-1 and Sentinel-2 data to address a regression-based regionalization of

hydrological model parameters using a machine learning approach. Hydrological

modelling was conducted by the HBV-light model. We tested the random forest algo-

rithm in several regionalization scenarios: the new approach using the catchments'

spectral signature, the traditional method using physical properties and a fusion of

these methods. The calibration results were excellent (median KGE = 0.83), and the

regionalized parameters achieved good performance, in which the three scenarios

showed almost the same goodness of fit (median KGE = 0.45–0.50). We found that

the effectiveness depends on the climatic environment and that predictions in humid

catchments exhibited better performance than those in the driest catchments. The

physical approach (median KGE = 0.71) exhibited better performance than the spec-

tral approach (median KGE = 0.64) in humid catchments, whereas spectral regionali-

zation (median KGE = 0.33) enhanced the physical scenario in the driest catchments

(median KGE = 0.25). Our results confirm that regionalization is still challenging in

drier climates, such as in the Mediterranean environment. The new spectral approach

showed promising results and it was effective in the analysis of the relationship

between the spectral response of the territory and its hydrological characteristics,

specially, where no cartographic data is available.
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1 | INTRODUCTION

Water resource management requires accurate quantification of all

hydrological processes involved in water supply, flood and drought

evaluations and eco-hydrology (Cui et al., 2020; Hrachowitz

et al., 2013). Hydrological modelling is complex and depends on the

availability of input data and on the uncertainties of the parameters

that must be calibrated to obtain good accuracy in streamflow simula-

tions (Beck et al., 2020). Moreover, calibration can lead to nonunique

combinations of best parameters (Bárdossy, 2007) and uncertainty in

the quantification of actual hydrological processes is even greater in

ungauged catchments, where calibration of model parameters is not

feasible, thus presenting a challenge for hydrologists.

For ungauged catchments, the regionalization approach is used to

infer hydrological response patterns from gauged catchments

(Hrachowitz et al., 2013), and in recent decades, different regionaliza-

tion methodologies have been proposed to better understand hydro-

logical processes in ungauged areas. These methodologies are well

documented in previous studies, such as the reviews by Hrachowitz

et al. (2013), Parajka et al. (2013) and Guo et al. (2021). However, the

regionalization of hydrological parameters in ungauged catchments

remains a challenge. This challenge is evidenced by the fact that

numerous studies have been published in the last years that analysed

different regionalization approaches and it is not clear that there is

one method that truly works better than others. Table 1 summarizes

some of these studies, organized depending on the information to be

transferred, whether hydrological model parameters or hydrological

signatures, and according to different regionalization methodologies

such as the categories proposed by Guo et al. (2021): similarity-based,

regression-based, and hydrological signatures-based approaches.

Thus, as mentioned above, there is no optimal regionalization

method and, as suggested by Parajka et al. (2013), the effectiveness

of regionalization will depend on the environment and the particular

hydroclimatic attributes of an area. In this regard, Yang et al. (2019)

analysed which aspect of the prediction of future hydrological pro-

cesses (regionalization methods or climate models) had more influence

on the overall uncertainty and found that the main source of uncer-

tainty depended on catchment attributes. Specifically, the regionaliza-

tion method, rather than climate variables, tended to dominate the

uncertainty in the lower precipitation areas of their study.

The present work focuses exclusively on parameter regionaliza-

tion, analysing the relationships between catchment characteristics

and the hydrological parameters that best represent the catchment

hydrological response. Table SI.1 shows, to the best of our knowledge,

the most recent studies specifically focused on parameter regionaliza-

tion, summarizing the main characteristics of each study as well as the

main results obtained.

Nevertheless, the transferability of parameters does not always

lead to satisfactory simulation results due to nonlinear functions

between the heterogeneous catchments and their flow regimen

(Bárdossy, 2007). In the last decade, machine and deep learning

methods have been proven to be effective in analysing nonlinear rela-

tionships in many geoscience areas, particularly in water science areas

(see reviews by Tyralis et al. (2019) and Shen (2018)). However, only a

few studies have used machine learning for the regionalization

approach of streamflow simulations (Buzacott et al., 2019; Kult

et al., 2014; Ma et al., 2021; Prieto Sierra et al., 2019; Snelder

et al., 2009; Zhang et al., 2018), and to the best of our knowledge,

there is a lack of studies applying machine learning algorithms specifi-

cally to the regionalization of hydrological parameters. To the best of

our knowledge, only the study by Saadi et al. (2019) examined the

potential of the random forest algorithm for regionalizing hydrological

parameters in urban catchments, and the regionalized models

achieved good performance.

With respect to the physical properties, topographic, land use,

soil, and geological data from cartographic sources are traditionally

the most used to characterize catchments for parameter regionaliza-

tion (Booij, 2005; Hundecha & Bárdossy, 2004; Kult et al., 2014;

Merz & Blöschl, 2004; Parajuli et al., 2018). Recent studies have incor-

porated remote sensing data as predictors, such as those of Choubin

et al. (2019) who used Moderate Resolution Imaging Spectroradi-

ometer (MODIS) images and some derived products, such as vegeta-

tion and biophysical indices, to estimate streamflow in ungauged

catchments. Landsat-8-derived indices have been used for flood sus-

ceptibility mapping (Bui et al., 2020), and Beck et al. (2020) used the

mean normalized difference vegetation index (NDVI) from the SPOT

vegetation program as a predictor in their global regionalization of

hydrological parameters. Finally, Jillo et al. (2017) also used the NDVI

from the International Water Management Institute (IWMI) as a pre-

dictor in their regionalization of hydrological parameters in Ethiopia.

However, apart from their use in vegetation indices, remote sensing

data can also add a valuable characterization of catchments because

the spectral response will depend on the vegetation (type and cover)

and on the geological and lithological characteristics of the study area.

Moreover, the vegetation types are also related to the soil lithotypes

(Costa et al., 2017). Hence, the reflectance captured by the optical

sensor is related to the surface mineralogy, depending on the compo-

sition of the soil of the geological formations of the area (Rajendran &

Nasir, 2021). Moreover, the response of synthetic aperture radar

(SAR) backscatter intensity is affected by surface roughness, soil mois-

ture content (Purinton & Bookhagen, 2020), dielectric constant and

grain size (Lu et al., 2021). Consequently, considering that the above-

mentioned characteristics are directly involved in the hydrological

response of the territory, the spectral response of a catchment can be

related to its hydrological behaviour. Thus, remote sensing data offer

new opportunities to improve the prediction of hydrological processes

in ungauged catchments. However, to our knowledge, the capability

of the spectral signature to study catchment properties and to be
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used as predictors in regression-based regionalization of hydrological

parameters in Mediterranean environments has not yet been

documented.

