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Abstract

We live in a world where smart devices are becoming truly ubiquitous: from wearable

devices to vehicle equipment or home appliances, it is now common for them to

have small, power-efficient computers and wireless connections that allow them to be

leveraged by computer applications, thus becoming part of the Internet of Things (IoT).

In fact, this ability to bridge the gap between the real world and computing applications

has brought interest from intensive domains, such as industry or healthcare, as it allows

for the management, automation, and monitoring of real-world processes.

Nonetheless, the smart characteristics of these devices are not usually provided

by software that runs directly on the device, and instead, they communicate with

software that is usually running in the cloud: a set of servers in remote data centers that

compute information on demand. This is especially important in intensive domains,

where the requirements in terms of Quality of Service (QoS) are especially strict

(e.g., low response times, low costs). Due to these strict QoS requirements and

the distance between IoT devices and the cloud, which involves a higher network

latency, it is complicated to leverage cloud computing for intensive applications.

Consequently, new paradigms based on bringing computing resources closer to users

are emerging, creating the concept of a continuum of computing resources that ranges

from the cloud to the IoT device: the Cloud-to-Thing continuum. Moreover, the

communications generated by the mass of IoT devices call for scalability, flexibility,

and general programmability in networks. These requirements can be provided by the

Software-Defined Networking (SDN) paradigm, in which networks are programmed

by using controllers. Furthermore, the need for IoT application software for



evolvability, distribution, and interoperability, calls for a migration from monolithic

application architectures into flexible Microservice Architectures (MSAs), allowing

low-power IoT devices to request application functionality in a lightweight and simple

manner.

However, to obtain a high QoS in this environment, it is necessary to optimize

how these paradigms are used: the placement of microservices, computing nodes, and

SDN controllers must be optimized to meet the organizational needs. Furthermore,

an additional consequence of the use of these paradigms is that the organization can

hold control over all three dimensions: application, computing, and networking. This

calls for holistic optimization, that coordinates the decisions in all three to meet the

specified needs. Moreover, these needs can span multiple QoS metrics, requiring a

compromise solution that trades them off. In this PhD thesis, we present a set of

approaches, models, tools, techniques, and architectures that tackle the problem of

holistic, multi-objective optimization of intensive IoT application deployment. We

present a total of 14 software artifacts and 22 scientific publications aimed at different

aspects of this problem, including holistic optimization, multi-objective optimization,

dynamic adaptation of the optimization decisions, and integration with software

development practices and methodologies.



Resumen

Vivimos en un mundo en el que los dispositivos inteligentes son realmente ubicuos:

desde dispositivos ponibles hasta equipamiento de vehı́culos o electrodomésticos, ya

es común que todos ellos integren pequeños y eficientes computadores y conexiones

inalámbricas que los conectan a aplicaciones informáticas, pasando a ser parte del

Internet de las Cosas (IoT). De hecho, esta posibilidad de unir los mundos real e

informático ha generado interés por parte de dominios intensivos, como la industria o

la salud, ya que permite que procesos del mundo real sean gestionados, automatizados

y monitorizados.

Sin embargo, las caracterı́sticas inteligentes de estos dispositivos no suelen venir

de software que ejecute el dispositivo, sino de la comunicación con software lanzado

en la nube: un conjunto de servidores en centros de datos remotos que procesan

la información bajo demanda. Esto es especialmente importante en los dominios

intensivos, en los que los requisitos en términos de Calidad de Servicio (QoS) son

especialmente estrictos (bajos tiempos de respuesta, bajos costes, etc.). Debido a

estos requisitos estrictos y a la distancia entre los dispositivos IoT y la nube, lo

que implica una mayor latencia de red, es complejo utilizar la nube para estas

tareas intensivas. Consecuentemente, nuevos paradigmas basados en traer recursos

de cómputo más cerca de los usuarios finales, creando un continuo de cómputo entre

el dispositivo IoT y la nube, empiezan a emerger como el continuo Cloud-to-Thing.

Además, las comunicaciones generadas por la masa de dispostivos IoT requiere de

escalabilidad, flexibilidad y programabilidad general en redes, requisitos que pueden

cumplirse gracias al paradigma de las Redes Definidas por Software (SDN), en



el que las redes son programadas a través de controladores. Es más, el propio

software de las aplicaciones IoT requiere de flexibilidad, distribución, mantenibilidad

e interoperabilidad, lo que está provocando una migración de las arquitecturas

monolı́ticas a las Arquitecturas de Microservicios (MSAs), que permiten que los

dispositivos IoT de baja potencia soliciten la ejecución de funcionalidades remotas

de forma ligera y sencilla.

No obstante, para obtener una alta QoS en este entorno, es necesario optimizar

como se utilizan estos paradigmas: la colocación de microservicios, nodos de

cómputo y controladores SDN debe ser optimizada para cumplir las necesidades de la

organización. Adicionalmente, como consecuencia del uso de estos tres paradigmas,

las organizaciones pueden controlar a la vez las tres dimensiones: aplicación,

computación y red. Este hecho atrae interés sobre la optimización holı́stica, que

coordina las decisiones en las tres dimensiones para satisfacer los requisitos definidos.

Además, estas necesidades pueden incluir varias métricas de QoS, requiriendo de

soluciones de compromiso que realicen un trade-off entre las diversas métricas. En

esta tesis doctoral, presentamos un conjunto de modelos, herramientas, técnicas y

arquitecturas para atacar el problema de la optimización holı́stica multiobjetivo del

despliegue de aplicaciones IoT intensivas. Presentamos un total de 14 artefactos

software y 22 publicaciones cientı́ficas enfocadas en diversos aspectos del problema,

incluyendo la optimización holı́stica, la optimización multiobjetivo, la adaptación

dinámica de las decisiones de optimización y la integración con prácticas y

metodologı́as de desarrollo de software.
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Chapter 1

Introduction

The Internet of Things paradigm allows for the interaction of computer applications

with the real world through the use of sensors and actuators. In recent years, the

interest in this paradigm as a means to automate real-world processes of intensive

domains has increased. Nonetheless, the use of the Internet of Things in intensive

domains requires the optimization of the Quality of Service in the deployment phases.

This thesis dissertation presents the set of approaches, models, tools, techniques,

and architectures aimed at the optimization of the Quality of Service of Internet of

Things distributed applications that we have developed in recent years. Moreover,

these approaches are characterized by considering the characteristics of the application

software, the computing devices, and the network equipment using a holistic point of

view. In this chapter, we first present the research context of this work in Section 1.1.

Then, we state the target problem of the presented works in Section 1.2. The goals

of the performed research, as well as the research questions that derive from them,

are presented in Section 1.3. The research methodology followed through the PhD

is presented in Section 1.4, while the contributions and publications of the research

line are summarized in Section 1.5. Finally, Section 1.6 describes the outline of the

remainder of the dissertation.

1



1.1. RESEARCH CONTEXT

1.1 Research context

When Internet of Things applications are considered, especially those intended to be

used in intensive domains, there exist numerous concepts, dimensions, and elements

that affect the system’s behavior. In this section, we revise the state of the art in some of

the most important and fundamental of these concepts. Namely, the Internet of Things

paradigm is introduced in 1.1.1, while Quality of Service is defined in 1.1.2. The

application design paradigm of Service-Oriented Computing is presented in 1.1.3. The

Cloud-to-Thing Continuum computational paradigm is defined in 1.1.4. Finally, the

networking paradigm used to communicate the different modules, Software-Defined

Networking, is presented in 1.1.5.

1.1.1 Internet of Things (IoT)

In 1991, Mark Weiser presented his vision of how technology in the future would

merge with reality [6]. The IoT paradigm has emerged in recent years as one of

the most popular enablers of this vision, as it is expected to reach 14.7 billion IoT

devices, which represent 50% of the devices connected to the Internet globally, through

2023 [7]. Using IoT, computer applications can interact with the real world, by making

use of sensors and actuators. Sensors allow for the transformation of real-world

stimuli into data that can be used as input for applications, e.g., a digital thermometer,

a microphone or a presence detector are all considered sensors. On the other hand,

actuators perform the inverse process by converting data back into real-world stimuli,

allowing applications to output their results to the real world. For instance, a speaker,

a buzzer, or a lightbulb are actuators.

However, sensors and actuators are unable to process data or communicate with

other devices using a network fabric. Hence, they are generally connected with

computing devices, that are also able to provide access to the data of their sensors and

actuators through the Internet. These computing devices are called IoT devices, and

the applications they run and communicate with are known as IoT applications. For

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Structure of the Sense-Decide-Act loop in IoT applications.

instance, smart lightbulbs or voice assistants are IoT devices, and the application that

allows the voice assistant to power the lightbulb on and off through a voice command is

an IoT application. These applications can, potentially, automate real-world processes.

For instance, using a luminosity sensor, it is possible to automatically power the

lightbulb on and off, as well as to automatically regulate its brightness, depending

on the light inside the room. This is done in a loop, which starts by obtaining data

from the sensors, continues with the IoT application processing the sensed data, and

finishes by using the actuators according to the IoT application’s result. This loop,

known as the Sense-Decide-Act loop [8], is depicted in Figure 1.1

The potential for automation of IoT applications has led to an interest in its

application in intensive domains, where it can be used to automate critical processes.

For instance, some of the research lines on the Industrial Internet of Things (IIoT)

focus on two kinds of applications: process automation applications, which operate

systems that perform industrial processes that are autonomous by nature and do not

require human intervention (e.g., power system automation), and factory automation,

that instead leverages robotic systems to substitute human operators in processes that

originally required them (e.g., manufacturing process automation) [9]. Another notable

example is the Internet of Medical Things (IoMT), which makes use of sensors, usually

3



1.1. RESEARCH CONTEXT

embedded in wearable devices, to analyze different healthcare-related metrics of a

patient and offer them services, such as artificial intelligence-based diagnostics [10].

The interest in these fields is increasing in recent years, for example, the IIoT market

is expected to reach an investment of $276.79 billion by 2029 [11]. Nonetheless,

as the nature of the real-world processes is critical in their context, IIoT and IoMT

applications are also considered critical. As the processes they automate are crucial for

the user’s mission (e.g., the manufacturing process of a factory, patient monitoring),

intensive IoT applications must meet both the functional requirements of the user

and non-functional requirements that are generally related to their performance,

consumption, or cost [9, 10]. These non-functional requirements are as important

to the application’s utility as the functional ones, and failing to meet them results in

the application becoming less useful, or even useless (e.g., if the factory automation

application is slow, it would be unable to properly manage the manufacturing process,

as its analyses and instructions would arrive too late at the robotic machinery) [9, 10].

For this reason, the concept of Quality of Service is crucial to intensive Internet of

Things applications.

1.1.2 Quality of Service (QoS)

The International Telecommunication Union Telecommunication Standardization

Sector (ITU-T) defines QoS as the totality of characteristics of a service that bear

on its ability to satisfy stated and implied needs of the user of the service [12]. i.e.,

QoS refers to the different types of non-functional quality metrics that are provided

by a given service, such as response time, reliability or energy consumption. Services

that provide a good level of quality, such as services that are very reliable, fast or

consume very little energy, are considered to have high QoS1 [12]. Similarly, slow or

unreliable services provide low QoS [12]. Furthermore, each use case of an application

has a minimum QoS that must be met for it to work properly, which is labeled the QoS

1The concept of high QoS refers to how good a quality metric is, even if the value of the metric itself
is better when it is low. For instance, an application with a response time of 1 ms has a higher QoS than
one with a response time of 10 ms, although the metric value itself is lower because it is preferable.
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requirement of such use case [12]. For instance, video streaming at 24 frames per

second must have a response time under 1
24 seconds in order to receive 24 frames each

second. It is important to note that QoS can be seen from multiple points of view.

While it is commonplace to only consider technical QoS, e.g., response time, it is

also important to consider points of view such as business QoS, e.g., economic cost.

Similarly to how the aforementioned video streaming service would not be useful if its

response time was higher than 1
24 , if the economic cost of deploying the appropriate

infrastructure exceeded the budget assigned to the service, it would not be useful either.

In the context of IoT for intensive domains, the criticality of the real-world

processes is reflected by the IoT applications that automate them with very high QoS

requirements. For instance, IIoT and IoMT applications require for short response

times, which can be as low as 1 ms for the most critical applications [9, 10]. These

QoS requirements are often labeled as strict or stringent, as high QoS is complex

to provide, and such requirements leave a very small room for error. Moreover,

these applications are also sensitive to QoS degradation, a phenomenon in which

changes to the environment of the service (e.g., new versions of the application,

network congestion, hardware malfunctions) negatively affect the QoS provided by the

service. Providing and maintaining a high enough QoS is key to enabling the correct

functioning of applications with strict QoS requirements.

As QoS is not a single metric, and it should rather be seen as a set of metrics

obtained from multiple points of view, it is important to consider that these metrics

often need to be traded off, balanced, prioritized, or ignored, depending on the exact

needs of the company that makes use of the service [12]. For example, cost and

response time are QoS metrics that need to be traded off: in general, it is possible

to improve the response time by investing more money into the infrastructure (e.g.,

acquiring more devices, or more powerful devices). Nonetheless, a company may

need the application to have the smallest economic cost, even if it implies that the

response times will be on the boundary of acceptability (e.g., if 1 ms or lower response

times are required, the response time may be very close to 1 ms). Similarly, another
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company may have the budget to invest as much as necessary for the application to

have the lowest response times as possible. Furthermore, other companies may need

to find a compromise solution that trades off both objectives, obtaining a relatively

low economic cost with a relatively low response time, or perhaps prioritizing one of

the objectives over the other. Hence, the consideration of multiple points of view for

QoS can be deemed crucial to meet an application’s requirements. Meeting the QoS

requirements of intensive IoT applications, trading off the necessary elements to obtain

the desired QoS from each point of view, is one of the main challenges that this next

generation of IoT faces. Furthermore, achieving the required QoS in highly distributed

environments is more difficult, due to the complexity of the high number of elements

and interactions between them.

1.1.3 Service-Oriented Computing (SOC)

In the IoT environment, it is common for IoT devices to be integrated with the things

themselves: smart coffee machines, smartwatches, smart TVs, and many other smart

appliances often have the IoT devices integrated in them, a trend that also holds true in

intensive domains [9, 10, 13]. As the final user is expected to acquire the smart thing

itself, rather than separately, it is common for manufacturers to integrate low-capacity,

low-power, and low-cost IoT devices into them to reduce the final price of the product.

However, this complicates the use of some computationally expensive applications,

such as complex AI models or high-capacity databases, as the IoT devices lack the

power to run them [9, 10]. To enable the use of these applications, it is necessary to

distribute the execution of the application among multiple devices. In this regard, the

SOC paradigm is a reference for IoT applications, as it provides desirable features for

the distribution of the application’s execution [14].

SOC is a paradigm for the development of applications that considers services

as the main building blocks of an application [14]. In this context, a service is

an autonomous component of an application, that contains a part of the application

logic, is generally autonomous and platform-independent, and represents a cohesive
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and loosely-coupled block of the application’s functionality [14]2. For instance, a

traditional shopping application such as Amazon can be broken down into multiple

cohesive and independent services, e.g., catalog, inventory, shopping basket, payment

processor, and shipment tracker. Traditional applications that are architectured as a

single module, and could thus be considered a single service from a SOC perspective,

are known as monolithic applications. Nonetheless, techniques exist to extract multiple

services from existing monolithic applications, converting them into applications that

comprise multiple services [15]. SOC allows applications to be massively distributed,

interoperable, and highly evolvable [14], desirable attributes for IoT applications.

Within SOC, one of the architectural patterns that can be applied is the

Microservices Architecture (MSA), in which the application is split into very small

services that must collaborate to carry out the application’s functionalities [16]. The

different modules of an MSA-based application, and a comparison with those of a

classic monolithic application, are shown in Figure 1.2. As the services in MSAs tend

to be small, i.e., they contain a small part of the application’s functionality, they are

known as microservices. MSAs emphasize the properties of SOC, as smaller services

tend to also be more cohesive, more evolvable, and can potentially be deployed in

a more distributed manner [14]. As some microservices tend to collaborate very

often, they are considered to be highly coupled and are often grouped into larger

modules, named Bounded Contexts or APIs [16]. While it is possible to deploy

each of the microservices independently, all the microservices in the same API are

usually deployed together [16]. However, the main drawback of MSAs is that, unlike

monolithic applications, each microservice may be deployed multiple times (i.e.,

a microservice can be replicated, usually for load balancing or QoS purposes), in

different machines, and may lack the knowledge of which services it should collaborate

with [16]. Thus, MSAs usually require control modules that perform architecture-wide

tasks. For example, aggregators that unify the outputs of multiple microservice replicas

2It is important to differentiate the concept of service in SOC, which refers to an application
component, from the concept of service in QoS, which refers to the totality of systems, communications,
hardware and software that are involved to provide certain functionality. From this point onwards, the
term service will always refer to application components.
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Figure 1.2: Modules in a monolithic application VS modules in an MSA-based
application.

into a single data stream, service discovery modules that allow for requesters and

other microservices to find the machine where a given microservice is deployed, or

orchestrators that manage microservice collaboration.

Another interesting benefit to MSAs is that, in general, they can be easier

to maintain than monolithic applications [14]. As microservices are only loosely

coupled, it is possible to add new functionalities to an MSA-based application by

simply implementing new microservices, with little to no changes to the existing

MSA [14, 16]. New functionalities can also reuse the existing microservices to

implement the parts of their functionality that overlap with the previously implemented

application [16]. Furthermore, as long as the inputs and outputs of a microservice

do not vary, it is possible to make changes to its implementation without affecting

other microservices in the MSA, even if the unmodified microservices invoked the

modified microservice [16]. This is especially desirable if application development

practices such as DevOps [17] are used. DevOps is a methodology that focuses on
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Figure 1.3: DevOps activities.

accelerating the delivery of features to final users, shortening the time between their

implementation and their deployment to production [17]. To do so, DevOps establishes

that the application developers (Devs) and operators (Ops) must collaborate, rather than

siloing knowledge and development [17]. The process that is followed in DevOps for

each feature is shown in Figure 1.3: each new planned and implemented feature is

automatically built and tested. If the test provides positive results, it is integrated into

the application’s codebase and deployed to production. Moreover, the infrastructure

is continuously monitored to ensure its correct functioning. As this process is

followed continuously, MSAs tend to have less friction in terms of integration and

deployment, as only the modified or new microservices may need to be re-released

and re-deployed [16]. Hence, DevOps is considered an adequate methodology for

MSA-based applications in general and IoT applications specifically [17].

Once the MSA is deployed, each microservice is offered through a given interface,

which normally comprises a communication protocol and a data format required for

communication. For instance, the SOAP protocol and the XML format [18], or HTTP

and JSON [19]. As most interfaces are based on standard and open protocols and data

formats, it is possible to request them using a wide variety of libraries, programming

languages, and other software, making them interoperable among themselves and

possible to request from many devices. It is especially interesting to develop IoT

applications using an MSA, not only because of their properties in terms of evolvability

and interoperability, but also because it allows IoT devices to request application

functionalities with very thin, computationally light, and free clients (e.g., the CURL

HTTP client), enabling heterogeneous low-capacity, low-power, and low-cost IoT
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devices to obtain the functionality of complex applications without the need to develop

a specific IoT client from scratch. Therefore, this thesis focuses on MSA-based IoT

applications.

Another interesting characteristic of microservices is that they can be deployed

independently, as they are different, standalone application modules [16]. This allows

the operator of an MSA-based application to decide in which machine should each

microservice be deployed, based on the characteristics of the microservices, machines,

or other organizational criteria. Furthermore, as each microservice can be replicated

if so required, it is possible to deploy multiple replicas of a microservice in different

machines, if it is desirable in that given situation. The focus of the thesis is aimed at the

challenge of finding out how many replicas of each microservice are required to exist,

as well as how to map each of the microservice replicas into the underlying network

and computing infrastructure.

1.1.4 Cloud-to-Thing Continuum

Traditionally, IoT applications make use of cloud computing to execute their

computational tasks [20]. The NIST defines cloud computing as a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool of configurable

computing resources [21]. This shared pool of resources, which is usually provided

by multiple servers in a remote data center, is usually labeled as a cloud server, or the

cloud. Furthermore, cloud computing is characterized by its elasticity: if the resources

provisioned by the cloud are not enough to meet the demand in a given moment, it

is possible to allocate more resources to the virtual pool to meet said demand [21].

Similarly, once the demand decreases to a normal level, the cloud is able to release

these additional resources. The cloud computing paradigm has been one of the crucial

enablers for IoT, as it has allowed the deployment of IoT applications to the cloud,

allowing IoT devices to focus on sensing and acting while relegating the processing

of information to the cloud, accelerating the deployment process and lowering its

economic cost. Cloud computing is mainly offered through three service models:
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Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS) [21], with each of them requiring less configuration and effort in the

side of the consumer, but also allowing less control, as more of the infrastructure is

managed by the cloud provider. For the context of this PhD thesis, we will focus

on IaaS. In IaaS, the cloud provider offers the consumer virtual machines, provisioned

from the resources of the general pool, and allows the consumer to control the software

executed by these machines (e.g., operating system, installed libraries and programs,

applications).

However, some problems stem from the necessity of communicating two

distributed environments that are physically very far away from each other [13]. One

of the main features of cloud computing is that the applications deployed into the cloud

are executed in a remote data center, which is in the network core [21]. Especially in

the case of IoT applications, it is complicated to obtain a very high QoS due to the

distance between the IoT devices and the data center. For example, if we take Amazon

Web Services’ data centers, the closest one to Croatia is the Milan data center [22].

Thus, if an IoT application developed for Croatia were to be deployed at Amazon Web

Services, all the requests from IoT devices would need to be sent to Milan, processed

in the cloud, and the result sent back. These long-distance communications take longer

than communications within Croatia, and can be affected by more problems (e.g.,

while a network problem within Croatia would affect the application’s QoS similarly

if it was deployed in Croatia, problems in the north of Italy will have an effect on QoS,

that would not exist if it was deployed in Croatia). This is acceptable for user-grade

IoT applications, but using exclusively a cloud computing deployment for intensive

IoT applications can prove complicated due to the stringent QoS requirements they

have [13].

To enable the deployment of intensive IoT applications, it would be desirable to

make use of a paradigm that ran their critical microservices closer to the devices

themselves, while sharing the key traits of cloud computing, such as ubiquity,

on-demand provision, or ease of management. Some of the most interesting proposals
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from academia and industry are a series of computing paradigms, that can be referred to

under the umbrella terms Cloud-to-Thing Continuum, Computing Continuum or Cloud

Continuum, such as mist computing, edge computing, or fog computing [13, 23]. The

main idea behind these proposals is to complement cloud computing by deploying

some of the key microservices closer to the IoT devices [13]. Mist computing proposes

to have some of the microservices be executed at the IoT devices themselves [23],

whereas edge computing allows them to execute at devices named edge nodes, which

are located within the access network, at one hop of the device, such as Wi-Fi, 4G or

5G access points [23]. Fog computing proposes to host some microservices at different

points in the network, allowing for multiple layers of fog nodes to be used [13], with

layers that contain more devices in parts of the network that are closer to IoT devices

and less populated layers on points closer to the network core. It is important to

note that these paradigms do not propose to use closer devices instead of the cloud,

they propose to use them alongside the cloud: critical microservices with strict QoS

requirements that do not require excessively powerful hardware can be executed in

close nodes, whereas non-critical microservices can be executed in the cloud. Thus,

by applying these paradigms, the gap between the IoT device (or, abstractly, the thing

which is an embedded IoT device) and the cloud is bridged, and computations are

performed continuously on the network between them. Hence, these paradigms are

referred to as the Cloud-to-Thing Continuum. An example Cloud-to-Thing Continuum

infrastructure that makes use of all the mentioned paradigms is depicted in Figure 1.4:

at the bottom, the mist layer integrated by IoT devices can be used to execute some of

the least demanding microservices. The mist is connected, through a single network

hop, to the edge layer, which may execute some more powerful microservices. The

edge can comprise some small servers, user computers, or even mobile devices3. The

next part of the infrastructure represents a two-layered fog computing environment,

where the lower layer contains more, smaller servers, while the upper layer contains

3The mobile devices are considered part of the edge because they provide microservices to IoT
devices. If the final devices themselves are mobile, they should be considered to be in the mist layer,
rather than in the edge.
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Figure 1.4: Example Cloud-to-Thing Continuum infrastructure.

a single, more powerful server. Finally, a single, vastly powerful cloud server is

considered to be the furthermost, and most powerful, part of the infrastructure. The

challenge of optimally selecting which devices, paradigms, and layers are used in the

final Cloud-to-Thing continuum infrastructure to host IoT applications is a key tenet

of this thesis.

1.1.5 Software-Defined Networking (SDN)

Similar to how the traditional computing paradigm for IoT applications is cloud

computing, the network paradigm that is commonly used is IP [24]. The nature of the

network is fundamental to IoT, especially if parts of the application run on edge, fog,

or cloud devices, as it integrates the communication fabric through which they send

and receive real-world information. Legacy or IP networks are comprised of routers,

devices that are able to send traffic between networks. The tasks of the network fabric

are generally divided into two planes: the data plane and the control plane. The data

plane is in charge of forwarding information: as a unit of information or packet arrives

at a router through a port, it should be sent through the appropriate output port [24].
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On the other hand, the control plane decides the routing, i.e., it selects the path that

flows of packets from a given source to a given destination should take, including the

routers it should go through and the output ports that the packets should be forwarded

to on each router [24]. In IP, each of the routers implements both the control and

data plane, and thus, it must determine which port to output packets to and forward

the traffic accordingly. Routing is performed by creating a forwarding table on each

router, which describes which port to forward a packet through based on its destination

address. This forwarding table is usually created by using link-state algorithms such

as OSPF, which have a global view of the network and route using the shortest path

approach [24]. The data plane part of the router is then in charge of correctly applying

the forwarding table to incoming traffic.

However, IP networks have some shortcomings when they are applied to IoT

applications, especially if they are MSA-based applications deployed through the

Cloud-to-Thing Continuum. First, although link-state algorithms require a global

view of the network, every router must obtain this view, which is inefficient [24].

Ideally, it should be possible for a centralized entity to calculate the forwarding tables

for the complete network and send them to each router, which would save work for

each of the routers and require less traffic to be sent. While it is possible to use

decentralized algorithms that do not require global knowledge to calculate routing

tables (distance-vector), they suffer from convergence problems such as the count to

infinity [24], which can interrupt the provided service. Moreover, IP forwarding tables

use the destination address as the only criterion, therefore forcing all packets with

the same destination to be sent through the same path. Nonetheless, it is desirable in

modern networks to perform traffic engineering, for instance, sending traffic directed

to the same destination through multiple paths to balance network load and avoid

congestion. Additionally, intensive IoT applications require for network features such

as flexibility or virtualization features [25], which are not supported by IP. Finally,

changing the criteria used for the shortest path algorithm or changing the routing

algorithm, in general, requires a complex upgrade in every router of the network.
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To address these problems, it is possible to use the SDN paradigm [26], instead

of IP. SDN proposes to centralize the control plane in an entity named the SDN

controller [26], although it is worthy of note that multiple coordinated SDN controllers

may exist in a network [27]. The network devices, called SDN switches, are exclusively

data plane devices, dedicated to forward traffic based on the flow tables they have

installed. It is important to note that the flow tables allow for generalized forwarding:

an SDN switch can use multiple criteria (e.g., source address destination address,

protocol, size, source port, destination port) to determine the appropriate port to

forward traffic to [26]. Moreover, SDN switches can perform three data plane actions

on a packet: they can forward it to a port, they can delete the packet (drop), or they can

modify some of its information before forwarding it [26]. When a new packet arrives at

an SDN switch, it tries to find a matching entry in the flow table. If no match is found,

they send the packet to the SDN controller in a PACKET-IN message. The SDN

controller must then analyze the packet and determine what should be done with it,

responding with a PACKET-OUT message to the switch, which explains whether to

forward, drop or modify and how so. If the same action should be performed with every

packet according to one or more criteria (e.g., to all packets with the same source and

destination addresses), the controller can also send a FLOW-INSTALL message to

add the action and matching fields as a new entry to the flow table [26]. This complete

process is known as SDN flow setup, or simply flow setup.

Another important feature of SDN is that the SDN controller is programmable [26,

28]. Once the SDN controller receives a PACKET-IN message, the logic that controls

the PACKET-OUT response to send, whether to send a FLOW-INSTALL and what

matching and action fields should be in it is not defined by a particular protocol or

algorithm, and the network administrator is free to program said logic. By using SDN

controller frameworks, such as ONOS [29] or POX [30], it is possible to implement

applications that define the behavior of the network, also known as network-level

applications. These applications are not only in control of flow setups, but they

can also perform other tasks such as network monitoring, and multiple applications
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may run in the same SDN controller [28]. This feature of SDN is known as network

programmability.

In the context of intensive IoT applications, SDN addresses the shortcomings of

IP networks [28]: the control plane is centralized, having a desirable and efficient

global view of the network, generalized forwarding enables traffic engineering to be

performed and SDN controllers can be customized through network-level applications

to provide flexibility and virtualization. For MSA-based applications, SDN can

be even more interesting, as some control modules such as aggregators, service

discovery, or compositors, can be implemented as network-level applications [28].

Implementing the control modules at the network level has two main advantages. First,

as the control is performed by network equipment with specialized hardware (e.g.,

TCAM) with better performance than general-purpose computing hardware, the QoS

provided by network-level control modules is higher [28]. Second, this allows for

a clear separation of concerns: the application is only concerned about what data is

processed and how (i.e., microservice definition and collaboration descriptions), and

the network is only concerned about how information must flow between machines

hosting different microservices (i.e., MSA control modules and traditional network

tasks) [28]. Determining the number of controllers to be placed in an SDN network

used as the communication fabric for IoT applications, as well as optimally deciding

on their placement, is a challenge that must be considered to achieve an optimal QoS.

1.2 Problem statement

Bringing automation and digitalization to intensive domains is one of the key

objectives of the next generation of IoT [25]. These next-gen IoT applications are

characterized by their stringent QoS requirements [9, 10, 13, 25] and their MSA-based

design [25, 31]. Due to these characteristics, the Cloud-to-Thing Continuum and

SDN are key enablers of next-gen IoT applications [13, 28]. Nonetheless, from a

deployment perspective, obtaining a high QoS depends on how these paradigms are

used and configured. For instance, if all the microservices of the application were to
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be deployed to the cloud, the QoS of a Cloud-to-Thing Continuum deployment for that

application would be very similar to the QoS obtained with a pure cloud computing

deployment, as the mist, edge, and cloud layers would be unused. Similarly, if due to

the configuration (e.g., controller placement) the network provides a poor QoS, even if

the microservices are placed properly, the QoS of the communication between different

microservices will be very poor, and therefore, the QoS of the system will be low.

Thus, to obtain an optimal QoS, three dimensions must be optimized: the application

dimension, the computing dimension, and the networking dimension. Furthermore,

the concrete characteristics of the paradigms leveraged, i.e., MSA, Cloud-to-Thing

Continuum, and SDN, respectively, must be considered during such optimization. The

problem to solve is the following:

Problem statement
Which deployment decisions of the application, computing, and networking

dimensions in a scenario, which make use of the MSA, Cloud-to-Thing

continuum, and SDN paradigms, respectively, should be optimized, and how

should they be optimized, in order to obtain an optimal QoS?

The problem tackled by this thesis is thus a joint problem between three

dimensions. Nonetheless, to maintain a holistic approach, the joint problem cannot

merely be the sum of three individual problems, it must also consider the effects of a

decision in each problem for the other two, effectively coordinating the decisions in all

three dimensions with the objective of optimizing the QoS. To give a clear overview of

the problem, we present it from a bottom-up view. First, we will analyze the decisions

that exist on each separate dimension, i.e., the optimization problems that arise on

each of the dimensions. Once each of the three problems is presented, we tackle the

description of the relationships and effects of the decisions on each dimension over the

rest of the dimensions.

On the application dimension, there are two key decisions that must be optimized.

On the one hand, how many replicas of each microservice should be deployed?
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Deploying additional replicas allows the application to be more distributed, providing

multiple points of access, balancing the load among the different replicas, and

potentially enhancing QoS metrics such as response time. However, each new replica

takes resources from the devices in the infrastructure, and different microservices

may require a different amount of resources per replica, which negatively affects

QoS metrics such as battery consumption or the economic cost due to the need for

a resourceful infrastructure. On the other hand, each replica must be deployed to a

computing device. In this case, there is a key trade-off to be considered: the distance

to the IoT device and the computing power. As represented by Figure 1.5, the lower

layers (i.e., mist, edge) are closer to IoT devices and able to provide lower latencies

and higher location awareness. However, the lower layers are also less powerful

and resourceful in terms of computation: IoT devices generally lack the amount of

power and computational resources of the cloud, and similarly, edge nodes are not as

resourceful as cloud data centers. This is abstractly depicted in Figures 1.4 and 1.5,

where the upper layers are depicted to have more servers. The more resourceful a

device is, the more microservices can be instantiated in it, while computational power

directly impacts the execution time, one of the components of response time, a key

QoS metric. The problem of calculating the number of replicas of each microservice

that should be deployed, as well as the machine that they should be deployed to in order

to optimize the achieved QoS is labeled in literature as the Decentralized Computation

Distribution Problem (DCDP) [32]. Solving the DCDP is key to optimizing the QoS

of the application dimension. Moreover, the decisions on how many replicas of each

microservice should exist and where to deploy them is one of the key challenges to

achieving optimal QoS for MSA-based applications.

Regarding the computing dimension, due to the criticality of the applications, it is

not unusual to add self-hosted computing devices to the infrastructure, usually at the

lower layers of the continuum [33,34]. In this regard, the operators of the system have

control over where these fog or edge nodes are placed, especially when the application

is to be used in large geographical areas, such as large industrial facilities [35].
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Figure 1.5: Computational power vs. distance trade-off in the Cloud-to-Thing
continuum.

Nonetheless, the placement of the nodes is not trivial and has important effects on

the QoS [35]. In this case, the amount of nodes is more clearly and directly related to

QoS metrics like infrastructure cost, as the hardware of each node must be acquired

and maintained. At the same time, placing more nodes gives the infrastructure more

resources to deploy microservices on, affecting technical QoS metrics. Moreover,

where each of the nodes is placed also affects the technical QoS: the closer a node

is to the IoT devices, the better the QoS will be for such nodes, at the cost of a

smaller coverage (i.e., other nodes will be further away, and thus, will not have a

high enough QoS to properly make use of it) [36]. On the other hand, placing fog

nodes in more central points of the infrastructure allows more devices to exploit its

capabilities, but the QoS will not be as high as if the node was deployed closer to

them [35, 36]. The problem of optimally determining the amount and placement of

self-hosted nodes in Cloud-to-Thing Continuum infrastructures is known as the Fog

Node Placement Problem (FNPP) [37]4, and its solution is crucial for the QoS in

4Despite the name specifically refers to fog computing due to the lack of standard terminology, the
FNPP also applies to nodes deployed in any other layer of the Continuum.
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the computing dimension. Moreover, as FNs may be placed at various layers of the

infrastructure, solving the FNPP is directly related to the challenge of selecting which

layers in the Cloud-to-Thing continuum should be used to optimize the QoS of a given

scenario.

Finally, regarding the networking dimension, the QoS of the network, and hence,

the QoS of the distributed system, is directly related to the QoS of the communications

between each SDN switch and its controller [27]. Whenever a message that does

not match any of the installed rules arrives at an SDN switch (e.g., when the

system is first started and no rules are installed in any switch), the switch and the

controller must communicate to perform a flow setup [38]. For example, if flow

setups are slow due to poor switch-controller QoS, the whole network will suffer

from poor QoS, as the incoming traffic has to wait until the corresponding flow

setup is performed for the switch to handle it. This is known as control QoS, and

must also be optimized [27]. Analogously to computing devices, the QoS between

switches and controllers is directly related to the amount of SDN controllers deployed

(more controllers negatively impact on QoS metrics such as cost and positively on

metrics such as latency and response time) and their placement in the network, which

is also directly related with the SDN switches assigned to the controller (e.g., the

communication QoS will be better if each switch can be assigned to a controller in

the same area of the network, rather than if control traffic needs to traverse the whole

network) [38]. The problem of optimally placing controllers is the SDN Controller

Placement Problem (CPP) [27, 38], and is a crucial challenge that must be tackled for

QoS optimization in SDN.

Traditionally, the DCDP, the FNPP, and the CPP have been treated as separate

problems, that are optimized independently [3, 27, 39]. While this is acceptable for

traditional infrastructures, where the operators only hold control of a single dimension,

in next-gen IoT environments, all three dimensions can be jointly controlled. Thus, it is

important to consider the relationships between the problems on all three dimensions.

The DCDP depends on the available computing resources and their placement [39],
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which is the solution of the FNPP, and the QoS of the network [39], which depends

on the CPP solution. Similarly, solving the FNPP implies knowledge of how the

computing resources will be used, i.e., which microservices will be deployed in

them [3], which is the DCDP solution; as well as on the network QoS between the

different nodes [3], that can only be known after the CPP is solved. Finally, the

CPP requires knowledge of the traffic flows of the network [27], which are created

by the application and depend on how it is placed (DCDP), as well as which nodes

must communicate with each other and where they are placed [27] (FNPP). Hence, the

problem that is tackled in this thesis is the problem that merges the DCDP, the FNPP,

and the CPP as a single, joint optimization effort, from a holistic point of view.

1.3 Goals and research questions

Considering the presented research context and the stated problem, the main goal of

this PhD Thesis is as follows:

Goal
Development of a framework for the optimization of the deployment

of next-gen IoT applications, to jointly optimize multiple QoS metrics

and holistically optimize the application, computing, and networking

dimensions.

To achieve this goal, this thesis attempts to respond to five key Research Questions

(RQs). These RQs motivate the different contributions presented in this document, and

each work made in the context of the thesis is related to one or more RQs. These RQs

are as follows:

RQ1 Are the decisions taken by QoS optimizations performed in each separate

dimension different from those taken with a holistic approach? This RQ is

the core motivation of this PhD Thesis, as it marks the relevance of its main

novelty. Before the inception of this thesis, it is unclear whether the additional
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information provided by the three dimensions affects the decisions made in each

of them, or if a locally optimal optimization of each dimension also leads to

globally optimal decisions.

RQ2 Is it possible to jointly consider multiple points of view on QoS? One of the

foundations of this thesis is the definition of QoS as multi-perspective, not only

as multiple technical metrics but also as metrics from non-technical domains

such as business. In some cases, these metrics may have to be traded off, as they

are non-orthogonal (i.e., changes to affect one metric positively may affect other

metrics negatively). We hypothesize it is possible to consider them jointly and

trade them off if the operator wishes to optimize multiple QoS metrics.

RQ3 Which models and techniques are useful for solving the joint optimization

problem? There are models that describe the optimization models for

each separate dimension, that need to be merged into a single problem

model. Furthermore, optimization problems can be solved using a variety

of techniques with different properties, such as different computational

complexities, optimality gaps, or multi-objective support.

RQ4 Can the decisions taken during optimization adapt to changes in the

dimensions’ environments? Once the deployment of a next-gen IoT application

is optimized, it is natural for changes to occur in each of the dimensions.

The application may change over time with new versions, that may implement

additional features or change the existing ones, affecting the properties of the

defined microservices. The devices in the computing dimension may differ

in their capabilities due to changes in their operating systems or changes in

hardware. Networking equipment may be subject to errors or congestion,

changing the available routes. Thus, it is key to research if it is possible to

adapt this optimization over time to maintain optimal QoS.

RQ5 How does this optimization fit in current development lifecycles and

practices? The motivation for developing a QoS optimization framework is
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Figure 1.6: Design Science iterative structure.

to enable the development of next-gen IoT applications by providing application

operators and developers with tools that help them in this task. For these tools

to be truly helpful, we must consider in which phase or phases of the application

development lifecycle they should be used, for example, which models and

techniques are more useful for the design phase due to their characteristics,

or which ones are more suitable for the runtime phase. Furthermore, how to

integrate them into existing development practices, such as DevOps, should also

be addressed.

1.4 Research methodology

The methodology used throughout the development of this PhD thesis is Design

Science [40], a methodology normally applied to research projects in the disciplines of

Engineering and Computer Science [41]. The objective of Design Science is to obtain

knowledge of a problem and its domain, to then create artifacts, such as pieces of

software, that mitigate said problem [40]. By using Design Science, the researcher is

expected to act not only as an observer of the problem but also as a designer of artifacts

and products for solving it. Design Science defines five steps that must be followed, as

depicted in Figure 1.6. In the following, we define each of the five steps in the context

of this thesis:

1. Problem explanation. In this phase, the research problem that will be addressed

must be defined, justifying the value of the solution. In this thesis, the problem

is the holistic optimization of QoS for next-gen IoT. This problem was identified

through a literature review, where related literature addressed the problem in one

of the dimensions rather than considering them jointly. A joint solution would
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be interesting in this regard, as it would consider the effects that the decisions

of each dimension affect the QoS of the other dimensions. This would enable

developers and operators to obtain higher QoS, making possible applications that

would originally be hardly feasible due to their high QoS requirements.

2. Requirement definition. This phase involves the definition of the objectives that

must be completed to solve the identified problem. The main objective of this

thesis is to provide a framework for the holistic optimization of QoS during

deployment. This entails five sub-objectives, embodied by the defined RQs

(Section 1.3).

3. Design and Development of Artifacts. The third phase involves the creation

of one or multiple artifacts that address the defined objectives. This thesis

has involved the development of a total of 14 artifacts in 8 related lines.

Out of these 14 artifacts, we highlight the main artifact, the Distributed

Application Deployment Optimization (DADO) framework, initially presented

in [2]. DADO originally optimized microservice replication and placement, as

well as SDN controller placement, and has been extended throughout different

works to tackle the defined RQs. Moreover, an artifact to optimize QoS

through fog node placement was also developed [37], which was eventually

merged with DADO and created the Umizatou framework [42]. These were

complemented with artifacts such as Continuous DADO (ConDADO), which is

an adaptive version of the DADO framework for dynamic environments and for

its integration with DevOps.

4. Artifacts Demonstration. In the fourth phase, the developed artifacts are tested

to show their capabilities with regard to solving the defined problem. In this

thesis, this stage was mainly done as a preliminary assessment of the developed

artifacts before proceeding to the formal evaluation.

5. Artifacts Evaluation. The final phase involves measuring how well the artifacts

solve the problem, and how they compare with the existing state of the art.
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DADO and its related artifacts have been tested in case studies from multiple

intensive environments such as IIoT, IoMT, or IoT video surveillance. Moreover,

they have been tested against naı̈ve approaches to their respective problems,

as well as against state-of-the-art benchmarks that solved the problems of

each of the dimensions independently. This testing included the obtention and

comparison of metrics such as network load, hardware load, optimization times,

or the concrete QoS metrics that were optimized.

The activities in Design Science do not have to be followed in a strictly sequential

manner: often, Design Science is applied iteratively. While Figure 1.6 shows the

relationship between activities in terms of inputs and outputs, it does not necessarily

represent the sequence of activities. Therefore, authors such as Hevner [43] establish

a three-cycle view of Design Science as shown in Figure 1.7:

• The Relevance Cycle initiates research by analyzing the environment and

the problem to be addressed, defining the requirements for the artifacts and,

therefore, the acceptance criteria for artifact evaluation. The need for additional

iterations to solve the problem is also identified in this cycle.

• The Design Cycle focuses on building and evaluating the developed artifact. The

activities in this cycle are guided by the requirements and criteria obtained in the

Relevance cycle, and these activities are performed by applying the methods and

techniques identified in the Rigor cycle.

• The Rigor Cycle provides knowledge to the project to ensure it is innovative,

thus ensuring that the performed research contributes to the general knowledge

base.

Design Science produces both artifacts and knowledge of general interest.

Therefore, it presents three additional requirements: use of rigorous research methods,

original and grounded results, and communication of results. During the development

of this thesis, the research strategy leveraged to plan the work was Design Science,
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Figure 1.7: Proposed model for the Design Science methodology.

while the research methods used to obtain and analyze data are based on the same

methods that related, state-of-the-art works make use of. Finally, case studies are used

to validate and demonstrate the artifacts. Furthermore, as it has been applied iteratively,

some of the 14 developed artifacts are still within the Design Cycle and, as a result, do

not yet have an associated publication

1.5 Contributions

This section serves as a summary of the main contributions of the research work that

has been performed as part of this thesis. These contributions are reflected in multiple

publications in scientific journals, conferences, and workshops, as well as developed

software artifacts.

1.5.1 Summary of Contributions

In pursuing the goal of this thesis, different contributions, which can be classified

under three main, closely related, research lines, were achieved. For each of these

lines, we provide in the following a context of the line, as well as a discussion of the

problems addressed, the solutions proposed for them, and the publications that derived

from these contributions. A summarized version of the contributions related to each

research question can be seen in Table 1.1.
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Research Question Associated publications Associated artifacts
RQ1: Are the
decisions taken by
QoS optimizations
performed in each
separate dimension
different from those taken
with a holistic approach?

[GLOBECOM 2021,
LATINCOM 2021,
JISBD 2021, JCIS 2021,
JITEL 2021, IoTJ 2021,
ICC 2022, PERCOM
2022, JCIS 2022, IoTJ
2022-2]

DADO, NIoTO,
Umizatou, MO-SFO

RQ2: Is it possible to
jointly consider multiple
points of view on QoS?

[JISBD 2021, ICC 2022,
PERCOM 2022, JCIS
2022, IoTJ 2022-2]

NIoTO, MO-SFO

RQ3: Which models
and techniques are useful
for solving the joint
optimization problem?

[ISCC 2020,
GLOBECOM
2020, ICC 2021,
GLOBECOM 2021,
LATINCOM 2021,
JISBD 2021, JCIS 2021,
JITEL 2021, IoTJ 2021,
ICC 2022, PERCOM
2022, JCIS 2022, IoTJ
2022-1 IoTJ 2022-2]

FNPP MILP, FNPP
heuristic, DADO, NIoTO,
MO-SFO, ConDADO,
S-DADO

RQ4: Can the decisions
taken during optimization
adapt to changes
in the dimensions’
environments?

[PERCOM 2022, CISTI
2022, Computing 2022]

ConDADO, S-DADO

RQ5: How does this
optimization fit in current
development lifecycles
and practices?

[PERCOM 2022, CISTI
2022, Computing 2022]

ConDADO

Table 1.1: Contributions related to each research question.

Holistic optimization of QoS in IoT application deployment

Context The central topic of this thesis is the holistic approach to QoS optimization

for the deployment of IoT applications. To holistically make deployment-related

decisions, its three main dimensions must be considered: application, computing, and

networking. Contextually, this research line involves considering the characteristics of

the paradigms used in the three dimensions (MSAs, the Cloud-to-Thing Continuum,

and SDN, respectively), as well as how they affect the relationship between the
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decisions taken in each dimension and the environment in the other two. This view

was developed throughout different works that build upon this holistic approach.

1. Problem statement: The DCDP and the CPP have been traditionally considered

as two separate problems, as application operators generally did not have

control in the network and vice-versa. However, as there is an increasing

interest in using the Cloud-to-Thing Continuum for the deployment of intensive

IoT applications, operators are more likely to have control over both, the

application and the network. While this could allow for further optimization by

coordinating the decisions taken in both problems, there was a lack of systems

that consider this problem. Due to its complexity, it was not yet known whether

this coordination could lead to QoS improvements, nor how the decisions were

related.

Contribution: We studied the relationship between the DCDP and the CPP in

one of the seminal works of this thesis. Based on this relationship, we developed

the initial version of DADO, which fused both SDN controller placement and

microservice placement into a single optimization effort. Moreover, DADO

has a distinct feature in how it considers the networking dimension, by also

optimizing the routing of both application and control traffic. The evaluations

performed in this initial work exhibit that coordinating the decisions on both

dimensions by creating a joint model allows it to take specific decisions, based

on the knowledge from the other dimension, that improve the QoS over separate

optimization. This initial contribution was published in the IEEE Internet of

Things Journal (2021) [2].

2. Problem statement: As operators now hold control of multiple dimensions,

they can also decide where their computational nodes will be placed. Hence, it

must be considered whether this placement has an impact on QoS, and which

metrics had it an impact on. If the impact existed, there would be a need for an

optimization model on computing node placement.
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Contribution: As we noticed this new area of control, we defined the

FNPP as another relevant problem in IoT application deployment. Continuing

the holistic view, we studied the impact of computing-related metrics, such

as the capacity of the computing nodes, as well as network-related metrics,

such as the size and routes followed by traffic. We also formally modeled the

FNPP, declaring the decisions that should be taken for it to be optimized (traffic

routing, node placement, IoT-computing node mapping). The contributions

to the FNPP as a standalone research line include communications in the

IEEE Symposium on Computers and Communications (ISCC 2020) [36], the

IEEE Global Communications Conference (GLOBECOM 2020) [37], the IEEE

International Communications Conference (ICC 2021) [44], and a publication

in the IEEE Internet of Things Journal (2022) [3].

3. Problem statement: The FNPP may also have relationships with the DCDP

and CPP, as the decisions taken in the computing dimensions also affect the

application and networking dimensions. There was a lack for a system that

optimized all three problems jointly.

Contribution: Noticing the gap in the holistic view of the optimization,

we developed a new version of DADO (labeled Umizatou), which integrated

the FNPP along with the CPP and the DCDP. This integration greatly changed

the previous optimization models, both for DADO and for the FNPP, as some

decisions were completely dependent on the decisions of other dimensions,

instead of merely being conditioned. Umizatou was presented in communication

at the IEEE Global Communications Conference (GLOBECOM 2021) [42].

Optimization of multiple QoS metrics

Context: Another key tenet of this thesis is the consideration of QoS from multiple

points of view. This includes not only allowing for the optimization of different QoS
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metrics, such as response time or deployment cost but also allowing multiple metrics

to be optimized at the same time. This implies that the system needs to consider

the trade-offs that may appear if the different QoS metrics are non-orthogonal (i.e.,

if obtaining a better result on one metric requires obtaining a worse result in the other

one).

1. Problem statement: Considering multiple objectives in QoS optimization for

IoT application deployment. It is especially interesting to solve this problem if

the optimization is performed using a holistic view.

Contribution: Throughout the development of the different frameworks

for QoS optimization, we have aimed at extending them to consider multiple

QoS objectives, especially if the objectives are non-orthogonal, as it makes

our frameworks consider the additional trade-offs. An initial version of

multi-objective DADO was presented in a communication at the national

conference Jornadas de Ingenierı́a de Software y Bases de Datos (JISBD

20/21) [45]. This version was later expanded to become a new version of

DADO (labeled NIoTO, Next-generation IoT Optimization), and published

in the IEEE Internet of Things Journal (2022) [5]. Furthermore, continuing

the trail of Umizatou, a new version of DADO that considers the FNPP as

well, and allows for multi-objective optimization, which has been labeled

MO-SFO (Multi-Objective SDN-Fog Optimization), has been developed.

A communication describing MO-SFO has been submitted to the IEEE

International Communications Conference (ICC 2023), although at the time of

writing this document there is not yet a decision on the manuscript.

Adaptativeness of QoS-related decisions at runtime

Context: Another important aspect of these systems is their ability to adapt their

decisions to changes in the scenario. These include changes to the application

dimension (e.g., an increase in requests, a new version of the application with
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new features, the addition of more microservices, the deployment of additional

applications), to the computing dimension (e.g., an operating system update that

changes the available resources of a device, the addition of new devices, changes to

their hardware, server downtime), and to the networking dimension (e.g., decreases in

bandwidth, congestion, changes to latency, addition of new network equipment, packet

loss, network equipment downtime). Adaptativeness comprises two main factors:

change awareness and reactiveness. The system’s change awareness represents how

the system understands change: the least change-aware systems consider each new

situation as a completely new scenario, with no regard for the previous situation, while

more change-aware systems are able to tell which parts of the system have changed

and compare multiple situations. Reactiveness refers to the time the system requires

to adapt its decisions to a new situation, i.e., the optimization time of the system. The

faster a system is, the quicker it is able to react to changes, and hence, it is deemed

more reactive.

1. Problem statement: The change-awareness of systems that perform QoS

optimization for application deployment is mostly small and unexplored.

Contribution: We have developed a system that treats change awareness

as a first-class concern for adaptativeness. This system is an extension of

DADO, and it is called Continuous DADO or simply ConDADO. ConDADO

makes use of continuous reasoning, a technique that analyzes the changed

elements in a scenario to only re-optimize the parts of the scenario that

require it. This also shrinks the problem, allowing it to be up to 4 times more

reactive than DADO. ConDADO is currently under review, after undergoing

a major revision, in the journal Computing (2023). Moreover, we have also

developed another continuous reasoning-based system that is more reactive than

ConDADO, named Faustum. This system is meant to be used along ConDADO

and DADO to adapt to changes of different kinds in a stack we call multi-layered

continuous reasoning. We are currently working on a paper that encompasses
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Faustum and multi-layered continuous reasoning.

2. Problem statement: The adaptability of these systems is yet to be explored using

a stochastic approach.

Contribution: We have developed a system, currently named Stochastic

DADO (S-DADO), to adapt the replication of microservices, as well as their

placement, based on Lyapunov optimization [46]. This kind of optimization

allows the system to make sure the QoS requirements of certain tasks are met

on average making use of virtual queues. S-DADO is also significantly faster

than DADO, and hence, it is more reactive. We are currently working on a

paper on S-DADO, that compares the Lyapunov optimization approach to other,

non-stochastic systems.

3. Problem statement: The systems described in this thesis are centralized, but

it would be desirable to have a decentralized system, especially for mobile

computing optimization and for its use in opportunistic networks.

Contribution: We have developed a framework for the delegation of services

in mobile and pervasive computing named PODS (Pervasive Opportunistic

Delegation of Services). PODS comprises a set of modules that allows for

microservices offered from devices such as mobile phones, IoT devices, edge

nodes or fog nodes, to determine how many replicas of the microservice should

exist, as well as which device should run them, in a decentralized manner.

Furthermore, PODS regularly adapts the placement using a modified version of

DADO, meant to be more reactive, small, and aimed at its use in opportunistic

networks: µDADO. µDADO maintains the multi-objectiveness of DADO, but

reduces the size of the problem for the opportunistic and pervasive context. We

are currently working on a paper to communicate our results with PODS in the

migration of Docker containers between Android devices.
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1.5.2 Publications

In this subsection, we present a complete list of the publications derived from the

research work carried out during the PhD, in chronological order. The publications

listed here include those that are directly related to the main topic of the PhD thesis,

i.e., that directly address one of the RQs and are part of the research lines described

in subsection 1.5.1, as well as publications that are closely related (e.g. publications

about IoT, QoS optimization, the Cloud-to-Thing Continuum) but do not address the

RQs nor are part of the main research line. Along with each publication, we detail the

quality ratings of the venue they were published in. For conference papers, we detail

the conference’s scope (national or international), as well as its rating according to the

GII-GRIN-SCIE (GGS) conference rating. For journal articles, we present the journal’s

Impact Factor (IF), as well as the quartile and category of the journal according to the

Journal Citation Reports (JCR). A summary of all international journal publications

ordered by their rating is offered in Tab. 1.2, while national conferences and workshop

publications are summarized in Tab. 1.3. Journal articles, ordered by their JCR quartile

and IF, are shown in Tab. 1.4. Finally, a summary image of every publication, including

the information about the RQs it tackled, its venue of publication, the quality metrics

of the venue, the year, and whether it is directly or closely related to the thesis, is

included as Figure 1.8.

33



1.5. CONTRIBUTIONS

Fi
gu

re
1.

8:
Su

m
m

ar
y

of
th

e
pu

bl
ic

at
io

ns
re

la
te

d
to

th
is

th
es

is
.

34



CHAPTER 1. INTRODUCTION

2020

During the start of the PhD and the research activities, we prepared the ground for

addressing RQ1 (Are the decisions taken by QoS optimizations performed in each

separate dimension different from those taken with a holistic approach?), as it is

the core motivation of the thesis. In order to answer RQ1, we first needed to, at

least partially, address RQ3 (Which models and techniques are useful for solving

the joint optimization problem?): once there is a development on the techniques

and modeling of the problem, it is possible to develop a prototype of it and test

whether the decisions made separately and jointly are different. The research made

during this year was mainly focused on three research topics. The one directly

related to the thesis is the topic of the FNPP, which led to two publications in

international conferences [36, 37]. The other two, which are closely related, are

about multi-objective QoS optimization in SDN networks, with a publication in an

international conference [47]; and about security in mist computing, with another

publication in an international conference [48].

• ISCC 2020 [36]: Juan Luis Herrera, Luca Foschini, Jaime Galán-Jiménez,

Javier Berrocal: The Service Node Placement Problem in Software-Defined

Fog Networks. Published in IEEE International Symposium on Computers and

Communications (ISCC). International conference, GGS Class 3 (B).

• GLOBECOM 2020 [37]: Juan Luis Herrera, Paolo Bellavista, Luca Foschini,

Jaime Galán-Jiménez, Juan Manuel Murillo, Javier Berrocal: Meeting Stringent

QoS Requirements in IIoT-based Scenarios. Published in IEEE Global

Communications Conference (GLOBECOM). International conference, GGS

Class 2 (A-).

• NOF 2020 [47]. Jaime Galán-Jiménez, Javier Berrocal, Juan Luis Herrera,

Marco Polverini: Multi-Objective Genetic Algorithm for the Joint Optimization

of Energy Efficiency and Rule Reduction in Software-Defined Networks.

Published in the International Conference on Network of the Future (NoF).
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International conference.

• SMARTCOMP 2020 [48]: Juan Luis Herrera, Javier Berrocal, Juan Manuel

Murillo, Hsiao-Yuan Chen, Christine Julien: A Privacy-Aware Architecture

to Share Device-to-Device Contextual Information. Published in IEEE

International Conference on Smart Computing (SMARTCOMP). International

conference.

2021

In the second year of the PhD, the main focus changed slightly: while there was

still some work on RQ3, the efforts were mainly aimed at answering RQ1. The

question was finally answered in our first journal article in the context of this

thesis [2]: DADO is able to take informed decisions that would be impossible

without the joint view. This also led us to fuse the existing works of DADO with

the FNPP to create Umizatou, a system that considered all three dimensions [42].

This year’s research was focused on four main research topics. The first two are

directly related to this thesis: one involves further work on the FNPP as a standalone

problem, obtaining a publication in an international conference [44]; the other one

focuses on the optimization of deployments with a holistic view, obtaining a journal

publication [2], two publications in international conferences [42, 49] and three

publications in national conferences [45,50,51]. The other two continue from the year

prior: multi-objective QoS optimization in SDN networks, with a publication in an

international conference [52]; and about access control and privacy in mist computing,

with another publication in an international conference [53].

• ICC 2021 [44]: Juan Luis Herrera, Paolo Bellavista, Luca Foschini, José

Garcı́a-Alonso, Jaime Galán-Jiménez, Javier Berrocal: Fog Node Placement

in IoT Scenarios with Stringent QoS Requirements: Experimental Evaluation.

Published in IEEE International Communications Conference. International

conference, GGS Class 2 (A).
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• GLOBECOM 2021 [42]: Juan Luis Herrera, Jaime Galán-Jiménez, Paolo

Bellavista, Luca Foschini, José Manuel Garcı́a Alonso, Juan Manuel Murillo,

Javier Berrocal: Optimal Deployment of Fog Nodes, Microservices and SDN

Controllers in Time-Sensitive IoT Scenarios. Published in IEEE Global

Communications Conference (GLOBECOM). International conference, GGS

Class 2 (A-).

• LATINCOM 2021 [49]: Guilherme Werneck de Oliveira, Rodrigo Toscano

Ney, Juan Luis Herrera, Daniel Macêdo Batista, Roberto Hirata, Jaime

Galán-Jiménez, Javier Berrocal, Juan Manuel Murillo, Aldri Luiz dos Santos,

Michele Nogueira: Predicting Response Time in SDN-Fog Environments

for IIoT Applications. Published in IEEE Latin-American Conference on

Communications (LATINCOM). International conference.

• JISBD 2021 [45]: Juan Luis Herrera, Jaime Galán-Jiménez, José

Garcı́a-Alonso, Javier Berrocal, Juan Manuel Murillo: Despliegue Óptimo

de Aplicaciones IoT Distribuidas. Published in Jornadas de Ingenierı́a del

Software y Bases de Datos (JISBD). National conference.

• JCIS 2021 [50]: Juan Luis Herrera, Jaime Galán-Jiménez, Javier Berrocal, Juan

Manuel Murillo: Optimizing the Response Time in SDN-Fog Environments for

Time-Strict IoT Applications (Summary). Published in Jornadas de Ciencia e

Ingenierı́a de Servicios (JCIS). National conference.

• JITEL 2021 [51]: Juan Luis Herrera, Jaime Galán-Jiménez, Javier Berrocal,

Juan Manuel Murillo: Optimizing the Response Time in SDN-Fog Environments

for Time-Strict IoT Applications. Published in Jornadas de Ingenierı́a Telemática

(JITEL). National conference.

• NOF 2021 [52]: Jaime Galán-Jiménez, Marco Polverini, Francesco Giacinto

Lavacca, Juan Luis Herrera, Javier Berrocal: On the tradeoff between load

balancing and energy-efficiency in hybrid IP/SDN networks. Published in

37



1.5. CONTRIBUTIONS

the International Conference on Network of the Future (NoF). International

conference.

• CCGRID 2021 [53]: Juan Luis Herrera, Hsiao-Yuan Chen, Javier Berrocal,

Juan Manuel Murillo, Christine Julien: Privacy-Aware and Context-Sensitive

Access Control for Opportunistic Data Sharing. Published in the IEEE/ACM

International Symposium on Cluster, Cloud and Internet Computing (CCGRID).

International conference, GGS Class 2 (A).

• IoTJ 2021 [2]: Juan Luis Herrera, Jaime Galán-Jiménez, Javier Berrocal, Juan

Manuel Murillo: Optimizing the Response Time in SDN-Fog Environments for

Time-Strict IoT Applications. Published in IEEE Internet of Things Journal.

JCR Q1 (Computer Science, Information Systems) IF: 10.238.

2022

The third year of the PhD was marked by a focus on the three remaining RQs: RQ2 (Is

it possible to jointly consider multiple points of view on QoS?), RQ4 (Can the decisions

taken during optimization adapt to changes in the dimensions’ environments?), and

RQ5 (How does this optimization fit in current development lifecycles and practices?).

Once RQ1 was answered in the year prior, the work could be expanded with

multi-objective considerations, adaptive versions, and how DADO could be integrated

into the development methodologies that are currently used. Multi-objective QoS was

a research topic on its own, while RQ4 and RQ5 were worked on jointly. Along

with these two research lines, a third directly related research line, the FNPP line,

was also in development. These three research lines were combined with the ongoing

research lines on multi-objective QoS optimization in SDN networks, as well as access

control and privacy in mist computing. On the topic of multi-objective optimization,

we created NIoTO, a version of DADO that could optimize the deployment cost along

with the response time, which obtained a publication in a national conference [54]

and in a journal [5]. Moreover, a new version of Umizatou, called MO-SFO, was

also developed, bringing multi-objective considerations to Umizatou. A publication
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on MO-SFO is currently undergoing review at an international conference. On the

second topic, we developed an architecture meant to integrate deep reinforcement

learning-based agents into production environments while further refining them, the

Deep QoS Adaptive Learning Environment (DeQALE), published in an international

conference [55]. The core work, nonetheless, is ConDADO, an adaptive version of

DADO, along with Continuous Adaptation (CA), a proposal for the integration of

QoS optimization and adaptation frameworks in DevOps. A publication detailing

CA and ConDADO is currently undergoing review after a major revision in a journal.

Spanning the two research topics at once, a summary of the objectives and development

of the thesis at the moment was presented in the PhD Forum of an international

conference [4]. On the third research line, the FNPP, the adaptiveness of the solution

was improved through the development of a heuristic based on machine learning

techniques. This new improvement was published in a journal [3]. Regarding the

fourth research line, two publications in journals were obtained [56, 57]. Finally, a

paper detailing a privacy-aware access control system including a formal model is

currently under review after a minor revision in a journal.

• CISTI 2022 [55]: Juan Luis Herrera, Javier Berrocal, Jaime Galán-Jiménez,

José Garcı́a-Alonso, Juan Manuel Murillo: Quality of Service-Adaptive

Industrial Internet of Things leveraging Edge Computing and Deep

Reinforcement Learning: The Deep QoS-Adaptive Learning Environment

(DeQALE) Architecture. Published in IEEE Iberian Conference on Information

Systems and Technologies (CISTI). International conference.

• JCIS 2022 [54]: Juan Luis Herrera, Jaime Galán-Jiménez, José Garcı́a-Alonso,

Javier Berrocal, Juan Manuel Murillo: Joint Optimization of Response Time

and Deployment Cost in Next-Gen IoT Applications (Summary). Published in

Jornadas de Ciencia e Ingenierı́a de Servicios (JCIS). National conference.

• PERCOM 2022 [4]: Juan Luis Herrera, Javier Berrocal, Juan Manuel

Murillo: Deploying Next Generation IoT Applications Through SDN-Enabled
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Fog Infrastructures. Published in the PhD Forum of IEEE International

Conference on Pervasive Computing and Communications (PERCOM).

Workshop associated with an international conference, GGS Class 1 (A+).

• ICC 2022: Juan Luis Herrera, Jaime Galán-Jiménez, Paolo Bellavista,

Luca Foschini, José Garcı́a-Alonso, Juan Manuel Murillo, Javier Berrocal:

Multi-Objective Optimal Deployment of SDN-Fog Infrastructures and IoT

Applications. Under review in IEEE International Communications Conference.

International conference, GGS Class 2 (A).

• IoTJ 2022-1 [3]: Juan Luis Herrera, Jaime Galán-Jiménez, Luca Foschini,

Paolo Bellavista, Javier Berrocal, Juan Manuel Murillo: QoS-Aware Fog Node

Placement for Intensive IoT Applications in SDN-Fog Scenarios. Published in

IEEE Internet of Things Journal. JCR Q1 (Computer Science, Information

Systems) IF: 10.238.

• IoTJ 2022-2 [5]: Juan Luis Herrera, Jaime Galán-Jiménez, José Garcı́a-Alonso,

Javier Berrocal, Juan Manuel Murillo: Joint Optimization of Response Time and

Deployment Cost in Next-Gen IoT Applications. Published in IEEE Internet of

Things Journal. JCR Q1 (Computer Science, Information Systems) IF: 10.238.

• Electronics 2022 [56]: Manuel Jiménez-Lázaro, Juan Luis Herrera, Javier

Berrocal, Jaime Galán-Jiménez: Improving the Energy Efficiency of

Software-Defined Networks through the Prediction of Network Configurations.

Published in Electronics. JCR Q3 (Computer Science, Information Systems)

IF: 2.690.

• Annals 2022 [57]: Jaime Galán-Jiménez, Marco Polverini, Francesco G

Lavacca, Juan Luis Herrera, Javier Berrocal: Joint energy efficiency and load

balancing optimization in hybrid IP/SDN networks. Published in Annals of

Telecommunications. JCR Q3 (Telecommunications) IF: 1.901.

• PMC 2022 [58]: Juan Luis Herrera, Hsiao-Yuan Chen, Javier Berrocal, Juan
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Manuel Murillo, Christine Julien: Context-Aware Privacy-Preserving Access

Control for Mobile Computing. Published in Pervasive and Mobile Computing.

JCR Q2 (Computer Science, Information Systems) IF: 3.848.

• Computing 2022: Juan Luis Herrera, Javier Berrocal, Stefano Forti, Antonio

Brogi, Juan Manuel Murillo: Continuous QoS-Aware Adaptation of Cloud-IoT

Application Placements. Under review after a major revision in Computing.

JCR Q2 (Computer Science, Theory and Methods) IF: 2.420.

ID Reference Venue Rating
ICC 2021 [44] IEEE ICC GGS Class 2 (A)
ICC 2022 Under review IEEE ICC GGS Class 2 (A)

CCGRID 2021 [53] IEEE/ACM
CCGRID

GGS Class 2 (A)

GLOBECOM 2020 [37] IEEE
GLOBECOM

GGS Class 2 (A-)

GLOBECOM 2021 [42] IEEE
GLOBECOM

GGS Class 2 (A-)

ISCC 2020 [36] IEEE ISCC GGS Class 3 (B)
NOF 2020 [47] NoF N/A

SMARTCOMP 2020 [48] IEEE
SMARTCOMP

N/A

LATINCOM 2021 [49] LATINCOM N/A
NOF 2021 [52] NoF N/A

CISTI 2022 [55] IEEE CISTI N/A

Table 1.2: Publications in international conferences.

ID Reference Venue Type
JISBD 2021 [45] JISBD National conference
JCIS 2021 [50] JCIS National conference

JITEL 2021 [51] JITEL National conference
JCIS 2022 [54] JCIS National conference

PERCOM 2022 [4] IEEE PERCOM Workshop

Table 1.3: Publications in national conferences and workshops.
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ID Reference Journal JCR & IF
IoTJ 2021 [2] IEEE IoT Journal Q1 (IF: 10.238)

IoTJ 2022-1 [3] IEEE IoT Journal Q1 (IF: 10.238)
IoTJ 2022-2 [5] IEEE IoT Journal Q1 (IF: 10.238)
PMC 2022 [58] Pervasive and

Mobile Computing
Q2 (IF: 3.848)

Computing 2022 Major revision Computing Q2 (IF: 2.420)
Electronics 2022 [56] Electronics Q3 (IF: 2.690)

Annals 2022 [57] Annals of
Telecommunications

Q3 (IF: 1.901)

Table 1.4: Publications in journals.

1.5.3 Developed artifacts

Many of the contributions to the state of the art presented in this thesis have been

accompanied by software artifacts and tools, which were used to perform some of the

conducted research, and can also be used to reproduce it. Concretely, we highlight

5 main artifacts, that are presented as the Relevant publications in the dissertation.

Nonetheless, we want to clearly show that the work of the thesis has included the

development of a total of 14 software artifacts along a total of 8 lines. 9 of these

artifacts have publications associated with them, while the remaining 5 do not yet have

a publication associated (i.e., they currently are in the Design and Development or

Artifact Demonstration phases of the Design Science methodology). Furthermore,

there are some additional supporting artifacts (e.g., DADO’s QoS reporting tools,

the DADOJSON and DADOSIM file formats) that are not counted among the 14.

Figure 1.9 depicts each of the artifacts and the lines developed for the thesis. In the

following, we develop a small summary of each line and artifact:

• DADO main line: this line represents a core part of this thesis, as it presents

DADO [2] and NIoTO [5], the holistic and, in the case of NIoTO, multi-objective

frameworks for the optimization of QoS. Following them, there is Vernier, an

artifact named after the Vernier thrusters of rockets, which is an implementation

of a heuristic named Adaptive Kernel Search [59]. Vernier allows for MILP

programs to be solved using Adaptive Kernel Search, as long as all the variables
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of the problem are binary. While Vernier, as the name suggests, was initially

meant as a work to accelerate DADO, it can be used outside of the scope of

DADO as a general implementation of a heuristic.

• FNPP main line: this line is another key component of the thesis, as it presents

the artifacts necessary to solve the FNPP. The first artifact [3, 36, 37, 44] makes

use of MILP as a means to solve the FNPP, and could thus be integrated

with DADO. On the other hand, the heuristic [3] makes use of a machine

learning technique (K-medoids) to place fog nodes nearly optimally in a network

topology.

• DADO+FNPP line: continuing with the core artifacts of this thesis, this line

presents the integration of DADO with the FNPP solver, as proposed in [3]. This

initially created Umizatou [42], an all-in-one holistic optimization framework.

Umizatou was further developed by adding NIoTO’s multi-objective orientation,

creating MO-SFO [ICC 2022].

• Continuous reasoning line: the main line proposed for the adaptation of service

placement over time, which also allows DADO’s adaptation to be included in

DevOps, are the artifacts contained in this line. Continuous DADO (ConDADO)

[Computing 2022] makes use of the continuous reasoning techniques that are

already used in Continuous Integration [60], and applies them to the model

of DADO, only re-optimizing the parts of the deployment that need it and

mitigating the deployment costs. Moreover, to react very quickly to small

changes in the scenario, we also developed Faustum, a reduced version of the

model to deal with specific, small, and recurrent changes in a much faster

manner.

• Stochastic line: as a means to allow DADO to adapt service placement over time,

we have developed a new version named Stochastic DADO (S-DADO). This

system is based on Lyapunov optimization [46], and balances the minimization

of the average response time with keeping the response times of all the requests
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under the given deadlines. Moreover, the scenarios for S-DADO allow for it to

be evaluated using probabilistic models for changing the scenario over time.

• Emulation testbed line: as a means to test, not only DADO but other similar

approaches in the future using emulated network testbeds, this line presents a

single artifact. Pascal is a system that, based on a file that declares the status

of a scenario (e.g., network topology, characteristics of the computing devices,

requests for functionalities, microservice, and SDN controller deployment),

generates a set of configured Docker containers for the Kathará network

emulator [61]. Pascal automatically generates the specifications for each

container, the network topology, its performance characteristics, and configures

all the network interfaces and the SDN controller, leaving the user with a

nearly-ready testbed. Moreover, Pascal supports the use of both IP and SDN

networks and is compatible with a wide variety of Docker images already

available at Docker Hub.

• Privacy in mist computing line: this line includes two artifacts, namely,

PADEC [53], and PFE-PADEC [58]. Privacy-Aware DEvice Communication

(PADEC) is a framework that enables service-oriented applications to control

access to their endpoints. Using PADEC, it is possible to define under which

contextual conditions can an endpoint be accessed, as well as the granularity of

the released information, using rules and filters that both users and developers

can define and tailor. Furthermore, the privacy of the requesters is also

considered, minimizing the information they must share. Private Function

Evaluation PADEC (PFE-PADEC) allows for the evaluation of these access

control rules using encrypted data, thus maintaining privacy on both sides.

Both PADEC and PFE-PADEC were evaluated in opportunistic mist computing

scenarios.

• Opportunistic mist computing line: merging the prior line with DADO, we

obtain Pervasive Opportunistic Service Delegation (PODS), a framework that
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enables collaborative service delegation in mist computing. PODS is a complete

framework that allows for a community of devices to execute collaborative

services that can be requested by all the devices but can be hosted only in some

of them. Inside PODS, we highlight µDADO, a reduced version of DADO that

decides how many replicas of each service should exist and which devices should

host them.

Figure 1.9: Artifacts and lines of artifacts developed for this thesis.
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1.5.4 Collaborations

During the development of this PhD thesis, we have worked closely with both

national and international research groups for the development of multiple artifacts

and publications. These collaborations have not only been helpful because of the

shared know-how and the additional points of view, but also for the closeness and

fruitfulness of each of the collaborations. Concretely, we have collaborated with a

total of 7 research groups in 4 countries, developing 11 artifacts and publishing 14

works in various conferences and journals. The location of the institutions that we have

collaborated with is depicted by Figure 1.10, and Tab. 1.5 details, for each research

group, its institution, country, and developed artifacts and publications5.

We have also carried out an international research stay during the PhD, at

the Department of Computer Science of the University of Pisa (Dipartimento di

Informatica, Università di Pisa (UniPi)) at Pisa, Italy. This research stay was

performed under the supervision of the renowned expert in the Cloud-to-Thing

Continuum and SOC, the leader of the SOCC research group, Professor Antonio Brogi.

During a total of three months, from March 28th, 2022 until June 28th, 2022, we

explored the possibilities of continuous reasoning and their integration with DADO. In

particular, we prepared the publication for the ConDADO artifact [Computing 2022],

and we developed two additional artifacts, Faustum and Vernier. Moreover, we defined

the concept of multi-layered continuous reasoning, as a system consisting of multiple

artifacts for QoS optimization, arranged in a layered fashion. The upper layers of the

system contain artifacts that are faster and specifically designed to deal with small and

frequent changes. Conversely, the lower layers contain slower systems that can deal

with a wider variety of situations, including deeper, yet less frequent, changes. After

a change is detected in the environment, its depth is analyzed, and, if so required, an

adaptation of the deployment plan is requested to the appropriate layer. Furthermore,

if the selected layer is unable to deal with the change, the problem will be sent to the

layer below, which is more likely to be able to address it. Faustum was born as an
5In some cases, the acronym WIP (Work In Progress) is shown for the cases in which we are still

under the development of our first publication or artifact with a given research group.
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artifact for the utmost layer of the system, while Vernier is an ongoing effort to speed

up other systems. We currently are working on the publication of Faustum, Vernier,

and the multi-layered continuous reasoning system.

Figure 1.10: Collaborations with research groups carried out as part of this thesis
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CHAPTER 1. INTRODUCTION

1.6 Outline

This thesis dissertation is organized into four main parts, each structured in chapters as

follows:

• Part I: Summary. This part contains the two main chapters, including the

Introduction (Chapter 1) and Chapter 2, and offers an overview of the main

contributions of the thesis and its themes.

• Part II: Selected Publications. This part includes the core publications for the

thesis. Chapter 3 presents an overview of the core and supporting publications,

while Chapters 4 through 7 include full-text copies of the core publications that

conform this compendium.

• Part III: Final Remarks. This part only comprises Chapter 8, which concludes

the thesis dissertation with a discussion of the achieved results, the limitations

of the presented work, and future research lines.

• Part IV: Appendices. The appendices include the supporting publications for

this thesis (Appendices A through S) and documentation on the implementation

of artifacts (Appendices T through AB), along with a glossary of the acronyms

and terms used throughout the document (Appendix AC).
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The detective is bound to declare

any clues which he may discover.

Knox’s Decalogue, 8th Rule

Ronald A. KnoxChapter 2

Results

In this chapter, we present a detailed view of the main research contributions of the

PhD, grouped by their topic. Section 2.1 details the contributions related to the holistic

optimization of QoS for the deployment of next-gen IoT applications. This is followed

by Section 2.2, which introduces the contributions on the joint optimization of multiple

QoS metrics at the same time for said deployment. Finally, Section 2.3 presents the

work on the adaptation of application deployments at runtime. A summary of the

impact of each contribution in the software development lifecycle of an application is

provided as Figure 2.1

2.1 Holistic optimization of QoS in IoT application

deployment

One of the main challenges of next-gen IoT applications is to obtain an acceptable,

and desirably optimal, QoS [2, 4, 5, 9, 10, 37]. Modern application, computing, and

networking paradigms, such as MSA [14, 16], the Cloud-to-Thing Continuum [13,

23], or SDN [24, 26–28], respectively, are crucial enablers for the obtention of a high

QoS. However, these paradigms’ high modularity and evolvability make them notably

more complex to manage: the number of application modules, computing devices,

and manageable networking elements is much higher than in legacy paradigms [13,
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Figure 2.1: Contributions related to each of the activities in the software development
lifecycle.
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27, 39]. Moreover, the focus on location awareness and performing computing tasks

closer to IoT devices gives operators more control over both their application and their

infrastructure, allowing them to coordinate a joint optimization of multiple dimensions,

improving the overall QoS [2].

In what follows, we describe our contributions to this coordinated, holistic

optimization effort. Concretely, we present our results in terms of optimization

of microservice deployment and SDN controller placement, our advances in the

joint optimization of the computing and networking dimension, and our all-in-one

optimization of all dimensions, as well as a summary of which system should a

developer or operator use, based on their situation and needs.

2.1.1 Placing microservices and SDN controllers optimally

In order to understand the importance of the placement of microservices and

SDN controllers, the model for both IoT applications and SDN control must be

detailed. Regarding IoT applications, while it has been established that an MSA

is used to architect the application, it should be possible for microservices to be

composed to perform complex functionalities [16]. There are multiple models for

this composition [14, 16], but we consider the chained microservices model [62] is

used in IoT applications, which is commonly used in research literature [39]. With this

model, IoT devices are expected to request workflows, which represent a pipeline or

chain of microservices that must be executed. The order in which they are requested

is important, as the input of each microservice is the output of the previous one in the

workflow. Finally, the output of the final microservice of the workflow can optionally

be returned to the IoT device that requested it, although it may stay at the deployment

site of the final microservice (e.g., if the final service is a database that stores the

information, there is no need to return a result to the device).

As an example of this model, we define an IoT video recognition application,

following the model from [63]. For our example, we will define a workflow for

performing the facial recognition functionality. This workflow will request three

53



2.1. HOLISTIC OPTIMIZATION OF QOS IN IOT APPLICATION DEPLOYMENT

Figure 2.2: Example facial recognition workflow

microservices [63]. First, the raw video stream is fed to a detection and segmentation

microservice (MS1), which detects human faces in the video and removes other

elements and the background. These facial images are then fed to the second

microservice (MS2), which extracts features that are useful for facial recognition (e.g.,

the distance between eyes, mouth curvature [63]). Finally, the features are sent to

a matching microservice (MS3), that compares them with an existing database of

features. The final answer on whether the recognized faces are known or not is sent

back to the requesting device. Figure 2.2 depicts this example workflow.

Following the example, let us have a very simple example infrastructure for this

single workflow request. On the one hand, it is possible to run some microservices

on the IoT device with the camera, i.e., in the mist layer [23]. On the other hand,

a fog node also exists, close to the device, that can run microservices. Finally, it

is also possible to host some microservices in the cloud. In this situation, there are

a total of 27 (33) valid alternatives for placing the microservices1. Three of these

alternatives are depicted in Figure 2.3: in all three devices in Figure 2.3a, using

only the fog and the cloud in Figure 2.3b, and using exclusively the fog node in

Figure 2.3c. Moreover, Figure 2.3 also represents communications: if a single device

is leveraged (Figure 2.3c), only two messages are necessary: the initial video frame

and the matching result, as all microservices placed in the same computing device

1In general for DADO, given the set H, which contains all the computing devices (hosts), the set WF ,
containing all workflow requests, and defining the length of a workflow request (|w f |,w f ∈WF) as the
number of microservices requested by the workflow, the total number of alternatives for microservice
placement and replication can be calculated as (∑w f∈WF |w f |)|H|.
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(a) Placement along the
continuum.

(b) Placement in the fog and
the cloud (c) Placement in the fog

Figure 2.3: Example deployment alternatives of the workflow

can communicate locally. This is also true if some microservices are executed in the

IoT device itself (Figure 2.3a), as the device would feed the processed data of the

microservice’s output (in this case, facial images), rather than the original raw data.

Finally, it is also important to note two crucial considerations on the feasibility of

placements. First, a machine cannot run an unlimited number of microservices, only

as many as it can withstand. This can be understood in terms of resources: computing

devices have a certain amount of resources (e.g., CPU, RAM), and microservices

consume these resources to function. Hence, while the more resourceful cloud or

fog can run all three microservices, this is not feasible for the IoT device. The second

consideration is that microservices run faster in more powerful machines. There are a

variety of metrics and estimators for defining the computational size of a microservice,

as well as the computational power of a computer. Nonetheless, to maintain the model

as application-agnostic and device-agnostic as possible, we assess the computational

size of a microservice as the number of CPU cycles it takes to run it. Similarly, the

computational power of a device is assessed as its CPU clock speed. These assessments

allow for the calculation of the execution time, one of the components of the response

time, a crucial QoS metric for next-gen IoT applications.

However, the model of the example so far lacks a dimension: the network.

Following the premises, the network paradigm for the example is SDN, and thus, the

behavior of the network is managed by one or more SDN controllers through SDN

flow setups. Following the classic model in research [27], each SDN controller is

co-located with an SDN switch, i.e., at least one SDN switch serves both as a switch

and as a controller. As the network is expected to perform service discovery [2, 28],
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the communication to each microservice is mediated by the SDN controller, which

will set up the appropriate flows. Depending on where the SDN controller is placed,

the flow setups can have a different QoS, as the switch that is directly connected to

the SDN controller can perform it locally, while the other switches must send their

requests across the network. Considering the deployment from Figure 2.3a, we show

an example of workflow communications if a single SDN controller was placed in

the leftmost switch in Figure 2.4. To perform this communication, the IoT device

first executes MS1 and sends the facial images to the network (1). The switch must

then request a flow setup to find MS2 (2). This flow setup leads the traffic to the fog

node, where MS2 is deployed (3). The fog node extracts the features of the images

using MS2 and sends these features to MS3 (4). Similarly, the switch performs service

discovery to find MS3. This is done by, first, sending the request to the leftmost switch

(5). This switch sends the request to the SDN controller, which performs the flow

setup (6). The flow setup messages must then be sent back to the original switch (7)

to complete the process. Once MS3 is located in the cloud, the feature information

follows this path (8), and MS3 performs the matching operation. The result of this

matching operation is then sent back to the IoT device using standard routing, which is

assumed to be already installed (9 - 10). A similar model could be followed for every

SDN controller placement, including having multiple SDN controllers, as well as for

all 27 possible placements, which would lead to a total of 81 possible placements

of microservices and SDN controllers2. Finally, an additional consideration that is

crucial to the networking dimension is that the maximum capacity of each link must

not be surpassed. To maximize the feasibility of the problem and guarantee that there

is no overload, as well as to avoid congestion, it would also be desirable to optimize

the traffic routing, i.e., allowing traffic to use the QoS-optimal routes if the capacity

constraint holds while routing traffic through alternative routes if so required. Such

considerations imply that, for each of the messages from Figure 2.4 except 2 and 6, a

2In general, if a given number of controllers c is provided, and assuming a set S with every
SDN switch, the total number of possible different microservice and controller placements is
(∑w f∈WF |WF |)|H|(|S|

c

)
. If the number of SDN controllers is to be selected at runtime up to a maximum

number cmax, as in DADO, the total number of combinations is of (∑w f∈WF |WF |)|H|(∑cmax
i=1

(|S|
i

)
)
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Figure 2.4: Example workflow deployment with controller placement

route must be chosen out of all the alternatives. Even assuming that only two routes

exist for each of the messages, this would lead to a total of 256 routing alternatives, or

an approximate total of 20736 alternatives3.

Based upon this system model, where the computing dimension is considered

for its maximum capacity to host microservices and its QoS characteristics

(e.g., computing power), the application dimension is considered for its defined

microservices, workflow requirements, and their characteristics (e.g., computing

complexity, input/output information), and the networking dimension is considered

for the SDN controller placement and its QoS characteristics (e.g., location of each

device in the network, link latency, link capacity), we created the original DADO

framework, which makes use of MILP solvers to optimize the deployment [2]. DADO

requires two main inputs: a description of the IoT application and a description of the

infrastructure. The IoT application description includes the microservice stereotypes

that exist, the workflows that are requested, which devices (and therefore users) request

each workflow, and the characteristics of each stereotype (e.g., resource consumption,

3As the number of communications varies between alternative microservice-controller placements,
the number of routing alternatives also varies for each placement, and thus, we cannot
give a general formula for the number of alternatives. Nonetheless, in the worst-case
scenario, given the set of links of the infrastructure L, the number of alternatives would be
(∑w f∈WF |WF |)|H|(∑cmax

i=1

(|S|
i

)
)[(∑w f∈WF |w f |)+ |S|+1]|L|

57



2.1. HOLISTIC OPTIMIZATION OF QOS IN IOT APPLICATION DEPLOYMENT

input/output information size, CPU cycles). The infrastructure description is, in

essence, a graph that represents the expected topology, including the network and

computing nodes. Each of the vertices is annotated with extra information about

their characteristics for the infrastructure, such as whether a vertex is a computing

node or a switch, and the characteristics of the computing node (e.g., RAM, CPU,

clock speed). Edges are also annotated with extra information: the capacity of the

link, and the latency derived from using it. These descriptions are very loosely

coupled with each other, and therefore, it is simple to reuse a given application with

multiple infrastructures and vice-versa [5]. Furthermore, it is possible to describe

the QoS metrics to be optimized by the framework (see Section 2.2). By providing

these inputs, DADO is able to optimize the microservice placement, SDN controller

placement, and network routing, as well as give additional execution results (e.g.,

the optimization time taken by each part of the framework). This information can

optionally be fed to post-analysis tools, such as DADO’s QoS reporting tools or

Pascal, to obtain an estimation of the QoS of the system (e.g., the response time of

each workflow, the cost of the deployment, or the link load). Finally, the relevant

information is given to the system operator, who is in charge of performing the initial

deployment. If the deployment was to be adapted rather than calculated from scratch

(see Section 1.5.1), the system operator can be substituted for automatic deployment

orchestrators such as Kubernetes [64]. A summary of this description of DADO is

shown in Figure 2.5. Finally, in our evaluations in IIoT [2] and IoMT [5] scenarios,

DADO has provided better results than other state-of-the-art application placement

optimization frameworks, such as ModuleMapping [1], as well as geometry-based,

separate approaches to application and controller placement. An example of this

difference, extracted from the IIoT-based evaluation, can be seen in Figure 2.6

For further information on DADO’s MILP formulation, we refer the interested

reader to Chapter 4. For further details of DADO’s implementation, Appendix T

includes documentation on the matter.
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Figure 2.5: Summary of the expected usage of the DADO framework.
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Figure 2.6: Comparison of DADO with alternative approaches to deployment
optimization, such as ModuleMapping [1], or graph geometry-based placements
(Highest Closeness Centrality/HCC, Highest Betweenness Centrality/HBC). Figure
source: [2].
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2.1.2 The FNPP: Networking and computing optimization

As the problem of solving both the DCDP and the CPP stems from the fact that

operators are in control of both the application deployment and the network, there

is a possibility that the operators are also in control of the computing dimension. The

Cloud-to-Thing continuum contains computing devices that are completely managed

by an external provider, including not only cloud servers, but also fog and edge nodes

managed by providers in a similar manner, such as Edge instances [65]. Nonetheless,

especially in intensive scenarios, it is not uncommon that the operators also include

self-hosted devices, such as in-premises edge and fog nodes [13]. Thus, while

their control over the devices managed by providers is limited, they fully control

their self-hosted devices. Considering that these environments tend to use the SDN

paradigm [28], it is desirable to use a model for these nodes as the one defined by

Bedhief et al. [35]. This model consists of a Fog Node (FN)4 that contains not only

a computing device but also an SDN switch, easing its integration into existing SDN

networks. However, the placement of fog nodes in the infrastructure is known to affect

the QoS of the systems and applications that make use of them [35]. It is therefore

necessary to optimally place these nodes to obtain the desired QoS. This is a problem

we initially defined and solved: the FNPP [3, 36, 37, 44].

To exemplify the interest and cases that can appear in the FNPP, we use an

IIoT-based example extracted from [3]. In this example, a factory automation

application is going to be deployed on an SDN network topology, which consists

of five IIoT devices and five SDN switches. The factory automation application

that will be deployed has very strict latency requirements [9], and thus, the factory

owner has decided to transform the SDN topology into an SDN-fog infrastructure.