Therefore, the aim of our study was to explore the capability of a

catchment's spectral response for a regression-based regionalization

of hydrological parameters using a machine learning approach. The

specific goals were (i) to test the random forest algorithm for the

regression of the hydrological parameters based on the spectral signa-

tures of the catchments using Sentinel satellites, (ii) to compare the

accuracy of the spectral-based approach with the traditional physical-

based regionalization approach, and (iii) to evaluate the contribution

of the spectral-based regionalization approach to the better under-

standing of catchment hydrological response in ungauged catchments

in the Mediterranean climatic environment.

2 | DATA AND METHODS

2.1 | Study area

The study area comprises 18 gauged watersheds throughout the

Extremadura region in Spain (Figure 1). The criteria for the selection

of the watersheds were based on the availability of gauging station

data measuring an upstream area of less than 1000 km2 of mainly for-

ested cover and not controlled by the regulation of any dam or reser-

voir to study the natural regime of the rivers. Table 2 shows the main

climatic characteristics of the watersheds (Rivas-Martinez & Rivas-

Saenz, 1996-2019), where the annual mean temperature and the

mean annual precipitation range from 10 to 17�C and from 446 to

1323 mm, respectively. Precipitation occurs mainly from October to

April, while June, July and August represent the dry season, with no

or almost no precipitation in most years.

Figure 2 shows a flowchart of the methodology followed in this

study which will be presented in the following sections.

2.2 | Data preprocessing

2.2.1 | River discharge

The river discharge data were supplied by the Automatic Hydrological

Information Systems (SAIH) of the hydrographic regions of Tajo and

Guadiana, to which the watersheds belong, and which have had data

recorded since they were put into operation in 2008. Therefore, the

daily discharge from January 2008 to December 2019 was analysed.

To ensure the quality of discharge observations, the hydrograph was

analysed by visual inspection to guarantee the absence of gaps and

outliers. Since the natural regime of the rivers studied is intermittent,

as recommended in Crochemore et al. (2020), it is important to distin-

guish between high-flow peaks instead of numerical outliers.

2.2.2 | Precipitation and temperature

In this work, the daily gridded dataset of temperatures (maximum and

minimum) and 24 h accumulated precipitation developed by the Span-

ish Meteorological Agency (AEMET) available in AEMET (2019) was

used. These gridded datasets were obtained through a statistical inter-

polation analysis of ground observation stations, with a spatial resolu-

tion of 0.05� in a rotated grid (CORDEX compliant) based on

HIRLAM-AEMET Numerical Weather Prediction operational analyses

(AEMET, 2017). To obtain the daily series in each watershed, we first

reprojected the watershed into the rotated grid, and then, the average

daily values in each watershed were processed.

TABLE 1 Regionalization studies based on different methodologies depending on the information to be transferred

Methodology Study

Information to be transferred

Model parameters Hydrological signatures

Similarity-based Arsenault and Brissette (2016) x

Pagliero et al. (2019) x

Swain and Patra (2019) x

Tegegne and Kim (2018) x

Zamoum and Souag-Gamane (2019) x

Regression-based Beck et al. (2020) x

Götzinger and Bárdossy (2007) x

Hundecha and Bárdossy (2004) x

Jillo et al. (2017) x

Merz and Blöschl (2004) x

Saadi et al. (2019) x

Hydrological signatures-based Betterle et al. (2019) x

Chouaib et al. (2018) x

Jayathilake and Smith (2019) x
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The main limitation of this dataset lies in the values of the inter-

polation at the highest elevation, where there are usually no ground

observation stations and the values are interpolated from records of

ground stations located, generally, at lower elevations. To address this

issue, the hydrological model parameters related to the increase of

precipitation with elevation (PCALT) and decrease of temperature

with elevation (TCALT) were calibrated to ensure the balance of input

and output volumes and minimize the error in volume. Then, for the

regionalization stage, to analyse variations in temperature and precipi-

tation with elevation in ungauged catchments, the differences in the

elevation to the reference ground data and the mean distance to the

nearest stations were analysed for each catchment.

2.2.3 | Potential evapotranspiration

The daily potential evapotranspiration was calculated using the

1985 Hargreaves ETo equation since it only requires measured tem-

perature data (see eq. 8 in Hargreaves et al. (2003)). The extrater-

restrial radiation (Ra) values for the different latitudes of the

watersheds were estimated following the equations in Allen et al.

(1998). Finally, the long-term monthly mean values were obtained

from the daily values of potential evapotranspiration from January

2008 to December 2019.

2.2.4 | Land cover and topographic data

The land cover map used in this work (Figure 1) was developed in a

previous study in which hydrological land cover categories were

mapped based on the runoff generation capability of the land cover

types using remote sensing techniques (Fragoso-Camp�on, Quir�os, &

Gutiérrez Gallego, 2020). The land cover can be divided into three

groups: forested, agricultural and impervious cover. Forested land

cover categories comprise evergreen forest, deciduous forest, dehesas,

shrubs, and herbaceous vegetation. The dehesa is a typical cover from

Extremadura (Fragoso-Camp�on, Quir�os, & Gutiérrez Gallego, 2020),

defined by Devesa Alcaraz (1995) as ‘pasturelands populated by holm

and/or cork oaks, with an understorey of open grassland, cereal crops, or

Mediterranean scrub’. The agricultural land cover categories are

rainfed crops (mainly olive trees, vineyards and cold-season annual

crops and cherry trees) and irrigated crops (seasonal warm crops).

Finally, impervious surfaces included rocky outcrops, bare soil, roads,

and urban areas.

F IGURE 1 Location of the study area, DEM, and land cover
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Digital elevation models (DEMs) at a spatial resolution of 25 m

developed by the Spanish National Geographic Institute (IGN, 2021)

were used for topographic data. Table SI.2 shows the properties con-

sidered as predictors in this study.