To enable this transformation, the factory owner makes use of FNs that follow the

model from [35]: hardware boxes that include an SDN switch and a computing device,

that will substitute existing SDN switches. To facilitate the understanding of the

example, we assume that all links have the same latency, and thus, latencies can

4Although it is called ”Fog Node”, FNs can also be used in other infrastructure layers, e.g., edge.
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Figure 2.7: FNPP first scenario: placement of one FN. Figure source: [3]

be transformed into a number of hops (i.e., traversed links). Therefore, the factory

automation application imposes a specific QoS requirement: the maximum latency

for the application is one hop (i.e., any path longer than one hop results in an invalid

deployment). In the first scenario of this example, the factory owner will replace a

single SDN switch with an FN. The topology has five SDN switches, hence, there

are five possible placements for the FN, as depicted by Figure 2.7. However, not

all placements are equally valid. Take, for example, the placement from Fig 2.7a.

Assuming the use of shortest path routing for all devices, we find that IIoT devices A,

B, C, and E are all able to reach the FN in one hop. However, it is impossible for IIoT

device D to reach it in less than two hops. Similarly, if the FN is placed on switch 2,

IIoT device C is unable to reach it in one hop. This pattern, in which one IIoT device

cannot reach the FN in an acceptable number of hops, appears in all placements except

for switch 5. Thus, the solution to the FNPP is to place the FN in switch 5, which is

shown in Figure 2.7b. Moreover, to obtain a valid deployment, it is also key that traffic

is routed in a specific manner. While it is simple to solve the FNPP in small topologies,

such as the example one, manually testing all placements and routing possibilities in

networks with hundreds of switches, different latencies in each link, and constrained

link capacities is not simple.

In the second scenario, shown in Figure 2.8, rather than a single FN, two SDN

switches are to be replaced with FNs. However, these FNs are less powerful than the
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FN from the previous scenario and, therefore, each FN can only process the workload

of up to three IIoT devices. Thus, the solution from the previous scenario is not valid

anymore: placing a single FN in switch 5 only guarantees that up to three IIoT devices

will be able to reach it in one hop or less. Furthermore, now there is an additional

decision to be optimized: which IIoT devices should be served by each FN, meeting

the capacity constraints of the FNs. This is not a simple decision to take, as a bad

decision can result in an invalid deployment. For instance, let one FN be placed in

switch 5, and the other FN be placed in switch 2, as represented in Figure 2.8a. If

IIoT devices A, B, and E are selected to be assigned to the FN in switch 5, that leaves

IIoT devices C and D for the one in switch 2. However, while IIoT device D can reach

switch 2 in one hop, IIoT device C cannot reach it in less than two. This deployment

is, thus, invalid. Nonetheless, if IIoT devices A, C, and E are assigned to the FN in

switch 5, and therefore IIoT devices B and D are assigned to the FN in switch 2, the

deployment becomes valid. This assignment option can be seen in Figure 2.8b. Hence,

placing multiple adds to the complexity of the problem, not exclusively because of

the higher number of combinations, but also because there are more decisions to take.

Even in this trivial scenario, there are 10 possible placement combinations for 2 FNs,

each of them with 20 possible assignments, for a total of 200 possible solutions, not

accounting for the additional combinations that differ in routing. In larger and more

realistic scenarios, in which each IIoT device produces a different amount of traffic,

each link has a different latency, link capacities are constrained, and there are hundreds

of switches and IIoT devices, solving the FNPP manually could be infeasible.

This problem, including the placement of FNs by replacing SDN switches, the

assignment between IoT devices and FNs considering capacity constraints, and the

routing between each IoT device and its assigned FN, considering the possible

congestion, and the optimization of all these decisions as a means to optimize QoS,

is what we originally defined as the FNPP [36]. Furthermore, as the FNPP is very

complicated to solve manually, especially in larger network topologies, we developed

automated systems to solve the FNPP [3, 37]. On the one hand, we developed two
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Figure 2.8: FNPP second scenario: placement of two FNs. Figure source: [4]

optimal methods based on MILP solving: MinMeanLat [37], which minimizes the

mean latency; and MinMaxLat [3]. which minimizes the maximum latency of each

IoT device with its assigned FN (i.e., instead of ensuring the mean latency is minimal,

even if it implies that some IoT devices get very small latencies and other devices get

higher latencies, MinMaxLat tries to keep all the devices with a similar latency). The

third method is a heuristic that uses a machine learning technique named k-medoids,

modified to use latency as the main metric. Figure 2.9 includes a comparison of

these solutions with naı̈ve HBC and HCC placements, as well as a benchmark from

a proposal similar to the FNPP made by Maiti et al. [66]. While both HBC and

HCC provide similar solutions, referring to the average latencies (Figure 2.9a), the

heuristic and, in more loaded traffic matrices, MinMaxLat, provide better solutions

than the benchmark. Furthermore, as it is the solution of the mathematical formulation

of the problem, MinMeanLat provides the best result. Referring to Figure 2.9b, both

MinMeanLat and MinMaxLat provide optimal results, followed by the heuristic, all of

which provide better solutions than the naı̈ve approaches and the literature benchmark.

For further information on the FNPP’s MILP formulations, both for MinMeanLat

and MinMaxLat, as well as the design of the heuristic, we refer the interested reader to

Chapter 6. For further details of the implementation of MinMeanLat, MinMaxLat, or

the heuristic, Appendix U includes documentation on the matter.
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Figure 2.9: Comparison of methods for FNPP solving. Figure source: [3]

2.1.3 Umizatou: optimal placement of computing devices,

microservices, and SDN controllers

A theme that repeats itself throughout this section is the fact that the possibility to

perform the optimizations (and thus, the optimization problems themselves) stem

from the control of the developer or the operator over different decisions. So far, we

have considered the union of control over the application and networking dimensions

with DADO, and the control over the computing dimension with FNPP solvers.

Nonetheless, it is possible to have control over all three dimensions. In such a

case, the operators would have to solve all three, the DCDP, the FNPP, and the

CPP. Moreover, we have established that all three dimensions are inherently related,

and these relationships play an essential role in such optimization. Figure 2.10

provides a small summary of the relationships between dimensions and problems. The

DCDP and the FNPP are related, as the placement of microservices depends on how

often the microservices are requested together in workflows, the complexity of each

microservice and the power of candidate machines to run them, and on the size and type

of their I/O information. From the perspective of the FNPP, where to place each FN

depends on which microservices are to be deployed in it. Similarly, the FNPP and the

CPP are related, as the location of the SDN controller depends on the communication

between FNs and the traffic to be sent. Moreover, the location of FNs themselves
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Figure 2.10: Summary of the problems on each dimension and their relationships.

depends on the network’s QoS and routing capabilities. Finally, the patterns of how

traffic flows in the network depend on the DCDP and greatly affect the CPP. It is thus

desirable that the DCDP, the FNPP, and the CPP are solved in a joint effort, i.e., to

merge DADO with the FNPP solvers.

To respond to this need, we created Umizatou [42]: a tool to optimally place FNs,

microservices, and SDN controllers, as well as optimally routing the traffic containing

both SDN control messages and microservice data and requests. Umizatou merges the

model of DADO with the model of the FNPP, making some information more concrete

and diffusing the a priori lines between networking and computing equipment. On the

one hand, the abstract capacity of FNs becomes concrete, relating to the computing

capacity of each FN w.r.t. the microservices. On the other hand, the input topology

consists exclusively of IoT devices and SDN switches, as the FNs will replace some

SDN switches due to the FN model [35]. To the best of our knowledge, Umizatou

is the first system to perform this all-in-one optimization, and thus, we could not

compare it with state-of-the-art alternatives. Furthermore, the multi-objective version

of Umizatou was the first artifact to be evaluated under our emulated testbed generator,

Pascal.

For more information on the model of Umizatou and the formulation of its
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implementation problem, we refer the interested reader to Chapter 7. For more

details on the implementation of Umizatou, Appendix Z includes documentation on

the matter.

2.1.4 Which system should a developer use?

After presenting the three main families of artifacts for holistic optimization: DADO,

the FNPP solvers, and Umizatou, there is a crucial question that may be complicated

to answer. Which family of systems is a developer or operator expected to use? As

it has been stated, each of the three solve different problems, and thus, depending on

the characteristics of the concrete situation, a different family of systems may be more

or less suitable. The main question that must be answered is How many dimensions

does the developer or operator control?, considering the dimensions and problems

presented in Figure 2.10. Thus, controlling the application dimension refers to being

in control of microservice replication and placement. Similarly, control over the

computing dimension refers to FN placement; and control over the network refers to

SDN controller placement and traffic routing. Moreover, we assume that the developer

or operator has control over, at least, one of these dimensions.

If the developer controls a single dimension, it may be any of the three. If they

only control the application or networking dimensions, like in the traditional cloud

computing case, we refer the developer to more traditional, non-holistic systems for

DCDP solving [39], or CPP solving [27], respectively. Nonetheless, if the developer

only holds control of the computing dimension, the FNPP may prove useful to place

the resulting FNs and assign them to IoT devices. However, the FNPP also optimizes

network routing, and thus, there is a special consideration that the developer must keep

in mind for the input of the solver: the network must be modeled as if it were fully

connected.

If the developer or operator holds control over two dimensions, three possibilities

exist for which dimensions are controller: application and computing (e.g., if the

network belongs to an external provider), computing and networking (e.g., they operate
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Figure 2.11: Illustrative chart on which family of systems to use.

a Cloud-to-Thing infrastructure for developers), or application and networking (e.g.,

externally provided Cloud-to-Thing continuum devices). In the first case, they should

use the FNPP solvers with the estimates of their application and computing devices,

which will allow the FNPP to be modeled accurately. In the second case, they should

use the FNPP as-is, because it is a system developed specifically for this situation.

Finally, in the third case, DADO will optimize the SDN network controller placement,

routing, and microservice replication and placement.

Only if the developer controls all three dimensions, Umizatou could be used as the

best alternative for a system. While it is an all-in-one holistic system, as the problem

stems from control over all three dimensions, such control is a requirement for its use.

Hence, none of the three families of artifacts is inherently better than any other, even

if they can be seen as extensions, as they should be applied to different scenarios.

Figure 2.11 presents a short summary chart to guide developers in selecting one of

these systems.

67



2.2. OPTIMIZATION OF MULTIPLE QOS METRICS

2.2 Optimization of multiple QoS metrics

In the context of this thesis, the joint consideration of multiple elements for

optimization is a staple: on the one hand, we consider multiple dimensions holistically

to optimize deployments, and on the other hand, we optimize multiple QoS metrics

jointly. In optimization, if a problem requires the optimization of two or more metrics,

especially if they must be traded off, it is known as a multi-objective optimization

problem [5, 27, 39]. If an optimization problem considers multiple metrics but does

not optimize them (e.g., instead of optimizing the cost, it considers that the solution

should not be more expensive than a given budget), it is called multi-criteria [39]. It

is, therefore, important to remark that the problems and artifacts from this section are

truly multi-objective, rather than simply multi-criteria.

The artifacts presented in this section are the evolution of DADO and Umizatou:

NIoTO [5] and MO-SFO, respectively, contribute to their previous artifacts by adding

the deployment cost as a second objective to their models. This does not only mean

that they share most of their details, such as the optimization decisions they take, but

also that their holistic nature is preserved. Hence, if the original DADO was a holistic

optimization framework, NIoTO is a holistic, multi-objective optimization framework.

Furthermore, the same guidelines used for deciding between Umizatou and DADO can

be used to choose between MO-SFO and NIoTO.

With regard to the response time objective, it is measured using the same model as

with DADO and Umizatou: for each workflow request, the system decides where each

of the requested microservices is to be deployed. If two or more workflows that request

the same microservice stereotype have that specific microservice deployed to the same

machine, it is assumed to be the same replica. If they were to be deployed in different

machines, they are considered to be multiple replicas. While the system decides the

microservice placement and replication, it also optimizes how traffic is routed from

each microservice to the next, as well as back to the device. For each SDN switch

that a traffic flow traverses, it is assumed that service discovery must be performed,

and thus, a flow setup will be required. The placement of SDN controllers, as well
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as controller-SDN switch assignment and control traffic routing, are also computed

by the optimization system. Finally, the response time of the workflow is computed

as the sum of the execution time of the requested microservices (i.e., the number of

CPU cycles per execution divided by CPU clock speed), the latency of the routed

traffic flows (i.e., the sum of the latencies of the links traversed by each traffic flow

that carries workflow data), and the latency of the associated flow setups (i.e., the

sum of the latencies of the links from each SDN switch traversed to its assigned SDN

controller). Hence, response time integrates the three dimensions: application (CPU

cycles), computing (CPU speed), and networking (latency), highlighting the interest in

the holistic approach in multi-objective optimization.

For the cost, both NIoTO and MO-SFO have also the same model. First, they

separate costs into two categories: Capital Expenditures (CAPEX) and Operational

Expenditures (OPEX). CAPEX refers to the cost of buying the new fixed assets (e.g.,

buying FNs, servers, SDN switches, IoT devices) [67]. OPEX, on the other hand, is

the constant cost of having said assets operational (e.g., cost per use of cloud servers,

cost of energy consumption of IoT devices) [67]. This separation allows the model to

support scenarios with self-hosted devices (mainly FNs), externally provided servers

(e.g., cloud servers, Edge instances [65]), as well as hybrid scenarios. To make

calculations over both costs, the system analyzes which devices are considered to

be used in the scenario: if a device is not used, it can safely be removed from the

scenario, which means that both its CAPEX and OPEX would become 0 [5]. In the

case of computing devices, it is considered that one is used if either they request at

least one workflow, or if they host at least one microservice replica, as in both cases,

they play a role in the scenario and cannot be removed. For SDN switches, if at least

one flow of traffic arrives at them, either because it is routed through the switch or

because the switch contains an SDN controller, they are considered as used. Used

devices are considered to have their CAPEX as cost, which is an input expected from

the user. Moreover, SDN switches with co-located controllers are considered to have

two summed CAPEX: the switch’s CAPEX, and the controller’s CAPEX.
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On the other hand, OPEX models differ: for networking devices, they are

traditionally considered to have an OPEX per unit of time, due to their energy

consumption, whenever they are powered on, regardless of their load [5]. This is

also true for SDN controllers, which have an additional OPEX, in the same manner

as CAPEX. Computing devices are more complex: their OPEX depends on how they

are used, especially for pay-per-use externally provided instances, which are billed

by second of use, a model that is the norm in the cloud computing space [20]. In our

model, the OPEX per second is transformed to OPEX per CPU cycle, a straightforward

conversion by dividing the cost per second by the CPU speed. Hence, it is considered

that the OPEX of the device is the OPEX per execution cycle of the device, multiplied

by the sum of the CPU cycles of all the deployed microservice replicas. This is the

model used for cost, which adds an additional feature to both NIoTO and MO-SFO:

rather than manually specifying the number of SDN controllers or FNs to place, they

automatically adjust them to optimize cost and response time.

On the multi-objective optimization model of the two approaches, both NIoTO

and MO-SFO allow the user to select the objective or objectives they desire. This

is, a developer or operator can choose to optimize cost only, response time only,

both, or none. Hence, various use cases can be covered with them: finding the least

costly feasible setups, regardless of their performance; the fastest setups, regardless

of the cost; balanced setups that trade cost and response time off; or just a feasible

deployment, regardless of both cost and response time. Moreover, to ease the task of

the developer, the model only requires input information that is related to at least one

of the objectives. For example, if response time is the only objective, the operator is

not required to provide information on the CAPEX or OPEX of any of the elements.

Finally, we remark on the novelty of both approaches. For the same reasons

as Umizatou, MO-SFO, to the best of our knowledge, no other system aimed

at solving the all-in-one problem exists. For NIoTO, we have been unable to

find a multi-objective system to compare it to, but it can be compared with two

single-objective systems: ModuleMapping [1], which focuses on performance, and
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Figure 2.12: Comparison of NIoTO with single-objective benchmarks. Figure
source: [5]

FogPart [68], which focuses on cost. Figure 2.12a provides a comparison with

ModuleMapping, while Figure 2.12b compares with FogPart. As a summary of

the response time comparison, the gap between ModuleMapping’s response times

and NIoTO’s is 40.22 ms, and NIoTO achieves an average speed-up of 5.11 w.r.t.

ModuleMapping. Following up with costs, the cost gap between FogPart and NIoTO

increases with topology size, being on average of 3954C (6.22%) in the tests performed

in [5]. Furthermore, in both cases, the multi-objective approach also obtains better

results than the state-of-the-art benchmarks.

For further details on the formulation of NIoTO and its implementation, we refer

the interested reader to Chapter 5. As MO-SFO is still under review, a pre-print version

of the article is included as Appendix F. We also provide technical documentation on

NIoTO in Appendix T, and on MO-SFO in Appendix Z.

2.3 Adaptation of QoS-related decisions at runtime

The contributions presented so far are meant for optimization at the late design

phase of an application’s lifecycle: developers and operators are expected to have an

estimation of their application’s characteristics (e.g., microservice complexity, devices

planned to be used for deployment, planned network topology, the volume of workflow
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requests), which will be used by the selected framework to find an optimal solution [5].

Nonetheless, it is not uncommon for changes to occur in the environment: new versions

of the application may change the complexity and resource usage of microservices, as

well as create new microservices or modify the workflows for some functionalities,

additional network traffic (e.g., due to an unrelated application being used in the same

infrastructure, or operating system telemetry) may change the capacity or technical

characteristics of links, any of the hardware devices or equipment may fail, new

hardware elements may be added to the infrastructure or even a different volume of

requests.

In these situations, the presented frameworks could be used to re-optimize the

situation by redefining the input scenario to reflect the new situation and executing

them again. However, most of the artifacts make use of MILP solvers, namely,

MinMeanLat [3], MinMaxLat [3], DADO [2], NIoTO [5], Umizatou [42], and

MO-SFO. While one of the traits of these solvers is the fact that they provide

optimal solutions [2], their main caveat is their high optimization time for large

problems, such as big infrastructures, applications with many microservices, or a

large volume of requests. For example, DADO can take nearly 6 hours to optimize a

large topology [2], and it can take more than three times as much if multi-objective

optimization is selected [5]. Hence, there is a need for adaptive systems for our

problem. It is important to note, in this regard, that only two of the decisions could

be adapted at runtime: microservice placement-replication, and traffic flow routing,

this is, DCDP and routing optimization. Moving SDN controllers or FNs requires

manual, human intervention, which is not only unable to be automated but also a

larger bottleneck in terms of adaptation times than the framework’s optimization times.

Hence, in this section, we present our contributions to runtime optimization adaptation:

monitoring-based, stochastic, and opportunistic, as well as a final summary to aid

developers in choosing one of the systems.

72



CHAPTER 2. RESULTS

2.3.1 Continuously adapting the application placement:

ConDADO

If we analyze why DADO can take a long time to optimize a situation, we can arrive at

the conclusion that there are two main reasons: the size of the problem and the solving

method. The size of the problem refers to the number of computing devices, SDN

switches, microservices, workflows, and links, that the situation has. DADO can be

fast in small problems, optimizing in a few seconds [2], but does not scale well when

the problem is larger. Nonetheless, if the size of the problem in large scenarios could

be reduced (e.g., by having DADO consider only a part of the elements), its speed

would be improved. On the other hand, DADO completely relies on the MILP-solving

algorithms to make all its decisions, which are slow due to their multi-purpose and

optimal nature. If a more efficient algorithm could be used to determine microservice

placements, DADO could also be quicker to solve each problem.

Moreover, speed is not the only important factor. The adaptation process implies

that changes are performed in the microservice placements. Making each of these

changes may have a cost that should be considered by the system. In this case, we

do not refer to monetary cost, but to a more general concept of cost. This cost is

generally incurred due to migrations: movement of microservices from one machine

to another, or creation of new microservice replicas. Migrating a microservice from

one device to another may require the new device to provision this new microservice

(e.g., if a virtualization platform such as Docker is used, the device must download

the Docker image of the microservice). This download takes time, and, during this

time, the microservice must stay in the original device, which is not the desirable

placement. Moreover, it is likely that the organization may not want to migrate

some microservices, e.g., databases that contain especially sensitive data should not

be migrated freely to avoid security breaches. This cost due to migrations, which is

not monetary but technical or organizational, is what we label as migration cost, and

is interesting to consider in adaptive systems.

Continuous DADO or ConDADO is a solution for this adaptation problem that
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builds on DADO. Regarding the techniques to improve the optimization speeds,

ConDADO does both: by exploiting state-of-the-art MILP solving techniques in

combination with continuous reasoning techniques, ConDADO can quickly respond

to environmental changes. On the other hand, these same techniques allow ConDADO

to be aware of the past status of the infrastructure and mitigate migration costs.

To understand ConDADO, it is crucial to first understand its main technique:

continuous reasoning. This approach is used to reduce compilation times for

changes to large software repositories such as Facebook, with a tool known as

Facebook Infer [60]. Each change to the repository, rather than triggering a complete

compilation, triggered a static analysis of the codebase that detected the parts that

would be affected by the change [60]. Leveraging continuous reasoning, the system

builds and validates only the parts of the code that are affected by the changes,

rather than the full codebase, which can speed up the compilation process. In the

context of application placement, continuous reasoning is leveraged by analyzing

which microservices of the application placement need to be migrated (i.e., moved

between nodes) after an environmental change [25]. In a similar manner to Facebook

Infer, the main idea behind continuous reasoning in application placement is to find

which parts of the system have been affected by a change and must be re-computed.

Continuous reasoning reduces the size of the application placement problem,

as only those elements that were meaningfully affected by environmental changes

need to be migrated, which may speed up decision-making [2], and allows for the

consideration of migration costs. In the case of ConDADO, the monitoring system

provides updates on the status of the scenario. Each update is then sent to the delta

calculator, whose objective is to determine the differences between the previous

and the current status of the scenario. If differences exist, they are fed, along with

the previous decisions taken on deployment, to the Continuous Reasoning Engine

(CRE). The CRE determines whether the changes affect the validity or QoS existing

deployment and if they do have such effects, computes which microservices need to

have their placement or traffic routing re-optimized. The CRE selects these decisions
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Figure 2.13: ConDADO architecture. Figure source: [Computing 2022]

through their migration cost as an effort to mitigate this effect. The CRE then generates

a partial deployment plan, i.e., a list of the deployment decisions that are not required

to be changed. This is fed to the ConDADO solver, which only re-optimizes the

microservices and traffic routing decisions that are not in the partial deployment plan.

This structure is shown in Figure 2.13.

Moreover, ConDADO is designed to be integrated into DevOps. Through a

proposal that is presented together with ConDADO, named Continuous Adaptation

(CA), we propose the integration of application placement adaptation with DevOps.

CA proposes to add an intermediate step in Continuous Integration and Continuous

Deployment (CI/CD) pipelines, able to be triggered both by application changes and

infrastructural changes through monitoring. Using continuous reasoning, CA performs

an adaptation of the application placement, if so required, and feeds the new placement

to CD, for it to redeploy the application as necessary. A depiction of CA’s role

in CI/CA/CD pipelines is shown in Figure 2.14 It is important to note that, while

ConDADO is a solution designed as a prototype of a CA-enabling system, it is possible

for other application placement adaptation systems, such as FogBrainX [69], to be used

for similar purposes.

Finally, as a demonstration of the differences between ConDADO and DADO in

terms of optimization time, we present a small excerpt of ConDADO’s evaluation in

Figure 2.15. This figure represents the evolution of the response time of an application

that cannot surpass 50 ms of response time. Initially, the application is deployed below
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Figure 2.14: CI/CA/CD pipeline. Figure source: [Computing 2022]

the threshold, and thus, neither system requires optimization. Nonetheless, once t is

reached, a change in the cloud provider provokes a raise in the response time above

50 ms. Once the curve reaches its peak, near t + 2, the monitoring system feeds both

DADO and ConDADO with the new situation of the environment for them to adapt the

application placement. ConDADO is able to adapt it in 27.5 seconds, migrating the

microservices to the fog and decreasing the response time greatly. However, DADO

requires 302 seconds (approx. 5 minutes) to compute the migration. Hence, for this

situation, ConDADO exhibits a speed-up of approximately 11× w.r.t. DADO in this

situation.

For further details on the proposal of CA, as well as on ConDADO’s functioning,

we refer the interested reader to the pre-print version in Appendix B. We also provide

documentation on ConDADO’s implementation in Appendix V.

2.3.2 Adapting to probabilistic stochastic models: S-DADO

While continuous reasoning is an interesting technique for the adaptation of

deployments, there is another technique that can also be used to create adaptative

systems: Lyapunov optimization [46]. This is an optimization framework meant

to optimally control a dynamic system, which tries to find the equilibrium through

its decisions. This is, a Lyapunov optimization model acknowledges that some
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Figure 2.15: Evolution of an application’s response time with DADO and ConDADO.
Figure source: [Computing 2022]

parts of the system are dynamic, and adapts its decisions until the system reaches

stability [46]. In this regard, the approach greatly differs from continuous reasoning, as

it is proactive rather than reactive. Continuous reasoning reacts to changes by adapting

the deployment, while Lyapunov optimization assumes changes will exist and provides

a solution that will remain stable through these changes. This is especially useful

for systems that do not follow a DevOps methodology, or where it is not possible to

perform continuous monitoring.

In this context, we developed a Lyapunov-based version of DADO, named

Stochastic DADO (S-DADO). Nonetheless, making use of Lyapunov optimization

implies performing optimization in an arbitrary number of time slots, each of the

slots requiring the solution of a DADO model [46]. Unlike continuous reasoning,

which provides tools to speed up problem-solving, Lyapunov optimization requires

fast problem-solving as the starting point, as it requires multiple problem solutions,

fundamentally slowing down the optimization process. Thus, to reduce the size of the

problem, the traffic routing between devices in S-DADO is performed heuristically,

using shortest path-based routing. Hence, only microservice placement and replication

are optimized by S-DADO. This optimization considers the same characteristics of all
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three dimensions as the original DADO: RAM resources, network latency, CPU cycles,

etc. Nonetheless, these are not updated through monitoring, and instead, their values

are drawn from probabilistic models for each time slot. Concretely, S-DADO considers

this dynamic model for computing devices (RAM, CPU clock speed), microservices

(RAM consumption, CPU cycles, generated traffic), and network links (capacity,

latency).

To guide the optimization, the Lyapunov-based model uses virtual queues, which

represent the stability of the system. Each of the workflow requests in S-DADO has

a deadline, which is the maximum acceptable response time of the workflow. As

these deadlines represent the stability of a workflow, i.e., a workflow is stable if the

response time is less or equal to the deadline, each workflow also has an associated

virtual queue. If the response time of a workflow is higher than its deadline (i.e., the

deadline is violated), the excess response time is added to this virtual queue. The

average size of the virtual queues is known as Lyapunov drift, as it represents the

drift from the stability of the system [46]. S-DADO uses an objective function known

as Drift-Plus-Penalty [46], which tries, at the same time, to minimize the average

response time of the workflows, and to minimize the Lyapunov drift. A consequence of

the use of Lyapunov optimization is that, if the Lyapunov drift is bounded, the system

will be, on average, stable in an infinite time horizon [46]. This is, if there is a feasible

solution that will stay stable over time, S-DADO will find it.

S-DADO is currently a work in progress, and thus, we are still working on its

evaluation and the diffusion of its results. Nonetheless, the interested reader may find

details on S-DADO’s implementation in Appendix Y.

2.3.3 Opportunistic microservice migration: µDADO

During the development of this thesis, there has been ongoing work in privacy and

microservice-based applications for mist computing devices, and more concretely,

for companion devices, such as mobile phones or wearables [48, 53]. This line led

us to the conclusion that it would also be desirable to optimally place and replicate
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microservices in purely mist scenarios. Nonetheless, there are some differences from

what DADO considers. First, in DADO, the same party holds control over the

optimized dimensions, but in the mist space, each device is generally in control of a

different party [53]. Moreover, these devices may not have an Internet connection, and

use ad-hoc networks or other wireless technologies for creating a network exclusively

for these devices, in what is known as opportunistic networks [48, 53]. Finally, the

crucial QoS metrics to optimize may differ greatly, as battery consumption, which is

not critical for the edge, fog, or cloud nodes that are permanently connected to a power

outlet, becomes a crucial metric.

To bring the utilities of microservice placement optimization to the

mist-opportunistic space, we built a platform named Pervasive Opportunistic

Delegation of Services (PODS). PODS is designed as a platform for communities of

users that are physically close to run collaborative services, accessible by all the users

in the community, with PODS automatically managing the service virtualization,

placement, replication, and migration. PODS allows monitoring of the resources,

as well as other contextual attributes, of nearby computing nodes, including those

devices participating in a collaborative community. This monitoring is used to analyze

which device(s) in the near surroundings should host each collaborative service based

on their context, optimizing application-specific Key Performance Indicators (KPIs) to

obtain a good user experience. Furthermore, PODS monitors the relevant contextual

conditions for changes, e.g., a decrease of node resources running such services or

movement of nodes, designating and migrating services to other nodes in response to

these contextual changes. This allows for running collaborative applications in a more

reliable way and where all users make their resources available to maintain the session

as long as necessary.

The architecture of PODS, depicted in Figure 2.16, comprises a variety of modules.

First, the context scanner module, represented in pink, has the task of continuously

monitoring the nearby devices, including the device itself, and determining if a

delegation (i.e., migration or change in the microservice placement or replication) is
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required, based on the KPIs provided by both the application developers and users.

This information is fed to µDADO, the main element we focus on in this thesis.

µDADO is an adaptive version of DADO, created to be able to support multiple KPIs

with a small effort from the user and the developer, while also smaller and faster.

µDADO is only able to decide on the number of replicas of each microservice and

their placement, similarly to S-DADO. Nonetheless, µDADO’s model is not based on

workflow requests, it rather tries to make sure the service is available for all users.

This is performed by knowing each device’s coverage, i.e., which devices can reach it,

as well as their KPIs. Furthermore, µDADO uses the KPIs obtained from the system

information directly, such as latencies, battery percentages, or CPU speeds. Moreover,

µDADO allows users and developers to declare if the KPI should be minimized,

maximized, or if the device(s) chosen to run the microservices should meet a certain

condition w.r.t. the KPI (e.g., the battery level of the device must be above 50%, its

RAM consumption must be under 2 GB). µDADO then makes a decision, which is

sent to the service migrator, a module that can migrate services between devices. To

do so, it communicates with the service virtualization platform, which, in our current

implementation of PODS, is Docker. Hence, the service migrator moves the Docker

containers to meet the placement and replication that µDADO decided on.

PODS, and in consequence µDADO, is currently a work in progress, and thus, we

are still working on its evaluation, as well as in the diffusion of its results. Nonetheless,

the interested reader may find more details on µDADO, its implementation, and other

technical aspects in Appendix AA.

2.3.4 Which adaptative system should a developer use?

Similarly to the holistic systems presented in the prior section, the developer or

operator may wonder which system is a better fit for their problem, depending on

their environment. For the same reason, we have created a flowchart to aid developers

and operators to choose which system fits their needs best, displayed in Figure 2.17.

The developer or operator should start on the START box, on the top left. Then, there
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Figure 2.16: PODS architecture.

are two questions to be answered, to determine which of the three systems should be

used. First, it is key to determine which type of environment should be optimized.

If the environment is exclusively a mist computing environment, mainly in the case

of pure mist, companion device-based infrastructures connected with opportunistic

networks, the solution should give support to such environments. Hence, PODS (and,

by extension, µDADO) is a suitable solution.

On the other hand, it is possible that the environment is more similar to what we

defined in the previous sections: a Cloud-to-Thing continuum infrastructure connected

by an SDN network. In this case, a second question must be answered: how are

changes in the environment detected? It is possible that, due to the characteristics

of the environment, changes are not detected, and instead, the developer or operator

is looking for a system that will take dynamicity and changes for granted, finding

an equilibrium of their system. In such cases, we recommend S-DADO, as its

functionalities are designed for these scenarios. In other cases, we may find that the

environment is continuously monitored, likely using modern development practices

such as DevOps, and CI/CD pipelines. For these scenarios, ConDADO is a better
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Figure 2.17: Flowchart to decide on the adaptive system.

solution, prepared to be integrated with the DevOps cycle and be triggered by both CI

and monitoring systems, and automatically migrate services through CD.
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Chapter 3

List of publications

This chapter serves as an overview of the publications produced throughout the PhD.

First, we detail the publications that integrate the compendium of this dissertation,

which are full papers published in high-level JCR journals and high-ranking

international conferences, in Section 3.1. The full-text copies of these publications are

provided in Chapters 4 through 7. We then detail the supporting publications of this

dissertation, which include publications in international conferences and workshops,

national conferences, as well as pre-prints of full papers under review in high-level JCR

journals and high-ranking international conferences, in Section 3.2. The supporting

publications are provided in Appendices A through S.

3.1 Compendium publications

Through the development of the PhD, many of the results of our research have been

communicated in a variety of publications. This dissertation follows a modality known

as thesis by compendium of publications (tesis por compendio de publicaciones), in

which the dissertation is integrated by a set of publications, that must belong to relevant

venues. Concretely, for the PhD Program in Computer Science of the University of

Extremadura, a thesis by compendium must include, at least, three publications. Two

of the publications must belong to a journal ranked in the first two quartiles (i.e., Q1,
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Q2) of the JCR ranking in a category belonging to Computer Science. The third and

following publications must be either published in any journal indexed in at least one

JCR category belonging to Computer Science, or in an international conference of

class 1 or 2 at the GGS conference rating. Tab. 3.1 presents the four publications we

consider to integrate the compendium. As it includes three JCR Q1 publications, along

with a GGS 2 full paper, it fulfills the requirement for a publication compendium.

Title Key
findings

Publication venue Quality
indicator

Chapter

Optimizing the
Response Time
in SDN-Fog
Environments
for Time-Strict IoT
Applications

DADO
framework
definition

IEEE Internet of
Things Journal

JCR Q1 4

Joint Optimization
of Response Time
and Deployment
Cost in Next-Gen
IoT Applications

Definition
of the
NIoTO
framework

IEEE Internet of
Things Journal

JCR Q1 5

QoS-Aware Fog
Node Placement
for Intensive IoT
Applications in
SDN-Fog Scenarios

Definition
of MILP
and
heuristic-
based FNPP
solvers

IEEE Internet of
Things Journal

JCR Q1 6

Optimal
Deployment
of Fog Nodes,
Microservices and
SDN Controllers in
Time-Sensitive IoT
Scenarios

Fusion of
DADO
and FNPP
solvers into
Umizatou

IEEE Global
Communications
Conference
(GLOBECOM)

GGS Class
2

7

Table 3.1: Compendium of publications.

84



CHAPTER 3. LIST OF PUBLICATIONS

3.2 Supporting publications

Aside from the publications that integrate the compendium, the research activities

carried out throughout the PhD have generated a number of other publications, which

we call supporting publications. It is important to note that the term supporting does

not necessarily imply that these publications are of a lower quality, its meaning refers

to the fact that they were not included in the compendium, due to the regulations

on dissertations by compendium, because the publication has been extended or

superseded by another publication, and to maintain a more theme-centered core of the

dissertation. Supporting publications include full papers in international and national

conferences, as well as short papers in international workshops, and articles in journals.

Furthermore, pre-print versions of full papers under review at international conferences

and articles under review after a major or minor revision in a journal are also included.

Table 3.2: Supporting publications of this dissertation.

Title Status Venue Rating Appendix

Context-Aware

Privacy-

Preserving Access

Control for Mobile

Computing

Published Pervasive and

Mobile Computing

JCR Q2 A

Continuous

QoS-Aware

Adaptation

of Cloud-IoT

Application

Placements

Under

review

(major

revision)

Computing JCR Q2 B

Continued on next page
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Table 3.2: Supporting publications of this dissertation. (Continued)

Improving the

Energy Efficiency

of Software-

Defined Networks

through the

Prediction

of Network

Configurations

Published Electronics JCR Q3 C

Joint energy

efficiency and

load balancing

optimization in

hybrid IP/SDN

networks

Published Annals of

Telecommunications

JCR Q3 D

Fog Node

Placement in

IoT Scenarios with

Stringent QoS

Requirements:

Experimental

Evaluation

Published IEEE International

Conference on

Communications

(ICC)

GGS Class

2

E

Multi-Objective

Optimal

Deployment

of SDN-Fog

Infrastructures and

IoT Applications

Under

review

IEEE International

Conference on

Communications

(ICC)

GGS Class

2

F

Continued on next page
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Table 3.2: Supporting publications of this dissertation. (Continued)

Privacy-Aware and

Context-Sensitive

Access Control for

Opportunistic Data

Sharing

Published IEEE/ACM

International

Symposium on

Cluster, Cloud

and Internet

Computing

(CCGrid)

GGS Class

2

G

Meeting Stringent

QoS Requirements

in IIoT-based

Scenarios

Published IEEE Global

Communications

Conference

(GLOBECOM)

GGS Class

2

H

The Service

Node Placement

Problem in

Software- Defined

Fog Networks

Published IEEE Symposium

on Computers and

Communications

(ISCC)

GGS Class

3

I

Multi-Objective

Genetic Algorithm

for the Joint

Optimization

of Energy

Efficiency and

Rule Reduction in

Software- Defined

Networks

Published International

Conference on the

Network of the

Future (NoF)

International

conference

J

Continued on next page
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Table 3.2: Supporting publications of this dissertation. (Continued)

A Privacy-Aware

Architecture

to Share

Device-to-Device

Contextual

Information

Published IEEE International

Conference on

Smart Computing

(SMARTCOMP)

International

conference

K

Predicting

Response Time

in SDN-Fog

Environments for

IIoT Applications

Published IEEE

Latin-American

Conference on

Communications

(LATINCOM)

International

conference

L

On the tradeoff

between load

balancing and

energy-efficiency

in hybrid IP/SDN

networks

Published International

Conference on

Network of the

Future (NoF)

International

conference

M

Continued on next page
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Table 3.2: Supporting publications of this dissertation. (Continued)

Quality of

Service-Adaptive

Industrial Internet

of Things

leveraging Edge

Computing

and Deep

Reinforcement

Learning:

The Deep

QoS-Adaptive

Learning

Environment

(DeQALE)

Architecture

Published IEEE Iberian

Conference on

Information

Systems and

Technologies

(CISTI)

International

conference

N

Despliegue

Óptimo de

Aplicaciones

IoT Distribuidas

Published Jornadas de

Ingenierı́a del

Software y Bases

de Datos (JISBD)

National

conference

O

Optimizing the

Response Time

in SDN-Fog

Environments

for Time-Strict

IoT Applications

(Summary)

Published Jornadas de

Ciencia e

Ingenierı́a de

Servicios (JCIS)

National

conference

P

Continued on next page
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Table 3.2: Supporting publications of this dissertation. (Continued)

Optimizing the

Response Time

in SDN-Fog

Environments for

Time-Strict IoT

Applications

Published Jornadas de

Ingenierı́a

Telemática

(JITEL)

National

conference

Q

Joint Optimization

of Response Time

and Deployment

Cost in Next-Gen

IoT Applications

(Summary)

Published Jornadas de

Ciencia e

Ingenierı́a de

Servicios (JCIS)

National

conference

R

Deploying Next

Generation IoT

Applications

Through

SDN-Enabled

Fog Infrastructures

Published PhD Forum of
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Optimizing the Response Time in SDN-Fog
Environments for Time-Strict IoT Applications

Juan Luis Herrera , Jaime Galán-Jiménez , Javier Berrocal , Member, IEEE, and

Juan Manuel Murillo , Member, IEEE

Abstract—The Internet of Things (IoT) paradigm offers ap-
plications the potential of automating real-world processes. Ap-
plying IoT to intensive domains comes with strict quality of
service (QoS) requirements, such as very short response times.
To achieve these goals, the first option is to distribute the
computational workload throughout the infrastructure (edge, fog,
cloud). In addition, integration of the infrastructure with enablers
such as software-defined networks (SDNs) can further improve
the QoS experience, thanks to the global network view of the
SDN controller and the execution of optimization algorithms.
Therefore, the best placement for both the computation elements
and the SDN controllers must be identified to achieve the
best QoS. While it is possible to optimize the computing and
networking dimensions separately, this results in a suboptimal
solution. Thus, it is crucial to solve the problem in a single effort.
In this work, the influence of both dimensions on the response
time is analyzed in fog computing environments powered by
SDNs. DADO, a framework to identify the optimal deployment
for distributed applications is proposed and implemented through
the application of mixed integer linear programming. An evalu-
ation of an IIoT case study shows that our proposed framework
achieves scalable deployments over topologies of different sizes
and growing user bases. In fact, the achieved response times are
up to 37.89% lower than those of alternative solutions and up
to 15.42% shorter than those of state-of-the-art benchmarks.

Index Terms—Fog computing, edge computing, Internet of
Things (IoT), software-defined network (SDN)

I. INTRODUCTION

THE POPULARITY of IoT devices for the general public
has made them ubiquitous. We are surrounded by ev-

eryday objects (things) that are connected to the Internet and
run numerous IoT applications – programs that can interact
with the real world through IoT devices, obtain inputs from
their sensors and change the real world through their actuators.
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This scenario makes IoT applications interesting for different
domains, both general-purpose domains, such as domotics, and
intensive domains, such as industry or healthcare.

The cloud computing paradigm is the most common option
for running these IoT applications [1]. In cloud computing, a
set of powerful servers, generally far away from IoT devices,
carry out the processing, while IoT devices need only to send
their requests to these servers. While a cloud-centric architec-
ture is enough for user-grade, general-purpose applications [2],
a purely cloud-centric architecture may not be enough to meet
the QoS requirements of complex and intensive applications.
Industrial Internet of Things (IIoT) applications such as factory
automation need very low response times [3], while Internet of
Medical Things (IoMT) applications can be very time sensitive
in executing artificial intelligence models [4]. Therefore, the
objective of this paper is to minimize the response time of
intensive IoT applications such as IIoT or IoMT applications.
Cloud computing servers are often far away from IoT devices
and thus may have latencies that may complicate the process
of obtaining a sufficiently short response time.

For this reason, other paradigms such as fog computing or
mist computing, which can be referred to under the umbrella
term fog computing [2], are emerging to support applications
with strict response-time requirements [2]. Fog computing
takes advantage of the computational capabilities of nodes
closer to end devices, as well as nodes of the devices them-
selves, by executing different parts of the IoT applications in
them. This approach makes it is easier to achieve shorter re-
sponse times than those possible by using pure cloud comput-
ing infrastructures. Therefore, in fog computing environments,
which nodes to use and which node should host which parts of
an application are decisions that must be made and affect the
provided response time [5]. The problem of making optimal
decisions, and thus distributing computations optimally, is
known as the decentralized computation distribution problem
(DCDP) [6].

A key element of the DCDP, and one of the main moti-
vations behind fog computing paradigms, is network latency
[5]: the latency from IoT devices to nearby fog devices is
smaller than that to the cloud. Hence, the execution time can
be shortened, which means that minimizing network latency,
through techniques such as routing optimization [7], is key
for correctly solving the DCDP. Software-defined networking,
a paradigm that allows networks to be programmed through
SDN controllers, allows for programmable routing optimiza-

0000–0000/00$00.00 © 2020 IEEE
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tion [8], thus making this latency optimization scalable and
flexible as new devices are added to the infrastructure. In
fact, some proposals make use of multiple coordinated SDN
controllers in fog IoT infrastructures to improve the QoS
of the overall infrastructure [9]. Software-defined networking
allows network controllers to be notified when new devices are
added through discovery protocols [8], and it allows network
controllers to monitor networking and computing devices [8],
gathering performance information from the infrastructure,
which can be used to solve the DCDP.

While the control that SDNs provide allows for the latency
between computing devices to be optimized to a certain extent,
the SDN control latency can also be optimized. SDNs rely
on controllers for operation; therefore, the latency between
SDN switches and controllers affects the latency between any
two devices in the SDN [10]. This implies that if controllers
are placed in a way that minimizes this latency, the latency
between devices in the network will be minimized as well.
The problem of placing the controller optimally is known
in research works as the SDN controller placement problem
(CPP) [10].

Several authors have studied both the DCDP and the CPP
as separate problems [6], [10]–[18], providing partial solu-
tions that consider only one dimension. The DCDP solutions
assume that the network is a static entity that provides a
certain latency, while the CPP solutions assume that the traffic
flows do not change based on the latency achieved by the
network. However, solving each of these problems separately
may not result in sufficient response time optimization for
IoT applications with strict response-time requirements. The
decision of assigning a service to a node in a certain layer
should take into account the optimal network latency, which
depends on the controller placement; additionally, the decision
of where to place the controller should consider the steering of
traffic flows throughout the network, which depends on which
nodes are requesting services and which nodes are providing
them. Therefore, these dimensions affect each other. To fully
optimize the response time of IIoT, IoMT and other intensive
IoT applications, both problems should be solved together
so that their mutual influences and trade-offs can be taken
into account when merging them into a single new problem.
We define the resulting combined problem as the Fog-SDN
deployment problem. To the best of our knowledge, no prior
work has addressed this problem. The main contributions of
this work are as follows:
• A study of the relationship between the DCDP and the

CPP in intensive IoT environments with the objective
of better understanding the trade-offs between them.
Moreover, further motivation regarding the use of SDNs
for service discovery is provided.

• The formalization of optimal microservice deployment
and controller placement (i.e., a combination of the
DCDP and CPP) in a single effort, with the response
time as the objective.

• The proposal of a distributed application deployment
optimization (DADO) framework to contribute to the
solving of the Fog-SDN deployment problem. The DADO
framework includes an implementation based on mixed

integer linear programming (MILP) that makes it suitable
for design time optimization. Moreover, its combination
of the DCDP and CPP in a single optimization solution is
novel compared to state-of-the-art optimization solutions.

• The experimental evaluation of DADO in an IIoT sce-
nario, focused on the scalability of the solution, the trade-
off between latency and the response time, and the ability
to limit the tolerable delay.

This paper is structured as follows: Sec. II offers the
motivation for combining the CPP and the DCDP into the
Fog-SDN deployment problem through an illustrative IIoT
example. Sec. III proposes DADO, a solution to the Fog-
SDN deployment problem. Sec. IV evaluates DADO using
a setup based on the previously presented example. Sec. V
presents related work. Finally, Sec. VI concludes the paper
and highlights future challenges.

II. BACKGROUND

To illustrate the importance of combining the CPP and the
DCDP, a particular case study scenario is presented in this
section.

A. Scenario: Fog IIoT factory

The scenario presented in this section is based on the en-
vironment proposed in [12] since this work provides not only
an IIoT-based fog computing scenario but also enough details
about the infrastructure with which to apply and evaluate our
solution, DADO. In this scenario, a fog infrastructure based
on an SDN is deployed in a factory to transform it into a
cyber-physical smart factory by leveraging the IIoT [3]. An
IIoT device is installed in each robot; initially, only 10 robots
are part of the smart factory, but this system is expected to
grow over time if the company decides to invest further into
the transformation. Ten fog servers are placed in the same
factory to provide the IIoT devices with services. Each fog
server has a 800 MHz CPU and 1 GB of RAM [12] and is
directly connected to an SDN switch.

In this factory, an SDN is leveraged to provide service
discovery due to its properties as a modular, independent
and transparent solution [8]. In fact, an SDN is the quickest
mechanism for implementing service discovery by leveraging
overlay networks [19]. Because SDNs need at least one
controller, the factory uses the classic SDN control model
and co-locates the controllers with SDN switches [10]. Fig.
1 shows this cyber-physical IIoT system [3], divided into
three layers. The physical layer embodies the physical part
of the system, while the cyber part is divided into two layers:
the networking layer, which contains the SDN switches and
controllers, and the computing layer, which contains the IIoT
devices and fog servers.

In this infrastructure, an IIoT application is to be deployed
to monitor and manage the smart factory continuously by
gathering the statuses of the robots through the sensors
connected to the IIoT devices and processing them in fog
servers to provide commands accordingly. This application
was designed using a microservice architecture (MSA) and
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Figure 1: The presented scenario with the three involved
layers.

therefore comprises different independent services that per-
form a certain type of processing, the functions of which
can be requested separately or can be combined through
workflows. Each microservice takes 100, 500 or 1000 MCycles
to run [12] depending on its computational complexity. Each
workflow comprises the execution of a certain functionality,
chaining between one and six microservices depending on the
number required to perform the functionality. The response
time is a combination of the execution time (i.e., the time
it takes to execute the microservices of a functionality) and
latency (i.e., the time it takes for one computer to communicate
to another in a network).

Fig. 2 shows how the locations of the microservices and
SDN controllers influence the response time: a sample work-
flow is shown, in which a command request functionality is
performed by chaining a microservice that aggregates informa-
tion from multiple sensors (M1) with another microservice that
analyzes the aggregated information to issue a corresponding
command (M5). In this figure, the box with the OpenFlow
logo represents the SDN controller, the dashed lines represent
SDN control messages and the solid lines represent application
messages. In Fig. 2a, M1 is located in fog server S1, and M5
is located in fog server S2. When the leftmost IIoT requests
a command, its message is sent to the SDN, with M1 as
the destination address. The SDN switch is unaware of M1’s
location; thus, it asks the SDN controller where M1 can be
found through an OpenFlow packet-in message to perform
service discovery. The SDN controller answers with a packet-
out message, and the switch routes the message to S1. Once
the data are aggregated on S1, the message requesting M5
is sent to the network to be analyzed. Again, the SDN switch
must request service discovery to find M5. After the packet-out
message arrives, the message is routed to S2. Finally, S2 issues
the command and sends it back to the IIoT device through the
network. In this exchange, messages must be sent 23 times
through the network, with each new transmission increasing
the delay due to latency. Fig. 2b shows a different strategy,
in which the IIoT device itself aggregates the information and
the SDN controller is placed closer. Because of these changes,
the IIoT device needs only to request M5. Because the SDN
controller is placed on the same SDN switch as that to which
the message is sent, service discovery is performed locally
with minimal latency. S1 analyzes the aggregated information

and sends back the command as previously. This new strategy
changes the number of message transmissions to four, thus
reducing the overall execution time. Therefore, two decisions
must be made to deploy this application optimally: i) in which
host to execute each microservice in the architecture and ii)
in which switch or switches to place the SDN controllers.

B. DCDP: Placing the microservices

The solution to the DCDP involves making the first de-
cision: selecting which microservices should run in the IIoT
devices themselves and which microservices should run in the
fog server. As shown in Fig. 2, while IIoT devices are not
as powerful as fog servers, executing some microservices in
them – especially those that are lightweight and requested very
often – allows parts of the workflows to be executed locally,
thus completely ignoring the network latency. The difference
is in how much faster these services can be executed when
they are placed in the fog and how large the latency between
the IIoT devices and fog servers is. If the latency to the fog
servers is larger than the difference in execution time, then it
is worthwhile to execute the microservices locally; however,
if the latency is smaller than this difference, then the response
time will be shorter if they run on fog servers. Therefore,
the choices for solving the DCDP are inherently related to
network latency. Thus, to optimize the response time through
the DCDP, the network latency should be optimized first.

C. CPP: Placing the SDN controllers

Solving the CPP is related to the other decision in the
scenario: where to place the SDN controllers. The placement
of the SDN controller plays a key role in control latency
and, by extension, is related to the overall network latency
[10]. Controller placement is strongly related to the network
topology but also to how traffic flows are steered through the
network [18]: while topology-wise, a node may seem optimal
for controller placement, it may not be optimal if that network
zone is not frequently used. This case is shown in Fig. 2b,
in which the controller is placed on the leftmost part of the
network because traffic flows are steered through that zone.

In this scenario, traffic is generated by the IIoT application
when a workflow cannot be executed fully locally; in these
cases, one host sends a message with the input data of the
microservice to the host that executes it. Once the microservice
is executed, the output data of the microservice are sent back.
The execution of M5 in Fig. 2b is a graphical example of
this. These messages generate two traffic flows: one to send
the input data and another one to send the response. Thus,
the decisions made while solving the DCDP may affect the
CPP: the choice to execute a microservice locally removes
traffic flows, which may make its area less suitable for con-
troller placement, while the choice to execute a microservice
remotely adds traffic flows, which may make that area more
suitable for controller placement. Suboptimal decisions in
solving the DCDP may lead to suboptimal decisions in solving
the CPP. Thus, to optimize the response time through the CPP,
microservices should be placed in a way that optimizes the
response time.
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(a) Fog deployment, suboptimal controller placement. (b) Mist and fog deployment, optimal controller placement.

Figure 2: Workflow execution with two different deployment strategies.

D. Computing and networking trade-off

Considering the response time as the QoS metric to be
optimized in a deployment, such as in the scenario presented in
Sec. II-A, involves considering the inherent relationship and
trade-off between computing and networking. This relation-
ship partially comes from the characteristics of scenarios in
which the network is used to transmit computing-related data.
To optimize the performance, the network can be optimized
through the CPP, i.e., transmitting information with minimal
latency guarantees that computing can occur as soon as
possible. However, if the destinations of this information are
the slower hosts of the infrastructure, then the response time
will be slowed down by the computation being performed
on those hosts and, thus, still will not be optimal. Another
approach for response time optimization could be to optimize
how computing is divided and carried out through the DCDP.
However, the higher latency of an unoptimized network would
again slow down the response time. Therefore, treating each of
these layers separately can lead to suboptimal solutions due to
the lack of a complete view of the infrastructure environment
and context. As Sec. II-B and Sec. II-C show, the solution of
the CPP is required to solve the DCDP, and vice versa.

Thus, the relationship and trade-off between computing and
networking generate a bootstrapping problem: to optimize the
network layer through the CPP, the computing layer should
be optimized first through the DCDP, but to optimize the
computing layer through the DCDP, the network should be
optimized first through the CPP. Considering them separately
implies possibly making suboptimal decisions because of these
behavior differences, such as those shown in Fig. 2a. To
avoid potentially obtaining a suboptimal response time for
the IIoT application, both computing and networking should
be optimized at the same time to avoid this bootstrapping
problem.

III. DADO FRAMEWORK

In this section, the DADO framework is described. It
is aimed at mitigating the issues raised by the Fog-SDN

deployment problem. Taking as input statistics related to the
computational load of microservices, the computational power
of fog or cloud servers, the latency and capacity of links,
the workflows used by the requested functionalities, and the
network topology, DADO is able to provide as output infor-
mation on the placement of SDN controllers, the placement
of microservices at hosts and the paths taken by the traffic
flows. Moreover, this infrastructure description can be obtained
by leveraging the SDN [8]. Through a combination of all
these metrics, the optimal response time is provided. DADO
uses at its core a mixed integer linear programming (MILP)
formulation, as presented in the following.

DADO is aimed at optimizing the response time in fog
architectures, as well as in hybrid ones, for IoT applications
based on an MSA. Thus, the infrastructure will contain
SDN switches, IoT devices, fog servers and cloud nodes.
IoT devices, as well as fog and cloud servers, can execute
parts of the logic of the application, generate traffic and
consume this traffic – they are hosts. SDN switches have a
completely different behavior, forwarding traffic by applying
routes calculated by their assigned SDN controller. Therefore,
let the infrastructure be represented as a graph G = {V,L}.
Let H be a set of hosts and S be a set of SDN switches so
that the set of vertices V = H ∪ S. Let L be the links that
connect the different elements of the infrastructure.

Not all of these hosts have the same capabilities. Gener-
ally, fog servers are more powerful than IoT devices, with
cloud servers being the most powerful. This power can be
represented by the host’s speed in executing microservices,
as well as by the maximum amount of services the host can
execute. Thus, let a host h ∈ H be a tuple h =< Ph, rh >,
with Ph being the computational power of the host (measured
as its clock speed in Hz) and rh being the host’s total RAM,
measured in bytes. If other applications or services are running
on the host, then Ph is the computational power of the host
not being used for other applications or services (i.e., it can
be used by the IoT application) and rh is the host’s remaining
free RAM.
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In this infrastructure, the links have two essential limita-
tions. First, the links affect latency since the transmission of
data over them is not instantaneous. Second, the links do not
have infinite capacity and therefore cannot be used to transfer
an unlimited amount of data. Thus, let a link lij ∈ L, with i
being the source of the link and j being its destination, be a
tuple lij =< δij , θij >, with δij being the link’s latency in
seconds and θij being the link’s maximum capacity in bytes
per second. If the link is also being used to transmit data
that are unrelated to the application being optimized, then θij
references only the capacity that is not in use by other traffic.

The IoT applications that DADO supports have an MSA and
can be seen effectively as a set of independent microservices.
We therefore have a set of microservices M , with each
microservice m ∈M being a tuple m =< ξm, Im, Om, rm >,
with ξm as the workload of executing the microservice (mea-
sured as the number of CPU cycles the microservice requires
to fully execute), Im as the size of the input data for the
microservice in bytes, Om as the size of the microservice’s
output data in bytes and rm as the amount of RAM the
microservice requires in bytes.

The execution model of DADO is based on workflows.
When an IoT device requests a certain functionality, this
functionality is provided by a workflow of one or more
microservices.

Where these microservices run depends on the solution
DADO generates. If the first microservice, or two consecutive
microservices, is run on the same host, then the network is
not used. If the microservice does not run on that device,
then the SDN is used to route the request to a host that
will run the service. Let W be a set of workflows, with
each workflow w ∈ W being an ordered set of tuples
w = {c1, c2, ..., c|w|}. Each tuple ci must have the exact same
format and values as those of one of the microservices in M
since each of these tuples represents the microservices that
are chained through the workflow to perform a functionality.
Therefore, with a slight abuse of notation, we can say that
w = {c1, c2, ..., c|w|}; ci ∈M∀i ∈ [1, |w|]. Let also WS(w, h)
be a binary function equal to 1 if workflow w is started by host
h and 0 otherwise. To execute the workflow, the data would
have to flow from whatever host starts the workflow to a host
that executes c1, from there to the one that executes c2, and
so on. Moreover, let ∆w;w ∈ W be the maximum tolerable
delay of the workflow in seconds.

We also propose the usage of the classic SDN control model
[10]. Each controller can be co-located with an SDN switch in
the network s ∈ S (i.e., the controller and the SDN switch are
in the same place). Each SDN switch is mapped to a controller
so that the switch communicates with the controller through
in-band traffic. Thus, let ψ be the maximum number of SDN
controllers to be placed, and let Ω be the size of the control
packets sent from each SDN switch to the controller.

After these parameters have been defined, we must set
different different decision variables, which must be changed
to optimize the deployment.

In the computing plane, let z be a three-dimensional binary
matrix, in which zwhca is 1 if host h is running the microservice
indexed as ca of workflow w and 0 otherwise. This allows

DADO to locate microservices in certain hosts. Let f be a
five-dimensional binary matrix, in which fhwca

ij is 1 if the
traffic host h generated as a consequence of the microservice
indexed as ca of workflow w is routed through the link lij
and 0 otherwise. This allows DADO to route the input and
intermediate output data of the microservices through the
network. Let f ′ be a four-dimensional binary matrix, in which
f ′hwij is 1 if the traffic host h generated in response to workflow
w is routed through the link lij and 0 otherwise. This allows
DADO to route the final output data of the microservices.

In the networking plane, let x be a binary vector in which xs
is 1 if an SDN controller is set up on switch s and 0 otherwise.
This allows DADO to place SDN controllers. Let y be a
binary matrix in which yss′ is 1 if SDN switch s is mapped
to controller s′ and 0 otherwise. This allows DADO to map
SDN controllers and switches. Let cf be a three-dimensional
binary matrix, in which cfsij is 1 if the control traffic switch s
generated is routed through the link lij and 0 otherwise. This
allows DADO to route the control data between SDN switches
and their mapped controllers.

We must also establish constraints that determine which
values are allowed for each variable under different conditions
and how changing these values affects the overall deployment.
We first assume that a microservice for a certain workflow can
be executed only in a single host.

∑

h∈H
zwhca = 1;∀w ∈W,a ∈ [1, |w|] (1)

Then, each host cannot run unlimited microservices but only
as many as its memory allows.

∑

w∈W

|w|∑

a=1

zwhcarca ≤ rh;∀h ∈ H (2)

It is impossible to have more controllers than the maximum
amount.

∑

s∈S
xs ≤ ψ (3)

A switch can be mapped to only one controller at a time.
∑

s′∈S
yss′ = 1;∀s ∈ S (4)

In addition, it can be mapped to a controller only if that
controller is actually placed.

yss′ ≤ xs′ ;∀s, s′ ∈ S (5)

Flow variables should be controlled in aggregate, according
to the classic flow constraints. When we account for microser-
vice data, we must consider three cases: the first microservice
of the workflow (c1), the response of the workflow and the
general case for the rest. In the case of c1, it can be stated that
i) traffic is generated only by the host that starts the workflow,
unless c1 is mapped to the same host (in that case, it will be
executed locally), and that ii) traffic is consumed by the host
that has c1 mapped, unless it is the same host that starts the
workflow. Formally:
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∑

j∈V
fhwc1
ij − fhwc1

ji =





0 if i ∈ S

WS(w, h)(1− zwic1) if i = h

−WS(w, h)zwic1 otherwise.

∀i ∈ V, h ∈ H,w ∈W

(6)

In the case of the response, we can state that i) traffic is
generated only by the host with the last microservice mapped,
unless it is mapped to the host that started the workflow,
and that ii) traffic is consumed by the host that started
the workflow, unless it has the last microservice mapped.
Formally:

∑

j∈V
f ′hwij − f ′hwji =





0 if i ∈ S

zwhc|w|(1−WS(w, i)) if i = h

−zwhc|w|WS(w, i) otherwise.

∀i ∈ V, h ∈ H,w ∈W

(7)

We can derive a general case. Traffic is generated by the
host that has the previous microservice mapped, as long as
the current microservice is not mapped to that host, and it
is consumed by the host that has the current microservice
mapped, as long as that host does not have the previous
microservice mapped.

∑

j∈V
fhwca
ij −fhwca

ji =





0 if i ∈ S

zwhca−1
(1− zwica) if i = h

−zwhca−1
zwica otherwise.

∀i ∈ V, h ∈ H,w ∈W,a ∈ [2, |w|]

(8)

This formulation contains a multiplication of possible deci-
sion variables, which would make the problem nonlinear. We
can use some linearization techniques to solve this problem.
For this purpose, we create the following new variables:
z′iwhca

= zwhca−1
(1 − zwica), z′′iwhca

= zwhca−1
zwica . For them to

have these values, they must follow these constraints:

− zwhca−1
+ z′iwhca ≤ 0 (9)

− 1 + zwica + z′iwhca ≤ 0 (10)

zwhca−1
+ 1− zwica − z′iwhca ≤ 1 (11)

− zwhca−1
+ z′′iwhca ≤ 0 (12)

− zwica + z′′iwhca ≤ 0 (13)

zwhca−1
+ zwica − z′′iwhca ≤ 1 (14)

(8) can now be rewritten as a linear constraint:

∑

j∈V
fhwca
ij − fhwca

ji =





0 if i ∈ S
z′iwhca

if i = h

−z′′iwhca
otherwise.

∀i ∈ V, h ∈ H,w ∈W,a ∈ [2, |w|]

(15)

The flow constraints for the control flows (i.e., the flows
of the SDN controllers) are similar. Flow is produced by
switches and received by SDN controllers, except for co-
located controllers and switches. We consider in-band control
traffic; i.e., these control flows are routed through the same
network that the application traffic passes through, and no
separate links exist specifically for control flows.

∑

j∈V
cfsij − cfsji =





0 if i ∈ H
1− ysi if i = s

−ysi otherwise

∀i ∈ V, s ∈ S

(16)

With these flow constraints in place, we must also account
for the maximum link capacity:

∑

h∈H

∑

w∈W
[(

|w|∑

a=1

fhwca
ij Ica)+(f ′hwij Ocn)] +

∑

s∈S
[cfsijΩ] <= θij

∀lij ∈ L
(17)

A constraint should also be added to consider the maximum
tolerable delay for each workflow. To assess this delay, we
must consider both the computing time and latency to calcu-
late it. To simplify this computation, the function SW (i) is
defined, which is 1 if i ∈ S and 0 otherwise.

∑

h∈H

∑

lij∈l
(

|w|∑

a=1

(
zwhcaξca
Ph

+fhwca
ij δij) + f ′hwij δij

+SW (j)
∑

lk,m∈L
cf jkmδkm) ≤ ∆w∀w ∈W

(18)

The model also requires an objective function to determine
which metric must be optimized by changing the values of
the future decision variables. In our case, the objective is the
average response time of all workflows. Formally, the objective
function is represented by (19).

∑

h∈H

∑

lij∈l

∑

w∈W
(

|w|∑

a=1

(
zwhcaξca
Ph

+fhwca
ij δij) + f ′hwij δij

+SW (j)
∑

lk,m∈L
cf jkmδkm)

(19)

(19) can be separated into three terms, as shown above.
The first term is the execution time, which depends on the
workload of each microservice and the power of the host on
which the microservice runs. The second term is the network
latency, which depends on the latency of the links used to
transmit information. The third term is the control latency of
the path taken by each workflow.

Therefore, the final MILP problem is formulated as mini-
mize (19) subject to (1-7) (9-18).
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The proposed DADO formulation is meant to be integrated
into the development process of time-strict IoT applications.
Concretely, the current formulation of DADO is designed to
be implemented as part of the design phase. System and
network administrators are expected to provide DADO with
the infrastructure’s definition, either factual or planned, as a
graph containing the parameters defined in the formulation
(e.g., link latency, host computational power, link capacity or
number of SDN controllers). Then, developers should provide
the characteristics of their IoT application (e.g., the number of
microservices, definitions of the workflows, tolerable delays or
microservice specifications). The infrastructure description, as
well as the application description, are the inputs to the DADO
formulation, which should be implemented using an automatic
solver such as the Python MIP library [20]. The output of
the formulation gives different information to each participant:
network administrators can see where SDN controllers are to
be placed, how they should be set up or which routes are more
congested. System administrators know which nodes are going
to be loaded the most, as well as where each microservice
should be deployed. Finally, developers are provided infor-
mation about the expected response time or if specific parts
of the infrastructure should be scaled up to achieve the target
response time (e.g., more powerful servers, faster links or more
SDN controllers).

IV. PERFORMANCE EVALUATION

In this section, a setup based on the scenario presented in
Sec. II-A is shown, and tests are conducted using this setup to
evaluate the performance of DADO and compare it with the
performance of other deployment strategies.

A. Evaluation setup

In Sec. II-A, we presented a well-defined scenario that is our
basis for evaluating DADO, the details of which are taken from
[12]. Additionally, we estimated values for the parameters
that were not reported in the original case study, such as the
number of SDN controllers or the length of functionalities.
Finally, in [12], IIoT devices are considered to be unable to
compute. However, to evaluate the performance of DADO in
environments where mist layer devices are available for de-
ployment, we equip the IIoT devices with devices such as the
Arduino Pro Portenta H7 [21], a microcontroller designed for
IIoT applications, and the inexpensive single-board computer
Raspberry Pi Zero [22], which enables IIoT devices to act as
complete computers at a relatively low cost.

We test scenarios that allow evaluations of the scalability
and performance of DADO under different conditions. Specif-
ically, we consider microservices that took 100, 500 or 1000
MCycles to run, placing between 1 and 4 SDN controllers,
with each device requesting between 1 and 4 functionalities.
Each functionality workflow can be 1, 2, 3 or 6 microservices
long, and the hardware specifications of the IIoT devices stated
above are considered. The topologies considered are labeled by
their sizes as small (10 IIoT devices, 10 fog servers), medium
(25 IIoT devices, 15 fog servers) and large (50 IIoT devices, 25
fog servers), also based on [12]. To analyze the optimization

achieved by DADO and the capacity to set tolerable delays,
we set the maximum tolerable delay for all workflows to 4
seconds. In general, the evaluation is performed by setting a
default value for all parameters, varying the values of one or
more parameters and testing over the three topologies. The
default values used are those defined in our initial case study:
microservices of 500 MCycles, 1 SDN controller, 2 requests
per device, noncomputing IIoT devices and 1-microservice-
long functionalities. These values are also shown in Table I.

Table I: Evaluation parameters

Parameter Values Unit
Microservice workload 100, 500, 1000 MCycles
Number of SDN controllers 1, 2, 3, 4 Controllers
Requests per device 1, 2, 3, 4 Requests
Functionality length 1, 2, 3, 6 Microservices
Topology size 20, 40, 80 Nodes
Maximum tolerable time 4 Seconds

IIoT device hardware
Noncomputing,

Arduino Pro Portenta H7,
Raspberry Pi Zero

The evaluation has several objectives: We investigate the
validity of DADO and perform tests to show the scalability
of DADO as IIoT devices request more functionalities and
its computational scalability. This demonstration is crucial,
since a company may not deem the investment worthwhile if
the response time increases significantly as the system grows.
Another key objective is to evaluate the trade-off between
latency and response time, to determine if DADO selects a
solution with higher latency and reduced execution time only if
said solution results in a lower overall response time. We also
test whether the tolerant delay constraint is useful for setting
a maximum delay for the workflows. Moreover, we compare
DADO against alternative deployment strategies to evaluate
the reduction in response time. Since routing is also involved,
we determine whether higher link loads affect the scalability
of the proposal. Finally, we evaluate the optimization time
required by the computation of DADO.

B. Evaluation results

The results presented in this section are acquired by com-
bining the solutions obtained by DADO and the values for the
parameters previously discussed and calculating the values of
the different metrics that are shown to analyze the expected
behavior of DADO under different conditions.

In Fig. 3, the scalability of the solution is evaluated by
testing the deployment of applications in all three topologies
with increasing numbers of microservices, as well as by
increasing the number of functionalities requested. These tests
are performed with a single SDN controller, microservices
of 500 MCycles and noncomputing IIoT devices. We draw
four major conclusions from these results: First, the solution
is scalable. When the number of requests per device increases,
the response time remains stable. This result implies that
the solution provides a good scaling and therefore is able to
maintain the response time. The second conclusion, however,
is that the solution can scale only as long as the architecture
has enough resources to deploy the expected applications;
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(a) Small topology.
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(b) Medium topology.
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(c) Large topology.

Figure 3: Request scalability analysis.
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Figure 4: Computational scalability analysis in the small
topology.

the points labeled Infeasible are the estimated positions for
parameter values that require more resources (e.g., memory
or networking capacity) than the architecture has available,
rendering DADO unable to produce solutions. Third, the
functionality length (in microservices) is very relevant to the
response time, mainly because a functionality workflow with
more microservices implies a heavier computational load (e.g.,
a 2-microservice-long functionality carries twice the computa-
tional load of a single-microservice-long functionality) but also
because there is an extra cost in latency if these microservices
are not executed on the same host. Finally, as the IIoT
devices-per-fog-servers ratio rises in larger topologies, fewer
microservices per request can be supported, but the results are
very similar under all topologies. This also applies to the rest
of the performed analyses; therefore, for the remainder of the
paper, we show the results for a single topology, while the rest
of the results are provided as additional content. In summary,
DADO provides scalable solutions to deploy applications as
long as the architecture has sufficient capabilities to manage
the given application.

Fig. 4 shows the scalability of the application for com-
putational load changes in the small topology. These tests

are performed with a single SDN controller, 2 requests per
device and noncomputing IIoT devices. First, the slope is
steeper when functionalities are longer, which implies that
the greater the number of microservices that are executed
on a functionality workflow, the longer it takes to execute
said workflow, responding to the nature of this service com-
position (e.g., a single-microservice-long functionality with
1 GCycle microservices has to execute 1GCycle, whereas a
2-microservice-long functionality would have to execute 2
GCycles). However, the relationship is not directly propor-
tional: while a single-microservice-long functionality with 1
GCycle microservices and a 2-microservice-long functionality
with 500 MCycle microservices have the same computational
workload, the response time of the shorter functionality is
slightly lower, by 6 ms. This outcome occurs because of the
communication latency, since there is a communication delay
between each of the microservices in the functionality work-
flow that does not exist for a single microservice. In addition,
while shorter functionalities have lower response times, longer
functionalities can be parallelized, and their microservices can
be used for other requests, thus compensating for that slight
overhead. Overall, DADO provides a solution that is able to
minimize the effect of latency in the response time.

Fig. 5 shows the analysis of the scalability of the application
under different topologies. These tests are performed with a
single SDN controller, 1 request per device, microservices of
500 MCycles and noncomputing IIoT devices. These results
further prove the scalability of the solutions provided by
DADO, with only a slight increase in response time as the
topology size doubles or even triples. The main conclusion
to draw from the results is that the IIoT application that is
to be implemented, as explained in Sec. II, can be scaled
into a larger network without causing a significant increase
in response time and thus that system growth will not result
in a serious QoS decrease.

Fig. 6 presents an analysis of the effect of adding SDN
controllers on the latency and response time in the small
topology. The solid lines show the response times and refer to
the leftmost Y-axis, while the dashed lines show the latency
and refer to the rightmost Y-axis. These tests are performed
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Figure 5: Comparison of response times under different
topologies.
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Figure 6: Latency and controller analysis in the small topology.
Solid lines show the response time, and dashed lines show the
latency.

with 2 requests per device, microservices of 500 MCycles
and noncomputing IIoT devices. When short functionalities
(1 microservice per functionality) are considered, latency
does not decrease steeply when a single controller is added.
Nonetheless, the decrease becomes steeper as more controllers
are added. For longer functionalities (2 microservices per
functionality), latency rises when there is an even number of
controllers: reaching 0.8 ms in the case of 2 controllers and 0.4
ms in the case of 4. Despite this phenomenon, latency declines
steeply when odd numbers of controllers are considered, with
a minimum of 17.6 ms in the case of 3 controllers. On even
longer functionalities (3 microservices per functionality), the
latency decreases almost linearly, an average of 2.4 ms per
controller, as the number of controllers increases. However,
the response time decreases slightly and steadily as controllers
are added in every case. In the case of 2 microservices per
functionality, we find that the response time decreases for 1
ms and 0.4 ms for 2 and 4 controllers, respectively. This result
is interesting because the decrease in response time comes
with an increase in latency of a similar amount. The essential
conclusion is that the effects of adding SDN controllers
over latency heavily depend on how traffic flows are steered,
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Figure 7: Performance benchmark of DADO in the medium
topology.

providing further indication that the computing and networking
dimensions affect one another’s QoS. Furthermore, the latency
rises for two-microservice-long functionalities as a result of a
trade-off – DADO chooses a deployment with higher latency
because it decreases the execution time and minimizes the
overall response time, something that would not be as simple
if both dimensions were considered separately. Thus, DADO
is able to find the solution to this trade-off between execution
time and latency, which not only enables a smart computation
distribution scheme, offloading computation when latency is
low enough for it to be worth it, but also enables smart
controller placement that considers and complements these
offloading decisions.

In Fig. 7, the performance of DADO is compared against
that of other solutions in the medium topology. Concretely,
DADO is compared with deploying the application directly
in the fog and placing the SDN controllers in the nodes
with the highest betweenness centrality (HBC) and highest
closeness centrality (HCC). Moreover, the ModuleMapping
solution, proposed in [23], is used as a benchmark. Fog
deployments with the HBC and HCC are performed by
matching microservices with fog servers in a round-robin
fashion, making sure that the total memory of the fog servers
is never surpassed. ModuleMapping, on the other hand, is a
microservice placement method for IoT applications in fog
environments, created specifically to serve as a benchmark.
Due to the lack of methods that jointly include microservice
deployment, routing optimization and controller placement,
the focus has been placed on service placement in the case
of ModuleMapping. Thus, in all three cases, the routing is
still optimized through the formulation proposed by DADO.
These tests are performed with a single SDN controller, 2
requests per device, 2-microservice-long functionalities and
microservices of 500 MCycles on different IIoT devices.
These values allow a test focused on microservice deployment
while maintaining similar values to those of previous tests.
Focusing on the HBC and HCC, the analysis clearly shows
that DADO provides shorter response times and is able to
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Figure 8: Maximum tolerable delay compliance of DADO in
the small topology.

speed up the response time by up to 37.89%. The largest
differences between the HBC, the HCC and DADO appear
for the most powerful device, Raspberry Pi, because of the
hybrid deployment capabilities of DADO. While the HBC and
HCC solve the DCDP only on the fog layer, DADO uses all
available layers to optimize the response time. This outcome
is clearly shown on Arduino hardware: DADO refuses to
deploy in this type of device due to the fact that the derived
slow execution would increase the response time. Nonetheless,
hybrid deployment is not the only factor of DADO enhance-
ment, as ModuleMapping also features this capability. Moving
to ModuleMapping, we also find that DADO consistently
obtains lower response times. The largest speed-up is found
with the Arduino devices, in which the difference is approx-
imately 198 ms. While ModuleMapping considers only the
capabilities of devices and microservices for the deployment,
DADO has a holistic view of the architecture, network and
application. Therefore, it is able to change the placement of
SDN controllers and the paths taken by traffic to shorten
the response time. Moreover, network latency is considered
to deploy different microservices in a single workflow. We
conclude that DADO outperforms the considered benchmarks.

Fig. 8 shows the impact of maximum tolerable delays in the
solutions DADO yields. The solid light green line represents
the maximum tolerable delay, while each dot represents a
successful deployment, and a cross indicates deployments that
could not fulfill the delay. These tests are performed with a
single SDN controller, 1 request per device and noncomputing
IIoT devices. Most configurations of microservices per func-
tionality and microservice power can be deployed, but for 6-
microservice-long functionalities and 1 GCycle microservices,
DADO determines that it is infeasible to satisfy the constraint.
If it were to be relaxed, the response time of the workflows
would be at the point indicated by the cross, 7.5244 seconds,
almost double the defined maximum tolerable delay. There-
fore, because of the delay constraint, DADO indicates that
the delay cannot be met without scaling up the computational
power.

In Fig. 9, the empirical CDF of the link load in the medium
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Figure 9: Empirical CDF of the link load in the medium
topology.

Table II: Multivariate analysis of the response time.

Coefficient Std. Error P-value
Intercept 1.2276 0.272 2.3 · 10−5

Topology size 0.0002 0.003 0.935
SDN controllers -0.0163 0.052 0.757
Requests per device -0.0051 0.069 0.941
Functionality length 0.6503 0.046 2.5 · 10−23

Cycles per microservice -1.1725 0.091 3.3 · 10−21

IIoT device hardware -0.3071 0.171 0.077

topology is depicted. These tests are performed with a single
SDN controller, 2 requests per device, 1-microservice-long
functionalities, noncomputing IIoT devices and microservices
of 500 MCycles. The main conclusion to draw from these
results is that there is a directly proportional relationship
between the number of requests per device and the link load.
If one request per device is considered, all links present a
load below 46%. If more requests are made, the higher bound
rises to 91.42%. This increase comes from the fact that, from
two requests onward, at least one fog node is always fully
loaded. Therefore, more traffic flows need to reach it through
its unique link, which results in link load increase. Another
interesting result is that the majority of the links are not heavily
loaded: the median load is approximately 11.42% for one
request, 22.85% for two requests, 34.28% for three requests
and 22.85% for four requests, all of which are well below
50%. Finally, we determine that the paths of traffic flows are
all 2 hops long. This result implies that the workflows are
launched, executed and returned back to the source IIoT node.
Thus, DADO is scalable networkwise as well.

To statistically validate the results described above, we
performed a multivariate analysis evaluating the impact of
a set of parameters on the response time, which is set as
the dependent variable. Table II shows the results of this
analysis. The independent variables are topology size (the
number of nodes), the number of SDN controllers, the number
of requests per device, the length of functionalities, the number
of cycles per microservice and the type of IIoT hardware as
a binary variable (0 for noncomputing and Arduino, 1 for
Raspberry Pi). The R2 coefficient of this analysis is 0.841.
This analysis indicates that the size of the application, mainly
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Figure 10: Average optimization times of DADO.

expressed through the length of the functionalities and the
cycles per microservice, is the most statistically significant
variable for the response time. However, they are bound to be
in balance: to reduce the cycles per microservice, the number
of microservices per functionality must be increased, increas-
ing the microservice length and likely adding overhead. To
shorten a functionality, different microservices can be merged
into a single microservice, but the resulting microservice is
heavier (i.e., more cycles per microservice) and often requires
more memory. Other interesting conclusions can be extracted
from the coefficients of each variable, which explain how the
response time increases or decreases as the coefficients are
modified (e.g., adding a controller reduces the response time
to 0.0163 s).

More conclusions can be drawn from the overall results of
the performance analysis, especially related to implementing
DADO in real scenarios. First, DADO is able to identify when
an infrastructure needs to scale by labeling a deployment as
infeasible. In our experiments, most scalability issues were
related to a lack of computing power to run all the required
microservices. Moreover, the evaluation shows that the main
bottleneck for performance in this case study is computa-
tional power, since the infrastructure does not contain very
powerful servers. However, we believe that this bottleneck
is infrastructure-specific and may even be application-specific
(e.g., an application with light computing requirements but
large amounts of data may be limited by the network). In
addition, DADO can be used to analyze the computational
scalability, as reported in Fig. 4, and the performance gains
from the addition of controllers, as shown in Fig. 6, which
serves as a method for finding the specific bottleneck in each
situation and planning the infrastructure and deployment more
effectively.

In Fig. 10, the average optimization times for DADO are an-
alyzed in all three topologies. These tests were conducted with
a single SDN controller, 1-microservice-long functionalities,
noncomputing IIoT devices and 500 MCycle microservices.
The main outcome from this analysis is the fact that the
response time exponentially increases with the topology size.
Optimizing smaller topologies takes between 12 and 73 sec-
onds, whereas optimizing the medium topology takes between

381 and 1041 seconds and optimizing the larger topology
requires between 4664 and 20982 seconds. Moreover, the
more requests per device there are, the more time is required
to optimize. This phenomenon is due to the fact that each
request requires new microservices to be deployed and new
traffic flows to be routed, thus generating a larger problem.
Furthermore, the impact of these new microservices and traffic
flows needs to be considered to optimize the rest of the
requests. Therefore, the MILP solution for DADO is mainly
suitable during the design time, and it can be leveraged only
during the execution time in small topologies, where it can be
optimized within seconds.

Since the Fog-SDN deployment problem is a combination
of the DCDP and the CPP, both of which have been proven
to be NP-hard [10], [13], and the combination of any given
NP-hard problem with another problem is, by definition, also
NP-hard, the Fog-SDN deployment problem is also NP-hard.
This NP-hardness is reflected in the limitations of DADO.
The MILP solution of DADO can be feasibly applied only to
infrastructures with under 300 nodes. In larger infrastructures,
the formulation indicates that nearly 18 exabytes of memory
would need to be allocated. Furthermore, with the current
implementation of DADO, adapting the deployment to changes
in the environment implies re-running the proposed solution
from the beginning due to the characteristics of the MILP
version. This makes the MILP version of DADO suitable
for design-time optimization, as there are no strict timing
limitations on the optimization time. As future work, we plan
to add heuristic solutions to DADO. These heuristics will allow
DADO not only to be executed periodically in short loops
but also to reuse previous solutions as the basis for further
optimization, enabling DADO to adapt the deployment to new
conditions over time.

V. RELATED WORK

In an attempt to shorten response times in different ap-
plications, researches are studying fog computing paradigms
both to apply these paradigms and to standardize them.
Yousefpour et al. [2] surveyed the different cloud and fog
computing paradigms, providing insights into their similarities
and differences. Though in this paper, we evaluate DADO
in a hybrid fog and mist computing scenario, DADO is
designed to optimize deployments that make use of other fog
computing paradigms as well, such as pure fog computing.
Bellavista et al. [5] surveyed different proposals that leverage
the fog computing paradigm for use in IoT applications as an
approach to support the strict response-time requirements of
some of these applications. However, these proposals mostly
involve different platforms that make use of fog computing and
provide services such as communication, security or resource
virtualization that simplify the deployment of IoT applications
in fog environments; most do not provide solutions for opti-
mizing deployment on the proposed platforms.

The problem that must be addressed when optimizing the
deployment of microservices to a fog computing infrastructure,
focusing on the computing dimension, is the DCDP. The term
DCDP was coined by Choudhury et al. [6], who solved the
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DCDP in mist computing environments. The main idea behind
the DCDP in their work is the replication of an application’s
cloud services in smartphones and IoT devices to enhance their
response time, allowing nearby devices to consume the repli-
cated services within an ad hoc network. This solution to the
DCDP focuses on optimizing the resources used for replication
in the mist layer while delivering an appropriate response time
instead of focusing on delivering optimal response times or
optimizing the networking dimensions in other fog computing
environments, as DADO does. Mukherjee et al. present in [24]
an approach to the DCDP able to deploy microservices to
the fog considering the delay due to the execution time and
the energy consumption of service execution. Sun et al. [12]
propose a double-auction heuristic scheme for optimizing
the deployment of IIoT applications in a fog environment.
The response times offered by fog servers and required by
services are assessed as prices, and an auction-based algorithm
is leveraged to optimize the deployment. However, they do
not optimize the response time and instead try to optimize
the number of services that can be successfully deployed.
Several proposals for solutions to the DCDP that use a variety
of techniques such as MILP, heuristics or game theory are
surveyed in [13]. Although some partially optimize network
latency through routing, as DADO does, none optimize the
latency of the network through SDN controller placement.

Fog computing paradigms, while supporting QoS require-
ments that are difficult to support with cloud computing,
also have challenges that need to be addressed, such as the
previously discussed service discovery problem. [8] presents
a proposal for applying SDNs as a solution to these challenges
that is transparent to the different hosts involved in the
network. Other research efforts, such as [14] and [25], solve
the DCDP using an underlying SDN. Although these solutions
are also built to support IoT applications, they do not consider
the effects on latency of SDN controller placement.

On the networking plane, the SDN CPP is a well-known
problem that has a significant impact on network latency. [16]
adds the idea of dynamic flows to the CPP, providing a solution
to the CPP that not only works for predefined, static flows
but can also be varied in response to flow variation (e.g.,
because of changes in routing or traffic). Although this is a
relevant contribution to the CPP, the relationship between the
networking and computing planes is not considered. [18] not
only solve the CPP with a Varna-based heuristic approach but
also classify the CPP into 12 types based on the SDN features
that are considered. DADO is a type 4, uncapacitated CPP,
but it also adds routing capabilities that are not considered
in this classification; in addition, it relates the computing and
networking planes. Finally, [10] surveys several proposals for
CPP solutions that use techniques similar to those used in
solutions to the DCDP but also fail to integrate the computing
plane as DADO does.

Moreover, there is a similar problem to the DCDP in the
networking field when the network function virtualization
(NFV) paradigm is leveraged: function orchestration in service
function chaining (SFC). NFV allows networking equipment,
such as routers or switches, to perform network functions (e.g.,
firewall, access lists) without dedicated boxes (i.e., virtual

Table III: Categorization of related work

Work Category Service
place-
ment

Controller
place-
ment

Routing
optimiza-
tion

[6] DCDP Yes No No
[24] DCDP Yes No No
[12] DCDP Yes No No
[13] DCDP Yes No No
[14] DCDP

with SDN
Yes No No

[25] DCDP
with SDN

Yes No No

[16] CPP No Yes No
[18] CPP No Yes No
[10] CPP No Yes Yes
[26] SFC Yes No Yes
[27] SFC Yes No Yes

DADO Fog-SDN
Deploy-
ment
Problem

Yes Yes Yes

network functions). In SFC, a network flow can request for
some of these virtual network functions to be performed over
it, in a concrete order. SFC is very similar to the MSA in IoT
applications: a set of services that can be called independently
or jointly by following a sequence. Function orchestration in
SFC consists of finding the optimal routes for said flows, as
well as the optimal placement for virtual network functions, for
SFC requests to be fulfilled. The main conceptual difference
is that a flow in SFC has a defined source and destination,
and functions have to be performed along the way. In an
MSA, if the source has every microservice deployed to it,
there may be no flow at all. Furthermore, even if the flow
exists, there is no defined destination in an MSA, as every
host that deploys one or more of the requested microservices
is a possible destination. In [26], an approach to solving this
problem is presented, which optimizes the energy consumption
and network side-effect of optimal function placement. Several
algorithms are presented, including algorithms for online and
offline optimization. A similar approach is found in [27].
In this case, the failure probability is also accounted for in
the optimization objective. Furthermore, the system can be
triggered in response to failures to perform failure recovery
with minimal network side-effects. Despite the similarities
between problems, DADO is conceptually different from them,
as the problem DADO solves is not related to SFC.

Table III presents a categorization and comparison of the
presented works for quick reference. As depicted, DADO is
the only system that considers both service and controller
placement. While both the DCDP and CPP are well known, to
the best of our knowledge, no other work integrates the DCDP
and the CPP into a single, cohesive problem as DADO does,
nor does any other work take into account the relationship
and influences between the two problems. Therefore, the
contribution of DADO is the integration of the CPP and the
DCDP to provide optimal response times for IIoT applications.
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VI. CONCLUSIONS AND FUTURE WORK

The potential for real-world interactions that IoT provides
has drawn interest regarding the use of IoT in intensive do-
mains such as industry or healthcare [3], [4]. IoT applications
from these domains are critical, and as such, achieving an
optimal response time becomes crucial. Bringing computing
resources closer to the edge through fog computing is essential
for this achievement but not enough to obtain it. Service
discovery, monitoring and routing optimization must also be
considered. Moreover, modern IoT applications require ser-
vice discovery and monitoring to be performed transparently.
All these services can be provided by an underlying SDN.
However, to achieve optimal QoS, it is necessary to optimize
the deployment of microservices and the placement of SDN
controllers. This work defines and formalizes the problem of
optimizing fog computing and SDN infrastructures for QoS-
strict IoT applications with an MSA. To do so, the optimization
efforts from both the computing and the networking dimen-
sions are merged. By optimally distributing microservices
between nodes, optimally placing SDN controllers and taking
into account the mutual influences between both dimensions,
optimal decisions are made, and suboptimal solutions are
avoided. To solve the joint problem of computation distribu-
tion and controller placement, a framework named DADO is
proposed. The performance evaluation over an IIoT scenario
shows that DADO provides scalable deployment plans that
trade-off execution time and latency optimally. Moreover,
DADO reduces the response time by up to 37.89% by op-
timizing deployment and allowing for hybrid (e.g., fog and
mist layer) fog computing deployments, as well as providing
scalable solutions.

In the future, we expect to extend DADO. First, we intend
to develop heuristics that will allow DADO to be applied to
infrastructures larger than 300 nodes while still finding near-
optimal solutions. Moreover, heuristics will allow DADO to
reuse previous solutions in the adaptation process during the
execution time. We also intend to add mobility considerations
to these heuristics, allowing DADO to consider and trade off
the QoS degradation of maintaining a deployment plan with
the cost of a reconfiguration. Finally, we intend to expand
DADO to consider other QoS features, such as reliability, and
to combine these QoS features to develop a multiobjective
version of DADO.
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Abstract—The irruption of the Internet of Things (IoT) has
attracted the interest of both the industry and academia for their
application in intensive domains, such as healthcare. The strict
Quality of Service (QoS) requirements of the next generation
of intensive IoT applications requires the QoS to be optimized
considering the interplay of three key dimensions: computing,
networking and application. This optimization requirement mo-
tivates the use of paradigms that provide virtualization, flexibility
and programmability to IoT applications. In the computing
dimension, paradigms such as edge or fog computing, Software-
Defined Networks in the networking dimension, along with
micro-services architectures for the application dimension, are
suitable for QoS-strict IoT scenarios. In this work, we present
a framework, named Next-gen IoT Optimization (NIoTO), that
considers these three dimensions and their interplay to place
micro-services and networking resources over an infrastructure,
optimizing the deployment in terms of average response time
and deployment cost. The evaluation of NIoTO in a healthcare
case study reveals a response time speed-up of up to 5.11 and a
reduction in cost of up to 9% with respect to other state-of-the-
art techniques.

Index Terms—Internet of Things, Software-Defined Networks,
Computing in the Network, Edge Computing, Fog Computing,
Quality of Service

I. INTRODUCTION

The increase in the number of Internet-connected devices
in recent years, especially caused by the irruption of the
Internet of Things (IoT) paradigm, has led to an exponential
growth of the amount of traffic flowing through the network.
In particular, it is expected that the number of connected
devices will be more than three times the global population by
2023. Indeed, Machine-To-Machine (M2M) connections will
conform the half of such connected devices (reaching to 14.7
billion M2M connections) in that year [1].
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The computational IoT tasks and the related data processing
may be computationally intensive, which can not be often
accomplished by regular IoT devices with limited resources
(memory, battery, etc.) [2]. To overcome this difficulty these
tasks are usually offloaded to the cloud, where they can be
executed without compromising available resources. However,
a penalty derived from the latency imposed by the separation
of end devices and the cloud must be paid.

While this approach can be easily used with elastic applica-
tions that do not have strict Quality of Service (QoS) require-
ments (e.g., voice assistants), next-generation IoT applications
(e.g., autonomous driving, Internet of Medical Things (IoMT)
applications) require greater bandwidth and ultra low-latency
constraints that are not feasible with a pure cloud-based
paradigm [3]. Edge and fog computing paradigms represent
a suitable solution for these intensive computational tasks that
must be executed under strict latency requirements [3], [4]. By
moving services from the cloud to the edge of the network
some benefits are obtained: i) a reduction in the required
latency; and ii) the computational load of tasks is restrained
at end devices, since they are offloaded to edge servers [2].

Nonetheless, the time required to execute a request in a
distributed application, or response time, has two components:
latency, and execution time. While the former depends on the
networking fabric and the distance between end devices and
those they offload their tasks to (e.g., cloud, edge nodes),
the latter depends on the computational load of these tasks
and the power of the devices running them. Therefore, three
dimensions are involved in the QoS of IoT applications:
the computing dimension, the networking dimension and the
application dimension. Furthermore, the next generation of
IoT applications require for virtualization, flexibility and pro-
grammability features in these three dimensions [5]. Emerging
paradigms, such as edge and fog computing in the com-
puting dimension, Software-Defined Networking (SDN) for
the networking dimension, and micro-services architectures
in the application dimension, can be enablers for the QoS-
optimal deployment of next-gen IoT applications [2], [6]–
[9]. However, the QoS experienced by applications running
in such architectures depends on the performance provided by
the set of computing and networking resources. Analogously,
such performance depends on the way micro-services and
the SDN controller are placed [4], [7]. Moreover, micro-
services may be replicated to improve the QoS, at the cost
of assessing the number of replicas that must be deployed

0000–0000/00$00.00 © 2021 IEEE
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for a given scenario. Therefore, in order to optimally deploy
IoT applications through all three dimensions, the problem
of placing micro-services as well as the SDN controller to
maximize the experienced QoS must be carefully addressed.

In this paper, we provide a framework named Next-gen IoT
Optimization (NIoTO) to optimize the placement of micro-
services and networking resources to optimize the QoS consid-
ering the computing, networking and application dimensions.
In particular, the proposed solution provides i) the optimal
number of micro-service replicas to be placed in the infras-
tructure, ii) the optimal placement of micro-services to be
run in the computing resources of the infrastructure, iii) the
optimal placement of the SDN controller to reduce the required
signalling cost, and iv) the optimal routing of the traffic flows
generated by micro-services, as well as control traffic flows.
To do so, the problem is modeled and formulated using Mixed-
Integer Linear Programming (MILP). Based on a scenario
where next-gen IoT applications are considered, the framework
is evaluated considering two metrics: i) the minimization of
the average response time, and ii) the minimization of the
costs derived from the deployment of the architecture. Finally,
we remark the benefits of jointly considering the application,
computing and networking dimensions to handle today IoT
applications with stringent QoS requirements. The results
obtained in the evaluation show that the use of NIoTO as
an optimization tool is feasible at design-time. Furthermore,
these results show that NIoTO is able to achieve shorter
response times and lower costs compared to other, state-of-
the-art benchmarks. The authors of this paper presented an
initial work, the DADO framework, in [10], focused on the
optimization of response time in IoT applications through
optimal micro-service deployment and SDN controller place-
ment. NIoTO extends DADO by considering deployment cost
along with response time, including the possibility of multi-
objective optimization, as well as trading off cost and response
time. Furthermore, unlike DADO, NIoTO has been evaluated
under a scenario that allows for combined fog and cloud
microservice deployment. The main contributions of this work
are as follows:

• The proposal of the NIoTO framework as a contribution
to the optimization of the response time and deployment
cost in next-gen IoT applications. NIoTO is able to
optimally assess the number of micro-service replicas to
deploy, where to deploy each of them, where to place
the SDN controller, and the optimal routing of both
application and control traffic flows. Furthermore, NIoTO
supports the optimization of both, response time and
deployment cost, by finding the optimal trade-off between
them.

• The description and development of a problem model
that considers both objectives supported by NIoTO. This
model provides a holistic consideration of the optimiza-
tion process, taking into the account the effects of one of
NIoTO’s decisions in a dimension on the rest of the di-
mensions. This model is developed through mathematical
programming techniques, and provided as a mathematical
problem formulation.

• The experimental evaluation of NIoTO in a healthcare-
based next-gen IoT application, focusing on the trade-
off between the two objectives supported by NIoTO and
the performance differences between NIoTO and related,
state-of-the-art frameworks.

The remainder of the paper is organized as follows. Sec-
tion II describes the architecture considered, remarking all the
paradigms acting as enablers. Section III presents the proposed
framework to optimize the application deployment, whose
formulation is detailed in Section IV. Section V presents the
performance evaluation of the framework over a healthcare
scenario. Finally, Section VI concludes the paper.

II. HIERARCHICAL MULTI-DIMENSIONAL ARCHITECTURE

The development of QoS-stringent IoT applications requires
the coordination of three highly related dimensions (Fig. 1):
First, the application dimension, indicating how the software
architecture of the application is modularized and coordinated.
Second, the computing dimension defining the available com-
puting resources and how these modules are deployed on them.
Third, the networking dimension detailing which elements
of the infrastructure will support the communications among
modules. All these dimensions must be visualized in a holistic
way. All of them are highly related and the configuration of
one dimension impacts on the rest and, hence, the final QoS
obtained.

The software architecture of next-gen IoT applications is
usually based on the Service Oriented Computing paradigm
(SOC) since they have to be massively distributed, interopera-
ble and highly evolvable [8]. The Micro Service Architecture
(MSA) pattern allows applications to be split into loosely
coupled collaborating modules. These modules, usually called
Bounded Contexts, APIs or, simply, services, contain one or
more highly coupled micro-services that are usually deployed
together [11]. MSAs are defined in contrast to monolithic ar-
chitectures, in which the application may also be modularized,
but all the modules require to be deployed together. Each of the
micro-services in the MSA may be offered through different
interfaces, which are normally comprised of a communication
protocol and a data format. Some popular interfaces are
web services (SOAP protocol and XML format) [12], gRPC
services (HTTP/2 protocol and Protocol Buffers format) [13]
or RESTful services (HTTP+JSON) [14]. While RESTful is
currently the most popular interface and proposals for its use
in IoMT exist [15], micro-services are not bound to a concrete
interface.

As a running example, which is depicted in Fig. 1, we
base on an IoMT application to track the blood pressure of
a patient and to detect anomalies in their electrocardiograms
(ECG) by making use of data obtained through sensors. Each
user is equipped with an IoT node that samples information
for 15 seconds before sending it for further processing. The
functionalities that are used in this case study are split into
three services: ECG and blood pressure monitoring (green),
data encryption (blue), and anomalies detection (red). Fig. 1a
shows a high level architectural design of this application. This
running example is based on the architecture proposed by [16].
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(a) Application dimension. (b) Computing dimension. (c) Networking dimension.

Figure 1: Hierarchical IoMT application with the different dimensions affected to meet stringent QoS requirements.

In addition, their required data input, output and processing
characteristics were obtained from [17].

These services can be deployed independently of one an-
other, so that they can be deployed on the same or on different
machines or servers, or even they can be replicated in order to
balance the load and improve the QoS. Different virtualization
and management technologies, such as Docker or Kubernetes,
are used to reduce the effort and to automate this deployment.
In addition, SOC makes use of some key technical foundations
for the integration of the different services deployed [8],
[18]: service discovery, for identifying the location of each
service; service aggregation, for aggregating the responses; or
service composition, coordinating the execution of complex
functionalities by orchestrating several services.

The development of paradigms such as fog, edge or mist
computing has allowed the development of intensive and QoS
stringent IoT applications following a hierarchical architec-
ture [2]. Services of MSA-based applications can be deployed
closer to end-users in order to reduce network load and to
improve response time [2]. The most resource-consuming
services are still deployed on powerful nodes (such as cloud
or, even, fog nodes) and the QoS stringent services, but
less resource demanding, can be deployed on network nodes
with computing capabilities –edge computing– or even on the
Internet-connected devices themselves –mist computing– [2].
Therefore, a wide range of possibilities to deploy services must
be evaluated, and in which nodes they are finally deployed is
key to meet stringent QoS. Likewise, for complex function-
alities, the deployed services may be coordinated, in order to
achieve the functionalities and the workflows defined, using
service discovery, aggregation and composition modules. The
location of these management modules is also crucial in order
to meet the required QoS.

Fig. 1b shows how the services defined on our running
example are deployed on different layers of the computing

hierarchical architecture depending on the required QoS and
the available computing resources. For instance, the ECG
and blood pressure monitoring service replicas (green service)
is deployed on IoT devices, since this monitoring requires
few computing resources. In addition, different aggregators
(management modules) are also deployed on the upper layer
(at the edge) to compute the responses of the IoT devices
in order to reduce the data traffic, improving the response
time. Likewise, data encryption (blue service) and anomaly
detection (red service) both require some additional resources
so that their replicas are deployed on more powerful nodes
(edge and fog nodes, respectively). Therefore, defining an
optimal computation distribution is highly dependent of the
defined services and the available resources.

The deployment of an IoT application only taking into
account the computing dimension does not always guarantee
the optimal deployment in terms of QoS. In particular, the
network configuration, such as the routing among the deployed
services or the deployment of specific infrastructures, heavily
impacts on the network latency and, hence, on the QoS.
SDN networks allow the deployment of SDN controllers that
leverage virtualization to make the network programmable
based on the SOC principles [19]. Thus, Virtual Network
Functions (VNFs) can be exploited for traffic engineering
purposes in order to improve the network performance [20].
In this way, the SDN Controller Placement Problem (CPP) [7]
identifies the deployment of SDN controllers in an optimal
location to reduce the control latency and response time [21].
Fig. 1c shows that the SDN controller has been placed close
to specific switches, in-between the Edge and Fog layers, in
order to improve the average latency.

However, the network infrastructure has other capabilities
that should also be reused. The application of virtualiza-
tion and service oriented principles to the network infras-
tructure has led to a cloudification of both controllers and
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switches [19]. The Multi-Access Edge Computing (MEC)
architecture embeds decentralized cloud capabilities in the
network infrastructure at the network edge. This means that
not only VNFs can be deployed on them, but also they can
provision Virtual Computing Functions [19]. Therefore, IoT
services and other management components (such as the ser-
vice discovery, the aggregator or the compositor) can also be
deployed in the network infrastructure. For instance, ETSI, the
European Telecommunications Standard Institute, proposed
the Management and Orchestration module (MANO) [22] to
manage the different services and modules, their lifecycle,
and to orchestrate them and chain different VNFs to support
workflows. Therefore, the networking dimension is also able
to perform some management tasks for the IoT applications.
Fig. 1c shows that the service discovery and the service com-
positor modules have been deployed on the SDN controller in
order to improve the QoS of the considered IoT application.

Therefore, a hierarchical multi-dimensional architecture
boosts the achievement of stringent QoS requirements of
next-gen IoT applications. Nevertheless, in order to achieve
the optimal deployment and configuration, several dimensions
must be jointly evaluated: the application dimension, the
computing dimension and the networking dimension. In this
paper, we base on an modularized IoT application using the
principles of SOC and MSA [11], and propose a framework
for the optimal placement of IoT services and SDN controllers
in the hierarchical multi-dimensional architecture.

III. NEXT-GEN IOT OPTIMIZATION

Providing the best QoS requires a deployment that jointly
evaluates the application, computing and networking dimen-
sions to optimally place IoT services and SDN controllers.
In this paper, we present the Next-gen IoT Optimization
(NIoTO) framework, which takes all the three dimensions into
account to find feasible deployments that meet the specific
QoS requirements of IoT applications. Although NIoTO is an
extensible framework that can support different types of QoS,
in this paper, we focus on two specific requirements: response
time and cost. These parameters are usually very important
for IoT applications, as well as highly related —i.e, a lower
response time usually requires a higher cost— and, therefore,
a trade-off between them is difficult to achieve [23]. NIoTO
takes as input the characteristics of the application, the network
topology, the computing resources, and the QoS objectives to
satisfy. These inputs are processed by the framework, which
optimizes the QoS considering the three dimensions. Finally,
results are reported as output, detailing the placement of the
IoT services and SDN controllers to provide the optimal QoS
according to the objectives.

A. Inputs

In order to know the optimal deployment design of an
IoT application, different information is required for the three
considered dimensions. These inputs are split into two types
of information in order to improve its reusability and the
extensibility of NIoTO to support other potential QoS require-
ments. These pieces of information are: basic information, and

information that is specific to a QoS objective. The inputs
required by NIoTO, split by their information type and their
dimension, are depicted in a tree diagram in Fig. 2. These in-
puts are fed to NIoTO using open data interchange documents,
such as XML or JSON, structured with a concrete schema,
in which an arbitrary set of elements (e.g., micro-services,
SDN switches, links, computing resources) can be defined.
For each of these elements, the basic information, stored as
its attributes, is mandatory, while QoS-specific information
depends on the QoS to be optimized. Moreover, elements can
be cross-referenced using their IDs, enhancing their reusability
(e.g., a computing resource can be defined only once, and
network links can refer to the definition through its ID).
The use of non-proprietary data interchange formats eases the
integration of NIoTO with other tools, as well as the creation
of parsers to convert other formats to NIoTO inputs and vice-
versa, making it easier to configure and use NIoTO. It is also
possible to create support tools that assist the NIoTO user
on the provision of the inputs (e.g., graphical user interfaces
for NIoTO) using these data formats. Furthermore, each of
the inputs are to be obtained at design-time. Some of these
inputs can be obtained directly, while other inputs need to
be estimated. For this estimation, the application is expected
to be at the late design phase of development, in which
the architectural decisions are already taken and low-level
design has also been performed. Therefore, details such as the
system’s software architecture, the roles and functionalities of
the micro-services, their complexity, or the planned network
and computing infrastructure are known. Such knowledge is
key, as it enables for the obtention of most parameters from the
computing and networking dimensions directly. At this stage,
the analysis of resource consumption, size, and performance
in the application dimension, if performed with adequate
techniques such as [24]–[26], can yield realistic estimates.
The manner of obtention for each of the inputs, as well as
its source, are detailed in Tab. I.

Basic information is always required independently from the
QoS requirements to optimize. For the application dimension,
the data required is the amount of RAM consumed by each
service, the size of its inputs and outputs, and the requests that
should be processed by each service (i.e., the workflows that
are requested, and which device requests which workflow). For
the computing dimension, the available computing resources
(indicating their available RAM) and their location in the
network topology must be provided as input. Finally, for the
networking dimension, the network graph with the set of nodes
and links, as well as link capacities, must be detailed. The three
dimensions are used to specify the basic information in order
to reduce the coupling. With this information, the feasibility
of the deployment for the given IoT application is evaluated
by checking if available resources are not exceeded.

QoS specific information are those inputs required to iden-
tify the optimal deployment for a particular type of QoS.
Currently, NIoTO supports next QoS objectives: response time,
deployment cost, and both of them (to find the best compro-
mise between minimal response time and cost). Response time
is calculated as the average response time for each request,
which is the sum of the time needed to execute every service
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Figure 2: Inputs of the NIoTO framework per type of infor-
mation and dimension.

in each request and the time needed to communicate to the
devices where the services of such request are deployed. In
order to evaluate this first objective, the inputs required for
each of the three dimensions are: i) application dimension,
the number of cycles required to execute each service; ii)
computing dimension, the CPU clock speed of each computing
resource; iii) networking dimension, the latency of each link.
The cost objective, on the other hand, is assessed as the
sum of the capital expenditures (CAPEX) (i.e., the cost of
acquiring an asset) of each element used in the infrastructure
plus the operational expenditures (OPEX) (i.e., the ongoing
cost of maintaining an asset) derived from their use. Thus, for
the application dimension, the number of cycles required by
each service is required again. Instead, computing resources
must include their CAPEX and OPEX per cycle. Network
equipment must also report their CAPEX, as well as their
OPEX per second, to optimize this objective.

To execute the NIoTO framework, to find feasible de-
ployments, only basic information is required. If any given
QoS objective must be optimized too, the QoS dependent
information of said objectives has to be provided as well.

Table I: Kind of obtention and source of the input information
for NIoTO at design-time.

Input information Kind of obtention Information source
Micro-service RAM
consumption

Estimation Memory complexity
analysis of each
micro-service

Micro-service input
and output size

Estimation Analysis of the ex-
pected input and out-
put data type of each
micro-service

Cycles per micro-
service

Estimation Time complexity
analysis of each
micro-service

Workflow requests Estimation Definition of the per-
mitted workflows (use
cases) for the appli-
cation, estimation of
the application’s user
base

Available computing
resource

Direct Planning of the
computing devices
to use, analysis of
the datasheets and
documentations of
each planned device

Location of comput-
ing devices in the net-
work

Direct Network planning

CPU clock speed Direct Planning of the
computing devices
to use, analysis of
the datasheets and
documentations of
each planned device

CAPEX of computing
devices

Direct Provided by the sup-
plier

OPEX of computing
devices

Direct (on
demand)/Estimated
(self-hosted)

Provided by the
supplier (on
demand)/planning
of the computing
devices to use,
analysis of the
datasheets and
documentations of
each planned device,
calculation of derived
cost (self-hosted)

Topology graph Direct Network planning
Link capacities Direct Planning of commu-

nication technologies,
analysis of the capac-
ity permitted by each
planned technology

CAPEX of network
equipment

Direct Provided by the sup-
plier

OPEX of network
equipment

Estimated Network planning,
analysis of the
datasheets and
documentations
of each planned
networking device,
calculation of derived
cost

B. NIoTO framework

NIoTO takes all the inputs and provides the optimal de-
ployment plan meeting the defined QoS objectives. To do so,
NIoTO considers how services need to be executed in the
computing resources, how executing these services in certain
computing resources generates network traffic, and how the
network manages such traffic. Following the example defined
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in Sec. II: given an example request for detecting anomalies
in an ECG, if both services are deployed in the same machine,
traffic will be sent back and forth between the IoMT device
and said machine. However, if each service is deployed in
a different machine, an additional traffic flow between both
machines is required as well. The best deployment depends
on (according to the QoS objective that has been set) the
QoS the network is able to provide depending on the SDN
controller placement and the QoS provided by each machine.
NIoTO automatically selects the deployment that provides
the best QoS considering all the three dimensions and their
interplay. Nevertheless, a deployment plan that is optimal
at some specific moment could be sub-optimal when the
application context changes. Therefore, the IoT application
deployment plan should be continuously evaluated and mod-
ified to ensure that the defined QoS is always met. There
are two key phases with different time constraints to find the
optimal deployment: design-time, and run-time. During the
design phase, the application and infrastructure barely change
their estimations, and there is no strict time limitation for
obtaining the optimal deployment plan. Instead, during the
execution, the infrastructure is dynamic and the monitored
data often changes, and thus deployment plans are periodically
needed. These periods cannot be very long, especially in
cases in which a sudden spike in requests may require a
deployment adaptation to maintain the QoS. The version of
NIoTO presented in this paper is only suitable for design time
optimization, due to the techniques used on its implementation.
Nonetheless, the development and implementation of a version
suitable for execution time, making use of other techniques
that allow for faster optimizations, is one of our main future
works.

To identify the optimal deployment plan at design-time,
NIoTO makes use of MILP. This technique guarantees that
the solution given as output meets all the constraints and is an
optimal solution considering the given objective function. In
order to support the three considered objectives (response time,
cost and both), three different objective functions are defined.
The MILP formulation of NIoTO tries to find an optimal
deployment that places services and SDN controllers in a
feasible way, respecting next constraints: i) RAM resources
are not exceeded; ii) each traffic flow, regardless if it is control
traffic or not, has a single source, a single destination and it is
fully routed through a set of links (i.e., it is not divisible); and
iii) link capacities are not exceeded. Then, the QoS objective
function is applied so that the deployment is both feasible and
optimal. In the case that both objectives are considered at the
same time, i.e., response time and cost, NIoTO tries to find the
optimal trade-off between them. While using or adding more
resources to the architecture provides better response time, it
is also costly, and vice-versa , thus NIoTO considers both to
find the best compromise.

C. Outputs

NIoTO’s output is a set of the placement decisions, i.e., a
deployment plan for both IoT services and SDN controllers.
The deployment plan follows certain patterns. For instance,

each service replica needs to be deployed on the machine (or
machines) it will be executed, the SDN controllers must be
co-located with switches [7], each SDN switch is under the
control of a single given SDN controller and traffic must be
steered from the device requesting a service (or a set of them)
to the machine where it is executed.

At design time, the deployment plan is a guide for the
application’s operation engineer, system administrator and
network administrator. Information about which elements and
how they should be used, as well as how to make an initial
IoT application and SDN controller deployment are provided.

IV. PROBLEM FORMULATION

In this section, the MILP formulation that the NIoTO
framework uses at design time is detailed. This version holis-
tically optimizes the application, computing and networking
dimensions. This formulation optimizes the number of micro-
service replicas required in the application dimension, where in
the computing dimensions are each of the replicas deployed,
as well as SDN controller placement and traffic routing in
the networking dimension. This formulation is structured into
four tightly coupled elements: parameters, decision variables,
objective function, and constraints, that will be explained in the
same order. Moreover, Table II provides a summary and quick
reference of the notations used throughout the formulation.

A. Parameters

The parameters of a MILP formulation are its inputs: values
that are provided to the formulation at run-time and stay fixed
during the MILP solving process. Thus, the parameters of the
formulation are the inputs of the NIoTO framework.

Let the deployment infrastructure be represented as a graph
G = {V,L}. Let V be the set of vertices, which comprises
both the computing and networking dimensions. The term
vertices is used instead of nodes to avoid confusions with the
term fog nodes. Let C be the set of computing devices in the
infrastructure, and let S be the set of SDN switches, so that
V = C ∪ S;C ∩ S = ∅. Furthermore, let L be the links that
connect the infrastructure’s vertices, i.e., lij ∈ L; i, j ∈ V .

The basic information of each computing device c ∈ C
comprises its amount of available RAM, rc, measured in bytes.
For the response time objective, QoS-specific information
includes the device’s CPU clock speed in Hz, Pc. On the
other hand, deployment cost-specific information comprises
the CAPEX of the device, CAPEXc, and the device’s OPEX
per cycle, OPEXΩ

c .
For each SDN switch s ∈ S, its basic information is

related to its position within the infrastructure, which is
already represented in G. Thus, only cost-specific information
is required: its CAPEX CAPEXs, the CAPEX of an SDN
controller placed in the switch CAPEXCNT

s , its OPEX per
second OPEXs, and the analoguous OPEX of a controller
OPEXCNT

s . Response time QoS-specific information, such
as control latency, depends on controller placement, and thus
cannot be known a priori. Therefore, control latency is not an
input, it is an internal calculation of the formulation instead.
Finally, the size of the control packets used on the SDN
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Table II: List of formulation notations.

Parameter Meaning
G Graph that represents the infrastructure
V Set of vertices of G
C Subset of V that are computing devices.
S Subset of V that are SDN switches
L Set of links of G
W Set of workflows of the IoT application
rc RAM memory of the computing device c
Pc CPU clock speed of the computing device c

CAPEXc CAPEX of the computing device c
OPEXΩ

c OPEX per cycle of the computing device c
CAPEXs CAPEX of the SDN switch s
OPEXs OPEX of the SDN switch s

CAPEXCNT
s CAPEX of placing a controller on the SDN switch

s
OPEXCNT

s OPEX of the controller placed on the SDN switch
s

σ Size of the SDN control packets
θij Capacity of the link lij
δij Latency of the link lij

WS(w, c) Boolean function that indicates whether the work-
flow w is requested by the device c or not

Im Size of the input of the micro-service m
Om Size of the output of the micro-service m
Ωm CPU cycles of the micro-service m
ϵOBJ Boolean that indicates whether the QoS objective

OBJ is enabled or not
uc Boolean that indicates whether the computing de-

vice c is in use or not
us Boolean that indicates whether the SDN switch s is

in use or not
Decision variable Meaning

zwcma
Boolean to determine if the micro-service ma of the
workflow w is deployed to the computing device c

fcwma
ij Boolean to determine if the traffic generated by the

computing device c as a consequence of the micro-
service ma of the workflow w is routed through the
link lij

xs Boolean to determine if a controller is placed on the
SDN switch s

yss′ Boolean to determine if the SDN switch s is mapped
to the controller placed on SDN switch s′

cfs
ij Boolean to determine if the control traffic generated

by the SDN switch s is routed through the link lij

network, σ, is required as basic information. Nonetheless, σ
does not depend on the SDN controller’s deployment, but on
the version of the OpenFlow protocol used [27].

The links that bind the infrastructure’s vertices together
have a limited available capacity θij , which is part of their
basic information. For the response time objective, each link’s
latency δij must be known.

On the application dimension, NIoTO models execution as
functionalities. A functionality, or workflow, is a request for
the execution of a micro-service, or the execution of a set
of micro-services in an ordered, pipelined manner. Following
the example from Sec. II, a functionality may request for the
execution of the ECG analyzer, the anomaly detector and the
encryption service, so that the commented ECG outputted by
the first micro-service serves as input to the anomaly detector,
and the anomaly information is later encrypted for its safe
storage. Thus, let W be the set of workflows requested for
the application. Each workflow w ∈ W is requested by a
certain computing device, therefore, let WS(w, c) be a binary
function that evaluates to 1 if c requests workflow w and 0
otherwise. Moreover, let each workflow w ∈W be an ordered

set of micro-services w = {m1,m2, ...,m|w|}.
Each of these micro-services requires basic information,

namely, the size of its input and output data, Im and Om

respectively, and the amount of RAM it consumes, rm. The
QoS-specific information for response time also includes the
number of CPU cycles that the micro-service requires to fully
execute, Ωm. Micro-services do not need any cost-specific
information, as the costs derived from micro-services are a
consequence of their deployment and execution, and thus,
depend on the resources from the networking and computing
dimensions used to execute them.

Finally, in order to enable and weigh the importance the
QoS objectives, we add a parameter named ϵOBJ , which is a
positive real number, or 0. ϵOBJ represents the weight of the
objective OBJ in the optimization. It is important to note that
the sum of all the values of ϵOBJ through all objectives must
be exactly 1.

B. Decision variables

Similar to how parameters are the inputs of the MILP
formulation, decision variables can be seen as its output: a
set of values that the formulation must manipulate in order to
find the optimal combination of values. Nonetheless, MILP
is only able to manipulate integer decision variables, thus
conditioning the information representation of the output.
Concretely, NIoTO makes use of binary decision variables to
represent information.

Firstly, the micro-service replication deployment must be
modeled. To do so, binary variables are used: let zwcma

be a
binary variable that takes a value of 1 if the micro-service
ma of the workflow w is deployed to the computing device
c, and 0 otherwise. These variables automatically account for
the number of replicas: if different workflows have the same
micro-service deployed to the same computing device, they
are sharing a single replica. Otherwise, multiple replicas exist.
Secondly, the traffic flows generated by the communications
between computing devices (i.e., to request the execution of
the next micro-service in the workflow to another computing
device) must also be modeled. Thus, let f cwma

ij be a binary
variable that takes the value of 1 if the traffic flow generated
by the computing device c as a consequence of the execution
of the micro-service ma of the workflow w is routed through
the link lij , and 0 otherwise. With these decision variables,
NIoTO is able to plan the replication of micro-services at
the application dimension, the deployment of the replicas at
the computing dimension, and the routing of the application’s
traffic through the networking dimension.

Nonetheless, NIoTO must also take the control of the
networking dimension into account, and thus, place SDN
controllers accordingly. To do so, let xs be a binary variable,
that is 1 if there is an SDN controller placed in the switch s and
0 otherwise. Nonetheless, if multiple controllers are placed, the
mapping between SDN controllers and switches (i.e., which
controller is on charge of which switches) must also be found.
Hence, let yss′ be a binary variable, which takes the value of 1
if switch s is mapped to controller s′ and 0 otherwise. Finally,
NIoTO needs to account for the control traffic flows generated
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by the communications between switches and controllers to
optimally route it. Let cfsij be a binary variable that takes the
value of 1 if the control traffic generated by switch s is routed
through link lij and 0 otherwise.

C. Objective function

While MILP formulations manipulate the values of their
decision variables to provide optimal outputs, they require a
manner to calculate the optimality of the output. This manner
is the objective function, which is a function of the decision
variables. It is important to note that MILP only supports
linear functions, i.e., it is strictly forbidden to multiply or non-
linear operations over decision variables (e.g., multiplying two
decision variables).

To better understand the objective function of NIoTO, we
first define different calculations that will later be integrated.
First, in order to calculate the execution time of a micro-
service, the number of cycles of the micro-service need to be
divided by the CPU clock speed of the computing device it is
deployed to. Thus, if the micro-service ma is deployed to the
computing device c, then its execution time is Ωma

Pc
. However,

it is not possible to know a priori where each micro-service
is executed. What can be known is that, given that ma is part
of workflow w, the variable zwcma

will have the value 1 if it
deployed to c and 0 otherwise. Based on this knowledge, we
can calculate the total execution time of a micro-service in
a workflow by calculating the sum of all possible execution
times in all computing devices, multiplied by zwcma

:

EXECw
ma

=
∑

c∈C

Ωma

Pc
zwcma

Therefore, we define the execution time of a workflow as
the sum of the execution times of its micro-services:

EXECw =

|w|∑

a=1

EXECw
ma

Next, workflow latency needs to be calculated. In the case of
a single flow that traverses a single link lij , latency is defined
as the latency of the link, i.e., δij . In a similar manner to the z
variable of micro-services, the binary variable that contains the
information of whether a flow traverses a link or not is f cwma

ij .
Nonetheless, there is an exception in the case of latency: if the
flow reaches an SDN switch, i.e., if j is an SDN switch, we
need to calculate the control latency of the switch, as it may
need to communicate with the SDN controller. In this case, the
binary variables for SDN control traffic flows is cfsij . Thus,
we can define the SDN control latency of a switch as:

CNTLATs =
∑

lij∈L

cfs
ijδij

Thus, with a known control latency, the latency of a traffic
flow from a micro-service to another in the context of a
workflow is is: i) its own latency if j is not an SDN switch,
or ii) its own latency plus the control latency of j otherwise.
To define it with more ease, let SW (i) be a function which

yields 1 if i ∈ S and 0 otherwise. Formally, it is possible to
denote this latency as:

LATw
ma

=
∑

c∈C

∑

lij∈L

(fcwma
ij δij + SW (j)CNTLATj)

Hence, to calculate the total latency of a workflow is the
sum of the latencies of its micro-services:

LATw =

|w|∑

a=1

LATw
ma

Thus, we define the average response time of the deploy-
ment as the average response times of all the workflows
requested, each of them being the sum of the execution time
and latency of the workflow:

RT =
1

|W |
∑

w∈W

EXECw + LATw

For the deployment cost objective, we need to split it in
CAPEX and OPEX. In both cases, we assume that, since
NIoTO operates at design time, any equipment that is not used
will not be acquired, and hence, only the CAPEX of the used
equipment should be considered. Thus, there is a need to know
whether an element is in use or not. In the case of computing
devices, we assume that one is used if it either requests at
least one workflow, or runs at least one micro-service:

uc = max( max
w∈W,a∈[1,|w|

(zwcma
),max

w∈W
(WS(w, c)))

In the case of switches, a switch is used if it belongs to
the route of at least one traffic flow, be it an application or a
control flow:

us = max( max
lis∈L,c∈C,w∈W,a∈[1,|w|]

(fcwma
is ), max

lis∈L,s′∈S
(cfs′

is ))

Thus, to obtain the CAPEX, we must multiply the CAPEX
of each of the elements by 0 if they are unused, and by 1 if
they are in use, and then sum the results. Formally:

CAPEX =
∑

c∈C

(CAPEXcuc)+

∑

s∈S

(CAPEXsus + CAPEXCNT
s xs)

For the OPEX, we also need to account for the usage in
cycles of the computing devices. Formally:

OPEX =
∑

c∈C

(
∑

w∈W

|w|∑

a=1

OPEXΩ
c Ωmaz

w
cma

)+

∑

s∈S

(OPEXsus +OPEXCNT
s xs)

For the final objective function, we should take into account
whether each of the QoS objectives is or is not enabled. More-
over, it is recommended to normalize each of the objectives so
the final values on each side are within the same range (e.g.,
between 0 and 1), especially if both objectives are enabled.
The final objective function is shown in Equation (1).

min ϵRTRT + ϵCOST (CAPEX +OPEX) (1)
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D. Constraints

With only parameters, decision variables and an objective
function, an MILP formulation will find the combination of
values for the variable that optimizes the objective function.
However, this may lead to illegal situations in our problem:
the limited capacities of computing devices and links could be
surpassed, micro-services could have zero replicas, the SDN
controller could be undeployed, switches may not be related to
SDN controllers... In order to make the solution legal within
the problem, we enforce these rules through constraints.

The constraints of NIoTO are as follows:
∑

c∈C

zwcma
= 1∀w ∈W,a ∈ [1, |w|] (2)

∑

w∈W

|w|∑

a=1

zwcma
rma ≤ rc∀c ∈ C (3)

∑

s′∈S

yss′ = 1∀s ∈ S (4)

yss′ ≤ xs∀s, s′ ∈ S (5)

∑

j∈V

fcwm1
ij − fcwm1

ji =





0 if i ∈ S

WS(w, c)(1− zwim1
) if i = c

−WS(w, c)zwim1
otherwise.

∀i ∈ V, c ∈ C,w ∈W

(6)

− zwcma−1
+ z′iwcma

≤ 0 (7)

− 1 + zwima
+ z′iwcma

≤ 0 (8)

zwcma−1
+ 1− zwima

− z′iwcma
≤ 1 (9)

− zwcma−1
+ z′′iwcma

≤ 0 (10)

− zwima
+ z′′iwcma

≤ 0 (11)

zwcma−1
+ zwima

− z′′iwcma
≤ 1 (12)

∑

j∈V

fcwma
ij − fcwma

ji =





0 if i ∈ S

z′iwcma
if i = c

−z′′iwcma
otherwise.

∀i ∈ V, c ∈ C,w ∈W,a ∈ [2, |w|]

(13)

∑

j∈V

cfs
ij − cfs

ji =





0 if i ∈ C

1− ysi if i = s

−ysi otherwise

∀i ∈ V, s ∈ S

(14)

∑

c∈C

∑

w∈W

[(

|w|∑

a=1

fcwma
ij Ima)] +

∑

s∈S

[cfs
ijσ] <= θij

∀lij ∈ L

(15)

Equation (2) guarantees that each micro-service in a work-
flow is instantiated exactly once. Equation (3) enforces the

RAM limit on the computing devices. Equation (4) makes
sure each switch is controller by a single SDN controller,
which must first be deployed as of Equation (5). Equation (6)
guarantees that the traffic flow of starting a workflow has the
workflow’s requester as its source and the computing device
that has deployed the first micro-service of the workflow as
its destination, which is an special case of the general flow
constraint from Equation (13). However, for micro-services
beyond the first of a workflow, it is required to know if the
machine that executed the previous micro-service is the same
as the one hosting the current one, which would require vari-
able multiplication. Since only linear constraints can be used
in MILP, Equations (7-12) are used to linearize the problem by
exploiting the properties of binary variables, which guarantee
that z′iwcma

= zwcma
(1 − zwima

) and z′′iwcma
= zwcma−1

zwima
.

For control flow, Equation (14) has the same role. Finally,
Equation (15) enforces link capacity.

By setting the parameters of the MILP formulation, an
user can apply the NIoTO framework to hierarchical multi-
dimensional architectures, making it possible to optimize the
deployment of arbitrary next-gen IoT applications as long as
they follow the NIoTO model.

V. PERFORMANCE EVALUATION

In this section, the possible benefits achieved when NIoTO
is applied are evaluated: shorter response times and lower
costs. These benefits are the result of NIoTO’s consideration
of the application, computing and networking dimensions by
assessing the number of micro-service replicas, deploying
the micro-services and placing SDN controllers, respectively.
Moreover, the potential drawbacks of NIoTO are also an-
alyzed. At first, the simulation environment is described.
Then, three different sets of experiments are proposed. In
the first one, the MILP solver is run over four topologies
of different sizes with different optimization objectives to
evaluate the trade-off between the deployment cost and the
response time. The second analysis aims at evaluating the
computational complexity of NIoTO by assessing the time
required to optimize different scenarios, while the third one is
devoted to comparing NIoTO’s performance in both, response
time and cost, with that of state-of-the-art benchmarks. This
last analysis is carried out by comparing the response time
and costs yielded by NIoTO with those obtained with the
benchmarks.

A. Simulation Environment

In order to evaluate the performance of NIoTO framework,
four different scenarios based on the example described in
Sec. II have been considered. In each scenario, we vary
the parameters of the three considered dimensions. In the
application dimension, we vary the number of users (and
thus, of workflow requests). In the computing dimension, we
vary the number of fog nodes where such services can be
deployed, as well as the number of gateway nodes connecting
the network fabric to the cloud. The number of SDN nodes
of the network is varied in the networking dimension. To
evaluate the scalability of the proposed solution, values for
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previous parameters are increased in each scenario, deriving in
the simulation set-up shown in Tab. III. The different network
topologies leveraged for evaluation were generated using the
Erdös-Rényi model for network generation [28], applying the
parameters for the simulation set-up as reported by Tab. III.
The specific model of each element in the scenario, as well as
their CAPEX and OPEX (retrieved from [29]), are detailed
in Tab. IV. The specific technical characteristics of these
devices, such as their available RAM or CPU clock speed,
were retrieved from the official specifications of each device.
Thus, to retrieve this information, we refer the reader to the
official datasheets and documentations of the computational
resources. Regarding the type of wireless connection used by
IoT devices to connect with the SDN network, both Wi-Fi
and Bluetooth technologies are exploited by Arduino devices,
while 6LoWPAN and ZigBee technologies are used by Texas
Instruments ones. The access layer makes use of these wireless
technologies, while the network core is connected through Gi-
gabit Ethernet links. Link capacities were adjusted according
to the capacity of the link’s technology (e.g., Gigabit Ethernet
links have 1 Gbps capacity, Wi-Fi links have 300 Mbps).
To calculate the length of the links, the hospital in [30] is
used as a reference for size. Thus, each of these links are, at
most, 90 meters long, and their lengths were obtained from
a normal distribution of mean µ = 45 and standard deviation
σ = 18. Their transport latencies were calculated based on
these lengths. Finally, the number of micro-service replicas
that are deployed ranges between 18 and 125, depending on
the number of users in the simulation, since more recurrent
services are replicated as more users need them to maintain
the QoS. The technical details for each of the microservices
can be found in Tab. V

Table III: Parameter setting.

Scenario SDN
Nodes

Users Fog Nodes Gateways

7-node 7 5 1 1
20-node 20 15 3 2
50-node 50 40 10 5
150-node 150 50 20 10

B. Response Time-Deployment Cost Trade-off

The first analysis we propose aims at evaluating the perfor-
mance of the proposed framework over two different metrics:
i) average response time; and ii) deployment cost. At first,
each single objective is independently evaluated. Then, both
metrics are compared to find a suitable trade-off representing
the best deployment cost-response time compromise, giving
the same weight to both metrics.

Fig. 3 shows the outcomes of this analysis in terms of
deployment cost, whereas Fig. 4 depicts the results in the
workflows’ average response time. These two figures present
the analysis for three groups of simulations: i) the objective
function aims at minimizing the average response time; ii)
the objective function is defined as the minimization of the
deployment cost; and iii) a multi-objective function where
the weight given to both metrics is the same. By inspecting

Table IV: Models and costs considered for each infrastructure
element.

Element Model CAPEX OPEX
IoT device Arduino UNO 20 C 6.10 · 10−16

C/cycle
IoT device Texas

Instruments
CC2538

4.65 C 1.59 · 10−16

C/cycle

Fog node Pandaboard 215 C 1.48 · 10−16

C/cycle
Fog node edge.network

instance
0 C 3.47 · 10−16

C/cycle
Cloud node Amazon

Web Services
m5.xlarge
instance

0 C 5.56 · 10−15

C/cycle

Cloud node Google Cloud
Platform E2-
Standard-4
instance

0 C 4.17 · 10−15

C/cycle

SDN switch Ruijie
Networks
RG-S5310-
24GT4XS

641 C 1.15·10−6 C/s

SDN controller Raspberry Pi 3
A+

22.20 C 2.12·10−7 C/s

Wi-Fi base sta-
tion

Pulse Electron-
ics TWR0083

21 C 3.39·10−8 C/s

Bluetooth base
station

Pulse Electron-
ics TWR0083

21 C 1.06 · 10−10

C/s
ZigBee base
station

DIGI XB3-
24Z8UM-J

13.73 C 2.06·10−8 C/s

6LoWPAN
base station

Renesas
Electronics
ZWIR4532-U

28.80 C 3.82·10−7 C/s

Table V: Input information for micro-services, as reported in
[17]

Micro-
service

RAM
required

Input size Output size Execution
cycles

ECG and
blood
pressure
monitor

393 MB 8 Kbps 10 Kbps
(ECG)/1
Kbps
(blood
pressure)

24.44 · 109
cycles

Compression 136 MB 10 Kbps 2.27 Kbps 9.95 · 109

cycles
Encryption 79 MB 2.27 Kbps

(ECG)/1
Kbps
(blood
pressure)

2.30 Kbps
(ECG)/1.02
Kbps
(blood
pressure)

6.18 · 109

cycles

Fig. 3, it is clear that the size of the network highly impacts
the cost of the associated deployment. However, there are no
big differences in the reported cost when the objective of the
optimization is varied, i.e., similar results are obtained for the
optimization of single metrics as well as for the joint aver-
age response time-deployment cost objective. The difference
between the joint objective and cost is negligible, while the
average response time objectives yields deployments between
467 and 8610C more expensive. Nonetheless, if we move
our attention to the results on Fig. 4, several considerations
emerge. At first, the network size negatively impacts the ob-
tained average response time when the optimization objective
is the deployment cost, being up to 16.28 times longer in
large scenarios compared with smaller ones. Conversely, a
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longer response time is experienced in smaller scenarios when
response time is the unique metric to optimize. The main
reason behind this behavior is that smaller scenarios have
fewer resources, specially fog nodes, and thus more services
need to be deployed to the cloud. Finally, if both metrics are
equally balanced, the difference in the experienced response
time is negligible.

As a summary, from the previous evaluation , next remarks
are extracted. First, the network size is the parameter that
impacts the cost of infrastructure deployment, regardless the
type of optimization performed. Second, there is a direct
proportional relationship between the network size and the
average response time when the objective of the optimization
is the deployment cost. However, such relationship is inverse
when the metric to optimize is the response time. Finally, if
a joint optimization is performed, no clear impact is experi-
enced.
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Figure 3: Cost as a function of the optimization objective for
the 4 considered scenarios.

Average response time
Both metrics Cost

Objective

0

20

40

60

80

100

120

Av
er

ag
e 

re
sp

on
se

 ti
m

e 
(m

s) Scenario
7-node
20-node
50-node
150-node

Figure 4: Average response time as a function of the optimiza-
tion objective for the 4 considered scenarios.

C. Computational Analysis

In the following, an analysis of the computation time
required by NIoTO to obtain a solution is performed. NIoTO
has been implemented using Python’s MIP library [31], solved
using Gurobi, and run on a quad-core Intel-based machine at
2 GHz with 16 GB of RAM. Fig. 5 shows the outcomes of
the time required to provide an optimal deployment solution
as a function of the topology size for the three proposed
optimizations.

The first aspect to remark is the exponential increase of
the computation time (note the logarithmic y axis) w.r.t. the
topology size, for each of the three optimizations. As expected,
the joint optimization of response time and cost is the one that
requires more time to provide a solution, taking between 2 and
3.5 times more time than the optimization of a single objective.
Finally, the metric that in general requires less time to converge
is the deployment cost, lasting, on average, 502.55 seconds
less than the response time as a single optimization objective.
This analysis clearly shows that the MILP version of NIoTO,
especially in big scenarios, is mainly suitable for design time
optimization. Nonetheless, the development of a faster version
of NIoTO, able to optimize and adapt the deployment during
execution time, is one of the key future works.
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Figure 5: Computation time required to provide an optimal
deployment solution as a function of the topology size.

D. Benchmark comparison

The objective of the final analysis is to compare the re-
sults obtained by NIoTO with other similar, state-of-the-art
techniques. Concretely, two benchmarks are considered for
comparison: ModuleMapping [32], as a benchmark aimed
at response time and resource usage optimization; and Fog-
Part [33], which focuses on optimizing the financial costs of
the deployment. To the best of our knowledge, no benchmarks
that jointly optimize response time and cost have been found:
ModuleMapping focuses exclusively on response time and ig-
nores cost, while FogPart focuses on cost and ignores response
time optimization. Moreover, it is important to note that, out of
these three techniques, only NIoTO has a holistic view of the
hierarchical multi-dimensional architecture. Nonetheless, the
input information was adapted to each of the benchmarks in
order to maintain a fair comparison (e.g., FogPart considers the
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cost of sending data from a computing device to the cloud as a
single, aggregated cost, rather than a multitude of CAPEX and
OPEX items [33]; and thus, it was provided as an aggregate
of the CAPEX and OPEX of the network equipment used to
send the data).

The results of the comparison are depicted in Fig. 6 for
average response time and in Fig. 7 for deployment cost, while
they are detailed in Table VI for response time and Table VII
for cost. Moreover, the comparison includes two categories
for NIoTO (one for the appropriate objective and one for
the joint approach), and a single one for the benchmark that
optimizes the appropriate objective (i.e., ModuleMapping for
response time and FogPart for cost). Starting the comparison
with response times (Fig. 6, Table VI), we find NIoTO with
the average response time objective as the best technique for
all the analyzed scenarios, which we consider to be optimal.
Its performance is closely followed by NIoTO optimizing both
metrics, with an average optimality gap of approximately 9.16
ms. ModuleMapping is the last one, with an average optimality
gap of 40.22 ms. The response time of ModuleMapping is
constant through all the topology sizes due to the fact it only
considers two of the three dimensions: application and com-
puting. ModuleMapping uses the computational resources of a
device, as well as the resources required by the micro-service,
as the main metric to select where to deploy a micro-service
to [32]. Since the cloud is consistently the most powerful and
resourceful computing device, ModuleMapping will deploy as
many micro-services as possible there. Due to the usage of
fog nodes to reduce the experienced latency, NIoTO achieves
an average speed-up of 5.11 w.r.t. ModuleMapping.
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Figure 6: Average response time comparison of NIoTO and
ModuleMapping.

Table VI: Average response times yielded by NIoTO and
ModuleMapping.

Scenario NIoTO
(average
response time)

NIoTO (both
metrics)

ModuleMapping

7-node 15.005 ms 25.004 ms 50.004 ms
20-node 15.005 ms 23.338 ms 50.004 ms
50-node 12.506 ms 19.120 ms 50.004 ms
150-node 5.508 ms 16.882 ms 50.004 ms

Continuing with cost, as depicted in Fig. 7 and detailed in
Table VII, NIoTO with the cost objective is the optimal solu-
tion for the analyzed scenarios. Once again, we find the next

best solution to be NIoTO optimizing both metrics, with an
optimality gap of approximately 50C (0.08%). FogPart is the
third best technique, with an optimality gap of 3954C (6.22%).
It is important to note that the gap between FogPart and NIoTO
increases with topology size, and thus, using FogPart in larger
topologies may lead to larger optimality gaps. The difference
in costs responds to FogPart’s partial view on the scenario,
not considering the computing dimension. To choose the node
to deploy a micro-service to, FogPart compares the cost of
communicating the previous micro-service in the workflow
with the cloud, and the cost of communicating with a fog node
instead, choosing the most cost-effective communication [33].
Thus, the costs of the computing dimension, such as the
CAPEX of the computing devices used or their OPEX per
cycle, may not be optimal. This is precisely the difference we
find between NIoTO and FogPart. In a general conclusion,
we find NIoTO, with the according objective, as the optimal
solution in terms of response time and cost. Moreover, the
version of NIoTO that optimizes both metrics at the same
time is able to perform better at both dimensions than state-
of-the-art techniques aimed at their optimization.
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Figure 7: Deployment cost comparison of NIoTO and FogPart.

Table VII: Yearly costs of deploying the scenario using NIoTO
and FogPart.

Scenario NIoTO (cost) NIoTO (both
metrics)

FogPart

7-node 8,070C 8,070C 8,233C
20-node 23,672C 23,673C 23,673C
50-node 59,801C 59,801C 65,644C
150-node 177,508C 177,772C 184,502C

VI. CONCLUSIONS AND FUTURE WORK

As the number of IoT devices grows every year, the de-
mand for QoS-strict IoT applications, hardly suitable for a
cloud-based deployment, does as well. A hierarchical multi-
dimensional architecture is an enabler for this kind of appli-
cations, but optimizing the QoS requires the consideration
of the interplay between the computing, networking and
application dimensions. In this work, we present NIoTO, a
framework to optimally deploy next-gen IoT applications in a
hierarchical multi-dimensional architecture, considering all the
three aforementioned dimensions. NIoTO is able to optimally
assess the number of micro-service replicas in the application
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dimension, their deployment in the computing dimension,
and the placement of the SDN controller in the networking
dimension, along with optimizing the routing of the generated
traffic flows. The joint consideration of all three dimensions,
and the optimization of the response time and cost, including
the assessment of the optimal trade-off between them, allows
it to optimize each of the metrics further than related, state-
of-the-art frameworks. In the future, we expect to support
run-time, dynamic optimizations of the deployment through
the development of a faster solver for NIoTO, enabling it to
adapt the deployment to environmental changes. Moreover, we
expect to evaluate NIoTO’s performance over real or emulated
network test-beds.
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QoS-Aware Fog Node Placement for Intensive IoT
Applications in SDN-Fog Scenarios

Juan Luis Herrera, Jaime Galán-Jiménez, Luca Foschini, Paolo Bellavista, Javier Berrocal, and Juan M. Murillo

Abstract—The advent of the Internet of Things (IoT) paradigm
to intensive domains, such as industry, is a key enabler for the
automation of critical, real-world processes. The strict Quality of
Service (QoS) requirements of these domains make low-latency
computing paradigms, such as fog computing, very attractive for
meeting these requirements. Moreover, the requirements of scal-
ability and flexibility in the underlying network communications
motivate the use of Software-Defined Networking (SDN) in the
infrastructure. To enable these fog-SDN environments, fog nodes
that have both computing and SDN capabilities can be deployed,
thus easing the deployment of fog in SDN networks. However,
the exact placement of these fog nodes is key to the latency of the
hosts that make use of them, and thus, must be carefully assessed
to meet the stringent QoS requirements of critical, time-strict
IoT applications. This paper focuses on this fog node placement
problem by formalizing it and solving it through both optimal
and approximated methods, including comparisons with state-of-
the-art benchmarks. In particular, we analyze the performance of
each of these methods in terms of latency and execution time in
both SDN Internet topologies and Industrial IoT infrastructures.
Our proposed heuristic provides placements with near-optimal
latencies, with smaller optimality gaps than the benchmark, and
computes them in tractable times.

Index Terms—Fog computing, Internet of Things (IoT),
software-defined network (SDN), Quality of Service (QoS)

I. INTRODUCTION

THE POTENTIAL for real-world process automation
brought by the Internet of Things (IoT) paradigm has

caught the interest of intensive domains, such as industrial
manufacturing, leading to the integration of IoT in industrial
processes, termed the Industrial Internet of Things (IIoT) [1].
However, the transition of these domains towards IoT is not
simple, as these applications have very high Quality of Service
(QoS) requirements, such as low latency and short response
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J.L. Herrera, J. Galán-Jiménez, J. Berrocal and J.M. Murillo are with
the Department of Computer Science and Communications Engineering,
University of Extremadura, Spain (e-mail: [jlherrerag, jaime, juanmamu,
jberolm]@unex.es).

L. Foschini and P. Bellavista are with the Dipartamento di Informatica-
Scienza e Ingegneria, University of Bologna, Italy (e-mail: [paolo.bellavista,
luca.foschini]@unibo.it)

Digital Object Identifier 00.000/JIOT.0000.0000000

times [1]. These strict QoS requirements directly clash with
some of the architectures applied on consumer-grade IoT.
Cloud computing, the most popular deployment architecture
for IoT applications [2], features the use of cloud servers in
the core of the network. However, the large distance between
the end IoT devices and the network core complicates the
achievement of the low latencies required by these applica-
tions [3]. This issue has motivated the emergence of new
paradigms, such as fog computing, that propose bringing some
computing resources, the so-called fog nodes, closer to the
edge [4]. Thus, fog computing closes the edge-cloud gap in
the cloud continuum, lowering the latency between the IoT
devices and the fog nodes running their services.

Nonetheless, the location of the servers is not the only
factor that affects the QoS of IoT applications, the network
infrastructure that connects them together is key, because
the impact of server location on QoS heavily depends on
the network QoS. When traffic moves through the network
fabric, latency increases as longer links and more switches
are traversed. While using the least latency path may seem
as a good option, the constrained capacity of the network
links enforces to apply traffic engineering techniques [5],
allowing the network to use alternative paths, even whenever
the least latency-influenced path is congested. For this reason,
the interest on the use of Software-Defined Networking (SDN)
is increasing, in particular in IoT fog infrastructures, where this
increase has been experienced in the research community in
the recent years [6]. SDN decouples the data plane, which
is on charge of forwarding, from the control plane, which
takes into more complex network tasks such as routing.
SDN controllers, which embody the control plane, can be
programmed, enabling for network programmability and, thus,
for traffic engineering to be performed [5]. Furthermore, these
intensive domains have requirements such as infrastructure
scalability and flexibility [1], [6], which can also be met by
using SDN.

Therefore, the integration of both fog computing and SDN
allows to achieve the requirements of intensive IoT applica-
tions. In [7], some of the authors of this work proposed a
fog node (FN), specifically designed as an enabler for IIoT
applications: a single hardware box combining a SDN switch
with fog computing resources. The interest of FNs in intensive
IoT scenarios is the ease of migration: an already existing
SDN network can be fog-enabled by replacing existing SDN
switches with FN boxes, in a similar way than in the case of
IP to SDN migration [8]. Nonetheless, FN placement affects
the QoS of the applications deployed on the FNs [7], [9]–[12].

0000–0000/00$00.00 © 2021 IEEE
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Thus, the placement of a FN within the infrastructure is not
to be chosen arbitrarily, and instead, it must be assessed in
order to obtain the required QoS. Furthermore, the computing
resources from FNs are finite, a phenomenon exhibited by FNs
having a limited throughput [10]. Thus, it may not be possible
to offload all the tasks from all the IoT devices directly into
a single FN. This further complicates QoS optimization, as
having multiple FNs requires not only assessing the optimal
placement for each of the FNs, but also the assignment of
which IoT devices offload their tasks to each of the FNs.
Moreover, the routing of the traffic between each IoT device
and the FN is also key for the QoS obtained, and hence,
it must also be optimized in order to achieve the best QoS
possible. This optimization can also have different objectives:
in very constrained scenarios, it must be ensured that all
IoT devices are able to meet the QoS requirement, and thus,
maximum latency must be minimized. On the other hand,
in less constrained scenarios in which the guarantee that all
IoT devices meet the objective QoS is easier to obtain, the
optimization can be aimed at minimizing the average latency
instead, enhancing the overall QoS.

Some of the authors of the present work also defined in [10]
the problem of placing a set of FNs in an infrastructure,
assigning IoT devices to FNs and routing the traffic between
them to achieve optimal QoS, that they call the Fog Node
Placement Problem (FNPP). FNPP is a NP-hard problem [9],
as it is a concrete case of a mathematical NP-hard problem,
the Capacitated Facility Location Problem [13]. Different
objectives for the FNPP can be considered. Nonetheless, [10]
only proposes a formulation-based solution that scales poorly,
and only considers average latency as an optimization ob-
jective. Thus, the main differences between [10] and this
paper include: i) the implementation of a new formulation-
based FNPP solution that minimizes the maximum latency
among all traffic flows, ii) the design and implementation
of a heuristic solution for the FNPP based on unsupervised
machine learning algorithms, iii) a more extensive evaluation,
including larger scenarios in both Internet SDN topologies
and IIoT-like scenarios, and iv) a comparison of the defined
solutions with a state-of-the-art benchmark.

Considered all the above challenges, the main contributions
of this paper are:

• The formalization of the FNPP as a Mixed-Integer Linear
Programming (MILP) optimization problem, including
two FNPP solutions based on MILP solvers.

• A heuristic algorithm that assesses solutions to the FNPP
based on unsupervised machine learning techniques and
graph algorithms.

• A performance evaluation of these methods to solve the
FNPP in Internet SDN networks, as well as IIoT sce-
narios, with topologies of varying sizes and considering
multiple scenarios.

• A comparison of all the proposed methods by contrasting
our solutions with other state-of-the-art ones.

The remainder of this paper is structured as follows. Sec. II
presents the system model for the FNPP. Sec. III details the
formulation of the FNPP’s optimal solutions, while Sec. IV

Figure 1: Topology for the example model: IIoT factory
automation.

presents our proposed heuristic. An evaluation of FNPP solu-
tions is presented in Sec. V, and Sec. VI compares the FNPP
to alternative models proposed in related literature. Finally,
Sec. VII concludes our work.

II. SYSTEM MODEL

To explain the FNPP model in detail, an example model
of an IIoT application is leveraged in this section. In our
IIoT example, a factory automation application is going to
be deployed on a SDN network topology. For simplicity’s
sake, this topology consists of five IIoT devices and five
SDN switches, arranged as depicted in Fig. 1. The factory
automation application that will be deployed has very strict
latency requirements [1], and thus, the factory owner has
decided to transform the SDN topology into a SDN-fog
infrastructure. To enable this transformation, the factory owner
makes use of FNs that follow the model from [7]: hardware
boxes that include a SDN switch and a computing device,
that will substitute existing SDN switches. These hardware
boxes support container-based virtualization, and thus enable
for the execution of IIoT services (such as data analysis or
computing services) along with performing the function of a
SDN switch. To facilitate the understanding of the example,
we assume that all links have the same latency, and thus,
latencies can be transformed into a number of hops (i.e.,
traversed links). Therefore, the factory automation application
imposes a specific QoS requirement: the maximum latency for
the application is one hop (i.e., any path longer than one hop
results in an invalid deployment). Based on this situation, we
propose two example scenarios for the FNPP: the placement
of a single FN (Fig. 2), which is the simplest case of the FNPP,
and the more generic placement of multiple FNs (Fig. 3).

In the first scenario, the factory owner will replace a single
SDN switch with a FN. The topology has five SDN switches,
hence, there are five possible placements for the FN. However,
not all placements are equally valid. For instance, let the FN be
placed in switch 1, as depicted in Fig. 2a. Assuming a shortest
path routing for all devices, we find that IIoT devices A, B,
C and E are all able to reach the FN in one hop. However, it
is impossible for IIoT device D to reach it in less than two
hops. Similarly, if the FN is placed on switch 2, IIoT device
C is unable to reach it in one hop. This pattern, in which one
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IIoT device cannot reach the FN in an acceptable number of
hops, appears in all placements except for switch 5. Thus, the
solution to the FNPP is to place the FN in switch 5, which is
shown in Fig. 2b. Moreover, to obtain a valid deployment, it
is also key that traffic is routed in a specific manner. While
it is simple to solve the FNPP in small topologies, such as
the example one, manually testing all placements and routing
possibilities in networks with hundreds of switches, different
latencies in each link and constrained link capacities is not
as simple. Therefore, there is a need for an automatic method
that solves the FNPP.

In the second scenario, rather than a single FN, the factory
owner is willing to replace two SDN switches with FNs.
However, these FNs are less powerful than the FN from
scenario one and, therefore, each of these FNs can only process
the traffic of up to three IIoT devices. Thus, placing the FNs is
slightly different from the previous scenario: placing a single
FN in switch 5 only guarantees that up to three IIoT devices
will be able to reach it in one hop or less. Furthermore, now
there is an additional decision to be taken: which IIoT devices
should be served by each FN, meeting the capacity constraints
of the FNs. This is extremely important, since a bad decision
can result in an invalid deployment. For instance, let one FN
be placed in switch 5, and the other FN be placed in switch
2, such as represented in Fig. 3a. If IIoT devices A, B, and E
are selected to be assigned to the FN in switch 5, that leaves
IIoT devices C and D for the one in switch 2. However, while
IIoT device D can reach switch 2 in one hop, IIoT device
C cannot reach it in less than two. This deployment is, thus,
invalid. Nonetheless, if IIoT devices A, C and E are assigned
to the FN in switch 5, and therefore IIoT devices B and D
are assigned to the FN in switch 2, the deployment becomes
valid. This assignment option can be seen in Fig. 3b. The main
conclusion to draw from this scenario is that placing multiple
FNs adds FN-IIoT device assignments to the complexity of the
problem. Even in this trivial scenario, there are 10 possible
placement combinations for 2 FNs, each of them with 20
possible assignments, for a total of 200 possible solutions,
not accounting for the additional combinations that differ in
routing. In larger and more realistic scenarios, in which each
IIoT device produces a different amount of traffic, each link
has a different latency, link capacities are constrained, and
there are hundreds of switches and IIoT devices, solving the
FNPP manually is infeasible.

III. PROBLEM FORMULATION

The FNPP takes place in a network topology. We model
this network topology as an undirected graph G = {V,L},
with V vertices1 and L edges. Each of the edges represents
a link, e.g., the link from vertex i to vertex j is modeled as
lij ∈ L. Each link also has a capacity, i.e., Cij ; as well as
a transmission latency, βij . On the other hand, each vertex
v ∈ V can either be an IoT device (also called host), or a
SDN switch. Thus, we can split V into two disjoint subsets:

1We use the term vertex/vertices to avoid confusion between nodes and fog
nodes/FNs.

Table I: List of formulation notations.

Parameter Meaning
G Graph that represents the network
L Set of links of the network
V Set of vertices of the network
H Set of hosts (i.e. IoT devices) of the network
S Set of SDN switches of the network
Cij Capacity of link lij
ϕh Traffic generated by host h
α Maximum traffic that can be processed by a FN per

unit of time
βij Propagation latency of link lij
βS Processing latency of a SDN switch
L(h) Latency between host h and its mapped FN
θ Number of FNs to be placed

Decision variable Meaning
Xs Boolean to determine if a FN is placed in switch s
Yhs Boolean to determine if host h is mapped to the FN

located in switch s
fh
ij Boolean to determine if traffic generated by host h

is routed through link lij

V = H ∪ S;H ∩ S = ∅: H . S contains all SDN switches,
whereas H contains all the hosts.

Starting with S, the objective of the FNPP is to replace a
given number of SDN switches with FNs. We call this number
of FNs θ. Furthermore, each SDN switch s ∈ S is a potential
location for a FN. We assume that all FNs to be set in a
network have a capacity α for processing traffic. Moreover,
switches route the network’s traffic, and thus, they have a
processing latency of βS . Continuing with H , hosts generate
an amount of traffic that must be processed at a FN. We do not
assume that this traffic distribution is uniform, i.e, each host
can produce a different amount of traffic. Thus, the traffic
generated by a host is labeled as ϕh. It is key to understand
that both ϕh and α must be in the same unit (e.g., Gbps, Mbps,
Kbps).

Starting with traffic routing, in the FNPP, we have a set of
traffic flows, one per host, of volume ϕh. One key character-
istic of the FNPP is that we know the source of the traffic
flow (the host), but the destination (i.e., the FN assigned to
said host) is part of the FNPP solution. Thus, flows need to be
modeled based only on their source: let fhij∀h ∈ H; lij ∈ L be
a binary variable that takes a value of 1 if the traffic sent by
host h traverses link lij and 0 otherwise. These variables allow
the FNPP solution to route traffic, one of the required outputs.
Moreover, FNs need to be placed, and therefore, let Xs, s ∈ S
be a binary variable that is 1 if a FN is placed on switch s
and 0 otherwise. The final decision that must be taken is the
assignment between hosts and FNs. Let Yhs, h ∈ H; s ∈ S be
a binary variable that becomes 1 if host h is assigned to the
FN placed in switch s and 0 otherwise.

The objective of the FNPP is to minimize the latency
between hosts and FNs. To simplify further calculations, we
define the latency from a host h as the sum of the latencies
of the links that its traffic flow needs to traverse, plus the
processing latencies of the intermediate switches, if any. Math-
ematically, L(h) = (

∑
lij∈L f

h
ij(βij+βS))−βS . Nonetheless,

there are two possible objectives for latency minimization.
In our previous works, e.g., [9], [10], we only consider the
average latency from all hosts to all switches. However, there
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(a) FN placement in 1 (b) FN placement in 5

Figure 2: First scenario.
(a) First assignment option. (b) Second assignment option.

Figure 3: Second scenario.

are cases in which, although the average latency is low enough
to use the application, the hosts with the highest latencies do
not meet the QoS objective [14]. This is exactly the example
presented in Sec. II: despite the average latency in Fig. 2a
meets the objective (one hop), there is an IIoT device (D) that
is unable to use the application, because its latency is higher. In
constrained cases in which minimizing the average latency is
not enough to meet the QoS objective in every host, it is more
desirable to minimize the maximum latency instead. Thus,
one of the improvements of this work is the consideration
of another objective for latency minimization: the maximum
latency among all hosts.

Finally, we also provide a summary table of all the notations
used throughout this section in Table I for easy reference.

Therefore, given the previous definitions, the FNPP can be
formulated as either (1) or (2):

min
1

|H|
∑

h∈H
L(h) (1)

minmax
h∈H

L(h) (2)

subject to:

i ∈ V, h ∈ H :
∑

j∈V
fhij − fhji =

{
1 if i = h

−Yhi otherwise.
(3)

∀lij ∈ L :
∑

h∈H
fhijϕh ≤ Cij (4)

∑

s∈S
Xs ≤ θ (5)

∀s ∈ S :
∑

h∈H
ϕhYhs ≤ αXs (6)

∀h ∈ H :
∑

s∈S
Yhs = 1 (7)

∀h ∈ H, s ∈ S, lij ∈ L : Xs, Yhs, f
h
ij ∈ {0, 1} (8)

If (1) is chosen as an objective, the formulation will
minimize the average latency. On the other hand, if (2) is
chosen instead, the objective will be minimizing the maximum
latency. Furthermore, (3) represents the classic flow constrains,
and allows traffic to behave as expected (i.e., each host is the
source of a traffic flow, the assigned FN to said host is the
destination of the flow, and all the SDN switches along the
path are neither sources or destinations, only route the traffic).

Similarly, (4) enforces the capacity of each of the links in the
infrastructure. No more FNs than θ, may be placed, as per (5),
and (6) guarantees that the capacity of each FN is limited to
α. Each host can only be assigned to a FN, a constraint that
(7) guarantees. Finally, (8) ensures all the defined variables
are binary.

As a mathematical problem, the FNPP is a concrete case
of the Capacitated Facility Location Problem (CFLP) [13]. In
the CFLP, a set of facilities with limited capacities must be
placed in a graph to meet the demands of users, minimizing
the accumulated link weight of the paths between users and
facilities. The FNPP follows the same approach: placing
capacitated FNs to meet traffic demands coming from IoT
devices, in a manner that minimizes the latencies between IoT
devices and FNs. The CFLP is a problem proven to be NP-
hard [13]. Therefore, the FNPP, which can be reduced to the
CFLP, is also NP-hard.

The FNPP formulation presented in this section allows
for two solutions to appear: one that minimizes the average
latency (labeled MinMeanLat, Minimize Mean Latency), and
a completely novel one that minimizes the maximum latency
(MinMaxLat, Minimize Maximum Latency). MinMaxLat is
preferred in constrained scenarios (e.g., with a small number
of FNs, or very limited capacities), as it will make every
host meet the QoS objective if possible. However, in less
limited scenarios in which the QoS objective can be met
more easily, it is more desirable to find a better performing
solution in average. For those cases, MinMeanLat should be
used instead. Both MinMeanLat and MinMaxLat are able to
be parameterized, and hence, they can be applied to different
scenarios: multiple network topologies, number of FNs to be
placed, link capacities, FN capacities, traffic distributions, etc.
The application of MILP guarantees that the formulation yields
results that are, in fact, optimal. However, while these solutions
are valid methods to solve the FNPP, MILP solvers tend to
require a very high amount of resources (i.e., RAM, execution
time) [15]. Furthermore, these methods do not tend to scale
well with the problem size, generally increasing their resource
consumption in an exponential manner [15]. Thus, there is also
a need for heuristic solutions that are able to scale better and
solve the problem with fewer resources.

IV. HEURISTIC DESCRIPTION

In this section, we present an heuristic for the solution of the
FNPP. This heuristic is motivated by the NP-hardness of the
problem, which results in a high amount of time and resources
required by the MILP-based solutions, along with their poor
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Algorithm 1: Midpoint selection of initial centroids

1 Input: S: set of SDN switches;
2 θ: number of FNs to place;
3 Output: centroids: initial centroids;
4 begin
5 interval := |S|θ ;
6 first := 0;
7 last := interval;
8 centroids := ∅;
9 for i := 0 to θ do

10 candidates := S[first:last];
11 centroid := candidates[ |candidates|2 ];
12 centroids := centroids ∪ {centroid};
13 first := last;
14 last := last+interval;
15 if first = last then
16 last := last + 1;
17 end
18 end
19 end

scalability. Thus, the objective of the heuristic is to be a fast,
lightweight, scalable, near-optimal method to solve the FNPP.

The presented heuristic can be structured as four main
algorithms that are executed sequentially. Nonetheless, to
understand the role of each of the algorithms, it is necessary
to understand a part of its core basis first. The heuristic is
based on an unsupervised machine learning algorithm named
k-medoids [16]. While the specifics of k-medoids will be
explained later, it can be understood as a method that, starting
from some initial FN placements called centroids, will move
FNs towards placements that have low latencies. Thus, the
initial FN placements need to be assessed before being able
to make use of k-medoids. It is crucial to understand that
these FN placements are merely initial, and rarely FNs stay
in their initial positions. Despite this behavior, the initial
centroids fed to k-medoids do affect its outcome. Our heuristic
supports three criteria for initial centroid assessment: mid-
point selection, highest betweenness centrality, and random.
While the two latter lack a description, since they are self-
explanatory, midpoint selection is detailed in Algorithm 1. The
computational complexity of Algorithm 1, similarly to the rest
of the algorithms used for initial centroid selection, it simply
needs to iterate over the number of FNs to place. Therefore,
the worst-case complexity of centroid selection is O(θ). While
random and midpoint selection have been used in related
literature to place FNs [11], the application of graph metrics
such as betweenness centrality to initial centroid assessment
is novel.

Once initial centroids are assessed, k-medoids can be lever-
aged. This algorithm is an unsupervised learning clustering al-
gorithm: given a data structure, k-medoids divides the structure
into clusters of data points, so that points in the same cluster
are as similar as possible to each other, and as dissimilar as
possible to points in other clusters. We have implemented our

own version of k-medoids, which uses latency as the similarity
metric and is described in Algorithm 2. Conceptually, k-
medoids splits the network into θ partitions (i.e., subsets of
vertices that are closest to each other), and places a FN in the
vertex of each partition with lowest latencies compared to the
rest. Internally, k-medoids assumes a set of initial centroids
(I), and creates a set of vertices associated to each centroid,
which is called the centroid’s cluster (lines 5-19). To do so,
k-medoids calculates, for each vertex in the infrastructure, that
vertex’s latency to each centroid (lines 9-12). Each vertex is
then added to the cluster of the centroid with minimal latency
to it (lines 13-19). Thus, k-medoids is able to generate a
network partition per centroid, which contains all the vertices
with minimal latency to the centroid, i.e., its cluster. Then, for
each of these partitions, k-medoids calculates which vertex in
the partition has the minimal average latency to the rest, i.e.,
which vertex is, considering latency as distance, the center
of the partition (lines 20-38). This vertex will become the
centroid of the partition. Two scenarios can appear at this
step: either the newly-calculated centroids may be the same
as the old centroids (line 35 is never executed), or at least
one centroid has changed (line 35 is executed). In the first
case, k-medoids is said to converge, and hence, the centroids
are the final placement for FNs. However, any change in the
centroids indicates that the placement can be enhanced: even
assuming clusters tailored for each centroid, there is another
vertex in the cluster that is a better centroid. Thus, k-medoids
is executed again, and the newly-calculated centroids are the
initial centroids for this new iteration (lines 39-41). The recur-
siveness of k-medoids guarantees that the process is repeated
until convergence is reached. Regarding the complexity of
the k-medoids algorithm, lines 20-38 in Algorithm 2 are the
most significant. In line 27, the shortest path is calculated
using Dijkstra’s algorithm, which is known to have a worst-
case complexity of O(|V | log |V |) [17]. This procedure call is
performed inside a triple-nested loop, giving these lines a total
complexity of O(θ|V |3 log |V |). However, since k-medoids is
recursive, this is repeated until convergence. Thus, Algorithm 2
has a total complexity of O(citθ|V |3 log |V |), where cit is the
number of iterations required for convergence.

The third main algorithm of the heuristic is the assignment
algorithm, which decides, for each host, which FN should
it send its traffic to. To do so, the heuristic first sorts the
hosts, in ascending order, using the size of their traffic flows
as the criteria (line 9). Thus, smaller flows are assigned first
to minimize the average latency: smaller flows are given
priority, so more flows can have smaller latencies, and hence,
average latency also shrinks. Then, for each of the hosts, the
algorithm finds the FN with minimal latency that has enough
remaining capacity to process its traffic flow (lines 10-18).
This FN is then assigned to the host. The behavior is detailed
in Algorithm 3. Complexity-wise, the most costly part of the
algorithm is line 11. In this line, FNs are sorted using the
shortest path’s distance as criterion. If this sort was performed
using TimSort, the default algorithm in languages such as
Python, the worst-case complexity of the sorting algorithm
would be O(θ log θ) [18]. Furthermore, using the shortest path
as a criterion entails using Dijkstra’s algorithm to calculate it,
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Algorithm 2: Modified k-medoids

1 Input: G: topology graph;
2 I: set of initial centroids;
3 Output: F : placement for FNs;
4 begin
5 C := dictionary();
6 for i ∈ I do
7 Ci := ∅;
8 end
9 for v ∈ G.V do

10 minDist := ∞;
11 for i ∈ I do
12 centDist := shortestPathDistance(v, i, G);
13 if centDist < minDist then
14 minDist := centDist;
15 minCentroid := i;
16 end
17 end
18 CminCentroid :=CminCentroid ∪ v;
19 end
20 F := ∅;
21 changes := 0;
22 for i ∈ I do
23 minDist := ∞;
24 for v1 ∈ Ci do
25 totalDist := 0;
26 for v2 ∈ Ci − {v1} do
27 totalDist := totalDist +

shortestPathDistance(v1, v2, G);
28 end
29 if totalDist < minDist then
30 totalDist := minDist;
31 newCentroid := v1;
32 end
33 end
34 if newCentroid ̸= i then
35 changes := changes + 1;
36 end
37 F := F∪ {newCentroid};
38 end
39 if changes > 0 then
40 F := modifiedKMedoids(G, F );
41 end
42 end

with its own complexity of O(|V | log |V |) [17]. Therefore, the
complexity of Algorithm 3 is of O(θ|V | log θ log |V |).

The final algorithm takes the only remaining decision:
routing. The heuristic uses a common method for routing: k-
shortest path. In the classic k-shortest path, k paths between
each host and its assigned FN are calculated, and sorted in
ascending order according to their latency. Then, for each of
the paths, the capacity of the links traversed by the path is
checked. If all the links have enough capacity to route the
traffic, the path will be chosen as the definitive one between
the host-FN pair, and the size of the traffic flow will be

Algorithm 3: Host-FN assignment

1 Input: G: topology graph;
2 F : placement for FNs;
3 α: FN capacity;
4 ϕ: vector of traffic flows. ϕh is the size of the traffic

flow of host h;
5 Output: A: assignments, in dictionary form. Ah is the

FN assigned to host h;
6 begin
7 A := dictionary();
8 remainingCap = dictionary(keys=F , values=α);
9 sortedH := ascendingSort(H , criteria=ϕ);

10 for h ∈ sortedH do
11 FNCandidates := ascendingSort(F ,

criteria=shortestPathDistance(h, G));
12 for f ∈ FNCandidates do
13 if ϕh ≤ remainingCapf then
14 Ah := f ;
15 remainingCapf :=

remainingCapf − ϕh;
16 break;
17 end
18 end
19 end
20 end

deducted from the remaining capacity of the links. Otherwise,
the next path is selected. The heuristic computes these paths
lazily: it copies the original graph (line 10), and calculates the
shortest path between the host and the FN (line 12). If link
capacity holds (lines 14-19), it is decided to be the path for
the host-FN pair (line 21). If link capacity does not hold, all
the links without enough remaining capacity are removed from
the graph’s copy (line 18), and the shortest path is calculated
again (lines 11-21). This process is repeated until either there
are no paths between the FN and the host, or a suitable path
is found. The details of the routing algorithm can be found
in Algorithm 4. The complexity of this routing algorithm is
mainly line 12’s, which is O(|V | log |V |) [17]. However, the
shortest path is recalculated every time the capacity constraints
are not met. At worst, a single link will be removed from the
graph on every iteration, and therefore, it will be re-calculated
|L| times. As the paths need to be calculated for every host, the
worst-case complexity of Algorithm 4 is O(|H||L||V | log |V |).

The heuristic makes use of all the algorithms described in
this section, in the same order they have been presented: first,
it generates an initial set of centroids, using either midpoint,
HBC or random selection. That initial set of centroids is
fed to the modified k-medoids, which yields the placement
for the FNs. With this placement, the information about the
size of the traffic flows and the capacity of the FNs, the
heuristic assigns hosts to FNs. And finally, based on these
assignments, it routes each of the traffic flows. However,
simply pipelining the algorithms in this manner may lead to
feasibility problems, as each step cannot undo the decisions
taken by previous steps. This is something common in greedy
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Algorithm 4: Routing algorithm

1 Input: G: topology graph;
2 ϕ: vector of traffic flows. ϕh is the size of the traffic

flow of host h;
3 A: assignments, in dictionary form. Ah is the FN

assigned to host h;
4 Output: R: routes, in dictionary form. Rh is the path

from h to its assigned FN;
5 begin
6 sortedH := descendingSort(H , criteria=ϕ);
7 R := dictionary();
8 for h ∈ sortedH do
9 finalPath := 0;

10 G′ := copy(G);
11 while finalPath ≤ 0 do
12 route := shortestPath(h, Ah, G′);
13 finalPath:= 1;
14 for lij ∈ route do
15 cap = capacity(lij , G′);
16 if cap < ϕh then
17 finalPath := 0;
18 removeLink(lij , G′);
19 end
20 end
21 end
22 Rh := route;
23 end
24 end

algorithms [11], such as the ones used in this heuristic, but
leads to possible feasibility problems, as each decision affects
all the following ones. Although the sorting in Algorithms 3
and 4 try to avoid these situations, sometimes the heuristic
may not find a solution. Nonetheless, it is key to understand
that such case does not mean that there is no solution: rather,
it means some traffic flows must be offloaded to the cloud,
rather than to the fog, as [11] explains. However, the QoS-
strict IoT applications treated in the FNPP may not properly
work with cloud offloading. Hence, this heuristic adds a retry
system to minimize these situations, up to a given number of
retries, which is a parameter for the heuristic on its own. To
guarantee that the solutions are different, and thus, that each
retry will find a different solution, the heuristic makes use of
all three criteria for finding the initial centroids. First, it tries
to use midpoint selection, as it has shown the best results.
On the next retry, it uses highest betweenness centrality,
which normally allows the heuristic to find feasible results,
although with higher latencies than midpoint. If this criteria
fails, random selection is used for the rest of the retries,
as it guarantees different initial centroids on each retry. The
end user can also select the initial criteria if they want to
skip to highest betweenness centrality or random directly on
the first retry. This behavior and pipelining is represented
in Fig. 4. Out of all the modules of the heuristic, the most
complex one is Algorithm 2, k-medoids. Within the final
heuristic, k-medoids needs to be re-executed on every retry,

Figure 4: Heuristic behavior diagram.

and therefore, the worst-case complexity of the heuristic is
O(Rcitθ|V |3 log |V |), where R is the number of retries. In
conclusion, the heuristic’s complexity depends the most on
the topology size in terms of vertices, the number of FNs to
place, the number of iterations k-medoids requires to converge
and the number of retries selected.

An interesting feature that stems from the modular nature
of the heuristic is its ability to adapt itself to dynamic
environments. In the FNPP, each FN is a hardware box, and
therefore, changing the placement of FNs in real time is
not feasible. Nonetheless, the host-FN assignments and the
paths followed by traffic can be changed in real time. To
do so, whenever a change is detected, such as an IoT node
moving from one part of the network to another, new IoT
devices being added to the network, or a change in the traffic
demands, the heuristic can be triggered to recalculate host-
FN assignments and routing. This recalculation is performed
by feeding the current FN placements as F to Algorithm 3,
and using the output of the recalculation for Algorithm 4. This
sort of execution guarantees that the FNs will not change their
placement, and lowers the complexity to O(|H||L||V | log |V |),
as the first two algorithms are skipped and there is no need to
perform retries because none of the remaining algorithms have
random components. However, the MILP-based solutions do
not support this partial execution, only the proposed heuristic
supports it.

V. PERFORMANCE EVALUATION

In this section, we present the evaluation of the FNPP
solution methods. Scenarios in 5 topologies have been tested
with 6 methods for solving the FNPP each: placement through
highest betweenness centrality (HBC), placement through
highest closeness centrality (HCC), our proposed heuristic, the
proposed heuristic of Maiti et al. [11] (which is used as a
benchmark), the MILP-based optimal solution that minimizes
the mean latency of all hosts (MinMeanLat), and the MILP-
based optimal solution that minimizes the maximum latency
among all hosts (MinMaxLat). The objective of comparing
our solutions with HBC and HCC is to evaluate the difference
between specifically designed FNPP solutions and simple
placement criteria. We assume that, without knowing about
the FNPP, a network administrator would place FNs following
either HBC or HCC, and thus, our aim is obtaining better
results than both criteria. The benchmark, which is thoroughly
described in [11], is another heuristic for solving the FNPP
proposed in related literature. The benchmark also uses a
version of k-medoids to place FNs in the network, although
it lacks assignment and routing algorithms compared to the
heuristic proposed in this paper.
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It is important to note that HBC, HCC and the bench-
mark only feature a node placement algorithm. Therefore,
assignment is made in a similar manner to the heuristic, in
order to have a fair comparison between methods. Routing is
performed using k-shortest path, although the weight of links
is not their latency, but the inverse of their remaining capacity.
This choice for the links’ weight setting is used because, in
some cases, some of the methods are unable to find a fog-
only deployment (e.g., their strategy assigns host to FNs in
such a manner that they run out of free capacity to satisfy
all hosts). In these cases, the unsatisfied hosts would have
to offload their demands to the cloud instead, similar to the
approach presented in [11]. Using their remaining capacity for
routing minimizes the amount of cases in which these methods
require sending data to the cloud, hence enabling for a more
clear and fair comparison between FN placement methods.
Moreover, to maintain a fair comparison between all methods,
and to ease on the visualization of the results, these cases are
reported as if the method was unable to find a solution: if the
method requires to make use of the cloud, its results are not
depicted in the graphics. Despite this lack of visualization, it is
important to note that the methods never fail to find solutions,
rather, they fail to find a solution that does not make use of
the cloud.

A. Evaluation setup

The scenarios used for testing these methods can be divided
into two categories of experiments: i) SDN deployment, and
ii) IIoT deployment scenarios. The the first category includes
SDN deployment scenarios, which have tested the FNPP under
four topologies: Abilene, GEANT, Germany-50 and Brain.
Their information, including topology details, link capacities,
latencies and traffic matrices have been obtained from [19].
The objective of SDN scenarios is to evaluate the performance
of the FNPP over real, SDN networking scenarios. A host is
considered to be connected to each switch in order to be the
source of the information to be processed at a FN.

The second category, instead, is the IIoT deployment cate-
gory, which contains a single fog topology. The objective of
IIoT deployment scenarios is to validate the FNPP solution
in a large IIoT scenario based on a topology with a dense
edge. Concretely, we aim to use a real, pre-existing topology,
so the evaluation is performed in a topology that has been
designed using a real rationale. Hence, this topology is a
modified version of Brain, a real topology with a dense edge.
In this version, the 152 switches at Brain’s edge, concretely
those with numbers in their labels, are treated as hosts, while
the remaining 9 are left as SDN switches. However, Brain is
a Germany-wide topology, rather than an industrial facility-
wide one. Thus, Brain has been resized (i.e., the length of
the links has been shortened) through linear interpolation,
so that it is the same size as the Boeing Everett Factory,
because it is the largest industrial factory in the world [20].
This resizing affects the latency of the links, as information is
sent within the industrial facility rather than across a country.
Furthermore, IIoT scenarios have their link capacity limited
to analyze the effect of link capacity limits. These scenarios

are labeled Light Capacity Limit (LCL) and Heavy Capacity
Limit (HCL). In LCL, the link capacities are set to a maximum
of an 125% of the heaviest demand using linear interpolation:
after routing the heaviest demand, the links still have capacity
left (concretely, a 25% of said demand) to route other traffic
flows. In HCL, link capacity is set to a maximum of the
heaviest demand instead: links used to route the heaviest
demand cannot be used to route any other traffic. The LCL
scenarios are also divided into scaled (i.e., α varies with θ so
that the aggregate α of all FNs stays constant) and unscaled
(i.e., α is a fixed, constant value) to assess which one, link or
FN capacity, is more restrictive, while HCL does not have this
objective and is always unscaled. Finally, an additional IIoT
deployment scenario featuring all 161 switches and scaled FN
capacities has also been used to evaluate the effect of topology
size and complex placement decisions on the average latency.

To assess traffic, we obtained the traffic matrices from [19],
and obtained the peak matrix. We label this as traffic matrix
5. Then, we scale traffic matrix 5 by multiplying it by 0.4,
0.5, 0.7 and 0.9, generating traffic matrices 1, 2, 3 and
4, respectively [5]. These matrices are used to simulate an
increasing amount of traffic in the network. In the following
subsections, we show the results of the evaluation, first on
SDN deployment scenarios, and then on IIoT deployment
ones. Moreover, we have performed emulations on Mininet for
some of the SDN deployment scenarios. In these emulations,
we have created a series of hosts that send their traffic to their
assigned FNs using iperf, while they assess their latency as
half of the round trip time obtained with ping. The Mininet
emulations have been performed on an Amazon Web Services
t2.large instance.

The objectives of this evaluation are to assess the impact of
the number of placed FNs (i.e., θ), FN capacity (i.e., α), traffic
and link capacity in the latencies experienced by flows in the
network, as well as in the time required to obtain a solution.
Thus, four metrics are used to evaluate the solutions: the mean
latency from all hosts to their assigned FNs, the maximum FN-
host latency throughout all hosts, the statistical distribution
of the latencies and the time required to find a solution.
The first three metrics are QoS-related, and thus, allow for
a user to make a choice on a solution based on the QoS
requirements of their concrete use case (e.g., picking a method
with lower maximum latency, even if it has higher average
latency, because the scenario complicates guaranteeing that all
devices can meet the QoS requirements). The latter, although
not directly related to the QoS of the application, allow users to
also consider scalability and resource consumption to choose
a method. Moreover, we aim at comparing the effects of all
these parameters in each of the six FN placement methods
previously mentioned, in experiments involving both Internet
and IIoT-oriented fog SDN topologies.

B. Performance analysis - SDN deployment

The first analysis consists on assessing the impact of the
number of FNs to be placed in the network (θ), and each
placement method’s performance, w.r.t. average latency. Fig. 5
depicts the results of the analysis in the Abilene topology.
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Figure 5: Average latencies in Abilene.

The main conclusion is that the correlation between θ and
average latency is inverse. In the case of optimal placement,
the correlation is similar to a harmonic progression. This is
caused by the fact that, in the best case, the latency achieved
with a single FN is divided by the number of FNs placed (i.e.,
with 2 FNs, the latency will be at best 1

2 of the original, with
3 FNs it will be 1

3 , etc.). The decreasing trend is mimicked by
every method except HBC and HCC, which have an slightly
increasing trend instead. Method-wise, the optimal solution
is always MinMeanLat, generally followed by MinMaxLat.
The heuristic is the third best method, after which comes
the benchmark, and finally HBC and HCC yielding the worst
results. It is also important to note that the benchmark requires
a cloud deployment in θ = 3. Finally, the performance
gap between the heuristic and the optimal solution tends to
decrease in higher θ values, with a 1 ms gap with θ = 2 and
merely 0.0005 ms of difference with θ = 4. The difference
between the heuristic and the benchmark depends on the value
of θ: with θ = 1, they yield the same solution, as they use
the same method to place the single FN. Nonetheless, as more
FNs need to be placed, the different assignment methods show
a difference of up to 0.34 ms in θ = 2. In θ = 3, since
the benchmark requires cloud usage, this gap increases to
approximately 45 ms.