2.2.5 | Soil data

The spatial distribution of soil characteristics was obtained from the

European Soil Data Centre (Joint Research Centre, 2020). Here, two dif-

ferent sources were used: we considered the information in the

European Soil Database v2.0 (Panagos, 2006) for the characterization of

the deeper groundwater response, whereas the updated topsoil and the

physical properties for Europe developed in Ballabio et al. (2016) were

used for the shallow groundwater response. Table SI.2 shows the physi-

cal soil properties considered as predictors in this study.

2.2.6 | Sentinel data

The spectral response of the catchments was studied using images col-

lected from the Sentinel-1 (S1) and Sentinel-2 (S2) missions of the

Copernicus Program. S1 is a C-band SAR sensor with dual VV and VH

polarization, and S2 is a multispectral sensor working in the visible

(VIS), near-infrared (NIR) and shortwave infrared (SWIR) bands. The

analysis was addressed in multidate format: one S2 image acquired in

summer when the soil and vegetation show the best spectral separabil-

ity in the Mediterranean environment (Fragoso-Camp�on, Quir�os, Mora,

et al., 2020; Godinho et al., 2017) and two S1 images, one acquired in

summer close to the S2 acquisition date and another S1 image in winter

to capture seasonal phenological differences. The satellite images were

preprocessed using Sentinel Application Platform (SNAP) software

developed by the European Space Agency (ESA, 2019). S1 scene pre-

processing included calibration (radiometric normalization), terrain cor-

rection and speckle filtering. S2 preprocessing included resampling,

reprojection and mosaic building (further information is presented in

Fragoso-Camp�on et al. (2021)). In addition, for a better characterization

of the watersheds, spectral-derived metrics (vegetation, water, and soil

indices) and texture metrics derived from the grey-level cooccurrence

matrix (GLCM) were also used (Haralick & Shanmugam, 1973). These

metrics have been proven to be very useful in previous works related

to land cover (Fragoso-Camp�on et al., 2021) and lithological analysis (Lu

et al., 2021; Radford et al., 2018). A complete description of these met-

rics is shown in Table SI.2.

2.3 | Hydrological model

2.3.1 | Model description

Herein, hydrological modelling was conducted by a conceptual-

continuous rainfall-runoff model at the catchment scale using the

HBV-light version of the HBV model (Bergström, 1995) developed by

Seibert and Vis (2012). The model includes different routines (snow,

soil, groundwater, and routing) and simulates catchment discharge

based on time series of precipitation, temperature and potential

TABLE 2 Characteristics of the catchments

Catchments Hydrographic region Bioclimate varianta T mean (�C) P mean (mm) Area (km2) Elevation (m) LFPb (km)

Alardos Tajo Tocsm 10.36 1024.74 87.81 1287.34 18.85

Aljucén Guadiana Mpc 16.91 551.32 253.57 397.83 42.78

Almonte Tajo Mpc 15.59 736.99 781.36 639.62 92.96

Ambroz Tajo Tocsm 13.85 1104.15 390.49 760.47 47.68

Ángeles Tajo Tocsm 13.67 999.29 188.79 788.61 33.50

Cuartos Tajo Tocsm 10.52 1271.11 68.41 1259.59 17.31

Estena Guadiana Mpc 15.08 628.31 355.97 788.60 51.54

Fresnedoso Guadiana Mpc 15.61 579.58 107.07 642.07 22.80

Guadalupejo Guadiana Mpc 15.76 718.10 199.13 580.41 34.17

Guadarranque Guadiana Mpc 15.32 698.52 256.56 670.97 43.49

Hurdano Tajo Tocsm 13.16 974.48 108.58 852.21 31.69

Jaranda Tajo Tocsm 13.80 1243.26 225.29 815.32 30.88

Jerte Tajo Tocsm 11.57 1322.85 315.08 1131.62 42.76

Ladrillar Tajo Tocsm 12.89 980.22 73.11 890.68 17.09

Minchones Tajo Tocsm 11.10 1112.70 56.41 1305.55 15.19

Palomillas Guadiana Mpc 16.55 446.02 145.84 494.39 22.84

San Juan Guadiana Mpc 16.76 453.55 194.05 451.80 37.14

Tamuja Tajo Mpc 16.52 550.18 458.12 447.49 62.00

aMediterranean pluviseasonal-continental (Mpc) and temperate oceanic sub-Mediterranean (Tocsm) by Rivas-Martinez and Rivas-Saenz (1996-2019).
bLongest flow path (LFP).
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evaporation data (a detailed description of the software and formula-

tion is included in Seibert and Vis (2012)). We studied discharge at a

daily time step for 11 years, dividing the time series into two periods:

warm-up (January 2008–September 2014) and simulation (October

2014–December 2019).

The watersheds were analysed with a semidistributed approach

by considering four elevation zones (counting the quantile distribution

of the DEM) and three vegetation classes. The vegetation categories

were grouped according to their runoff capability (low-medium-high):

vegetation type 1 (low) comprises evergreen forest, deciduous forest,

dehesas, and shrubs; vegetation type 2 (medium) comprises herba-

ceous vegetation and agricultural land cover; and vegetation type

3 (high) comprises impervious surfaces.

We used a model structure of three groundwater (GW) boxes:

storage in the soil top zone (STZ), storage in the soil upper zone (SUZ)

and storage in the soil lower zone (SLZ). Both the STZ and SUZ boxes

are distributed using a box for each elevation-vegetation unit

(Figure 3). The parameters involved in the model are related to each

routine, as shown in Table 3.

2.3.2 | Model accuracy evaluation

The accuracy evaluation of the models was performed following the

goodness-of-fit (GoF) functions implemented in HBV-light and also

using a self-defined goodness of fit measure called Objective (Obj)

F IGURE 2 Processing flowchart of the methodology proposed in this study
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function, using Reff, KGE, and Reff Peak, with weight values of 0.2,

0.6, and 0.2, respectively (see Table SI.3).

2.3.3 | Model calibration

The calibration of the model at the gauged basins was performed

using a sequential regression approach (He et al., 2011) in two stages:

the individual catchment approach and the cluster of catchments

approach.

In the first stage, each catchment was examined individually to

obtain the best combination of parameters in each catchment using the

tools available in the HBV-light software: Monte Carlo simulations and

genetic algorithm and Powell optimization (GAP). First, a Monte Carlo

simulation of 50 000 runs was carried out. In each run, the parameter

values were randomly chosen within the given range (Table 3), ensuring

the lack of bias in the calibration procedure (Seibert, 1999). Then, the

results were analysed to set the optimum range of PCALT and TCALT

parameters to minimize the water balance volume error. Then, another

50 000 Monte Carlo simulations were run, and the simulation results

were analysed considering the GoF function results for each parameter,

defining the optimum range to maximize the accuracy of the model. The

last step consisted of the application of the GAP algorithm within the

optimal boundaries of the parameters obtained in the previous steps,

and as a result, the parameters were fine-tuned using Powell's

quadratically convergent method as described in Seibert and Vis (2012).

The best parameter value combination was calculated for an objective

function using Reff, KGE, and Reff Peak, with weight values of 0.2, 0.6,

and 0.2, respectively.

In the second stage, the best values were analysed from the clus-

ter criteria point of view, applying a physical similarity-based approach

prior to the regression analysis itself. As mentioned in previous stud-

ies, calibration could lead to a nonunique combination of best parame-

ters (Bárdossy, 2007; Hundecha & Bárdossy, 2004), since different

combinations of values can lead to the same efficiency. In this study it

is assumed that the hydrological response in watersheds with similar

characteristics is meant to be similar, so the values of the parameters

of the hydrological model should also be similar. To do this, we con-

ducted a cluster analysis, which grouped the watersheds that were

maximally similar with respect to their characteristics. Once the basins

have been grouped, the values obtained for each parameter were ana-

lysed within the cluster and, if necessary, parameters outside of the

cluster trend were revaluated using the GAP algorithm using as limit

values those defined as non-outliers in the cluster trend.

Cluster analysis was performed using the Ward hierarchical cluster-

ing method (Ward, 1963) with Euclidean distances implemented in R

Stats Package R Software (R-Core-Team, 2018). This cluster analysis

grouped the watersheds that were maximally similar with respect to

their characteristics considering the physical and spectral information

proposed in this work. Formerly, for the cluster analysis, the parameters

F IGURE 3 Schematic
structure of the HBV-light model
used in this study
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were scaled with a centring approach (subtracting the mean and dividing

by the standard deviation). As a result, the best combination of the

parameters in each catchment was established (Best-Par).

In addition, an evaluation of the parameter sensitivity was

assessed in each catchment using a Monte Carlo simulation of 10 000

runs, one simulation per parameter, using the Best-Par combination,

varying one parameter per simulation and measuring the decrease in

accuracy when changing the parameter value within the original range

(Table 3). Hence, to analyse how well the models fit the best value of

the calibration (target value), the objective GoF values were calculated

in each run and the ratio to the target value was computed. Thus, a

ratio of approximately 1 implies that the GoF value of the objective

function is as good as the results obtained by the Best-Par algorithm

and that the accuracy of the model is less sensitive to the parameter

value. For all the runs, the minimum, mean, median and maximum

values of the ratio were calculated for each parameter.

2.4 | Regionalization process

The regionalization process relies on the hypothesis that the hydro-

logical response in watersheds with similar characteristics is meant to

be similar. Therefore, once the Best-Par combination was obtained in

each catchment, the next step was to establish the relationship of

those parameters to the catchment characterization by training the

machine learning algorithm used for the regression analysis. In this

work, we addressed the regionalization analysis considering two point

of views: on the one hand, the variables related to precipitation, tem-

perature and snow routine, referred to as climatic regionalization (CR),

were based on the topographic situation and climatology, and, on the

other hand, the parameters involved in soil, groundwater and routing

routines, referred to as ground regionalization (GR), depended on the

catchment's properties in terms of spectral profile, morphology, land

cover and soil characteristics. In addition, for the GR, we considered

TABLE 3 List of parameters involved in each HBV-light routine

Model

routine Input data Parameters Description Unit Range Output data

- Precipitation (Pi) PCALT Increase of precipitation with height

increment

%/100 m 10–30 P

- Temperature (Ti) TCALT Decrease of temperature with height

increment

�C/100 m 0.6–1 T

- Potential

evapotranspiration

(PET)

- - mm/Δt - PET

Snow routine P and T TT Threshold temperature at which the

accumulation of precipitation is in the

form of snow below it

�C �2 to 0.5 Snowmelt

CFMAX Degree-Δt factor for snow melting that

starts if temperatures are above TT

mm
�C�1

Δt�1

0.5–4

SP Seasonal variability in degree-Δt factor - 0

SFCF Snowfall correction factor - 0.5–0.9

CFR Refreezing coefficient - 0.05

CWH Water holding capacity of melted water

that refreezes again when temperature

decrease below TT

- 0.01

Soil moisture

routine

P, snowmelt and PET FC Maximum soil moisture storage mm 50–550 AET, soil

moisture and

groundwater

recharge

LP Soil moisture value above which actual

evapotranspiration (AET) reaches PET

mm 0.3–1

BETA Parameter that determines the relative

contribution to runoff from rain or

snowmelt

- 1–5

Groundwater

routine

Groundwater

recharge and PET

UZL Maximum percolation from the STZ to the

SUZ

mm 0–70 Runoff

K0 Recession coefficient of STZ Δt�1 0.1–0.5

K1 Recession coefficient of SUZ Δt�1 0.01–0.2

K2 Recession coefficient of SLZ Δt�1 0.00005–
0.1

PERC Maximum percolation from the SUZ to the

SLZ

mm

Δt�1

0–4

Routing

routine

Runoff MAXBAX Length of triangular weighting function Δt 1–2.5 Simulated runoff
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three scenarios to characterize the catchment properties, as shown in

Table 4: spectral ground regionalization (SGR), physical ground region-

alization (PGR) and global ground regionalization (GGR). The complete

description of the predictors used for the regression is provided as

supporting information in Table SI.2.

The regression analysis between parameters and characteristics

in each scenario was conducted with the random forest (RF) algorithm

(Breiman, 2001), which is a nonparametric machine learning method

that has been proven effective for working with mixed-origin-input

predictors such as those used in this work. Here, the regressions were

performed using the RandomForest R package (Liaw & Wiener, 2002)

with a number of decision trees (Ntree) of 5000. The number of vari-

ables to be selected when growing the trees (Mtry) was automatically

trained by the algorithm for each scenario depending on the number

of predictors in each scenario.