Fig. 6 shows the average latencies in larger topologies:
GEANT (Fig. 6a), Germany-50 (Fig. 6b) and Brain (Fig. 6c).
Performance-wise, we can see in general that HBC and HCC
yield the highest latencies, followed by MinMaxLat, which
highly varies in this performance metric, raising from the 4th
place to the 2nd in most high θ scenarios. The benchmark and
the heuristic yield similar results, but the benchmark tends
to require the cloud with higher values of θ such as 3 and
4, whereas the heuristic can successfully make use of fog-
only deployments in all cases. Finally, MinMeanLat is the
optimal method, and hence, always yields the best average
latencies. In more detail, in GEANT, we find that all methods
except HBC and HCC follow a decreasing trend, similar to
the results in Fig. 5. Nonetheless, this trend is not as quick
to decrease as it was in Abilene. This is mainly related to
the shape and distribution of vertices in the infrastructure:
while Abilene is a more sparse topology, with all vertices
separated by similar distances within the USA, GEANT has a
dense core in central Europe, along with some sparse vertices

separated by much longer distances (e.g., London-New York).
Hence, to have a quickly decreasing trend, FNs must be
placed in such a manner that the dense core has very low
latencies, and the vertices far away from the core have FNs
placed in them. As MinMeanLat shows, this does not yield
optimal average latencies, hence, the trend does not decrease as
quickly as before. This also applies to the rest of the methods,
which exhibit similar trends. Continuing with Germany-50,
the trends of MinMeanLat, MeanMaxLat and the heuristic
are all decreasing. The heuristic decreases less sharply, while
MinMaxLat starts higher than the heuristic. On the other hand,
HBC and HCC exhibit a large difference in this topology: HCC
yields better latencies (approximately 1 ms lower) than HBC.
Moreover, the benchmark exhibits the opposite behaviour,
with its latency raising as θ increases. Finally, in the Brain
topology, we find a trend with sharper decreases than in the
previous topologies, due to the density of the topology. All the
methods, except HBC and HCC, exhibit a decreasing trend.
Most interestingly, the heuristic and MinMeanLat are almost
parallel, with an optimality gap of approximately 0.27 ms. The
benchmark could fall into this category as well if it did not
depend on the cloud for θ = 3 and 4. Overall, we conclude
that the trends followed by average latencies as the number
of FNs increases depend on topology density, and that the
heuristic tends to perform in a similar manner to MinMeanLat,
and does not require for the cloud as often as the benchmark.

Fig. 7 depicts the cumulative distribution function (CDF) of
the latencies experimented by each of the flows in the emulated
Mininet environment, in a situation with θ = 4. MinMeanLat
rises quickly, with a 25% of the flows staying under 64 ms
of latency. Nonetheless, there is a 20 ms gap to the remaining
75%, which steadily rises from 81 to 97 ms. Overall, we
find a behaviour in which there is a clear separation between
low-latency flows and high-latency flows. MinMaxLat and the
heuristic exhibits a very similar behaviour, the heuristic rising
faster, but MinMaxLat having lower latencies in the highest
latency flows (106 ms with MinMaxLat, 109 ms with the
heuristic). Nonetheless, both rise in a very steady manner,
only exhibiting a gap on the higher quarter. The benchmark
exhibits higher latencies at both the lowest latency flows and
the highest latency flows, while those in the middle are similar
to the heuristic and the MILP-based solutions. Finally, both
HBC and HCC yield very bad results, with a clear gap of 20
ms after the lower 10% of the flows, and with a latency of
approximately 1.5 times the one achieved by the heuristic and
MILP-based solutions.

The execution time analysis is depicted in Fig. 8. This
analysis makes use of the largest θ value to maintain fair-
ness and compare all solutions in a worst-case scenario for
execution time, since their execution time is directly related
to the value of θ. This analysis allows for a study of the
scalability of each of the methods, which may be key for their
usage in larger topologies. The main conclusion that is drawn
from this figure is that MinMaxLat does not scale well: it
is the slowest method on every case, and the gap between
MinMaxLat and the rest of the methods becomes extremely
large in topologies with 50 nodes or more (e.g., Germany-50,
Brain). In the worst-case scenario, MinMaxLat takes about 12
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(a) GEANT (22 switches, 36 links). (b) Germany-50 (50 switches, 88 links). (c) Brain (161 switches, 166 links).

Figure 6: Average latencies in other topologies
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Figure 7: CDF of emulated latency in Abilene, θ = 4

Figure 8: Optimization times for all topologies, θ = 4.

minutes to optimize, a value extremely large compared to the
rest of the methods, that take less than a minute. In order not
to occlude the rest of the methods because of the results of
MinMaxLat, the color palette has been adjusted for the rest
of the methods (i.e., between 0 and 40 seconds). Continuing
with MinMeanLat, its scalability is not good either: despite
being a fairly competitive method in smaller topologies such
as Abilene or GEANT, solving the FNPP in 0.24 to 0.51
seconds, the times in Germany-50 (7.28 seconds) and Brain
(35.22 seconds) rise extremely fast. Concretely, we find that
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Figure 9: Average latencies in LCL-scaled.

duplicating the topology size brings with it an increase of
approximately 14 times the execution time. This is common
in MILP solving, which normally has exponential temporal
complexity [15]. Thus, although 35 seconds is still a short
time, it may increase heavily on larger topologies. All the
remaining methods have very good scalabilities: HCC is the
fastest method ranging from 0.003 to 0.45 seconds, with HCC
following it (0.005 seconds to 1 second). The benchmark also
scales well (0.03 to 1.49 seconds), and the heuristic is also
very close (0.01 to 1.96 seconds). Considering the previously
analyzed results, we find that, despite the MILP optimization
is able to solve the FNPP in tractable time in topologies with
tenths or hundreds of nodes, it may be prohibitive in topologies
with thousands of nodes. Therefore, we recommend the usage
of the heuristic in such topologies.

C. Performance analysis - IIoT deployment

The first analysis to be performed in the IIoT deployment
scenarios is the average latency analysis. Very similar to the
average latency analyses performed in the SDN deployment
scenarios (Figs. 5, 6), these allow for the assessment of the
average performance of a flow.

The first IIoT analysis, performed in the LCL-scaled sce-
nario and depicted in Fig. 9, aims at assessing the effect of
θ in average latency. While LCL-scaled does feature a more
stringent link capacity limit, we find out that FN capacity (α)
is much more impacting. This is mainly because stringent
link capacity limits give a larger window for algorithms to
maneuver after setting a path, by using alternative paths for
newer flows. However, stringent FN capacity limits make each
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Figure 10: Average latencies in HCL, θ = 4.

assignment decision vital, especially for algorithms without a
retrying system, since finding an alternative FN-host assign-
ment after making an inefficient decision can be impossible.
Despite this fact, we still find the effect of traffic and link
capacity in Fig. 9. First, HBC and HCC exhibit the worst
results, followed by the benchmark, which is unable to yield
fog-only deployments any further than θ = 2, MinMaxLat, the
heuristic, and MinMeanLat being the best method. Moreover,
we also find that HBC and HCC fail to find a fog-only
deployment after θ = 4. This result comes from FN capacity
limits: LCL-scaled reduces the FN capacity with higher θ, so
that the aggregated capacity from all FNs remains constant.
Hence, since neither HBC or HCC have a retry system either,
a series of inefficient decisions lead them to requiring cloud
usage. Furthermore, latencies are more differentiated in θ = 1
than in other scenarios: MinMeanLat yields an average latency
0.2 ms lower than the rest of the methods, which also exhibit
a gap, although smaller (0.05 ms). This difference comes from
routing algorithms: the benchmark, HBC and HCC share very
similar latencies because they share a routing algorithm. The
heuristic makes use of a different algorithm, that allows it
to reduce the average in 0.05 ms, and MinMaxLat exhibits
slightly different (0.01 ms) results as well. Finally, the heuristic
has an average optimality gap of 0.26 ms.

The final average latency analysis is performed in the HCL
scenario, and its results are shown in Fig. 10. The scenario with
θ = 4 was chosen because it shows most clearly the effects of
traffic over average latency. The methods still follow a similar
order: HBC and HCC have the same results, yielding the worst
latencies among all methods (between 2.4 and 2.7 ms). Next,
the benchmark yields much better results (between 1 and 1.4
ms), being the fourth best method. The third best, very close to
the benchmark, is the MinMaxLat method (between 1 and 1.3
ms). The second best method is the heuristic (between 1 and
0.9 ms), with a small optimality gap (an average of 0.07 ms
w.r.t. MinMeanLat). The optimal method is the MinMeanLat
formulation (0.85 ms). The general trend in most methods,
most notably in the benchmark and the heuristic, is to have
average latency rise with higher traffic. This is a consequence
of the link capacity limits: since HCL imposes very strict
limits on link capacity, higher demands quickly fill up the
links of the infrastructure. Therefore, each routing algorithm is
forced to find alternative paths, which normally have a higher
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Figure 11: Maximum latencies in HCL.

latency, and thus, overall latency rises as a consequence. This
behaviour is not exhibited by MinMeanLat or MinMaxLat,
precisely because these methods do not have a conventional
routing algorithm, and instead, route traffic based on MILP.
Thus, it consistently chooses routes that minimize the overall
or maximum latency, as opposed to using routing algorithms
based on k-shortest path. Moreover, we find that HBC and
HCC are unable to find a solution for traffic matrix 5, precisely
because their routing decisions in the initial steps leave no
room for later flows to find alternative routes.

In order to analyze maximum latency, Fig. 11 depicts the
maximum latencies among all flows the HCL scenario, with
the objective to analyze the effects of θ. As it can be seen,
the trend is the exact opposite: a higher θ is directly related
with a lower maximum latency. Dissecting this analysis by
methods, we find again HBC and HCC consistently yielding
the worst results. Moreover, the trend for both methods is
completely flat: adding more FNs does not imply a better
maximum latency if they are used. This phenomenon, which
appears also in LCL-unscaled, is related to how they manage
FN capacity: since they have a FN with enough capacity to
meet all traffic demands, they direct all the traffic towards said
FN. Thus, it is irrelevant whether more FNs are placed in the
infrastructure. The next method is the benchmark, which yields
the same results as HBC/HCC for under 3 FNs. However, as
more FNs are added, the maximum latencies achieved by the
benchmark decrease, until reaching an optimal result in θ = 7.
Overall, the gap between the benchmark and the methods with
smaller latencies is very large unless a very high number of
FNs is placed, and thus, obtaining good maximum latencies
with it can be very costly. The heuristic is next, with an
average optimality gap of only 1 ms. In general, the heuristic
tends to closely follow the optimal solutions, and, despite
needing a high number of FNs to become optimal, this number
is significantly smaller than the benchmark. Finally, once
again, both formulations yield optimal maximum latencies.
Furthermore, there is an interesting phenomenon in these
methods: there is a cap at 2 ms. After reaching this cap
with 3 FNs, not even duplicating their number will decrease
the maximum latency. This appears because FNs cannot be
placed infinitely closer to hosts, and thus, once all FNs are
placed very close to their assigned hosts, maximum latencies
are minimal, and more FNs will not decrease it further. In
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Figure 12: Latency box plot for LCL-unscaled.

conclusion, placing more FNs tends to lead to lower maximum
latencies, until a certain limit is achieved.

To add to these analyses, a box plot of latency for the
LCL-unscaled scenario is depicted in Fig. 12. With this box
plot, it is possible to have additional information about each
method’s distribution on latency. The first analysis considers
θ = 2. Starting with the benchmark, the box plot shows that,
although the benchmark achieves good results, they have a
large spread. The Q1 is very low, starting nearly at 0 ms,
which implies that 25% of the hosts or more have near-zero
latency. However, its Q3 is nearly 4 ms, which implies its
IQR is 4 ms wide. Thus, a 75% of the hosts have latencies
that range from almost zero latency to 4 ms, which is a very
high spread considering how it compares to other methods.
Next, HBC and HCC have very similar results and spreads:
their Q1 is close to 2 ms while their Q3 is close to 4 ms,
hence having a smaller spread at the cost of overall higher
latencies. The heuristic shares its Q1 with the benchmark, and
its spread with HBC and HCC: its Q3 is at 2 ms, and thus,
75% of the hosts have under 2 ms latencies. However, its main
difference with the MILP solutions, which the heuristic shares
its IQR with, are the whiskers. Approximately, the remaining
25% of the hosts have latencies ranging between 2 and 4 ms
with the heuristic, hence the upper whisker. In MinMaxLat and
MinMeanLat, however, all hosts have under 2 ms of latency.
A final remark that should be considered are medians: all of
the methods share a 2 ms median, meaning that 50% of the
hosts will always have under 2 ms of latency, regardless of the
method. Nonetheless, depending on the method, the other 50%
will experience higher or lower latencies: with the heuristic
and MILP solutions, the other 50% will experience similar
latencies (i.e., the median and Q3 are very close), with HBC
and HCC, they will be significantly higher (i.e., the median
and Q1 are very close), and with the benchmark, they will
be higher, although lower than with HBC and HCC. Moving
on to θ = 4, we see that most methods simply enhance their
behaviour: the benchmark has a very similar behaviour to the
heuristic’s in θ = 2, although with a lower median. Similarly,
the heuristic behaves like MinMaxLat and MinMeanLat, with
a lower median as well. HBC and HCC do not improve,
and behave equally throughout all θ values. Finally, while
MinMaxLat behaves similarly with θ = 2 and θ = 4, we
find that MinMeanLat is able to have a lower median. This
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Figure 13: Execution times for LCL-unscaled.

behaviour responds to the optimization objective: MinMaxLat
does not care about how many flows have a higher latency,
as long as the overall highest one is minimal. MinMeanLat,
on the other hand, prefers to have a higher number of flows
with minimal latency. Finally, in θ = 7, we find that all
methods except HBC and HCC behave very similarly: latency
is minimized, and both the box and whiskers are near 0.
Nonetheless, there is a clear outlier at 2 ms in all cases,
which represents the limit in which maximum latency cannot
be further minimized that Fig. 11 also shows.

The next analysis is related to the execution times needed
to place FNs, assign them to hosts and route the traffic, both
for comparing all of the methods and for showing the effects
of θ and traffic over them. Since these trends are followed
in all scenarios, LCL-unscaled is used as a benchmark, with
its results being depicted in Fig. 13. Comparing methods,
we find that HCC is the fastest method, followed by HBC.
The heuristic is next, significantly slower than both of them,
but not exceedingly so. The benchmark is the third slowest
method, although it can still be considered very fast. Finally,
both MILP formulations take the most time to optimize the
FN deployment, with a gap of approximately 500% w.r.t.
the previous four methods. Out of the two, MinMeanLat is
faster than MinMaxLat in almost every case. The effects of
traffic, as well as θ, depend on the exact method: HBC and
HCC are almost unaffected by these two parameters. The
heuristic and benchmark, however, are slightly affected by
traffic: more loaded matrices, such as 4 or 5, take more time
to optimize than lightweight matrices, such as 1. θ has a
more significant effect, as placing more FNs is more time-
consuming in both methods. Finally, the MILP formulations
do not show a general trend w.r.t. each of the parameters, and
instead, have difficulties on a case-by-case basis. MinMeanLat
only has a significant peak on the case with θ = 1 and
traffic matrix 1, staying stable throughout the rest of the cases.
MinMaxLat shares this peak, while also showing significantly
higher execution times in θ = 1 with traffic matrix 2, as well
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Figure 14: Average latencies in different topology sizes, θ = 7.

as θ = 2 with traffic matrices 3, 4 and 5. The conclusion
from this analysis is that, out of all the methods, the most
efficient one is the heuristic: it is consistently the second
to third best placement method, as well as the third fastest
one. The benchmark, however, obtains slightly worse solutions
in a slightly higher time. Finally, HBC and HCC, despite
fast, achieve the worst results overall. The opposite can be
said about MinMaxLat and MinMeanLat, which, although
being the best placement methods, they are also the slowest.
Nonetheless, the FNPP is a design-time problem and, as such,
even the highest times, such as the 14 seconds required by
MinMeanLat and MinMaxLat, can be considered tractable
times. However, in larger topologies, it is important to consider
the scalability of the solution, as seen in the SDN deployment
analysis and Fig. 8.

The final analysis assesses the impact of topology size and
placement complexity in the average IoT to FN latency. In
order to do so, the IIoT topology has been changed by not
converting any of the original switches into hosts, and rather
connecting a host to each switch. The result is a topology
with 161 switches and 161 hosts, which is compared with
the original IIoT deployment topology, featuring 9 switches
and 152 hosts, by placing 7 FNs. Furthermore, in order to
quantitatively compare our solution to the benchmark, cloud
latency is shown in the cases the benchmark requires for
cloud deployments. The results of this analysis are depicted in
Fig. 14. It is important to note that the change in size makes the
FN placement decisions much more complex, since

(
161
7

)
=

487, 444, 845, 680 possible combinations for FN placement
exist, rather than the original

(
9
7

)
= 36. Furthermore, the IoT

to FN mapping maintains a very high complexity, with 7161

possibilities instead of 7152. Only three methods are shown:
MinMeanLat, the heuristic, and the benchmark, because the
objective metric is average latency. As previously seen, Min-
MeanLat yields optimal latencies, followed by the heuristic,
and with the benchmark in third place. The heuristic scales
well, increasing its latency by a factor of 3.52 while the
topology itself is 16.8 times larger, with 1010 times more
possible placements and 108 times more possible assignments.
In the case of the benchmark, we find that some of the IoT
devices had to be assigned to the cloud, increasing the average
latency to 8.7 ms in the original topology and 9.33 ms in
the larger one. This makes the optimality gaps become very

large, at 8.21 ms (1, 677.7%) in the original topology and
6.84 ms (374.8%) in the larger one. Nonetheless, the cloud
latencies remain mostly stable in both topologies, which results
in stable, although high, average latencies. In conclusion,
larger topologies have a clear effect on the average latency
experienced. In the present experiment, the average latency
rises by between 2 and 3 ms, an amount relevant for very time-
strict services such as IIoT factory automation [1]. Moreover,
the complexity of FN placement and assignment can heavily
affect latency, as the benchmark shows, requiring for cloud
assignments and, thus, up to 16 times higher latencies.

VI. RELATED WORK

In order to meet the requirements of intensive IoT applica-
tions, latency is a crucial QoS dimension [1], and thus, it is key
to optimize it. The optimization of QoS through the placement
of equipment, especially in SDN and fog infrastructures, is a
research topic that is still currently active and tackled from
multiple points of view [11], [12], [14], [21], [22]. In this
section, we review some of the related endeavors for latency
and QoS optimization in SDN and fog environments.

On the one hand, we find that a component of latency in
SDN networks is control latency: since the control plane is
centralized in the figure of the SDN controller, SDN equipment
must communicate with the controller in order to perform their
tasks accordingly, and said communications have a certain
latency. Control latency depends on the placement of the SDN
controller or controllers relative to the SDN switches. Hence,
the problem for the optimization of control latency by placing
the SDN controller accordingly is known in research as the
SDN Controller Placement Problem [14] (CPP). The CPP
focuses on finding which SDN switches in the network are the
best to host a SDN controller as well, and therefore, the CPP
has a similar structure to the FNPP. Nonetheless, their focus is
different: the CPP optimizes control latency and affects all the
traffic of the SDN network [14], while the FNPP optimizes the
latency of the IoT application by also allowing the offloading
of computing tasks, only affecting the traffic directed towards
the application. Furthermore, the CPP is a generalized problem
in SDN networks, while the FNPP is a specific problem
of SDN-fog scenarios. Another placement problem in IoT
networks, and more concretely in wireless sensor networks,
is the placement of base stations [21]. This problem consists
on optimally placing a set of wireless base stations in a given
area, maximizing metrics such as the coverage area of the
wireless network or the network lifetime. Nonetheless, the
station placement problem and the FNPP are different. To
summarize the differences, the objective of wireless station
placement is to optimally locate a set of wireless base stations
at arbitrary points in a specified area to carry the information
from the sensors to an information sink [21], while the role of
the FNPP would precisely be to locate the information sinks
in specific points (i.e., SDN switches).

On the other hand, the optimization of latency in IoT
applications deployed on fog scenarios is often approached
from the application point of view. Modern IoT applications
are often divided into multiple services that may be deployed
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on different machines, including fog and cloud nodes [22].
Since these services often need to interact with each other,
and can be requested by different IoT devices in different
locations, it is important to deploy the application services in a
manner that minimizes the overall IoT application latency. As
Brogi et al. surveyed in [22], the endeavor for finding optimal
deployments is an active research topic on its own. While
this line of research has the same objective, minimizing the
latency of intensive IoT applications, the optimization efforts
are meant to distribute software components in computing
devices, a fundamentally different approach from the FNPP,
which is meant to place the computing devices themselves.

Finally, other authors have also tackled latency optimization
from the same perspective. These works share the core idea
with the FNPP: to minimize the application latency by placing
FNs optimally within the scenario. One of the most recent
proposals is the fog network planning problem [12], which
is also based on the idea of strategically placing FNs to
reduce latency. The fog network planning problem differs
from the FNPP’s premises: rather than fog-enabling a SDN
network, Gilbert et al. try and place a set of FNs in different
areas, i.e., geographical clusters of IoT devices. The fog
network planning problem includes FN placement and FN-
IoT device assignment, but lacks routing considerations, in-
cluding the selection of communication technologies between
FNs instead. Another interesting research line is the one
of Maiti et al., who present FN placement as a relevant
problem for IoT applications [11], [23], [24]. This set of works
solves the problem of placing a given number of FNs in
a multi-tiered SDN-fog network infrastructure. Nonetheless,
there are important differences between the FNPP and this
research line: these works focus on optimal FN placement
in tree-shaped topologies, unlike the FNPP, which considers
arbitrarily-shaped topologies. Moreover, the proposals within
this research line do not consider IoT device to FN assignment
or traffic routing because they are not required in tree-shaped
network topologies. Thus, the main difference between these
works and the FNPP is that they focus exclusively in FN
placement, whereas the FNPP includes assignment and routing
considerations.

In conclusion, the FNPP is closely related to the research
topic of latency optimization in networks, although its focus on
the placement of computing equipment in a network topology
makes it conceptually different from the CPP, wireless base
station placement, or service placement. Furthermore, unlike
the most similar works, the FNPP supports arbitrarily-shaped
network topologies, and considers the IoT devices to FNs
assignment, as well as the routing of the traffic between them.

VII. CONCLUSIONS AND FUTURE WORK

The growth and development of the IoT paradigm has gen-
erated new possibilities of real world process automation and
management in intensive domains. Nonetheless, integrating
time-strict real world processes with IoT technology calls for
time-strict IoT applications, which complicate meeting their
QoS requirements in a cloud environment. While a combined
fog-SDN infrastructure eases the achievement of the QoS

objectives, the placement of FNs in the infrastructure plays
a key role on QoS. In this paper, we presented the FNPP: the
problem of placing FNs optimally in a fog-SDN infrastructure.
We have also developed three solutions for the FNPP, two
of which (heuristic and MinMaxLat) are completely novel.
Moreover, we have evaluated these solutions in both Internet
topologies and IIoT fog environments, comparing them to
alternatives such as HBC or HCC, as well as state-of-the-
art benchmarks [11]. Our heuristic solution provides near-
optimal results, with optimality gaps under 1 ms and nearly
the same latency distributions, and finds fog-only deployments
with more ease than the benchmark and similar scalability.
On the other hand, our MILP-based solutions provide optimal
results in tractable time for small topologies.

In the future, we expect to address other QoS objectives,
such as reliability or resilience, in the FNPP, allowing for
optimal placements in terms of their fault tolerance. Moreover,
we also expect to create multi-objective solutions for the
FNPP, able to target multiple QoS objectives at the same time.
In this field, we expect to create both MILP-based, multi-
objective solutions, as well as genetic algorithms able to yield
a Pareto front. Furthermore, the FN scheduling problem, based
around the migration of the containers or virtual machines used
by FNs at execution time to optimally place them, is also a key
future work. We expect to develop solutions for this problem,
enabling for FN migration in real time.
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[18] N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau, “On the worst-case
complexity of timsort,” arXiv preprint arXiv:1805.08612, 2018.
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Abstract—The application of Internet of Things (IoT)-based
solutions to intensive domains has enabled the automation of real-
world processes. The critical nature of these domains requires for
very high Quality of Service (QoS) to work properly. These ap-
plications often use computing paradigms such as fog computing
and software architectures such as the Microservices Architecture
(MSA). Moreover, the need for transparent service discovery
in MSAs, combined with the need for network scalability and
flexibility, motivates the use of Software-Defined Networking
(SDN) in these infrastructures. However, optimizing QoS in these
scenarios implies an optimal deployment of microservices, fog
nodes, and SDN controllers. Moreover, the deployment of each of
the different elements affects the optimality of the others, which
calls for a joint solution. In this paper, we motivate the joining
of these three optimization problems into a single effort and we
present Umizatou, a holistic deployment optimization solution
that makes use of Mixed Integer Linear Programming. Finally,
we evaluate Umizatou over a healthcare case study, showing its
scalability in topologies of different sizes.

I. INTRODUCTION

The Internet of Things (IoT) paradigm has brought the
potential of real-world interaction to computer applications.
This potential has drawn attention to the IoT from intensive
domains aside from general-purpose one, such as the Industrial
Internet of Things (IIoT) [1] or the Internet of Medical Things
(IoMT) [2]. Due to the critical nature of the processes in
intensive domains, they often require a high Quality of Service
(QoS), such as extremely short response times [1], [2]. This
QoS is motivated by the QoS of the application’s execution,
as well as by the QoS of its communications. Thus, the three
dimensions that affect QoS must be considered: application,
computing and networking.

In the application dimension, current IoT applications are
often based on the Service-Oriented Computing paradigm [3].
The Microservices Architecture (MSA) design pattern allows
IoT applications to be divided into loosely coupled, col-
laborating microservices [4]. Nonetheless, microservices are
independent from each other, and can be leveraged both
separately or combined [4]. For instance, microservices can be
combined by having the output of a microservice be the input
of another one, in a pipeline manner. When the application
is deployed, each of the microservices can be executed by

a different device. The decision of where microservice is
executed should be motivated by the obtained QoS.

Focusing on response time, the computational complexity
of the microservice and the computational power of the
device are the main factors. Since microservices require a
certain amount of RAM to run, and devices have a limited
amount of RAM, the optimal placement of microservices in
devices can become complex in large infrastructures. The
problem that involves optimal deployment of microservices
in an infrastructure is known in literature as the Decentralized
Computation Distribution Problem (DCDP) [5].

In the computing dimension, the most popular computing
paradigm for IoT is cloud computing [6]. In this paradigm, a
server far away from the IoT devices provides the application’s
services to them. However, the distance between IoT devices
and cloud servers is so large that guaranteeing a suitable QoS
in intensive domains may be very complicated [1], [2]. This
problem has motivated the rise of new computing paradigms,
such as fog computing, that bring some of the computational
resources of the cloud closer to IoT devices [7]. This closer
placement allows IoT devices to obtain enhanced QoS (e.g.,
shorter latencies).

However, there is a key factor to be considered: the place-
ment of fog nodes has an effect on QoS [8]. Due to the
fact that microservice communication occurs between the
devices running them, the placement of said devices affects
the QoS of their communication [8]. Therefore, they should
be placed optimally in the infrastructure. The formal problem
of optimally placing fog nodes is known as the Fog Node
Placement Problem (FNPP) [8].

Finally, in the networking dimension, the communications
of the underlying infrastructure must be supported. In a fog
infrastructure, IoT devices must know where microservices
are deployed (service discovery) to communicate with the
corresponding fog nodes [9]. Since this is unrelated to the
application’s logic, it would be desirable to perform service
discovery transparently, separating the concerns of applic-
ation and deployment [9]. Furthermore, the infrastructures
for intensive-domain IoT applications require the network to
be scalable and flexible while maintaining the strict QoS



required [1], [8]. All these requirements can be met by making
use of the Software-Defined Networking (SDN) paradigm [9],
[10]

SDN allows for network programmability by decoupling the
control and data planes, embodying the control plane in the
figure of the SDN controller. However, since SDN switches are
purely data plane equipment, they require to communicate with
the SDN controller to operate. Due to these communication
requirements, the switch-controller communications QoS are
key. Considering response time, latency is a crucial QoS
metric. Every time a flow setup is required, the overall network
latency is affected by the latency between SDN switches
and controllers [11]. Thus, the placement of SDN controllers
should be optimized. This optimization problem is named the
SDN Controller Placement Problem (CPP) [11].

Each of these optimization efforts are aimed at the same
objective. Moreover, due to the coupling between all three
dimensions, they are not independent, as each decision taken
in one effort affects the rest of them. For instance, if the latency
of communicating with a device is higher than the time saved
by executing a microservice in said device, microservices
should not be deployed in it. Thus, latency needs to be
considered in the DCDP [5], which depends on the FNPP and
the CPP. To optimally place fog nodes, it is important to know
which other nodes of the infrastructure it must communicate
with [8]. Placing two fog nodes that must communicate
far from each other will have a very negative impact on
latency. Placing them closely, but far from the IoT devices that
communicate with them, will have a similar impact as well.
To trade them off, the FNPP must consider whether or not
two nodes interact, and the latency between different potential
placements. These factors depend on the DCDP and the CPP,
respectively. In the case of the CPP, controller placement is
affected by routing [11]. For instance, it is desirable to have
lower controller latency in switches that are heavily used, as
more flows will obtain a better QoS [11]. The steering of these
flows depends on the communications between microservices
(DCDP) and the devices that communicate (FNPP). Therefore,
all three problems are linked together.

Therefore, and due to the mutual influences between all
three dimensions, there is a need for a complete deployment
solution. Such solution needs to solve the DCDP, the FNPP
and the CPP, taking into account how each of them influence
the overall QoS. In this work, we present Umizatou (named
after the legendary creature Umizatou), a framework that
supports deployment optimization in all three dimensions to
minimize response time. To the best of our knowledge, no
other works in literature address a combined deployment prob-
lem that considers controller placement, fog node placement
and microservice placement.

The main contributions of this work are:
• The formalization of a problem that combines DCDP,

FNPP and CPP, aimed at minimizing response time.
• The formulation of a response time optimization solution

using Mixed Integer Linear Programming (MILP).
• An evaluation of Umizatou over an IoMT case study.

The remainder of this paper is structured as follows. Sec. II
explains the system model followed in Umizatou. Sec. III
includes the formulation used by Umizatou to optimize re-
sponse time. Sec. IV presents the evaluation over an IoMT
case study. Finally, Sec. V concludes the paper and highlights
future challenges.

II. SYSTEM MODEL

To better understand the model used by Umizatou, the
problem is explained using an IoMT case study. In this case
study, extracted from [12], an IoMT application, along with
the fog infrastructure, is to be deployed on a hospital. The
application allows for two functionalities: electrocardiogram
(ECG) anomaly analysis and blood pressure (BP) analysis.
Similar applications for cardiovascular disease detection have
also been proposed in the field of edge intelligence for the
IoMT domain [13]. Since the application follows an MSA,
it is divided into four microservices: an ECG monitor, a BP
monitor, an encryption microservice and a data compression
microservice. When ECG analysis is requested, the IoMT
device gathers the raw ECG information and sends it to the
ECG monitor, which outputs a commented ECG. Since the
size of a commented ECG is large [12], it is compressed after
that. Finally, the compressed, commented ECG is encrypted
to maintain confidentiality before being stored. BP analysis is
similar, except for the fact that the output of the BP monitor is
not large enough to need compression. This IoMT application
is depicted in Fig. 1.

The application is to be deployed in an SDN network that is
yet to have SDN controllers or fog nodes placed. Therefore,
there is a need to jointly solve the FNPP, the CPP and the
DCDP for this new application. The kind of fog node that
will be used is the one detailed in [14], the same kind as
the original model of the FNPP [8]. To tell it apart from
generic fog nodes, it will be denoted as FN. The main feature
from these FNs is that they integrate both an SDN switch
and a computing device, enabling them to have both SDN and
computing capabilities [14]. Moreover, it is possible to replace
a given SDN switch by a FN without loss of functionalities. As
for SDN controllers, the classic SDN control model is used,
in which controllers are co-located with SDN switches [11].

Application-wise, two possible workflows are considered:
the workflow for ECG analysis, and the workflow for BP
analysis. Each of these workflows can be instantiated as many
times as it is requested. In the case depicted in Fig. 1,
two IoMT devices request ECG analysis, while the other
two request BP analysis. Each workflow instance, or request,
implies that each microservice in the workflow needs to be
executed once, and thus, potentially deployed once. If the
same microservice from two different workflow requests is
executed in the same FN, the microservice is deployed once
and executed twice. Nonetheless, if each workflow request
executes the microservice in two FNs, the microservice is
deployed twice, and executed once per deployment. With said
application model in mind, the objective of the DCDP is to
find the optimal FNs to execute each microservice.



Figure 1: Example operation of Umizatou.

If Umizatou was to be executed to deploy 3 FNs, a single
SDN controller and the example IoMT application, the result
would be similar to the deployment depicted in Fig. 1. Starting
with the infrastructure, FNs are deployed on the top and
bottom the network for heavy processing, while the third
one is placed in the middle for more lightweight tasks. Such
placement is related to the type of communications: raw ECG
and BP data is heavier, and thus is placed the closest to
the devices. On the other hand, lighter microservices such as
compression or encryption are placed in the middle FN. This
placement is also due to the fact that they are shared among all
workflow requests in the infrastructure, and thus, most traffic
flows reach the middle switch. Thus, the SDN controller is
placed in it, which boosts the network QoS in this zone.

It is important to note that all these insights for deploy-
ment exist because of the joint approach. To place FNs for
lighter and heavier microservices, as well as co-located with
SDN controllers, it is key to know how heavier and lighter
microservices are deployed and where SDN controllers are.
Similarly, deploying workflow-specific microservices closer
to their requesting IoMT devices and shared microservices
closer to SDN controllers implies knowing where FNs and
SDN controllers are deployed. Finally, deploying controllers
co-located with FNs that execute shared microservices requires
knowledge about FN placement and microservice deployment.
Hence, Umizatou’s joint approach to the FNPP, DCDP and
CPP is crucial for this solution.

III. PROBLEM FORMULATION

In order to solve the DCDP, the FNPP and the CPP jointly,
we present a MILP formulation. This formulation serves two
purposes. Firstly, it formalizes the problem mathematically,
thus serving as an abstraction of the problem. And secondly,
it allows the problem to be solved optimally during design-
time through the use of automatic MILP solvers.

To begin, let G = {V, L} be a directed graph that represents
the infrastructure. V represents the vertices of the infrastruc-
ture, and L represents the links. A link lij ∈ L; i 6= j; i, j ∈ V
links together vertices i and j. Each link lij has a propagation
latency δij and a maximum capacity θij .

We define a subset H ⊂ V , which contains the vertices that
are hosts. We also define S ⊂ V as the subset of vertices that
are switches, so that H ∩S = ∅;H ∪S = V . Similar to links,
each switch s ∈ S has a processing latency δs. For simplicity’s
sake, we define the binary function SW (v)∀v ∈ V , that is 1
if v ∈ S and 0 otherwise.

With respect to FNs, let MAXFN be the maximum number
of FNs that can be placed in the network. As all FNs are equal,
let r be the total RAM memory of a FN. While the CPU clock
speed and the number of cycles of a microservice are relevant
to the execution time, and thus considered in Sec. IV, they do
not need to be considered in the formulation, as we assume
that all FNs are equal. Thus, execution time of a microservice
is constant, as it will take the same amount of time to run in
any given FN. Considering SDN controllers, let MAXC be the
maximum number of controllers to be placed in the network.
Moreover, the size of the control packets used to communicate
SDN switches and controllers also need to be considered.
Thus, let σ be the size of said control packets. In this work,
the size is taken from the OpenFlow specification [15].

In the IoT application model considered, logic is executed
in workflows. Thus, let M be the set of microservices the
application is divided into, and let W be the set of workflows
requested in the infrastructure. Each microservice m ∈ M re-
quires a certain amount of RAM rm to be executed. Moreover,
its input data has a certain size Im, and its output data has
a size Om. Each workflow w ∈ W is an ordered set of
microservice instances w = {c1, c2, ..., c|w|} ⊆ M , so that
each element is a defined microservice: ci ∈ w ⇒ ci ∈ M .
Furthermore, let WR(w, h)∀w ∈ W,h ∈ H be a function that
is equal to 1 if the workflow w is requested by the host h and
0 otherwise.

Next, we define the decision variables for the problem. First,
FNs need to be placed in SDN switches. Thus, let ns∀s ∈ S
be a binary variable that will be 1 if a FN is placed in SDN
switch s. Moreover, each microservice in a workflow must be
executed in a FN. Thus, let zwsca∀w ∈ W, s ∈ S, a ∈ [1, |w|]
be a binary variable that will be 1 if the microservice ca of
workflow w is executed in the FN placed in SDN switch s. The
traffic flows generated by executing workflows in a distributed
manner must also be routed. Therefore, let fvwca

ij ∀lij ∈ L, v ∈
V,w ∈ w, a ∈ [1, |w|] be a binary variable that is 1 if the
traffic generated by vertex v as a consequence of requesting
microservice ca of workflow w is routed through the link lij.
Furthermore, responses must be routed in a similar manner:
let f ′vw

ij ∀lij ∈ L, v ∈ V,w ∈ w be a binary variable that
will be 1 if the traffic generated by vertex v as a response
for workflow w is routed through the link lij . Similarly, for
controllers, let xs be a binary variable that will be 1 if an
SDN controller is placed in SDN switch s. In the case of SDN
switches, each switch is assigned to a single controller that it



communicates with. Thus, let yss′ be a binary variable that
will be 1 if SDN switch s communicates with the controller
placed in SDN switch s′. Communication flows must also be
routed, and therefore, let cfs

ij∀lij ∈ L, s ∈ S be a binary
variable that will be 1 if the control flow of SDN switch s is
routed through the link lij .

Then, the problem can be formalized as follows:

min
1

|W |
∑

w∈W

∑

s∈S

∑

lij∈L

(

|w|∑

a=1

(fswca
ij ) + f ′sw

ij )(δij + SW (j)δi)

+ SW (j)
∑

lkm∈L

cf j
km(δkm + SW (m)δk)

(1)

subject to:
∑

s∈S

ns ≤ MAXFN (2)

∀w ∈ W,a ∈ [1, |w|] :
∑

s∈S

zwsca = 1 (3)

∀w ∈ W,a ∈ [1, |w|], s ∈ S : zwsca ≤ ns (4)

∀s ∈ S :
∑

w∈W

|w|∑

a=1

zwscarca ≤ r (5)

∀lij ∈ L :
∑

s∈S

[cfs
ijσ +

∑

w∈W

[(

|w|∑

a=1

fswca
ij Ica) + (f ′sw

ij Oc|w|)]]

≤ θij

(6)

∀i, v ∈ V,w ∈ W :

∑

j∈V

fvwc1
ij − fvwc1

ji =





WR(w, v) if i = v

−WR(w, v)zwic1 if v ∈ H

0 otherwise.

(7)

∀i, v ∈ V,w ∈ W :

∑

j∈V

f ′vw
ij − f ′vw

ji =

{
zwvc|w| if i = v

−WR(w, i) otherwise.
(8)

∀i, v ∈ V,w ∈ W,a ∈ [0, |w|] : −zwvca−1
+ z′iwvca ≤ 0 (9)

∀i, v ∈ V,w ∈ W,a ∈ [0, |w|] : −1 + zwica + z′iwvca ≤ 0 (10)

∀i, v ∈ V,w ∈ W,a ∈ [0, |w|] : zwvca−1
+1− zwica − z′iwvca ≤ 1 (11)

∀i, v ∈ V,w ∈ W,a ∈ [0, |w|] : −zwica + z′′iwvca ≤ 0 (12)

∀i, v ∈ V,w ∈ W,a ∈ [0, |w|] : −zwvca−1
+ z′′iwvca ≤ 0 (13)

∀i, v ∈ V,w ∈ W,a ∈ [0, |w|] : zwvca−1
+ zwica − zvca ′′iw ≤ 1 (14)

∀i, v ∈ V,w ∈ W,a ∈ [2, |w|] :

∑

j∈V

fvwca
ij − fvwca

ji =





z′iwvca if i = v

0 if v ∈ H

−z′′iwvca otherwise.

(15)

∑

s∈S

xs ≤ MAXC (16)

∀s ∈ S :
∑

s′∈S

yss′ = 1 (17)

∀s, s′ ∈ S : yss′ ≤ xs′ (18)

∀i ∈ V, s ∈ S :

∑

j∈V

fvwca
ij − fvwca

ji =





0 if i ∈ H

1− ysi if i = s

−ysi otherwise.

(19)

Eq. 1 expresses the optimization objective: to minimize the
average response time of workflows. As previously stated,
since each microservice has a constant execution time, the
objective is to minimize workflow latency. Workflow latency
includes both the latency of application traffic flows (i.e.,
traffic generated by requesting microservice execution) and
the control latency of switches traversed by the application
flows related to the workflow. Eq. 2 limits the number of FNs
that can be placed. Eq. 3 states that each microservice request
in a workflow can only be fulfilled once. Eq. 4 ensures that
only FNs that are actually placed can execute microservices.
Eq. 5 states that the total RAM consumed by the microservices
executed in an FN cannot be higher than the available RAM
of the FN. Eq. 6 enforces link capacity. Eq. 7 states that traffic
flows for the first microservice request of each workflow are
generated at the requesting host and consumed at the FN that
executes the first microservice. Eq. 8 is similar, as it states
that responses are generated by the FN that executes the last
microservice requested in a workflow and consumed by the
host that requested the workflow. Eqs. 9-14 define the value
of new variables, that are created in order to maintain the
linearization. Eq. 15 adapts the classic flow constraints to the
generic case (i.e., microservices that are not the first ones in
a workflow). Eq. 16 limits the number of controllers to be
placed. Eq. 17 makes sure only one controller is assigned to
each switch. Eq. 18 states that only placed controllers can be
assigned to switches. Finally, Eq. 19 adapts the classic flow
constraints to control flows.

By giving this formulation as an input to an automatic MILP
solver, it is possible to obtain optimal FN, SDN controller and
microservice placement, along with optimal routing.

IV. PERFORMANCE EVALUATION

In this section, we evaluate Umizatou’s performance over an
IoMT case study, using a variety of scenarios with different
parameters.



A. Evaluation environment

To evaluate Umizatou, the same IoMT case study presented
in Sec. II is used: ECG and BP analysis in a smart hospital.
The overall software and hardware architecture was taken
from [12], while the technical details of microservices (e.g.,
RAM consumption, CPU cycles) are detailed in [16]. The
formulation has been evaluated over topologies of different
sizes, generated using the Erdös-Rényi model [17]. Users are
the nodes of the topology that have a degree of one, and
they are not considered SDN switches, but IoMT devices.
Therefore, they are able to request workflows and generate
traffic, although they are unable to route traffic, execute
microservices, or host FNs or SDN controllers. The rest of
the nodes, however, are considered to be SDN switches, and
thus, potential FN and controller placements. An additional
difference between switches and hosts are their connection
technologies. Switches are connected to one another with
Gigabit Ethernet links, as in [12]. On the other hand, IoMT
devices can connect to the infrastructure making use of differ-
ent wireless technologies. Following the case study from [12],
four wireless technologies are considered: Wi-Fi, Bluetooth,
ZigBee and 6LoWPAN. Each user requests a randomly chosen
workflow, which can be either ECG or BP analysis. With the
aim of evaluating the performance of the proposed solution
with a minimal-cost fog deployment, we deploy the minimal
number of required FNs in order to satisfy the set of requested
workflows. The minimal number of fog nodes is assessed
by considering the total RAM consumed by the microservice
instances and the RAM of each fog node.

Umizatou makes use of the Gurobi MILP solver to apply
the formulation presented in Sec. III to the different scenarios
evaluated. These tests are performed in a computer with an
Intel i7-8565U CPU and 16 GB of RAM. For each of the
twelve scenarios detailed in Table I, different analyses have
been performed. First, an analysis to evaluate the effectiveness
of microservice deployment is performed. For this purpose, we
evaluate both the microservice balancing and the load of the set
of FNs. Moreover, an analysis on the response time obtained
is also made to assess both the results obtained by Umizatou
and the scalability of the deployment in larger topologies. All
the parameters used for the tested scenarios are detailed in
Table I.

B. Performance analysis

In Fig. 2, the response times for both functionalities, BP
monitoring and ECG monitoring, are depicted in the three
topologies. The first conclusion that can be drawn from
this figure is that ECG monitoring consistently has a higher
response time than BP monitoring. This increase comes from
the fact that ECG monitoring requires for an additional mi-
croservice (compression), which adds both the execution time
of said microservice as well as the possible latency from its
execution in a different node to the overall response time of
the workflow. However, the main conclusion in these results is
that response time stays mostly stable over all three topologies,
with a subtle decrease in topologies of larger sizes. Moreover,

Table I: Parameter settings of the performed tests.

Scenario
ID

Switches Users Micro-
service
instances

Fog
Nodes

Wireless
protocol
(IoMT
devices)

1 7 5 13 3 Wi-Fi
2 7 5 13 3 Bluetooth
3 7 5 13 3 ZigBee
4 7 5 13 3 6LoWPAN
5 20 15 38 8 Wi-Fi
6 20 15 38 8 Bluetooth
7 20 15 38 8 ZigBee
8 20 15 38 8 6LoWPAN
9 50 40 100 21 Wi-Fi
10 50 40 100 21 Bluetooth
11 50 40 100 21 ZigBee
12 50 40 100 21 6LoWPAN
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Figure 2: Response time.

the standard deviation is extremely low, being in the order of
10−5 ms. Therefore, we conclude that the proposed solution
is scalable and response time is minimized.

In Fig. 3, the average share of microservices deployed per
fog node and the average load of each fog node is depicted.
Starting with the share of microservices, there are interesting
results in the error bars. As depicted, the larger a topology
is, the lower the standard deviation of this share is. Thus, the
larger a topology is, the more evenly distributed microservices
are. The even distribution comes from the fact that larger
topologies have more fog nodes, and is thus easier to distribute
microservices evenly while maintaining an optimal QoS. On
the other hand, the average load of fog nodes is high in every
topology, ranging from 86% (7 nodes topology) to 95% (50
nodes topology). This result is to be expected, as only the
minimal number of FNs required was deployed. Moreover,
larger topologies have a higher load. The standard deviation
is larger different in the 7-node topology (14.43%) than in the
other two (1.91% and 2.2%, respectively). This result implies
that, in the same manner microservices are distributed more
evenly in larger topologies, load is also distributed in such an
even manner.

Fig. 4 depicts the CDF of the latency of all workflows in all
three topologies. The main result extracted from this graph is,
in essence, that larger topologies have larger latencies. This
is depicted in two different ways. First, we find that larger



7 20 50
Topology size (# of switches)

0

20

40

60

80

100
Sh

ar
e 
pe

r f
og

 n
od

e 
(%

)

Average microservices deployed Average load

Figure 3: Deployment load and share.

0 2 4 6 8
Latency (s) 1e−6

0.0

0.2

0.4

0.6

0.8

1.0

CD
F 
(L
at
en

c 
)

Topolog  size (# of switches)
7
20
50

Figure 4: Latency empirical CDF.

topologies have their CDF placed more to the right. While
not all workflows of larger topologies have higher latencies
than the ones of smaller ones (e.g., some workflows of the
20-node topology have lower latencies than others from the 7-
node topology), it can be generally stated that larger topologies
have larger latencies. Nonetheless, due to the generally small
latencies achieved by optimal FN placement, this does not
affect the average response time in a significant manner, as
Fig. 2 depicts.

V. CONCLUSIONS AND FUTURE WORK

Applying IoT solutions to intensive domains requires a high
QoS. This QoS can be achieved by optimally deploying the
application’s microservices, placing the fog nodes that run
them, and placing the network controllers. However, the tight
coupling between the application, computing and networking
dimensions creates a relationship between their decisions.
Thus, a joint, holistic solution that optimally places controllers,
fog nodes and microservices is required. In this paper, we
presented Umizatou, a MILP-based solution to this joint prob-
lem. Umizatou has been evaluated over an IoMT case study,
obtaining response times under 20 ms for ECG monitoring
and under 16 ms for blood pressure monitoring, with good
scalability in increasingly large topologies. In the future, we
expect to extend Umizatou by allowing it to use alternative
optimization algorithms, such as heuristics, to improve the

optimization times. Finally, we also expect to test Umizatou
over real or emulated network test-beds.
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Everything that lives is designed to

end.

NieR: Automata

Yoko TaroChapter 8

Conclusions and future work

This chapter concludes this thesis dissertation. In Section 8.1, we draw some

general conclusions from the results obtained through the development of the PhD.

A discussion of these results from the perspective of the stated research questions is

given in Section 8.2. On the other hand, the main limitations of the proposed solutions

are discussed in Section 8.3. Section 8.4 presents the future research lines. Finally,

Section 8.5 concludes the thesis with the author’s personal remarks.

8.1 Conclusion

The next generation of IoT applications has the potential of bridging the gap

between computer systems and the real world, even for intensive domains, like

industry or healthcare. Indeed, current paradigms for application design, computing,

and networking control, such as MSAs, the Cloud-to-Thing continuum, or SDN,

respectively, pave the road for next-gen IoT. However, an important challenge for this

next generation is the optimization of the application’s QoS, especially considering the

characteristics and peculiarities of each of these paradigms. Hence, optimally placing

the application’s microservices, computing devices, and network controllers is key to

enabling the next generation of IoT applications. Furthermore, the requirements may

differ between companies developing IoT applications, and hence, optimizing QoS is
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not something that can be done using a single metric: multiple metrics on QoS must be

possible to consider. Finally, once the application is deployed, the placements must be

continuously adapted, integrating the adaptation task into existing continuous practices

and methodologies like DevOps.

In this thesis, we have presented a set of approaches, models, tools, techniques,

and architectures for tackling these problems. The main result of this dissertation is

DADO [2], a framework for optimizing response time through the optimal deployment

of IoT applications and SDN controllers. This result includes a multi-objective version

of DADO, code-named NIoTO [5], which extends DADO’s holistic approach with the

possibility of optimizing the cost of the deployment, separately or jointly with response

time. In parallel, we also defined the problem of placing the computing devices

or FNPP, as well as developed an optimal and a heuristic solution to it [3]. These

works converged in Umizatou [42], an all-in-one framework for optimizing all three

dimensions holistically. Along with these 5 artifacts, we also presented 9 additional

supporting artifacts that are directly related to DADO. Out of them, we would like to

highlight ConDADO, a version of DADO meant to dynamically adapt the application

placement to environmental changes making use of continuous reasoning, as well as

integrating with DevOps CI/CD pipelines.

8.2 Discussion

This section summarizes the contributions of this thesis w.r.t. the RQs detailed in

Section 1.3. Concretely, we defined 5 RQs:

RQ1 Are the decisions taken by QoS optimizations performed in each separate

dimension different from those taken with a holistic approach? As of this

thesis, the answer to this question is Yes, depending on the scenario. Holistic

optimization allows the system to have information from its own decisions in

other dimensions to decide on the optimal solution. This is especially evident

when the system provides a counter-intuitive solution, which takes decisions that
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sacrifice QoS in one dimension because those decisions unlock the possibility of

making other decisions that improve QoS further. One of these cases is depicted

by Figure 6 in [2] (Chapter 4): DADO decides to place SDN controllers so that

the overall traffic latency increases, because doing so allows for the placement

of microservices in more powerful nodes that are further away, hence decreasing

the total response time. If the SDN controller placement system did not know

of the microservice placement system, it would be illogical and sub-optimal to

place the controller in that manner. As a consequence, a separate microservice

placement system would be unable to reach such nodes with a low enough

latency to decrease the response time. The more complex the scenario is, the

more likely it is that these situations may arise. Hence, although it may not be

the case for the smaller and simpler scenarios, we conclude that, if the possibility

for further optimization exists due to the complexity of the scenario, the response

to RQ1 is positive.

RQ2 Is it possible to jointly consider multiple points of view on QoS? Our works

in the context of this thesis conclude that the question to RQ2 is Yes. In

the case of holistic IoT application deployment optimization, it is possible to

consider multiple QoS metrics, even if they come from multiple points of view

and must be traded off. Based on this idea, artifacts such as NIoTO [5] or

MO-SFO implement multi-objective optimization, considering two objectives

from different points of view: response time from the technical point of view,

and economic cost from the business point of view. Both of them can consider

each objective separately and both objectives jointly to meet the developer or

operator’s requirements.

RQ3 Which models and techniques are useful for solving the joint optimization

problem? This is, possibly, the most extensive question of all five RQs, as

it requires a list of the proposed solutions. In summary, we could say that

We have proposed multiple models that allow state-of-the-art optimization

techniques to be used. Concretely, starting with the modeling of the
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optimization problem, we have developed DADO’s optimization model [2],

the FNPP’s model [3], Umizatou’s all-in-one model [2], S-DADO’s dynamic

model, and the simplified and expressive model for µDADO. Regarding

optimization techniques, we have eminently used MILP for solving the

optimization problems [2–5,37,42,44]. Nonetheless, we have also made used of

additional state-of-the-art techniques, both to support MILP and as completely

standalone solutions, such as unsupervised machine learning ( [3]), Lyapunov

dynamic optimization [46] (S-DADO), continuous reasoning [60] (ConDADO),

or Adaptive Kernel Search [59] (Vernier).

RQ4 Can the decisions taken during optimization adapt to changes in the

dimensions’ environments? The answer to this question is also Yes. In

the context of this thesis, we have proposed multiple artifacts that adapt the

optimization decisions to the changes that arise in the environment, and more

concretely, in each of the decisions. Concretely, ConDADO, S-DADO, µDADO,

and Faustum are artifacts that perform adaptative optimization, proactively in the

case of S-DADO, and reactively in the rest.

RQ5 How does this optimization fit in current development lifecycles and

practices? During the development of this thesis, we have concluded that

the answer to RQ5 involves two key points in the application development

lifecycle. The optimization presented in this thesis fits both in the late design

phase and in the operation phase of the lifecycle, and the latter can be

integrated into DevOps practices. Purely optimal frameworks (e.g., DADO,

NIoTO, Umizatou) are expected to be used at the late design phase, to ensure the

application is initially deployed in optimal conditions of QoS. During runtime,

in the operation phase, we proposed CA as a manner to integrate the adaptation

of the optimization decisions into the existing DevOps practices. Concretely,

ConDADO is our main proposal for its use at operation time.
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8.3 Limitations

During the development of the PhD, we also found some limitations to the works

presented in this thesis:

• Integration in an orchestrator. Although some of the artifacts we have

developed, like PODS, enable the migration of microservices, the ConDADO

framework, as well as the future multi-layered continuous reasoning system,

is yet to be integrated with microservice orchestrators like Kubernetes. This

limitation is mainly a threat to the user-friendliness of the developed artifacts.

Due to our work in PODS and Pascal, we know it is possible to integrate

ConDADO into such orchestrators. However, as of now, the developer must

be the one to write the appropriate parsers to create this integration, both from

the monitoring system to DADOJSON and from DADOSIM to placement in

Kubernetes.

• Pareto front generation. Due to the MILP model used in our multi-objective

systems (NIoTO, MO-SFO, µDADO), each of the artifacts output a single

solution, which trades off the multiple objectives as the developer or operator

decides. However, other models and multi-objective systems, such as genetic

algorithms, can provide a set of Pareto-optimal solutions known as the Pareto

front, where each solution can be considered optimal because an improvement

in an objective involves the worsening of at least another objective (e.g., a shorter

response time also involves a higher cost). In some cases, some developers

or operators may find useful a feature that extracts a Pareto front that can be

evaluated by a human, rather than a single solution. Rather than a threat or

weakness of the existing work, this simply represents a limitation in terms of

optional, useful functional features.

• User-friendliness of the DADOJSON format. The final user of the optimization

artifacts developed through this thesis, generally, a developer or an operator is

expected to describe their planned scenario in a concrete format to make use
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of the existing artifacts. The family of formats that are used for the different

artifacts can be described as modifications of the original format we created for

DADO, the DADOJSON format. This format is a JSON schema that describes

each of the characteristics of the scenario in a simple manner. However, we

have yet to test if the DADOJSON format is user-friendly enough for our

target userbase to directly describe their scenarios in it or if, on the contrary,

the developers or operators would greatly benefit from a concrete UI (e.g., a

DADOJSON builder GUI).

• Integration of artifacts. Many of the artifacts that have been presented in this

thesis could be used together to perform specific, more complex tasks. For

example, NIoTO and MO-SFO can be used in conjunction with ConDADO

to obtain an initial placement that ConDADO will adapt over time, or Pascal

can be used instead of ConDADO to more accurately emulate the effects of

the adaptation on the environment. However, as of now, although most of the

artifacts make use of very similar formats, as they come from a similar baseline,

they are not directly integrated. As they are all developed and packaged as

standalone artifacts, the developer is on charge of this integration, either by

the creation of automated processes or by manually performing the appropriate

changes to data in order to make use of the integrated artifacts.

8.4 Future work

A part of the future, as well as ongoing work, is to address the limitations we have

described in the previous section. Furthermore, we consider that this PhD has opened

many new lines of research and engineering work:

• Communication of existing and work-in-progress artifacts. Out of the 14

presented artifacts, 5 are still in the Design Cycle of our methodology, and hence,

we are yet to have a publication related to them. Concretely, PODS (and by

extension, µDADO), Pascal, S-DADO, Faustum (including the multi-layered
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continuous reasoning stack), and Vernier are yet to be published. In the near

future, we expect to publish journal articles or conference papers related to

these artifacts and their advances w.r.t. the state of the art. We are currently

collaborating with the University of Cantabria (Spain), the University of Pisa

(Italy), the University of Bologna (Italy), and The University of Texas at Austin

(United States of America) in this line of work.

• Human-defined constraints to candidate solutions. In some cases, the developers

or operators may wish for a microservice placement solution where the

replication and placement of some microservices are already fixed for privacy

reasons. For example, microservices that process confidential data of the

organization should be deployed on-premises, in the organization’s own edge or

fog nodes, regardless of the underlying infrastructure. It would be desirable for

the developer or operator to be able to express this sort of additional constraints

simply, using models they are familiar with. We are currently collaborating with

the LoUISE research group of the University of Castilla-La Mancha (Spain) in

this research line.

• Holistic heuristics for multi-objective optimization. One of the caveats of

the MILP-based optimization frameworks is their high memory consumption.

Our models are exclusively made out of binary variables, which mitigates this

problem, but up to a certain limit. Concretely, we have found that our MILP

solver, Gurobi1, is too memory-intensive if the infrastructure has more than 300

nodes [2]. For very large infrastructures, it could be desirable to have a heuristic

solver, especially if it is less memory-intensive. Heuristics could also allow the

frameworks to obtain the Pareto front in multi-objective optimization scenarios.

Thus, we believe this research line can be a very interesting future work.

• Study on the user-friendliness of the developed artifacts. As we have mentioned

in the limitations section, the user-friendliness of our tools is yet to be studied,

1https://www.gurobi.com/
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analyzed, and possibly improved. While we believe that the use of the artifacts

themselves should be fairly simple for technical users, as they provide a

self-documented, straightforward, command-based CLI, it is still necessary to

study the user-friendliness of the DADOJSON format, as well as its related

formats, the output CSV format, and the DADOSIM format used by Pascal.

Furthermore, this research line can include the development of DADOJSON

editors and visualizing tools to aid developers and operators in their tasks.

• Development of distributed optimization models. Another interesting line of

work is to develop distributed algorithms that can optimize the QoS with a partial

view of the system, instead of the global view used by our artifacts. While the

global view is an acceptable assumption, as it can be obtained through the SDN

controller(s) and the monitoring system, some use cases of the framework can

benefit from a distributed approach. Concretely, this would be interesting from

the point of view of a multi-tenant infrastructure. Our existing frameworks can

optimize the QoS for an MSA, which may include more than one application,

as the microservice and workflow model allows for the possibility of having

workflows tied to multiple applications. However, in a scenario where multiple

devices are controlled by multiple parties, where each of the parties wants to

deploy one or more applications, and a fair deployment must be found, the

frameworks would require all parties to freely share their scenario information,

which may not be desirable if the parties do not trust each other. For these

situations, we want to develop distributed optimization models in the future.

8.5 Personal remarks

As the final conclusion, I would like to add my personal remarks. This PhD thesis

is the result of 3.5 years of work, from October 3rd, 2019, until the defense in

2023. Becoming a PhD has been one of my targets in life for a very long time, and

hence, in a way, this feels like a major milestone. However, if I had to describe the
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thesis with one word, it would be learning. Learning about the current environments

of IoT applications, learning from others about state-of-the-art techniques, learning

the foundations of optimization techniques, models, systems, and automatic solvers,

learning about the gaps in the literature, learning about the details of the system’s

behavior, and learning about other techniques and considerations that could be

integrated with our work. And, quoting the martial artist Bruce Lee, ”Learning is

definitely not mere imitation, nor is it the ability to accumulate and regurgitate fixed

knowledge. Learning is a constant process of discovery - a process without end.”
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Abstract

In mobile and pervasive computing applications, opportunistic connections
allow co-located devices to exchange data directly. Keeping data sharing
local enables large-scale cooperative applications and empowers individual
users to control what and how information is shared. Supporting such ap-
plications requires runtime frameworks that allow them to manage the who,
what, when, and how of access to resources. Existing frameworks have lim-
ited expressiveness and do not allow data owners to modulate the granularity
of information released. In addition, these frameworks focus exclusively on
security and privacy concerns of data providers and do not consider the pri-
vacy of data consumers. We present PADEC, a context-sensitive, privacy-
aware framework that allows users to define rich access control rules over
their resources and to attach levels of granularity to each rule. PADEC
is also characterized by its expresiveness, allowing users to decide under
which conditions should which information be shared. We provide a formal
definition of PADEC and an implementation based on private function eval-
uation. Our evaluation shows that PADEC is more expressive than other
mechanisms, protecting privacy of both consumers and providers.

Keywords: privacy, device-to-device, mobile computing, access control

1. Introduction

During the last several years, there has been a massive increase in the
deployment of mobile devices [1]. Similar trends exist for Internet of Things
(IoT) and wearable devices [2]. These devices carry a large number of on-
board sensors that provide a rich view of the surrounding context and sup-
port a wide array of applications. In addition, these devices commonly ac-
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company the user, providing an interface between their owner and a wider
networked community [3].

This astounding increase in companion devices enables new systems and
applications. Mobile crowd sensing recognizes that a user’s sensing needs can
often be fulfilled by others nearby [4]. Opportunistic data sharing [5], which
can be combined with mobile crowd sensing, relies on transient wireless
connections [6] to distribute and fulfill a data sharing task using information
from local networked devices. Both domains rely on communities formed
based on human contact [7]. As interactions become more opportunistic,
users need mechanisms to control the release of data according to their
privacy needs. In decentralized and opportunistic scenarios, trust among
peers and the security of shared information are crucial [8]. Nevertheless, it
is also essential to implement privacy management so that users can manage
who, when, and how their personal information is accessed [9].

As a running example, we describe an opportunistic data sharing appli-
cation for the city of New York. This application leverages users’ sensors to
support both tourists and residents. Concretely, one function of the appli-
cation is to store points of interest (POIs) identified by residents and then
offer this information to tourists or other residents via a microservice. Ob-
viously, information about an individual’s visits to particular POIs may be
sensitive, and residents should be able to decide with whom their POI infor-
mation (e.g., date, purpose, people they visited with, review, etc.) can be
shared and under what conditions. For instance, some residents may share
this information only with other users that belong to similar social groups,
or with tourists that have a specific context (e.g., are physically nearby).

In the opportunistic space, contextual information becomes very impor-
tant, as the user will often interact with strangers. Contextual information
is thus defined as any kind of information that allows for the characteriza-
tion of a user in a given situation, e.g., their identity, location, time of the
day, sound level, interests or mood [10]. The context of a user is, therefore, a
complete set of contextual information that characterizes the user’s current
situation. In opportunistic environments, context-aware access controls con-
strain access to data or services based on contextual conditions [11]. In con-
trast, basic access control, such as Role-Based Access Control (RBAC) [12]
or Dynamic Sharing and Privacy-aware Role-Based Access Control (DySP-
RBAC) [13], control access to information based solely on the identity of a
consumer. These mechanisms are not sufficiently expressive to support op-
portunistic applications in which the identities of most peers are not known
a priori. In addition, existing techniques do not allow data and service
providers to consider dynamic and contextual conditions when constraining
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access. For instance, residents in our example would not be able to limit
access to POI information to tourists who are nearby. Attribute-Based Ac-
cess Control (ABAC) [14] and the access control mechanism from [15] do
allow users to define access rules based on contextual conditions beyond
identity. However, these mechanisms cannot modulate the precision of in-
formation released to each peer as a function of the shared context, which
prevents providers from exerting fine-grained control over the access. For
example, these techniques would not allow residents to release only a partial
set of POIs depending on the contextual situation of each tourist. Further-
more, these systems are designed for centralized (cloud-based) data sharing
in which a coordinator mediates access. This is not the case in our scenar-
ios, which are often completely decentralized and rely on the provider and
consumer coordinating directly.

Finally, attribute-based or context-aware techniques usually require con-
sumers to share their whole context to evaluate if they can access the offered
services. In a cloud-supported system, a trusted third-party has an omni-
scient view of this information. However, in opportunistic environments,
the exchange of context to support access control is peer-to-peer. This
could lead to an increase in the exposure of consumers’ private contextual
information.In our running example, tourists would have to release details
about their social groups, noise level, location, etc. to get access to POI
information of a provider, regardless of the granularity of the information
they desire. There is thus a need for access control mechanisms designed
for opportunistic environments, that focus on expresiveness to allow users
to precisely describe the circumstances under which they will share each
specific piece of information, while maintaining crucial access control fea-
tures such as privacy, as well as considering the context-aware nature of
opportunistic exchanges.

We present a context-aware, privacy-preserving access control mecha-
nism designed for completely decentralized data sharing (PADEC, Privacy-
Aware DEvice Communication). PADEC empowers users by increasing the
expressiveness of access rules and protecting the privacy of both providers
and consumers. PADEC allows data and resource owners to define rich ac-
cess rules based on widely varying contextual information. Providers attach
filters to rules to provide access at different levels of granularity based on
a consumer’s provided context. At the same time, PADEC protects con-
sumers’ privacy by minimizing the amount of contextual information they
need to share in their access requests. This paper’s novel contributions are:

• We provide a formal specification of PADEC to allow for exact replica-
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tion, implementation, and verification of PADEC.

• We use this formalization to show how to employ PADEC.

• We provide details about PADEC’s implementation using private func-
tion evaluation [16, 17] to increase privacy and security.

• We apply PADEC in a large case study.

• We evaluate PADEC using a threat model and assess how PADEC miti-
gates each threat while also reducing consumers’ and providers’ exposure.

• We evaluate the probability of type I and type II errors that exist in
PADEC’s access control evaluation.

• We compare PADEC with state-of-the-art approaches for access control.

• We perform a user survey to evaluate PADEC’s usefulness and the effec-
tiveness of using context for access control.

Section 2 introduces related context-sensitive and privacy-aware access
control mechanisms. Section 3 describes PADEC’s threat model. Each
threat is dealt with in the PADEC model, as detailed in Section 4. Section 5
provides PADEC implementation detail, and a case study and user survey
are presented and evaluated in Section 6. Finally, Section 7 concludes.

2. Related Work

During the last few years, different context-sensitive, decentralized or
privacy-aware access control mechanisms have been developed.

Context-sensitive access control. A variety of recent efforts use per-
sonal context information to authenticate users. Hayashi et al. present
CASA [18], which uses context information such as nearby familiar devices
or locations to apply an access control policy that adapts the authentication
method of mobile phones to contextual factors. CASA changes the informa-
tion required for authentication, such as fingerprint or password, to make
it more convenient to unlock a device in familiar and safe situations, while
strengthening security in less familiar ones. Similarly, BANDANA [19] re-
lies on users’ movements, like gait, to validate identities. BANDANA uses
different devices worn on the users’ body to obtain fresh secrets for ad-hoc
communication between these devices, which are able to recognize the per-
son wearing them. While these approaches demonstrate the interest of us-
ing contextual attributes in pervasive and mobile computing environments,
these systems require an a priori model of each user, which is not feasible
for large-scale applications, especially those that need to grant access to
unknown users depending on their context.
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Decentralized access control. Other existing frameworks control ac-
cess to shared data without using a centralized point or database. For
instance, Penumbra [20] is a decentralized access control system that could
be used in opportunistic scenarios like those we seek to support. Penumbra
proposes a decentralized filesystem where users can use tags on files to define
the access control policy. However, only the identity of the requester can be
used to define these policies, omitting other contextual information. Shafeeq
et al. developed an approach based on storing access control policies in a
blockchain [21]. Concretely, their approach stores access rights and policies
in a distributed ledger, encrypting them to ensure their privacy and decrypt-
ing them only when they are applied. Moreover, the approach also supports
the use of multiple contextual attributes. This approach guarantees the ac-
cess control is distributed and can be audited. Although this mechanism is
also privacy-aware, privacy is only preserved if access decisions are made by
honest participants, which is difficult to ensure in opportunistic scenarios.

Privacy-aware access control. Opportunistic and pervasive comput-
ing require decentralized and context-sensitive access control in which indi-
vidual users can modulate the specificity of responses based on a consumer’s
context. Role-Based Access Control (RBAC) [12] is a NIST-standard [22]
that authenticates users based on identity by grouping them in roles. RBAC
is a default access control mechanism in modern technologies, such as com-
monly used cloud platforms [23–25]. However, RBAC is not context-sensitive
nor privacy-aware. DySP-RBAC [13] is a state-of-the-art extension of RBAC,
adding context-sensitivity and privacy-awareness. However, DySP-RBAC is
implemented by applying a centralized architecture, in which all users are
known in advance and do not retain ownership of their data. Moreover,
context is based on users’ relationships and is therefore fully identity-based.

Attribute-Based Access Control (ABAC) [14] is also a NIST-standard [26]
model supported by platforms such as Amazon Web Services [23]. ABAC is
potentially applicable for context-sensitive access control. However, it is not
privacy-aware, as it does not allow providers to set different levels of detail
for information shared with different consumers. The work in [15] proposes
an alternative for pervasive computing in which users can define access con-
trol policies by providing conditions over context. However, this mechanism
also requires a centralized knowledge base with context information from
all users, which takes ownership of contextual information away from users
and is unsuitable for opportunistic scenarios. Furthermore, it does not allow
users to control access at different levels of granularity.

Semantic-Based Access Control (SAC) [27] uses semantic web technolo-
gies to derive new contextual attributes and relationships from ontologies of
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existing attributes, using an ABAC-based mechanism to perform access con-
trol. Hence, SAC enriches ABAC by automating the generation of additional
contextual attributes. While SAC can be useful from an user-friendliness
perspective, SAC employs ABAC as a back-end mechanism, and thus, in
terms of expressiveness, privacy preservation and access control, it is func-
tionally equivalent to ABAC.

Finally, Mhetre et al. introduce Experience-Based Access Control (EBAC)
[28]. EBAC is tailored to provide access control in situations where a high
number of devices interact frequently with each other in groups. EBAC
simplifies the complexities of manually managing access control policies by
converting policies into a rating between 0 and 1 of how good past experi-
ences with a device need to be for access to be granted. This experience rat-
ing is calculated based on the properties of the requester device, such as its
reliability or its interaction history, and can be propagated using transitive
relationships. However, the requirement for frequent interactions within a
closed group is quite different from our challenge, where access control must
be performed for unknown devices that will not interact frequently.

While privacy-aware and context-sensitive access control mechanisms ex-
ist, none are designed for opportunistic scenarios, making them unsuitable
for pervasive computing environments. Efforts in privacy-aware access con-
trol are not often coupled with context-sensitivity and vice versa, and those
that address both do not consider the needs of opportunistic data sharing.

3. Threat Model

We next define a threat model that we use to present the remainder of
our contribution. In our system model, a provider voluntarily shares data or
resources with consumers, as long as certain conditions set by the provider
are met. These conditions may constrain the provider’s own context, the
consumer’s context, or a combination of the two. The provider can also filter
or obfuscate information it provides based on the context. We assume an
attacker whose objective is to obtain unauthorized information by exploiting
any weakness of the system. Attackers can have up to three roles:

• They can masquerade as legitimate consumers and try to obtain infor-
mation from providers.

• They can masquerade as legitimate providers, trying to obtain informa-
tion from consumers

• They can be third-party attackers, trying to obtain information from
messages exchanged by providers and consumers.
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General Threats

UA
Unauthorized

Access
attacker poses as a consumer to try to obtain some
data that the provider desires to deny access to.

CC
Circumventing

context
constraints

attacker poses as a consumer and attempts to
use identity to access data when that access would be
denied based on other context.
Individuals’ Privacy Threats

CE
Consumer

over-exposure

an attacker using a modified PADEC poses as a provider
to obtain information from a consumer using context
in a way that is incongruent with the consumer’s intent.

PE
Provider

over-exposure

an attacker posing as a consumer obtains information
with a finer granularity or higher precision than a
provider desires to grant access to

IA
Insider
attack

an attacker posing as a consumer obtains finer-grained
information than a provider allows by correlating
and aggregating results of repeated allowed requests.

Threats from Third Party Attackers

EA
Eavesdrop
attack

a third-party attacker obtains private messages shared
between providers and consumers.

RA
Replay
attack

a third party attacker obtains a legitimate message and
replays it to incorrectly obtain access.

Table 1: Threats identified and addressed in PADEC.

We build our threat model incrementally, first considering common gen-
eral threats and then moving to threats specific to a context-aware and op-
portunistic approach (Table 1). We start with two general threats: Unau-
thorized access (UA) and Circumventing context constraints. Because we
aim to create a privacy-aware access control model, we also identify three
threats to individuals’ privacy: Consumer over-exposure (CE), Provider
over-exposure (PE), and Insider attack (IA). Finally, we also identify two
third-party threats: Eavesdrop attack (EA) and Replay attack (RA).

We assume that an anti-tampering mechanism such as remote attesta-
tion [29] exists, and thus, contextual information cannot be forged. Our
approach directly addresses the remaining threats, as described next.

4. The PADEC Model

We next present the model of our context-aware, privacy-sensitive access
control mechanism, PADEC. Section 4.1 presents the general architecture
and its key concepts, while Section 4.2 presents the formal model. Finally,
Section 4.3 applies PADEC in a mobile computing case study.
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Figure 1: A PADEC interaction is initiated when a service provider (left) advertises a
service (1). The advertised service is shared with nearby devices via an underlying discov-
ery mechanism (2-3) and becomes available to nearby consumers (4). The advertisement
contains the keyholes for the service, which a consumer uses to construct a key (5) that
it places in an application request (6) and sends to the provider. The provider checks the
key against the service’s keyholes (7) and invokes the service (8). A filtered or obfuscated
response (10) is returned to the consumer (11) and delivered to the application (12). As
the horizontal arrows indicate, abstractly, the provider and consumer applications com-
municate with one another without considering the underlying mechanics. PADEC (the
blue box in the figure) holds the semantics of keys and keyholes and the nature of requests
and filtering, while the D2D communication is concerned with networking details.

4.1. Architecture and key concepts

PADEC is designed as a layer placed on top of the endpoints exposed by
an application. One of the tenets is a separation of concerns: the application
endpoints should not be aware of how access is controlled, and, in turn,
PADEC should be aware of the specifics of the application such as data
semantics. The focus of PADEC is to offer users an expressive manner
to decide which information should be shared and under which conditions.
Figure 1 depicts PADEC’s architecture. Its key concepts are as follows:

1. Lock: locks are the elements of PADEC that protect endpoints. Each
lock protects a single endpoint, and each endpoint has only one lock. A
lock is a collection of access levels, sorted in non-decreasing order of QoI
degradation (defined below).

2. Access level: access levels encapsulate a given granularity for the in-
formation provided by an endpoint, as well as the circumstances under
which it can be accessed. Each access level contains a filter and a rule.

3. Filter: a filter is an abstraction of a mechanism to degrade or alter
the granularity or the level of detail of the information returned from
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an endpoint. PADEC’s built-in filters can be tailored by users by set-
ting parameters. New filters can be added by injecting small pieces of
code. Each filter comprises the filtering technique, user-tailored param-
eters, and the expected Quality of Information (QoI) degradation. As
information passes through a filter, its quality is degraded to fit the
provider’s desired QoI. Filters effectively address PE threats, and filter-
ing techniques must be idempotent in order to avoid IA threats.

4. Rule: a rule in PADEC represents the conditions under which access is
granted to a given access level. Rules can be defined over one or more
contextual attributes of the provider, the consumer, or combinations of
attributes (e.g., relative distance from the consumer to the provider) and
define values for each attribute where access is granted. Rules tackle UA
threats by controlling access to information and allow attributes other
than identity to be used to control access, thwarting CC threats.

5. Attribute: an attribute is a type of contextual information, such as
location, interest or social group. The context of a user comprises the
values of all of their attributes at a given point in time.

6. Keyhole: a keyhole is the set of contextual attributes a rule requires
from the consumer in order to be evaluated. Keyholes are how consumers
perceive the rules associated to access levels. Producers advertise locks
as collections of keyholes, each associated with an expected QoI degra-
dation. Keyholes enhance PADEC’s efficiency and decrease CE threats
by minimizing the amount of exposed contextual information.

7. Key: a key is the set of values for the attributes defined in one or more
keyholes. When consumers discover a lock, they select the access level(s)
they want to try and build a key that fits those keyholes. On the provider,
keys are used to evaluate the rules of the lock’s access levels. To ensure
privacy, keys are never shared from PADEC to the application.

There is an additional feature that can be enabled in PADEC, but has no
effects over the architecture: private function evaluation (PFE). PFE [16]
allows PADEC’s key evaluation to be performed in a completely private
manner: consumers provide an encrypted version of their key that can only
be used a single time, while providers can evaluate whether their rule holds
without decrypting the key or revealing their rule logic. The use of PFE
enables PADEC to completely mitigate the CE threat. Keys do not change
conceptually, although their communication is performed in a different man-
ner. The details of these communications are detailed in Section 5.2.

Finally, with regards to the device-to-device communication, PADEC en-
sures that all device-to-device communications are encrypted, avoiding both
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third-party attacks in Table 1. To encrypt communications, the provider and
consumer follow an ephemeral Diffie-Hellman key-agreement protocol [30],
in a manner similar to SSL/TLS. The consumer generates an ad-hoc public
key and shares it with the provider, including some of the parameters used
to generate the public key. This key is public because it is shared with the
other party. A new key is generated for each PADEC exchange, used exclu-
sively for key agreement within the communication [30]. The provider, using
the settings received from the consumer, generates its own public key, which
is shared with the consumer. Finally, based on the shared public keys, both
consumer and provider generate a secret. This secret is guaranteed to be the
same for both parties and is used as a symmetric encryption key to protect
the rest of the communications. Since messages are encrypted, eavesdrop-
ping is not a concern, since the attacker cannot examine message content.
RA threats are also thwarted, since any answer the attacker might get by
replaying messages will be as unreadable as any message they overhear.

Each data exchange is supported by a continuously executing endpoint
discovery process [31]. The workflow that is used to communicate back
and forth in a PADEC interaction is depicted by Figure 2. The ephemeral
Diffie-Hellman protocol can be piggybacked onto this discovery process: the
consumer can send its public key with its discovery query (step 1 in Figure 2),
and, as part of returning the endpoint, the provider can share their public
key. The agreed-upon symmetric key can be used to encrypt subsequent
communications. Furthermore, the complexity of the main steps of the
framework (2, 4 and 6 in Figure 2) is the same, which depends on the
number of access levels the lock of the requested endpoint has, which we
denote α, and the amount of attributes each of the rules of the access levels
are defined over, which we denote τ . Hence, the interactions using PADEC
have a complexity of O(ατ) in Big O notation. In terms of a generic problem
size n, PADEC can be considered to be O(n2).

4.2. The PADEC Formal Model

This section provides a formal description of how access is controlled,
making PADEC easier to re-implement or replicate.

Users and endpoints. The base components are users (U), who par-
ticipate in a PADEC interaction. Users can be humans, devices, or applica-
tions and each user can act as a provider, a consumer, or both. A provider
exposes a set of endpoints (E) belonging to application programming inter-
faces (APIs) that consumers can discover and access to leverage some data
or service. Formally, an endpoint e ∈ E is a function that maps an input to
an output: e : I → O, and a given provider’s endpoints can be referenced
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Figure 2: PADEC Sequence Diagram: A consumer (on the left side) discovers an endpoint
and its access levels in the surroundings (1-3). The application selects an access level via
a keyhole (4) and makes an application request (5). The request is sent to the provider
(on the right side).The provider checks the consumer’s key against the set of available
keyholes (7) and, if access is granted, the provider performs the request (8) and returns
the results (10-11), after applying a filter (9).

as Eu = {e} for provider u ∈ U . An endpoint is identified by its interface,
and therefore the same endpoint may be provided by multiple providers.

Attributes. In PADEC, attributes (A) describe the contextual state of
users. Each user is associated with a set of attributes that describes their
situation; a particular user’s attributes are defined by:

attributes : U → P(A) (1)

where P(A) is the power set of A. For a given user u, attributes(u) ⊆ A.
Each attribute has a primitive type, which constrains what a legal value

is (e.g., locations are pairs of longitude and latitude). A particular ap-
plication may provide additional constraints on the value. For instance,
locations of points of interest may be constrained to be within a particular
city’s boundaries, and ratings, while integers, must be between 0 and 5. For
the formal model, we refer generically to the universe of possible values as
V, with the understanding that, for a given attribute a, the set of possible
values is a subset of V.

Context state. The context is defined as a function that maps each
user u ∈ U to a set of values for each attribute:

context : U 7→ A× V (2)

The context function is a partial function; the attributes that are relevant
for a particular user may be only a subset of the full attribute set A. It
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can be more convenient to reference the context state of a user u ∈ U as a
mapping of the user’s contextual attributes to concrete values:

context(u) : attributes(u) → P(V) (3)

Rules. PADEC defines rules (r ∈ R) that allow providers to restrict
access to resources based on a consumer’s context. A rule comprises one or
more clauses that constrain the values of context attributes. PADEC defines
set operators for discrete attributes and comparison operators for attributes
whose values are ordered or partially ordered. In total, PADEC provides
six operators(OP): ∈, =, ̸=, >, <, and <> (which tests whether a value
is within a specified range). To combine clauses over multiple attributes,
PADEC supports combinations using ∧, ∨, and ¬.

To fully specify rules and clauses, we use a context-free grammar [32],
G = (N,Σ, P, S). The sentence symbol of G is a rule, i.e., S = r. Because
a PADEC rule is composed of clauses that combine attributes, operators,
and values; the clause is the only nonterminal symbol, i.e., N = {c}. The
terminal symbols are Σ = {a, op, v,∨,∧,¬}. These symbols connect directly
to the PADEC formal model: a ∈ A, op ∈ OP, v ∈ V and r ∈ R. The
grammar captures the creation of rules through clauses, attributes, values,
and operators via its production rules:

r →r ∨ c, r →r ∧ c, r →¬r,
r →c, c→a op v, c→v op a

Although the final two production rules are similar, they allow for asym-
metric operators (e.g., ∈). Moreover, the first two production rules allow
one to combine multiple clauses, thus also allowing for combined rules.

At a higher level, a PADEC rule can be viewed as a function, defined
by its clauses, that maps a context state or a subset of a context state to a
Boolean value:

rule : R× C → {0, 1} (4)

Generically, we refer to the universe of rules as R.
Keyhole. Consumers need to know what context information they need

to provide to access an endpoint. The keyhole captures the set of contextual
attributes required by the rule, limiting the state the consumer needs to
provide. Given a rule (r) that combines clauses, each of which references
an attribute of A, the keyhole for rule r is simply the union of the set of
attributes referenced by all of the clauses:

keyhole(r) = {a : a ∈ r} (5)

12



D
RA
FT

Given that R is the set of rules in a PADEC system, we define H to be the
complete set of possible keyholes:

H = {keyhole(r)∀r ∈ R} (6)

Key. A key is a set of pairs of attributes and values, K ⊆ A×V, obtained
from the context state of the consumer and used to evaluate a rule. Given
the set of required attributes for a keyhole, h, a consumer can define a key
that contains only attributes listed in h. This key is a restriction of the
user’s complete context state function:

keyFromKeyhole(u, h) = context(u) |h (7)

It is important to note that each key is a subset of the complete context
state of the user. Thus, with a slight abuse of notation, the rule function
can operate over a key, given that it is a subset of a complete context state.

Filter. A PADEC filter is any technique used to degrade the QoI of
an endpoint’s output. Formally, a filter is a function whose input is the
result returned by an endpoint (i.e., an output, O) and whose output is a
QoI-degraded (or filtered) version of the endpoint’s output. Filters must be
idempotent: for a given input to the filter, its output should always be the
same. Moreover, the QoI degradation can be expressed as a real number:

f : O → O × R (8)

Each filter comprises a method used to degrade the QoI, as well as a
set of parameters tailored by the provider, that specify how much the QoI
is degraded or which information should be obfuscated. Furthermore, each
filter also reports the expected QoI degradation of the filtered output:

degradation(f) = R, f ∈ F (9)

where F is the set of all filters. This degradation value provides a means
for the provider and consumer to communicate about the QoI of the result
in a datatype- and application-specific way, as the QoI degradation metric
is tied to the datatype the filter is able to be used on (e.g., the euclidean
distance may be a degradation metric for a filter that works on coordinates,
but not for one that works on strings).

Access level. Formally, an access level combines a rule and a filter:

AL ⊆ R×F (10)
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Each access level also has a public interface. That is, for al ∈ AL, if ral
is the access level’s rule and fal is the access level’s filter, then the public
interface for al is:

alpub = (keyhole(ral ), degradation(fal )) (11)

Through this public interface, consumers can select a desired access level
based on the combination of the context information they are required to
provide (i.e., the keyhole) and the QoI they can achieve in return.

Lock. A lock in PADEC is the set of all access levels that a provider
defines over an endpoint. Conceptually, locks are the access control entities
in PADEC: endpoints are directly protected by user-defined locks, which
can contain as many access levels as the provider desires. Formally, the
existence of locks is represented as the definition of PADEC’s access control
function, relating each endpoint to a lock (i.e., multiple access levels):

AC : E × U 7→ AL (12)

Finally, we consider that consumers can construct keys for multiple end-
points. To do so, we define ALeut as the subset of AC(eu) a given consumer
t is interested in. The consumer can use multiple criteria, based on both
QoI degradation and keyhole information, to select some access levels: those
with low enough QoI degradation to enable their use case, those that do not
contain attributes they are unwilling to share, or even all of them. Based
on this, they can build a single key designed to fit all the keyholes in the
public interfaces of the access levels in ALeut they are interested in at once:

key(t,ALeut) =
⋃

al∈ALeut

keyFromKeyhole(t, keyhole(ral)) (13)

To evaluate a key, the provider must test the key in their access levels
in their non-decreasing order by their filter’s QoI degradation. Formally, to
test a key in a given access level, the provider evaluates the rule function
associated with the access level. If the function evaluates to 1, access is
granted, the provider evaluates the filter function f associated to the access
level, and returns the filtered output to the consumer, which finishes the
evaluation. However, if the rule evaluates to 0, access at that level is denied,
and the next access level should be tested. If no further access levels remain
to be tested, access is effectively denied.
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4.3. Case study: Mobile Crowd Sensing

To better understand PADEC, we present a case study based on a mo-
bile crowd sensing (MCS) application for a smart city. The MCS application
leverages users’ sensors and computing power to, first, promote social run-
ning among locals, and, second, help tourists identify Points of Interest
(POIs) in the city. Concretely, residents can share contextual information,
such as the routes they use for running, the time they take to run through
it or their presence in one of them, with fellow residents. This informa-
tion is exposed from the users’ smartphone by three endpoints: getRoutes,
getBestTimes, and getPresence. On the other hand, to promote tourism, it
exposes from residents the POIs they frequent, along with their rating with
two endpoints: (nearByPOIs), and (getRatings). Moreover, PADEC also
manages other kinds of contextual information for the consumers of these
endpoints, such as their social groups, location or interests.

When users share personal information, privacy is crucial. A malicious
party could potentially use the history of a user to track their habits, learn
their routine, etc., so this information must be protected. The privacy ex-
posure of the above detailed endpoints can be modulated with PADEC by
each user. In this sense, residents can be willing to share their presence with
their friends or family, but not with unknown users. Therefore, as Figure 3
shows, a resident can define two access levels: one providing the exact loca-
tion in the route and another one where it is only shared during the daytime
(i.e., it has a degradation value of 0.5). These two access levels have a lock
associated detailing two rules: the first one indicates that the exact location
can only be consumed by family members, and the second one defines that
the degraded one can be consumed by runners in nearby routes. Likewise,
users can set up a lock for each of their endpoints,

5. Implementing PADEC

Based on the PADEC model from Section 4, we next present two PADEC
implementations: PADEC, which directly implements the formal model with
no additional details, and PFE PADEC, which makes use of Private Function
Evaluation (PFE) techniques to evaluate the rules.1

5.1. PADEC implementation

PADEC is implemented in Java. Java was chosen for two main reasons:
first, Java is a highly portable language supported by billions of devices,

1This implementation is available at https://bitbucket.org/spilab/padec_theone
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Figure 3: Diagram detailing how PADEC is used in the case study.

such as Android phones or Wear OS devices. The second reason for its use
is Java’s reflection capabilities, and its concept of interfaces, as well as its
ease of integration with other languages. These characteristics fit PADEC’s
separation of concerns requirements.

Starting from the building blocks, PADEC defines endpoints through
the Endpoint interface: a generic interface with a single method that takes
generic parameters and returns a specific data type. Attributes are imple-
mented as holders for a certain data type that inherit from the Attribute
class. Therefore, each attribute is free to have its own validity checks, data
type, and implementation. As stated above, attributes can be combined
using operators (which are elements of OP and the logical connectors). All
of the operators are implemented using interfaces. These operators generate
booleans from two given objects (i.e., comparing attributes to values), or
from other booleans (i.e., joining together the results of different clauses).

Rules with single clause are implemented by storing the attribute, values
and operator. Rules with multiple clauses are created by storing two existing
rules and the connecting operator that joins them. Both single and multi-
clause rules inherit from the Rule class, this implementation allows us to
joining any number of clauses, allowing more expressive and concrete rules.
In addition, Rule provides a utility method that returns all the attributes
required by the rule. This method is specially important for getting the
keyhole for the rule. This keyhole with the names of the attributes is used
by PADEC for creating the key that may open the keyhole.

Finally, an AccessLevel instance combines an endpoint, the rule that
must hold in order to grant access, and a filter. Filters can define the data
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types they can operate with, as well as their QoI degradation as a real
numbers. Filters can be parameterized to define their degradation.

PADEC has been implemented to be easily integrated with user-friendly
tools. Nonetheless, in the performed evaluations in section 6, the average
time for an interaction to be executed using this implementation is of ap-
proximately 25 ms, making the overhead of PADEC usage relatively low.

5.2. PFE PADEC

PFE allows entities to share information that are unable to understand,
but still able to perform operations over it. PFE PADEC uses this technique
for sharing and validating the keys, instead of encrypting them with a key.
The PFE PADEC implementation is designed so three constraints hold: the
consumer cannot know the logic behind the provider’s access control rules,
the provider cannot know the value of the consumer’s attributes, and the
validation results must be identical to those of PADEC.