Due to the limited number of watersheds, we conducted an itera-

tive regression adjustment with a one catchment out of bag approach,

which consists of leaving out of the algorithm the characteristics of one

of the catchments and running the RF algorithm to calculate the region-

alized parameters (Reg-Par) considering the data of the other catch-

ments. After the 18 RF simulations, all the Reg-Pars were compared to

the Best-Par, and the RMSE was calculated for each parameter. Finally,

the accuracy assessment of the regionalization in the different scenarios

was addressed by running the HBV model using the Reg-Par obtained

for each catchment and analysing the variations in the GoF functions

when compared to the results of the Best-Par. This point was addressed

separately for each scenario, CR and GR, and the assessment of the

decrease in accuracy with respect to the calibration values for each one,

was carried out using the Best-Par values of the parameters of comple-

mentary routines, Best-Par values of GR parameters when evaluating

the efficiency of CR and vice versa.

3 | RESULTS

3.1 | Model calibration results

After the calibration process, the Best-Par combination was obtained

for each catchment, and the main statistics are shown for each cluster

as supporting information in Table SI.4. Figure 4 shows the spectral

and physical density profiles of the catchments categorized into

groups that are maximally similar with respect to their properties

based on the dendrogram of the clustering analysis. It should be noted

that the clusters, were in accordance with the different bioclimatic

variants existing in the study area (Table 2), with groups 1 and 5 corre-

sponding to the Mpc variant, the driest, and groups 2, 3, and 4 to the

Tocsm variant, the wettest.

The accuracies of the models were excellent as shown in Table 5,

where the global median objective GoF function value was 0.73. The

best performing clusters are numbers 2, 3, and 4, which perform bet-

ter than the global mean value, while clusters 1 and 5 are slightly

lower but still outstanding.

The sensitivity analysis of the parameters measured how well the

models fitted to the objective target value in each catchment for the

Monte Carlo simulation of 10 000 runs. Therefore, values of adjust-

ment of approximately 1 imply that the GoF is as good as the results

achieved by Best-Par, so that the model is less sensitive to the param-

eter value.

Evaluating all the catchments together, the results showed that

the model accuracy was most sensitive to variations in FC, UZL, and

K0. In addition, differences in the sensitivity among the catchment

clusters were observed and also considering the bioclimatic variants

(Figure 5). In this sense, cluster 1 and cluster 5, both corresponding to

the Mpc variant, showed the highest sensitivity to BETA, FC, and

UZL, while in all three clusters belonging to the Tocsm variant, the

most sensitive parameters were found to be PCALT and TCALT and

FC, UZL, and K0. Specifically, cluster 3 showed high sensitivity to FC

and PCALT and the lowest sensitivities appeared for cluster 2 and

cluster 4, which were sensitive to K0, PCALT, and TCALT and to FC,

UZL, and K0, respectively.

3.2 | Regionalization results

3.2.1 | Random forest regressions

The regression analysis was conducted with the RF algorithm in an

iterative regression adjustment with one catchment out of bag at a

time. The CR Reg-Par fit well to the Best-Par values, achieving good

correlations and reasonable RMSE. The GR achieved almost the same

TABLE 4 Types of regionalization and scenarios considered

Regionalization Code (scenarios) and description

Climatic CR Regionalization of parameters related to precipitation, temperature and snow routines

Ground GR Regionalization of parameters involved in soil, groundwater and routing routines

(Physical) PGR The attributes of the watersheds are based on the cartographic data of

vegetation cover, morphological information, and the soil (topsoil and

subsoil) characterization of the European Soil Data Centre

(Spectral) SGR The attributes of the watersheds are based on the spectral signature

obtained from the Sentinel satellites

(Global) GGR The attributes are a data fusion of the cartographic and spectral

signatures
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performance in the three scenarios, where PGR achieved slightly bet-

ter results in terms of both RMSE and Pearson correlation coefficient.

The RMSE values between Reg-Par and Best-Par are shown as sup-

porting information in Table SI.5, and Figure 6 shows the correlation

in the most sensitive parameters of the model.

The importance of each predictor in the regression algorithms

was analysed in terms of the increase in the mean squared error when

a predictor is randomly permuted (%IncMSE), and higher values sug-

gest a more important role of the predictor in the regression

(Figure SI.1). In the CR, the most influential predictor is a topographic

measurement referring to differences in the height of the catchments

to the ground-observation digital elevation model (Delta_sd) and the

climatic variables (T_mean and P_mean). In the SGR, the more valuable

predictors are mainly related to texture metrics (for both SAR and

optical bands) and the blue and NIR bands, and VIs such as MSAVI2

and SAVI seem to have a high influence on the prediction. In the PGR,

topsoil properties are the most valuable predictors together with veg-

etation coverage. When all the GR predictors are combined in the

GGR, the topsoil attributes remain valuable predictors, together with

the texture-derived metrics from the SAR and NIR bands.

3.2.2 | Accuracy assessment of model predictions

Figure SI.2 shows the accuracy assessment of models in the different

regionalization scenarios when Reg-Par was used compared to the

results for Best-Par in each catchment, where the value for a perfect

fit is 1, and values below 0 indicate poor fit.

Figure 7 represents the boxplot graphic of the GoF function

values in both bioclimatic variants in the study area. The general

F IGURE 4 Catchment's spectral and physical density profile and clustering dendrogram based on the Ward error sum of squares hierarchical
clustering method with Euclidean distances

TABLE 5 Median values in each GoF function obtained in the evaluation of the catchments globally and grouped by clusters

GoF function Global Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Coefficient of determination 0.71 0.63 0.73 0.83 0.69 0.69

Model efficiency 0.68 0.63 0.72 0.79 0.68 0.67

Kling-Gupta efficiency 0.83 0.78 0.84 0.86 0.81 0.81

Efficiency for log(Q) �0.36 �0.51 �0.29 0.65 0.30 �0.97

Flow weighted efficiency 0.83 0.72 0.86 0.90 0.71 0.84

Efficiency for peak flows 0.52 0.49 0.73 0.81 0.61 0.32

Volume error 0.98 0.98 0.99 0.98 0.97 0.98

Objective 0.73 0.69 0.79 0.83 0.74 0.68
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trend, when considering both bioclimatic variants together, was that

the decrease in the GoF functions relative to the calibration values

was less for the CR than for the GR, and the three scenarios in the GR

achieved almost the same performance. The CR & GGR scenario

achieved slightly lower accuracies. Against the general trend, the effi-

ciency for log(Q) was highly improved in all GR scenarios. Regarding

the differences among the groups, clusters 2 and 4 showed the best

performance in the regionalization validation, whereas cluster

5 achieved the lowest accuracies. The SGR results were better in clus-

ters 1, 3, and 5, followed by the PGR scenario. The GoF function with

the greatest differences is Reff Peak, mostly in clusters 1 and 5. More

detailed results of the variations in the GoF measurements in the sce-

narios for all the catchments and the behaviours grouped by clusters

are included in Figure SI.3.