To perform PFE, this implementation makes use of ABY [17], which, de-
spite being intended as a secure two-party computation framework, serves
the purpose of a PFE framework. ABY was chosen because of its relatively
low overhead, and its availability as open source software.ABY is fully im-
plemented in C++, and was integrated in PFE PADEC using the Java Na-
tive Interface (JNI). ABY’s functions are built as circuits. By using ABY,
consumer and provider are able to compute a common circuit, each with
private inputs to it, though the circuit is public to both parties. To main-
tain the logic secret, PFE PADEC uses circuits that perform every available
operation over the data, and have their output connected to a multiplexer.
The multiplexer is the output of the circuit, and its output is chosen by a
provider’s private input. Thus, the consumer cannot know which operations
will be outputted, and hence, cannot know the logic behind the rule.

The main difference between PFE and non-PFE PADEC are keys. In
non-PFE PADEC, keys contain the values of the required consumer’s at-
tributes, exactly mimicking the formal model. While PFE PADEC still
maintains the key concept and design from the formal model, the transmis-
sion and evaluation of keys is performed differently. In non-PFE PADEC,
the key is transmitted by the consumer as a single message, containing the
name of each attribute and the value for said attribute. A key is received
by the provider, who knows all of its content and can reuse it on multiple
access levels. In PFE PADEC, however, the key is transmitted as a series of
messages. First, the consumer sends a synchronization message telling the
provider which access levels they want to test, in which order, with which
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attributes, and in which order each of the attributes will be provided. Af-
ter this message is sent, consumer and provider create the circuit on their
side, provide their private inputs (in the case of the consumer, they are sent
encrypted to the provider), and execute the circuit. The resulting output is
also constrained so only the provider can obtain its value. However, the use
of PFE raises the overhead of using PADEC, as the computation time for
each interaction with the PFE implementation is, on average, 1.3 seconds,
4 times higher than the non-PFE implementation.

6. Evaluation

In this section, we present an evaluation of PADEC over the case study
presented in Section 4.3, including both a simulation of the case study and
the results of a conducted survey. The evaluation’s objective is twofold: first,
it is aimed at comparing PADEC with other access control mechanisms:
RBAC, ABAC and DySP-RBAC, along with comparing PADEC and PFE
PADEC. Second, it is also aimed at evaluating the usefulness of PADEC’s
expressiveness for usersIt is important to note that, due to their similarities
in this opportunistic scenario, the standard mechanisms RBAC and ABAC
are functionally equivalent to other state-of-the-art works. Thus, by compar-
ing PADEC with them, the framework is also compared with Penumbra [20]
(functionally equivalent to RBAC), Shafeeq et al. [21] (equivalent to ABAC)
and SAC [27] (similar to ABAC).

The results of the evaluation are divided into two kinds of results: ex-
perimental evaluation (presented in Section 6.2), which comprises results
obtained from the simulations using a baseline to compare multiple access
control mechanisms, and survey evaluation (presented in Section 6.3), which
includes results obtained from the conducted survey and the simulations that
use it as a baseline. Before presenting the results, Section 6.1 contains the
setup of simulator and the case study.

6.1. Scenario setup

PADEC allows device-to-device interactions within opportunistic net-
works. Nonetheless, please, note that PADEC is a security and privacy
framework at the application level of the communication. Thus, the ob-
jective of the evaluation is not to evaluate or test the performance of the
opportunistic networkThe simulated opportunistic scenario has been imple-
mented using the tools from TheONE simulator [33], and all the simulations
have been executed in a computer with an Intel i7-8565U CPU, with 4 CPU
cores, and 16 GB of RAM. Within the simulator, the map of New York City
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is implemented, as obtained from OpenStreetMap [34], for users (i.e., nodes)
to roam. Users are separated into two kinds: tourists and residents. Both
kinds of users roam around the NYC map using shortest path map-based
movement: they select a point in the map at random, find the shortest path
to said point and move there. Once the point is reached, another point is
selected randomly. Tourists roam around points from the touristic zones of
the city, whereas residents roam around both touristic and residential zones.
For each of the scenarios, 100 tourists and 50 residents are simulated. Fur-
thermore, to ensure comparability among the results, the same RNG seeds
are used in all the evaluation scenarios. Each of the considered nodes com-
municates with others using TheONE’s SimpleBroadcastInterface, able to
transmit data in a 50 meters range, and routes information using the de-
fault EpidemicRouter included in TheONE. The simulation lasts for 86000
seconds, which is approximately 24 hours, and each consumer attempts to
make a new PADEC service discovery request every 50 seconds, unless the
consumer is waiting for the response of a previous request. This oppor-
tunistic network environment is used to perform the comparative analyses
included in the evaluation, ensuring a fair scenario for all four access con-
trol mechanisms. The contact times of the nodes last for an average of 73
seconds, with a standard deviation of 116.32 seconds. Moreover, 90% of the
contacts last less than 100 seconds. Focusing on this 90% of the contacts,
they follow a normal distribution, with a mean contact time of 44.4 seconds
and a standard deviation of 12.8 seconds. Intercontact times do not follow
a known distribution, and last on average 12029.56 seconds with a standard
deviation of 12519.39 seconds.

The case study described in Section 4.3 has been implemented in the
TheONE simulator. The evaluation is performed by measuring statistics of
the nearByPOIs endpoint, which yield POIs obtained from the New York
City POI dataset from [35]. Each of the simulated users is linked with an
anonymized user ID in the dataset, and only releases POIs belonging to said
user ID. Despite the fact that the case study presents a higher number of
endpoints, we decide to measure nearByPOIs only. This decision is moti-
vated by a key tenet of PADEC: separation of concerns. Endpoints belong
to the application logic side, and hence, PADEC is not dependant on the
endpoints or vice-versa.

In these simulations, each type of context has a different category of sen-
sitivity from the consumer’s perspective. Higher categories are considered
to be more sensitive. The context types we use are: (1) identity, which each
consumer perceives as the most sensitive attribute (category 3); (2) location
(category 2); and (3) sound level (category 1). We define consumer privacy
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Figure 4: Data quality provided and
provider privacy in PADEC
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Figure 5: Consumer satisfaction
and consumer privacy in PADEC.

as the average sum of the categories of the attributes shared, so that 0%
means all attributes are shared and 100% means no attributes are shared.

6.2. Experimental evaluation

The first objective is to evaluate the trade-off between the privacy PADEC
offers to providers and the data quality being released, so that consumers
are able to get enough data quality but providers are not overly exposed.
Moreover, this trade-off is also evaluated on the consumer side by compar-
ing consumer privacy with the amount of consumers that could get their
requests fulfilled within a time frameThe next objectives of the evaluation
are to compare how well users are able to hide in the crowd using PADEC
w.r.t. other mechanisms. We also intend to evaluate the number of false
positives and negatives in PADEC generated due to the computation and
communication overhead compared to alternative mechanisms.

Our first result is related to the number of successfully executed PADEC
protocols. Due to the nature of the opportunistic network, any given two
nodes may not be permanently connected to each other, as the range of their
wireless interfaces is limited. Therefore, two nodes may start a PADEC in-
teraction, but disconnect from each other before it has finished. As a result,
in the simulations, a total of 216318 PADEC service discovery requests are
initiated, and 216268 of those requests were successfully executed. Thus,
PADEC presents a 99.976% of success rate within the simulation, and con-
sequently, we consider the packet loss rate from the application’s perspective
low enough to provide meaningful results in application evaluation.

Figure 4 compares the data quality offered by providers with the privacy
PADEC offers to them in terms of overexposure. To be able to better un-
derstand the implications of data quality, the red dashed line in the Figure
depicts the data quality required by consumers, which is approximately 50%.
In RBAC and ABAC, filters are not implemented, which implies that data
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is never degraded and, thus, the data quality is always 100%. On the other
hand, this means that providers always share 100% of their data, hence be-
ing overexposed with no privacy. The implementation of filters in PADEC,
as well as DySP-RBAC’s restrictions on granularity, allow providers to cus-
tomize the data quality they reveal, thus eliminating overexposure. This
comes at the cost of reducing the average data quality of consumers. In
the case of DySP-RBAC, this quality is under the required threshold.This
problem is addressed by PADEC, thanks to the fact that consumers are
automatically granted access at the highest access level they are allowed
to. The raise in data quality does not mean that the data quality improves
per-se in PADEC w.r.t. DySP-RBAC, it is a sign that more users are al-
lowed access to higher access levels with higher data quality. Since the PFE
integration does not affect data quality or provider privacy, its results are
the same as PADEC.

Figure 5 shows the results comparing consumer privacy with consumer
satisfaction. Consumer satisfaction is measured as the amount of consumers
that got at least a satisfied request within a timeframe, in this case, 3 hours.
It is important to note that the timeframe for satisfaction is completely
application-dependent. Our baseline is not to have 100% consumer satisfac-
tion, but rather to maximize consumer satisfaction along with consumer pri-
vacy, balancing the trade-off between them. With DySP-RBAC and RBAC,
while consumers retain a high privacy due to only sharing their identity, a
very low number of consumers, namely, those that are explicitly allowed ac-
cess, can be satisfied. Satisfaction highly rises with ABAC due to a complete
context check, with the cost of consumers having their context completely
exposed, leading to no consumer privacy. With PADEC, consumers reveal
more information than with DySP-RBAC or RBAC, decreasing their pri-
vacy, although releasing less information than ABAC. On the other hand,
their satisfaction increases to ABAC levels, as their access attempts are
always automatically adjusted to the according access levels. Finally, the
introduction of PFE maintains satisfaction while guaranteeing 100% con-
sumer privacy, as consumers do not have to reveal any of their contextual
attributes any longer.

The consumer’s privacy can also be seen as a metric of how easy they are
to tell apart from other users. This definition of privacy, inspired by the con-
cept behind differential privacy [36], is reflected as the indistinguishability of
a key: given a certain key, its indistinguishability is the number of users who
would be able to provide the same key. It is not possible to use techniques
for differential privacy within PADEC, as differential privacy requires for
all individuals to be contained in a dataset, while PADEC reveals a single
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Figure 6: Consumer indistinguisha-
bility in PADEC.
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Figure 7: Type I and type II errors in PADEC.

individual’s info (i.e., a single data point) at a time. However, an analysis of
indistinguishability can be performed in a simulation in which it is possible
to obtain the context of all the users. The results of the indistinguishability
analysis are provided in Figure 6. In it, we can see DySP-RBAC, RBAC
and ABAC have completely distinguishable keys, mainly due to the fact
that they carry identity information. Nonetheless, PADEC provides more
indistinguishable keys. In average, PADEC keys have an indistinguishability
of 1.65 (1.10%), with an interquartile range of 1 (0.67%) to 2 (1.33%). This
means that, normally, in our simulation, there is at least another user that is
indistinguishable from the consumer. Moreover, we find some cases in which
3 (2%), 4 (2.67%) and even 6 (4%) users have been indistinguishable based
on their key information. Thus, we conclude PADEC allows consumers to
hide in the crowd better than DySP-RBAC, RBAC or ABAC.

An interesting analysis of the implications of the overhead is shown in
Figure 7, which depicts the type I (false positive) and type II (false negative)
errors for the each access control mechanism. It is important to note that
these errors are not due to mistakes in rule evaluation, they are exclusively
due to contextual changes over time. In some cases, by the time the rule is
evaluated, the consumer’s context has changed and, with it, the evaluation
of the rule may change. For instance, it is possible that a consumer sends a
key with a location that is close enough to the provider to get access, but,
by the time the key is received and evaluated, the consumer’s location has
changed, and may not be close enough to get access. These are the kinds
of errors reported in this analysis. We can see DySP-RBAC, RBAC and
ABAC have no errors of this kind. Nonetheless, this phenomenon appears
on PADEC in 12% of the interactions. In a 9%, the errors are of the false
negative kindIn only 3% of the cases, an initially granted access could have
been denied if the key was sent afterwards. These errors appear in PADEC
due to its temporal and size overhead, as the PADEC handshake takes extra
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time to be sent and processed.

6.3. User survey

To evaluate PADEC from the user perspective, we have conducted a
survey using the Qualtrics service, in which users were asked about their
interest in the MCS case study applications, as well as to select and define
their own, custom PADEC locks. The source of the survey is publicly avail-
able2. This survey is aimed at four main objectives: first, to determine if
users are interested in context-aware applications. Second, to find out, for
one of these applications, which kinds of information users would be willing
to share with different groups of people (family, friends, or strangers). Third,
out of different pre-made rules defined by users, how many of them could be
expressed using different access control mechanisms. Finally, we allow users
to define their own rules to protect their information, and evaluate which
access control mechanisms would be required to implement them.

On the other hand, we have also performed additional analyses based
on the survey: as the surveyees were able to select some pre-made locks or
define their own custom locks, they have been implemented in PADEC and
used in an additional simulation.Furthermore, both residents and tourists
in the survey-based simulations use the state-of-the-art SWIM movement
model [37]. In these simulations, contacts last for 2.59 seconds on average,
while the standard deviation is of 48.96 seconds. In the case of SWIM,
99.5% of the contacts are below 10 seconds, with an average of 1.44 seconds
and a standard deviation 0.84 seconds. Intercontact times do not follow a
known distribution, and last an average of 14533.24 seconds with a standard
deviation of 14122.40 seconds. In these survey-based simulations, different
users apply different rules over each concrete endpoint. Thus, to ensure the
fidelity of the results in this scenario, the survey results are measured among
all the defined endpoints, rather than a single one.

Therefore, there are six evaluation objectives for the survey: using the
results from the survey-based simulations, we analyze the indistinguishabil-
ity of PADEC users, as well as the type I and II errors. On the other hand,
using the survey results themselves, we analyze the interest of users in the
proposed applications, the groups of people they would share the informa-
tion with, and the access control mechanisms that need to be used to express
both user-selected and user-made locks.

2http://tiny.cc/padec_survey_source
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Figure 8: Interest of users on consuming
the data of context-aware applications.
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First, we analyze the indistinguishability of PADEC using the locks from
the survey, as depicted in the rightmost box plot in Figure 6. In this case,
the rules are very diverse, as the interquartile range from 1 to 200 shows.
On average, the keys provided have an indistinguishability of 62.42, which
exhibits how PADEC consumers can hide in the crowd in such a situation.
Continuing with the errors, as shown in Figure 7, in 12% of the interactions,
the decision taken by PADEC would have changed. If the user-provided
locks are used, however, PADEC exhibits no false positives and a 4% of
false negativesIn general, the survey-based simulations show that PADEC
provides good results when users are given freedom to create their own locks,
rather than sticking to a given baseline.

The third analysis, as depicted in Figure 8, is aimed at assessing whether
the users are interested, as consumers, in knowing this information. In gen-
eral, the vast majority of users are interested in obtaining this information:
in the case of POI rating, all users answered this information is useful.
Between 95 and 73% of the users also wish to obtain running route infor-
mation unconditionally, while in the case of POIs other conditions, such as
the socioeconomic status, interest or preferences of the producer, are also
considered. The main highlight of this analysis, nonetheless, is that all users
are interested in the first four types of information, and 89.5% of them are
also interested on knowing the presence information.

Continuing with the analysis, Figure 9 shows with whom the users want
to share their route-related information with. In the case of running routes,
users would often share them with their friends (79%), runners in the same
zone (63%), their family (58%), or runners with the same skill level (42%),
while some would also share them with their neighbours (32%). While closed
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Figure 10: Percentage of pre-made rules
selected by users that could be ex-
pressed with each access control mech-
anism.
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Figure 11: Simplest access control
mechanism that can express the custom
rules made by users.

social groups, such as family, friends or neighbours, can be expressed easily
through classic access control mechanisms such as RBAC, some popular
choices include strangers which meet given criteria. Thus, users have a need
for more expressive access control mechanisms, such as PADEC. A similar
trend can be seen in the rest of information types: most users find acceptable
to share their personal information with their closest circles, such as family
(68%, 79%) or friends (79%, 73%), but sharing it with strangers that are in
the same zone (63%, 21%) or physically close in the moment they consume
the information (52%, 37%) are also popular choices.

The next analysis assesses the ability of the analyzed access control mech-
anisms to express different pre-made rules selected by users. Concretely, for
POIs and their rating, users were presented with a variety of pre-made
PADEC rules to protect their information, and they had to rate how likely
they would be to use each of the rules between 0 and 5. The results shown
in Figure 10 depict the access control models needed to express the rules
that were rated as 3 or more by users. We find that PADEC is able to
express every proposed rule. Furthermore, users were often interested on
filtering the information offered to different types of consumers, and hence,
DySP-RBAC is able to express 62% of the POI-protecting rules and 77% of
the rating-protecting rules. In the case of POIs, users highly rated rules that
allowed strangers to access their information under certain circumstances,
and thus, ABAC can express 68% of the proposed rules, in contrast with
RBAC, which can only express a 30% of them. In the case of ratings, these
rules were often tied to filters, and therefore unable to be expressed with
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ABAC, which is only able to express the same rules as RBAC (55%).
Finally, Figure 11 shows the simplest access control mechanism to ex-

press the custom rules. Out of the four analyzed mechanisms, we consider
RBAC to be the simplest, followed by ABAC, DySP-RBAC, and finally
PADEC. Moreover, to ensure the fairness of this comparison, we also add
two access control models that are even simpler than RBAC: manual, in
which the user manually allow or deny each request, and none, in which the
information is always granted. Starting with the rules that require no access
control, in the cases where users find the information more sensitive, such as
POIs or presence, only 12.5% of them chose to share the information freely.
On the other hand, users find reasonable to share less sensitive information
with everyone, such as POI ratings or running routes, with approximately
30% of the rules allowing for free information sharing. The case of manual
choice, however, only exists in best times and route presence, where 5.8%
and 6.25% of the rules, respectively, require for such access control mecha-
nism. RBAC and ABAC have similar shares, between 6.25 and 30%. Both
mechanisms are the least popular for protecting ratings, while RBAC is
the most popular for protecting presence and ABAC for protecting running
routes and best times. Rules that require DySP-RBAC are slightly more
popular in general, oscillating between 12 and 25% and being a more com-
mon choice than RBAC and ABAC for protecting POIs and ratings. Finally,
PADEC is the most popular for protecting POIs (38%) and ratings (31%).
On average, PADEC is the most popular access control mechanism required
to express user-made rules (25%), followed by none (21%), DySP-RBAC
(18%), RBAC and ABAC (17% each) and finally manual choice (2%). Fur-
thermore, PADEC is able to express 98% of the user-made rules, only being
unable to express those that require manual choices.

7. Conclusions

In the current opportunistic space, users lack mechanisms to constrain
the access to their exposed endpoints and to control the privacy of the re-
leased information. Furthermore, the nature of opportunistic interactions
calls for allowing users to express arbitrary constraints on context for allow-
ing or denying access to protected information. In this paper, we present
how PADEC fills this gap by allowing users to express their context-sensitive
access control rules, as well as to link them with QoI degradation methods.
In the future,we will further analyze the complexity of creating PADEC
rules for users, as well as to assist providers by giving them tools to assess
the privacy of a certain rule. Finally, we will also enable PADEC to protect
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the endpoints exposed by applications and schemas that perform in-device
computations on demand, such as federated learning, making sure the user
is in full control of which circumstances are appropriate to perform certain
tasks or share their results.
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Abstract

Cloud-Internet of Things computing paradigms call for novel and efficient
methodologies to decide where to place application services in continu-
ity with Continuous Integration/Continuous Deployment pipelines and
infrastructure monitoring. In this article, we present Continuous Adap-
tation (CA), a new DevOps practice for (1) detecting runtime changes
in the application requirements or the infrastructure that, due to their
change in resource consumption or their effects on the Quality of Service
(QoS), can affect the validity and dependability of the current applica-
tion placement, and for (2) locally intervening on them by suggesting
new placements that ensure all (functional and non-functional) appli-
cation requirements are met. We assess a prototype of CA, ConDADO,
and analyze its performance over a motivating use case. ConDADO
adapts the application placement to environmental changes through the
use of continuous reasoning, reducing the size of the problem to be
solved to optimize its performance. The evaluation shows that Con-
DADO is able to obtain nearly optimal QoS up to 4.2× faster than
alternative techniques, also minimizing the cost of service migration.

Keywords: Adaptation, cloud computing, fog computing, edge computing,
microservices architecture, Internet of Things, DevOps
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2 Continuous QoS-Aware Adaptation of Cloud-IoT Application Placements

1 Introduction

The Internet of Things (IoT) can computerize real-world processes into
cyber-physical ones, transforming real inputs and outputs into their digi-
tal equivalent. The next generation of IoT applications includes critical and
dependable applications, such as in healthcare [1], industry [2], or smart
cities [3]. In these applications, the criticality and dependability are reflected
by strict Quality of Service (QoS) requirements, which are not trivial to meet.
Therefore, we define a dependable application as one where the QoS is sufficient
for it to work properly under a given scenario.

In this article, concretely, we focus on the minimization of response times,
as performance is a key dependability issue. The cloud used to be the most pop-
ular paradigm to deploy IoT applications [4]. Nonetheless, the large distance
between final IoT devices and cloud data centers complicates the achievement
of these QoS requirements [4]. Thus, recent research is focused on the use
of Cloud-IoT continuum paradigms, e.g., edge, or mist computing [4]. Fur-
thermore, these paradigms are often combined with each other, as well as
with cloud computing, and as such, the Cloud-IoT continuum epitomizes a
multi-paradigm infrastructure. In this multi-paradigm environment, comput-
ing nodes that are closer to users can be leveraged to perform some computing
tasks, thus reducing the response times from and to the data sources and
reinforcing the application’s dependability.

In this context, the existence of a wider variety of possible application place-
ments, as well as the changing conditions of the continuum, imply that the
management of the deployment and application placement in the Cloud-IoT
continuum is also more complicated. For instance, a crashed node, an over-
loaded server, or network congestion can make an initially optimal application
placement not as suitable for the current situation. Indeed, the problem of plac-
ing a multi-service application onto Cloud-IoT infrastructures is challenging
and interesting for the scientific community, as testified by recent surveys [5, 6].
Solutions based on Mixed-Integer Linear Programming (MILP) have been pro-
posed in the research literature to address this problem. To this end, in our
previous work [7], we have proposed the DADO framework, supporting multi-
service application placement and replica optimization. Nonetheless, deploying
an application following one of these placements is not simple [5].

In cloud environments, deployments are often automatically managed using
DevOps practices [8]. Nowadays, Continuous Integration (CI) and Continu-
ous Deployment (CD) have become some of the most well-known practices in
DevOps [9]. Companies such as Meta use CI/CD pipelines, coupled with con-
tinuous reasoning (i.e., incremental static analyses), to shorten the delivery
time of new features [10, 11]. Furthermore, companies are hiring highly spe-
cialized system administrators for the management of application deployments
in cloud environments, due to the required knowledge and skills [12].

In the Cloud-IoT continuum, the complexity of managing application
deployments grows even larger, calling for even more specialized personnel.
Nonetheless, the automation of application management in the cloud brought
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by DevOps would mitigate the management complexity of Cloud-IoT con-
tinuum environments, and therefore, DevOps proposals for IoT are already
focusing on the continuum [13]. However, the QoS achieved by the original
application may change during the whole application lifecycle. Hence, changes
in the infrastructure (e.g., changes in the available computing resources due to
the deployment of new applications), as well as changes in the app usage (e.g.,
increases of the user base) or requirements (e.g., library updates that change
the resources needed by application components), may also affect whether the
QoS constraints are met or not, possibly affecting the dependability of the
system. This can reduce the usefulness of CI/CD pipelines because they are
neither triggered by QoS degradation due to infrastructural changes nor able
to automatically determine a new suitable application placement [13].

Therefore, the deployment of applications through the Cloud-IoT contin-
uum may require the application placement to be optimized and adapted over
time to meet the required QoS [5]. In this context, adapting the application
placement refers to changing the application placement for it to better suit
a new or modified environment. Although this problem may arise in multiple
other environments, it is in this continuum where the impact is higher, due to
its characteristics (e.g., high distribution, large traffic volume, a high number
of nodes). Thus, QoS-aware DevOps systems able to identify services unable
to meet their requirements due to environmental changes, as well as deter-
mining a new, proper placement for them, are desirable. Such systems can
automate manual tasks, such as the identification of the problems’ causes or the
adaptation of the application placement, assisting the specialized personnel.

In this context, existing QoS-aware application placement systems need
to become reactive towards environmental changes instead of re-optimizing
scenarios from scratch whenever changes occur. Moreover, the systems must
be aware of the previous status of the application placement and the envi-
ronment, giving them a sense of continuity and detecting changes in the
system. This awareness of the previous state will allow systems to become reac-
tive to changes, instead of periodically optimizing the application placement.
Continuous reasoning techniques were recently proposed to perform this adap-
tation [14, 15]. Continuous reasoning allows application placement systems to
identify the impact of these changes, as well as determine a new placement for
the affected services, capable of restoring their correct functioning. Proposals
such as FogBrainX [14] use continuous reasoning to determine new potential
application placements without, however, considering any optimization metrics
(e.g., the response time of the application). To the best of our knowledge, no
existing proposals apply continuous reasoning to QoS-optimizing application
placement, nor is migration cost considered part of the placement problem.
Nonetheless, there is a need for new practices in DevOps to support QoS-
aware application placement throughout the Cloud-IoT continuum, as well as
for automatic tools that support these practices.

In this work, we propose a new DevOps practice to support applica-
tion management in continuity with CI/CD pipelines: Continuous Adaptation
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4 Continuous QoS-Aware Adaptation of Cloud-IoT Application Placements

(CA). It is important not to confuse CA (which is the proposed DevOps
practice) with continuous reasoning, which refers to a technique that can be
employed by concrete application placement systems.. CA features the incre-
mental, continuous, and QoS-aware optimization of next-gen IoT applications
and the adaptation of their application placement w.r.t. their target objec-
tives (e.g., response time). Furthermore, we present an open-source prototype
of a framework to support CA, Continuous DADO (ConDADO), implemented
on top of the DADO framework [7]. ConDADO differs from DADO in that it
enables incremental, continuous optimization of application placement through
service migration, as well as considering the cost of such migrations. On the
other hand, DADO is only able to perform optimizations from scratch, unable
to know if a service is migrated or not, nor the cost of the suggested migra-
tions. Moreover, DADO is unfeasible for dynamic optimization due to its high
optimization times, whereas ConDADO is faster.

The main contributions of this work are: i) the proposal of CA as a
new practice in DevOps that can be integrated into CI/CD pipelines to con-
tinuously review and adapt an application’s placement, ii) the proposal of
ConDADO, an enabler to CA that, through the use of continuous reasoning,
can adapt an application’s placement in a QoS-aware manner, and iii) the
evaluation of ConDADO over an IoT facial recognition use case, in which we
conclude that ConDADO can adapt application placements to environmental
changes in a more efficient and responsive manner than the original DADO.

The rest of this paper is organized as follows: Sect. 2 introduces the moti-
vation for the QoS degradation and dependability problem. Next, Sect. 3
details CA, while Sect. 4 introduces ConDADO. Sect. 5 presents the evaluation.
Finally, Sect. 6 presents related works, and Sect. 7 concludes the paper.

2 Motivation

This section describes a use case to better illustrate the challenges of next-gen
IoT applications and the need for CA to achieve QoS-awareness. It is impor-
tant to note that the model for CA we propose abstracts from the concrete
sensors, application components, computing devices, and requests behind their
technical characteristics (e.g., CPU, RAM, size of data flows). Therefore, while
the use case is based on an IoT facial recognition application to provide a con-
crete point of reference, CA is applicable to a wider variety of contexts, which
can include heterogeneous sensors and applications. Moreover, the use case is
not meant to be one of the main contributions of the present work.

The use case presented in this section is based on the proposal of Wang
et al. [3], which present an IoT-based real-time facial recognition application.
This application is deployed to a smart university campus. The objective of
such an application is to detect any possible intruders that may try to enter
the facility without authorization, as well as to ease and automate the check-
in and check-out process of authorized personnel. To leverage this application,
multiple IoT devices equipped with cameras have been set up at the entrances
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and exits of the facility. These IoT devices stream the video footage from
their cameras directly to the application, which detect their faces, extracts the
features of the images, and match them against a registry of known faces [3].
This application is expected to be dependable: it must run at nearly real-time
performance, i.e. 20 frames per second [3], a strict QoS requirement that must
be satisfied at runtime and over time.

Next-generation IoT applications, as well as modern facial recognition
applications, tend to follow a microservices architecture (MSA), a design pat-
tern in which the application consists of multiple loosely-coupled modules or
microservices that collaborate to carry out complex functionalities [3, 5, 16].
Thus, the application is implemented as a set of four microservices, which are
depicted in Fig. 1: i) a face detection and segmentation service that detects if
and where faces are in each image frame, ii) a feature extraction service that
extracts the features needed for face recognition, iii) a feature matching service
that compares a set of extracted features with the existing registry, and iv) a
storage service to add new entries to the registry. Each of these microservices
can be accessed by IoT devices through the HTTP protocol [16]. Moreover,
two main functionalities are supported by the application, the management of
authorized users and intruder detection.

In order to perform these functionalities, the IoT devices can request for
a workflow of these microservices to be executed, in which multiple microser-
vices are pipelined. For instance, to register a new user into the system, an
administrator or authorized user can trigger a request from the IoT device for
the detection and segmentation microservice to obtain an image that contains
exclusively the user’s face. Then, the feature extractor is requested and fed the
facial image. The resulting features are then added to the registry through the
storage microservice. This workflow is depicted by the blue arrows in Fig. 1. On
the other hand, to perform intruder detection, the IoT device sends a constant
flow of video frames to the application. The video follows a similar pipeline,
shown in green in Fig. 1 until the features are obtained. Nonetheless, rather
than storing the features, they are fed to the matching microservice instead
to recognize the user, as the green line from Fig. 1 represents. The number of
requests to these workflows, as well as the computing capabilities and hardware
resources of the nodes, affect how many replicas of each of these microservices
are deployed, as well as each replica’s placement in the Cloud-IoT continuum.

Fig. 1: Architecture of the IoT facial recognition application.
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The IoT facial recognition application for this scenario makes use of a
DevOps CI/CD pipeline, which follows the schema shown in Fig. 2, which in
turn is based on the practices surveyed in [9]. After a planned feature is imple-
mented, the pipeline is triggered by a developer pushing one or more commits
to the main branch of the application repository. Whenever the pipeline is trig-
gered, the CI system pulls the changes to the application and builds the new
version [9]. If the build is performed successfully, the test suite for the appli-
cation runs. The built and tested version of the application is then released to
CD, which first executes acceptance tests over it, whose role is to ensure the
application is production-ready. If the acceptance tests pass, the new build of
the application is finally deployed to production, and monitored for additional
insights (e.g., using multi-paradigm compatible tools such as FogMon [17]).

Fig. 2: DevOps CI/CD pipeline.

During the development of the application, in order to ensure the optimal
application placement, as well as compliance with the defined QoS require-
ments, some techniques for design-time application placement optimization,
have been proposed, such as [5, 7, 18]. It is important to note, however, that
these techniques are meant to be used for the deployment of new releases of the
application. Metaphorically, these techniques can only see a still picture of a
live show: they do not receive information on how the application placement or
the environment was prior to that point, and thus, cannot know whether they
are suggesting for changes to the application placement or not. Furthermore,
the CI/CD pipeline employed by the application is triggered by changes in the
code, and not by changes in the infrastructure or the request volume. Hence,
the initial deployment, which makes use of this initial application placement, is
optimal and dependable, as the QoS requirements of the application are met.

However, most IoT environments, such as this university’s infrastructure,
are not static environments, and their dynamicity may change the dependabil-
ity and even the validity of the initial application placement. For instance, in
case one of the nodes goes down, or if a commit that updates a library increases
the hardware resource requirements of the application, the initial optimization
may not hold valid [15]. Furthermore, changes such as a reduction of the avail-
able resources due to the unforeseen execution of additional applications may
affect the application’s QoS, further complicating compliance with the QoS
requirements. This motivates the need for a new step within the pipeline, able
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to be triggered by changes other than those made to the application’s codebase
and that continuously checks the application placement for the microservices.

This new step of the pipeline requires not only new practices within DevOps
but also tools that support them. While one may think that the aforementioned
problems can be solved by making use of the same design-time optimization
framework, there are two important limitations. On the one hand, these sys-
tems often take a long time to yield a solution [7]. While this can be acceptable
at design time, during the analyzed events, the application does not properly
work until a new application placement is applied, which is unbearable for most
applications. Moreover, design-time optimization frameworks do not receive
information about the previous status of the environment, they can only see
the still picture. Nonetheless, an approach to make existing optimization sys-
tems able to see the live show, and thus suitable for dynamic environments, is
to apply continuous reasoning [14, 15]. This approach was originally used in
large software repositories such as Facebook: each time there is a change in
the repository, an analysis is triggered to statically analyze the parts of the
codebase that are affected by the change [10]. Within application placement,
continuous reasoning is aimed at finding which microservices of the application
placement need to be migrated (i.e., moved between nodes) after a change [15].
Continuous reasoning can be triggered not only by changes to the application’s
code but also by changes in the available infrastructure resources. Continuous
reasoning reduces the size of the application placement problem, as only those
elements that were meaningfully affected by environmental changes need to
be migrated, which may speed up decision-making [7], and allows for the con-
sideration of migration costs. Thus, through the use of continuous reasoning,
existing optimization frameworks can be adapted to CA.

To tame the exponential time complexity of optimization frameworks, it
is possible to work on two aspects. On the one hand, we should employ more
efficient algorithms to determine the new placement for microservices. On the
other hand, we should reduce the size of the problem instance. ConDADO
follows both lines, by exploiting state-of-the-art MILP solving techniques in
combination with continuous reasoning to promptly respond to environmen-
tal changes that affect the dependability and validity of the placement of
applications through the Cloud-IoT continuum.

3 Continuous Adaptation

To continuously adapt the application placement of next-gen IoT applications
to the changes in their dynamic environment, we propose CA, a new practice in
DevOps. Unlike other DevOps practices such as CI or CD, CA can be triggered
by events that do not directly affect the application’s code and check the
validity and dependability of the application’s placement after the environment
changes, appropriately adjusting it if necessary. CA considers the following
two kinds of effects that may appear as a result of environmental changes:
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Broken deployments are situations in which the existing application placement
cannot be used successfully after a change in the environment. For instance, in
our running example, the feature extraction deep learning model may be sub-
stituted by a more precise one that also consumes more hardware resources, but
the application placement may have the microservice running in a device with-
out enough resources to properly run it, or a fog node where some microservices
replicas are deployed may fail. In both of these cases, if the application place-
ment is not adapted to this situation, some microservice replicas would be
impossible to run, and thus, the deployment is labeled as broken. Due to the
impact of broken deployments, detecting them is a priority within CA.
QoS violations are subtler than broken deployments and represent depend-
ability issues. In CA, a QoS violation exists whenever, after a change in the
environment and if the existing application placement is used, the QoS require-
ments of the application are not met. While it is possible that the QoS may
degrade as a result of these changes in the environment, CA does not deem
such situations as QoS violations if the QoS requirements of the application
can still be met (i.e., if the application is still dependable enough). Thus, in
a QoS violation, the application, or part of it, cannot meet the defined QoS.
For instance, the university may need to close one of the entrances of cam-
pus to perform maintenance on the area. Therefore, the users that used that
entrance to enter or exit the facility will go through other entrances. If that
entrance was usually where users were registered, it is likely that no storage
microservice exists at other entrances, as replicating the microservice would
not improve the response times. However, the existing microservices may not
be prepared for the additional burden. Thus, each of the registration requests
requires communication with the fog node at the closed entrance. This longer
communication increases the workflows’ latencies, possibly lowering the per-
formance to less than the required 20 frames per second. The priority of QoS
violations is also very high, and thus, they are detected in the same step as
broken deployments.

Once either broken deployments or QoS violations are detected, the appli-
cation placement needs to be adapted to the new environment. For instance,
to free some computing resources, some microservice replicas may be migrated
from overloaded nodes to others, the microservices from a node that is cur-
rently down can be migrated to working nodes, or additional replicas may
be deployed to reduce latency. To perform these actions, a new and adapted
application placement must be determined, which is the ultimate task of CA.
The new application placement must not contain broken deployments or QoS
violations, and therefore the effects of QoS generated by the solutions to bro-
ken deployments, as well as the validity of the solutions for QoS violations,
have to be considered during its determination process. It is also important to
consider the migration cost at this point, and thus, when multiple actions can
be performed to successfully adapt the application placement, it is preferable
to execute those with lower costs.
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As a DevOps practice, CA is meant to be integrated with existing CI/CD
pipelines. Within this kind of pipeline, CA fits best at the beginning of CD,
in a similar manner to continuous reasoning practices such as Facebook Infer
fit into CI [10]. In our running example, a new version of the facial recogni-
tion application is coded and pushed to the repository. This new version is
analyzed for changes using continuous reasoning à la Facebook Infer, and the
parts affected by the changes in the code are rebuilt and validated using CI.
Then, the information about changes to the application and the Cloud-IoT
infrastructure is fed to CA, which detects whether a new application place-
ment is required or not using continuous reasoning. Finally, if needed, a new
partial application placement for the new release is determined using CA and
is executed by CD, as depicted in Fig. 3.

However, for CA to act as intended, environmental changes that do not
trigger the standard CI/CD pipeline (e.g., infrastructural changes) need to be
able to trigger it as well. Therefore, the infrastructure’s monitoring should be
able to trigger CA. Furthermore, the source code may not be directly involved
in these changes, and hence, the pipeline can be started directly from CA,
as CI would not be necessary. The CA process consists of two main steps.
First, the current application placement is scanned to find any broken deploy-
ments or QoS violations. Then, both broken deployments and QoS violations
are reported and solved by determining a new application placement. The
QoS-aware application placement is finally fed to CD and then applied to the
infrastructure, closing the CI/CA/CD cycle. Regarding other recently pro-
posed DevOps practices, as well as new practices that may be proposed in
the future, we consider two different types of integration with CA. On the
one hand, practices that maintain QoS outside of their scope, such as contin-
uous testing [19], do not interfere with CA. As such, these practices can be
integrated with CA in a seamless manner. On the other hand, practices that
have an overlapping scope with CA may also be integrated with it, although
not in such a seamless manner. For example, continuous evaluation [20], which
evaluates the performance of the application, can be used to give CA a more
precise view of the application’s QoS. Furthermore, systems such as FOCloud
allow for this performance to also be predicted in an explainable manner [21].
In this regard, the practices must be integrated by either modifying or refin-
ing CA’s inputs or using CA’s output. To better understand the integration of
CA in DevOps, as well as its inputs and outputs for its integration with other
practices, the integration of CA in a basic DevOps pipeline with CI, CA, and
CD as practices is described in Tab. 1.

Nonetheless, a key to the CI/CD pipeline is the existence of automated
tools that support both practices. Furthermore, tools for the automation of
the continuous reasoning process, such as Facebook Infer, were also crucial for
its integration within CI. Thus, successfully integrating CA into DevOps and
enabling CI/CA/CD pipelines requires a framework that supports CA.
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Fig. 3: Integration of CA in the DevOps pipeline.

Practice Inputs Description Outputs
Continuous
Integration

Key Per-
formance
Indicators
(KPIs) of the
production
environment
and require-
ment backlog

Automated inclusion of the
implementation of requirements
into the existing codebase, gen-
erating binaries for the new ver-
sion and testing them

New validated
application ver-
sion

Continuous
Adaptation

New validated
application ver-
sion or changes
in the system’s
KPIs

Analysis of the validity and QoS
of current application placement
for the new version or environ-
ment and, if required, adapta-
tion thereof

QoS-aware
adapted
application
placement

Continuous
Deployment

New validated
application
version and
application
placement

Release of the new version
installing and maintaining it in
the production environment fol-
lowing the application place-
ment, and monitoring its KPIs

Working
production
environment
and associated
KPIs

Table 1: Summary of the practices of CI/CA/CD pipeline.

4 The ConDADO framework

In this section, we present ConDADO, a CA framework that applies the con-
cepts of continuous reasoning to DADO. DADO [7] is a framework to optimize
the application placement and replication of microservices in the Cloud-IoT
continuum based on Mixed-Integer Linear Programming (MILP), a technique
that provides optimal solutions at the cost of very high optimization times.

Fig. 4 illustrates the flow of information and processes used by ConDADO.
The execution starts when the monitoring system, which is running in parallel
to ConDADO, detects a change in the environment, including infrastructure
changes or application commits. This monitoring system provides ConDADO
with data containing the status of the current scenario, e.g., the QoS and
resource requirements of the microservices, the available resources of the nodes,
and the workflow requests. The current status data, along with the data of the
previous status of the scenario, is fed to the delta calculatormodule. The role of
the delta calculator is to quickly assess the differences between both statuses,
such as new microservices and workflows, or changes in the existing workflows,
microservices, or hardware infrastructure. After such difference is calculated,
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ConDADO overwrites the previous scenario data with the current one (dashed
arrow in Fig.4) to prepare for the next continuous reasoning optimization step.

Fig. 4: Bird’s eye view of ConDADO.

Once the difference has been calculated, it is fed, along with the previ-
ous application placement, to the continuous reasoning engine (CRE), whose
logic is described in Algorithm 1. The CRE performs the first step of CA by
detecting broken deployments and QoS violations. As the CRE is called, it
looks up the hardware elements whose resources have been negatively changed
or that are running microservices that have increased in resource consump-
tion (line 6). This includes the hardware whose resources have become zero,
i.e., they are down. Then, the CRE calculates if the application placement is
still valid in spite of the identified changes (lines 7-14). If it is not the case,
the CRE detects the broken deployment (line 10), and selects and clears the
placement of microservices (line 12) until the capacity is high enough (lines 10
and 13). These microservices that have their placement cleared are marked as
placement decisions that need to be taken again because they are not valid,
a process we call invalidation. For this process, the CRE invalidates first the
placements of the microservices with the lowest migration cost (line 11).

The migration cost of a microservice can be estimated as the size of the
package (e.g., Docker image) that needs to be migrated from one machine to
another, as heavier microservices require more time to migrate. Nonetheless,
the migration cost can be assessed with other criteria, such as the organiza-
tional cost of migrating a service (e.g., some services may be costly to migrate
because of their criticity for the organization). If multiple microservices have
the same migration cost, the CRE invalidates the microservice consuming the
most resources first, as it frees more resources to do so, thus minimizing the
number of microservices that are invalidated. Finally, the CRE detects QoS
violations by listing all the workflows that have not been changed in the delta
(line 16), as those that have been changed were already analyzed in the previ-
ous loop, and whether any of their placement decisions involves elements whose
performance has been deteriorated in the delta (lines 18-21). For these work-
flows, the CRE calculates whether the performance has worsened enough to
be deemed QoS violations (line 19). If so, the CRE invalidates all the applica-
tion placement decisions of the workflow so they are re-optimized, accounting
for the QoS violations that may arise (line 20).
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Algorithm 1 Pseudocode for the CRE

Require: P : previous deployment, δ: differences between the previous and current
environment

1: invalid := ∅
2: Nodes := {n∥n ∈ δ.HW ∧ (n.resourceDiff < 0 ∨ (m ∈ δ.SW ∧

m.resourceDiff > 0 ∧ on(m,n) ∈ P ))} ▷ Hardware nodes
n, where the resources have decreased, or at least a microservice m deployed to
it has increased its resource consumption

3: for all n ∈ Nodes do
4: M := {m∥on(m,n) ∈ P} ▷ All microservices m placed in node n as of P
5: required :=

∑
m∈M m.resources

6: while required > P (n).resources do ▷ While the sum of
resource requirements of all microservices m placed in n as of P is greater than
the resources of n

7: m := extract(M, criteria = (migrationCost, resources)) ▷ Extract a
microservice m from M following the criteria

8: invalid := invalid ∪ {m}
9: required := required−m.resources ▷ Free up the resources taken by m

10: end while
11: end for
12: Workflows := {wf∥wf ∈ P.workflows∧ /∈ δ.workflows ∧ (∃m ∈ δ.SW ∧

m.resourceDiff > 0 ∧ partOf(m,w))} ▷ Workflows wf that have not
been directly modified and request at least a microservice m that has increased its
resource consumption

13: for all wf ∈Workflows do
14: respT ime := getRespT ime(wf, P )
15: if respT ime > wf.minQoS then
16: invalid := invalid ∪ wf.microservices
17: end if
18: end for
19: D := P − invalid

return D: valid, partial deployment plan derived from P , i.e., D ⊆ P

After the CRE runs, the copy of the previous application placement
becomes a list of the placement decisions that have not been invalidated (line
23). We label this list as the partial application placement. The final step of the
CA pipeline is performed by the ConDADO solver1, which takes as input both
the current scenario data, as well as the partial application placement. Based
on this information, the solver skips over the parts of the model involving
decisions that are in the partial application placement. Skipping these opera-
tions speeds up the optimization time, as the problem instance is smaller, and
thus, it is faster to generate and solve. After the problem is generated, the
same MILP optimizer software leveraged by DADO is used to solve it. Once
the QoS-aware application placement is obtained, the new migrations, replica-
tions, and updated placements can be easily identified by calculating the delta

1The MILP formulation used by DADO is not an original contribution of this paper, and
therefore, it is not included. Nonetheless, interested readers can find the detailed formulation in [7].



Springer Nature 2021 LATEX template

Continuous QoS-Aware Adaptation of Cloud-IoT Application Placements 13

between the original and the new application placement. Finally, the QoS-
aware application placement obtained as a result can be fed to CD, continuing
the CI/CA/CD pipeline.

5 Performance evaluation

In this section, the performance of ConDADO is evaluated over multiple con-
ditions of a use case to validate the usefulness of CA in CI/CD pipelines.2 The
evaluation use case, the performed experiments, and the evaluation objectives
are detailed in Sect.5.1. The results obtained by each of the experiments are
analyzed in Sections 5.2, 5.3, and 5.4.

5.1 Evaluation setup

To evaluate ConDADO, an environment based on the facial recognition appli-
cation from Sect. 2 has been defined. Following this application, IoT devices
with cameras can request two kinds of workflows: facial matching and user
registration. While registration workflows are triggered by an administrator,
application-wise, they are requests of microservice execution that come from
an IoT camera, and hence, they are modeled in this manner.

The placement of this IoT application is evaluated over two different sce-
nario sizes: small, with 5 IoT cameras and a single fog node, and large, with 15
IoT cameras and 3 fog nodes. The IoT cameras are based on Texas Instruments
CC2538 microcontrollers, which connect to the network using 6LoWPAN. The
network itself is comprised of switches that connect using Gigabit Ethernet,
the same technologies fog nodes use for connection. The fog nodes are based on
the instances of the edge.network provider, while the cloud node is based on
an AWS m5.xlarge instance. Moreover, the networking details such as laten-
cies and bandwidths are also based on these protocols, as well as real metrics.
Regarding the number of microservice replicas, they depend on the exact solu-
tion given by each solver. Nonetheless, if we account for the maximum number
of replicas, up to 15 microservice replicas can exist in the small scenarios, and
up to 45 can exist in the large scenarios. Approximately half of the IoT cam-
eras in each scenario request each type of workflow, and in the cases with odd
cameras, there is an additional facial matching workflow. In all cases, the sce-
narios are optimized with DADO first, and then ConDADO is used to adapt
the application placement in a QoS-aware manner. All the experiments were
executed with an Intel i7-8565U CPU, with 16 GB of RAM. The MILP solver
used is Gurobi3. Both DADO and ConDADO are implemented in Python using
the mip library. The numerical QoS-related results are obtained using DADO’s
QoS analysis tools [7]. On the other hand, the results related to speed-ups and
optimization times are not obtained from these simulations, but from the real
timings yielded by both DADO and ConDADO during the evaluation.

2ConDADO, along with the experiments’ code and data is open-source and freely available at
https://bitbucket.org/spilab/condado.

3https://www.gurobi.com/
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Overall, the evaluation has three objectives:

• To validate the usefulness of CA in next-gen IoT applications, consequently
validating ConDADO as an enabler for CA (Sect. 5.2)

• To evaluate the differences in the QoS achieved by ConDADO w.r.t. the
original DADO (Sect. 5.3), and

• To assess the migration cost and the speed-up of CA solutions compared to
the traditional optimization approach (Sect. 5.4).

To achieve these objectives, we have analyzed the results of different sce-
narios, in order to analyze of the effect of parameters such as the size of the
scenario or the impact of the changes. Concretely 20 experiments of two kinds
have been tested:

• In the broken deployment experiments, up to 4 microservices and all their
replicas experiment an increase of up to 100% in the resources they con-
sume, which may lead to broken deployment situations. These experiments
simulate different kinds of changes in the application that could lead to such
increases (e.g., the use of more accurate and complex matching techniques,
an improvement in video quality, and more detailed video pre-processing).

• In the QoS violation experiments, for cost-effectiveness reasons, we assumed
the university increases the resources of their nodes and changes to a less
costly cloud provider, which increases the cloud latency by 5 ms.

Both experiments analyze the usefulness of CA by comparing the QoS
obtained over time, generating a change in the environment at a given point
and comparing the gap between the moment a dependable QoS is obtained
with and without CA. In order to use a baseline for the usage of non-CA meth-
ods, we assume that the original DADO is used to re-optimize the application
placement and that it is triggered immediately (i.e., there is no manual inter-
action). Thus, it is important to note that the gap is incomparable to the gap
caused by manual re-optimization and management. Moreover, in order to bet-
ter show the effects of the use of CA in terms of migrations, all microservices
are considered to have a migration cost of 1.

5.2 CA applicability

The first analysis compares the continuity in the application’s QoS in the large
topology, in a scenario in which the resources consumed by a microservice are
increased by 80%. In this analysis, the environmental change occurs at a given
instant t. Due to the increase in consumption, the prior deployment becomes
broken, and thus, there is a need to determine an adapted application place-
ment. We consider a deployment becomes broken if its response time is greater
than 50 ms, as the QoS requirement for the facial recognition application is to
have 20 frames per second. This requirement is represented by the dashed red
line labeled Maximum acceptable response time in the upcoming figures.

The analysis is depicted in Fig. 5, with the time relative to t shown in the
X-axis, and the application’s QoS can be seen in the Y-axis. The empty gap
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represents the application’s downtime due to the broken deployment, which is
of 27.5 seconds if ConDADO is used to optimize the application placement. On
the other hand, the use of DADO requires 76 seconds to complete, a difference
that is visually represented as the gap between ConDADO’s marker (∗) and
DADO’s (×). Furthermore, both ConDADO and DADO achieve the same QoS
with their new application placement. The gap between DADO and ConDADO
is of 48.466 seconds, i.e., ConDADO is almost three times faster than DADO at
suggesting new application placements in this scenario (viz., 2.76×). Moreover,
the application placement determined by ConDADO also obtains a similar QoS
to that obtained with DADO’s application placement, further motivating its
use for CA, and providing smoother and faster decision-making.
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Fig. 5: Continuity in the application’s QoS in the large topology.

The analysis depicted in Fig. 6 is aimed at evaluating ConDADO’s ability
and efficiency in resolving QoS violations. The first change in the topology
is an increase in the resources of the nodes, which did not create any QoS
violation or broken deployment, and thus, did not trigger CA. Nonetheless, as
the latency in the cloud was increased at moment t, the response time quickly
increased, triggering CA. It is important to note that CA was triggered at the
peak of the increasing curve, as the shape has been interpolated. In the case
of ConDADO, this implies that, at the peak, the delta calculator triggered the
rest of the pipeline. Once at this peak, ConDADO determined the placement
and migrated the services from the cloud to the fog nodes in 27.5 seconds,
as depicted by the star marker. Conversely, DADO required over 5 minutes
(302 seconds) to perform the same task, as it was not designed to solve QoS
violations. Overall, the results show that ConDADO is better suited to adapt
to dependability issues such as QoS violations, experiencing a speed-up of
approximately 11×.

5.3 QoS with and without CA

The next analysis is aimed at comparing the QoS experienced by the applica-
tion workflows. The results of this analysis are shown in the form of a boxplot
from the large topology, with 4 microservices affected, in Fig. 7. It is important
to note that all 18 scenarios involving broken deployments yield very similar
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Fig. 6: Evolution of the application’s response time in the QoS violation exper-
iment, large topology.

results, and thus, only the three highest load scenarios are depicted. Nonethe-
less, the interested reader can find the data for the response times of workflows
in the additional material of the paper. We can clearly split the workflows
into two kinds: those that have all of their microservices in nearby continuum
devices (i.e., those with nearly 0 response time), and those that have at least
one microservice placed on the cloud (i.e., those with 50 ms response time). In
the first case, with the 20% hardware increase, we find that DADO is able to
bring a few more microservices closer to the IoT devices, as the median is very
close to 0. On the other hand, while ConDADO needs to use the cloud more,
as shown by the median, the impact on the average response time (depicted as
a triangle) is not very large, with under 10 ms of difference. Continuing to the
case with an 80% hardware increase, we see that both DADO and ConDADO
yield equal results, i.e., ConDADO is able to find the same optimal solution
as DADO. In the final scenario, ConDADO brings most microservices to the
cloud, as the lower point is depicted as an outlier. Nonetheless, we see the dif-
ference in average response time w.r.t. DADO is also minimal, similar to the
first scenario. Thus, ConDADO is able to provide a similar QoS to DADO for
the applications that make use of its suggested placement. Furthermore, the
small increase in response time is only experienced by a few users (i.e., work-
flows), rather than by the application as a whole: the median does not change,
those points affected are represented as outliers, and the effects over average
response time are minimal. Finally, as every workflow request has a response
time of 50 ms or less, the performance requirement of 20 frames per second is
fulfilled with the optimized application placements.

5.4 Migration cost and speed-ups with and without CA

Another key metric of the evaluation is the migration cost achieved by Con-
DADO’s solutions in contrast to those provided by DADO. This metric has
been analyzed in both the small and large topology, as depicted by Fig. 8 and
Fig. 9, respectively. Starting with the smaller topology, in the cases with a
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Fig. 7: Boxplot of the workflows’ response times, large topology, 4 microser-
vices affected.

single microservice affected (Fig. 8a), we can find that, in some cases (e.g.,
20 and 80% hardware requirement increase), the migration cost is 0, i.e., no
microservices are migrated. In these cases, the changes due to the hardware
requirement increase are mainly a decrease in the number of replicas of certain
microservices, and thus, no microservices are strictly migrated. Similar results
are obtained when 2 (Fig. 8b or 4 (Fig. 8c) microservices are affected.

On the other hand, in cases where microservices are migrated (e.g., 100%
hardware requirement increase in Fig. 8c), ConDADO’s solutions have half the
migration cost of DADO’s. These results are the consequence of ConDADO’s
CRE, which tries to migrate a small number of microservices, while DADO’s
lack of CRE allows it to migrate any number of them. Moving to the large
topology (Fig. 9), the reduction of migration cost is even higher. As the larger
size of the topology implies a higher number of microservices deployed, DADO
is more likely to try and migrate them, while ConDADO follows a similar
approach to mitigate the migration cost. Focusing on Fig. 9a, in the case with
20% hardware requirement increase, ConDADO simply removes some replicas,
while DADO migrates 26 of them, out of the existing 38. Even when ConDADO
needs to migrate microservices, such as the one with the 80% increase, DADO
needs to migrate up to threefold the number of microservices. If 2 microservices
are affected (Fig. 9b), the results are similar, although in general, the differ-
ence is even higher (on average, ConDADO migrates 20 microservices less than
DADO). Furthermore, the scenarios from Fig. 9c are also the ones depicted in
Fig. 7, and thus, this reduction in migration cost has minimal effects on the
QoS experienced by the users of the application.

Next, an analysis that compares the times ConDADO and DADO need
to optimize each of the scenarios is also performed. The optimization times
for the small topology are reported in Fig. 10, while Fig. 11 depicts those of
the large topology. Starting with the smaller topology, we see that the times
reported by ConDADO are shorter than those from DADO, with ConDADO
taking 0.78 seconds on average, whereas DADO takes 1.38 seconds. Further-
more, the optimization times from ConDADO are not higher than those from
DADO in any of the scenarios. If Figs. 10a,10b, and 10c are compared, it is
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Fig. 8: Migration costs of DADO and ConDADO, small topology
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Fig. 9: Migration costs of DADO and ConDADO, large topology

also possible to see that the number of microservices affected does not have an
important impact on the optimization times, and the hardware increase does
not have a clear impact either. It is also important to note the case with the
80% hardware increase from Fig. 10b, in which DADO takes 2.55 seconds to
optimize the scenario, while ConDADO only takes 0.60 seconds.

In the large topology (Fig. 11), the times required by both ConDADO and
DADO are higher. Thus, the size of the scenario has an important impact
on the optimization time. On average, ConDADO takes 29.41 seconds to opti-
mize, while DADO requires 64.15 to do so. In this topology, the number of
microservices affected does have relevance on DADO’s optimization times, as
the times from Fig. 11a (on average, 75.52 seconds) are higher than those from
Figs. 11b and 11c (55.72 and 61.19 seconds, respectively). While this trend is
also followed by ConDADO, its impact is much smaller (32 seconds on aver-
age in Fig. 11a, 28 seconds on average in Figs. 11b and 11c. Similarly to the
smaller topology, the increase in hardware requirements does not have a clear
impact on optimization times. Finally, it is important to note that the results
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Fig. 10: Optimization times of DADO and ConDADO, small topology
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Fig. 11: Optimization times of DADO and ConDADO, large topology

from Fig. 11c correspond with those from Fig. 7, and thus, this reduction in
optimization time has very minor effects on the solution’s QoS.

Finally, Fig. 12 shows the optimization speed-ups obtained by ConDADO,
compared with the original DADO. The reported speed-ups are high, with an
average speed-up of 1.93× for the small topology (Fig. 12a) and 2.2× for the
large topology (Fig. 12b), and thus, an overall average speed-up of 2.07×. The
speed-up tends to grow with infrastructure size due to the fact that ConDADO
needs to perform the continuous reasoning step before optimizing, while the
original DADO does not. Nevertheless, since the delta calculator and CRE
have a smaller complexity than the solver, their burden becomes relatively less
significant in larger infrastructures, hence saving more time.

6 Related work

The classic approach to CI/CD pipelines in DevOps literature is to focus on the
delivery of software [9]. Therefore, while CD automatically follows a specified
application placement, it does so as a means of delivery to production, and
not as a means of meeting the application’s QoS requirements [9]. While this
approach is adequate for cloud-based deployments, this is not the case in the
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Fig. 12: Optimization speed-ups of Continuous DADO w.r.t. original DADO

Cloud-IoT continuum, in which dependability is crucial and each node can
provide substantially different QoS. In this section, we briefly summarize the
state of the art in the Cloud-IoT continuum and IoT-oriented DevOps and
QoS-aware application placement.

DevOps has the objective of shortening the delivery time of new features
and allowing for quick reactions to client demands. These features are also rel-
evant in next-gen IoT [13]. DevOps practices need to be adapted to this new
paradigm. In [13], Lopez et al. propose an adaptation of the feedback and mon-
itoring from DevOps to the IoT paradigm and multi-paradigm infrastructures.
The proposal specifies how to perform fast and continuous monitoring in IoT
applications, and can thus be an enabler for CA. Truong and Klein propose
the development of DevOps contracts for IoT microservices in [22]. These con-
tracts define the requirements each of the microservices have and are stored
in a blockchain ledger. The application developer can write scripts that will
be triggered by microservice deployments, requests, or violations of the con-
tract. The main difference between these contracts and CA is their approach
to QoS enforcement: DevOps contracts are imperative, as the IoT application
developer needs to implement a method to obtain the desired state; while CA
is declarative, and the developer only needs to define the desired state. EU
projects, such as SODALITE [23], are also working on approaches towards
DevOps-integrated systems for the orchestration of application deployment
making use of declarative systems, which could be integrated with CA to
enable a more fine-grained detail of the deployed microservices and their scal-
ing. Furthermore, SODALITE@RT [24] allows proposals such as SODALITE
to be used in the Cloud-IoT continuum.

On the other hand, the obtention of QoS-aware application placements in
the Cloud-IoT continuum is currently an open research topic. In [6], Salaht
et al. characterize the problem of placing an application’s microservices in a
dependable way as the Service Placement Problem (SPP). Furthermore, mul-
tiple solutions to the SPP are surveyed in this work, including approaches
that use different techniques such as integer programming, constrained opti-
mization, or Petri nets. Nonetheless, most of these works are not designed
to dynamically adapt the application placement. One of the works that do
consider dynamicity is MigCEP [18]. However, MigCEP’s model is oriented
to migrating complex event processing microservices to adapt the application
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placement to user mobility. Changes in the infrastructure or the application
are not handled by MigCEP, and therefore, it is not suitable for CA.

Another possibility to consider of dynamicity is proposed by Detour [25].
In the Detour model, each request is analyzed before being sent, and an ad-hoc
decision is taken on where the request should be executed. This model requires
at least one replica of each microservice to be deployed to every node in order
to make this ad-hoc decision. Furthermore, the ad-hoc decision process takes
a certain amount of time, which delays every request, and may even become
inefficient if the delay introduced by the decision process is higher than the
obtained speed-up. Other authors, such as Maamar et al., propose a coordina-
tion model for the Cloud-IoT continuum [26]. In this model, the data produced
by IoT devices are categorized based on multiple attributes. Depending on
these attributes, the model recommends the layer or layers they should be
processed at. This approach is fundamentally different from ConDADO, as its
model is data-centric rather than service-centric, and thus, it does not specify
where to place application services nor how to replicate them.

Another system able to determine QoS-aware application placements is
the original DADO framework. DADO was proposed by Herrera et al. in [7]
as an enabler for the obtention of QoS-optimal application placements. This
framework was meant to be leveraged during the design phase of next-gen IoT
applications. DADO supports a wide array of infrastructures and applications,
as well as for the consideration of multiple decisions that affect QoS, such as
network latency. However, DADO was not designed to adapt its application
placements to dynamic environments, and hence, it is unable to know whether
a service is migrated or not, or the cost of such migrations. Furthermore, its
high execution times are also unsuitable for this task. Thus, ConDADO is an
evolution of DADO, adapting its original concepts for this task.

Finally, the use of continuous reasoning to solve the FAPP was initially pro-
posed by FogBrainX [14], a framework oriented to the obtention of QoS-aware
application placements, as well as their adaptation to dynamic environments.
FogBrainX makes use of continuous reasoning by determining the microservices
that are affected by broken deployments or QoS violations and migrating them
to suitable servers. While ConDADO takes inspiration from FogBrainX on the
implementation of continuous reasoning, there are multiple differences between
the frameworks. The main difference is conceptual, as FogBrainX’s model is
based on the interactions between microservice replicas, while ConDADO’s
model is based on requests for microservice workflows, allowing ConDADO to
replicate and move microservices if required. Furthermore, FogBrainX does
not consider optimization objectives, while ConDADO optimize the response
time QoS. Thus, while FogBrainX can be suitable for CA, its objectives and
model differ from ConDADO’s. We believe that, due to these differences, it is
very complicated to fairly compare FogBrainX and ConDADO, as the problems
they solve, although similar in nature, are fundamentally different.
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7 Concluding remarks

The next generation of IoT applications brings computerization to critical
real-world processes, and their continuous improvement will be managed using
DevOps and CI/CD pipelines. Nonetheless, the criticality of these processes
is reflected in IoT applications as strict QoS requirements. In this context,
the use of the multi-paradigm Cloud-IoT continuum requires more complex
management. Furthermore, the dynamicity of the environment can threaten its
dependability. Thus, these continuous changes on QoS motivate the integration
of CA as a practice of DevOps, assuring that the QoS of IoT applications is
maintained acceptable by adapting its placement.

In this paper, we presented and motivated the concept of CA as a rele-
vant practice for next-gen IoT applications, including its integration within
DevOps in CI/CA/CD pipelines. Finally, we presented ConDADO, a frame-
work to perform CA for microservice-based IoT applications in multi-paradigm
infrastructures, such as the Cloud-IoT continuum. In the evaluation, Con-
DADO was shown to be able to provide dependable and valid application
placements with a speed-up of up to 4.2× with regard to alternative solu-
tions. CA provides benefits to developers and operators, as it is a framework
for automatic optimization of application placement that can be directly inte-
grated in their DevOps workflow. Moreover, ConDADO’s continuous reasoning
approach allows for the adaptation of the application placement to be highly
reactive due to its speed-up w.r.t. the complete optimization approach, as well
as to a reduction of the migration costs of each adaptation.

As future work, we expect to extend CA with prototypes able to adapt
other aspects of the application’s deployment, such as adapting the devices
powered on and off to optimize energy efficiency. Moreover, we also intend to
create a multi-objective version of ConDADO, able to consider migration cost
as an explicit objective, modeling the tradeoff with techniques similar to cost-
benefit analysis [27] or cost-benefit at runtime [28]. Furthermore, the cost will
be optimized along with additional QoS metrics such as energy consumption.
We also expect to integrate ConDADO with existing deployment orchestrators,
i.e., Kubernetes. Moreover, we expect to create even faster solutions for CA
and stack them on ConDADO, allowing CA to react even more quickly to small
changes and easy situations, as well as falling back to ConDADO if a suitable
solution cannot be found. Last, but not least, we consider evaluating ConDADO
over real or emulated network and Cloud-IoT continuum testbeds.
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Abstract: During the last years, huge efforts have been conducted to reduce the Information and
Communication Technology (ICT) sector energy consumption due to its impact on the carbon
footprint, in particular, the one coming from networking equipment. Although the irruption of
programmable and softwarized networks has opened new perspectives to improve the energy-
efficient solutions already defined for traditional IP networks, the centralized control of the Software-
Defined Networking (SDN) paradigm entails an increase in the time required to compute a change in
the network configuration and the corresponding actions to be carried out (e.g., installing/removing
rules, putting links to sleep, etc.). In this paper, a Machine Learning solution based on Logistic
Regression is proposed to predict energy-efficient network configurations in SDN. This solution does
not require executing optimal or heuristic solutions at the SDN controller, which otherwise would
result in higher computation times. Experimental results over a realistic network topology show that
our solution is able to predict network configurations with a high feasibility (>95%), hence improving
the energy savings achieved by a benchmark heuristic based on Genetic Algorithms. Moreover, the
time required for computation is reduced by a factor of more than 500,000 times.

Keywords: SDN; machine learning; logistic regression; energy efficiency

1. Introduction

The energy consumption problem in communication networks was one of the most
studied problems in the networking area during the 2010–2020 decade due to its negative
impact on the environment. The implications of the power consumption generated by the
Information and Communication Technology (ICT) sector, and especially by the networking
equipment, led researchers in the area to prioritize their efforts to reduce the carbon
footprint [1,2].

In recent years, sustainability has gained importance worldwide. Several studies have
been published showing the positive impact that ICT solutions may have on sustainabil-
ity [3,4]. In addition, during the COVID-19 pandemic, it has been demonstrated that ICT
solutions, such as remote working, video meetings, etc., have been instrumental in keeping
businesses and societies going, thereby proving these solutions for real. Moreover, with
the advent of 5G and 6G technologies, in which the goal is to pursue a fully connected
intelligent world, efforts must be made to keep alleviating the impact of the emissions
generated by the telco sector.

Focusing on the networking area, a first concern is related to the inefficiency of
network devices: (i) they are always active regardless of their use and (ii) their power
consumption is independent from their traffic load. Moreover, networks are usually
designed to avoid congestion during peak traffic periods. In order to reduce the network
power consumption, green networking [2] aims at making the network consumption load-
dependent. Different techniques have been developed in recent years: (i) the use of
re-engineering approaches with more energy-efficient technologies such as Energy Efficient
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Ethernet—IEEE 802.3az [5]; (ii) the exploitation of dynamic adaptation approaches, in
which the modulation of capacities is considered according to traffic load [6]; and (iii) the
use of sleeping methods, in which the goal is to use the least number of active devices
(links, routers) so that the highest power savings are experienced [7].

The increasing interest in the application of Artificial Intelligence (AI) and Machine
Learning (ML) techniques to the networking area [8,9] opens a new niche that accounts for
the improvement of the energy efficiency of communication networks. If the traditional
energy efficient approaches [1,10,11] are combined with the use of AI/ML techniques, a
step further in the improvement of energy efficiency in communication networks will be
achieved. Moreover, the central vision, flexibility and programmability of the Software-
Defined Networking (SDN) paradigm enable this combination of techniques to re-think and
build highly energy-efficient programmable networks [12–14]. Through the implementation
of ML algorithms to be run at the SDN controller, control actions in the network may be
sped up to modify the network configuration according to the traffic load with the final
goal of minimizing the network power consumption [15].

In this work, we investigate how to use ML to target the H Consumption Problem
(PCP) in the context of computer networks. The main goal of the PCP is to find a feasible
network configuration for a given Traffic Matrix (TM) where the number of active network
devices is minimal to save the highest amount of energy. In small or medium-sized network
topologies, PCP is formulated and solved using Integer Linear Programming (ILP), which
outputs an optimal network configuration in terms of energy consumption [16]. However,
the PCP is known to be NP-hard, and it is not tractable to find an optimal solution for
large networks [16]. In this way, heuristic algorithms are required to obtain (near) optimal
solutions in a short period of time. Specifically, we transform the PCP problem into an
ML-based classification problem. To that end, the solution to the PCP is provided by a
classifier in response to a given TM passed as input.

A Logistic Regression-based Energy Efficient (LR-EE) algorithm is proposed and
trained with historical data from a big dataset of TMs. Then, the classifier is able to provide
a (near) optimal network configuration for a new (and probably unseen) TM without the
need for running the ILP or a heuristic, thus speeding up the process in an online manner.
Traffic load thresholds exploited by the SDN controller are considered to run the LR-based
ML algorithm in order to potentially change the network configuration for an increase in
the energy that is saved.

The main contributions of this work are:

• The definition of a novel algorithm to predict energy-efficient network configurations
based on Logistic Regression (LR).

• The evaluation of the proposed LR-based algorithm over a realistic network topology.
• The comparison of the obtained results with energy-efficient ad hoc solutions.

The rest of the paper is organized as follows. Section 2 introduces some related work.
A review on the PCP and the heuristic considered to solve it are described in Section 3.
Section 4 describes the system model. Section 5 includes the description of the proposed ML
algorithm. Experimental results are reported and analyzed in Section 6. Finally, Section 7
draws some conclusions and future works.

2. Research Gap

Over the last few years, extensive work has been conducted on power consumption
management to improve the energy efficiency of communication networks. For instance,
some works, such as [17–20], focus on reducing the energy consumption of satellite and
terrestrial networks while trying to maximize the quality of service. Recent works also focus
on SDN networks. The flexibility that these networks provide, such as the separation of the
data plane from the control plane and its consequent advantages, creates new opportunities
to define more dynamic and energy-aware networks.

Recent works in this area have focused on ILP-based approaches [21,22]. These works
allow researchers to identify the optimal network configuration, but they cannot be used
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for large networks due to the complexity of the problem to address. Since the power
consumption problem in SDN can be modeled as a Multi-Commodity Network Flow
problem, which is known to be NP-hard, other works focused on applying heuristics,
such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Ant Colony
Optimization (ACO), among others [11,22]. Nevertheless, compared to the dynamicity
that SDN networks (time scale of the order of milliseconds) require, these techniques take
longer to identify an appropriate network configuration.

In order to reduce the re-configuration time, ML is used to improve network perfor-
mance. For example, in the field of Traffic Engineering (TE), several works exploit the
use of Reinforcement Learning to adapt the network configuration to the current traffic
load and minimize the Maximum Link Utilization (MLU) [23,24]. In order to save energy,
Ref. [25] proposes an algorithm based on DRL to predict traffic in order to optimize the
energy efficiency and perform real-time load balancing. To the best of our knowledge, this
is the closest solution to the problem we aim to tackle. In this paper, we focus on using
Logistic Regression with the aim of reducing the complexity of the problem addressed.
This technique is used to identify the subset of links to be turned off depending the network
traffic load.

In the following section, the power consumption problem is studied in order to achieve
the goal of this article, bearing in mind the previous works that have just been presented.

3. A Review on the Power Consumption Problem

In this section, a review on the power consumption problem in computer networks is
provided. Both the classical ON-OFF model [26] and the one based on the Adaptive Link
Rate technique [6,11] are analyzed. Then, a heuristic-based solution is proposed to solve the
PCP in tractable time. This heuristic will be used to generate data to feed the proposed ML
algorithm for the classification of TMs and the assessment of their corresponding network
configuration.

3.1. The Power Consumption Problem (PCP)

PCP is typically modeled as a Multi-Commodity Flow (MCF) problem [16] in which
the network is represented by a network graph G = (V , E), with V as the set of nodes
and E as the set of unidirectional links connecting them. Each link li,j ∈ E has a specific
capacity of Ci,j units to accommodate traffic flows and a power consumption of pi,j Watts if
they are active and the classical ON-OFF power consumption model is adopted [26]. In
case the Adaptive Link Rate (ALR) approach is considered [6,11], a link li,j ∈ E operating
at rate k has a power consumption of pk

i,j Watts; pi,j = 0 in case the link is powered off
(sleeping). The MCF-PCP requires a traffic matrix T as input, with the description of the
volume of traffic per source-destination flow fi,j, represented by di,j ∈ T . Considering the
network features described above, the PCP aims at finding a network configuration G ′ ⊆ G
with the minimum power consumption that respects: (i) link capacity constraints, i.e., the
traffic load of each link must be Ci,j ≤ 100%; and (ii) flow conservation constraints, i.e., the
amount of traffic reaching a node must be equal to the volume of traffic leaving such node,
excluding the traffic inserted/terminated at that node.

More formally, the Integer Linear Programming (ILP) formulation intended to solve
the PCP requires a set of variables that are described as follows (The problem described
refers to the classical link switch off problem. In case ALR is adopted, variable xk

i,j must be
considered, along with an additional constraint to limit the maximum number of rates, k,
per link.):
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• xi,j is a binary variable whose value is equal to 1 if the link li,j is active; 0 if the link is
powered off.

• f s,d
i,j is a binary variable whose value is equal to 1 if the traffic demand of volume ds,d

derived by flow fs,d is routed on the link li,j; 0 otherwise.

After defining the required variables, the PCP formulation is described by Equations (1)–(3):

min ∑
li,j∈E

xi,j pi,j (1)

subject to:

∑
j∈V−i

f s,d
i,j − ∑

j∈V+i
f s,d
j,i =





1 if i = s
−1 if i = d
0 if i 6= s, d

∀i ∈ V , di,j ∈ T (2)

∑
ds,d∈T

f s,d
i,j · ds,d ≤ xi,j · Ci,j ∀li,j ∈ E (3)

Equation (1) aims at minimizing the network power consumption by finding a suitable
network configuration that minimizes the number of active links subject to the constraints
defined in Equations (2) and (3). Equation (2) describes the classical flow conservation
constraints. It imposes that the volume of traffic that reaches a node must be equal to
the amount of traffic that passes through it toward the next hop, unless the node is a
source or a destination node. Equation (3) represents the link capacity constraint, where
the amount of traffic on the link must be, at most, the capacity of the proper link, Ci,j. Since
the ILP formulation falls into the category of MCF problems, which are known as NP-hard
problems [16], heuristic solutions are required to validate their benefits over topologies of
large size, and in tractable times. In this paper, the Genetic Algorithm (GA)-based solution
proposed in [22] is used to find (near) optimal network configurations in terms of power
consumption. Then, the output of the GA will be the inputs for our proposed LR-based
ML algorithm.

3.2. GA-Based Heuristic for Power Consumption Minimization

In order to find a network configuration that minimizes the network power consump-
tion and satisfies a given TM respecting flow conservation and link capacity constraints,
we rely on the use of our GA-based solution [22]. This solution outputs a network con-
figuration close to the optimal in terms of energy savings. In the following, we review
the main aspects of the considered approach detailing the definition of the individuals
that compose the population, the fitness function, and the considered biological operators
(selection, crossover and mutation).

3.2.1. Chromosome Definition

GAs require a population of individuals, namely chromosomes, that represent po-
tential solutions to the PCP. In our case, a chromosome c ∈ P represents a potential
network configuration as a succession of L genes, where the k-th gene, gk ∈ c, describes the
operational mode xi,j of link k = li,j ∈ E :

c = {g1,2; g1,3; . . . ; gi,j; . . . ; gN,N−1} (4)

Thus, for the classical ON-OFF power consumption model, binary variables are con-
sidered, i.e., gi,j = 1 in case link li,j is active; gi,j = 0 otherwise. If the ALR model is adopted,
then K values are considered for each link configuration, i.e., gi,j = s, s ∈ [0, K− 1].
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3.2.2. Fitness Function

A fitness function is also required by GAs to evaluate the goodness of each chromo-
some (solution) of the population. Related to the objective function defined in Equation (1),
Equation (5) is applied to each individual in the population. Function P(c) assesses the
aggregated power consumption of the network configuration represented by the potential
solution c, according to the current operational mode pk of each link k in the network. The
resulting value of the sum is multiplied by θ, which is set to 1 if the network configuration
mapped by c is feasible, i.e., the TM can be correctly routed according to the shortest path
rule without violating any of the constraints reported in Equations (2) and (3). Other-
wise, θ takes a value high enough to penalize the corresponding fitness value to such an
unfeasible chromosome.

P(c) =

(
∑

gk∈c
gk · pk

)
θ, ∀k ∈ E (5)

3.2.3. Biological Operators

In order to perform the evolution procedure, GAs apply biologically inspired operators
(selection, crossover, mutation) to the individuals in the population. The set of individuals
that survive and form part of the next generation in the GA is selected by applying the
classical roulette wheel criterion. Moreover, the combination of individuals to generate
offspring is performed by means of the single-point cross-over function. Regarding the
mutation process, a two-step uniform mutation function is applied. First, a fraction of each
individual is selected for mutation. Every gene in this fraction has a probability rate of
being mutated. The second step is to replace each selected gene by another valid value. The
application of selection, crossover and mutation operators is repeated in each generation of
the GA-based algorithm.

4. System Model

As introduced in Section 1, the main goal of this work is to define a model that is
able to add energy efficiency features to SDN networks by putting unneeded links to sleep
depending on the current traffic load. To achieve this goal, a Logistic Regression-based ML
algorithm has been used.

The proposed algorithm is implemented in SDN networks, which are composed of
SDN switches that represent the data plane of the network. Moreover, there is a centralized
element that has a global view of the network and is in charge of determining the routing
logic. This centralized element is the SDN controller and has a global view of the network,
composing the control plane. The SDN controller is able to monitor the network elements
by exchanging messages with them. These messages are defined by the OpenFlow proto-
col [27]. They allow the SDN controller to assess the traffic load as well as network statistics
to obtain network metrics such as MLU, average delay or packet loss.

Figure 1 represents the whole process that is carried out for the proposed ML algorithm
to work in an SDN environment. As can be seen, a 6-node network with 10 links is
represented. First 1©, the SDN controller estimates a TM based on average data from
historical measurements, as in [28]. After having the TM calculated, the ML algorithm
(which is installed as an application inside the controller) is executed by passing the TM
as input. The ML algorithm, depending on the learning process of its model, will assign a
specific configuration to the network, which implies turning off specific links and keeping
the rest active. In the case of Figure 1, it can be seen in 2© that the output of the ML
algorithm application determines whether to turn off 4 out of the 10 links, thus saving 40%
energy and still being able to satisfy the estimated traffic demand.
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Figure 1. System model overview.

The flow table of each SDN switch stores rules with routing information to carry
packets from their source to their destinations. The dynamicity of the network traffic
implies that such rules are constantly changing. The routing information will be modified
depending on the packets being routed at any given time and the network configuration
with the set of active and powered off links. If a flow table does not store the rules that
allow a packet intended to be sent to reach its destination, the SDN switch will inform the
controller of this situation by sending a PACKET_IN message, as can be seen in 3©. With
this message, the node is requesting the controller to add, modify or delete a rule in order
to route the incoming packet. Thus, the controller replies with a FLOW_MODE message.
After each execution of the ML algorithm, the network configuration may change, so new
rules must be added, removed or modified, to re-route the packets.

Therefore, since the network configuration is applied after the execution of the ML
algorithm, the traffic load of each link may change. Thus, the controller asks the switches
about the load of their links from time to time by means of the OFPIT_STAT_TRIGGER
message [27]. In our model, it is defined that if the traffic load of a link differs by 5% since
the previous configuration was applied, the switches that are connected by the link will
notify back to the SDN controller. As can be seen in 4©, the load of the red link passed
from 50% to 57%, thus triggering the process to notify the controller. At this point, as the
controller knows the network traffic load, it is able to assess a new TM, going back to 2©,
where the ML algorithm is called again with the new TM. Indeed, the ML algorithm will
determine the new configuration that fits the new network situation and the process is
iteratively repeated.
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5. Logistic Regression-Based Energy Efficient Algorithm

In this section, the algorithm that is proposed to predict energy-efficient network
configurations based on Logistic Regression (LR-EE) is described. Thus, a methodology
to adapt the PCP into a supervised classification problem is provided. The aim is to apply a
solution based on LR to predict the network configuration associated to a TM and save
energy. However, before applying the supervised ML algorithm based on LR, a method for
the reduction of the number of classes must be considered. In this sense, a non-supervised
ML algorithm is first considered for such a reduction.

5.1. Clustering Process for Network Configurations Reduction

As described in Section 3, each TM is taken as input by the GA results in an associated
network configuration. These network configurations indicate which links are active and
which ones are put to sleep to save energy, along with a suitable routing for the given TM.
In the worst-case scenario, the application of the GA over a set of different TMs may report
a set of network configurations that are all different. In the case of thousands of different
TMs, thousands of network configurations can be assessed, with an upper bound of 2E due
to the binary values of the genes. On the other hand, it may happen that the same network
configuration can be applied to a subset of TMs.

Since the main goal of the ML algorithm proposed in this work is to perform a
classification of TMs and assign them a valid network configuration able to route the traffic
and save energy, a big dataset is required for the training process. However, a first problem
related to the number of classes must be tackled. If there are many different network
configurations for the prediction, the ML algorithm may not learn correctly due to the ratio
between traffic matrices and configurations to be classified. Therefore, its performance may
be low.

In order to reduce the number of classes, a non-supervised ML algorithm based on the
concept of K-means [29] is first applied to group the set of input TMs to φ different clusters.
The process followed by the algorithm is as follows: each TM belonging to the data set is
mapped to one of the φ network configurations representing the different clusters. For each
cluster, there is only a single network configuration that is valid for all the TMs belonging
to the cluster. In this way, a dimensionality reduction is performed:

• If none of the original configurations are valid for all the TMs belonging to that cluster,
the configuration with the highest number of active links is selected, and links are
iteratively switched on until a valid configuration for all TMs is found.

• If there is an original configuration that is valid for all the TMs in that cluster, it
is selected.

• If there is more than one original configuration that is valid for all the TMs in that
cluster, the one with the highest number of links off is selected (highest energy savings).

With this approach, we assume a potential gap in terms of energy savings. However,
a reduced number of classes will lead to a better classification with the application of the
proposed LR-based ML algorithm described next.

5.2. Turning the PCP into a Supervised Classification Problem

In the following, a description of the methodology followed to convert the PCP into a
supervised classification problem is provided.

Let us denote di,j ∈ T as the volume of traffic to be sent from node i ∈ V to node
j ∈ V , with i 6= j. The GA-based solution reports as output a (near) optimal network
configuration CT = (ST ,RT ) with the status of each link in the network (active or powered
off), ST = {pi,j}, ∀li,j ∈ E , and the routing configuration RT for each source-destination
flow. As an example, let us consider the topology shown in Figure 2a, which is composed
of six nodes connected by eight links. One potential solution of the GA is the one depicted
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by Figure 2b, in which the optimal configuration to route a specific TM T1 saving the most
amount of energy is CT1 = (ST1 ,RT1). Link configuration is given by Equation (6):

ST1 = {s1,2; s1,3; s2,4; s2,5; s3,4; s3,5; s4,6; s5,6}
= {0; 1; 1; 0; 1; 1; 1; 0} (6)

where five links are active (s1,3; s2,4; s3,4; s3,5; s4,6) and three links are powered to save energy
(s1,2; s2,5; s5,6). This leads to 37.5% power savings. The associated routing configuration for
all the flows originated by node 1 is shown in Figure 2c. As it can be seen, each flow avoids
using the powered off links, which can result in an increase of the traffic volume on specific
links such as, e.g., l3,4. Thus, the routing configuration is given by Equation (7):

d1,2 −→ (l1,3, l3,4, l4,2)

d1,3 −→ (l1,3)

d1,4 −→ (l1,3, l3,4)

d1,5 −→ (l1,3, l3,5)

d1,6 −→ (l1,3, l3,4, l4,6)

...

di,j −→ hi,j

...

d6,5 −→ (l4,6, l3,4, l3,5)

(7)

where the path for traffic demand di,j ∈ T1 according to routing configuration RT1 is
hi,j. For instance, the flow originated at node one destined to node six must traverse
links l1,3, l3,4 and l4,6. Thus, the supervised classification problem receives as input the
serialized TM T1 with the set of demands to be routed and provides as output a near optimal
network configuration CT1 . Generally, the execution of the GA outputs a specific network
configuration. In the worst-case scenario, this can result in a situation in which each TM is
associated with a different network configuration. However, in practical scenarios, many
of the configurations can be applied to a set of the considered TMs (and not only to one
TM), thus reducing the space of configurations under consideration. Therefore, if the
number of network configurations to classify the TMs with is reduced, the complexity of
the classification problem is lower.

In order to turn the PCP into a supervised classification problem, we consider the
input variables as the elements of a serialized TM, with a tuple tk of type:

tk = {d1,2, d1,3, ..., di,j, ..., dN,N−1}, ∀i, j ∈ V (8)

and the output labels are the associated network configurations CT to such tuple tk (TM)
obtained by the GA. This dataset can then be used to train a classical supervised ML
algorithm based on Logistic Regression. With a big enough number of tuples (tk, CT ),
the trained ML algorithm would be able to predict a network configuration for a given
TM without the need of executing the GA-based solution. Moreover, for a new TM not
considered in the training set, the ML model should be able to generalize and produce a
valid network configuration able to save as much energy as possible close to the one that
would be obtained by the GA.

Then, in order to classify new and potentially unseen TMs, the RL-based ML algorithm
is invoked and returns a specific network configuration that is expected to (i) be valid, and
(ii) able to save energy. With the application of such an algorithm by the SDN controller,
the GA is no longer needed and the computation time will be reduced.
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(a) Network topology (b) GA output. Links configuration

(c) GA output. Routing configuration

Figure 2. Example of GA output on a 6-node topology. (a) Network topology. (b) GA output. Links
configuration. (c) GA output. Routing configuration.

6. Experimental Results

In this section, an experimental evaluation of the proposed solution is provided. At
first, the simulation environment is described. Next, a performance evaluation of the
proposed solution in terms of ML and network metrics is carried out to analyze its benefits
and potential drawbacks, along with the energy savings achieved.

6.1. Simulation Set-Up

In order to evaluate the effectiveness of the proposed ML solution, Abilene topology
(12 nodes and 30 links) is considered. A set of 3871 TMs retrieved from [30] are taken as
input, with a time granularity of 5 minutes. Link capacities are set as follows. First, we
select the peak TM in the dataset and route it over a set of shortest paths derived after
the application of the Dijkstra algorithm on the network graph. After this step, each link
li,j is carrying an amount of traffic ti,j. Then, we assume that the capacity of each link
can be upgraded by installing a set of line cards. A line card has a capacity of ∆C equal
to 0.5 max

li,j
(ti,j), i.e., the half of the traffic carried by the link with highest link utilization.

Finally, we consider installing the minimum number of line cards needed by each link to
make their utilization not greater than 100%, i.e., MLU = 1.

Regarding the power consumption model that is considered, we assume that links can
be either powered off (sleeping) or powered on (active). All the links in the network have
the same power consumption when they are active (pi,j = 1). It is worth remarking that,
although this assumption is unrealistic (there can be different types of links with different
values of power consumption [11]), it is a classical approach followed in a big set of works
tackling the power consumption problem in computer networks [7,26,31].
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6.2. Performance Evaluation

As previously introduced, the GA-based solution outputs a (near) optimal network
configuration for each TM passed as input. Then, in case Abilene topology is considered,
3871 network configurations are assessed, one per TM. In order to find a suitable number
of clusters to group all the TMs, a prior analysis has been carried out. Figure 3 shows
the score after the application of the K-means algorithm as a function of the number of
clusters. The score is the average of the inverses of the distances of each configuration
from its centroid configuration. Clearly, the score is reduced with the number of clusters,
following a logarithmic pattern. In particular, a sharp increase is experienced in the range
φ = [1, 50], and the line is stabilized with a large number of clusters. In order to evaluate
the impact of the cluster size on the effectiveness of the proposed solution, four values of φ
are considered in the following performance analyses: φ = {10, 50, 100, 200}. Furthermore,
in order to carry out the training and testing of LR-EE, the set of TMs has been divided
into two subsets. One for training (66% of the data), and the other for evaluating the
performance of the algorithm (33% of the data).
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Figure 3. Score of K-means vs. number of clusters (φ).

Tables 1 and 2 report the results obtained by LR-EE for the different values of φ for
comparison with the GA-based solution. Two different types of metrics are shown: (i)
ML metrics, with precision, recall and F1-score for each model (Table 1); and (ii) network
metrics such as the average link load, MLU, average number of hops per flow, maximum
number of hops per flow, average energy saving gap (which is assessed as the energy
savings of the original configuration outputted by the GA minus the energy savings of
the network configuration of the cluster) and the feasibility, which is the percentage of
predictions that, whether or not they are correctly predicted, are valid for the associated
TM (Table 2).

Table 1. Machine Learning metrics for LR-EE and GA.

ML Metrics Computation Time

Precision Recall F1-Score Train. T Exec. T

LR-EE φ = 10 0.84 0.84 0.84 7.67 s 1.5 µs
LR-EE φ = 50 0.76 0.76 0.75 3.10 s 1.9 µs
LR-EE φ = 100 0.75 0.74 0.73 3.20 s 2.2 µs
LR-EE φ = 200 0.74 0.72 0.71 5.41 s 4.2 µs
GA - - - - 2.21 s
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Table 2. Network metrics for LR-EE and GA.