Finally, an example of observed and simulated streamflows in the

scenarios are graphically presented in Figure 8 for the Angeles

catchment.

4 | DISCUSSION

In this study, the capability of a catchment's spectral signature to aid

in regionalizing hydrological parameters was analysed using a

regression-based machine learning approach using random forest

algorithm. The evaluation of the overall efficiency using the most

common GoF functions showed very good performance in the

calibration stage (Table 5) and was still outstanding in the regionaliza-

tion results (Figure 7). Notably, the lack of previous studies at similar

latitudes and in other Mediterranean climate variants hinders the

comparison of the effectiveness of our work; consequently, we com-

pared our results with previous studies using any regionalization

approach. To this end, our results are briefly summarized in Table 6

and contrasted with the results of noted previous studies in terms of

the median overall KGE and Reff values, the latter also referred to as

Nash-Sutcliffe efficiency (NSE).

4.1 | Calibration performance

Concerning our calibration results, referring to the validation period,

our findings, in both GoF terms, outperformed those reported in pre-

vious works, such as those shown in Table 6. Regarding KGE, our

results are better than those reported by Jillo et al. (2017) and those

reported by Beck et al. (2020), especially when compared with the

results referred to for the arid climate group (visual interpretation of

fig. 5 in their work). In addition, our results are similar to those

reported by Alfieri et al. (2020) for Europe (visual interpretation of fig.

6 in their work). In terms of Reff, our results agreed with those

reported by Merz and Blöschl (2004) and Jin et al. (2009). In addition,

our results are better than those reported by Götzinger and Bárdossy

(2007) and similar to those reported by Parajka et al. (2007) but lower

than the results reported by Oudin et al. (2008). Notably, our

F IGURE 5 Results of the
sensitivity analysis. Values of
adjustment of approximately
1 imply that the GoF value is as
good as the results achieved by
the Best-Par algorithm and that
the accuracy of the model is less
sensitive to the value of the
parameter
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calibration was carried out based on the optimization of an objective

function where Reff and KGE were weighted 0.20 and 0.60, respec-

tively. We also considered Reff Peak weighted by 0.20.

4.2 | Regionalization performance

4.2.1 | Influence of climatic variants on the
prediction of hydrological processes in ungauged
catchments

The clustering analysis showed different efficiencies depending on

the climatic point of view. In this sense, the prediction catchment clas-

sified as the Tocsm bioclimatic variant (clusters 2–4), the most humid

variant, exhibited better performance than that classified as the Mpc

bioclimatic variant (clusters 1 and 5), the driest variant, in both the cal-

ibration and regionalization stages (Figure 7). This finding agrees with

the findings in the review by J Parajka et al. (2013), who indicated that

the performance of runoff predictions tends to be lower in arid than

in cold and humid regions. Thus, our outcomes also confirmed the

findings of Atkinson et al. (2002), Goswami et al. (2007), Bai et al.

(2015) and Zamoum and Souag-Gamane (2019), where the results in

dry climate catchments were less accurate than those in humid cli-

mate catchments.

Concerning the climatic regionalization, we found a greater

decrease in the model efficiency in the Tocsm catchments than in the

Mpc catchments, where only a slight decrease was observed

(Figure 7). The uncertainty in precipitation has a greater influence in

wet catchments than in dry catchments, in agreement with the analy-

sis by Pianosi and Wagener (2016).

To better understand the relationship between the decrease in

model efficiencies relative to the calibration values when using regiona-

lised parameters, the relationship of the GoF objective metric with the

goodness of RegPar values has been analysed against the sensitivity of

F IGURE 6 Scatter plots of the
regionalization results of the most
sensitive parameters of the models. R is
the Pearson correlation coefficient, and
p is the p-value
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the model to parameter errors. The results obtained (Figure SI.4) show

how the drop in model efficiency is related to RegPar errors precisely

when they occur in the most sensitive parameters of the model, with

appreciable differences depending on the bioclimatic variants, as men-

tioned above. Therefore, it is worth noting that effectiveness in hydro-

logical models highly depends on the climatic environment, and when

comparing results with other studies, it is highly recommended to ana-

lyse the findings from the climatic rather than from the methodological

point of view. This finding agrees with those reported by Yang et al.

(2019) with respect to the greater influence of the regionalization

method than climatological data in the evaluation of hydrological pro-

cesses in areas with precipitation less than 3400 mm/year in Norway. In

addition, although there are notable climatic differences between

Norway and Spain, the same trend was observed in the present work,

where the average annual rainfall was 1116 and 647 mm for the Tocsm

and Mpc bioclimatic variants, respectively.

4.2.2 | Contribution of the spectral-based
regionalization approach to the understanding of
hydrological processes in ungauged catchments

Regarding our regionalized results on the ground parameters, the

combined scenario, obtained by the combination of the spectral and

physical attributes, did not improve the regionalization accuracies in

any cluster, perhaps because the spectral response of the terrain is

conditioned by the physical characteristics of the territory, and the

sum of the predictors does not provide new information but, rather,

redundant information to that provided by the RF algorithm.

Specifically, comparing the overall effectiveness for both biocli-

matic variants together, of SGR versus PGR (Table 6), the median Reff

value obtained in the SGR was slightly lower than the results of the

PGR. These values agree with those reported by Merz and Blöschl

(2004) in their best-regression-based scenario and with those

reported by Götzinger and Bárdossy (2007) using a combined method

(using the Lipschitz condition and a monotony condition) and those

achieved by Jillo et al. (2017) in their regression-based study in

Ethiopia. Finally, these values are better than those reported by Masih

et al. (2010) in their flow-duration-curve-based regionalization

approach. In contrast, our global results are worse than the results

reported by Jin et al. (2009) in their proxy basin-based regionalization

in a subtropical climate catchment. One of the main reasons could be

the differences in climatic properties discussed below. At this point,

we believe it is worth mentioning that none of the studies mentioned

above used spectral data, except for Jillo et al. (2017), who used NDVI

among other physical predictors.

On the other hand, if we analyse the results also considering the

climatic differences, the results showed that in the driest catchments,

the SGR outperformed the PGR scenario. In the Mpc catchments, the

median Reff value was slightly better for the SGR than for the PGR,

whereas in the Tocsm catchments, the median Reff values were simi-

lar for both scenarios. Considering this, the efficiencies of the SGR

and PGR in the Tocsm catchments agree with those reported by Jin

et al. (2009).

Regarding the PGR approach, we used the soil information from

the European Soil Data Centre, which exhibited good performance.

The results showed that soil information has a strong influence on

the regression of parameters since topsoil properties are the most

valuable predictors in the PGR and remain valuable predictors in the

GGR, together with the texture-derived metrics from the SAR and

NIR bands. The SGR showed better results than the PGR in the Mpc

catchments, which are driest and characterized by medium to low

vegetation coverage. This higher performance might be because the

more valuable predictors in the SGR are mainly related to texture

metrics for both SAR and optical bands. The SAR texture metrics

are influenced by the grain size of the surface (Lu et al., 2021), and

the radar capability for lithological analysis is better in sparse cover-

age than in dense vegetation areas (Radford et al., 2018). In addi-

tion, the optical information of the blue and NIR bands served as

valuable predictors, as these latter bands were proven to be useful

for geological applications in arid regions (Rajendran & Nasir, 2021).

Moreover, regarding the VIs, the most valuable predictors in the RF

classification are those that consider the noise of soil reflectance on

vegetation in areas with sparse vegetation (MSAVI2, SAVI), espe-

cially MSAVI2, which also considers that different soils have differ-

ent spectral responses (Qi et al., 1994). In addition, several VIs

(GNDVI, MSAVI2, NDVI, and SAVI) and SI (CI) had a great influence

F IGURE 7 Boxplot graphic of the goodness of fit function values
obtained in all the basins (global results on the left panel) and in both
bioclimatic variants in the study area: the Mediterranean
pluviseasonal-continental (Mpc) which is the driest variant, and
temperate oceanic sub-Mediterranean (Tocsm) which is the most
humid variant

FRAGOSO-CAMPÓN ET AL. 13 of 19

 10991085, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14673 by U

niversidad D
e E

xtrem
adura, W

iley O
nline L

ibrary on [17/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



on the estimation of the UZL parameter, which was one of the most

sensitive parameters of the hydrological models and is involved in

the percolation from the STZ towards the SUZ. Therefore, the SGR

approach has been proven to be effective in analysing the

relationship between the spectral response of the territory and its

hydrological characteristics, allowing us to acquire a better under-

standing of both vegetation and top-upper-soil properties, espe-

cially in drier areas with sparse vegetation.

F IGURE 8 Observed and simulated
streamflows in the scenarios for the
calibration-validation periods at the
Angeles catchment

TABLE 6 Summary of the GoF median values obtained in this work compared to the results obtained by other authors in previous works

Calibration Regionalisation

Study areaKGE Reff (NSE)a

KGE Reff (NSE)a

SGRb PGRb SGRb PGRb

This work in the overall study area 0.83 0.68 0.45 0.5 0.54 0.57 Spain

This work in the driest climatic variant (Mpc) 0.78 0.64 0.33 0.25 0.42 0.35 Spain

This work in the most humid climatic variant (Tocsm) 0.84 0.73 0.64 0.71 0.69 0.70 Spain

Beck et al. (2020) 0.68 - 0.46 - Global

0.30c - �0.05 - Arid

Alfieri et al. (2020) 0.61 0.35 - - Global

0.82d - - - Europa

Masih et al. (2010) - - - 0.47e Iran

Merz and Blöschl (2004) - 0.63 - 0.56 Austria

Jin et al. (2009) - 0.78 - 0.72 China

Jillo et al. (2017) 0.63 - 0.5 - Ethiopia

Oudin et al. (2008) - 0.78 - 0.71–0.74 France

Götzinger and Bárdossy (2007) - 0.53 - 0.50 Germany

Parajka et al. (2007) - 0.66–0.69 - - Austria

Note: -, information not available or not analysed.
aReff goodness of fit functions is also referred to as Nash-Sutcliffe efficiency (NSE).
bSGR, spectral ground regionalization; PGR, physical ground regionalization.
cVisual interpretation of fig. 5 in Beck et al. (2020) for arid climate class where Spain is localed.
dVisual interpretation of fig. 6 in Alfieri et al. (2020).
eEstimated from table 7 in Masih et al. (2010) using the 7th best ranked.

14 of 19 FRAGOSO-CAMPÓN ET AL.

 10991085, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14673 by U

niversidad D
e E

xtrem
adura, W

iley O
nline L

ibrary on [17/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4.2.3 | Is it worth performing a regional study when
global databases exist?

We compared our regionalization effectiveness with the performance

of the global high-resolution regionalized parameters (GloH2O) data-

set developed by Beck et al. (2020). To this end, we processed the

10 cross-validation folds of available model parameters (BETA, FC,

K0, K1, K2, LP, PERC, UZL, TT, CFMAX, CFR, and CWH) in the

GloH2O dataset, and the ensemble-mean value was averaged in each

catchment. For the parameters not mentioned above (PCALT, TCALT,

SFCF, MAXBAS, and Cet), we assumed the Best-Par obtained in our

calibration, and subsequently, the HBV models were run again for

each catchment. Figure 9 shows that our regional approach outper-

formed the global GloH2O achievements in all GoFs analysed, and

specifically the GoF reported in their study; our results (in terms of

median values) for SGR (KGE = 0.45), PGR and GGR (both

KGE = 0.50) outperformed the global GloH2O results (KGE = 0.20).

Nevertheless, the latter value is in agreement with their own results

for the arid climate class (into which our study area in Spain is classi-

fied, as shown in fig. 5 in Beck et al. (2020)), for which they reported a

median KGE of approximately �0.05 for the calibration results (rang-

ing from �0.20 in the 25th percentile to 0.15 in the 75th percentile).

Therefore, given that in their global study, it appears that there are no

study catchments in the Mediterranean area (see fig. 2 in Beck et al.

(2020)), this finding would confirm that the GloH2O parameters in our

study area achieved an effectiveness of approximately the same order

of magnitude as those reported in the original study for arid climate

classes. In addition, GloH2O achieved acceptable results in Tocsm and

showed a median KGE value of approximately 0.28, whereas the

results in Mpc were worse, at approximately �0.14. The main reason

for these differences in the model efficiency may be the differences in

the estimation of the most sensitive parameters in the catchments

under study. It was observed that GloH2O overestimated the FC and

UZL values and underestimated the K0 values when compared to the

Best-Par and Reg-Par obtained in our work (more details in

Figure SI.5).