Network Metrics

max_LL avg_LL avg_hops max_hops avg_gap Feasibility

LR-EE φ = 10 0.26 0.99 3.60 10 11.25% 97.25%
LR-EE φ = 50 0.42 1 4.50 11 −3.90% 97.80%
LR-EE φ = 100 0.45 1 4.65 11 −5.96% 97.10%
LR-EE φ = 200 0.47 1 4.76 11 −6.95% 95.53%
GA [22] 0.45 1 4.14 11 - 100%

Results show that as the number of clusters (φ) increases, the ML metrics perform
worse. This is due to the fact that if there is a high number of classes to associate the
TMs with, it will be more difficult for the LR algorithm to determine to which class a
TM belongs. This is partly because there are classes that have very few associated TMs,
while other classes have hundreds of associated matrices. However, this is not reflected
in the network metrics. The higher the number of clusters, the better the average energy
saving gap is. This is because the configuration associated with each cluster can be more
specific to the associated TMs, resulting in a higher number of powered off links. As a
result, links are more loaded and flows require a higher number of hops to reach their
destination. In fact, for φ = 10, ML prediction is 10% better compared to the case of
φ = 200. However, worse outcomes in the energy savings are obtained for a small number
of clusters, e.g., φ = 10, where an average gap of 11.25% compared to the GA is obtained.
On the contrary, significantly better results are obtained for the case of φ = 200, where
6.59% of energy is saved, on average, when it is compared with the GA. Moreover, the
feasibility remains stable above 95% for all tests. It is therefore appropriate to select the
option that saves the highest amount of energy, i.e., φ = 200. Finally, it can be seen that
the reduction in execution time of the ML-based solution compared to GA is notable.
The LR-EE configuration prediction time has an acceleration factor between 526,190 and
1,473,333 times higher than the time needed by GA to generate a new configuration.

Figure 4 reports the power savings achieved by the GA (Figure 4a) and by LR-EE
(Figure 4b–e) for different values of φ as a function of the TM Id. Note that TMs are sorted
according to their traffic load in ascending order. Clearly, it can be seen that higher power
savings are achieved when the number of clusters is high (compare φ = 10 clusters of
Figure 4b with φ = 200 clusters of Figure 4e). As soon as we increase the number of clusters,
the density of the bars in the figures is higher, meaning that the power savings are increased
for most of the TMs.

Finally, Figure 5 reports the gap of the GA compared with LR-EE and 200 clusters. It
can be seen that LR-EE outperforms the GA in terms of power savings (negative values)
for the majority of the TMs. As a summary, the LR-EE proposed solution is able to obtain
better power saving outcomes with respect to the GA for a number of clusters above 10
(see avg_gap column of Table 1), with the corresponding reduction in the computation time.
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Figure 4. Power savings as a function of the TM Id for GA and LR-EE (TMs are sorted according to
their traffic load in ascending order). (a) GA [22], (b) LR-EE φ = 10 , (c) LR-EE φ = 50, (d) LR-EE
φ = 100, (e) LR-EE φ = 200.
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Figure 5. Power saving GAP of GA vs. LR-EE with φ = 200.

7. Conclusions and Future Work

In this paper, an ML solution based on LR has been proposed to predict energy-efficient
network configurations in SDN, avoiding the execution of optimal or heuristic algorithms at
the SDN controller. Thus, a reduction in the computation time derived by the non-execution
of these algorithms at the controller is set as objective, along with the improvement in energy
savings. Experimental results over a realistic network topology show that, by applying
the combination of unsupervised and supervised learning techniques, a notable reduction
of power consumption can be achieved by our proposed LR-EE solution compared to the
results obtained by energy-efficient ad hoc solutions, with the corresponding significant
reduction in the computation time.

Regarding possible future research activities, we work on testing different ML methods
to compare them and select the one that provides the best results in terms of power savings
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and computation time. We also work on defining a framework that can select the ML
technique to use depending on the network topology and other characteristics. In this
sense, we are working on using different cluster configuration depending on the network
behavior. Finally, we are evaluating the proposed algorithm with larger networks to
evaluate the scalability of the solution and how it behaves in emulated environments.
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Abstract

Software-Defined Networking (SDN) is a paradigm that provides flexi-
bility and programmability to computer networks. By introducing SDN
nodes in a legacy IP network topology, network operators can bene-
fit on higher control over the infrastructure. However, this migration
is not a fast or straightforward process. Furthermore, to provide an
adequate quality of service in hybrid IP/SDN networks, the coordi-
nation of buth IP and SDN paradigm is fundamental. In this paper,
this coordination is used to solve two optimization problems that are
typically solved separately: i) traffic load balancing and ii) power con-
sumption minimization. Each of these problems has opposing objectives,
and thus, their joint consideration implies striking a balance between
them. Therefore, this paper proposes the Hybrid Spreading Load Algo-
rithm (HSLA) heuristic that jointly face the problems of balancing
traffic by minimizing link utilization and network’s power consumption
in a hybrid IP/SDN network. HSLA is evaluated over differently sized
topologies using different methods to select which nodes are migrated
from IP to SDN. These evaluations reveal that alternative approaches
that only address one of the objectives are outperformed by HSLA.

1
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Keywords: Hybrid IP/SDN, load balancing, energy efficiency, traffic
engineering, heuristic

1 Introduction

The internet has drastically changed how our society creates, shares, and con-
sumes information. As a consequence, the volume of traffic flowing through
the internet increases exponentially over time, as the number of users con-
tinues rising from 3.9 billion in 2018 to the predicted 5.3 billion by 2023 [1],
generating an estimate of 2.6 Exabytes of traffic daily [2].

It is because of this growth in traffic demand that, to address peak traf-
fic loads, as well as to react to events that degrade network performance,
such as link failures [3] or router malfunctions [4], internet service providers
(ISPs) need to reinforce the existing network infrastructure. Such an objective
can be obtained by overprovisioning existing resources or by providing addi-
tional network redundancy. However, the use of such techniques leads to high
energy consumption within normal network operations because all the network
equipment is powered on, regardless of the traffic flowing through it [5].

Nonetheless, the flexibility and the programmability provided by the
software-defined networking (SDN) paradigm, through the global network
knowledge obtained by the controller, enables the proposal of solutions that
optimize the amount of network equipment (e.g., links and nodes) that need to
be powered on to successfully fulfill the quality of service (QoS) requirements
[6–8]. These solutions adapt the network configuration to the traffic demand
and improve the network’s energy efficiency [9]. Furthermore, the use of SDN
allows for the application of additional solutions, such as traffic engineering
(TE) techniques. SDN enables the network to design optimal policies for rout-
ing and, therefore, flow forwarding, thus performing traffic load balancing at
the network level [10–12].

To make use of the SDN paradigm in a network infrastructure, the net-
work equipment needs to be replaced with SDN-compatible nodes. However,
such migration is not a straightforward or fast process, and it is not feasi-
ble to migrate large network topologies in the short term (e.g., labeling a
flag day to migrate from IP to SDN), especially due to the economic costs of
the replacement and the lack of provision of Service Level Agreement (SLA)-
included services to the ISP’s customers during the migration. A solution to
this problem, commonly used by ISPs due to its cost-effectiveness, is to migrate
incrementally, replacing only a subset of network elements and evaluating their
practicality after a certain period of time [13]. Such partial migrations lead to
hybrid IP/SDN networks, where both legacy IP nodes and SDN nodes coex-
ist. In this type of network, both kinds of equipment need to be coordinated,
as well as the protocols used for routing (i.e., OSPF and OpenFlow) [14, 15].
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The problem of energy efficiency has been studied in related literature.
In [16], an optimal, linear programming-based solution that optimizes the
energy efficiency of an SDN network, along with a greedy heuristic for its
application in large networks, are proposed. These solutions consider the pos-
sibly limited number of OpenFlow rules that can be installed in each SDN
switch and provide up to 18.2% energy savings w.r.t. no energy efficiency solu-
tions. However, this proposal is designed for pure SDN networks and is, thus,
unsuitable for hybrid IP/SDN networks. Wang et al. extended the problem to
hybrid IP/SDN networks in [17]. This work demonstrated the NP-hardness of
the energy efficiency optimization problem in hybrid IP/SDN networks and
proposed a heuristic algorithm to solve the problem based on spanning tree
algorithms. The impact of traffic load, network size and SDN nodes’ number
on the achieved energy savings was also analyzed.

A different approach for energy efficiency optimization is described in [18],
which optimizes the energy efficiency of a hybrid IP/SDN network by propos-
ing the SENAtoR algorithm. SENAtoR employs a smooth power-off technique
where SDN switches stop sending control traffic to legacy IP equipment before
being powered off, giving the IP part of the infrastructure time to adapt. SEN-
AtoR is shown to have near-optimal performance and takes only milliseconds
to execute. Finally, [19] presented Hybrid Energy-Aware Traffic Engineering
(HEATE). In contrast to the previous approaches, which focused on optimizing
energy efficiency on SDN devices and allowing the solution to be interopera-
ble with IP equipment, HEATE actively optimized energy efficiency in both
kinds of equipment for hybrid IP/SDN networks. To do so, HEATE found the
optimal setting of the OSPF link weight and the split ratio on SDN nodes. In
particular, HEATE considered that IP routers performed shortest path routing
by optimizing OSPF link weights, while SDN nodes satisfied multipath routing
with traffic flow splitting through the action rules defined by the controller.
HEATE is shown to provide better performance than flow allocation-based
and OSPF-based energy efficiency algorithms in multiple network topologies.
However, all these approaches are fundamentally different from the proposal of
this work, as they exclusively focus on energy consumption, while other crucial
aspects (e.g., QoS metrics, link performance) are not considered [20].

The consequence of single-objective energy efficiency optimization is that
load balancing is not performed. Load balancing is a key TE technique in
hybrid IP/SDN networks, normally performed by minimizing the maximum
link utilization (MLU) through an equal spreading of the traffic load among
links (ECMP protocol) [21]. Load balancing allows for a reduction of the OPEX
in networks, as well as for a growth of the user base due to the low average
link utilization derived from its usage [22, 23]. In hybrid IP/SDN networks,
this kind of optimization was introduced in [24]. This proposal separated flows
into two categories: uncontrollable flows, i.e., flows that were routed by legacy
IP equipment, and thus, could not be controlled, and controllable flows, which
could be controlled because they made use of SDN switches. This work formu-
lated the problem of MLU minimization in hybrid IP/SDN networks by using
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ECMP techniques in controllable flows. Furthermore, a fully polynomial time
approximation scheme (FPTAS) was also proposed. In [25], Ren et al. achieved
a near-optimal TE in hybrid IP/SDN networks in polynomial time by propos-
ing a distributed algorithm named TEDR. TEDR relaxed and decomposed
the original problem, which was formulated using linear programming, into
multiple subproblems related to each of the SDN switches. A small TEDR con-
troller associated with each SDN switch then solved the subproblem assigned
to the switch and broadcasted this local solution to the whole network. Finally,
local solutions are compared to find a globally near-optimal solution. TEDR
achieved a substantial MLU reduction in hybrid IP/SDN networks with at
least a 30% SDN deployment rate.

One of the latest related works on the subject is [26]. In this paper, Guo
et al. presented HybridFlow, a load balancing solution centered on scalability.
HybridFlow made use of the hybrid mode presented in some SDN switches
that allowed them to route most flows using OSPF without involving the SDN
controller to reduce the overhead. To do so, HybridFlow detected crucial flows:
flows that carried a high traffic load and that would be directly routed through
critical links using OSPF. These crucial links were detected using a Variation
Slope, a metric also proposed by this work to identify the links carrying the
highest set of flows with higher traffic loads. Crucial flows are then rerouted
to perform load balancing using OpenFlow. While HybridFlow enabled near-
optimal load balancing with minimal overhead, it also required a fully deployed
SDN topology rather than a hybrid IP/SDN topology. Finally, in [27], the NP-
hardness of the traffic engineering problem in hybrid IP/SDN networks was
proven, and an algorithm named SDN/OSPF Traffic Engineering (SOTE) was
proposed to solve it. The main purpose of SOTE was to minimize the MLU
of a hybrid IP/SDN network by jointly optimizing the OSPF weight setting
of the entire network in order to balance outgoing flows at IP nodes, as well
as the traffic splitting ratio of flows that aggregated SDN nodes. SOTE was
shown to achieve nearly optimal results in realistic topology, even with only
a 10% SDN deployment rate. However, none of these works considered the
effects of load balancing on energy consumption, as rerouting and the use of
the ECMP protocol make use of more links, which in turn requires more links
to be powered on, increasing the network’s overall energy consumption.

Although both the energy consumption problem and the traffic load bal-
ancing problem have been studied separately in hybrid IP/SDN networks,
studying them as a joint problem, considering the trade-off between the opti-
mization of routing to maximize energy efficiency and its optimization for MLU
minimization, has not been addressed in prior works. Thus, to solve this joint
problem and provide a guaranteed QoS, this paper proposes a multi-objective
optimization problem, including both its definition and formalization. In par-
ticular, two metrics are considered as the minimization objectives: the power
consumption of the network and the MLU. This work extends our previous
work already published in [28] by performing an evaluation of the impact that
SDN nodes have on the flows number and on the amount of traffic that can
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be controlled, analyzing the impact of the initial weight setting of SDN links
on the obtained results and proposing an additional genetic algorithm (GA)-
based approach for the power saving phase. Moreover, for this solution to be
able to scale, and thus, for it to become practically solvable in large topologies,
we also present the Hybrid Spreading Load Algorithm (HSLA), a heuristic
solution for this joint problem. Concretely, the main contributions of this work
are as follows:

• The consideration of the trade-off between energy consumption and load
balancing during the migration from legacy IP to SDN-enabled networks.

• The definition of the joint, multi-objective energy efficiency and the load
balancing problem in hybrid IP/SDN networks that fairly pursues both
goals.

• The evaluation of the impact of different SDN selection methods on flows
number and on the amount of traffic that can be controlled.

• The evaluation of the impact of the initial weight setting of SDN links on
the aforementioned metrics.

• The proposal of the HSLA heuristic algorithm, including a GA-based
approach for the link switch off process, which enables the practical and
timely solution of the problem in large topologies.

• The comparison of HSLA with existing solutions from both the energy
efficiency and the load balancing state-of-the-art within realistic conditions.

The rest of this paper is organized as follows. Sec. 2 describes and defines
the problem. The HSLA algorithm is described in Sec. 3. Sec. 4 reports exper-
imental results and their analysis. Ultimately, Sec. 5 draws some conclusions
and future works.

2 Problem Definition

We consider a hybrid IP/SDN network modeled as a directed network graph
G = (N ,L), where N is the nodes set and L is the directed links set. The set
of nodes N is further divided in two subsets: SDN nodes, NSDN ∈ N , or IP
nodes, NIP ∈ N , where NSDN ∪ NIP = N . With respect to the set of links,
each link li,j ∈ L connecting node i ∈ N to node j ∈ N has a capacity of Ci,j

units to accommodate traffic flows, and a power consumption referred to as
Pi,j .

Traffic matrix T models the traffic and is composed of a set of demands
δs,d ∈ T from each source node s ∈ N to each destination node d ∈ N in the
network. In other words, δs,d ∈ T refers to the traffic demand entering the
network from node s and leaving it through node d.

The goal of the problem is to find an optimal network configuration
that jointly minimizes the maximum link utilization and the network power
consumption.
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Moreover, to define the Mixed Integer Linear Programming (MILP) formu-
lation aimed at solving the Multi-Objective and the Multi-Commodity-Flow
(MO-MCF) optimization problem, the following set of variables is required:

• yi,j is a binary variable that represents the operational mode of link li,j . Its
value is yi,j = 1 if the link is active. Otherwise, if yi,j = 0, the link is turned
off;

• fs,di,j is an integer variable that represents the amount of traffic demand
δs,d ∈ T that is routed on link li,j ;

• ndi,j is a binary variable indicating whether node i uses node j as the next
hop in its forwarding table to reach destination node d;

• cdi is an integer variable representing the cost of the path to go from node i
to node d;

• hi,j is an integer variable indicating the interior gateway protocol (IGP)
weight of link i, j, which is considered by the IP routers to determine the
shortest path routing;

• U is a real variable indicating the maximum link utilization (MLU) in the
network.

• N+
i and N−i are subsets of N that contain the nodes to which node i has

incoming and outgoing links, respectively.

Considering the variables just described, the optimization problem has as
goal the jointly minimization of the network power consumption , as well as
its maximum link utilization (MLU). For this purpose, two objective functions
are needed to solve the multi-objective optimization problem, that are defined
in eqs. (1-2) as follows:

F1 = min
∑

li,j∈L
yi,j · Pi,j (1)

F2 = min U (2)

The minimization of the global network power consumption is represented
by Eq. (1), while the objective pursued by eq. (2) minimizes the MLU. There-
fore, the MO-MCF problem is defined by the joint optimization of both
functions as follows:

min [F1; F2] (3)

subject to:

∑

j∈N−
i

fs,di,j −
∑

j∈N+
i

fs,dj,i =





δs,d if i = s

−δs,d if i = d

0 if i ̸= s, d

∀i, s, d ∈ N , δs,d ∈ T (4)

∑

δs,d∈T
fs,di,j ≤ yi,j · Ci,j ∀i, j ∈ L (5)



Springer Nature 2021 LATEX template

Joint Energy Eff. and Load Balancing Opt. in hybrid IP/SDN networks 7

1

Ci,j

∑

δs,d∈T
fs,di,j ≤ U ∀i, j ∈ L (6)

fs,di,j ≤ ndi,j · δs,d ∀i, j ∈ L : i ∈ NIP, δs,d ∈ T (7)

∑

j∈N−
i

ndi,j = 1 ∀i, d ∈ N : i ̸= d (8)

0 ≤ cdj + hi,j − cdi ≤ (1− ndi,j) ·M ∀i, j ∈ L, d ∈ N (9)

1− ndi,j ≤ cdj + hi,j − cdi ∀i, j ∈ L, d ∈ N (10)

1 ≤ hi,j ≤ hmax ∀i, j ∈ L (11)

Classical flow conservation constraints are described in eq. 4, whereas the
capacity constraint on links is represented by eq. 5, where the available capacity
upper binds the total traffic routed on a link. Specifically, if the link is in on
status (yi,j = 1), all of its capacity can be employed to transport the traffic;
otherwise, its capacity is equal to 0 and the link cannot be used. Eq. 6 leads
the variable θ to be equal to or greater than the MLU in the network. In the
presented model, IP routers are constrained to use a single and shortest path
routing and to forward traffic according to the destination. These aspects are
involved in the problem formulation through the constraints reported in Eqs.
7-11. Especially, Eq. 7 models destination-based forwarding by allowing the IP
router i to send traffic destined to node d over link i, j only if node j is the next
hop for the destination (ndi,j = 1). Eq. 8 imposes the single path routing for IP
routers, and specifically it forces node i to choose only one next hop to reach
destination node d. It is worth mentioning that, in spite of the fact that SDN
nodes can forward traffic over multiple paths, it is important to impose Eq. 8
to all the nodes (not limited only to IP routers). In this way, IP routers are
forced to consider only single and shortest paths to forward the traffic, which
are calculated according to the weight variables (hi,j). Anyway, SDN nodes
are able to override these rules since the next hop variables for these types
of nodes are not logically bound to the traffic forwarding (Eq. 7 is imposed
only on IP routers). Finally, Eqs. 9-11 enforce the shortest path policy. They
impose that if ndi,j = 1, then the cost of the path between the nodes i and d
must be equal to the weight of the arc connecting it with its neighbor, j, (hi,j)
including the cost of the path between j and d.

Since the presented problem formulation is NP-hard [29], next, a heuristic
approach is presented to solve it in polynomial time.

3 Hybrid spreading load algorithm (HSLA)

The proposed algorithm, named Hybrid Spreading Load Algorithm (HSLA),
which aims at solving the MILP problem defined in Sec. 2, is described in next
subsections by pointing out algorithmic aspects and architectural details.
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Fig. 1: A to H path in
a legacy IP network.

Fig. 2: A to H path in
a hybrid IP/SDN net-
work considering C as
SDN node.

Fig. 3: A to H path
in a hybrid IP/SDN
network considering C
and G as SDN nodes.

3.1 Exploiting SDN nodes for traffic splitting

The HSLA concept is to take advantage by using the generalized forwarding of
the SDN paradigm to split the traffic entering the set of SDN nodes to balance
the traffic load. Therefore, an SDN node can split a reaching flow over the rest
of the outgoing ports to ensure that the traffic is balanced toward the next hop.
The main benefits of doing this according to the generalized forwarding and
the SDN control plane are: i) the traffic can be accurately divided over several
outgoing paths and ii) the considered paths do not need to be the shortest ones.
These two points can be summarized according to the concept of multipath
routing (MPR). In contrast, traditional IP routers, which work according to
destination-based forwarding and rely on shortest path routing protocols (e.g.,
OSPF [10]), can split traffic over equal cost multipaths (ECMPs, [21]), but
this operation has several limitations. Firstly, traffic splitting is based on flow
hashing methods, that allow to balance only in terms of flow number (not
considering the actual traffic volume) and to lead to low accuracy. Furthermore,
only the shortest paths can be considered, thus, reducing the load balancing
opportunities. Finally, all these decisions are delegated to the local control
plane agent with logic that cannot be centrally controlled to achieve a global
objective. For this reason, in this paper, we decide not to rely on the ECMP
mechanism of the IP routers, allowing traffic splitting only at SDN nodes,
where this process is effective and flexible as a result of the availability of the
routing mechanism of group tables or using specific flow rules. In particular, we
assume that the capabilities of SDN switches are exploited to perform accurate
traffic flow over multiple shortest paths.

The idea behind the proposed routing scheme is represented through Figs.
1-3, where an 8-node hybrid IP/SDN network is reported. We are interested to
the path that is evaluated to route the flow traffic from node A to node H. In
Fig. 1 the resulting path for the case where all the nodes are legacy IP nodes
(PA,H = {A − C − F − H}) is represented by the blue line. For the sake of
simplicity, all the weights for links are here set to 1. In this case, destination-
based forwarding is applied, such as in traditional routing protocols, e.g., OSPF
[10].

Fig. 2 represents the scenario where a traditional IP node is replaced by
an SDN node at a particular stage in the transition from IP to SDN and the
selection method for such replacement indicates that the upgraded node must
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be C. In this case, the link associated with the SDN node are weighted by

decreasing their values from hi,j = 1 (initial setting) to hi,j =
h−i,j
ki

=
1

4
, where

the weight of link li,j before the update is represented by h−i,j and ki is a metric
that purposes to attract the flows to node i, e.g., its degree. The decreasing
of the link weights related to SDN nodes is done to force the flows to pass
through them, leading to balance the traffic among different links exploiting
the ECMP protocol [21]. Despite this, in the reported example, although link
weights are modified, the single SDN node replacement does not affect the
path followed by flow A−H (blue line) with respect to the case of Fig. 1.

By upgrading a second node to SDN, e.g., G, the flow arriving at node C is
equally divided among the set of shortest paths from it toward the destination
(see Fig. 3). In the example, two shortest paths with the same cost exist from
C to H: P 1

C,H = {C − D − G − H} and P 2
C,H = {C − F − G − H}, which

are represented by green lines. Thus, the traffic volume represented by the
blue line is split by two and steered through the aforementioned (green) paths.
With this traffic division, the proposed solution targets the traffic load to be
balanced and the MLU to be reduced through the use of the ICMP protocol
at the SDN nodes.

3.2 HSLA Description

Next, we present the proposed solution, which is composed of 2 algorithms.
The former aims at spreading the traffic through the subset of SDN nodes as
a result of using the ECMP protocol (pseudo-code reported in Alg. 1). Once
the traffic is handled, the second algorithm tries to save energy by switching
off links. In addition, for the link switch off (LSO) process, two solutions have
been considered: the Less Loaded Links Algorithm (L3A), which iteratively
removes the less loaded link in the network (see Alg. 2) and repeats and the
Genetic Algorithm-based LSO (GA-LSO), which exploits the use of GAs to
power off links and steer the traffic among the remaining subset of links (Alg.
3).

Starting with the HSLA, whose goal is the minimization of the MLU, 2
parameters are required as input. The first parameter is the network graph
G = (N ,L), withNIP ∈ N as the set of legacy IP nodes,NSDN ∈ N composed
of the set of SDN nodes, and NSDN ∪NIP = N . The second parameter is the
traffic matrix T to be satisfied. First, an initialization phase for setting the link
weights is performed in lines (1− 9). As introduced in Sec. 3.1, hi,j = 1 is set
for the weight for links connecting two IP nodes, whereas they are decreased

to hi,j =
1

ki
when they connect an SDN node i, with ki as the related metric

representing the node importance.
Once the initial weight setting is performed, the objective of the HSLA is

to provide for all the traffic demands contained in the traffic matrix T passed
as input, i.e., to find a feasible routing matrix R for T that minimizes the
MLU. For this aim, each traffic demand (s, d) is iteratively handled. First, the
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k shortest paths are evaluated from source node s to destination d according
to destination-based forwarding (line 13).

Algorithm 1 Pseudo code of the proposed Hybrid Spreading Load Algorithm
(HSLA).

Require: A network graph: G = (N ,L), a traffic matrix: T
1: create W ← ∅ ▷ Set for link weights
2: create R ← ∅ ▷ Routing matrix
3: for all li,j ∈ L do ▷ Update link weights
4: if i ∈ NSDN then

5: wi,j ←
1

ki
6: else
7: wi,j ← 1
8: end if
9: end for
10: for all δs,d ∈ T do ▷ Find path ∀δs,d ∈ T
11: create ps,d ← {} ▷ Path for demand δs,d
12: create λ← false ▷ Boolean for path found
13: P ← k shortest paths(δs,d,G)
14: while λ == false do ▷ Check each path p ∈ P
15: if p ∈ P is an IP path then ▷ No SDN nodes
16: b← check path constraints(δs,d, p,G) ▷ Check link constraints and no loops
17: if b == true then
18: R ← assign flow to path(δs,d, p,G)
19: ps,d.concatPath(p)
20: λ← true
21: end if
22: else ▷ There are SDN nodes in the path
23: for all li,j ∈ p do
24: if i ∈ NSDN then ▷ It is an SDN node
25: P∗ ← k shortest paths(δi,d,G)
26: u← num paths same cost(P∗)
27: for all p′ ∈ P∗with same cost do

28: b← check path constraints(
δs,d

u
, p′,G)

29: if b == true then

30: R ←assign flow to path(
δs,d

u
, p′,G)

31: ps,d.concatPath(p′)
32: else
33: clear incomplete flow assignments
34: check next path p ∈ P (line 14)
35: end if
36: end for
37: λ← true
38: else ▷ It is an IP node
39: b← check link constraints(δs,d, li,j ,G)
40: if b == true then
41: R ← assign flow to link(δs,d, li,j ,G)
42: ps,d.addLink(li,j)
43: else
44: clear incomplete flow assignments
45: check next path p ∈ P (line 14)
46: end if
47: end if
48: end for
49: end if
50: end while
51: end for
52: return feasible routing matrix R if it exists
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Then, each path in the reported set is verified to check if it is a noncontrol-
lable path (all the nodes are IPs) or a controllable path (at least one node is an
SDN). In the former case (lines 15− 23), a classic destination-based forward-
ing is employed to steer the traffic, checking that link constraints are satisfied
and no loops are formed (line 16). If the SDN nodes are found in the evalu-
ated path (it is a controllable path), the heuristic verifies each node in the path
from s to d to discern whether they are SDN or IP nodes (lines 24 − 49). If
the checked node i is an SDN, the k shortest path procedure is executed again
(line 27) to get the subset of u paths with the same cost from the SDN node
i to the destination d. Then, the traffic demand (s, d) arriving at i is equally
divided among the subset of u paths with an equal cost to d and a volume of
(s, d)

u
(lines 29− 37). For each evaluated path, link constraints and the pres-

ence of loops are also checked (line 28). If the evaluated node i is an IP, the
traffic demand is fully routed over the outgoing link without performing traf-
fic splitting (lines 39− 47). This process is repeated until all the nodes in the
path from s to d are evaluated and the traffic is successfully steered, satisfying
link constraints throughout of the path and the avoidance of loops. Finally,
the output reports a feasible routing matrix R.

3.3 Less Loaded Links Algorithm

Once Alg. 1 evaluates a routing solution where the traffic load is balanced and
thus the MLU is minimized, a feasible network configuration that minimizes
the required power consumption is found by a second algorithm. Alg. 2 reports
the pseudo code of the Less Loaded Links Algorithm (L3A). It takes as input
the routing matrix outputted by the HSLA, R, as well as the network graph
and the traffic matrix to be served. Initially, the set of links are sorted according
to their load in ascending order (line 4). Then, each link is removed (turned
off) from the network topology, and the HSLA is executed again to find feasible
routing (if possible). If there is no feasible routing, the link is returned to
the topology (switched on), and the next link is considered. This process is
repeated until all the network links are evaluated. Ultimately, a feasible routing
matrix, R′, is reported, which i) balances the link load and ii) reduces the
network power consumption.

3.4 Genetic Algorithm-based Link Switch Off

The second algorithm that is proposed for the power saving procedure is based
on GAs, a type of heuristic based on the mechanisms of natural evolution
where individuals reproduce and the more skilled ones survive [30].

To solve the problem, a chromosome representing a solution must be
defined. In our case, a chromosome c represents a network configuration in
terms of link activity (Eq. 12). In particular, each gene, gk, of chromosome c
is a binary value representing the operational mode of the k-th link. If link k
is powered on, then gk = 1. Otherwise, if the link is powered off, then gk = 0.
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Algorithm 2 Pseudo code of the proposed Less Loaded Links Algorithm
(L3A).

Require: G = (N ,L), T , the routing matrix obtained by Alg. 1: R
1: create G′ ← ∅ ▷ Aux network graph

2: create L∗ ← ∅, L′ ← L ▷ Aux links set

3: create R′ ← ∅ ▷ Output routing matrix
4: L∗ ← sort links by load(G,R, ’ascend’)
5: for all li,j ∈ L∗ do
6: L′ ← L′ − li,j ▷ Remove link from the set

7: G′ = (N ,L′)
8: R′ ← HSLA(G′, T )
9: if R′ is not feasible then

10: L′ ← L′ ∪ li,j
11: end if
12: end for
13: return feasible routing matrix R′ if it exists

This representation fits with the philosophy of canonic GAs, which use binary
strings to represent individuals.

c = {g1, g2, ..., gL}, gk ∈ {0; 1} (12)

Each potential solution represented by a chromosome must be evaluated
to obtain its suitability to the problem, i.e., its goodness, according to a fit-
ness function. In this problem, the fitness function must check if the network
configuration mapped by the chromosome ensures that the routing constraints
(link capacities) and whether all the traffic demands are satisfied. If the feasi-
bility check is correct, then the resulting fitness value is the number of powered
links. The goal of the GA-LSO is, therefore, to minimize this number to ensure
that the power savings are increased.

In the following, the description of the proposed GA-based LSO algorithm
is provided, including the operators and functions used to carry out the evo-
lutionary process. It takes six parameters as input: i) the network graph,
G = (N ,L), ii) the routing matrix obtained by HLSA, R, iii) a traffic matrix,
T , iv) the population size, κ, v) the mutation rate, mr, and vi) the maximum
generations number that compose the evolutionary process, θ.

At the beginning, four variables are initialized: gen as an indicator of the
current generation, Pgen as the population of individuals to be evaluated (ini-
tially empty), and the two variables that will be returned as output: solbest as
the best solution found and fvalbest as the numerical goodness of such a solu-
tion. The latter variable is initialized to a large value to be minimized during
the execution of the GA-based LSO.

In the first step, the GA creates the initial population, Pgen, of size κ
with the set of individuals to be evaluated by the fitness function. Next, each
individual c ∈ Pgen is evaluated by applying the fitness function previously
described, and the best solution found is iteratively updated (lines 3− 9). The
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evolutionary process starts at line 10 with the selection of the individuals that
will be part of the next generation. In particular, crossover and mutation pro-
cesses are applied to the current population, Pgen, to create offspring (children)
that will be evaluated in the following generations. Specifically, single-point
crossover and uniform mutation are applied. The mutated children∗ obtained
after applying the genetic operations are evaluated by the fitness function, and
the best solution found is again iteratively updated (lines 15−21). The process
ends after the execution of θ iterations, i.e., the maximum generations num-
ber passed as input. The algorithm returns the best solution found, solbest,
and its associated fitness value, fvalbest. The best solution represents the best
network configuration in terms of power savings (least number of active links),
which respects the routing and capacity constraints.

Algorithm 3 Pseudo code of the proposed GA-based LSO algorithm.

Require: A network graph: G = (N ,L), the routing matrix obtained by Alg. 1: R, a
traffic matrix: T , population size: κ, mutation rate: mr, maximum generations: θ

1: create gen← 0, Pgen ← ∅, solbest ← ∅, fvalbest >> L
2: Pgen ← createPopulation(G, κ, uniform)
3: for all chromosome c in Pgen do
4: (fvalc, solc)← fitness(c,G,R, T )
5: if fvalc < fvalbest then
6: solbest ← solc
7: fvalbest ← fvalc
8: end if
9: end for

10: while gen ≤ θ do
11: parents← selectParents(Pgen, roulette)
12: P ∗ ← Pgen \ parents
13: children← performCrossover(parents, single-point)
14: children∗ ← performMutation(children,mr, uniform)
15: for all chromosome c in children∗ do
16: (fvalc, solc)← fitness(c,G,R, T )
17: if fvalc < fvalbest then
18: solbest ← solc
19: fvalbest ← fvalc
20: end if
21: end for
22: P ∗ ← P ∗ ∪ children∗

23: gen← gen+ 1
24: Pgen ← P ∗

25: end while
26: return solbest, fvalbest
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4 Experimental Results

In this section, we provide an experimental evaluation of the proposed solution.
Firstly, the simulation environment is reported. Next, an analysis is provided
to evaluate different methods for the selection of the nodes to be migrated
from IP to SDN, both in terms of controllable flows and the amount of con-
trollable traffic. We adopt the definition given in [24] to refer to controllable
flows. A controllable flow is a flow that is routed by SDN equipment. In con-
trast, An uncontrollable flow is a flow that is completely routed by legacy IP
equipment, and thus, cannot be controlled. Therefore, controllable traffic is
the amount of traffic associated with the set of controllable flows. Moreover,
the impact of the weight setting of links connecting SDN nodes is also evalu-
ated by considering different approaches. To analyze the benefits of applying
the HSLA over topologies of different sizes and traffic loads, a thorough per-
formance analysis is carried out. Metrics, such as MLU and power savings, are
evaluated. Finally, a comparison with two representative state-of-the-art solu-
tions that separately address the load balancing and the energy consumption
problem in hybrid IP/SDN networks is also performed.

4.1 Simulation Setup

In the simulations, we consider three network topologies of different sizes:
Nobel (17 nodes, 52 links), Geant (22 nodes, 72 links), and Germany (50
nodes, 176 links). To evaluate the variability of the daily traffic patterns in
each network, a set of traffic matrices are retrieved from [31]. In particular, 5
TMs are considered for the analyses by scaling down the peak TM in the data
set by a factor of 0.4, 0.5, 0.7, and 0.9, respectively.

Link capacities are set as follows. First, we select the peak TM, and we route
it over a set of shortest paths derived after applying the Dijkstra algorithm on
the network graph. After this step, each link li,j carries an amount of traffic ti,j .
Then, we assume that the capacity of each link can be upgraded by installing
a set of line cards. A line card has a capacity of ∆C equal to 0.5max

li,j
(ti,j), i.e.,

half of the traffic carried by the link with the highest link utilization. Finally,
we consider installing the minimum line cards number that is needed by each
link to make their utilization less than 100%.

In our analysis, we assume that all the network links have the same power
consumption when they are active (Pi,j = 1). The transition from the IP to
SDN networks is performed step-by-step, i.e., by upgrading one IP legacy node
to SDN at a time. At each stage, one node is selected as the most suitable to be
upgraded to the SDN. For the selection process, four methods are considered:
i) Highest degree first (HDF), which sorts the set of potential nodes (remaining
IP nodes) according to their degree, i.e., the number of incoming and outgoing
links; ii) Highest closeness centrality (HCC), to select the node having the
shortest distance to the rest of the nodes; iii) Highest betweenness centrality
(HBC), with the aim of obtaining the node that is involved in most of the
shortest paths among the nodes in the network; and iv) Random.
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The motivation for the choice of the aforementioned selection methods is
explained next. If the upgrade of IP nodes to the SDN is performed according
to the HDF method, it means that, after each stage, the controller will have the
largest possible amount of information under control compared with the case
where other potential nodes would be selected. Thus, the node with the highest
degree is chosen so that the controller will be able to control the highest number
of ports through, e.g., the use of the OFPMP PORT STATS messages. If HCC
is the method for the SDN nodes selection, the focus is placed on the distance of
a node to the rest of the nodes. This situation is interesting for detecting nodes
that are able to spread information very efficiently throughout the network. If
a node is selected as an SDN using HCC, it means that the destination node
(as well as the source node) is close; thus, the path is shorter with regard
to other potential nodes, and improvements in the energy efficiency can be
experienced. Ultimately, we evaluate the importance of a node with HBC. In
this case, the node with HBC is involved in most of the shortest paths for each
source-destination pair. Since the HSLA is based on the computation of the
shortest paths both from the source node and from each SDN node (if any) to
the destination, the HBC seems to be an interesting option to be exploited in
the SDN node selection process. Finally, randomness is also considered to show
the benefits of using methods that are based on the features of the network
graph.

4.2 Evaluation of the SDN nodes selection method

The first analysis that is proposed aims at evaluating the controllable flows
number and the amount of controllable traffic that results after the migration
of legacy IP nodes to SDN ones. In particular, Fig. 4 reports the controllable
flows number as a function of the SDN nodes number for the Nobel, Geant,
and Germany topologies. Four different methods for the selection of the SDN
nodes are considered: HDF, HCC, HBC and Random. Simulations were run
25 times, and confidence intervals are shown in the figure. Since the initial link
weight setting is important for evaluating the effectiveness of the proposal,
the link weight setting of the SDN nodes in this evaluation is set according to

their degree, wi,j =
1

ki
, with i as the SDN node and ki as its degree. In the

case of links connecting only IP nodes, their weight is set to wi,j = 1. Looking
at Fig. 4, it can be seen that the three methods that are based on network
features (HDF, HCC and HBC) present similar results for small networks
(Nobel and Geant), overcoming the one exploiting randomness. In the case of
the Germany network (see Fig. 4c, larger differences can be found within the
range [0, 20] of SDN nodes: i) lines for HCC and HBC are close for a small SDN
nodes number [1− 5] with a slightly better performance with regard to HDF;
and ii) the performance of HCC decreases in the range [5 − 20] compared to
HDF and HBC, which maintains the best results for all the problem instances.
Thus, in general, the HBC selection method is the one that presents the best
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Fig. 4: Number of controllable flows as a function of the SDN nodes number
for Nobel, Geant, and Germany. The link weight setting for the SDN nodes is

set according to their degree, wi,j =
1

ki
.

performance in terms of controllable flows during the transition from IP to
SDN.

To verify the previous outcomes, Fig. 5 reports the amount of controllable
traffic as a function of the SDN nodes number for the four selection methods
and the three topologies. In this case, it can be remarked that HDF struggles
with respect to HCC and HBC for a small SDN node number, especially in
the case of large networks (see Fig. 5c), where its performance is similar to
that of the worst selection method, i.e., Random. Thus, from these analyses,
we can state that HBC is the selection method that is able to control the
highest number of flows and the largest amount of traffic when migrating an
IP network to an SDN network.

4.3 Evaluation of the link weight setting method

In this section, a discussion of the importance of selecting an appropriate link
weight setting is provided. In particular, we focus on tuning the weights of the
links connecting the SDN nodes. For the remaining links uniquely connecting
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Fig. 5: Amount of controllable traffic as a function of the SDN nodes number
for Nobel, Geant, and Germany. The link weight setting for SDN nodes is set

according to their degree, wi,j =
1

ki
.

legacy IP nodes, their weight is set to 1, as in the OSPF protocol. This choice
derives from the control a network admin is able to carry out on the traffic
traversing SDN nodes. As a result, if the definition of the SDN link weights
is set according to metrics related to the network structure and the flows
number (and traffic) to be handled by the SDN nodes is increased, our proposed
algorithm handles a thinner granularity on the traffic.

Three methods for setting the link weights are evaluated: i) LWS: the degree
where the weights of the SDN links are inversely set according to their degree
(as in the evaluations of Sec. 4.2 and the description of Fig. 3); ii) LWS: the
closeness where the node closeness centrality is considered for the link weights;
and iii) LWS: the betweenness where the metric used to assess the link weights
is the betweenness centrality of the nodes. In all the cases, links attached to an
SDN node are assigned a weight that is inversely proportional to the considered
metric (degree, closeness or betweenness).
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Fig. 6: Number of controllable flows as a function of the SDN nodes number
for Nobel, Geant, and Germany. The SDN node selection method is HBC.

Fig. 6 shows the number of controllable flows as a function of the SDN
nodes number for Nobel, Geant and Germany considering the three methods
described above. Moreover, the case where all the links in the network have the
same weight, i.e., wi,j = 1 regardless of whether they are IP or SDN links, is
also reported with the legend ’No LWS’. In the figures, it can be seen that the
link weight setting based on either node degree or node betweenness centrality
represents the best choice to increase the number of controllable flows for all
the network topologies. The worst-case scenario is reported for the closeness
centrality method, which is even worse than the case where no differences are
adopted for SDN links and regular IP links, i.e., when no considerations for
the link weights are assumed.

These results can be confirmed when looking at Fig. 7, where the amount
of controllable traffic is shown as a function of the SDN nodes number. In
this case, although the benefits of using a method to set the weights of the
SDN links are slightly reduced compared to the number of controllable flows
(especially for small networks, see Figs. 7a and 7b), the metrics based on the
node degree and the betweenness centrality clearly outperform the rest. In
conclusion, we can state that the impact of selecting an appropriate method
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Fig. 7: Amount of controllable traffic as a function of the SDN node number
for Nobel, Geant, and Germany. The SDN node selection method is HBC.

for the link weight setting is very important for the controllability of the flows,
and hence, the amount of traffic that can be managed in the hybrid IP/SDN
network. Thus, for the evaluation of the proposed solution, we consider the
link weight setting based on the SDN node degree.

4.4 HSLA Performance Evaluation

The goal of the first analysis is to evaluate the effectiveness of the proposed
solution considering the joint optimization of energy efficiency and load bal-
ancing during the transition from IP to SDN nodes. Fig. 8 shows the MLU
obtained by the HSLA as a function of the SDN deployment rate for the Nobel
topology. Specifically, the results for each of the 5 TMs are accounted for the
three SDN node selection methods (HDF, HCC and HBC). Note that TM 5
is the peak TM in the data set and TM 1 is the non-peak TM.

Fig. 8 shows a general trend. The MLU decreases with the SDN deployment
rate for a small percentage of migrated SDN nodes. This MLU reduction is
different depending on the considered selection method, with an early impact
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Fig. 8: MLU value with respect to the percentage of SDN nodes for Nobel
topology.

for HDF and HCC and a more progressive impact for HBC. After that, the
MLU is stabilized, and adding SDN nodes does not impact the resulting MLU.
Clearly, there is an existing direct proportional relationship between the overall
traffic load that is injected into the network and the obtained MLU. TM 5
represents the worst-case scenario and TM 1 represents the case for non-peak
traffic, where more energy saving opportunities can be found.

A considerable decrease in the obtained MLU is tested every time an IP
node is replaced by an SDN node when the SDN deployment rate is below
40% both for HDF (Fig. 8a) and HCC (Fig. 8b). After such a percentage, the
achieved MLU is approximately constant up to reaching the full SDN scenario
(deployment rate of 100%). In other words, the highest impact during the
transition from IP to SDN in terms of MLU is found in the range (0, 40)% of
the deployment rate. It is in Fig. 8c where the MLU behavior is stepwise. In
this case, the benefits of adding a new SDN node are not as high as in the case
of HDF or HCC, regardless of the transition stage.

Once the evaluation of the obtained MLU has been carried out, we move
our attention to the power savings achieved by the HSLA throughout of the
IP/SDN transition process. In Fig. 9, the power savings obtained by L3A are
reported for the 5 TMs and the three selection methods, considering different
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Fig. 9: Percentage of power savings obtained by L3A with respect to the
percentage of SDN nodes for Nobel topology.

percentages of the SDN deployment rate. Considering the three subfigures,
HDF is clearly the method that outperforms the other ones, reaching a power
saving peak of approximately 50% when half of the network nodes are upgraded
to SDN. In this case, the obtained trend is different from the one experienced
when evaluating the MLU in Fig. 8: the power savings are increased with the
SDN deployment rate up to reaching a threshold that slightly exceeds the
half of the nodes considered as SDN. After such a value, the power savings
sharply decrease, and no substantial differences can be found among traffic
matrices and with the increase in the deployment rate. Although the HCC
method slightly improves the power savings outcomes with regard to HDF for
a deployment rate of 30% and low traffic scenarios (see Fig. 9b), it struggles
when the traffic load is increased. Finally, HBC has been found to be the
worst selection method for the power savings objective. In summary, the SDN
selection method that presents the best results, both for the minimization
of the MLU and the minimization of the power consumption, is HDF. An
explanation for this outcome is derived by the fact that such a method aims
at selecting the node with the highest degree, hence involving the maximum
number of links and controllable paths.
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Fig. 10: MLU value with respect to the traffic load for Nobel, Geant and
Germany50 topologies considering HDF method.

4.5 Performance analysis over larger networks

The aim of the next analysis is to evaluate the results of the proposed solution
over topologies with different sizes. Specifically, in Fig. 10 the MLU is reported
as a function of the traffic scaling factor for the three topologies under test:
Nobel, Geant and Germany50. For each topology, 4 deployment rate percent-
ages (α) have been considered, approximating 25%, 50%, 75% and 100% of
the nodes in the network. HDF is adopted as the node selection method. In
the figures, it can be seen that the MLU increases with traffic, as previously
discussed when analyzing Fig. 8 for the three topologies. It is worth to note
that the best outcomes for the medium and large topologies are not obtained
in the full SDN scenario (α = 100%) except for when half of the nodes are
replaced (see Figs. 10b and 10c). In the Nobel case, the minimal MLU is expe-
rienced when α = 75%. Regardless, the difference with the half hybrid IP/SDN
network is negligible.

Fig. 11 reports power savings outcomes as a function of the traffic load
for the three considered topologies and the different values of α. By analyzing
Fig. 11, there are differences between the results obtained for small and large
topologies. Indeed, in the latter case (Geant and Germany50), a decreasing
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Fig. 11: Percentage of power savings obtained by L3A with respect to the traf-
fic load for Nobel, Geant and Germany50 topologies considering HDF method.

behavior in the power savings can be taken out with the increase in the traffic
scaling factor. Therefore, a higher value of α is generally associated with power
saving gains, especially for Geant. It is in the Nobel case (Fig. 11a) where the
behavior is the opposite. The best results of power savings are obtained when
α ≤ 50%, as previously discussed when analyzing Fig. 9a. Once this threshold
is overtaken, the power savings are considerably decreased, regardless of the
network traffic load.

The explanation for the obtained power saving results is as follows. The
proposed algorithm aims at either balancing the traffic load or to reduce the
network power consumption. In the first stage, for the HSLA, the link weights
are adjusted to create a large portion of the controllable traffic. As a conse-
quence, the main role of the SDN nodes is to balance the traffic and not to
reduce the power consumption (aim of the second stage, L3A). At the same
time, the weight selection logic becomes less effective when the deployment
ratio increases (approaching a full SDN network) since the amount of control-
lable traffic is already high. Thus, the proposed algorithm accomplishes its
performance peak when the network is half IP-half SDN.

In the following, the other power saving approach that has been defined,
namely, GA-LSO, is analyzed. Fig. 12 shows the power savings achieved by
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Fig. 12: Percentage of power savings obtained by GA-LSO with respect to
the traffic load for Nobel, Geant and Germany50 topologies.

GA-LSO as a function of the traffic scaling factor for the three considered
topologies. In general, GA-LSO obtains better results than L3A, especially for
small networks (see Figs. 11a and 12a for Nobel). The expected decreasing
tendency of the power savings with the increase in the traffic load is confirmed
for all cases, and the average power saving gain is 4.7% for a 50− 50% hybrid
IP/SDN network (α = 0.5), increasing up to 7.1% in the case of a full SDN
migration (α = 1). In the case of the Germany network, GA-LSO slightly
struggles with regard to L3A for a small percentage of SDN nodes (α = 0.25)
and a low traffic load. This may be caused by the large size of the chromosomes
in large networks (each link is represented by a gene) and the flexibility for
the routing given by the low traffic flowing throughout the network.

4.6 Comparison with other solutions

In this subsection, we first introduce two benchmark solutions and then we
compare their results with those obtained by the proposed heuristic. Finally,
the results of the proposed solution are shown by means of a conducted
performance analysis.
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Fig. 13: Cumulative Distribution Function curves of link utilization for HSLA,
SOTE and OSPF over Nobel topology considering TM 1 and TM 5.

The first algorithm we focus on to highlight the benefit allowed by using
HLSA is SOTE [27]. SOTE tries to minimize the MLU of the hybrid IP/SDN
network by jointly optimizing OSPF’s weight settings for the whole network,
thus balancing outgoing flows for IP equipment, as well as optimizing the
traffic splitting ratio of flows aggregated at SDN nodes. However, SOTE does
not consider energy efficiency optimization.

The second algorithm that is considered is HEATE [19]. HEATE’s focus is
the minimization of the power consumption of the hybrid IP/SDN network.
Such a task is performed, similar to SOTE, by optimizing OSPF’s link weight
settings and SDN nodes’ splitting ratio. However, HEATE does not consider
the effects on the MLU caused by the minimization of energy consumption.

These two algorithms have been selected for comparison with the HSLA
since they are both representative when facing the load balancing problem [27]
and the energy consumption problem [19] in hybrid networks. Although works,
such as [2] and [32], consider the joint problem of load balancing and energy
efficiency in these scenarios, both of them are survey papers that review a set
of works coping each type of problem ([2] considering also machine learning
aspects), not the combined one. However, no proposals to compare with are
provided.

Fig. 13 reports the results for the first analysis, where the Cumulative
Distribution Function (CDF) curves of MLU are drawn for HSLA, SOTE and
OSPF. The deployment ratio is set to α = 50%, i.e., a half hybrid IP/SDN
network, and two scenarios with the nonpeak TM (TM 1, Fig. 13a) and the
peak TM (TM 5, Fig. 13b) are considered. As shown in both figures, the HSLA
achieves the lowest MLU compared with the rest of the solutions. SOTE, which
is specifically designed to minimize the MLU, presents slightly worse results
for the case of low traffic (Fig. 13a), with an average of a 1% difference in the
MLU with regard to HSLA in approximately 80% of the links. In the case of
a scenario with high traffic (see Fig. 13b), the outcomes obtained by HSLA
are better than those reported by SOTE, with an average MLU reduction of
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Fig. 14: Percentage of power savings achieved by GA-LSO, L3A and HEATE
over Geant topology considering TM 1 and TM 5.

approximately 5% (note the difference in the x-axis between Figs. 13a and 13b).
In general, the difference is that the HSLA allows for better load balancing
in the less congested links with respect to SOTE for low traffic loads, while
the gap is maintained throughout all the links in cases of high traffic loads.
Furthermore, the OSPF protocol presents worse results than the HSLA and
SOTE protocols because its objective is not to minimize the MLU, but to find
the shortest path among each source-destination pair.

To compare the power saving gains among GA-LSO, L3A and HEATE,
Fig. 14 shows the obtained results as a function of the SDN deployment rate
for Geant topology. Two lines are reported for each solution for the peak and
nonpeak TMs (TM 5 and TM 1). The figure shows that GA-LSO outperforms
L3A and HEATE in all cases, with an average power saving gain of 7.7% with
respect to HEATE and 4.2% when compared to L3A. In summary, the GA-
based proposed solution presents better results than the ones obtained by ad
hoc solutions that specifically cope a single objective.

5 Conclusion

The problems of load balancing and energy efficiency in hybrid IP/SDN net-
works are regarded by the state of the art as very relevant. However, the related
literature treats them as completely separate problems, without considering
the effects of powering off links on the MLU and vice versa. In this paper,
we analyze the tradeoff between both problems. Starting from the opposite
nature of the two optimization problems, a heuristic is proposed to jointly
minimize the MLU and the network power consumption during the transition
from IP to SDN networks. Through simulations on realistic network topologies,
HSLA is compared with other state-of-the-art solutions, such as SOTE, which
is intended only to minimize the MLU, while L3A and GA-LSO are compared
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to HEATE, which is aimed at solely minimizing the power consumption. Our
proposed solution is shown to save more power than HEATE and outperforms
SOTE in terms of link utilization. Moreover, it can provide up to 50% of MLU
reduction and up to 60% of power savings. In the future, we plan to install the
HSLA in a real SDN controller, such as Ryu or Faucet, to evaluate its impact
on the network performance in a working test-bed.
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Abstract—Leveraging the Internet of Things (IoT) in intensive
domains, such as in the Industrial Internet of Things (IIoT)
or Internet of Medical Things (IoMT), provides automation
and sensing solutions for complex environments through the
interconnection of different sensors and actuators. However,
these scenarios usually demand to meet stringent Quality of
Service (QoS) requirements to work properly. Fog computing,
a paradigm that brings computation and storage closer to the
edge, and Software-Defined Networking (SDN), a networking
paradigm that enables for network scalability and flexibility, can
be combined. To do so, fog nodes that integrate both, computation
resources and SDN capabilities, are leveraged to meet these
stringent needs. Clearly, the placement of such fog nodes plays a
key role in the achieved QoS. In this paper, an optimal fog node
placement formulation is evaluated in an emulated fog and SDN
environment. Results show that an optimal fog node placement
can achieve a reduction of up to 59% in the network latency
with a minimal jitter compared with other well-known placement
methods.

I. INTRODUCTION

The Internet of Things (IoT) has emerged in recent years
as a means to interact with the physical world from com-
puter applications. Through sensors and actuators, IoT devices
enable applications to receive inputs and to send outputs to
the real world, respectively. The connection of IoT devices
to the Internet allows for remote interactions. Applications
may not run on the IoT devices themselves and may run at
a remote computer instead, leveraging an Internet connection
to communicate with these devices. These capabilities enable
Cyber-Physical Systems (CPS): hybrid systems that apply
cyber applications such as data processing or storage to
physical environments, leveraged in domains such as industry
or healthcare [1]. Applying IoT to these domains has also
motivated the creation of terms such as the Industrial Internet
of Things (IIoT) or the Internet of Medical Things (IoMT).

Leveraging CPS in IIoT or IoMT environments is not a
simple task: the intensive nature of these domains require a
stringent Quality of Service (QoS) for their IoT applications.
For instance, IIoT Factory Automation applications [2] or
IoMT machine learning applications [3] are very time-strict,
sometimes even requiring to be executed in cycles of less than
one millisecond. The cloud computing environment, which is

widely used in user-grade IoT systems [4], involves the full
execution of IoT applications in cloud servers, often physically
placed far away from the set of end IoT devices. The physical
distance between IoT devices and servers is translated into an
increase in the network latency, which results in a restraint
of the stringent QoS requirements. The main motivation of
paradigms such as fog computing is precisely to leverage
servers that are closer to IoT devices as a way to reduce
the network latency, thus enhancing the QoS and enabling
intensive, QoS-strict IoT applications [5].

In IIoT and IoMT environments, scalability and flexibility
are also a major requirement [2]. The network needs to be
scalable and flexible, as well as to meet the required QoS re-
quirements. In this way, Software-Defined Networking (SDN)
networks can act as a perfect enabler to provide IIoT and IoMT
applications with the required scalability and flexibility [6].

Therefore, a potential solution to this problem is the com-
bination of servers close to IoT devices, using paradigms such
as fog computing, with an underlying SDN network in order
to meet the requirements of these applications: stringent QoS
levels, flexibility and scalability. Some of the authors of this
work previously presented a proposal for a combination of fog
computing with SDN: in [7], a specific Fog Node (FN) device,
which combines an SDN switch with light virtualization cap-
abilities, is presented. The FN is able to execute computational
workloads for IoT applications with extensive workloads, and
thus simplifies obtaining the required QoS. At the same time,
its SDN capabilities [7] allow the FN to be integrated into
infrastructures exploiting the SDN technology.

Tests of different QoS metrics such as jitter or latency are
also included in [7], placing the FN in either the local or a
remote network. However, no experimental evaluation is per-
formed to compare the outcomes of the QoS metrics when the
FN is placed at different parts of the local network. Moreover,
no clarifications about the optimal placement of the FNs are
provided in order to achieve optimal QoS. Furthermore, it does
not consider that the FN, unlike an elastic cloud server, has a
well-defined limit to its computational power and storage, i.e.,
a limited throughput. If an IoT application was to exceed this
throughput, the FN would not be able to properly function.



The solution for this situation is to place additional FNs in
the infrastructure and to divide the requests of IoT applications
among these nodes, in such a way that the throughput of FNs
is not exceeded. The division can be performed through a
mapping: each IoT device can be mapped to a FN, so that the
IoT device can send its requests exclusively to its mapped FN.
This allows the infrastructure to become more robust, while
at the same time requiring for the mapping to be performed
in such a way so that QoS is optimized. Furthermore, this
requires an optimal placement of multiple FNs.

Thus, while the needs of QoS-stringent IoT applications can
be met through the use of fog computing and SDN, concretely
by adding FNs to an SDN architecture, this is not enough to
merely leverage these technologies to obtain an optimal QoS.
FNs need to be placed in such a way that the QoS of each IoT
application is optimized, and an optimal mapping between FNs
and IoT devices is also required. The problem of optimally
placing a set of FNs in an SDN network while optimally
providing a device-to-FN mapping is defined as the Fog Node
Placement Problem (FNPP). It is important to note that the
FNPP is a problem that must be solved at the infrastructure
level, not at the application level. In this work, we propose and
experimentally evaluate the optimal solution for the FNPP.

Therefore, the main contributions of this paper are:
• The formalization of the FNPP.
• The evaluation of the solution in the Mininet network

emulator.
• An analysis of the experimental evaluation results.
• The comparison of the FNPP optimal solution with

alternative and well-known placement strategies.
The remainder of this paper is structured as follows. Sec. II

presents the motivation for the FNPP. The system model used
in the FNPP is explained in Sec. III. Following this model, a
MIP formulation of the FNPP solution is presented in Sec. IV,
followed by an experimental evaluation in Sec. V. Finally,
Sec. VI concludes.

II. MOTIVATION

The motivation behind solving the FNPP is rooted on the
interest of bringing IoT to intensive domains, such as the
advances in IIoT or IoMT scenarios. Although IoT, and its
role as an enabler for CPS, can bring interesting improvement
to industry or healthcare [2], [3], these systems need a very
high QoS to work properly.

In order to meet these stringent QoS requirements, two
factors should be accounted for: computing and networking
QoS need to be high enough, i.e., low execution time and
low latency, respectively. Through fog computing, computation
resources can be brought closer to IoT devices, thus providing
them access to a higher computing QoS with also a higher
networking QoS [5]. Furthermore, it is desirable for the
underlying network to be an SDN network in order to improve
the scalability and flexibility of the overall infrastructure [2].

The FN proposed in [7] is designed specifically to meet
these stringent QoS needs, while also bridging SDN and fog
computing. The SDN capabilities of the FN enable for its

introduction into flexible and scalable SDN networks, while
its computational power allows for workloads to be executed
in the local network, providing a level of QoS that would be
difficult to replicate using cloud computing approaches.

Although this level of QoS is high, it is interesting to
obtain an optimal QoS, since a sub-optimal level of QoS
might not be enough for the stringent requirements of these
applications. Since the placement of the FN affects the QoS
of the applications that run on it, the FNPP must be solved to
obtain an optimal QoS. This is the main motivation for this
paper: to provide an optimization of the QoS provided by FNs,
which are used as enablers for both fog computing and SDN
in the infrastructures. Our goal is, thus, to provide a tool that
enables administrators to place FNs optimally.

Some other works related to optimization of QoS in SDN
and fog infrastructure have also been found in literature as
research topics that remain active [4], [8], [9]. Some works
have tackled the optimization of QoS through the placement
of SDN network equipment, namely, an SDN controller [8].
Other approaches optimize the QoS by placing services in fog
infrastructures, either in a way that least dissatisfies the QoS
requirements of applications [9] or in one that optimizes QoS
by finding optimal nodes to run services on [10]. The solutions
of the latter approaches can be integrated with SDN in order
to be transparently applied [10].

The main differences between the solution proposed in
this work and the previously cited related works are centered
around the focus. The FNPP is focused on optimally placing a
set of FNs in an SDN infrastructure to support QoS-stringent
IoT applications, instead of being focused on placing services
in already placed FNs or optimizing the QoS of the SDN
network.

III. SYSTEM MODEL

To illustrate the model used in the FNPP, its usage in
a sample application is shown in this section. Concretely,
an IoMT application for the processing of electrocardiogram
(ECG) data is considered. Despite the example, the FNPP
model is generic and applies to a broader range of applications
than only IoMT ones. This application is based on the example
model introduced in [11]. In such application, there is a
service that contains a deep learning model that is able to
detect anomalies in the heartbeat of an user. Users carry ECG
monitors that constantly send their sensor information to the
deep learning service. This service checks if the heartbeat is
abnormal or not and, if an abnormal heartbeat is detected, the
system is able to raise an alarm. In the particular example
presented next, four ECG monitors are considered in the
topology shown in Fig. 1.

This system involves almost real-time monitoring [11], and
thus there must be minimal latency between the ECG sensors
and the deep learning service, i.e., it has stringent QoS needs.
This makes the deep learning service a very good candidate for
running in a FN, since it is key for the QoS of the application
and, furthermore, the original model also recommends to run it
in the fog [11]. Thus, a FN must be placed in the infrastructure.



Figure 1: Example system model.

Since the FN contains an SDN switch, it is possible to
replace an SDN switch by a FN to make the infrastructure
fog/SDN-enabled. However, it should not be randomly placed.
Application QoS requirements should be considered to assess
its placement.

For simplicity, latency can be understood in terms of hops.
The more hops traffic has to go through to reach the FN, the
higher the latency is and, thus, the lower the QoS is. Since
the ECG monitoring application has a very stringent QoS
requirement [11], it is considered that it only admits latencies
of one hop or less. If switch A is replaced by a FN, only
sensors 1 and 3 would have a low enough latency. If B or D
are replaced, sensors 2, 3 and 4 would meet the requirement,
but sensor 1 would not. However, if switch C is replaced, all
sensors are one hop or less away. Therefore, C is the optimal
placement for the FN: the solution to the FNPP.

It is also possible to consider the placement of two FNs:
some sensors will send their heartbeat to one FN, while the
rest of the sensors will send it to the other one. While this
approach makes it easier to place the FNs, there is an added
complexity, since a mapping between sensors and FNs must
also be obtained. For instance, if FNs are placed in switches A
and B, but sensor 2 sends its heartbeat to the FN in A and the
rest send their heartbeat to the FN in B, only sensor 4 would
meet the latency requirement. For the same FN placement,
however, it is possible to consider an alternate mapping so
that sensors 1 and 3 send their heartbeat to the FN in A and
sensors 2 and 4 send theirs to the FN in B. This mapping is
the optimal one and meets the latency requirement as well.

As shown in the model, the placement of FN nodes and the
mapping between FNs and IoT devices are relevant in the QoS
obtained on IoT applications. When the QoS requirements are
stringent, it is desirable to strive for an optimal placement and
an optimal mapping, i.e., to obtain a solution by solving the
FNPP. The FNPP is very similar to a well-known NP-hard
problem: the facility location problem [12]. Thus, although
it is feasible to solve the FNPP manually in small cases,
an exponential growth is experienced for large scenarios.
Therefore, a generic and automatic way to provide a solution
is required.

IV. PROBLEM FORMULATION

Our proposal for a generic solution to the FNPP is a Mixed
Integer Programming (MIP) formulation of the solution. This
formulation can then be adapted to particular scenarios and

fed to software MIP solvers, automating its usage. MIP
formulations can be used to solve network problems that affect
performance, as shown in [13].

The scenario in this FNPP formulation is a network topo-
logy, modeled as an undirected graph G = {V, L}, with V
vertices and L edges. Links are modeled as edges, so that the
link between vertices i ∈ V and j ∈ V is modeled as lij ∈ L.
Link capacity and latency are also part of the model, so that
Cij is the capacity of lij and βlij is its latency. According to
the system model presented in Sec. III, a vertex v ∈ V can
either be a IoT device (host) or an SDN switch.

In order to follow the system model presented in Sec. III
and guarantee a feasible formulation, we assume that:

• FNs can only process a limited amount of traffic per unit
of time, i.e., they have a capacity.

• The combined capacity of all FNs is enough to process
all the traffic in the network.

• The capacity of a given FN is at least as high as the
traffic produced by the IoT device that sends the highest
volume of traffic.

Thus, vertices can be split so that V = H ∪ S;H ∩ S = ∅:
H are IoT devices, i.e. hosts; and S are SDN switches. The
objective of the FNPP is to select a subset of S, of a given
size θ, to place FNs at, and to map a subset of H to each of
these FNs. On the one hand, each switch is modeled to have
a processing latency of βS . On the other hand, and following
Sec. III, IoT devices send an amount of traffic, which we label
φh for a given host h. The FN mapped to h is the one in charge
of processing its traffic, given that any FN has the capacity to
process up to α traffic.

After these parameters have been defined, decision variables
follow. To calculate optimal paths, flow variables are used: let
fh
ij∀h ∈ H; lij ∈ L be a binary variable that takes a value of 1

if the traffic sent by host h traverses link lij and 0 otherwise.
In order to place the FNs as well, let Xs, s ∈ S be a binary
variable that is 1 if a FN is placed on switch s and 0 otherwise.
Finally, to map hosts and FNs, let Yhs, h ∈ H; s ∈ S be a
binary variable that becomes 1 if host h is mapped to the FN
placed in switch s and 0 otherwise.

The objective of the FNPP is to minimize the average
latency between hosts and FNs as a manner to optimize QoS.
Thus, let L(h) = (

∑
lij∈L fh

ijβlijβS
) − βS be the latency

between a host h and its mapped FN, accounting for the
latency of all links and the processing latency of all switches
in the route. A set of notations is summarized in Table I for
easy reference.

Given these definitions, the FNPP can be formulated as:

min
1

|H|
∑

h∈H

L(h) (1)

subject to:

i ∈ V, h ∈ H :
∑

j∈V

fh
ij − fh

ji =

{
1 if i = h

−Yhi otherwise.
(2)



Table I: List of notations

Parameter Meaning
G Graph that represents the network
L Set of links of the network
V Set of vertices of the network
H Set of hosts (i.e. IoT devices) of the network
S Set of SDN switches of the network
Cij Capacity of link lij
φh Traffic generated by host h
α Maximum traffic that can be processed by a FN per unit

of time
βlij Propagation latency of link lij
βS Processing latency of a SDN switch
L(h) Latency between host h and its mapped FN
θ Number of FNs to be placed

Variable Meaning
Xs Boolean to determine if a FN is placed in switch s
Yhs Boolean to determine if host h is mapped to the FN located

in switch s
fh
ij Boolean to determine if traffic generated by host h is routed

through link lij

∀lij ∈ L :
∑

h∈H

fh
ijφh ≤ Cij (3)

∑

s∈S

Xs = θ (4)

∀s ∈ S :
∑

h∈H

φhYhs ≤ αXs (5)

∀h ∈ H :
∑

s∈S

Yhs = 1 (6)

∀h ∈ H, s ∈ S, lij ∈ L : Xs, Yhs, f
h
ij ∈ {0, 1} (7)

The objective is to minimize the average latency between
hosts and FNs, as per (1). Their paths are calculated using
the classical flow conservation constraint of (2), while (3)
guarantees that link capacity is not surpassed. The amount
of nodes to be placed is the given amount θ, as (4) shows.
To control the capacity of FNs as well as forcing IoT devices
to only map themselves to FNs that are placed, (5) is also a
constraint, knowing that, as of (6), each IoT device is mapped
to a single FN. Finally, (7) makes variables binary.

This formulation of the FNPP can now be parameterized
to cater to the needs of different network topologies with
different FN capacities, different amounts of traffic sent by
FNs or different latencies in their network components. It
also guarantees an optimal placement, routing and mapping
between FNs and IoT devices, and thus, an optimization for
QoS-strict IoT applications.

V. PERFORMANCE EVALUATION

This section presents a performance evaluation of the FNPP
formulations under different circumstances. Evaluation has
been carried out in an emulated environment, and includes
results on latency, average path length, average FN usage and
execution time with different number of FNs and different
placement methods.

A. Evaluation environment

In order to analyze the scalability of the proposed solution,
three different network topologies have been considered: small
(25 switches and 24 links), medium (40 switches and 39 links)
and large (70 switches and 69 links). These topologies were
synthetically generated using the Erdős-Rényi model [14].
Traffic matrices were also synthetically generated using the
model reported in [15]. Other details such as the latencies
of the switches were empirically extracted from the Mininet
SDN network emulator [16], while the value of α was set
following Eq. (8) to guarantee a feasible solution, i.e., all FNs
have enough throughput to manage all their incoming traffic.

α = max(max(φh∀h ∈ H),

∑
h∈H φh

θ
) (8)

In order to emulate the set of FNs in the network, θ
additional hosts have been added and placed according to the
output of the corresponding placement solution. Iperf tool has
been used to create client-server traffic flows from a host to
its mapped FN according to the values of the traffic matrix.
Latency has been assessed by sending 30 probes with the ping
command from each host to its mapped FN. Simulations have
been performed in Mininet’s virtual machine [16], featuring 8
GB of RAM and 4 CPU cores of an Intel i7-8565U CPU.

In order to analyze the impact of adding FNs to the network,
values of θ ∈ [1, 4] ∈ N have been considered. At the same
time, in order to analyze the impact of the variation in the
number of hosts, a parameter that sets the number of hosts
that are connected to each switch, namely γ, has been defined.
In particular, we have carried out simulations for γ = {1, 2}.
It is important to remark that, while different traffic matrices
were generated for each scenario, the total amount of traffic
in the network is always the same, regardless of γ.

B. Performance analysis

The objective of the first performed analysis is to evaluate
the optimization objective, i.e. the average latency, by varying
the number of FNs (θ) and hosts per switch (γ). At first, Fig.
2 shows the average latency as a function of θ for the small,
medium and large topologies. Error bars represent the average
jitter for each type of test.

By looking at the figures, a similar trend is experienced
in all topologies, with the decrease of the average latency as
soon as the number of FNs is increased. Concretely, latency
lowers in a negative log likelihood as more FNs are added.
This is because, although adding more FNs implies that their
placement can get closer to their mapped IoT devices, thus
reducing latency, this difference is most noticeable when FNs
were far from their mapped devices and they can be placed
closer. When FNs are already close, placing them even closer
has an undeniable effect, but not as large as before. This is
also reflected by the experienced jitter represented by the error
bars: a higher value of θ is associated with a lower value of
the experienced jitter. Clearly, the larger the topology is, the
higher average latency is experienced. This outcome is caused
due to the fact that a larger topology generally implies longer
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Figure 2: Average latency vs θ.

paths from IoT devices to FNs. Another conclusion we extract
from Fig. 2 is that the impact of γ is not very significant in the
small and medium topologies, thus, the infrastructure remains
scalable as soon as more hosts are added. However, a higher
impact is seen in larger topologies, especially in low values
of θ, while also showing the same trend.

The second analysis is a comparison between the results ob-
tained using the MIP formulation defined in Sec. IV and other
well-known placement methods based on graph algorithms,
namely, placing FNs in the nodes with the Highest Between-
ness Centrality (HBC) or the Highest Closeness Centrality
(HCC). When these methods are used, the mappings between
hosts and FNs are also assessed by using the formulation, and
thus only the placement of the FN is compared. Results can
be seen in Fig. 3, which again reports the average latency as
a function of θ for the different topologies. Overall, results
show that the MIP formulation, labeled Optimal, consistently
achieves the best results in all the topologies and placement
methods. Moreover, it also shows that, for the specific case
of θ = 1, some of these methods can show very similar
results. HCC in Fig. 3a and HBC in Figs. 3b and 3c provide
very similar latency values compared to the optimal solution,
with less than 1 ms of difference. However, there are two
main benefits to the usage of the optimal method. First, the
optimal method consistently exhibits the lowest latency. While
alternate methods may also yield a similar latency in some
cases, it is not consistently the same one: sometimes it is
HBC, sometimes it is HCC, as opposed to the formulation,
which is consistent. The second benefit is that, for values of
θ ≥ 2, the performance gap between the optimal solution and
these alternate methods heavily increases. The largest gap can
be found in θ = 3 in Fig. 3c, with HCC providing a latency
more than twice as large (144% larger) than the one provided
by Optimal. Along with the previously shown benefits, the
conclusion is that the MIP formulation is preferred in all cases
because of its consistency and performance.

Fig. 4 shows an analysis of the path length between IoT
devices and FNs. Due to lack of space, and since all topologies
derive similar results, only the large topology is shown. The
drawn conclusions are very similar to the ones extracted
from Fig. 3c: Highest Closeness Centrality yields the worst
results, followed by Highest Betweenness Centrality. Indeed,
the optimal formulation clearly yields much better results:
although the minimum path length is the same value for all

three placement methods, even the maximum path length for
Optimal (13 hops) is less than half the average path length for
HBC (28 hops). Therefore, the impacts in latency shown in
Fig. 3 are mainly caused by longer paths. Another interesting
conclusion is that the MIP formulation assesses more balanced
paths, as the differences between minimum, average and
maximum path lengths are much lower in proportion than the
ones reported for the rest of placement methods.

The analysis shown in Fig. 5 tests how load is balanced
of all three methods in the large topology. To do so, the
median FN usage is shown: optimally, it should decrease in
a harmonic progression, while lower or higher values imply
an unbalance. The lower or higher the values are compared to
a harmonic progression, the more unbalanced it is. While all
of the considered placement methods show equally balanced
loads in most of the tests, the results in θ = 3 shows that the
median usage in Optimal is 30.5%, a nearly perfect balance
with only 2.8% of difference to the harmonic progression.
However, the rest of the methods are over well 40%, with
more than a 10% of difference to the harmonic progression,
showing a clearly unbalanced distribution. This means that,
even with optimal mapping, sub-optimal FN placement derives
in sub-optimal load balancing as well.

In a final analysis, Fig. 6 shows the time required to solve
the FNPP with θ = 4 in all the considered topologies with
all the proposed methods. The main conclusion is that the
MIP formulation is more time-consuming than the alternate
methods, as expected. Furthermore, Fig. 6 also shows an
almost exponential growth with the topology size, which is to
be expected of an NP-hard problem optimization. Such growth
is smaller in other methods, as the time gap between them also
grows with the topology size. However, even in the largest
topology, the formulation takes 5.60 seconds, which can be
considered as tractable time.

VI. CONCLUSIONS AND FUTURE WORK

IoT has a great potential in intensive domains such as
industry or healthcare, and with this potential come stringent
QoS requirements that are difficult to meet. In order to lever-
age fog computing and SDN, FNs should be correctly placed
to provide optimal placement, hence. In this paper, the FNPP
has been introduced, formulated and solved. The performance
of the solution has been evaluated, analyzed and compared
against other methods in the Mininet network emulator.
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Figure 3: Average latency with different placement methods.
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ison.

The MIP formulation is able to optimally place FNs, as well
as to optimally map IoT devices to FNs, in a reduced amount
of time. Furthermore, MIP outperforms alternative placement
methods in terms of average latency, path length and FN usage.
However, the time consumption of the MIP formulation is
shown to raise almost exponentially in large topologies. This
implies that, while it is possible to use the formulation to
initially place FNs optimally in an infrastructure, it may be
difficult to quickly re-assess optimal placements over time in
very large topologies.

In the future, we expect to develop heuristics that are able to
place FNs nearly optimally while maintaining a low execution
time. We also plan to analyze the cost of adding FNs in order
to develop solutions that not only assess optimal placements
for FNs, but also retrieve the optimal number of FNs to place.
Moreover, we also plan to consider other factors that affect
the performance of the system, such as coverage issues [17].
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Abstract—The Internet of Things has brought digitalization
to intensive domains through the automation of their real-
world processes. However, the criticality of these processes is
reflected in high Quality of Service (QoS) requirements for
the application to work properly. Moreover, business-level QoS,
such as the operational cost, are also key to the feasibility of
these applications. This QoS depends on three, closely-related
dimensions: the application software, the computing devices and
the communication network, which provide high flexibility to
obtain different performances at different costs. Thus, to achieve
optimal QoS in these scenarios, the application, computing and
networking dimensions must be optimized, considering their
crucial interplay in a joint effort. Furthermore, this solution must
allow multi-objective optimization, finding the optimal trade-off
between operational cost and application performance. In this
paper, we present Multi-Objective SDN Fog Optimization (MO-
SFO), a holistic framework that allows for the optimization of
both the response time and the deployment cost. MO-SFO is
evaluated over an emulated smart city case study, showing the
cost and performance trade-off achieved in different topologies.

I. INTRODUCTION

The advent of the Internet of Things (IoT) paradigm has
enabled for the bridging of computing applications and net-
works with real-world processes [1]. The potential of such
computerization has attracted the interest of the research com-
munity in intensive domains, such as smart cities [1], industry
or healthcare [2]. Nonetheless, the criticality of these domains
is translated to strict Quality of Service (QoS) requirements
for their IoT applications, such as low response times [1], [2].
Therefore, the integration of IoT-based systems in intensive
domains is contingent on their ability to provide a high enough
QoS, such as smart surveillance systems whose performance
depends on the QoS [1], [2]. There are three dimensions that
affect the QoS of IoT applications: application, computing, and
networking [3]. All of them need to be considered in order to
meet the strict QoS requirements of these intensive domains.

Regarding the application dimension, modern IoT applic-
ations require to be highly evolvable and interoperable, as
well as allowing distributed deployments [4]. Thus, these
applications are often designed following the Service-Oriented
Computing paradigm, and, more concretely, the Microservices
Architecture (MSA) design pattern [4]. In MSAs, applications
are divided into small and loosely-coupled microservices,
which perform simple tasks individually and collaborate to
support more complex functionalities. Moreover, each of

these microservices can be deployed individually, allowing
the application to be deployed in a distributed manner and
providing higher flexibility. Nonetheless, this is not a simplistic
decision, as the application’s QoS is affected by where each
microservice is deployed. On the one hand, devices with higher
computational power are able to provide lower execution
times and, thus, lower response times. On the other hand,
powerful devices tend to be further away from the data source,
therefore having higher latencies, raising the response times.
The problem of optimally deploying a set of microservices
is labelled in literature as the Decentralized Computation
Distribution Problem (DCDP) [5].

In the computer dimension, the QoS requirements, as well
as the aforementioned focus on distribution, also motivate the
used paradigms. Traditionally, cloud computing was used to
deploy IoT applications [6]. Nonetheless, due to the com-
plexity of guaranteeing a suitable QoS using cloud servers
exclusively, which tend to be far away from IoT devices,
intensive domains tend to move towards fog computing infra-
structures [1]. In these infrastructures, servers that are closer
to users (fog nodes, FNs) are used alongside with cloud
servers [6]. Fog infrastructures generally enhance the QoS of
the applications deployed in them due to their lower latencies.
Nonetheless, the microservices running on both the cloud and
FNs need to communicate between themselves, and therefore,
the placement of these FNs is crucial in the QoS enhancement
experienced by the application [2], [3]. In order to place
them optimally in the infrastructure, the Fog Node Placement
Problem (FNPP) [2] needs to be solved.

The QoS of the communications between microservices and,
therefore, between devices, depends on the networking dimen-
sion. The network needs to be scalable and flexible, meeting
the required QoS [1], [3]. Furthermore, in fog infrastructures,
microservices are often replicated and deployed in different
FNs [3]. Before consuming a certain microservice, the IoT
device needs to learn where the nearest replica is deployed
(service discovery) [7]. In order to perform this task separately
from the IoT application’s concerns, it would be desirable for
the network to automatically route requests to the nearest rep-
lica. It is possible to perform service discovery at the network
level while providing scalability and flexibility, by exploiting
the Software-Defined Networking (SDN) paradigm [7],

A foundation of the SDN paradigm is to decouple the data



plane, embodied in SDN switches, from the control plane,
which is managed at the SDN controller. Therefore, the SDN
switches and the SDN controller need to communicate. The
communication QoS between them is crucial, as every time
these planes need to interact, they will be subject to such
QoS [8]. In order to optimize this QoS, the SDN Controller
Placement Problem (CPP) [8] can be solved, placing the SDN
controller wherever the QoS from the switches is best.

These three dimensions are inherently coupled, as each
decision taken in a dimension affects the rest. Changing the
placement of the controller affects the overall network QoS [8],
which dictates the QoS between FNs and, consequently, the
QoS between the microservices deployed in them [3]. Chan-
ging the placement of a FN affects the flow of traffic, as a
node that is the source and destination of communications is
moved [2]. The flow of traffic is key to the optimal placement
of the SDN controller [8], and thus, the network QoS will be
affected, therefore also affecting the QoS of the microservices
that are either deployed in the moved FN or communicating
with microservices deployed in the moved FN [3].

However, companies usually have limited resources. This
constraint limits the deployment configurations that they can
feasibly deploy [9]. In these cases, there are two QoS ob-
jectives in conflict: performance QoS, namely response time,
and business QoS, in the form of deployment cost [9]. These
two QoS objectives need to be traded off, performing a multi-
objective optimization that suggests high-performance, low-
cost deployment configurations that can be feasibly deployed.

In this work, we present Multi-Objective SDN Fog Optimiz-
ation (MO-SFO), a multi-objective framework for the holistic
solution of the CPP, the DCDP and the FNPP, optimizing
response time and cost. In [3], some of the authors of this
work proposed Umizatou, a framework able to optimize the
response time by solving these three problems in a single
effort. However, Umizatou only allows for the optimization
of response time. This shortcoming complicates the use of
Umizatou in scenarios in which the deployment cost is a
QoS objective, as well as those in which cost and response
time need to be traded off. MO-SFO extends Umizatou by
considering multiple metrics, as well as multi-objective op-
timization. Furthermore, MO-SFO has been evaluated over
an emulated SDN-fog testbed, whereas Umizatou’s evaluation
was only performed in a simulated environment [3]. The main
contributions of this work are:
• The formalization of a problem that combines CPP,

DCDP and FNPP for intensive IoT environments, aimed
at optimizing the response time, the deployment cost, or
both at the same time.

• The formulation of a multi-objective, Mixed Integer Lin-
ear Programming (MILP) optimization solution.

• The evaluation of MO-SFO over a realistic, emulated
smart city case study.

The remainder of this paper is structured as follows. Sec. II
explains the system model of MO-SFO. Sec. III details the
multi-objective optimization formulation of MO-SFO making
use of MILP. Sec. IV presents the evaluation of MO-SFO using

an emulated smart city case study. Finally, Sec. V concludes
the paper and highlights future challenges.

II. SYSTEM MODEL

To make it easier to understand the MO-SFO model, the
problem is explained through a smart city case study. This
case study is based on Intel’s OpenVINO toolkit, an industrial
framework for the execution of deep learning video and audio
analysis models, designed for its use in fog environments and
tailored towards smart cities [10]. Nonetheless, the MO-SFO
framework is not exclusive to smart city scenarios, and could
be used in other intensive IoT domains as well.

In the case study, the smart city has a set of cameras
and microphones, which act as IoT devices and continuously
send their information to a surveillance IoT application. This
application allows for five different functionalities: detection
of presence of people and vehicles, visual tracking of such
people and vehicles, classification of the vehicles based in their
attributes (e.g., the type of vehicle, their colors or their sizes),
detection of the zone vehicles and people are on (e.g., whether
they are on the sidewalk or on the road, on which lane of the
road they are on), and environmental audio recognition (e.g.,
detection of car horns or car crashes through their sound) [10].
Each of these functionalities is implemented as a microservice.
Based on their role (e.g., security surveillance cameras, traffic
control cameras, emergency detection microphones), they can
request these functionalities to be carried out with their video
or audio inputs. This application is depicted in Fig. 1.

For the deployment of this surveillance application in the
smart city, a SDN network, with the topology shown in Fig. 1,
is envisioned. While this network connects the IoT devices,
the placement of the SDN controller, as well as the fog
nodes, is not yet decided. Moreover, both the application’s
response time and its deployment cost are considered crucial
QoS metrics that need to be optimized [1]. Thus, the CPP, the
FNPP, and the DCDP need to be solved to optimize the QoS
of this application. The application operator defines the two
QoS metrics to be optimized in order to find the best trade-off
between response time and cost.

In this scenario, the objective of MO-SFO is to deploy SDN
controllers, FNs and microservice instances within the FNs, in
a manner that minimizes both the cost of the deployment and
the application’s response time. To do so, MO-SFO decides
to use the deployment shown in Fig. 1: 2 FNs are deployed,
one on the top side, with microservices for video processing,
and one in the bottom, including audio recognition, and an
SDN controller is deployed in the middle. MO-SFO deems
this deployment optimal in terms of both objectives. While
it would be possible to deploy more microservice replicas in
each FN to further decrease response time, doing so would
increase the energy consumption, and thus, the operational
expenditures (OPEX) of the system. Similarly, deploying more
FNs or SDN controllers would also decrease the response
time, at the cost of higher capital expenditures (CAPEX). On
the other hand, it would be possible to deploy a single FN,
running a replica of each microservice, to reduce the CAPEX



Figure 1: MO-SFO in the smart city case study.

and OPEX of the system. However, doing so would provoke
an increase in the response time.

The decisions of MO-SFO are possible due to its multi-
objective joint approach: in order to assess if deploying
additional FNs is more cost-effective than deploying addi-
tional SDN controllers, MO-SFO needs control over both the
computing and networking dimension. Furthermore, the cost-
effectiveness of the equipment depends on the application
dimension’s communication patterns, computational workload
and microservice placement. This sort of analysis can only
be performed if both objectives are optimized with an holistic
perspective that covers all three dimensions.

III. PROBLEM FORMULATION

In this section, the mathematical abstraction of the model
of the joint CPP, DCDP and FNPP is presented as an MILP
formulation. This formulation allows for the problem to be
solved through the use of automatic MILP software solvers.

In this formulation, the infrastructure is represented by a
directed graph G = {V,L}, where L represents the links and
V represents the infrastructure’s vertices. A link denoted as lij
links together vertices i and j, with a propagation latency δij
and a maximum capacity θij . The vertices of the infrastructure
can be divided into two subsets: V = H ∪S;S ∩H = ∅, with
H containing the vertices that are hosts, and S containing
those that are SDN switches. Furthermore, every switch s ∈ S
has a certain processing latency δs. To simplify the understand-
ing of the formulation, let SW (v)∀v ∈ V be a binary function,
whose value is 1 if v ∈ S and 0 otherwise. Moreover, each
switch in the infrastructure has a given CAPEX (CAPEXs)
and OPEX per second due to energy consumption (OPEXs).

Continuing with fog nodes, let r be the total RAM memory
of an FN, which determines the number and kind of mi-
croservice replicas that can be deployed in it. In terms of cost,
placing the FN has a certain CAPEX, defined as CAPEXFN ,
and consumes an amount of energy, i.e., it has a certain
OPEX. The energy consumption depends on the usage of
the FN, as more intensive usage consumes more energy, and
thus, we define OPEXFN as the OPEX per second for the
corresponding FN. With respect to the SDN controller, we
need to consider the size of control packets, which we label σ,
to support multiple SDN protocols. Nonetheless, in this work,
this size is taken from the OpenFlow 1.3 specification [11].

Similarly to the switches, each controller has a certain CAPEX
(CAPEXC) and OPEX per second due to energy consump-
tion (OPEXC).

To represent the application, we use a model based in the
MSA pattern, i.e., the application is divided into a set of
microservices we label M . Each microservice m consumes
an amount of RAM rm, and its input and output data have
a size of Im and Om, respectively. Furthermore, in MSA-
based applications, each client (i.e., IoT device) requests for
functionalities in the form of workflows [4]. Each workflow
can involve one or multiple collaborating microservices, which
are executed in order, pipelining the output of a microservice
to the input of the next one [9]. We represent the total set
of workflows requested as W , and each workflow as an
ordered set of microservices w = {c1, c2, ..., c|w|} ⊆M . It is
important to note that each element is a microservice ci ∈M ,
and elements from different workflows can refer to the same
microservice. For simplicity, we also define the binary function
WR(w, h)∀w ∈ W,h ∈ H , which takes the value of 1 if
workflow w is requested by host h and 0 otherwise.

Finally, we introduce the parameter α ∈ [0, 1] as a means to
select the objective or objectives of the optimization, as well
as to decide the priority of each objective. If α = 0, MO-
SFO will only consider the deployment cost as the objective,
useful for scenarios with very stringent budgets and not very
time critical. Conversely, α = 1 only enforces the response
time objective, which may be used whenever the budget is not
a constraint. A value of α = 0.5 indicates MO-SFO should
find a trade-off between deployment cost and response time,
which is meant for problems where the budget constrains an
application that requires high performance.

After defining the parameters for the problem, the decision
variables need to be defined as well. To solve the FNPP,
FNs must be placed, replacing SDN switches: let ns∀s ∈ S
be a binary variable that will take a value of 1 if a FN is
placed in switch s. Continuing the joint approach, to solve
the DCDP, microservice replicas need to be deployed to
FNs. We define zwsca∀w ∈ W, s ∈ S, a ∈ [1, |w|] a binary
variable, representing whether the replica of microservice ca
in workflow w is deployed to the FN in switch s or not.
Moreover, the communication between microservices gener-
ates traffic flows, which are represented by the binary variables
fvwca
ij ∀lij ∈ L, v ∈ V,w ∈ W,a ∈ [1, |w|]. These variables

take a value of 1 if the traffic generated by vertex v as a
consequence of requesting microservice ca of workflow w is
routed through the link lij . It is important to note that the
response from the last microservice in each workflow to the
requesting IoT device must also be considered: let the binary
variables f ′vwij ∀lij ∈ L, v ∈ V,w ∈ W represent them with
a value of 1 if the traffic generated by vertex v due to the
response of workflow w is routed through the link lij .

Finally, the CPP needs to be solved as well. SDN controllers
are also placed in switches, and thus, xs∀s ∈ S is defined as a
binary variable whose value is 1 if an SDN controller is placed
on SDN switch s. Moreover, if multiple controllers are placed,
each switch needs to know which controller they should



communicate with: let yss′∀s, s′ ∈ S be a binary variable
that will be 1 if the SDN switch s is assigned to communicate
with the controller from switch s′. These communications also
generate traffic flows, which are represented through the binary
variables cfsij∀lij ∈ L, s ∈ S. These variables take the value
of 1 if the flow of control communications for SDN switch
s is routed through the link lij . Then, the problem can be
formalized as follows:

minαRT + (1− α)(CAPEX +OPEX) (1)

subject to:

RT =
1

|W |
∑

w∈W

∑

s∈S

∑

lij∈L

(

|w|∑

a=1

(fswca
ij ) + f ′sw

ij )(δij + SW (j)δi)

+ SW (j)
∑

lkm∈L

cf j
km(δkm + SW (m)δk)

(2)

CAPEX =
∑

s∈S

(CAPEXFNns +CAPEXCxs +CAPEXsus)

(3)

OPEX =
∑

s ∈ S((
∑

w∈W

∑
a = 1|w| rca

r
OPEXFNzwsca)

+OPEXCxs +OPEXsus)

(4)

us = max( max
lis∈L,v∈V,w∈W,a∈[0,|w|]

(max(fvwca
is , f ′vw

is ))

, max
lis∈L,s′∈S

(cfs′
is ))

(5)

∀w ∈W,a ∈ [1, |w|] :
∑

s∈S

zwsca = 1 (6)

∀w ∈W,a ∈ [1, |w|], s ∈ S : zwsca ≤ ns (7)

∀s ∈ S :
∑

w∈W

|w|∑

a=1

zwscarca ≤ r (8)

∀lij ∈ L :
∑

s∈S

[cfs
ijσ +

∑

w∈W

[(

|w|∑

a=1

fswca
ij Ica) + (f ′sw

ij Oc|w|)]]

≤ θij

(9)

∀i, v ∈ V,w ∈W :

∑

j∈V

fvwc1
ij − fvwc1

ji =





WR(w, v) if i = v

−WR(w, v)zwic1 if v ∈ H

0 otherwise.