Hence, it is worth noting the importance of addressing regional

studies where possible, particularly in drier climate variants, such as

those of the Mediterranean environment, where the global model has

been found to be less effective and where the spectral regionalization

approach has achieved the best results.

4.3 | Uncertainties analysis

The main uncertainties in the streamflow simulations derive from the

climatological data, from the time series gauging station stream flow

records, from the structure of the HBV-light model itself and from the

hydrological parameters involved in the analysis.

Regarding the climatological data, this study used precipitation

and temperature data obtained through a statistical interpolation anal-

ysis of ground observation stations. The data were processed by the

official meteorological agency in Spain, AEMET, guaranteeing the reli-

ability of the data. However, the main limitation lies in the accuracy of

the interpolation at the highest elevation, where there are usually no

ground observation stations and the values are interpolated from

records of ground stations located, generally, at lower elevations. To

address this issue, the model parameters (PCALT and TCALT) were

calibrated to ensure the balance of input and output volumes and min-

imize the error in volume. Then, a CR was proposed that considers the

relative location of the ground observation stations and the catch-

ments as predictors. Uncertainty related to CR, which mainly occurred

in the wettest catchments, had a lesser impact on model efficiency

than uncertainty related to GR.

The streamflow records used to validate the models, as mentioned

above, correspond to an official source, that is, the SAIH of the hydro-

graphic regions of Tajo and Guadiana in Spain. As an official data source,

the SAIH is subject to an internal data validation process before publica-

tion, and as end users of the information, we do not have access to the

raw data and validation; however, as the process is carried out by an

official institution, a certain degree of accuracy is assumed. Furthermore,

the information was rechecked by visual inspection.

Concerning the influence of the parameter values on the effi-

ciency of the model, the impact on accuracy at the calibration stage

was investigated by performing a sensitivity analysis. The overall trend

is that the model showed greater sensitivity to the parameters related

to the soil and top-upper zones of the groundwater routine (FC, UZL,

and K0), and in the humid catchments, the PCALT was also sensitive.

F IGURE 9 Performance of the
GloH2O regionalized parameter dataset
in the scenarios proposed in our work
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In regard to HBV-light, the semidistributed approach was limited

by the simplification of the three maximum allowed vegetation types,

and considering this limitation, the land cover categories in the study

area were grouped according to their runoff capability into three

groups. In this sense, to make the models comparable, even though

there was heterogeneity in land cover among the catchments, the

same grouping criteria were applied to all of them.

4.4 | Future implications for the understanding of
hydrological processes in the Mediterranean
environment

Our results confirm that regionalization is still challenging in Mediterra-

nean bioclimate variants, even where the new spectral approach SGR

showed promising results. One of the key issues in the regionalization

of hydrological parameters is the availability of attributes to be consid-

ered predictors (Merz & Blöschl, 2004) and their variability in nomencla-

ture across regions or countries. Therefore, having continuous soil data

throughout Europe, together with Sentinel information, offers us new

opportunities in the regionalization of parameters at the European scale.

As shown in Table SI.1, the previously studied sites are mainly concen-

trated in central and northern Europe, Austria (Merz & Blöschl, 2004;

Parajka et al., 2007), Germany (Bárdossy, 2007; Götzinger &

Bárdossy, 2007), and Iran (Masih et al., 2010), and there is a lack of stud-

ies on catchments in the Mediterranean environment. Future work

could focus on regionalization in the Mediterranean area to complete

the range of catchment typologies.

Moreover, Sentinel data offer continuous coverage throughout

almost the entire world, offering new possibilities to study the hydro-

logical processes in areas where cartographic information is not avail-

able. In addition, time series of satellite data could improve seasonal

regionalization approaches characterizing the hydrologic response of

the catchments and the seasonal variability that characterizes Medi-

terranean catchment flood events.

5 | CONCLUSIONS

In this study, the capability of a catchment's spectral signature for the

regionalization of hydrological parameters was studied using a

regression-based machine learning approach.

The calibration results were excellent (median KGE = 0.83), and

regionalized parameters with the random forest algorithm achieved

good performance. The general trend showed that the decrease in the

efficiency relative to the calibration values was lower for the climate

regionalization (variables related to precipitation, temperature and snow

routine) (median KGE = 0.74) than for the ground regionalization

(hydrological parameters involved in soil, groundwater, and routing rou-

tines). Specifically for the latter case, the three scenarios achieved

almost the same performance: the new approach using the catchments'

spectral signature from the Sentinel-1 and Sentinel-2 satellites (median

KGE = 0.45), the traditional method using physical properties (data

provided by the European Soil Data Centre) (median KGE = 0.50) and a

fusion of spectral and physical properties (median KGE = 0.50). We

found that the performance of the hydrological models highly depends

on the climatic environment, and the prediction in catchments classified

as temperate oceanic sub-Mediterranean (Tocsm) bioclimatic variants,

the most humid variant, exhibited better performance than in those clas-

sified as the Mediterranean pluviseasonal-continental (Mpc), the driest

variant. The physical approach, using the soil information from the

European Soil Data Centre, exhibited good performance in general

terms, and the spectral approach showed better results specifically in

the driest catchments in the Mpc climatic variant. Herein, our results

confirm that regionalization is still challenging in Mediterranean biocli-

mate variants, even where the new spectral approach showed promising

results in predicting hydrological processes in ungauged catchments.

Our proposed spectral-based regionalization and random forest

approach has proven to be effective in analysing the relationship

between the spectral response of the territory and its hydrological char-

acteristics. The proposed method provides a better understanding of

both vegetation and top-upper-soil properties, which, once the model

uncertainties have been evaluated, have proven to be among the most

sensitive parameters in hydrological forecasting.

Therefore, having continuous soil data throughout Europe,

together with Sentinel information, offers us new opportunities in the

regionalization of parameters at the European scale, especially to fill

the gap in regionalization studies in the Mediterranean environment.

Moreover, the continuous coverage of Sentinel data worldwide offers

new possibilities in areas where cartographic information is unavail-

able. In addition, time series of satellite data can improve seasonal

regionalization approaches characterizing the hydrologic processes of

ungauged catchments and their seasonal variability.
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