(10)

∀i, v ∈ V,w ∈W :

∑

j∈V

f ′vw
ij − f ′vw

ji =

{
zwvc|w| if i = v

−WR(w, i) otherwise.
(11)

∀i, v ∈ V,w ∈W,a ∈ [0, |w|] : −zwvca−1
+ z′iwvca ≤ 0 (12)

∀i, v ∈ V,w ∈W,a ∈ [0, |w|] : −1 + zwica + z′iwvca ≤ 0 (13)

∀i, v ∈ V,w ∈W,a ∈ [0, |w|] : zwvca−1
+1− zwica − z′iwvca ≤ 1 (14)

∀i, v ∈ V,w ∈W,a ∈ [0, |w|] : −zwica + z′′iwvca ≤ 0 (15)

∀i, v ∈ V,w ∈W,a ∈ [0, |w|] : −zwvca−1
+ z′′iwvca ≤ 0 (16)

∀i, v ∈ V,w ∈W,a ∈ [0, |w|] : zwvca−1
+ zwica − z′′iwvca ≤ 1 (17)

∀i, v ∈ V,w ∈W,a ∈ [2, |w|] :

∑

j∈V

fvwca
ij − fvwca

ji =





z′iwvca if i = v

0 if v ∈ H

−z′′iwvca otherwise.

(18)

∀s ∈ S :
∑

s′∈S

yss′ = 1 (19)

∀s, s′ ∈ S : yss′ ≤ xs′ (20)

∀i ∈ V, s ∈ S :

∑

j∈V

fvwca
ij − fvwca

ji =





0 if i ∈ H

1− ysi if i = s

−ysi otherwise.

(21)

Eq. 1 expresses the optimization objective: to minimize
the weighted sum of the average response time of workflows
and the deployment cost, integrated by CAPEX and OPEX.
Starting with response time, since all FNs are equal, each
microservice has a constant execution time, and hence the
objective is to minimize workflow latency, as defined in Eq. 2.
Workflow latency includes both the latency of application
traffic flows (i.e., traffic generated by requesting microservice
execution) and the control latency of switches traversed by the
application flows related to the workflow. With respect to the
cost, CAPEX is defined in Eq. 3 as the sum of the CAPEX
of used switches, FNs and SDN controllers. OPEX, defined
at Eq. 4, integrates the energy consumption of used switches
and controllers as well, while the energy consumption of FNs
is integrated as dependent on the resource consumption of the
microservices deployed in it. Nonetheless, to define them both,
we need to know if a switch is being used or not, which is
defined in Eq. 5.

Moving to constraints, Eq. 6 states that each microservice
request in a workflow can only be fulfilled once. Eq. 7
ensures that only FNs that are actually placed can execute
microservices. Eq. 8 states that the total RAM consumed by
the microservices executed in an FN cannot be higher than
the available RAM of the FN. Eq. 9 enforces link capacity.
Eqs. 10-18 adapt the classic flow constraints to the traffic
flows generated by workflows. Eq. 19 makes sure only one
controller is assigned to each switch. Eq. 20 states that only
placed controllers can be assigned to switches. Finally, Eq. 21
adapts the flow constraints to control flows.

This formulation, along with a defined scenario, can be
used as an input to an software MILP solver to obtain a
solution with optimal placements for SDN controllers, FNs
and microservices, as well as optimal information routing,
according to the optimization objective or objectives selected.

IV. PERFORMANCE EVALUATION

The objective of this section is the evaluation of MO-SFO
over a smart city case study using different topologies.



A. Evaluation environment

The evaluation of MO-SFO has been performed over emu-
lated testbeds based on the case study presented in Sec. II.
These emulated environments have been created using the
Kathará emulation framework [12], which allows for the
creation of emulated SDN networks using Docker containers.
Regarding the networking dimension, the switches of the
emulated networks are based on OpenVSwitch [13], while
the SDN controller software is Faucet, a controller made
for enterprise usage [14]. Moreover, the network conditions
have been emulated using Linux’s traffic scheduler through
the tc command. The evaluation has been performed on
topologies created using the Erdös-Rényi model for graph
generation [15], transforming the nodes with a degree of one
into IoT devices, while the rest are left as SDN switches.
The tests have been performed over two topologies: the Small
topology (7 SDN switches, 6 IoT devices), and the Large
topology (20 SDN switches, 18 IoT devices), based on the
topology sizes from [3]. On the application dimension, all
the five microservices defined in the case study have been
emulated using the official OpenVINO Docker image from
Intel 1, which includes real implementations for all of them, re-
quiring approximately 1.25 GB of RAM each. IoT devices are
emulated through Alpine Linux-based containers that stream
the videos provided by Intel for their use with OpenVINO 2.
Each IoT device requested the execution of a single workflow
10 times, which are used on the Docker image to measure the
average response time. On the computing dimension, each FN
has the specifications of a PICO-TGU4, a device for intensive
domains with 32 GB of RAM. The emulated environments
have been executed in an AWS c1.xlarge instance.

The version of MO-SFO used for the evaluation applies the
formulation from Sec. III, through the use of the MILP solving
software Gurobi, to the smart city scenario. MO-SFO has been
executed in a computer with an Intel i7-8565U CPU and 16
GB of RAM. Three values of α were tested in each topology:
1, 0.5 and 0, which are labeled under the objective they
represent (Response time, Trade-off and Cost, respectively). It
is important to note that, as MO-SFO expands on Umizatou,
the Response time results can be seen as Umizatou results,
hence enabling for their comparison. In these six scenarios,
different analyses have been performed. First, an analysis to
evaluate the cost of the deployment proposed by MO-SFO in
each scenario is performed. In this analysis, the overall cost of
each scenario, including the cost of each of the elements (e.g.,
SDN controllers, FNs) is evaluated, including the CAPEX and
the OPEX over 5 years, which is a common amortization
period [1]. Moreover, the distributions of the response time
obtained in the emulated environments are also analyzed,
assessing both the performance of MO-SFO solutions and
allowing for the evaluation of the cost-effectiveness achieved
by each objective.

1https://hub.docker.com/r/intel/video-analytics-serving
2https://github.com/intel-iot-devkit/sample-videos
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Figure 2: Deployment cost of each scenario, including CAPEX
and OPEX during 5 years.

B. Performance analysis

In the first analysis, depicted by Fig. 2, the cost of the
deployment during 5 years on each of the six scenarios is com-
pared, as well as the contribution of each element to the total
cost. Moreover, four elements are considered part of the costs:
the SDN controllers (including their CAPEX and OPEX), the
CAPEX of FNs, the OPEX due to the microservice execution,
and the SDN switches. The first conclusion that can be drawn
from the figure is that the main source of cost is the energy
consumption of the microservices, accounting for 11,845C
(65-77% of the total cost, 6.49C/day) in the small topology
and 34,123C (67-79%, 18.69C/day) in the large topology,
2.88× as much as in the small topology. Moreover, the cost
due to microservice execution is the same across all objectives,
due to the fact that the same number of microservice replicas
were deployed in all cases. The deployment of the network
infrastructure, i.e., SDN switches, is also a very important
element in terms of cost, representing a total of 16-30% of the
cost in the small topology, and a 13-35% of the large topology
costs. Furthermore, the large topology has an overall higher
cost than the small topology, and the response time objective
requires for more costly deployments. The cost and trade-off
objectives place a single controller in the small topology, while
the response time objective places two. Nonetheless, three
are placed in the large topology, regardless of the objective.
Finally, the optimal cost objective achieves the best cost, while
the multi-objective trade-off achieves a slightly (3-6%) higher
cost. The response time objective, however, has the highest
costs, 20-23% higher than the cost objective.

Fig. 3 details the distribution of the response time in each
of the scenarios using a box plot, in which the medians are
drawn as white lines in each box, and the means are depicted
by cyan triangles. These response times are the result of 10
requests of analysis over a 1-minute-long video, using the
multiple microservices of the application (e.g., audio recogni-
tion, vehicle classification), and thus, the response time cannot
be less than 60 seconds. Moreover, due to incompatibilities,
GPU acceleration was also disabled in the emulated testbed.
Starting with the small topology, the response time objective
achieves an average response time of 299 seconds, a median
response time of 304 seconds and a standard deviation of
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Figure 3: Distribution of response time in each scenario

163 seconds. These are the overall lowest response times for
the topology, as the trade-off and cost objectives have similar
mean response times, of 351 and 353 seconds (17% and 18%
higher), respectively. While the median response time in the
trade-off objective is slightly higher than in the cost objective,
it is important to note the interquartile range is lower in the
former (277 to 425 seconds) than in the latter (282 to 424
seconds), i.e., a normal IoT device experiences response times
1% lower if the trade-off multi-objective version is selected.
Moving to the large topology, the response time objective
exhibits the best response times again, with an average of 281
seconds, a median of 226 seconds, and a standard deviation of
224 seconds. Overall, the response times are lower than in the
small topology, albeit the higher standard deviation indicates
a larger spread. Similarly, the trade-off objective achieves an
average of 352 seconds (57% higher) and a standard deviation
of 276 (22% higher), whereas the cost objective exhibits an
average of 499 seconds (78% higher) and an standard deviation
of 413 (84% higher). On average, the trade-off multi-objective
version exhibits 11% lower response times than the single-
objective cost alternative, while they are a 37% higher than
the response time-focused alternative.

Finally, if the results in terms of both cost and response time
are considered, the multi-objective trade-off version is the most
cost-effective, as it achieves a very similar deployment cost as
the single-objective version, and lower response times. This
phenomenon is due to the fact that the cost objective does
not consider response time at all, and simply makes sure the
application is able to function, whereas the trade-off objective
arranges the application to optimize the response time while
constraining the deployment to minimize its cost.

V. CONCLUSIONS AND FUTURE WORK

The interactions between the physical and computing world
brought by IoT make it interesting to apply its potential
to intensive domains. However, the digitalization of critical
processes comes with the cost of high QoS requirements for
associated IoT applications. Furthermore, the QoS of intensive
IoT applications depends on the application, computing and
networking dimensions, as well as in the interplay between
them, and is often multi-objective in nature. Optimizing these
dimensions to achieve the required QoS calls for solutions
able to consider the coupling between all three dimensions and

trade off multiple QoS metrics to cater to specific IoT applica-
tions. In this paper, we presented MO-SFO, a multi-objective
solution able to optimally place SDN controllers, FNs and
microservices for intensive IoT environments. MO-SFO has
been evaluated in an emulated smart city case study, focusing
on the trade-off between the response time and deployment
cost objectives. In the future, we expect to allow MO-SFO to
use alternative multi-objective optimization algorithms, such
as genetic algorithms, to improve the optimization times and
provide a Pareto front. Finally, we also expect to integrate MO-
SFO with state-of-the-art orchestrators, such as Kubernetes.
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Abstract—Opportunistic data sharing allows users to receive
real-time, dynamic data directly from peers. These systems not
only allow large-scale cooperative sensing but they also empower
users to fully control what information is sensed, stored, and
shared, enhancing an individual’s control over their own poten-
tially private data. While there exist context-aware frameworks
that allow individual users to define when and what shared
information peers can consume, these approaches have limited
expressiveness and do not allow data owners to modulate the
granularity of the information released depending on a particular
peer or situation. In addition, these frameworks do not consider
the consuming peers’ privacy, i.e., how much information they
have to provide to get access to some desired data. In this paper,
we present PADEC, a context-sensitive, privacy-aware framework
that allows users to define rich access control rules over their
resources and to attach levels of granularity to each rule in order
to precisely define who has access to what data when and at
what level of detail. Our evaluation shows that PADEC is more
expressive than other access control mechanisms and protects the
provider’s privacy up to 90% more.

Index Terms—opportunistic networks, access control, privacy

I. INTRODUCTION

During the last few years, there has been a massive deploy-
ment of mobile devices. Almost every developed country has
at least 90% mobile phone penetration and 80% smartphone
penetration [1]. Similar trends exist for IoT and other wearable
devices, with a projected penetration of 25% in the US by 2022
[2]. These devices carry a large number of on-board sensors
that provide their owners with a rich view of the surrounding
context and support a wide array of application functionalities.
In addition, as these devices are commonly mobile, they
accompany the user, providing an interface between their
owner and a wider networked community [3].

This astounding increase in companion devices has enabled
new types of systems and applications, such as mobile crowd
sensing [4] or opportunistic data sharing [5], which both
leverage the myriad devices to execute large-scale sensing
tasks. Mobile crowd sensing recognizes that a user’s sensing
needs can often be fulfilled by others nearby [6]. Opportunistic
data sharing, which can be combined with mobile crowd
sensing, relies on transient wireless network connections [7]
to distribute and fulfill a data sharing task using information
from the local networked devices. As interactions are pushed
into the opportunistic space, individuals need mechanisms
to control the release data according to their privacy needs.
Privacy management mechanisms must empower users to
manage who, when, and how their personal information can be

consumed [8], i.e., each user should be able to decide which
information is shared with whom, in how much detail, and
under which contextual conditions.

Context-aware access controls constrain access to data or re-
sources based on specific contextual conditions [9]. In contrast,
basic access control mechanisms, such as Role-Based Access
Control (RBAC) [10] or Dynamic Sharing and Privacy-aware
Role-Based Access Control (DySP-RBAC) [11], allow data or
resource providers to control access to information based on
the identity of a potential consumer. These mechanisms are not
sufficiently expressive to support applications with opportunis-
tic device-to-device connections, in which identities of most
peers are unknown. Other proposals, such as Attribute-Based
Access Control (ABAC) [12] or the access control mechanism
from [13], allow users to define rules based on contextual
conditions beyond identity. However, these mechanisms cannot
modulate the precision of information released to each peer
as a function of the shared context, which prevents providers
from having fine-grained control of the access to their data
or resources. Furthermore, these systems are designed for
centralized (cloud-based) data sharing in which a coordinator
negotiates data sharing and access control. This is not the case
of in our scenarios, which are often completely decentralized.

This paper presents a Privacy-Aware and Context-Sensitive
Access Control mechanism (PADEC), designed for completely
decentralized data sharing scenarios. PADEC empowers users
by increasing the expressiveness of access rules and protecting
the privacy of both providers and consumers. PADEC allows
resource owners to define rich access rules based on different
kinds of contextual information, as well as to attach filters to
these rules in order to provide the data or resources at different
levels of granularity. At the same time, PADEC protects the
privacy of resource consumers by minimizing the amount of
contextual information that they need to share within their
access requests. To that end, we introduce the concept of
keyhole that provides consumers information about the context
information they must provide in order to gain access.

This paper is organized as follows. Section II presents a case
study that serves as motivation. Section III describes related
works on context-sensitive and privacy-aware access control,
while Section IV elicits the threat model for our opportunistic
data sharing scenarios. Section V incrementally introduces the
contributions of PADEC, which is then evaluated over the case
study in Section VI, providing comparisons with other access
control mechanisms. Finally, Section VII concludes.



II. CASE STUDY APPLICATION

To motivate the problem, we present a case study of a
mobile crowd sensing application that relies on opportunistic
data sharing in a smart city. In this scenario, tourists arriving
in a smart city want to find the most popular Points Of Interest
(POIs) of the city according to local residents: restaurants
that the locals frequent, bars and cafes that are popular,
parks that local residents enjoy, etc. To aid visitors, the local
government has released an application that leverages users’
sensors to store a history of the POIs they have visited and
to share this information with other nearby users by relying
on hyper-local wireless links. The government has encouraged
local residents to use this application as a means to promote
tourism. Such a scenario is not just a thought experiment;
similar applications have already been envisioned [14]. From
an application architecture perspective, there are two roles in
the application; the local residents are providers of information
in the smart city, and the tourists are consumers of that
information. Concretely, a provider’s device exposes one or
more endpoints that a consumer can access using opportunistic
device-to-device communication to retrieve the information.

When the local residents share information directly with
nearby tourists, privacy is crucial due to the personal nature of
the data being handled. A malicious party could potentially use
the history of a user to track their habits, so this information
must be carefully protected. With a centralized approach, local
residents would need to store their POI history to a centralized
server, provided by a third party (e.g., the local government),
that has access to the full POI history of every user. This
means that users need to trust this third party, since they are
transferring the ownership of their POI history. This is not the
case with opportunistic data sharing.

Although privacy could be easily maintained by not al-
lowing any user to access a resident’s POI histories, this
would render the application useless. Thus, while granting
open access to everyone is undesirable because of the private
nature of the POI history, so is consistently denying access.
Users require access control mechanisms that grant access to
individual users based on their context, as well as to allow data
owners to share their private information at different levels of
granularity, depending on that context. For instance, a local
resident might not mind sharing a small portion of their history
with nearby tourists. If this tourist is a friend of the resident,
or part of their family, the resident is likely to be willing to
share a much larger part of the history with them because the
resident has some implicit trust in the consumer.

On the other side, tourists access the providers’ endpoints
by applying to the access control mechanism for authorization.
To do so, they must provide their own contextual information.
While the reduced amount of information released by the
consumer makes it less critical than the data released by locals,
the privacy of tourists should also be protected. Similar to how
the data providers need a tool to select how much information
they are willing to share based on the context, tourists need
similar mechanisms to restrict their exposure. In this case study

application, the visiting tourists will release their own context
information for the purpose of getting access to providers’
resources or data. In this process, the consumers can be guided
by the policies defined by the data providers.

III. BACKGROUND AND RELATED WORK

In the opportunistic data sharing approaches that motivate
our work, the providers and consumers that are collaborating
may be completely unknown to one another, we do not
assume the presence of a central coordinator to help mediate
privacy protection, and different parties may have dramatically
different privacy sensitivities. In the remainder of this section,
we examine existing work that addresses facets of the access
control challenge for opportunistic data sharing applications.

Context-sensitive access control. During the last few years,
different works focused on using personal context information
to authenticate users. In [15], context information, such as
nearby familiar devices or locations, is used to apply an access
control policy and adapt the authentication method of mobile
phones. In [16], the users’ movements, like gait, are leveraged
to validate the user’s identity. While the identification of users
using their context information and attributes has proven useful
for unlocking and adapting the behavior of personal devices,
it requires an a priori model of the attributes or behavior
of each user, which is unfeasible for large-scale applications,
especially those that need to authenticate and grant access to
unknown users depending on their context.

Decentralized access control. Different works propose ac-
cess control frameworks to access shared data under different
contexts. For instance, Penumbra [17] proposes an expressive
and decentralized access control system that empowers users
and that can be used in opportunistic scenarios in which
there is no central mediator. Nevertheless, Penumbra only
considers identity in its access control decisions, and omits
other contextual information. In [18], the authors propose
the use of a distributed ledger, called Tangle [19], to store
the policies and access rights for resource-constrained IoT
devices. This ensures the distributed auditability of the process.
Although this mechanism is also privacy-aware, privacy is only
preserved if access control decisions are made by honest par-
ticipants, which is difficult to ensure in opportunistic scenarios.

Privacy-aware access control. Opportunistic and pervasive
scenarios require decentralized and context-sensitive access
control mechanisms in which individual users can also mod-
ulate the information to release depending on the consumer’s
context. Existing access control mechanisms have been defined
for collaborative environments. The NIST standard RBAC [10]
authenticates users based on identity by grouping them with
roles. However, RBAC is not context-sensitive nor privacy-
aware. DySP-RBAC [11] extends RBAC into a context-
sensitive and privacy-aware mechanism. However, DySP-
RBAC is implemented applying a pure server/cloud-based
architectural style, in which all users are known in advance
and users do not retain ownership of their own data. Moreover,
context in DySP-RBAC is based on the relationships between
users, and it therefore is fully identity-based.



ABAC [12] is a potential model for context-sensitive access
control. However, it is still not a privacy-aware mechanism,
as it does not allow users to set different levels of detail
for the shared information. The work in [13] proposes an
alternative mechanism for pervasive scenarios. Making use
of semantic technologies, users can define access control
policies by providing conditions over context. However, this
mechanism also requires a centralized knowledge base that
contains contextual information from all users, which takes
data ownership away from users and is unsuitable for op-
portunistic scenarios. Furthermore, it does not allow users to
control access at different levels of granularity.

While privacy-aware and context-sensitive access control
mechanisms are addressed in the literature, the fact that none
of these mechanisms are designed for opportunistic scenarios
makes none of them suitable for our envisioned pervasive
environments. Efforts in privacy-aware access control are not
often coupled with context-sensitivity and vice versa, and
those that address both do not consider the special needs of
opportunistic data sharing for empowering users to manage
access to their own data.

IV. THREAT MODEL

In our system model, a user, known as provider, volun-
tarily shares their data or resources with others, known as
consumers, as long as both the provider and the consumer meet
certain conditions set by the provider. These conditions may
constrain the provider’s own context, the consumer’s context,
or a combination of the two. The provider should also be
able to filter or obfuscate the information it provides based
on similar conditions over context. We assume a model of an
attacker whose objective is to obtain information they are not
granted access to by exploiting any weakness of the system.
Attackers can have up to three roles: they can be consumers,
and therefore they try to obtain information from providers;
they can be providers, trying to obtain information from their
contacts with consumers; or they can be third-party attackers,
trying to obtain information from messages exchanged by
other providers and consumers.

We build a threat model for decentralized access control for
opportunistic data sharing incrementally, first considering gen-
eral threats that are common to any access control mechanism
and then moving to more concrete threats that are specific to
our context-aware and opportunistic approach.

General threats:
• Unauthorized access. The most basic threat in which a

consumer tries to obtain data when the provider desires
to deny access.

• Circumventing context constraints, consumers get access
to information because of their identity while it should
be denied according to other contextual attributes.

Privacy threats:
• Consumer over-exposure. Providers obtain precise infor-

mation from consumers using the context information
they reveal to request access.

• Provider over-exposure. Consumers access information
with a finer granularity or higher precision than the
provider intended to grant access to.

• Insider attack. Consumers get finer-grained information
than the provider’s policies allow by correlating and
aggregating the results of repeated allowed requests.

Third-party attacks:
• Eavesdrop attack. The attacker obtains the messages

shared between providers and consumers, acquiring priv-
ileged information.

• Replay attack. The attacker obtains a legitimate message
and replays it to get incorrectly granted access.

All of the above threats are directly addressed in our
approach. There is another threat that is present in the current
version of our approach, and it will be tackled in future work,
the insider multi-type correlation attack. In this threat, a con-
sumer could correlate different types of contextual information
obtained legitimately to obtain other kinds of data not allowed.
It is similar to an insider attack, but instead of correlating
multiple queries to the same information type, the attacker
correlates single queries to multiple information types.

V. THE PADEC CONCEPTUAL MODEL

In this section, we present our approach to context-sensitive
and privacy-aware access control for opportunistic data shar-
ing. We do this incrementally, adding concepts to the model to
address the threats elicited in the previous section. Throughout
this section, we designate with underlines the key concepts that
are the primary novel contributions of PADEC.

Devices in PADEC take on one of two roles: a data or
resource provider and a data or resource consumer. A provider
has some application-level data or service that a consumer
desires to access; this data or service is provided through the
exposure of an API endpointFor instance, in our case study,
tourists can obtain the history of a local resident’s device by
calling an API endpoint that releases it.

A key tenet of PADEC is a strict separation of concerns
between application-level functionality and PADEC’s privacy
and access control. From an application perspective, this
means that the consumer should perceive that it directly calls
the provider’s application-level API endpoint; pragmatically,
this request passes through PADEC components to determine
access, but the application (on both sides) remains unaware of
the details. Throughout this section, we use sequence diagrams
to depict PADEC’s details. The consumers are shown on the
left of these diagrams, while the providers are shown to the
right. Each side has two threads: the application threads (at
the outside) and the access control mediating threads (in the
center).

A. Step 0: Encrypted communication

To address the eavesdrop attack and the replay attack, we
start with an assumption that all communications are protected
by either symmetric or asymmetric cryptography (e.g., AES or
RSA). We assume both devices have strong public and private
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Fig. 1. Step 1: Providing simple access control based on identity. A consumer
discovers an endpoint in the surroundings (1-3) and makes an application
request (4), which is sent to the provider via the available network (e.g.,
an opportunistic device-to-device connection) (5). The provider checks the
consumer’s identity against the list of granted roles (6) and, if access is
granted, the provider performs the request (7) and returns the results (8-9).

keys, or share a strong symmetric key. These keys are assumed
to be shared through a secure, out-of-band channel.

Since messages are encrypted, eavesdropping is not a con-
cern, since the attacker cannot examine the message content.
The replay attack is also thwarted, since any answer the
attacker might get by replaying messages will be as unreadable
as any message they overhear via eavesdropping.

B. Step 1: Controlling access to API endpoints

The main, basic concept behind preventing unauthorized
access is to differentiate users who are authorized to access
an endpoint from those who are not. A simple approach is for
each endpoint to have an allow list of user identities that are
authorized to access the endpoint. Managing this mechanism
on an endpoint-by-endpoint basis does not scale: managing
multiple lists for different endpoints on an individual identity
basis quickly explodes. Therefore, it can be desirable to create
groups, and, instead of adding individual users to lists, users
are added to groups and groups are added to allow lists. The
reader might find this system familiar; if the term groups is
replaced with roles, this is a simple version of RBAC [10].
This concept is shown in Fig. 1.

C. Step 2: Very basic context-aware access control

In many pervasive computing applications, it is necessary to
support access control mechanisms that are sensitive to their
context. In particular, it may be desirable to provide some
level of access to complete strangers who have never before
been encountered, as long as some condition on their context
holds. Access lists are not sufficient because it is not possible
to register an unknown person in a group. Furthermore, this
type of access control needs to consider context attributes other
than identity, such as the consumer’s location or activity. A
simple approach is to allow endpoint providers to specify more
expressive rules that set conditions over context in order to
grant access, e.g., a consumer must be within 50 meters of the
endpoint’s position. To support this approach, consumers must
share their context information with the endpoint provider as
part of their request, so that the rule can be checked, ensuring
that the circumventing context constraints threat is mitigated.
This system is also familiar, since the same concept is captured
in ABAC [12]. This mechanism is depicted in Fig. 2.
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Fig. 2. Step 2: Extending access control to consider the consumer’s context.
The consumer provides its context information as part of the request (4-5),
and the provider’s process for determining access requires executing the more
expressive rules associated with the endpoint (6).
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Fig. 3. Step 3: Keys and keyholes. In this step, PADEC adds keyholes (3),
which define the context information required to access the endpoint, and
keys (4-6), which a consumer application constructs to encapsulate the context
information requested. The provider’s keyhole defines a rule that validates the
provided key (7) before granting access.

D. Step 3: Keys and keyholes

While the previous step enables a provider to consider con-
text in access control, the approach has a few limitations. From
a privacy standpoint, this requires the consumer to release all
of context information that might be relevant without relying
on any information about what might actually be needed or
used. From a system efficiency standpoint, this is also an
overhead in terms of communication cost. While this overhead
may be negligible in a centralized system, where the context
information may be stored and checked on a cloud server, it
may prove prohibitive in opportunistic networks.

To reduce the amount of shared context information both
for privacy and overhead reasons, the next step is to define
a keyhole associated with an endpoint. The keyhole provides
an access point for the API endpoint on the provider side and
defines one or more contextual attributes that the consumer
is required to provide to gain access. When the consumer
discovers a nearby available endpoint (step (1) in Fig. 3), the
consumer simultaneously discovers the associated keyhole. To
access the endpoint, the consumer assembles a key for each
attempted access via the keyhole; the key contains the con-
sumer’s current contextual values for the attributes requested
by the keyhole. Key construction may also be constrained by
the consumer’s own local policies, which may limit or prevent
the release of certain personal information.

On the provider’s side, using only the name of the invoked
endpoint and the data in the key, PADEC’s access control
mechanisms determine whether the access is granted. Prac-
tically, each keyhole is associated with a rule that is evaluated
at run-time over the consumer’s key. With this approach, only
relevant contextual attributes have to be released, lowering the
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Fig. 4. Step 4: Providing access options. Discovery now includes multiple
keyholes for each endpoint (3), and the consumer chooses one to target (4-6).
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Fig. 5. Step 5: Increasing providers’ privacy flexibility. After completion
of the application-level API call, PADEC applies a filter associated with the
selected keyhole (9) before returning the results to the consumer (10-11).

amount of revealed information and the size of keys that are
communicated. This step aims to prevent the consumer over-
exposure threat described previously. In addition, keys are not
revealed to the application-level provider, but remain solely
within PADEC, further protecting the consumer’s privacy. On
the other hand, keyholes impose an overhead, as consumers
need to query for the keyhole of an endpoint before sending
the key. These exchanges are depicted in Fig. 3.

E. Step 4: Providing access options

As a next iterative step, PADEC can allow a provider to
set multiple rules (and hence, define multiple keyholes) to
control access to a single endpoint. The goal is the corollary
of the previous step, i.e., to prevent provider over-exposure.
For instance, the rule the consumer must be within 50 meters
of my position or belong to the group “friends” to access this
endpoint can be decomposed into two, one that requires the
consumer’s location and the other that requires the consumer’s
identity. Before decomposition, the keyhole for the above rule
would request both location and identity; after decomposition,
the consumer sees two different keyholes and can choose
which information to provide. In PADEC, we refer to these
different keyholes as access levels; when a consumer discovers
the endpoints, the provider also returns the keyholes of all the
access levels, and the consumer can choose which one they
want to attempt to access. This refined process is shown in
Fig. 4. A consumer can choose the order in which it attempts
to access the available keyholes, depending on the consumer’s
own sensitivity to private context information.

F. Step 5: Increasing providers’ privacy flexibility

Up to this point, if a consumer gets access to an endpoint
through any of its keyholes, the consumer gets access to all the
information in that endpoint. The next layer places filters on

top of access levels and their associated keyholes. In particular,
a provider can attach a different filter to each access level ex-
posed by an API endpoint; the filter can be used to abstract or
obfuscate the results returned from the endpoint. Thus, rather
than having to duplicate endpoints to provide different levels
of access, the provider can use a single endpoint but post-
process the results before returning them to the consumer. In
this way, PADEC separates the application-level functionality
of the provider endpoint from the concerns associated with
privacy and access control, which are implemented within the
keyholes and filters. This additional step is shown in Fig. 5.

In PADEC, a filter can be any technique used to limit the
precision of the information returned by an endpoint. PADEC
has basic built-in filters, but these are also user-definable by
injecting small pieces of code or tailored parameters.

Finally, to assist consumers in selecting appropriate key-
holes, the discovery information that is returned to the con-
sumer (i.e., step (2) in Fig. 5) includes the achievable level
of precision for each of the available keyholes. To avoid
insider attacks, filters should be implemented in such a way
that guarantees idempotence, i.e., repeated access grants to
the endpoint should consistently provide access to the same
information after obfuscation as long as the unobfuscated
information does not change.

G. Step 6: Negotiating multi-level access

Finally, as we discussed above, there is a limitation in the
design of PADEC’s keyholes and access levels: a consumer
cannot tell in advance which access levels will be granted
and which will be denied, which may result in several back-
and-forth interactions as the consumer tests different keyholes
to attempt to gain the needed access. This has potential
significant negative ramifications in terms of communication
overhead, especially as the application scales in size.

To mitigate the impact of this limitation, PADEC includes
a negotiation component. Rather than providing exactly a
single matching key in each request, consumers in PADEC
can provide a personalized key that the provider can try
against multiple keyholes. Upon receiving the request, the
provider will try to use the key in the access level with the
highest precision. If access is not granted, the provider will
automatically resort to the next access level, and so on. If no
attempt succeeds, access is effectively denied.

H. A Final Note about encrypted communication

As we described at the beginning of this section, our
iterative design of PADEC assumes that all communications
are encrypted, to ensure protection against eavesdropping and
replay attacks. These mechanisms rely on cryptographic keys
exchanged among all pairs of devices out-of-band. However,
to keep all interactions purely opportunistic, it is possible
to embed the key exchange into the messages sent as part
of PADEC by integrating a key exchange protocol similar
to Diffie-Hellman [20] into the endpoint discovery process.
Taking the protocol in Fig. 5 as the final PADEC model. The
consumer can send its public key with its discovery query



in (1). As part of returning the endpoint and keyholes, the
provider can create a new symmetric key and encrypt it with
the consumer’s public key before returning it. The consumer
(and only the consumer) has the associated private key, which
it can use to retrieve the symmetric key. This symmetric key
can be used to encrypt the subsequent communications in the
exchange (in particular exchanges (6) and (10) in Fig. 5).

VI. EVALUATION

To evaluate PADEC, we first measure the trade-off between
the privacy level achieved by the system and the successful
accesses to endpoints in each of the steps explained in Sec. V.
We then quantify the overhead of the system in each of
the steps. Third, we explicitly compare the expressiveness of
PADEC with that of alternative mechanisms, namely RBAC
and ABAC. In fact, the first sets of metrics – privacy, success-
ful accesses, and overhead – also allow comparison across
PADEC, RBAC, and ABAC, since Step 1 in the PADEC
protocol is equivalent to RBAC and Step 2 is equivalent to
ABAC. Finally, we provide a discussion of PADEC’s success
in addressing the threat model described in Section IV.

Our primary mode of evaluation is through the implemen-
tation of PADEC as an application layer in the ONE [21]
simulator. We incorporated a streetmap of New York City
from OpenStreetMap [22], in which the network nodes are
of two kinds: tourists visiting the city and local residents.
From a PADEC architectural perspective, tourists are con-
sumers of data, and their movements are constrained to the
touristic zones of the map (i.e., central downtown squares).
The nodes representing local residents are PADEC providers
that roam through touristic and residential zones of the city.
As our evaluation moves into evaluating our threat model, a
subset of each group is designated as attackers. The simulated
scenarios consider 100 local residents and 50 tourists, and
each simulation runs for 24 hours of simulated time. In
the threat model evaluation, we consider 90 honest locals,
40 honest tourists, 10 malicious locals and 10 malicious
tourists. Every 50 seconds, if a tourist is not waiting for a
response to a request, the tourist chooses a random connected
local and starts a PADEC communication, using a simple
broadcast communication across the opportunistic network. It
is important to note that both tourists and locals may keep
moving during these interactions, and thus, their messages may
be routed through the opportunistic network instead of being
delivered directly.

As data to support the application scenario, we construct
POI histories for the providers using a set of FourSquare
check-ins in New York City between April 2012 to February
2013 [23]. We generate a realistic POI history for each sim-
ulated resident using the anonymized user IDs in the dataset.
Each provider has an average of 210 check-ins, and the full
dataset contains 227,428 check-ins. Each consumer collects
three pieces of context that can be shared with providers
to gain access to their POI histories. Each type of context
has a different category of sensitivity from the consumer’s
perspective. Higher categories are considered to be more
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Fig. 6. Privacy vs. successful accesses trade-off in each PADEC step.

sensitive, i.e., to reveal more private information. The context
types we use are: (1) identity, which each consumer perceives
as the most sensitive attribute, which we refer to as category
3; (2) location (category 2); and (3) sound level (category 1).
For our initial experiments, in Steps 1 through 3, we assume
that all tourists are willing to reveal any context information
to gain access to a provider’s POI history endpoint. From Step
4 onwards, we assume that half of the tourists remain willing
to reveal any information, while the other half will only reveal
categories 1 and 2 (but not the category 3 identity information).

Each of the six steps is also associated with one or more
rules defined by the provider to constrain access to the
endpoint. For each of the six steps, we use the following rules:
Step 1 The provider grants access only to users whose iden-

tities place them in the friend group (14% of the
tourists) or family group (6% of the tourists).

Step 2 The provider also grants access to any tourist within
500 meters of the provider.

Step 3 Same as Step 2.
Step 4 The rules are separated into two access levels (one for

friends and family and a second for nearby strangers).
Step 5 Filters are associated the defined levels. The results

for friends and family are not filtered, while those for
nearby strangers only shows POIs visited at least three
times between October and January.

Step 6 Same as Step 5.
Privacy vs. access. Our first evaluations consider the trade-

offs that users navigate with respect to revealing their private
information versus gaining or granting access. Fig. 6 shows
these trade-offs for each step of PADEC. We present three
metrics: consumer privacy, provider privacy, and number of
successful accesses. Consumer privacy is based on the average
sum of the categories of the attributes shared, so that 0% means
all attributes are shared and 100% means no attributes are
shared. Higher values for this metric therefore indicate a higher
degree of consumer privacy. Provider privacy is based on the
average precision of the information shared, so 0% means all
of the raw POI information is shared (100% precision) and
100% means no POI information is shared (0% precision).
Finally, successful accesses computes the percentage of the
consumers’ requests that were successfully answered.

Step 1 only considers identity, so the exposure of the con-
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sumers reflects the sensitivity of the context released, but also
the fact that two context types are not shared. Because only
family and friends are granted access, 65.57% of requests are
denied. In Step 2, using other contextual attributes dramatically
increases the percentage of fulfilled requests, but a consumer’s
privacy is completely exposed (i.e., all consumers share all
of their context). In Step 3, the keyhole allows consumers
to reveal slightly less information in their keys, increasing
their privacy with no impact on successful accesses. The
two access levels in Step 4 greatly increases the privacy of
consumers, as they only have to reveal one contextual attribute;
but consumers try the access level with the best precision given
the context data they are willing to release. This means many
try to access through the keyhole that requires identity, but they
are not always friends and family, so 34.42% of the requests
fail. Step 5 adds filters, which greatly improves the privacy of
providers and has no impact on the other two metrics. Finally,
the negotiation algorithm of Step 6 greatly increases successful
accesses, getting up to 90.16% of the requests being satisfied,
with a modest impact on consumer privacy.

Overall, while the increase of consumer privacy is not as
large as the increase of provider privacy, there is an important
feature of PADEC to consider: by design, the contextual infor-
mation shared in the key can only be accessed by PADEC. The
underlying applications are unable to access this information,
so providers running malicious applications cannot collect
data from the consumers. Compared to the information shared
by providers, which can be read by underlying applications,
consumer data is much more protected.

Overhead of PADEC. We consider two metrics for over-
head: the number of messages sent during an exchange like
the one shown in Fig. 5 and the total amount (in bytes) of
data exchanged. Fig. 7 shows the overhead. While RBAC
and ABAC (as Steps 1 and 2) have a low overhead, PADEC
almost doubles this overhead in the later steps. PADEC has to
share four messages (keyhole request, keyhole information,
key, and response), whereas RBAC and ABAC only need
two (authorization request and response). Although these two
additional messages increase the overhead, the total overhead
of PADEC in the context of this application scenario is
1.63 KB.This doubling of the communication overhead is
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the primary price an application pays to be able to leverage
PADEC’s capabilities. However, since the overhead of ABAC
and RBAC is already very low considering current communi-
cation technologies, doubling the overhead is acceptable.

Comparative assessment of expressiveness. To evaluate
the expressiveness of the relevant access control models, we
compare the performance of ABAC and RBAC to a simula-
tion in the same scenario featuring a PADEC endpoint with
five access levels. Though PADEC allows for further access
levels, these five levels are sufficient to demonstrate PADEC’s
expressiveness. We constrain ourselves to RBAC and ABAC
because they are implementable in an opportunistic device-to-
device network; DySP-RBAC, in contrast, requires a central
registry with data that relates different users.

Our comparison is shown in Fig.8, which shows a theo-
retical comparison on the left and a practical demonstration
on the right. From a theoretical perspective, we characterize
the size of the rule space, i.e., how many different rules
could be specified in each approach. We consider the use
three context attributes as well as four operators and two
combinational operators (and, or) to join rules. If we limit
rules such that each combinational operator can be used only
once (preventing infinitely long rules), we can compute the
total possible number of attributes, rules, and access levels,
as shown on the left of Fig. 8. Since ABAC and PADEC
allow the use of contextual attributes other than identity, they
are more expressive than RBAC. PADEC is, theoretically, the
most expressive, nearly tripling the number of possible rules
in comparison to ABAC. Furthermore, PADEC allows each
rule to be associated with a filter, allowing multiple levels of
privacy for each endpoint, while RBAC and ABAC can only
set a single rule over an endpoint.

Threat model mitigation. Finally, we examine the degree
to which PADEC addresses the threat model in Section IV.
We used a scenario in which 10 consumers are attackers and
10 locals are attackers assigned each of the threats. Since it is
not possible to access the key from an underlying application,
consumer over-exposure attacks have been implemented in
third-party nodes. In total, 37,109 attempts of various at-



tacks were performed for circumventing context constraints,
consumer over-exposure, eavesdropping and replay attacks.
Unauthorized access attacks were proven to fail in the previous
simulations, since accesses were denied. As for insider attacks,
filters for each access level are, by design, idempotent, which
makes it impossible to correlate responses from the same
access level, as responses do not contain different information
from one another. A total of 0 attempts were successful in the
simulation, and therefore, we conclude that PADEC is resistant
against attacks from the proposed threat model.

We have validated PADEC against the case study in Sec-
tion II. PADEC provides tools for consumers and providers
to share data opportunistically. The results show that PADEC
can be leveraged to increase privacy with a negligible overhead
compared to alternative access control mechanisms.

VII. CONCLUSION AND FUTURE WORK

As interest in systems that leverage sensors of companion
devices (such as the interest in mobile crowd sensing) con-
tinues to grow and develop, users become more wary about
privacy of their data. To empower them and maintain data
ownership, opportunistic data sharing systems have evolved,
but they require expressive, context-sensitive, and privacy-
aware access control mechanisms. We developed PADEC to
directly address these concerns, protecting the privacy of
providers and consumers in opportunistic scenarios with a
much higher expressiveness and minimal overhead compared
with alternatives such as ABAC or RBAC. In the future, we
expect to address the insider multi-type attack.
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Abstract—The Industrial Internet of Things (IIoT) provides
automation solutions for industrial processes through the inter-
connection of different sensors, actuators and robotic devices
to the Internet, enabling for the automation of manufacturing
processes through Factory Automation. However, IIoT processes
are often critical, and require very high Quality of Service (QoS)
to work properly, as well as network scalability and flexibility.
Fog computing, a paradigm that brings computation and storage
devices closer to the edge of the network to enhance QoS,
as well as Software-Defined Networking (SDN), which enables
for network scalability and flexibility, can be integrated into
IIoT architectures in the form of fog nodes that integrate both,
computation resources and SDN capabilities, to meet these needs.
However, the QoS of the IIoT system depends on the placement
of these fog nodes, creating a need to obtain placements that
optimize QoS in order to meet the requirements by minimizing
the latency between the fog nodes and the IIoT devices that
consume their services. In this paper, this fog node placement
problem is formalized and solved by means of Mixed Integer
Programming. We also show relevant experimental results of our
formulation and analyze its performance.

I. INTRODUCTION

With the rise of the Internet of Things (IoT) in recent
years, the interest on integrating Internet-connected devices
into industry to simplify and automate industrial processes has
also been increasing, leading to the creation of the Industrial
Internet of Things (IIoT) [1]. Some of these IIoT applications,
such as Factory Automation (FA), aim at fully automating
manufacturing processes. However, IIoT applications such as
FA are characterized by having very strict requirements for
their Quality of Service (QoS), such as cycle times of 1
millisecond [1].

These QoS requirements call for architectures that are spe-
cifically built to support them. Currently, the cloud computing
paradigm is extensively used in other IoT fields. However,
meeting the strict QoS of critical IIoT applications such as
FA can be complicated due to the physical distance between
cloud servers and IIoT devices. This has brought paradigms
such as fog computing, which brings computation and storage
resources closer to IIoT devices, to the scene. Fog computing
can be an important enabler for critical IIoT applications [2],
mainly to meet response time requirements. Since these fog
nodes are closer to end users, data has to go through shorter
paths, and thus, it takes less time to transmit.

Another key aspect on IIoT is scalability. In order to

support FA, the network needs to account for scalability and
flexibility, while still delivering a high enough QoS to meet
its requirements [1]. In this respect, the Software-Defined
Networking (SDN) paradigm provides a decoupling between
the data and the control planes, which enables high flexibility
and scalability in these networks and can play a critical role
in IIoT [1], [3].

It is because of this that architectures that combine both fog
computing and SDN are a key enabler for IIoT, allowing to
meet the stringent QoS requirements of FA while delivering
flexibility and scalability. In [4], some of the authors of
this work presented a proposal for a self-adaptive framework
that combines both fog and SDN aimed at IIoT, as well
as for a specific Fog Node (FN) for the architecture. The
FN includes an SDN switch and a virtualization platform
to provide IIoT services. The FN is designed to host IIoT
services for applications such as FA to meet its stringent
QoS requirements, and thus allows for an integration of fog
computing and SDN aimed at IIoT QoS-strict applications.

However, as also tested in [4], the placement of this FN
impacts on the QoS of the architecture. While these tests
are limited to two scenarios, i.e. deploying the FN in the
local network and deploying it in a remote network, it shows
that the placement of the FN can affect the QoS of IIoT
applications. Therefore, if these IIoT applications have strict
QoS requirements, such as FA, it is key to place the FN in
such a way that QoS is optimized. Otherwise, the possibility
of using QoS-strict IIoT applications could be at risk.

While optimizing the placement is a way to optimize QoS,
it is not always possible to make the distance between a single
FN and IIoT devices short enough to meet the QoS needs of
FA. In these cases, the placement of more than one FN has to
be optimized. Moreover, there is also a need to optimize the
routes between FNs and IIoT devices, so that each IIoT device
consumes the services of the FN that provides the best QoS
to it. These routes can then be implemented in the network
using SDN, allowing for a transparent solution for FA and
other IIoT applications [3]. The problem of placing a certain
number of FNs optimally in the network, finding which FNs
provide the best latency to which IIoT devices and finding the
optimal routes between those, so that latency between them is
minimized and QoS is therefore optimized, is what we label
the Fog Node Placement Problem (FNPP). In this work, we



provide a solution for the FNPP that, when applied on a certain
architecture, is able to find all these results.

The main contributions of this paper are:
• The formalization of the FNPP.
• The formulation of the solution to the FNPP using Mixed

Integer Programming (MIP).
• An analysis of the results of applying the solution to

architectures under different circumstances.
The remainder of this paper is structured as follows. Sec. II
motivates the FNPP. Sec. III explains the system model used
in the FNPP. Sec. IV includes the problem formulation as a
MIP optimization problem in order to find its solution. Sec.
V presents details of our test environment and experimental
results. Finally, Sec. VI concludes the paper.

II. MOTIVATION

The FNPP is mainly motivated by IIoT applications that
have very stringent QoS requirements, such as FA. In these
applications, functionality is inherently related to QoS, and
the QoS to meet is very strict, e.g. 1 ms response time [1]. To
this respect, it is crucial to minimize response time in order
to meet this requirement.

There are two methods to improve response time of a
system, either the computing QoS (i.e. execution time) or the
networking QoS (i.e. latency) have to be improved [5]. Fog
computing provides a solution that enables for both, bringing
computation resources closer to IIoT devices to provide them
with services that require very low latency [2]. Moreover,
the SDN paradigm provides scalability and flexibility to the
network, two key requirements of FA [1]. Therefore, SDN and
fog computing should be integrated in IIoT scenarios to meet
the needs of FA.

The proposal in [4], namely the FN, enables for the in-
tegration of fog computing and SDN, while being designed
specifically for IIoT. FNs can therefore meet both necessities
of FA, by providing IIoT services close to the IIoT devices that
consume them as well as enabling for a flexible and scalable
network by including an SDN switch. However, the placement
of FNs is key for the QoS of the IIoT services they host, with
a sub-optimal placement being able to put the feasibility of a
FA system at risk, i.e. the solution to the FNPP is key to meet
the QoS needs of FA.

Although the need for QoS, flexibility and scalability of FA
systems and similar IIoT applications, manifested in the form
of a need for fog computing and SDN, can be solved by using
FNs, this creates a need for optimizing their placement. This is
the need that mainly motivates this paper. Therefore, the main
goal of this paper is to provide a solution to the FNPP in
form of a MIP formulation to optimally assess the placement
of FNs in a specific IIoT scenario.

To the best of our knowledge, no prior works tackle the
problem of placing a set of fog nodes in such a way so
that QoS is optimized. However, both the optimization of
QoS through the placement of equipment and the optimization
of fog infrastructures in different ways are currently active
research topics [6]–[8].

Figure 1. Example system model.

On the one hand, different works have conducted research
on optimizing the placement of a SDN controller to optimize
the QoS of a network [6]. On the other hand, optimization of
QoS in fog infrastructures is an open topic in research. [7]
proposes an optimization based on a placement of services in
fog infrastructures that violates QoS requirements as least as
possible. [8] optimizes QoS by finding the optimal node in a
fog infrastructure to execute a certain service dynamically and
to integrate these optimal solutions with a SDN controller so
they are applied transparently.

The main differences between the works presented and this
work are mainly related to their focus. The works related to
SDN controllers aim at optimizing the QoS of the network, as
opposed to optimizing the QoS of IIoT applications instead.
On the other hand, related works on the optimization of fog
infrastructures are focused on placing services on already
placed FNs, not on placing the FNs themselves.

III. SYSTEM MODEL

In this section, the FNPP is explained in detail with an
example model. For this model, a FA IIoT application for
automated welding will be considered. In this application, each
smart welder constantly senses the item in front of it. If it is a
piece of metal, it notifies an smart welding service to retrieve
a command on how to weld it. In this particular example,
the system is comprised of four smart welders and four SDN
switches, connected in a topology as shown in Fig. 1.

Since the smart welders have to quickly perform cycles in
which they sense metal, send the information to the service
and retrieve commands, the smart welding service runs on an
FN to meet its strict latency requirements. This FN contains a
SDN switch while also hosting IIoT services, in this case, the
smart welding service. Therefore, one of the SDN switches
shown in Fig. 1 should be replaced by an FN. However, any
of the shown switches could potentially be replaced by an FN.
To meet the strict latency requirement, the FN cannot be more
than one hop away from a smart welder. Therefore, there is a
need to solve the FNPP in order to meet the requirement.

If switch 1 were to be replaced by an FN, A, B and C
would meet the requirement. D, however, would be two hops
away, and thus, it would not meet the requirement. Similar
results are obtained if the FN replaces switches 2 or 4. If
it were to replace switch 3, however, it would be possible



to meet the latency constraint, given that A would not route
through switch 2. Therefore, it is needed to obtain the optimal
placement for the FN and the optimal routes to be followed by
the traffic of every smart welder in order to meet the stringent
QoS requirement that has been set.

Another approach could be replacing two switches by FNs
instead. In that case, some smart welders would consume the
service from one FN, while the rest of smart welders would
consume it from the other one. In that case, if one of the FNs
is placed on switch 3 and another one is placed on switch 1,
D should consume the service from the FN on switch 3. If
it were to consume it from switch 1, even with an optimal
route, it would be two hops away. Therefore, when multiple
FNs are considered, not only the placement of the FNs and
the routes followed by the traffic are important, the mapping
between IIoT devices and FNs is too.

While the FNPP can be solved manually in small cases
like these, scalability is crucial in IIoT [1]. The definition
of the FNPP can be reduced to the definition of the facility
location problem adding flow constraints, and is therefore an
NP-hard problem [9]. Thus, when these architectures grow,
testing every single placement, route and mapping manually
can become unbearable in terms of time.

IV. PROBLEM FORMULATION

In order to solve the FNPP in larger architectures, we
present a formulation using MIP, that can be used with
automatic MIP solvers to solve the FNPP.

To define the FNPP, the network topology is represented as
a directed graph G = {V, L}, where V are the vertices and
L are the links. A link lij ∈ L; i 6= j; i, j ∈ V links together
vertices i and j. Let Cij be the capacity of the link lij , so that
Cij = 0∀lij /∈ L.

We also make certain assumptions on the network topology.
Namely, we assume that:

• The vertices are either SDN switches or IIoT devices.
• The amount of SDN switches that should be replaced by

FNs is given as input, and should be 1 or greater.
• All FNs have the same capacity.
• The combined capacity of all FNs is enough to deal at

least with all the traffic in the network, and each FN has
enough capacity to deal at least with the traffic from a
single host.

With these assumptions in mind, let H ∈ V be the set of
vertices that are hosts and S ∈ N be the set of vertices that are
switches. Thus, V = H ∪ S and H ∩ S = ∅. S will therefore
be the set of possible placements for FNs. Similarly, every
host h ∈ H generates an amount of traffic φh ≥ 0 that has to
be processed by its mapped FN. An FN has the capacity to
process up to α traffic per unit of time.

Let P (i, j) = {L′, V ′} be the shortest path from vertex
i to vertex j, which traverses vertices V ′ and links L′, so
that L′ ⊆ L;V ′ ⊆ V . Let D(P (i, j)) = |V ′| − 1 be the
amount of vertices traversed in path P (i, j) (e.g. a path that
directly connects i with j would have D(P (i, j)) = 1). Let
each link have a propagation latency of βlij ≥ 0 and every

switch have a processing latency of βS ≥ 0. Let L(i, j) =∑
lab∈L′ βlab

+ (D(P (i, j))− 1)βS be the latency of sending
traffic from vertex i to vertex j.

Let θ be the upper limit for the number of FNs to be placed.
Concerning the set of variables, let Xi, i ∈ V be a binary
variable that will be 1 if an FN is placed on vertex i and let
Yij , i, j ∈ V be a binary variable that will be 1 if vertex i
is mapped to the FN placed in j. Finally, let fh

ij be a binary
variable that will be 1 if the traffic generated by h is routed
through the link lij .

The set of notations is summarized in Table I.

Parameter Meaning
G Graph that represents the network
L Set of links of the network
V Set of vertices of the network
H Set of hosts (i.e. IIoT devices) of the network
S Set of SDN switches of the network
Cij Capacity of link lij
φh Traffic generated by host h
α Maximum traffic that can be processed by an FN per unit

of time
P (i, j) Shortest path from vertex i to vertex j
βlij Propagation latency of link lij
βS Processing latency of a SDN switch

L(i, j) Latency of traffic sent from vertex i to vertex j
θ Maximum number of FNs to be placed

Variable Meaning
Xi Boolean to determine if an FN is placed in vertex i
Yij Boolean to determine if vertex i is mapped to the FN

located in vertex j
fh
ij Boolean to determine if traffic generated by host h is routed

through link lij
Table I

LIST OF NOTATIONS

Then, the FNPP solution can be formulated as follows:

min
∑

i∈V

∑

j∈V

L(i, j)Yij (1)

subject to:

i ∈ V, h ∈ H :
∑

j∈V

fh
ij − fh

ji =

{
1 if i = h

−Yhi otherwise.
(2)

∀lij ∈ L :
∑

h∈H

fh
ijφh ≤ Cij (3)

∑

i∈V

Xi ≤ θ (4)

∀i ∈ V :
∑

h∈H

φhYhi ≤ αXi (5)

∀h ∈ H :
∑

i∈V

Yhi = 1 (6)

∀s ∈ S :
∑

i∈V

Ysi = 0 (7)

∀h ∈ H : Xh = 0 (8)



∀i, j ∈ V, h ∈ H, li′j′ ∈ L : Xi, Yij , f
h
i′j′ ∈ {0, 1} (9)

Eq. 1 expresses the optimization objective, i.e. to minimize
the sum of the latencies from each host to its mapped FN. Eq.
2 represents an adaptation of the classical flow conservation
constraint to this scenario, while Eq. 3 constrains the total
traffic routed by a link to be less than its capacity. Eq. 4
constrains the number of FNs: there must not be more than θ.
Eq. 5 controls the capacity of an FN, so the amount of traffic
directed to that FN is never more that it can handle. Equations
6 and 7 will make sure that each host is mapped to exactly
one FN and that switches are mapped to no FNs. Finally, Eq.
8 assures no FNs will be set up on host vertices. Eq. 9 simply
makes these variables binary.

This mathematical formulation represents the FNPP, allow-
ing it to be solved in different network topologies with differ-
ent characteristics for the FN or the IIoT devices, providing
the optimal placement, routes and mapping to meet the strict
latency requirements of IIoT applications such as FA.

V. PERFORMANCE EVALUATION

In this section, a performance evaluation of our solution to
the FNPP to analyze its performance under different circum-
stances is presented. Analyses of latency varying the number
of FNs placed, traffic, number of hosts in the network and
the criteria used to place FNs have been performed to test the
latency reduction of our formulation. Analyses of link load
varying the amount of hosts in the network have also been
performed to test its impact.

A. Evaluation environment

The formulation has been evaluated in four different topo-
logies to analyze scalability and execution time. Namely, we
have used small (12 switches, 15 links), medium (17 switches,
26 links), large (22 switches, 36 links), and extra-large (50
switches, 88 links) SDN topologies, generated synthetically.

We have considered different parameters for these simula-
tions. Parameter α is the capacity of the FN in Mbps. Since
different topologies have different amounts of traffic, and thus
require different values for α, the comparisons for multiple
topologies have considered α expressed as a percentage of the
total traffic in the network instead of in Mbps. It is important
to keep in mind that not every value for α is valid, since there
must be enough overall capacity to process all the traffic on
the network, as well as to have enough capacity on an FN to,
at least, process all the traffic coming from a single node, as
Eq. 10 shows.

α ≥ max(max(φh∀h ∈ H),
sumh∈Hφh

θ
) (10)

Parameter βS is the processing latency of a SDN switch
in milliseconds. We have considered three values for it,
concretely βS ∈ {0.15, 0.76, 2.21}, retrieved from [10].

In order to evaluate the impact of the number of FNs to be
placed in the network and the amount of hosts, the θ parameter
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Figure 2. Average latency vs θ in medium topology.

as described in Sec. IV and a γ parameter that sets the amount
of hosts per switch have been considered. The traffic on the
network does not change regardless of γ, and is thus divided
equally between the hosts of each switch. Traffic analyses have
been performed by multiplying this traffic by factors between
0.5 and 1.0.

B. Performance analysis

The first analysis that is proposed aims at evaluating the
average latency on the medium topology varying θ and γ,
while each fog node can process all the traffic in the network,
as Fig. 2 shows. When θ increases, latency lowers in a negative
log likelihood. This is because, when more FNs are placed,
they can generally be placed closer to their mapped hosts, thus
reducing latency, until they reach the switch they use to access
the network. Once there, it is not possible to place FNs any
closer. Therefore, the latency decrease is very significant when
θ is low and FNs are in intermediate positions. However, it
gets less steep as θ increases and FNs are closer to hosts, thus
the negative log likelihood. As for the number of hosts per
switch, it slightly influences latency, and its influence is not
greatly affected by θ.

The second analysis aims at evaluating the average latency
on the medium topology varying the traffic load, as Fig. 3
shows. In this analysis, the values for FN capacity and θ have
been experimentally established in such a way that FNs are
stressed when traffic rises. As we can see, when the network
is not heavily loaded (i.e. traffic scaling between 0.5 and
0.9), latency is stable. However, in stress situations (i.e. traffic
scaling of 1.0), there is a latency spike. This is because some
areas produce more traffic than others, and thus, once the
closest FN to the area is at its full capacity, the remaining hosts
in that area have to be mapped to an FN in another area, and
thus, further away, increasing the latency for these hosts. The
main difference γ makes is about mapping few IIoT devices
with high resource requirements or many IIoT devices with
low resource requirements, which influences how many hosts
have to be mapped to other areas and how they are mapped.

Fig. 4 shows the average latency on the medium topology as
a function of α. The objective of this analysis is to evaluate
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Figure 3. Average latency vs traffic in medium topology.
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Figure 4. Average latency vs α in medium.

the average latency varying the FN capacity. It is clear that
the number of hosts per switch affects the effects of α: the
higher γ is, as long as it is larger than 1, the less steep the
latency reduction is. On the other hand, it is also shown that
a higher α generally improves latency. This is because of the
effect commented earlier: a higher α makes each area be less
overloaded with traffic, and thus, it makes the hosts in said
area able to direct all their traffic to the FN in their area. The
higher α is, the less traffic has to be directed to FNs in areas
further away. However, each host can only direct its traffic to
a single FN, hence, γ > 1 improves this effect, as different
hosts can be mapped to different FNs. It can also be seen that
lower γ values have a lower latency with low values of α
but a higher latency with high values of α, compared to other
values of γ.

In order to evaluate the scalability of our proposal, the next
analysis evaluates the link load in different topologies. Figures
5, 6 and 7 show the empirical CDF of the link load in different
topologies. The size of the topology and the number of hosts
per switch are both key to this respect. In general, it can be
seen that the links of larger topologies are less loaded than
those of smaller topologies. These patterns are also replicated
when considering γ: a higher γ makes the CDF steeper. γ also
has a major role on the number of unused links: a lower γ

Table II
AVERAGE EXECUTION TIMES OF THE SIMULATIONS IN MEDIUM

TOPOLOGY

γ θ Time (s)

1

1 0.708
2 1.680
3 0.878
4 0.830
5 1.139
6 0.953

2

1 3.490
2 7.582
3 3.017
4 2.996
5 3.584
6 2.906

γ θ Time (s)

5

1 36.069
2 35.239
3 30.325
4 30.320
5 32.957
6 31.205

8

1 136.489
2 143.020
3 138.938
4 128.652
5 189.306
6 135.589

leaves more links unused. One of the main reasons for this
is that a higher γ adds an additional link for each host, that
will always be used. Thus, these additional links make the
proportion of overall unused links lower.

Fig. 8 shows a comparison between choosing the placement
of the FNs by using different graph theory-based techniques
and choosing the placement by using the formulation proposed
in Sec. IV, labeled as Optimal. In all of the cases, the host-
FN mapping and the traffic routing were performed by means
of the formulation in order to minimize latency. As Fig. 8
shows, the minimum latency achieved by each technique is
quite different when θ = 1. However, the performance gap
shrinks when θ is larger. In any case, placing the FNs in the
nodes with the highest betweenness centrality gives the best
results out of the three techniques. Nonetheless, there is a large
performance gap between using any of these techniques and
using the proposed formulation, although it shrinks when θ
is large enough. This is because, when θ is larger, more FNs
can be placed, and thus, it is more likely to place FNs at their
optimal placements.

Finally, Tables II and III show the results of an analysis to
evaluate the scalability of our solution on large networks based
on the mean execution time of the simulations that considered
our formulation. The results for the medium topology can be
seen in Table II. In the medium topology, the MIP solver
usually takes more time to solve the problem when θ = 2,
while it usually manages to keep similar times in the rest
of cases, taking into account that γ is the most important
parameter that influences execution time, since more hosts per
switch means an overall larger topology, and, as it can be
seen in Table III, the size of the topology is a key parameter
on execution time. As for the times themselves, the worst
time is for solving the FNPP in the medium topology with
γ = 8, θ = 5 takes roughly over 3 minutes. On the other hand,
in smaller topologies, such as the small or medium topology
with γ = 1, the FNPP can be solved in about one second. In
the middle ground, it takes roughly 25 seconds to solve the
FNPP in the extra-large topology.

In the IIoT domain, these results show that a high amount
of FNs is crucial to minimize latency, and that assessing their
placement, mapping and routing by using our proposal can
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Figure 5. Empirical CDF of link load in small
topology.
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Figure 6. Empirical CDF of link load in
medium topology.
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Figure 7. Empirical CDF of link load in large
topology.
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Figure 8. Average latency using different solutions in medium topology.

Table III
AVERAGE EXECUTION TIMES OF THE SIMULATIONS IN DIFFERENT

TOPOLOGIES

Topology |V | |L| Time (s)
Small 24 27 0.810

Medium 34 43 1.912
Large 44 58 1.902

Extra-large 100 138 25.100

further minimize this latency. By repeatedly solving the FNPP
and installing its routes and mappings on the SDN controller,
it is possible to adapt the placement over time to minimize
latency, all while being transparent to the IIoT devices.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced, formulated and proposed
a solution for the problem of placing one or more fog nodes to
optimize the latency of IIoT applications, i.e. a solution for the
FNPP. Furthermore, we have tested the solution formulation
on different network topologies with different parameters and
we have analyzed the effects of these parameters in network
latency. We have also tested the scalability of our solution in
different circumstances.

Our formulation is able to optimize the placement and
mapping of FNs, as well as to optimize the routing of the
traffic that each node offloads to its fog node in tractable
time. Therefore, it is possible to use the proposed solution
over time, thus adapting FN placement, mapping and routing

to fit dynamicity. The speed of these adaptations is dominated
by execution time, and thus, it is not possible to adapt the
placement, mapping and routing in larger networks in less
than a few minutes.

In the future, we expect to analyze the impact of adding FNs
in terms of cost, as well as to develop heuristics to improve
scalability and execution time, so this problem can be solved
in a shorter time in large networks, and thus its adaptation time
can be shortened. We also expect to evaluate the performance
of our formulation and these heuristics in real or emulated
network test-beds.
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Abstract—Nowadays, cloud computing has become a key
paradigm in distributed applications thanks to the rise of low-
power Internet-connected devices as commonplace. However,
stringent Quality of Service (QoS) requirements are complicated
to achieve when a pure cloud computing paradigm is applied, due
to the physical distance between end devices and cloud servers.
This motivated the appearance of fog computing, a paradigm
that adds computation and storage resources, named fog nodes,
closer to the end devices in order to reduce response time and
latency. However, the placement of fog nodes, as well as the
relative placement of the end devices each fog node serves, can
affect the QoS obtained. This can be crucial to those services that
have stringent QoS requirements. In this work, we analyze the
effects that different placements of fog nodes have on QoS and
present the problem of placing fog nodes to obtain an optimal
QoS, with a focus on the Industrial Internet of Things domain
because of its strict QoS requirements. We conclude that an
optimized placement of the fog nodes can minimize latency to
support the QoS requirements of IIoT applications.

Index Terms—Software-Defined Networking, fog computing,
Quality of Service, Internet of Things

I. INTRODUCTION

Nowadays, the Internet of Things (IoT) and the rise of
mobile devices has made these devices ubiquitous. A 59%
of all Internet-connected devices in 2018 were smartphones or
IoT devices [1]. However, these devices, specially IoT devices,
usually have severe energy and cost constraints that make
them lack the power to perform computational-heavy tasks.
A common solution to this problem is to offload these tasks
to the cloud [2]. While this paradigm is commonly used, the
fact that cloud servers are usually in the core of the network
can make high Quality of Service (QoS) complicated to obtain
[3]. New paradigms have emerged, such as fog computing
[3], that bring part of the computation and storage resources
closer to the edge in an attempt to support these strict QoS
requirements.

A key QoS requirement is low response time, since not all
IoT applications are delay-tolerant. The main strategy used in
fog computing to support it is to place fog servers closer to
the users, so the path data has to go through is shorter, and
thus, it takes the data less time to go through it.

While fog computing is an interesting paradigm for QoS-
strict applications, it does not come without its challenges.
Some of these challenges, such as seamless service delivery

when IoT devices move to different parts of the network, can
be tackled transparently for the applications if the network
itself deals with them [4]. In the past, it would have been
very difficult to adapt the behaviour of the network to tackle
these challenges. However, the Software-Defined Networking
(SDN) paradigm enables network administrators to take care
of them. The core idea behind SDN is to decouple the data
and control planes, by making SDN switches merely execute
orders in the data plane and centralizing the control plane in
the SDN controller. An SDN controller is an entity that defines
rules for the switches to follow. The main feature of SDN
controllers is that they can be programmed, thus allowing for
the creation of network-level applications, that can alter the
behaviour of the network under concrete circumstances for
different purposes, such as taking care of the aforementioned
challenges in fog computing. This makes architectures that
combine fog computing with SDN interesting because of the
extra benefits that come from combining them [4].

These architectures that combine SDN and fog computing
can benefit the IoT domain, because of its strict QoS needs
derived from its interaction with the physical world [3], [5],
[6]. The Industrial Internet of Things (IIoT), which integrates
IoT in industry, has some of the applications with most
stringent QoS requirements (e.g. response time under 1 ms)
[7]. This calls for robust physical architectures that are able
to guarantee this high level QoS for IIoT applications.

In these combined SDN and fog architectures, fog nodes can
be essentially divided in two kinds: those that provide services
that require a high level of QoS, and those that only provide
services that are tolerant to lower QoS. We label the former
ones Service Nodes (SNs), because they generally provide
services that are critical to IIoT applications. If a fog node
provides both kinds of services, it should also be considered
as an SN, since it provides critical services. SNs are especially
interesting because their placement affects the QoS of the
services they provide, and since these services are critical to
IIoT applications, their placement may have important effects
on these applications, and an optimal placement of the SNs
may enhance the QoS of these IIoT applications. While the
latter ones are also interesting, the QoS requirements of their
services are not as strict, and thus, to place them optimally
may not be as interesting. In this paper, we focus on SNs and
the effects of their placement in QoS. Therefore, this paper
focuses on architectures that only contain network equipment,978-1-7281-8086-1/20/$31.00 c©2020 IEEE



SNs and IoT devices.
From the networking point of view, the end hosts of these

architectures are IoT devices that are constantly gathering data
through sensing and sending this sensed data to an SN for its
processing. Since the processes performed at the SN have strict
QoS requirements, mainly related to response time, the latency
between the SN and the IoT device is of critical importance.
In [7], a model for SNs is presented and its performance is
evaluated, deriving the conclusion that the latency between
an SN and end devices can be reduced by placing the SN
closer to the end devices [7]. However, the experiments on [7]
are limited to two possible placements for the SN: within the
local network and in a remote network. While this is enough to
support some QoS requirements, it may not be enough for IIoT
applications with very strict QoS needs. In these applications,
it would be desirable to place the SN optimally so the latency
between the SN and the IoT device is minimal.

However, it may not always be possible to optimize latency
by optimizing the placement of a single SN. Some networks
might be large enough so that even the optimal placement
provides a QoS lower than required. This can be solved by
adding multiple SNs instead, and placing them all optimally.
In essence, this would be similar to dividing the network into
multiple zones and placing an SN optimally in each of the
zones, so that IoT devices in that zone use that SN. The
division in zones should also be performed in an optimal way
in terms of QoS, so the optimal placement of the SNs in each
of these zones is also the overall optimal placement for the
SNs.

In this paper, we introduce the Service Node Placement
Problem (SNPP), which consists on dividing a network in a
set of optimal zones and placing an SN optimally in each zone.
To the best of our knowledge, no prior works have introduced
this problem.

The main contributions of this paper are the formulation of
the Service Node Placement Problem, as well as an analysis
of its effects over latency in a series of case studies. The
remainder of this paper is structured as follows. Section II
motivates the SNPP. Section III explains the model used in the
SNPP. Section IV includes the different case studies. Section
V discusses the results of the analyzed case studies. Section
VI shows related works on the subject. Finally, section VII
concludes the paper.

II. MOTIVATION

The motivation of the SNPP is very related to IIoT. IIoT is
the application of IoT for industrial purposes [8]. Thus, IIoT
connects sensors and actuators to the Internet, with purposes
such as smart manufacturing systems [8].

Within IIoT, one key application is factory automation,
which consists on having IoT robotic systems to automate
the production process [8]. This application requires to be
executed periodically in very short time periods (1 ms ac-
cording to [8]). Thus, it is key to minimize the execution time
of factory automation processes so it can be executed in under
1 ms.

Execution time is one of the performance metrics of the
system, and is thus related to the QoS of the system [9].
There are two methods to improve the QoS of an application:
enhancing the network QoS and enhancing the computing QoS
[9]. This can be difficult in cloud computing environments,
which are very common in IoT applications [2], because cloud
servers are usually far away from the devices.

Fog computing is a computing paradigm proposed by Cisco
as complementary to cloud computing [10]. Fog computing is
designed to mitigate these QoS issues by placing smaller, less
powerful cloud-like nodes closer to the devices, so data has to
travel shorter paths, and thus reducing network latency [3].

As explained in Section I, fog architectures can be com-
plemented with Software-Defined Networks for additional
benefits [4]. SDN decouples the data and control planes of
a network, centralizing the control plane in the figure of the
SDN controller, that defines the behaviour of SDN switches by
installing rules in them. This brings benefits to fog computing,
such as allowing a moving end device to start a request in one
point of the network and retrieve the response in a different
point in a transparent way for the applications, by installing
rules on the switches of the network so the response is routed
to the new location of the end device [4].

Among the different approaches and proposals for fog and
SDN architectures, we found [7] to be interesting because
of its IIoT-centered approach. [7] proposes the Service Node
we work with as a self-adaptive fog node that includes SDN
capabilities and provides IIoT services, as well as shows
comparisons of latency depending on the placement of the
Service Node.

In these comparisons, the main conclusion is that placing
the SN close to the IIoT devices results in a better QoS [7].
These results, along with the need for QoS of IIoT and the
powerful tools given by SDN and fog computing, are the
core motivation for the Service Node Placement Problem.
Since SNs enhance QoS, and placing SNs close to IIoT
devices further improves latency, optimizing the placement of
SNs allows for optimization of QoS, and thus, allows for a
simpler method to obtain the stringent QoS required by IIoT
applications such as factory automation.

III. SERVICE NODE PLACEMENT PROBLEM

To model this problem, a networking-centric model is used.
In this model, the network is a graph, in which vertices
are either SDN switches, SNs or IoT devices. Links are the
network links between them. The protocol these links use (e.g.
Ethernet, Wi-Fi, ZigBee) is not of relevance. These links have
a certain latency, that depends on different factors such as the
length of the link.

The vertices of the graph are separated in four major
categories: SDN switches, classic IP routers, SNs and IoT
devices. IoT devices and SNs are assigned to each other, so
that a certain IoT device is mapped to an SN. Thus, each
IoT device produces a certain amount of traffic, that must
be processed by its mapped SN. These mappings are also
important, since QoS can also be affected by them.



As of the model shown in [7], the SN contains an SDN
switch. Thus, we consider that placing an SN in the network
consists on replacing an SDN switch with an SN. Since each
SN contains an SDN switch, each SN can also perform the
same actions as an SDN switch, additionally to the actions that
are specific to SNs. SNs can only process a certain amount of
traffic per unit of time. This amount is labeled capacity of the
SN.

On the other hand, SDN switches and IP routers route traffic
from IoT devices to SNs. Switches add a certain delay to
the packets routed by them [11]. Thus, the SNPP must also
consider this delay as a part of latency. While, as stated before,
we consider SNs can substitute SDN switches, they cannot
substitute classic IP routers. An IP router is not able to perform
the exact same actions as an SDN switch (e.g. SDN controller
placement should take SDN switches into account, but not IP
routers [12]), and thus one should not be replaced by the other
one and vice-versa. Moreover, the migration from IP networks
to SDN is not within the objectives of the SNPP, and is thus
out of its scope. Therefore, the SNPP can be applied to hybrid
IP-SDN networks [13], [14] as well as to pure SDN networks,
since the SDN switches in them can be replaced by SNs.

Figure 1 shows an example model in a hybrid IP-SDN
network. In this example, the network would have 2 SNs (red
and blue), 4 SDN switches, an IP router and 12 IoT devices.
Each IoT device is mapped to a certain SN, and is highlighted
with the same color for clarity. As we can see, each IoT device
is mapped to its closest SN to minimize latency.

Figure 1. Example problem model in a hybrid IP-SDN network.

In this problem model, the SNPP has multiple objectives. If
there is a single SN, a solution for the SNPP should find the
optimal placement for the SN, as well as the optimal routes
from every IoT device to the SN in order to maximize the QoS
(e.g. to obtain minimal latency). However, if there are multiple
SNs to be placed, the solution to the SNPP should first find
the optimal mappings between IoT devices and potential SNs.
In other words, the solution to the SNPP should first find an

optimal strategy to divide the network in different areas, taking
into account that each area will contain a single service node,
that is, every IoT device in the same area will be mapped to the
same SN. Once the division of the network in areas has been
obtained, the solution to the SNPP should obtain the optimal
placement for a single SN in each area, as well as the optimal
routes from IoT devices in the area to the SN in the same
area. Therefore, solving the SNPP with multiple SNs implies
dividing the network in areas first to then solve an SNPP with
a single SN on each area.

The SNPP should also be solved differently depending
on the QoS dimension that is optimized. For example, the
placement of an SN to minimize latency can be different from
the placement of an SN to maximize reliability. It is also
possible to solve the SNPP having as an objective to meet
a certain constraint, instead of optimizing a QoS dimension
(e.g. instead of solving the SNPP to minimize latency, it is
possible to solve the SNPP so that latency is below a certain
threshold, such as the maximum allowed latency of an IoT
application).

IV. CASE STUDIES

In the previous sections, we define the SNPP and the system
model we follow. In this section, we apply this model to IIoT
case studies.

A. Case study A: Small Factory Automation

Factory Automation is an IIoT process that requires a high
QoS, including a maximum latency of 1 millisecond [8]. In
this case study, automation of an assembly line is considered.
This assembly line has 10 robotic arms that are able to perform
the same functions as a human operator [8], and each arm is
also equipped with a set of sensors (e.g. cameras, proximity
sensors, etc.) that allows the arm to sense the items that are
within its reach. The considered network is an IP-SDN hybrid
network [13], [14] with the topology shown in Figure 2. For
the sake of simplicity, we assume that every link is 200 meters
long, and thus, its propagation latency is of 0.0006 ms. The
latency of IP routers is of 0.38 ms [15], while the one of SDN
switches is of 0.15 ms [11].

Each arm works in a continuous cycle, in which it senses
the items within its reach and sends the sensed information
to a control service. The task of this service is to determine
what are these items and how should the arm react. The
control service will then send these commands to the arm so
it reacts appropriately. In this case, a single SN will provide
this service, and the effects of its placement are analyzed.

There are three SDN switches that could be replaced by
this SN, namely, the SDN switch on the bottom, the one on
the center and the one on the right. The effects on latency
that depend on the SN placement are measured using two
metrics: maximum latency among all arms to the SN and
average latency between every arm and the SN [12].

First, the effects of placing the SN in the rightmost switch
are analyzed. With this placement, the arms that are currently
connected to this switch would be directly connected to the



Figure 2. Model of case study A.

SN. Assuming the shortest routes are used, the arms connected
to the IP router on the top would be one hop away from the
SN, the arms connected to the IP router on the left would
be two hops away and the arm connected to the SDN switch
on the bottom would be two hops away as well. Since IP
routers add more latency than SDN switches, the arms with
the maximum latency would be those that are connected to the
IP router on the left, which would have 0.76 ms of latency. If
an alternate, three-hop route is taken through the SDN switches
at the bottom and center, this latency is lowered to 0.68 ms.
On the other hand, the average latency would be of 0.378 ms.

Next, the differences between these effects and the ones
produced by placing the SN in the bottom switch are analyzed.
Assuming the shortest routes are used, the arm on the bottom
would be directly connected to the SN, the arms connected
to the switch on the right would be two hops away, the arms
connected to the router on the top would be two hops away
as well and the arms connected to the router on the left would
be one hop away. The arms with the highest latency in this
case would be the ones connected to the router on the top,
with 0.532 ms of latency, which is lower than the maximum
latency when the SN is placed on the rightmost switch. The
average latency is of 0.345 ms, 0.033 ms lower than when the
SN is placed on the rightmost switch.

Finally, the effects of placing the SN in the switch on the
center are analyzed. Assuming the shortest routes are used, the
arms connected to the leftmost router would be two hops away,
while every other arm would be one hop away. It must also
be noted that the traffic of the arms connected to the leftmost
router should be routed through the SDN switch on the bottom
to minimize latency. Once that is considered, the arms with the
highest latency would be the ones connected to the leftmost
router, with 0.513 ms of latency. The average latency would,
however, be of 0.349 ms, 0.004 ms higher than when the SN
is placed on the bottom switch. Therefore, maximum latency

is lowered with respect to the other placements for the SN,
but the average latency is higher than the latency obtained by
placing the SN in the bottom switch.

Overall, the conclusion is that the placement of the service
node affects QoS, namely latency; and that the SNPP should
be solved with a certain metric in mind. For instance, if the
objective is to optimize the average latency, the SN should
be placed on the bottom switch. However, if it is maximum
latency that should be optimized, the SN should be placed on
the switch on the center.

B. Case study B: Large Factory Automation

This case study is similar to the one presented in IV-A. The
focus is on a Factory Automation system that automates an
assembly line by using robotic arms, which work using the
same cycle as the one presented in IV-A. However, in this
case study, there are 20 robotic arms in a completely different
topology, as Figure 3 shows.

Figure 3. Model of case study B.

In this case study, the effects of different divisions of the
network in areas is analyzed. In this case, the network is
divided into two different areas. The placement for the SNs
is clear, since there are only two SDN switches that can be
replaced by SNs. There are many different ways of dividing
this network topology into two areas, but in this case study
two divisions are analyzed. For the sake of simplicity, the same
values for latency and the same metrics as in IV-A are used,
and traffic is assumed to be routed through the shortest paths.

The first division strategy is to divide the network into a top
area and a bottom area. The top area would include the green,
orange, black and brown robotic arms; while the gray, purple,
blue and red robotic arms would be in the bottom area. The



SN for the top area would be on the leftmost switch, while the
SN for the bottom area would be on the rightmost switch. In
such case, the arms with the maximum latency of the top area
would be the orange and brown ones, with a latency of 1.142
ms. For the bottom area, the arms with the maximum latency
would also have 1.142 ms of latency, being the blue and grey
ones. As for average latency, it is also the same in both areas,
being 0.762 ms of average latency. Therefore, the maximum
overall latency would be of 1.142 ms and the average overall
latency would be of 0.762 ms.

The second division strategy is to divide the network into a
left and a right area instead. The left area includes the green,
black, gray and blue arms; while the left area contains the
orange, brown, purple and red ones. The SN for the left area
would be on the leftmost switch, and the one for the right area
would me on the rightmost one. This strategy has an important
impact on latency. With this division, every arm has the exact
same latency: 0.381 ms.

The overall conclusion is that, just like placing the SN in one
place or another has an effect on latency, the mapping between
SNs and IoT devices also affects latency. Thus, even when
the placement of SNs is obvious, the SNPP should also be
considered so the division strategy followed optimizes latency.

V. DISCUSSION

In Section II, it is shown that the QoS requirements for
IIoT applications are very strict, and that fog computing is a
paradigm designed to support these strict QoS requirements
through the usage of service nodes. Therefore, it has been
established that a possible solution to strict QoS needs can be
to use fog computing.

However, in Section IV, it is shown that different place-
ments for SNs, as well as different mappings between IoT
devices and SNs, also affect QoS and should be considered.
Concretely, in IV-A, it is shown that changing the placement of
the SN can decrease worst-case latency by up to approximately
23% and average latency by up to approximately 9%. These
results depend on the underlying network topology and the
possible placements of SNs, but they show that the placement
of SNs can increase or decrease the QoS enhancement that
may come from using fog computing.

In IV-B, it is shown that the mapping between SNs and
end devices is also an important factor on QoS. Concretely,
changing the mapping between SNs and end devices lowers
worst-case latency by approximately 77% and average latency
by approximately 50%. While these decreases depend on the
network topology, possible placements for SNs and possible
mappings, these results show that the increase in QoS that may
be experienced by placing additional SNs may be conditioned
by the placement and mapping of these additional SNs.

The importance of these factors is, however, related to the
objective of a solution for the SNPP. For instance, if the
objective is to optimize average latency, it is key to obtain the
best possible placement, such as the bottom switch on IV-A.
If the objective of the SNPP is to have an average latency of
under 1 ms, however, then any placement presented in IV-A

would be a solution for the SNPP, and thus, SN placement
might not be that important. Even in this last case, it is also
important to note that placement is more important when QoS
requirements are more strict. For instance, if the objective of
the SNPP is to have an average latency of under 0.35 ms, then
placement would be important again, since placing the SN on
the rightmost switch on IV-A would not deliver the required
QoS.

VI. RELATED WORK

The idea that the placement of elements that provide critical
services to an infrastructure has effects on the QoS said infra-
structure provides can be extensively seen in SDN research.
The SDN Controller Placement Problem [12] is a problem
similar to the SNPP, but focused on the network. Concretely,
the SDN Controller Placement Problem aims at placing an
SDN controller or a set of SDN controllers in a certain SDN
network so a concrete dimension of QoS is optimized. This
problem was first proposed in [12], where the effects over QoS
of different placements for the SDN controller were analyzed.
[16] presents a comprehensive survey of different works and
approaches to this problem. [17] presents a solution for the
problem that accounts for dynamic load, adapting the solution
to the current traffic load.

On the other hand, the optimization of fog infrastructures
has also been tackled by other works. [18] focuses on placing
different services in a fog infrastructure with different fog
and cloud nodes optimally to use their resources efficiently.
[19] provides a solution to allocate the necessary resources
for these services, maximizing the Quality of Experience for
users by using fuzzy logic techniques. [20] also tackles an
optimal placement of services in fog computing infrastructures
that minimizes the QoS violations of these services. Other
approaches such as [21] proposes to dynamically find the
optimal node to provide a service and to integrate these
solutions in an SDN controller so the network transparently
transmits requests to the appropriate node.

The main differences between these related works and
this work are twofold. First, the SNPP aims at optimizing
the infrastructure by optimally placing Service Nodes for
certain applications, and thus, optimizing the QoS of these
applications; instead of optimizing the QoS of the network by
placing the SDN controller optimally. Therefore, the focus of
the SDN Controller Placement problem is similar, but on the
networking dimension; while the focus of the SNPP is on the
computing dimension. Secondly, the works on the optimization
of fog infrastructures are mostly aimed at placing services
optimally, either by explicitly finding the optimal nodes to
provide a certain service or by allocating the resources for
the services at appropriate nodes. Instead, this work aims at
placing the nodes themselves optimally in the infrastructure.
To the best of our knowledge, no prior works have tackled the
optimization of QoS in a fog infrastructure by placing the fog
nodes optimally.



VII. CONCLUSIONS

In this paper, the problem of placing a set of service nodes
in a certain architecture that combines fog and SDN so that
QoS is optimized has been proposed, being the Service Node
Placement Problem or SNPP. The SNPP has also been studied
in two IIoT case studies, showing the effects of different
placements on latency.

We find the SNPP to be interesting on fields such as IIoT
because of its stringent QoS requirements. Applying the SNPP
to IIoT applications could possibly allow for an enhancement
of the QoS of these applications by placing its service nodes
optimally.

In the future, we expect to develop a generalized solution
for the SNPP so that it can be applied to different cases and
different network topologies.
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Abstract—Although the use of Ternary Content-Addressable
Memories (TCAMs) in the flow tables of the Software-Defined
Network (SDN) switches increases the efficiency of packets
matching procedure, drawbacks such as their large power
consumption and the limitation on the number of flow rules
that can be installed must be taken into account. This paper
tackles the joint problem of power consumption and TCAM size
limitation in SDN. By exploiting the Rate Adaptation technique
and compression methods, a Multi-Objective Genetic Algorithm
is proposed to practically solve it. Simulations on a real network
topology show that our proposed solution outperforms other
state-of-the-art approaches, both in terms of power saving gains
(20% at non-peak TM) and maximum TCAM utilization (5%).

Index Terms—SDN, energy efficiency, TCAM, compression,
evolutionary algorithms.

I. INTRODUCTION

THE power consumption problem in communication net-
works became of great interest for the research com-

munity during the last decade. A big volume of works intended
to save energy in the wired network infrastructure while ensur-
ing Quality of Service (QoS) requirements have been proposed
[1]. The promising irruption of the Software-Defined Network-
ing (SDN) paradigm, where an energy-efficient management
can be carried out by means of the logically centralized
SDN controller, opened a niche to propose algorithms able
to dynamically re-route the traffic by using the less number of
active network elements [2], [3].

In SDN, the flow tables of the SDN switches are imple-
mented by means of Ternary Content-Addressable Memories
(TCAMs). Their matching flexibility on complex matching
patterns (including several fields of headers belonging to
different layers) and high lookup performance make TCAMs
appropriate for SDN environments. However, their high speed
for classifying packets has several associated drawbacks, such
as large power consumption [4] and high cost [5]. Con-
sequently, these two factors have an impact on the relatively
small number of rules a TCAM is able to store. In particular,
commercial switches only support a small fraction of the
total number of rules required to operate networks (ranging
from 1k to 10k rules, as reported in [6]). This limitation is a
challenging problem to be considered when proposing energy-
efficient solutions on SDN-based networks [7], [8]. On the one

hand, an energy-efficient routing solution is constrained by the
upper limit of TCAM size. On the other hand, a reduction in
the number of rules that are installed in the flow tables of
the SDN switches implies scaling down the required parallel
searches for packets matching, which would lead to a reduction
in the TCAM power consumption.

For this reason, the TCAM size limitation problem is studied
from different perspectives [9]: i) eviction mechanisms [10] are
intended to create room in the flow table of an SDN switch
by removing inactive or less important rules; ii) compression
techniques [11] exploit the use of wildcards and priority
mechanisms to shrink the content of the flow table; and iii)
split-and-distribute solutions [12] divide the set of rules to be
installed in the flow table into subsets which are distributed
among the network nodes.

Although some works introduced the problem of taking
into consideration TCAM size constraints in Energy-Aware
Routing SDN [7], [8], only the ON-OFF (sleeping) approach
on links has been considered to reduce the power consumption.
In the present paper we also consider the Rate Adaptation
technique, in which the power consumption of line cards is
proportional to the operational mode (sending rate) it is being
used [13]. A higher granularity in the number of operational
modes of line cards has been demonstrated to be effective in
terms of energy savings, regardless the type of energy func-
tions and energy distributions that are considered in the energy
consumption model [14]. In SDN networks, the controller can
collect information about traffic load on each link and use it
as input for the Rate Adaptation energy-efficient solution, re-
distribute traffic flows and re-adapt links rates to their new
traffic load while preserving connectivity and satisfying link
constraints.

In order to solve the joint problem of energy efficiency
improvement and TCAM rules reduction, a multi-objective
optimization problem has been defined and formalized. The
two objectives to be optimized are: i) network power con-
sumption, and ii) number of installed rules in the flow tables.
Furthermore, a Multi-Objective Genetic Algorithm (MOGA)
has been proposed to practically solve it in tractable times.

As a summary, the main contributions of this work are listed
next:

978-1-7281-4973-8/20/$31.00 c© 2020 IEEE



• to consider the Rate Adaptation technique in the power
consumption problem on SDN networks where the size
of TCAMs is constrained;

• to define the multi-objective optimization problem for
fairly considering energy efficiency and TCAM size con-
straints on SDN networks;

• to derive a multi-objective GA-based heuristic, namely
Multi-Objective Genetic Algorithm for Energy Efficiency
and Rules Reduction (MOGA-E2R2), to practically solve
the problem;

• to compare MOGA-E2R2 with other state-of-the-art solu-
tions on realistic scenarios;

The rest of the paper is organized as follows. Problem
definition is described in Sec. II. Sec. III details the proposed
MOGA-E2R2 heuristic. Results are reported and analysed in
Sec. IV. Finally, Sec. V draws some conclusions and future
works.

II. PROBLEM DEFINITION

Let us consider an SDN network modelled as a directed
network graph G = (N ,L), where N is the set of nodes and
L is the set of unidirectional links. While each link li,j ∈ L
connecting node i ∈ N to node j ∈ N has a capacity of Ck

i,j

(where k ∈ [0,K] represents the operational mode the link is
currently working on) units to accommodate traffic flows, each
node n ∈ N has a maximum capacity of Cn rules to describe
its forwarding behaviour. Traffic description is given by a
traffic matrix T comprising a set of demands (s, d) ∈ T which
are sent from each source node s ∈ N to each destination
node d ∈ N in the network. Taking into account the network
features described above, the optimization problem this paper
aims to solve is defined as follows. Given a network topology
G = (N ,L) and a traffic matrix T , the objective is to find
an optimal network configuration which minimizes both the
network power consumption and the number of rules to be
installed in the flow tables of SDN nodes. For this purpose,
a routing configuration which i) respects link capacity con-
straints; ii) respects TCAM capacity constraints on nodes; iii)
results in a minimal network power consumption; and iv) the
number of installed rules in the SDN nodes is also minimal.

In order to describe the Mixed Integer Linear Programming
(MILP) formulation intended to solve this Multi-Objective and
Multi-Commodity-Flow (MO-MCF) optimization problem, a
set of variables must be previously defined:
• xki,j is a binary variable representing the operational mode

of the link li,j , whose value is equal to 1 if the link li,j
is in the operational mode k. If x0i,j = 1, the link is
switched off, while if xKi,j = 1 then it is working at full
data rate.

• fs,di,j is a binary variable whose value is 1 if the traffic
demand (s, d) ∈ T is routed on the link li,j , 0 otherwise.

• τ is a variable representing the number of rules installed
on the most used TCAM.

Regarding the power consumption model adopted in the for-
mulation, each link li,j has an associated power consumption

which depends on its operational mode xki,j . Specifically, the
power consumption of the link li,j when it is in operational
mode k is pki,j (clearly, p0i,j = 0 and pKi,j = pMAX

i,j ). Note
that the number of operational modes of a link and their
distribution depend on the hardware technology they are
implemented with [14]. The classical sleeping behaviour [15],
where links can be either powered off or working at their full
rate, is therefore modelled by K = 1.

After explaining the required variables, the problem for-
mulation is described by eqs. (1-8). In particular, the two
objective functions that must be jointly optimized in the MO-
MCF problem are defined by eqs. (1-2):

f1 = min
∑

li,j∈L

∑

k∈[0,K]

xki,jp
k
i,j (1)

whose main goal is to minimize the global network power
consumption, and:

f2 = min τ (2)

which aims at minimizing the maximum TCAM utilization
(τ ), i.e., the maximum number of rules installed in the most
loaded SDN node for traffic steering. Thus, the joint optim-
ization of both functions composes the MO-MCF problem to
be optimally solved:

min [f1; f2] (3)

subject to

∑

j∈N−
i

fs,di,j −
∑

j∈N+
i

fs,dj,i =





1 if i = s

−1 if i = d

0 if i 6= s, d

∀i ∈ N , (s, d) ∈ T

(4)

∑

(s,d)∈T
fs,di,j Ts,d ≤ ui,j ·

∑

k∈[0,K]

xki,j · Ck
i,j ∀li,j ∈ L (5)

∑

k∈[0,K]

xki,j = 1 ∀li,j ∈ L (6)

1

Ci

∑

(s,d)∈T

∑

j∈N−
i

fs,di,j ≤ τ ∀i ∈ N (7)

τ ≤ 1 (8)

Eq. 4 describes the classical flow conservation constraints.
Eq. 5 represents the capacity constraint on links, where the
total traffic routed on a link must be less than the available
capacity. In particular, the available capacity depends on the
current operational mode that is configured in the link li,j .
Moreover, term ui,j represents the Maximum Link Utilization
(MLU) that can be tolerated by each link in the network. Rule
capacity constraint on nodes is defined by eqs. 7-8. The first
imposes that the TCAM utilization at node i must be lower
than the value of the τ variable. The TCAM utilization is



calculated as the ratio between the number of flow rules that
are installed at node i (under the assumption that for each
flow a single flow rule is installed) and the size of its TCAM.
Then, by means of eq. 8, the TCAM utilization on each node
is forced to be, at most, equal to 1, guaranteeing the respect
of the TCAM size constraint.

As previously introduced, the problem formulation de-
scribed above falls into the category of MCF problems, which
are known to be NP-hard. In order to provide a solution
in networks of all size in tractable times, a multi-objective
heuristic based on GAs is proposed in the following section.

III. MULTI-OBJECTIVE GENETIC ALGORITHM FOR
ENERGY EFFICIENCY AND RULES REDUCTION

Evolutionary Algorithms are well suited for solving multi-
objective optimization problems [16], whose aim is to find or
to approximate a group of trade-off solutions known as Pareto-
optimal solution set. In this way, a multi-objective evolution-
ary algorithm, namely Multi-Objective Genetic Algorithm for
Energy Efficiency and Rules Reduction (MOGA-E2R2), is
proposed to jointly solve the energy consumption problem
and TCAM size limitation in SDN networks. This section
outlines the specific considerations of the proposed heuristic,
starting from the definition of an individual in the population,
the fitness functions used to evaluate their suitability to the
problem, the routing scheme adopted to steer the traffic and
the methods used to compress the flow tables. Finally, a
complexity analysis is reported.

A. MOGA-E2R2 Description

In the next, a description of the main components of the
proposed MOGA-E2R2 is provided.

1) Individual Structure: Let us denote with c ∈ P an
individual in the population, representing a potential network
configuration as a succession of L genes where the k-th gene,
gk ∈ c, describes the operational mode xi,j of link k = li,j .

2) Fitness Functions: Regarding the objective function
defined in eq. (3) of Sec. II, two fitness functions, f1 and
f2, are required to evaluate the suitability of each individual
in the population. Concerning the first objective, i.e., network
power consumption, eq. (9) is applied for each individual in
the population c ∈ P . Function P (c) assesses the aggregated
power consumption of the network configuration represented
by the potential solution c, according to the current operational
mode p of each link k in the network. The resulting value
of the sum is multiplied by φ, which is set to 1 if the
network configuration mapped by c is feasible, i.e., the TM
can be correctly routed without violating any of the constraints
reported in eqs. (4)-(8). Otherwise, φ takes a value high
enough to penalise the corresponding fitness value to such
unfeasible chromosome.

P (c) =

(∑

gk∈c
gk · pMAX

k

)
φ, ∀k ∈ L (9)

The second function in the multi-objective optimization is
f2 (reported in eq. 2), whose aim is to minimize τ , i.e., the

maximum number of installed rules in the most loaded SDN
node in the network. In MOGA-E2R2, function Ω of eq. 10
represents the projection of chromosome c on the set R, which
contains the number of rules that must be installed in each
node of the network if the configuration of chromosome c is
used. In the equation, λ(i) returns the number of rules installed
at node i. Once set R is obtained, eq. 11 returns the number
of installed rules in the most loaded SDN node, τ .

Ω : c→ R

Ω(gi,j) = {λ(i), λ(j)}, ∀gi,j ∈ c;∀i, j ∈ N (10)

max(R) = τ ∈ R
if ∀x ∈ R, x ≤ τ (11)

3) Routing Scheme: In the following, the routing scheme
adopted to steer the traffic on the network configuration
represented by the considered chromosome is explained. For
each traffic demand, (s, d) ∈ T , the selected path to steer
such demand is computed following the next steps: i) Dijkstra
algorithm is executed to use the shortest path between source
and destination1; ii) among the set of available paths outputted
by Dijkstra with same cost, an utilization variable, ws,d, is
computed, which represents the utilization of the path ps,d.
The best path to select is the one with the highest utilization
value, computed as the maximum between the most loaded
link in the path and the node with the highest free space in
its TCAM.

3) Flow Rules Compression: Nodes that are approaching
their saturation in terms of number of installed rules execute
a function with the aim of increasing the space in their
TCAMs for installing new rules in the future. In this way,
two techniques have been considered, namely default rule
compression and wildcard rule compression. The idea of the
former method is to aggregate rules into different subsets
according to their outgoing port. Then, the outgoing port
with the biggest subset of rules, o, will be considered as the
default rule in the table, with action equal to forward to o.
Similar to default rule compression, the goal of wildcard rule
compression is to exploit the flexibility provided by wildcards
(noted as *) to aggregate a higher number of rules in order to
increase the free space in the TCAMs.

MOGA-E2R2 is executed at the SDN controller side, which
has to perform next actions: i) collect the set of input para-
meters; ii) run the MOGA-E2R2 heuristic; and iii) configure
the set of rules in a proactive way. This process is triggered
every time there is a significant variation in the traffic of the
network. For this purpose, a set of warnings are defined to
trigger its execution (e.g., a deviation of 5% in the load of a
link).

1In general, if shorter paths are used, a lower number of links are involved,
and hence less energy is consumed.
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Figure 1. Average Power Saving for Nobel
with X = 2.
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Figure 2. Maximum TCAM utilization for
Nobel with X = 2.
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Figure 3. MOGA-E2R2 outcomes for differ-
ent values of X .

B. Complexity Analysis

In order to analyze MOGA-E2R2 complexity, two variables
must be considered: the size of the population, P , and the
chromosome length, i.e., the number of links in the network, L.
Apart from these two factors, the algorithm complexity mainly
depends on the fitness functions to be optimized (eqs. 9-11),
as well as on the involved operators (selection, crossover and
mutation). In our case, the fitness functions take O(PL2) for
the evaluation of the population. Complexity associated to the
roulette wheel criterion used to select the individuals that will
survive and will become part of the next generation is O(P ).
Finally, crossover and mutation require O(PL), which means
that the resulting complexity for MOGA-E2R2 is O(PL2).

IV. EXPERIMENTAL RESULTS

In this section, the possible benefits of applying MOGA-
E2R2 are analyzed, as well as their potential drawbacks are
discussed. At first, the simulation environment is presented.
Then, two performance analyses have been carried out: i) a
comparison between our solution and a benchmark algorithm,
and ii) an analysis of the impact of applying the Rate Ad-
aptation technique on the network power savings and on the
TCAM utilization.

The network topology that has been considered is Nobel,
available at [17], and composed of 17 nodes and 52 links.
Regarding the traffic pattern, 5 TMs with different traffic load
are considered. The selection of this set of TMs is described
next: from the 288 TMs available at [17] for Nobel, the peak
TM is taken as baseline. Then, it is scaled down by multiplying
it by {0.4, 0.5, 0.7, 0.9} to obtain the remaining set of TMs.
In this way, the traffic scaling factor is varied on the X axis of
the figures. In order to set the TCAM size limit, we apply next
criterion. We first steer the traffic of the peak TM according
to Dijkstra and obtain the maximum TCAM utilization in the
network, τi. Then, we set the TCAM size of each node in the
network as Cn =

τi
2

. With respect to link constraints, MLU
is set to ui,j = 0.8. Regarding the links power consumption
model, we adopt the energy functions and energy distributions
reported in [14].

Concerning the criterion to handle the set of traffic demands,
it is worth to say that in this work it is assumed that traffic

can be known ahead of time, thanks to estimations that can
be exploited, e.g., by using Machine Learning techniques. In
particular, the set of requests is ordered in descending order
to first steer the set of traffic flows that are bigger in terms
of bandwidth. The evolutionary parameters for MOGA-E2R2
were empirically set to Population = 20, Generations = 50,
roulette wheel criterion is used for selection, crossover is of
type single-point with 10% of crossover rate, and uniform
mutation with 5% of mutation rate is applied to create new
offspring in the subsequent generation.

The first analysis we propose aims at comparing our pro-
posal with a benchmark algorithm, namely Max Rules Aware
(MRA), which is proposed in [7], [8]. Since the power con-
sumption model considered in such work is of type sleeping
(on-off), MOGA-E2R2 is run considering that links can be
either powered off or working at their full rate, i.e., two
operational modes (X = 2). Fig. 1 reports the average power
savings obtained by our solution considering default compres-
sion and wildcard compression, which are compared to MRA.
As expected, it can be noticed that the power savings decrease
with the traffic load. Remarkably, our proposed algorithm
outperforms MRA regardless the type of compression applied
and the traffic load. In fact, the compression method exploiting
wildcards is slightly better than the one only considering the
default rule, while both of them achieve about 4% of power
saving gains compared to MRA.

If we now move our attention to the maximum TCAM
utilization, τ , we remark by inspecting Fig. 2 that MOGA-
E2R2 presents better results than MRA for the case of wildcard
compression. However, our solution suffers in the case of
applying the default compression technique. Moreover, the
traffic scaling factor does not impact on the value of τ ,
achieving an average around 70% of occupation in the most
loaded node. This situation can be explained as follows: for a
high traffic load (e.g., traffic scaling factor of 1 or peak TM)
there are less chances to put certain links to sleep. Therefore,
the set of flows are fairly distributed over the network and a
potential low value of number of rules installed at each node
can be expected. On the other hand, if the traffic is low (e.g.,
traffic scaling factor of 0.4), several links are put to sleep,
which results in an increase in the number of installed rules.



Indeed, since this number increases, the compression method
(default or wildcard) can be applied, therefore reducing the
final number of installed rules. As a summary, the value of τ
can be similar for peak and non-peak TMs, but due to different
reasons: fairly distribution of flows in the former case, and
application of compression methods in the latter.

Once the comparison between our proposal and MRA
clearly shows that our solution outperforms MRA considering
two operational modes for the line cards, Fig. 3 shows the
impact of relaxing the number of operational modes that can
be used (i.e., by applying the Rate Adaptation technique [14]
with X = 3 and X = 4). In the left Y axis, the average power
savings is represented as a function of the traffic scaling factor,
while the maximum TCAM utilization is referred to the right
Y axis. Clearly, the higher number of operational modes a line
card can use, the higher power savings MOGA-E2R2 is able
to achieve. The best outcomes are obtained when the traffic
load is low, with a difference of 20% comparing the case of
X = 4 with the sleeping one (X = 2). However, although
such flexibility also impacts on the value of τ , the gap is not
as high as in the case of the power savings achieved.

V. CONCLUSION AND FUTURE WORKS

In this paper, the power consumption and TCAM size lim-
itation problems in SDN networks have been jointly studied.
In particular, a multi-objective optimization problem for the
joint minimization of power consumption and the number of
installed rules at SDN switches is defined, while a MOGA
is proposed to practically solve it. Simulations on a real
topology show that MOGA-E2R2 outperforms other state-of-
the-art solutions, both in terms of power saving gains (20%
at non-peak TM) and maximum TCAM utilization (5%). As
future steps, MOGA-E2R2 is planned to be installed in a
real SDN controller to evaluate its impact on the network
performance in a working test-bed.
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[14] J. Galán-Jiménez and A. Gazo-Cervero, “Using bio-inspired algorithms
for energy levels assessment in energy efficient wired communication
networks,” Journal of Network and Computer Applications, vol. 37, pp.
171 – 185, 2014.

[15] L. Chiaraviglio, M. Mellia, and F. Neri, “Minimizing isp network
energy cost: Formulation and solutions,” IEEE/ACM Transactions on
Networking, vol. 20, no. 2, pp. 463–476, April 2012.

[16] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang,
“Multiobjective evolutionary algorithms: A survey of the state of the
art,” Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 32 – 49,
2011.
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Abstract—Smartphones have become the perfect companion
devices. They have myriad sensors for gathering the context of
their owners in order to adapt the behaviour of different applic-
ations to the device’s situation. This information can also be of
great help in enabling the development of social applications that,
otherwise, would require a costly and intractable deployment of
sensors. Mobile Crowd Sensing systems highly reduce this cost,
but realizing this vision using traditional centralized networking
primitives requires a constant stream of the sensed data to the
cloud in order to store and process it, which in turn leads to the
individuals about whom the data is sensed losing control over the
privacy of the data. In this paper, we propose an architecture for
a device-to-device Mobile Crowd Sensing system and we deepen
on a new privacy model that allows users to define access control
policies based on their context and the consumer’s context.

Index Terms—Privacy, Mobile Crowd Sensing, Device-to-
Device, Pervasive computing, mobile applications.

I. INTRODUCTION

Context-aware applications are increasing in their import-
ance on mobile phones because of their adaptability and ease
of use. These applications behave differently depending on the
user’s context, thus adapting themselves to provide services
that can be most useful to their users. To do so, these ap-
plications feed on contextual information, which includes data
such as the location or identity of the user, time-related data or
the activity being performed [1]. Context-aware applications
can even infer higher-level information from combinations of
lower-level data in order to offer the most relevant information
or services to a specific user.

These applications are nowhere more evident or important
than in new smart city infrastructures [2]. In these environ-
ments, context-aware applications must also be social, that
is, the contextual information from different users must be
shared to enable collaboration in the smart city. One approach
would be to deploy infrastructure-owned sensors to collect
information from the inhabitants of the smart city. However,
such an approach requires the deployment and maintenance
of many sensors—an approach that is costly and intractable.
Another possibility is to leverage the sensors that the city’s
inhabitants carry with them in any case—sensors connected
to their wearable devices and smartphones. We refer to these
devices throughout as companion devices. These devices are
already imbued with myriad sensors, from accelerometers to
GPS receivers. Existing applications use these personal devices
to support individual user’s needs, but it is also possible to
offer them and the data they collect to be consumed by other

nearby users and their devices [3]. For instance, the user’s
location, which is normally used by the smartphone to provide
the user services about where they parked or information about
the bar, shop, or restaurant where the user currently is, can also
be shared so that other users can know if a bar is crowded or to
let the city council to know which are busiest streets so that
public policies can be better planned, for instance to make
pedestrian routes more accessible for disabled people.

While this device-to-device cooperation is technically feas-
ible, there remain unsolved challenges. First, there is a need for
a technological architecture that allows companion devices to
offer the information they sense to other devices, providing a
gateway to access the surrounding context information. What’s
more, the architecture must provide mechanisms to allow
different devices to communicate opportunistically. Second,
these virtual context profiles potentially contain particularly
sensitive and private information, such as the location or
trajectory of the user or the activities they perform, that could
be used for malicious purposes. Therefore, it is not enough
to have an architecture that allows devices to offer their
contextual information to others, but the architecture should
also ensure the privacy of the user in a way that is tunable by
the user directly.

An initial approach could be to constantly upload the
information sensed by user’s devices to a cloud service that
is able to create virtual profiles and distribute context in-
formation, but this would imply a constant data flow, would
require a constant Internet connection from every device, and
would result in an increased response time due to the latency
added by the communication with the cloud [4]. In addition,
such an approach requires all of the communicating parties to
place their trust in a shared third party service provider. We
explore an alternative that mitigates these concerns by storing
the virtual context profiles in the users’ companion devices,
and providing services for allowing other devices to consume
that information by means of different sharing mechanisms
(device-to-device, opportunistic networks, etc.). An additional
access control layer is required to empower users to explicitly
control what and how other devices and users are authorized
to access the data. In the end, a full system will likely entail a
hybrid of both approaches, one that mixes cloud interactions
with opportunistic ones. In this paper, however, we isolate the
latter and focus only on enabling privacy-preserving device-
to-device context sharing.

In this paper, we present PADEC (Privacy-Aware DEvice



Communication), an architecture that allows companion
devices to create and provide context information so that other
devices can query that data to enable their applications to
adapt their behaviour to their users’ needs and surroundings.
This architecture includes elements to store this data in mobile
devices, offer this information to neighboring devices, commu-
nicate with other devices through different communications
mechanisms, and control the access to this data by using user-
set policies through a novel system based on contextual and
dynamic keys, keyholes and locks.

The remainder of this paper is structured as follows: Section
II presents the motivation behind the PADEC architecture.
Section III shows the high-level architecture of PADEC.
Section IV provides the details of an example communication
abstraction, while Section V describes our proposed access
control privacy layer in detail. Finally, Section VII concludes
the paper.

II. MOTIVATION AND BACKGROUND

Mobile Crowd Sensing (MCS) refers to the reliance on
personal device resources to support gathering information
about humans and their surroundings [5]. This information is
commonly used to create a collective intelligence to provide
services to the users based on the collected information.

In the following subsection, we present a running example
of an MCS and our motivations behind a privacy-aware
framework to provide personalized MCS services.

A. Running example
Imagine a smart city that provides an application to be used

by both residents and tourists. The app provides information
about restaurants and bars by collecting and sharing crowd-
sensed information. The app collects and stores users’ context
information, such as locations, activities (e.g., eating, walking,
working), presence of others (e.g., friends and family), etc. The
app can use this personal information to provide recommenda-
tions, nudges, or other services to the user based on the user’s
own contextual history [6].

Other users could benefit from the availability of this crowd-
sensed contextual information. For instance, a tourist visiting
the city could use the app to query nearby residents for a
restaurant recommendation. Also, the app can be used to query
other users’ devices (and their stored context information) to
find what is popular nearby, potentially with a day-specific
special or happy hour. Additional contextual information (e.g.,
the tourist’s food preferences, the size of the tourist’s dinner
party, or where the tourist ate lunch) could also be added to
the query to improve the results. Residents can also benefit
from being able to query the contextual information sensed
by other residents (or even visitors). For instance, individuals
could query for information about where their friends or family
members might prefer to get drinks on a Friday evening so
they can make a recommendation for a group outing.

B. Motivation
The presented running example requires a large amount of

contextual information from many different devices. To get

and process this information, one approach can be to offload
all of the context information to the cloud, an approach akin
to that of Google Cloud’s Places [7]. For instance, MCS
platforms such as PartcipAct [8] and Vita [9] gather the users’
contextual information using their smartphones and store it on
a server so that complex algorithms can be executed. However,
this style of approach requires users’ devices to constantly
stream information to a cloud server and enables the third
party owner of the cloud server to know and track the situation
of each individual.

When the crowd-sensed data is offloaded, the owner of the
data loses control over it. The third party becomes responsible
for protecting and sharing the data. In these situations, users
tend to eschew sharing their data with others. However,
research has shown that, while users might not be willing
to share their spatiotemporal data publicly, they are more
prone to share the information with others who are physically
nearby [10], [11].

An alternative approach is to on-load the contextual inform-
ation to the user’s device, keeping all stored mobile crowd-
sensed information persistent only on the device belonging to
the user. [6], [12], [13]. Once the information is on-loaded
to a user’s companion device, it can be shared opportunist-
ically with other users nearby. This approach comes with its
own set of challenges. First, because companion devices like
smartphones may be resource constrained in terms of battery,
computation, and storage, the device needs an intelligent
mechanism to constantly sense contextual information and
maintain an accurate yet lightweight representation of that con-
text. Second, each companion device needs to offer some kind
of interface to other devices so they can consume the stored
information on demand. Third, both devices need a common
communication medium.Finally, the shared information is still
sensitive and private, and the users should retain control over
what other nearby devices have access to.

The first challenge has been addressed by Paco [6], an on-
loading context storage mechanism that uses a companion
device’s location sensor and other on-board context sensors to
create a spatiotemporal context database stored entirely on the
user’s companion device. Paco leverages the spatiotemporal
tags associated with contextual information to determine how
novel a sensed data item is before storing it; spatiotemporally
reducing the memory footprint of the sensed context. Paco
exposes a query interface that allows applications to access
the contextual data at varying levels of abstraction, opening
the possibility of defining access rules for snapshots of a user’s
contextual data.

For the second challenge, i.e., offering interfaces to make
the contextual data available to other devices, APIGEND [14]
allows for easy code generation and deployment of Application
Programming Interfaces (APIs) in companion devices. These
APIs are composed of a series of endpoints that can be exposed
and called from other devices. These endpoints wrap some
business logic, which, for this work, will be the ability to
access some context data and return it to the device that called
the endpoint.



In this paper, we tackle the remaining two challenges:
unifying the communication medium and providing context-
sensitive approaches to controlling access to the stored contex-
tual data. For defining the communication mechanism, there
are a variety of protocols and platforms that can be use
for device-to-device communication. Classic request-response
protocols such as HTTP are not ideal in this situation due
to the highly dynamic an unpredictable nature of the op-
portunistic device-to-device environment. Simply put, request-
response protocols are host-based, and thus, one must know
the address (normally the IP address) of a device to perform a
request on it. This is not so simple when the device is mobile,
since these devices often have private IPs that are unreachable
from the outside.

There are a variety of opportunistic or publish-subscribe
protocols that can be used to solve these problems. In this
paper we focus on publish-subscribe protocols, but different
techniques can be used. This communication model is prom-
ising and privacy-preserving, since it is possible to use a
secure but distributed intermediate broker to mediate requests
and responses [15]. To be clear, this is different than a fully
centralized approach because the collaborating parties are
interacting directly with one another and can secure their
end-to-end communications. In the centralized approaches,
information is released in the clear to the third party to allow
the third party to perform data processing and analysis.

Within publish-subscribe communication models, Google’s
Firebase [16] is one popular approach. Another possible
approach is to use the open MQTT protocol [17], but it
requires setting up a dedicated broker rather than relying on
the central broker provided in Firebase. On the other hand, this
approach can reduce the reliance on the third party to mediate
communication. In this work, we explore allowing applications
to optionally use either of these publish-subscribe approaches.

The meat of this paper focuses on the final challenge:
addressing and protecting the privacy of users’ shared con-
textual information. The contextual information that must be
exposed to enable the application uses described above is
potentially highly sensitive. This information can be used
by malicious parties, for instance, to spy on the user [18].
This necessitates a privacy layer that provides user-tunable
access control for the contextual information. A wide variety
of access control models exist, one of the most interesting
being the NIST-standard Role-Based Access Control (RBAC)
[19]. Other works have extended RBAC to consider con-
text, such as Team-Based Access Control (TMAC) [20] or
Dynamic Sharing and Privacy-Aware RBAC (DySP-RBAC)
[21]. However, these models were designed for collaborative
working environments. Smart cities with decentralized device-
to-device communications demand new techniques that allow
access control to be dynamic and to consider the identity (and
context) of both the provider and the consumer of information.
In this work, we present a new access control model designed
for these environments: Dynamic Context and Identity-Based
Access Control (DCIBAC).

III. ARCHITECTURE OVERVIEW

In this section, we provide a high-level overview of the
complete PADEC architecture, before drilling into the details
of each of its constituent components. Figure 1 provides a
pictorial representation.

Figure 1. PADEC high-level architecture

In PADEC, a user’s companion device can collect, store, and
share contextual data. In addition, a context-aware application
executing on a companion device can request contextual data
from other nearby devices. In practice, devices will commonly
perform both tasks. For simplicity, Figure 1 distinguishes
these two roles; the device on the left is acting as a context
collector and provider, while the device on the right consumes
that context information via a remote connection. In PADEC,
a device can only consume information if it also provides
endpoints; this “sharing economy” style is PADEC’s approach
to incentivizing device participation. To describe the PADEC
architecture, we walk through each element in the figure,
starting at the bottom left of the figure and working up, to
the right, and then back down.

The first layer focuses on storing the contextual information
gathered by both internal and external sensors. In PADEC, we
implement this layer using the Paco contextual data storage
framework [6]. In Paco the gathered information is indexed
within a database based a spatiotemporal context stamp that
includes the coordinates and time at which the context in-
formation was collected. This spatiotemporal information is
associated with the relevant semantic information (e.g., re-
views, ratings, etc.) or data sensed by others sensors (e.g.,
temperature, noise, etc.). The key contribution of Paco is
reducing the size and complexity of the stored contextual
information so that it can be stored and queried entirely on the
companion device. For this purpose, Paco also provides an API
for issuing spatiotemporal queries for the stored information.

The second layer allows other devices to consume the
information stored by Paco (API in Figure 1). This layer



allows the deployment of OpenAPI-based APIs, to ensure that
the endpoints exposed to applications are properly defined
and documented so that remote applications can easily access
them. These endpoints serve as the gateway between external
devices and the local Paco data store. They serialize all of the
exchanged information and they provide a first line of defense
protecting the private spatiotemporal information stored within
the Paco data store. To reduce the effort required to implement
these APIs, we rely on the APIGEND tool [14]. This tool takes
as input the API specification and generates the skeleton of an
API for Android mobile devices and microcontrollers, so that
developers only have to implement the business logic to invoke
the query methods exposed in Paco’s interface. For the time
being, we simply expose the generic Paco interface, which
allows queries asking the probability of knowledge of the Paco
data store about a region, to retrieve the context data items
contributing to that knowledge, or to trace a trajectory of the
data owner through space and time. In the future, we could use
APIGEND to expose more application-specific endpoints to
further simplify the use of PADEC. For instance the endpoints
used for a smart traffic application might focus queries on
the density of cars on roadways, while endpoints for a smart
tourism application might expose thematic walking tours.

Without additional protections, the deployed endpoints can
be consumed by any PADEC-enabled connected device, which
can be a problem for the privacy of the stored data. The
next layer in the device on the left of Figure 1 implements
a dynamic and multi-dimensional access control system for
every endpoint (labeled “Privacy layer” in the figure). This
layer enables the definition of access control policies that
restricts a remote party’s access to the context information.
Access can be allowed at various levels of abstraction based
on whether the requester and the provider meet concrete
user-defined rules. These rules can define different contextual
situations that have to be satisfied for the information to be
shared. For instance, for our smart city example, a tourist
may only be able to access stored information about the best
restaurants if he is currently in the city. Furthermore, the level
of detail of the information provided may also be different
depending on different contextual situations. In our example,
a tourist might be able to uncover a part of town that is likely
to have many good restaurants rather than discovering exactly
which restaurants the context provider has frequented.

The very top of Figure 1 shows the layer that manages
the communication between the devices. In the current im-
plementation of PADEC, we support two different publish-
subscribe communication protocols (Firebase and MQTT) that
can be employed individually or in combination. As future
work, we plan to support other technologies such as direct
device-to-device communication or opportunistic networks. By
providing multiple options under the same umbrella, PADEC
makes it possible for different devices in different situations
to consume the provided information in the way most suited
for the situation. The required infrastructure for implementing
these protocols is also generated using the APIGEND tool.

In the following sections we will focus on the addressed

Figure 2. Communication Channel structure.

challenges: how the communication medium is unified and
the contextual access control policies are defined.

IV. COMMUNICATION MODEL

The communication layer at the top of Figure 1 mediates
information sharing among devices to allow the exposed APIs
to be consumed by other devices. The main responsibilities of
the communication layer are to support different communica-
tion protocols for invoking the endpoints and to provide a first
line of defense protecting the exchanged data.

In the current implementation of PADEC, the communic-
ation layer unifies diverse publish/subscribe protocols. Con-
cretely, PADEC currently supports MQTT and Firebase Cloud
Messaging. Communication through such protocols is com-
monly based on a central element, i.e., a “broker”, that
manages the entire communication. Devices can interact with
the broker by establishing topics that create communication
channels. With entities that publish information to a given
channel, and subscribers receiving that information.

These roles are used in PADEC to request or send inform-
ation by publishing in a channel and to receive the published
information by being subscribed to that channel. Different
channels are used to simulate the request-response commu-
nication pattern. To organize the communication among the
myriad different entities and to enable strict access control,
PADEC defines a topic structure that is automatically initial-
ized when a device connects to the broker or when the device
creates a new API endpoint or application component. This
structure is shown in Figure 2.

PADEC creates two types of topics: private and public. The
first time a device registers with the broker, a private channel
is created, dedicated to communication destined to that device.
Any device can publish in this channel, but only the registered
device (the “owner” of the topic) is subscribed to it and is
the only one that is notified of any published information.
This private channel can be useful for multiple purposes. For
instance, an endpoint provider can use its private channel
to receive the private messages required to exchange the



information used to determine access control of a requesting
device. Likewise, a device invoking an endpoint can use its
private channel to get the results of the invoked endpoint. More
generally, when any device knows the ID of another device
and wants to establish a device-to-device communication, it
can use this private channel for the communication exchange.
For devices not knowing the private channels, public channels
for each provided endpoint are also created.

PADEC automatically creates public channels when a new
API is deployed; the system creates a new topic for each
provided endpoint. These channels are open, and any device
can publish a message to them. In general, a message in one
of these channels indicates a desire to invoke the particular
endpoint. Only the device providing the endpoint is able to
subscribe to and consume messages published to the topic.
This provides one level of privacy for the devices invoking
the endpoints; only devices hosting the target API will be
able to see the request, preventing other devices from reading
the content of the device’s endpoint invocation. At the same
time, this architecture provides a form of spatial decoupling
in which the device wanting to invoke the endpoint does not
need to know the details of the hosting device, like its address
or location. These channels only support the invocation of
endpoints, any subsequent communication for exchanging the
intermediate messages or the requested data is maintained
through private topics with the aim of not leaking private data.
In addition to the decoupling that this provides, it also enables
PADEC to create more sophisticated endpoints out of the
aggregation of base endpoints to provide higher level services.
For example, to ascertain whether a specific bar or area of
the city is crowded, a requesting device can invoke a public
endpoint offering information about the target location. Any
device within this area willing to share crowd information can
provide the endpoint and be subscribed to the channel. Upon
receiving a notification of the published invocation, all of the
devices providing the endpoint will reply, and the requesting
device can aggregate the information to acquire a more robust
measure of crowd density.

In PADEC, we implement this same functionality with both
MQTT and Firebase Cloud Messaging. The former can be
deployed in networks without any external connectivity to the
Internet, while the latter relies on access to the Firebase cloud
servers. Currently, the broker deployment is out of the scope
of the paper. Nevertheless, for MQTT a hierarchical model can
be used in order to improve the scalability. In the next section,
we describe the PADEC privacy model defined to dynamically
control the access to the information.

V. PRIVACY MODEL

For PADEC’s privacy layer, we propose a new access
control model named Dynamic Context and Identity-Based
Access Control (DCIBAC) that is designed with decentralized
smart environments in mind, while inheriting some elements
from access control models such as RBAC [19] or DySP-
RBAC [21]. As its name implies, DCIBAC uses information
about the identities and context of coordinating parties to

determine whether access is granted. In PADEC, this means
that information is used about both the endpoint provider and
the requester to determine whether the invocation is allowed
and how the invocation result can be presented, e.g., in terms
of abstraction or granularity of the data returned. In contrast to
approaches for access control of data shared in a cloud-based
system, because PADEC performs access control locally, it
can compare a requester’s contextual information to the data
owner’s very private contextual information without requiring
the provider to release the personal data to the third party that
completes the access control decision.

In DCIBAC, pieces of information that need to be protected
are called objects, and the agents that either own or try to
access objects are entities. DCIBAC is based on putting locks
over objects, so only authorized entities can access them.
The entities who try to access objects are named requestors.
The authority controlling if some specific information can be
provided to the requestors is distributed and delegated to the
providers. In PADEC, the data is the contextual data kept in
a Paco data store, and the entities are the devices requesting
remote access to information stored in Paco.

DCIBAC’s locks are implemented via user-defined rules that
can impose conditions, mainly on the context or identity of
the owner of the object or on those of the requester. For
instance, a user may allow access to information about the
specific restaurant they are in at the moment to be accessed
only by their near family. A user may allow their boss to
access their position but only during working hours. These
conditions can be combined using logical or, and and not,
thus allowing for complex and rich conditions. For instance,
it is possible to allow friends to access information about the
restaurant the user is in only during Friday nights and there is
not a scheduled appointment in the user’s calendar for Friday
night. DCIBAC also allows locks to include conditions on
the intended use of the information, for instance the particular
application consuming the information. A user’s instantaneous
location data may not normally be released to a stranger’s
device, but it might be released to smart traffic app if there is
a nearby traffic accident.

To enable devices to request access to a protected object,
DCIBAC uses, as far as we know, a novel concept called
keyhole. Before requesting access to the object, the requester
must first get the keyhole of the object. This keyhole identifies
the information that the requester must send to open the lock
request access. For instance, if a lock allows access to friends
as long as they are nearby and their purpose is not marketing,
its keyhole would be the position of the requester, their
identity, and their purpose. This interaction does not reveal
the exact conditions of the lock, only the type of information
on which the decision is based. This message sent from the
requester with the needed information is termed a key.

Figure 3 summarizes the workflow that has to be followed in
order to validate an endpoint’s defined access control policies.

1) The requesting device invokes an endpoint publishing a
message in the associated topic.

2) The provider checks whether the endpoint is available in



Figure 3. Communication workflow.

the provider’s current context. For instance, a user may
disallow access to an endpoint that shares their recently
taken photographs while on an outing with their family.

3) If the endpoint can be consumed, the provider sends
to the requester the keyhole that specifies any needed
contextual information.

4) The requesting device acquires the contextual informa-
tion required by the keyhole using the device’s own local
data store, on board sensors, or by invoking a remote
third party service.

5) The requester packages the obtained information as
a key that can be used to attempt to open the lock
protecting the endpoint.

6) The endpoint provider executes the lock to check that the
provided information is sufficient to grant the requester
access to the protected endpoint. The provider invokes
the endpoint if the lock is successfully opened.

7) After invoking the endpoint, the provider publishes a
notification on the requester’s private channel with the
information requested, if access is allowed, or with a
rejection notice if not.

8) Finally, the requesting device processes the obtained
information.

Only the first message is published on a public channel, spe-
cifically the public channel associated with the target endpoint.
The subsequent messages use the devices’ private channels.
This process allows us to create and support a dynamic and
multidimensional privacy model able to provide or reject the
consumption of information depending on the context of both
the provider and the requester.

The final concept in DCIBAC is the definition of access
levels of a lock. In Paco, each request to retrieve information
from the Paco data store is made with a certain profile. This
profile determines the degree of spatiotemporal granularity
with which the request is allowed to view the contextual
data store and the maximum number of requests an individual

requester is allowed to make. These restrictions further protect
the privacy of the owner’s spatiotemporal information.

These profiles are mapped to access levels in DCIBAC
locks. A single lock has by default a single access level, but
it can also have many levels. These access levels are ordered,
with the first being the level that releases data from the Paco
data store with the least precision. Each level can have its
own conditions, meaning a lock with multiple levels may be
associated with each lock. Each level has a keyhole associated.

Since each access level can use different contextual in-
formation, it is possible that a single lock is associated with
multiple keyholes. When a lock exposes multiple keyholes, it
exposes some information about how its access decisions are
structured. While this can aid requesters in understanding the
conditions of access it also potentially exposes decision logic
of the endpoint owner. Navigating this trade-off is left flexible
for the endpoint owners to navigate.

When a user invokes an endpoint, all the keyholes associated
with the endpoint’s lock are sent to the requester together with
the precision of the information they will get. The requester
can analyze this precision in order to create the key for
the keyhole with the required precision. This also allows
the requester to leak, with the key, the minimal contextual
information to get the needed information.

As an example, consider a lock with two access levels: level
1 that provides abstract, granular information for unknown
nearby devices and level 2 that provides more detailed in-
formation for close family. Two different keyholes would be
created, one per access level. A keyhole for level 1 (position)
and another one for level 2 (position and identity). While this
makes sure the requester knows the information required to
open each level of the lock (meaning the requester is able
to protect its own private contextual information more), the
requester can also discern some of the logic relating to the
lock’s access control policies.

Figure 4 shows this example. In this example, DCIBAC
secures a single endpoint that gives access to the restaurants
visited by the user. To control access to this endpoint, the
user uses a lock with two access levels. Nearby strangers
can request access information about the restaurants that the
endpoint owner likes (level 1) and only nearby close family
members can access information about how often the endpoint
owner frequents particular restaurants. Two keyholes are cre-
ated,such that the keyhole for level 1 of the lock requires the
requester to provide position information, while the keyhole
for level two requires both position and identity. In the example
process depicted in Figure 4, the device of a tourist at the same
bus stop as the endpoint owner will try to access good places
to have a drink. To do so, the tourist’s device first publishes the
endpoint request to the endpoint’s public topic (1) and receives
a message generated by DCIBAC containing the keyholes of
the lock (2). When this response is received, the tourist’s
phone will decide which level it needs to get access to, will
collect its current position using its GPS sensor and place this
information in a message that will serve as the tourist’s key
(3). The key is then be sent to the secure endpoint (4) via the



Figure 4. DCIBAC example usage.

endpoint’s private topic. Once received, DCIBAC will check
if the key is valid according to the lock and access level. Since
the tourist is near the user and access level 1 was requested,
access is granted (5). The secured endpoint will then invoke
the necessary request on the endpoint’s Paco data store and
then send the information about the favourite restaurants of
the user to the tourist’s phone (6).

The permission to access an object in DCIBAC is dynam-
ically checked and granted during execution time. This means
that every time a requester wants to access some information,
it must send its key, and there is no guarantee that a key will
stay valid for any period of time, since the number of queries
might be restricted depending on the access level.

VI. DISCUSSION

Context-aware and MCS applications have proven useful
during the last few years to distribute sensing and computation
tasks in order to develop social and collaborative environments
at an affordable way. For instance, [22] presents a framework

to opportunistically offload computation in smart vehicles by
accounting for context information. This framework uses the
context of nearby vehicles, such as their speed or direction,
to determine the best candidate to execute some tasks. [23]
presents another framework that offloads data from social
networking services to mobile devices based on their social
context to maximize the quality of service of those services.
These are also commercial examples of social applications
that need contextual information from nearby users, such as
Facebook Safety-Check [24].

A common approach to develop these platforms is to offload
the data, or most of the data, to the cloud. This entails
added resource consumption and a significant potential loss
of privacy when the user’s private contextual data resides in
the Internet. These approaches also require a constant data
flow, which can be problematic when the user has a limited
mobile data plan. Such an approach also requires the user’s
device to be permanently connected to the Internet, which
may not be possible in rural areas or even in urban canyons.
This approach also relies on the third party infrastructure
provider for protection and storage of data, and this third
party provider is able to know and track every single device
using the application. These challenges motivate PADEC’s
approach to onloading computing and data storage, which in
turn enables device-to-device opportunistic provision of data
access endpoints.

However, even when the data is stored locally, the user’s
privacy can be at risk, since other devices could potentially
access that data if endpoints are not protected. To protect
this information from malicious parties, storing and sharing
contextual information is not enough, and an architecture that
also accounts for privacy is required.

PADEC addresses these concerns head-on by providing an
architecture that empowers users to store sensed contextual
information in their own devices and to define dynamic and
multidimensional access control policies that allow them to
indicate what information can be accessed, by whom, and
under what contextual circumstances.

This architecture also resolves other associated challenges,
such as making it easier for developers to build mobile crowd
sensing systems and applications that are especially complex
due to device-to-device communication. PADEC’s mechan-
isms for resolving these ancillary challenges comprise a series
of modules that abstract developers from the implementation
details on how to store information efficiently, how to expose
the stored information to other users, and how to implement
the communication workflow.

An open remaining challenge is to create methods to help
and guide users in the definition of privacy policies, making
the keyholes and locks that are fundamental to PADEC easier
to use and more robust. Ideally, application users will be
guided in establishing these rules in a clear, simple, and
accurate way. Further, users should also be given a clear image
of what information they are exposing or not depending on the
established rules.



VII. CONCLUSIONS

In this paper, we presented PADEC to simplify the con-
sumption of contextual information from other devices for
context-aware and Mobile Crowd Sensing systems, which are
important not only for the development of social applications,
but also in paradigms such as the Internet of Things, Web of
Things, or Human-in-the-Loop applications that require some
devices to collaborate and adapt their behaviour depending on
the context and the users’ needs.

PADEC on-loads spatiotemporally tagged contextual in-
formation to the owner’s device, and then enables this stored
data to be queried by other devices. PADEC relies on the Paco
framework for onloading the contextual data and APIGEND
to define flexible API endpoints that expose Paco interfaces
for remote queries. In this paper, we focused on providing
user-tunable protection of the exposed endpoints by defining
DCIBAC, a flexible access control mechanism that relies on
the users’ identities and context to determine whether access
is allowed and what level of granularity of spatiotemporal
information should be exposed. DCIBAC allows the definition
of access control policies that protect the privacy of both
coordinating parties.

Currently, we continue to work on evaluating the effect-
iveness of the PADEC architecture with respect to both the
consumption of resources needed for the companion devices
to on-load the computation and the communication load that
the defined medium presents. On the other hand, we are also
working on how to provide accurate information to users about
the information they are exposing and the risks that this entails
for their privacy. Finally, as future work, we will also define
incentives and policies in order to foster information sharing.
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Abstract—In IoT application scenarios, the response time is
one of the attributes that most require attention and, for this
reason, the paradigm of decentralized (or fog) computation has
gained ground. Moreover, to help reduce the response time of
decentralized IoT networks, routing optimization approaches
can be employed using software-defined networking (SDN).
When both contexts are combined, a new one called SDN-Fog
Environments appears. This work presents a solution to predict
the response time of Industrial Internet of Things (IIoT) appli-
cations using supervised and unsupervised learning for SDN-Fog
Environments. Results show that the prediction of the response
time of IIoT scenarios was close to the times obtained by solving
the problem in the literature. Furthermore, according to the best-
performing models, the prediction framework had less than 50
milliseconds of variation, executed in less than one second.

Index Terms—prediction, response time, IoT, Fog, SDN, ma-
chine learning

I. INTRODUCTION

The Internet of Things (IoT) has achieved rapid popular-
ization, reaching a wide range of applications in healthcare,
environmental monitoring, home automation, smart mobility,
and Industry 4.0 [1], [2]. Thus, more and more IoT devices
are deployed in various public and private environments,
progressively becoming common objects of everyday life.
The IoT has been seen by many as the next stage of the
Internet, and its implementation enables the evolution not
only of industrial infrastructures but also of smart cities
because, with IoT, the development of transport systems, waste
control, energy, among others, becomes more efficient and
improves the quality of life of citizens. On the other hand, the
physical infrastructure of heterogeneous systems is complex
and requires efficient and dynamic solutions for deploying,
configuring, and managing IoT networks [3], [4].

In whatever IoT application scenario, the response time
for a given activity is one of the attributes that most require
attention [5] and, for this reason, the paradigm of decentralized

computation processing has gained ground in this context. Fog
computing is an example that supports applications that require
strict-response time, separating the processing of a given task
into nodes of distinct processing capacity interconnected by
network and closer to end-devices [6]. The latency is another
factor to be seen in the composition of the response time and,
to make an optimal decision about the location of processing
devices, the decentralized computation distribution problem
(DCDP) [7] should be considered. To reduce the latency of fog
computing, routing optimization approaches can be employed
[8] by using software-defined networking (SDN) [9]. In other
words, SDN controller placement strategies are used to mini-
mize the latency among devices. However, the latency between
SDN controllers and switches must also be considered when
computing network response time. The problem of placing
SDN controllers on top of switches is known as Controller
Placement Problem (CPP) [10].

The combination of both problems, DCDP and CPP, results
in another one, the SDN-Fog deployment problem, posed ini-
tially by Herrera et al. [11] to describe a single effort approach
to solve them together. The proposed approach consists of
a Distributed Application Deployment Optimization (DADO)
framework, which contains Mixed Integer Linear Program
(MILP) into its core for identifying the deployment of both
services and SDN controller in order to meet specific require-
ments. The results presented by the authors showed that the
framework is suitable for small network topologies, infrastruc-
tures with under 300 nodes, in which the optimization problem
is solved in a few seconds. However, the solution takes
between 4664 and 20982 seconds and needs approximately 18
exabytes of memory in larger networks because the SDN-Fog
deployment problem is NP-hard. One way to optimize MILP
models is to use heuristics like branch-and-bound (BB) and
branch-and-cut (BC) [12]. However, the resolution complexity
tends not to reduce face to dynamic environment, in other
words, when there is an excessive number of variables and978-1-6654-4035-6/21/$31.00 ©2021 IEEE



restrictions, such as complex IoT network environments and
real-world traffic flows [13].

Prediction of network behavior can bring advantages for
many applications that have strict Quality of Service (QoS)
requirements [14], such as placement of devices, resource allo-
cation, besides allowing service designers to predict the perfor-
mance of their applications for different load conditions [15].
For example, for the optimization problem presented above,
predicting variables that make up the network can be helpful
instead of just considering the problem’s solution modeled in
MILP, which requires a long execution time and high compu-
tational power. Furthermore, predicting the network response
time can be very useful when planning network capacity, as
it can elucidate the behavior of a given configuration without
necessarily implementing it. Thus, infrastructure managers can
see if their strategy, network components, and devices are
enough to ensure a good QoS to end-users.

Therefore, this work presents a solution to predict the re-
sponse time of Industrial Internet of Things (IIoT) applications
considering specific scenarios in SDN-Fog Environments. The
main contributions of this work are: i) an analysis of the
relationship among Fog IIoT Factory Scenario, DCDP, and
CPP; ii) a new network behavior prediction approach con-
sidering the context of SDN-Fog for IIoT; iii) the sharing
of a framework with pre-trained machine learning models to
predict the response time of IIoT networks in the SDN-Fog
context.

The remaining of the paper is structured as follows: Sec-
tion II presents related work. Section III details the work
proposal. Section IV presents the experimental design with the
description of the Fog IIoT Factory Scenario, the presentation
of the machine learning framework, and the details of the data
set and the experiments. Section V shows the results obtained
and discussions about them. Finally, Section VI concludes the
paper and highlights future work.

II. RELATED WORK

In order to predict network behavior, Hardegen et al. [13]
implemented a model based on Deep Neural Networks
(DNNs) to perform 240 flow characteristics prediction ex-
periments. In addition, they presented a case-based study
where throughput, flow, and topology were the target predictor
variables for specific paths. For predicting network traffic,
Aldhyani et al. [16] proposed a method using sequence min-
ing, combining non-crisp Fuzzy-C-Means (FCM) clustering
and the weight exponential method to improve deep learning
Long Short-Time Memory (LSTM) and Adaptive Neuro-Fuzzy
Inference System (ANFIS) time series models. When the sce-
nario is specific to cloud-based networks, Nourikhah et al. [17]
analyzed the response time of 10 real-world services and
proposed a prediction model using time series analysis, such
as, naı̈ve, mean, auto regressive integrated moving average
(ARIMA), and auto regressive fractionally integrated moving
average (ARFIMA) methods.

Considering networks for IoT devices, White et al. [18]
presented the IoTPredict algorithm, which consists of a

neighborhood-based prediction approach taking into account
the response time and the throughput of a network released by
Zheng et al. [19]. In addition, Yang and Zhang [20] considered
time similarity to predict the response time of IoT service. The
method proposed by the authors combines three main steps:
(1) a calculation method of service response time similarity
between different users; (2) the initial similarity values are
adjusted, and a similarity threshold selects similar neighbors
to improve prediction accuracy; (3) using a densified user-
item matrix, service response time is predicted by collaborative
filtering for currently active users. Table I summarizes the main
differences between this paper and related work on the nature
of the network prediction features, on the scenario, cloud-
based, or not, on the context, IoT, or not, and on the scenario’s
solution, Fog-SDN, or not.

TABLE I
COMPARISON OF RELATED WORKS

Work Network prediction
feature

Cloud
based

IoT
context

SDN-Fog
problem

[13] Flow No No No
[16] Traffic No No No
[18] Response time No Yes No
[20] Response time No Yes No
[17] Response time Yes No No

This work Response time Yes Yes Yes

III. WORK PROPOSAL

Based on supervised and unsupervised learning, we created
a Machine Learning (ML) framework to predict the response
time of SDN-Fog environments before performing all possible
network setups. Fig. 1 illustrates how the ML approach can
compose the MILP-based solution. In this context, predict-
ing response times of possible network scenarios (The ML
Framework) helps select the most suitable one concerning
the expected response time for IIoT applications. Thus, the
optimization execution in a later stage (MILP Allocation)
becomes less costly and in less time, as the number of
scenarios is reduced in the first stage, unlike the previous
approach.

Fig. 1. The machine learning approach.



To ensure that the machine learning framework considers all
network characteristics, it uses the data generated by Herrera et
al. [11], [21] to train a pre-trained model that can predict with
high accuracy the expected response time of a particular IIoT
network setup, known as a scenario. This pre-trained model
will be available as a default functionality of the framework.
The framework evaluates how different ML approaches can
predict continuous features in this context, such as linear
regression, decision trees, and neural networks. In addition, the
framework also aims to assess how the unsupervised machine
learning technique based on dimensionality reduction impacts
prediction.

IV. EXPERIMENTAL DESIGN

In this section, we present the design and some details of
the experiments.

A. Fog IIoT Factory Scenario

The Fog IIoT Factory Scenario is similar to the environment
proposed by Herrera et al. [11]. It is based on fog computing to
support the QoS requirements of IIoT devices and describes
the details needed to predict applications’ response time in
this context. Fig. 2 illustrates this scenario. It consists of IIoT
devices installed in robots and ten fog servers that provide
computing services to the devices. Each fog server is directly
connected to an SDN switch and has an 800 MHz CPU and
1 GB of RAM. Regarding SDN controllers, the environment
includes at least one controller for each switch, being a classic
SDN control model.

Fig. 2. Fog IIoT factory scenario.

An application that manages the information of robots was
designed as a composition of a series of microservices. This
application collects the robots’ status through sensors con-
nected to IIoT devices and processes the data in fog servers to
provide commands accordingly. The commands processed by
the microservices can be ordered separately or combined
through workflows. Each workflow executes a specific func-
tionality, by linking the deployed microservices depending on
the desired behavior. Thus, each microservice has a computa-
tional complexity to perform the processing of a given activity.

This processing is done by MCycles, being among 100, 500,
or 1000.

The combination of the execution time of a microservice
plus the communication latency of the network nodes results
in the response time of specific functionality. Furthermore,
this combination is directly influenced by the location of
the microservices on different fog servers and by the SDN
controllers available in the environment. All of these factors
can cause response time delays. Thus, the reduction of latency
between the various network nodes must be sought through the
combination of DCDP and CPP to ensure that the response
time of each specific functionality is consistent with the strict
requirements of IIoT applications.

B. The Data Set

The IIoT factory data set consists of 17 features per sce-
nario: computing nodes features such as ID, clock speed
(MHz) and RAM (MB); switches IDs; links features such as
the node ID that is the source of the link, ID of the node that is
the destination of the link, latency (s) and capacity (MB); mi-
croservices features such as ID of the microservice, execution
cycles (MCycles), RAM required (MB), input and output size
of the microservice (MB); and workflows features such as ID,
the IDs list of the microservices requested in the workflow, ID
of the computing node requesting the workflow and whether
the workflow should have a response (always true).

C. Machine Learning Framework

The modeling and execution of the SDN-Fog deployment
problem in MILP can jointly solve DCDP and CPP to optimize
the response time for IIoT applications. However, models’
execution requires high computational power, in addition to
consuming a relatively large amount of time for networks with
more than 300 nodes [11]. Thus, to avoid these issues, the
developed framework uses network environment features to
predict the response time of IIoT scenarios. Fig. 3 presents
the two main parts of the framework. The first part is re-
sponsible for processing the input, and output data of the
DADO [11], [21], respectively, to compose the scenarios
that are the primary inputs to the ML models. The second
part is composed of the implementation and execution of
supervised and unsupervised learning approaches to evaluate
the response time prediction behavior of scenarios composed
by the first part.

To compose the scenarios, the data processing step uses
the Fog IIoT factory features along with a response time
estimation for different workflows to compose the scenarios.
Each scenario had features extended statistically according
to their average, minimum, 25%, 50%, 75%, and maximum
values, accounting for 113 features in total.

The framework composes Linear Regression, eXtreme Gra-
dient Boosting (XGBoost) Regressor, and LSTM network on
supervised ML models. The Linear Regression objective is
to find the best estimates for its coefficients, which minimize
errors in predicting target features. It fits a linear model to
minimize the residual sum of squares between the observed



Fig. 3. Machine learning framework.

targets in the data set, in this context, response time, and the
targets predicted by the linear approximation. XGBoost is an
implementation of Gradient Boosted Decision Trees designed
for speed and performance proposed by Chen [22]. This
algorithm aims to minimize the loss function, choosing distinct
optimal adjustment values for each region of the tree instead
of a single one for the entire tree. Based on this concept, XG-
Boost calculates the fit of its sequential trees according to the
weighted errors of the predecessor trees to predict the feature
target of the model. Another model presented in the framework
is the LSTM network, a type of Recurrent Neural Network
(RNN) developed by Hochreiter and Schmidhuber [23] to
avoid the long-term addiction problem or vanishing gradients
problem, that causes stop learning from further training. LSTM
network has a chain structure that, instead of having a single
repetition module neural network layer, has four related. This
approach allows data-dependent controls into the RNN cell
approach to be implemented, ensuring that the gradient of the
objective function does not vanish. An LSTM has three such
gates to protect and control the state of the cell. In this way,
long-term information that was lost during the execution of
traditional models based on RNN is now maintained and used
in a controlled manner in multi-layer networks [23], [24].

We apply Principal Component Analysis (PCA) to assess
how unsupervised ML impacts response time prediction. PCA
allows us to reduce the size of a data set while maintaining
the features that have the most significant variance contribu-
tion [25], [26].

D. Experiments

We present an experimental comparison of ML models
implemented using Scikit-learn and XGBoost for all scenarios
composed in the data set processing step. The proposed frame-
work and the Jupyter Notebooks used in the experiments are
available on Github1. We observed three topology categories:
small (10 IIoT and 10 fog nodes), medium (25 IIoT and
15 fog nodes) and large (50 IIoT and 25 fog nodes). The
universe of data used for training the models contains 84
network scenarios, accounting 880 nodes for small, 1000

1https://github.com/rodrigoney/ml-sdn-dado

nodes for medium and 1125 nodes for large topology. To test
the proposed models, the data universe includes 47 scenarios
that total 880 nodes for small and 240 nodes for large topology
with 30 fog nodes instead of 25. The difference in the amount
of fog nodes is original from the source data set and was kept
to also evaluate the models performance in distinct structures
than those used for training.

We carried out a study on the main components using PCA,
and we verified four components to compose with supervised
learning models. Fig. 4 shows the number of components
needed to explain variability of the data. The first component
corresponds to 56.87%, the second to 21.44%, the third to
13.01% and the fourth to 4.90% of variability. Therefore,
selecting a number of components above four to perform
the dimensionality reduction will not drastically influence the
model, since other components correspond to only 3.78% of
variability. According to the calculated coefficient matrix, the
features that most contributed to the first component formation
are related to the computational power of IoT devices, such
as processing and memory. For the second component, the
features of network nodes number, IoT, Fog and Switch,
and related to links, such as capacity and latency, were the
ones that contributed the most. For the features related to the
flow steps, they formed the third component. Finally, for the
fourth and last component, the most important features are the
workflows sizes and the number of devices per workflow.

Fig. 4. The impact of the first four principal components.

Model performance validation was implemented using 5-
fold cross-validation, i.e., five different measurements validate
the implemented models, assessing their generalization ability
of predictive and preventing overfitting. In addition, all data
used in testing step were totally distinct from those used for
training the models.

V. RESULTS AND DISCUSSION

Fig. 5 and Fig. 7 illustrate a graphical representation of the
Linear Regression and XGBoost performance on the training
step, and Fig. 6 and Fig. 8 on the testing step. When comparing
the training and testing steps, a factor that impacted the
performance drop was the low number of test scenarios, one
of the limitations found. Despite this, it is possible to verify
by the approximation of the blue line, which represents the



predicted response times, that the XGBoost model had the
best performance when compared to the Linear Regression.

Fig. 5. Linear regression training performance.

Fig. 6. Linear regression testing performance.

Fig. 7. XGBoost training performance.

Mean Squared Error (MSE) and R2, or R-squared, score
methods were used to evaluate the models accuracy besides
the graphical representation. While R2 Score represents the
proportion of the variance for a dependent variable that is ex-
plained by an independent variable or variables in a regression
model, MSE measures the average squared difference between
estimated values and the actual value. The resulting accuracy
of the implemented models is described in Table II.

Although the four main components represent 96.22% of
all data, it is possible to observe that the PCA strategy does
not improve both models’ performance, neither for the MSE

Fig. 8. XGBoost testing performance.

reduction nor the R2 Score increase. Also, when comparing the
Linear Regression with PCA and XGBoost with PCA models,
it is possible to see a greater negative impact on XGBoost.
This phenomenon occurs due to the ineffective reduction of
the error calculated through the low composition of features
in successive gradient boosted trees. As XGBoost uses the
various features to calculate the error and compose it in the
learning function, reducing the features of the IIoT environ-
ment shown is not a good strategy to predict the network
response time. Furthermore, the XGBoost model achieves the
best performance at an average rate of 49.60 milliseconds for
MSE and 96.63% for R2 Scored.

TABLE II
MODELS ACCURACY WITH RAW DATA

Model MSE R2 Score
Training Test Training Test

Linear Regression 0.0822 0.4999 0.8892 0.7025
Linear Regression with
PCA

0.1547 0.8215 0.7917 0.5111

XGBoost 0.0107 0.0885 0.9854 0.9473
XGBoost with PCA 0.1977 0.9754 0.7338 0.4196

In order to deepen the study of the impacts of data in
relation to the implemented models, two approaches were
carried out, normalization and z-score technique application.
Table III shows that applying data normalization to the Lin-
ear Regression model improves its performance, unlike the
XGBoost model, which is improved by applying the z-scored
technique. However, both applied techniques do not improve
the performance of the models, Table II, when run using raw
data from the IIoT network.

TABLE III
MODELS ACCURACY WITH DATA NORMALIZED AND Z-SCORED

Model MSE R2 Score
Training Test Training Test

Linear Regression Nor-
malized

0.0857 0.8065 0.8845 0.7392

Linear Regression Z-
Scored

0.0924 1.3510 0.8755 0.5632

XGBoost Normalized 0.1796 1.064 0.7582 0.6558
XGBoost Z-Scored 0.0108 0.8904 0.9854 0.7121



VI. CONCLUSION

This work presented an approach to predict IIoT network
response time in an SDN-Fog context. The proposed frame-
work consists of four approaches: Linear Regression, Linear
Regression with PCA, XGBoost, and XGBoost with PCA. The
experiments showed that the XGBoost is the most suitable for
predicting response time in an SDN-Fog environment in terms
of accuracy. Overall, the results showed that the prediction of
the response time of scenarios was close to the times obtained
by solving the problem given by Herrera et al. [11], in other
words, when compared to the Herrera et al. results [21], the
framework had an average of fewer than 50 milliseconds of
variation according to the best model. Moreover, the approach
based on ML models was executed in less than one second for
Linear Regression and XGBoost models. Another factor to be
considered is the composition of supervised and unsupervised
learning models to predict the network response time. In this
case, the unsupervised PCA technique did not prove to be an
advantageous alternative for the IIoT context presented when
composed with the supervised developed models. Therefore,
response time prediction in IIoT networks based on ML
models shows to be a viable and advantageous option for the
SDN-Fog context in network setup planning time. As future
work, we seek to evolve and adjust the framework to consider
strict network response times and evaluate others machine
learning approaches based on neural networks.
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Abstract—The flexibility and programmability provided by the
Software-Defined Networking (SDN) paradigm allow network
operators to upgrade their legacy IP network infrastructures with
the aim of improving their control over the network. However,
the full migration from IP to SDN is not straightforward, at
least, in the short term. Thus, transitory network infrastruc-
tures combining IP and SDN nodes (named hybrid IP/SDN
networks) are required to coexist, while the correct coordination
between paradigms is crucial to maintain the required Quality
of Service. In this paper, two optimization problems that are
normally solved separately due to their opposite nature: i)
traffic load balancing and ii) the reduction of network power
consumption, are jointly considered. In particular, an heuristic
named Hybrid Spreading Load Algorithm (HSLA), is proposed
to jointly minimize the Maximum Link Utilization (MLU) and
the network power consumption during the transition from IP
to SDN networks. Simulations over topologies of different size
considering diverse selection methods for the replacement of
the nodes reveal that HSLA outperforms other state-of-the-art
approaches that specifically tackle only one objective, either the
traffic load balancing or the reduction of the network power
consumption.

Index Terms—hybrid IP/SDN, load balancing, energy effi-
ciency, traffic engineering, heuristic

I. INTRODUCTION

THE way in which information is created, shared and
consumed by the digital society is continuously under

evolution. A common trend is that the volume of traffic data
flowing through the Internet exponentially increases over time.
Statistically, the prediction for next years is that there will be
5.3 billion total Internet users (66% of global population) by
2023, from 3.9 billion (51% of global population) in 2018 [1].
This increase in the number of users will result in a threefold
rise in the Internet traffic by 2023, with about 2.6 Exabytes
for a single day [2].

To deal up with the expected growth in the traffic demand,
Internet Service Providers (ISPs) are extending their network
infrastructures, by over-provisioning the existing resources or
by providing network redundancy, both at node and at link
levels. This extension is designed to accommodate peak traffic
loads and to be able to react upon events (e.g., link failures [3],
routers malfunctioning [4]) that affect network performance.

However, these network architectures derive in a low energy
efficiency under normal network operation [5], i.e., all the

elements in the network are powered on regardless the traffic
load that is currently flowing through it. The irruption of
the Software-Defined Networking (SDN) paradigm in the late
2000s, especially motivated by the global network knowledge
acquired by the centralized controller and its flexibility and
programmability, opened a niche to propose solutions able to
find the minimal set of network resources (nodes and links)
that can be powered on to steer the required traffic and fulfill
the Quality of Service (QoS) requirements [6], [7], [8]. With
such adaptive network configurations, an improvement in the
network energy efficiency can be achieved [9].

Other aspects such as Traffic Engineering (TE) techniques
were also re-thought within the scope of SDN networks. The
achievement of traffic load balancing through the design of
optimal flow forwarding and routing policies has led to a vast
amount of works in the recent years [10], [11], [12].

However, the full deployment of an SDN network from a
traditional IP one is not straightforward. A single flag day
to migrate the whole network from IP to SDN is unfeasible,
due to the economical issues derived from the replacement
cost and the lack of provision of services already included in
the Service Level Agreement (SLA) between the customers
and the ISP. A common and cost-effective approach from the
ISP point of view is to upgrade a subset of network elements
and evaluate their practicality after a particular period of time
[13]. This scenario represents the so-called hybrid IP/SDN
networks, in which a coordination between legacy IP routers
and upgraded SDN switches is required, as well as in the
protocols used to perform the routing (OSPF and OpenFlow)
[14], [15].

Although the energy consumption problem has also been
studied in the scope of hybrid IP/SDN networks [16]–[19],
existing works only focus on the network energy efficiency, not
taking into account other key aspects such as link performance
w.r.t. important QoS metrics [20]. Furthermore, load balancing
represents a major TE method in this type of scenarios, whose
purpose is to minimize the Maximum Link Utilization (MLU)
by equally spreading the data traffic among links (ECMP
protocol) [21]. The average link rate utilization for network
links provided by load balancing techniques allow network
operators to reduce OPEX and adopt extra users [22], [23].

Energy efficiency and load balancing techniques in hybrid
IP/SDN networks have been studied separately. On the con-
trary, no prior work has addressed the trade-off between the978-1-6654-2434-9/21/$31.00 ©2021 IEEE



optimization of energy efficient routing and load balancing
performance with guaranteed QoS constraints, by also mini-
mizing the MLU. In order to solve the joint problem of energy
efficient improvement and load balancing, a multi-objective
optimization problem has been defined and formalized. The
two considered objectives to be minimized are: i) the network
power consumption, and ii) the MLU. In addition, an heuristic
algorithm, namely Hybrid Spreading Load Algorithm (HSLA)
has been proposed to practically solve it in tractable time.

In the following, the main contributions of this work are
listed:
• to consider the trade-off between the energy efficiency

and load balancing during the transition from IP to SDN
networks;

• to define the multi-objective optimization problem for
fairly considering energy efficiency and load balancing
in hybrid IP/SDN networks;

• to derive an heuristic algorithm, namely Hybrid Spread-
ing Load Algorithm (HSLA), to practically solve the
problem;

• to compare HSLA with other state-of-the-art solutions
both in the energy efficiency and load balancing research
areas on realistic scenarios;

The rest of the paper is organized as follows. Problem
definition is described in Sec. II. The description of the
proposed heuristic can be found in Sec. III. Experimental
results are reported and analysed in Sec. IV. Finally, Sec. V
draws some conclusions and future works.

II. PROBLEM DEFINITION

Let us consider a hybrid IP/SDN network modelled as a
directed network graph G = (N ,L), where N is the set of
nodes and L is the set of directed links. Considering the set
of nodesN , they can be SDN nodes,NSDN ∈ N , or IP nodes,
NIP ∈ N , where NSDN ∪ NIP = N . Regarding the set of
links, each link li,j ∈ L connecting node i ∈ N to node j ∈
N has a capacity of Ci,j units to accommodate traffic flows
Furthermore, the link i, j has a power consumption referred
to as Pi,j .

Traffic is modelled by means of a traffic matrix T , which
is composed of a set of demands δs,d ∈ T from each source
node s ∈ N to each destination node d ∈ N in the network.
Specifically, the traffic demand entering the network from node
s and leaving it through the node d is referred to as δs,d ∈ T .

The objective is to find an optimal network configuration
that jointly minimizes the network power consumption and
the maximum link utilization.

Therefore, a set of variables are required to define the Mixed
Integer Linear Programming (MILP) formulation aimed at
solving the Multi-Objective and Multi-Commodity-Flow (MO-
MCF) optimization problem at hand:
• xi,j represents a binary variable related to the operational

mode of link li,j . Its value is xi,j = 1 if the link is active.
Otherwise, if xi,j = 0, the link is put to sleep;

• fs,di,j is an integer variable representing the amount of
traffic demand δs,d ∈ T that is routed on the link li,j ;

• ndi,j is a binary variable indicating whether the node i
uses node j as next hop in its forwarding table to reach
the destination node d;

• pdi is an integer variable representing the cost of the path
to go from node i to node d;

• wi,j is an integer variable indicating the Interior Gateway
Protocol (IGP) weight of the link i, j, which is considered
by the IP routers to determine the shortest path routing;

• θ is a real variable indicating the Maximum Link Utiliza-
tion (MLU) in the network.

With the variables described above, the optimization prob-
lem to solve aims at jointly minimizing the power consumption
of the network as well as its maximum link utilization. For
this purpose, two objective functions are required to solve the
multi-objective optimization problem. They are defined in eqs.
(1-2):

F1 = min
∑

li,j∈L
xi,j · Pi,j (1)

F2 = min θ (2)

Eq. (1) represents the minimization of the global network
power consumption, while the goal pursued by eq. (2) is
to minimize the MLU. Thus, the joint optimization of both
functions composes the MO-MCF problem as follows:

min [F1;F2] (3)

subject to

∑

j∈N−
i

fs,di,j −
∑

j∈N+
i

fs,dj,i =





δs,d if i = s

−δs,d if i = d

0 if i 6= s, d

∀i, s, d ∈ N , δs,d ∈ T

(4)
∑

δs,d∈T
fs,di,j ≤ xi,j · Ci,j ∀i, j ∈ L (5)

1

Ci,j

∑

δs,d∈T
fs,di,j ≤ θ ∀i, j ∈ L (6)

fs,di,j ≤ ndi,j · δs,d ∀i, j ∈ L : i ∈ NIP, δs,d ∈ T (7)

∑

j∈N−
i

ndi,j = 1 ∀i, d ∈ N : i 6= d (8)

0 ≤ pdj +wi,j−pdi ≤ (1−ndi,j) ·M ∀i, j ∈ L, d ∈ N (9)

1− ndi,j ≤ pdj + wi,j − pdi ∀i, j ∈ L, d ∈ N (10)

1 ≤ wi,j ≤ wmax ∀i, j ∈ L (11)



Fig. 1: Path from A to H without
SDN nodes.

Fig. 2: Path from A to H with 1 SDN
node (C).

Fig. 3: Path from A to H with 2 SDN
nodes (C,G).

Eq. 4 describes the classical flow conservation constraints.
Eq. 5 represents the capacity constraint on links, where the
total traffic routed on a link must be upper bounded by the
available capacity. In particular, if the link is in on status
(xi,j = 1), all of its capacity can be exploited to transport the
traffic, otherwise, its capacity is equal to 0, thus the link cannot
be used. Eq. 6 forces the variable θ to be equal or greater
than the MLU in the network. In the presented model, IP
routers are forced to use a single and shortest path routing, and
to forward traffic according to the destination. These aspects
are included in the problem formulation through the set of
constraints expressed in Eqs. 7-11. In particular, Eq. 7 models
the destination based forwarding, by allowing the IP router i
to send traffic destined to the node d over the link i, j only
if the node j is the next hop for the destination (ndi,j = 1).
The single path routing for IP routers is imposed by the Eq.
8, whose logic is to force the node i to choose only one next
hop to reach the destination node d. Finally, the shortest path
policy is enforced through the Eqs. 9-11. They impose that if
ndi,j = 1, then the cost of the path between the nodes i and d
must be equal to the weight of the arc connecting it with its
neighbor j (wi,j) plus the cost of the path between j and d.

Since the presented problem formulation is NP-hard [24],
in the next an heuristic approach is presented to solve it in
polynomial time.

III. HYBRID SPREADING LOAD ALGORITHM (HSLA)

This section describes the proposed algorithm, namely Hy-
brid Spreading Load Algorithm (HSLA), which is proposed
to solve the MILP problem defined in Sec. II. In particular,
the algorithmic aspects and the architectural details are high-
lighted.

A. Exploiting SDN nodes for traffic splitting

The main idea behind HSLA is to exploit the use of the
generalized forwarding of the SDN paradigm to split the traffic
entering the set of SDN nodes in order to balance the traffic
load. In this way, a flow reaching an SDN node is split among
the rest of the outgoing ports so that the traffic is equally
balanced toward the next hop (ECMP protocol [21]). In case
of IP nodes, destination-based forwarding is used, such as in
the case of traditional routing protocols (e.g., OSPF) [10].

Although the ECMP technique can be combined with OSPF
to balance the traffic load on legacy IP nodes, the traffic
splitting is based on flow hashing methods, thus allowing the
balancing only in terms of number of flows (not with respect

to the actual traffic volume) and leading to a low accuracy.
On the other hand, in the SDN paradigm the traffic splitting
can be performed in a more flexible way by, e.g., exploiting
the routing mechanism of group tables or using specific flow
rules to realize a more accurate split of the traffic.

Figs. 1-3 represent the idea behind the proposed routing
scheme. Considering an 8-node hybrid IP/SDN network, let
us focus on the path that is assessed to steer the flow traffic
from node A to node H . Red line in Fig. 1 represents the
resulting path for the case where all the nodes are legacy
IP ones (PA,H = {A − C − F − H}). Note that all the
weights for links are set to 1 for the sake of simplicity. In
this case, destination-based forwarding is applied, such as in
traditional routing protocols, e.g., OSPF. In case a traditional
IP node is replaced by a SDN one at a particular stage in the
transition from IP to SDN, and the selection method for such
replacement indicates that the upgraded node must be C, the
resulting scenario is represented by Fig. 2. In this case, the set
of weights for links associated to the SDN node are decreased

from wi,j = 1 (initial setting) to wi,j =
w−i,j
ki

=
1

4
, where

w−i,j represents the weight of link li,j before the update and
ki is the degree of node i. The motivation behind the action
of decreasing the weights of links related to SDN nodes is
to force the flows to pass through them and hence to exploit
the ECMP protocol [21] in order to balance the traffic among
different links. However, in this simple example, although link
weights are modified, the replacement of a single SDN node
does not impact on the path followed by flow A−H (red line)
compared with the case of Fig. 1.

It is in the case of upgrading a second node to SDN, e.g., G,
where the flow arriving at node C is equally splitted among
the set of shortest paths from it toward the destination (see
Fig. 3). In the example, there are two shortest paths with the
same cost from C to H: P 1

C,H = {C − D − G − H} and
P 2
C,H = {C−F−G−H}, which are represented by blue lines.

Therefore, the volume of traffic represented by the red line is
divided by two and steered through the aforementioned (blue)
paths. With this splitting of traffic, the proposed solution aims
at balancing the traffic load and reducing the MLU through
the use of the ECMP protocol at SDN nodes.

B. HSLA Description

In the next, the proposed solution is presented, which is
composed of 2 algorithms: i) the first one aims at spreading
the traffic through the subset of SDN nodes, thanks to the



Algorithm 1 Hybrid Spreading Load Algorithm (HSLA)
pseudo code.

Require: A network graph: G = (N ,L), a traffic matrix: T
1: create W ← ∅ . Set for link weights
2: create R ← ∅ . Routing matrix
3: for all li,j ∈ L do . Update link weights
4: if i ∈ NSDN then
5: wi,j ← 1

ki
6: else
7: wi,j ← 1
8: end if
9: end for

10: for all δs,d ∈ T do . Find path ∀δs,d ∈ T
11: create ps,d ← ∅ . Path for demand δs,d
12: create λ← false . Boolean for path found
13: P ← k shortest paths(δs,d,G)
14: while λ == false do . Check each path p ∈ P
15: if p ∈ P is an IP path then . No SDN nodes
16: b← check link constraints(δs,d, p,G)
17: if b == true then
18: R← assign flow to path(δs,d, p,G)
19: ps,d ← p
20: λ← true
21: end if
22: else . There are SDN nodes in the path
23: for all li,j ∈ p do
24: if i ∈ NSDN then . It is an SDN node
25: P ∗ ← k shortest paths(δi,d,G)
26: u← num paths same cost(P ∗)
27: for all p′ ∈ P ∗with same cost do
28: b← check link constraints(

δs,d
u
, p′,G)

29: if b == true then
30: R←assign flow to path(

δs,d
u
, p′,G)

31: ps,d ← ps,d ∪ p′
32: else
33: clear incomplete flow assignments
34: check next path p ∈ P (line 14)
35: end if
36: end for
37: λ← true
38: else . It is an IP node
39: b← check link constraints(δs,d, li,j ,G)
40: if b == true then
41: R← assign flow to link(δs,d, li,j ,G)
42: ps,d ← ps,d ∪ li,j
43: else
44: clear incomplete flow assignments
45: check next path p ∈ P (line 14)
46: end if
47: end if
48: end for
49: end if
50: end while
51: end for
52: return feasible routing matrix R if it exists

use of the ECMP protocol (pseudo-code reported in Alg. 1);
ii) once the traffic is handled, a greedy approach is used to
save energy by iteratively removing the less loaded link in the
network (see Alg. 2) and repeat i).

Starting with HSLA, 2 parameters are required as input: i)
the network graph G = (N ,L); and ii) a traffic matrix T .

Algorithm 2 Less Loaded Links Algorithm (L3A) pseudo
code.
Require: A network graph: G = (N ,L), the routing matrix obtained

by Alg. 1: R, a traffic matrix: T
1: create G′ ← ∅ . Aux network graph
2: create L∗ ← ∅, L′ ← L . Aux links set
3: create R′ ← ∅ . Output routing matrix
4: L∗ ← sort links by load(G,R, ’ascend’)
5: for all li,j ∈ L∗ do
6: L′ ← L′ − li,j . Remove link from the set
7: G′ = (N ,L′)
8: R′ ← HSLA(G′, T )
9: if R′ is not feasible then

10: L′ ← L′ ∪ li,j
11: end if
12: end for
13: return feasible routing matrix R′ if it exists

At first, an initialization phase for setting the link weights is
performed in lines (1 − 9). As introduced in Sec. III-A, the
weight for links connecting two IP nodes is set to wi,j = 1,

while they are decreased to wi,j =
1

ki
in case they connect

an SDN node i, with ki as the node degree.
Once the initial weight setting is carried out, the goal of

HSLA is to accommodate all the traffic demands of the traffic
matrix passed as input, i.e., to find a feasible routing matrix
R for T in which the MLU is minimal. For this purpose, each
traffic demand (s, d) is iteratively handled. At first, k shortest
paths are obtained from the source node s to the destination
d according to destination based forwarding (line 13).

Then, each path in the reported set is evaluated to check
if it is a non-controllable path (all the nodes are IP) or a
controllable one (at least one node is SDN). In the former
case (lines 15− 23), a classical destination based forwarding
is adopted to steer the traffic, checking that link constraints are
satisfied. If otherwise SDN nodes are found in the evaluated
path (it is a controllable path), the algorithm checks each node
in the path from s to d to discriminate whether they are SDN
or IP nodes (lines 24 − 49). If the evaluated node i is SDN,
the k shortest path procedure is executed again (line 27) to
obtain the subset of u paths with same cost from the SDN
node i to the destination d. Then, the traffic demand (s, d)
arriving at i is equally splitted among the subset of u paths

with equal cost to d, with a volume of
(s, d)

u
, checking that

no loops are present (lines 29 − 37). In case the evaluated
node i is IP, the traffic demand is fully accommodated over
the outgoing link, without performing the traffic splitting (lines
39 − 47). This process is repeated until all the nodes in the
path from s to d are evaluated and the traffic is successfully
steered, satisfying link constraints throughout the path and the
avoidance of loops. Finally, a feasible routing matrix R is
reported as output.

Once a feasible routing is found by Alg. 1, in which the traf-
fic load is balanced, a second algorithm named Less Loaded
Links Algorithm (L3A) is executed to find a feasible network
configuration that minimizes the required power consumption.



L3A pseudo code is reported in Alg. 2. It takes as input the
routing matrix outputted by HSLA, R, as well as the network
graph and the traffic matrix to be handled. The first step is to
sort the set of links according to their load in ascending order
(line 4). Iteratively, each link is removed (put to sleep) from
the network topology and HSLA is executed to find a feasible
routing (if possible). If no feasible routing is found, the link
is put back to the topology (switched on) and the next link is
considered. This process is repeated until all the links in the
network are evaluated. Finally, a feasible routing matrix R′ is
reported, which i) balances the link load, and ii) reduces the
network power consumption.

IV. EXPERIMENTAL RESULTS

In this section, an experimental evaluation of the proposed
solution is provided. At first, the simulation environment is
described. Next, a performance analysis is provided, in which
the benefits of applying HSLA over topologies of different
sizes and traffic loads are discussed. Finally, a comparison
with two representative state-of-the-art solutions which tackle
separately the load balancing and energy consumption problem
in hybrid IP/SDN networks is carried out.

A. Simulation Set-up

Three network topologies of different size are considered in
the simulations: Nobel (17 nodes, 52 links), Geant (22 nodes,
72 links), and Germany (50 nodes, 176 links). In order to
evaluate the variability of the daily traffic patterns in each
network, a set of traffic matrices are retrieved from [25]. In
particular, Fig. 4 shows the daily traffic load of Nobel, for
which 5 representative TMs are extracted (TM1-TM5). As it
can be seen, the peak TM (TM5) is scaled down with a factor
of 0.4, 0.5, 0.7, 0.9 to form TM1-TM4.

Link capacities are set as follows. First, we select the peak
TM (TM5) and we route it over a set of shortest paths derived
after the application of the Dijkstra algorithm on the network
graph. After this step, each link li,j is carrying an amount of
traffic ti,j . Then, we assume that the capacity of each link
can be upgraded by installing a set of line cards. A line card
has a capacity of ∆C equal to 0.5 max

li,j
(ti,j), i.e., the half

of the traffic carried by the link with highest link utilization.
Finally, we consider to install the minimum number of line
cards needed by each link to make their utilization not greater
than 100%.

We assume that all the links in the network have the same
power consumption when they are active (Pi,j = 1). It is
worth to remark that, although this assumption is unrealistic
(there can be different types of links with different values
of power consumption [26]), it allows us to perform a much
fair comparison with the benchmark algorithms, since their
objective is to minimize the number of active links in the
network.

The transition from IP to SDN networks is performed step-
by-step, i.e., by upgrading one IP legacy node to SDN at a
time. At each stage, one node is selected as most suitable to
be upgraded to SDN. For the selection process, three methods

00:00 04:00 08:00 12:00 16:00 20:00 00:00

Time of Day

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 T

ra
ff
ic

TM2

TM1

TM2

TM3

TM4
TM5

TM4

TM3

Real Traffic

Scaled Traffic

Fig. 4: Daily traffic for Nobel topology.

are considered: i) Highest Degree First (HDF), which sorts
the set of potential nodes (remaining IP nodes) according to
their degree; i.e., the number of incoming/outgoing links; ii)
Highest Closeness Centrality (HCC), to select the node having
the shortest distance to the rest of the nodes; and iii) Highest
Betweennes Centrality (HBC), with the aim of obtaining the
node that is involved in most of the shortest paths among the
nodes in the network.

The motivation of the choice of the three aforementioned
selection methods is explained next. If the upgrade of IP nodes
to SDN is performed according to the HDF method, it means
that, after each stage, the controller will have the biggest
possible amount of information under control, compared with
the case in which other potential node would be selected. In
this way, the node with the highest number of links is chosen,
so that the controller will be able to control the highest number
of ports through, e.g., the use of the OFPMP PORT STATS
messages. If HCC is the method for SDN nodes selection,
the focus is put on the distance of a node to the rest of the
nodes. This situation is interesting to detect nodes that are able
to spread information very efficiently throughout the network.
If a node is selected as SDN using HCC, it means that the
destination node (as well as the source node) is close, thus the
path is shorter w.r.t. other potential nodes, and improvements
on the energy efficiency can be experienced. Finally, with
HBC the importance of a node is evaluated. The node with
HBC is involved in most of the shortest paths for each source-
destination pair. Since HSLA is based on the computation of
shortest paths both from the source node (line 13 of Alg. 1)
and from each SDN node (if any) to the destination (line 27
of Alg. 1), HBC seems an interesting option to be exploited
in the SDN nodes selection process.

B. HSLA Performance Evaluation

The first analysis that is proposed aims at evaluating the
effectiveness of the proposed solution considering the joint
optimization of energy efficiency and load balancing during
the transition from IP to SDN nodes. Fig. 5 shows the MLU
obtained by HSLA as a function of the SDN deployment rate
for Nobel topology. In particular, results for each of the 5 TMs
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Fig. 5: Maximum Link Utilization as a function of the SDN deployment rate for Nobel.
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Fig. 6: Power Saving as a function of the SDN deployment rate for Nobel.

are reported for the three SDN node selection methods (HDF,
HCC and HBC).

A general trend can be extracted by looking at Fig. 5, since
the MLU decreases with the SDN deployment rate regardless
the selection method. Clearly, there exists a direct proportional
relationship between the overall traffic load that is injected to
the network and the obtained MLU. TM5 represents the worst-
case scenario and TM1 the case for non-peak traffic, in which
more energy savings opportunities can be found.

A significant decrease in the obtained MLU is experienced
every time an IP node is replaced by an SDN one when the
SDN deployment rate is below 40%, both for HDF (Fig. 5a)
and HCC (Fig. 5b). After such percentage, the achieved MLU
is approximately constant up to reaching the full SDN scenario
(deployment rate of 100%). In other words, the highest impact
during the transition from IP to SDN in terms of MLU is found
in the range (0, 40)% of deployment rate. It is in Fig. 5c where
the MLU behaviour is step-wise. In this case, the benefits of
adding a new SDN node is not as high as in the case of HDF,
or HCC, regardless the transition stage.

Once the evaluation of the obtained MLU has been carried
out, we move our attention to the power savings achieved
by HSLA throughout the IP/SDN transition process. In Fig.
6, the power savings are reported for the 5 TMs and the
three selection methods, considering different percentages of
SDN deployment rate. By looking at the three sub-figures,

it is clear that HDF is the method that outperforms the rest,
reaching a power saving peak about 50% when the half of
the network nodes are upgraded to SDN. In this case, the
experienced trend is different from the one experienced when
evaluating the MLU in Fig. 5: the power savings are increased
with the SDN deployment rate up to reaching a threshold that
slightly exceeds the half of the nodes considered as SDN.
After such value, the power savings sharply decrease and no
significant differences can be found among traffic matrices
and with the increase of the deployment rate. Although HCC
method slightly improves the power savings outcomes w.r.t.
HDF for a deployment rate of 30% and low traffic scenarios
(see Fig. 6b), it suffers when the traffic load is increased.
Finally, HBC has been found as the worst selection method for
the power savings objective. As a summary, the SDN selection
method that presents the best results both for the minimization
of the MLU and the minimization of the power consumption
is HDF. An explanation to this outcome is derived by the fact
that such method aims at selecting the node with the highest
degree, hence involving the maximum number of links and
controllable paths.

C. Performance analysis over bigger networks

The goal of the next analysis is to evaluate the outcomes of
the proposed solution over topologies with different size. In
particular, Fig. 7 reports the MLU as a function of the traffic
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Fig. 7: Maximum Link Utilization as a function of the traffic load for Nobel, Geant and Germany50, with HDF.
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Fig. 8: Power Saving as a function of the traffic load for Nobel, Geant and Germany50, with HDF.

scaling factor for the three considered topologies: Nobel,
Geant and Germany50. For each topology, 4 deployment rate
percentages (α) have been considered, approximating to 25%,
50%, 75% and 100% of the nodes in the network. HDF is
adopted as the nodes selection method. From the figures,
it can be extracted that the MLU increases with traffic, as
previously discussed when analyzing Fig. 5, for the three
topologies. Surprisingly, the best outcomes for the medium
and big topologies are not obtained in the full SDN scenario
(α = 100%), but when the half of the nodes are replaced (see
Figs. 7b and 7c). In case of Nobel, in turn, the minimal MLU
is experienced when α = 75%. In any case, the gap with the
half hybrid IP/SDN network is negligible.

Power savings outcomes are reported in Fig. 8 as a function
of the traffic load for the three considered topologies and dif-
ferent values of α. By inspecting Fig. 8, there are differences
between the results obtained for small and large topologies.
In the latter case (Geant and Germany50), a decreasing trend
in the power savings can be extracted with the increase in the
traffic scaling factor. Moreover, a higher value of α is generally
associated with power saving gains, especially for Geant. It
is in the case of Nobel (Fig. 8a) where the behaviour is the
opposite. The highest power savings are achieved for values
of α ≤ 50%, as previously discussed when analyzing Fig.
6a. Once this threshold is surpassed, the power savings are

significantly decreased, regardless the network traffic load.
The explanation to the obtained power saving results is as

follows. The proposed algorithm aims at either balancing the
traffic load and to reduce the network power consumption.
In the first stage, HSLA, the link weights are adjusted so
that to create a large portion of the controllable traffic. As
a consequence, the main role of the SDN nodes is to balance
the traffic, and not to reduce the power consumption (goal
of the second stage, L3A). At the same time, the weights
selection logic becomes less effective when the deployment
ratio increases (approaching to a full SDN network), since the
amount of controllable traffic is already high. Therefore, the
algorithm reaches its performance peak when the network is
half IP-half SDN.

D. Comparison with other solutions

In this subsection, two benchmark solutions are first intro-
duced to compare their results with the ones obtained by the
proposed heuristic. Then, a performance analysis is carried out
to show the outcomes of the proposed solution.

The first algorithm we focus to highlight the benefit allowed
by the use of HLSA is named SDN/OSPF Traffic Engineering
(SOTE) and is proposed in [27]. The main goal of SOTE is to
minimize the MLU of a hybrid SDN network, which is one
of the metrics tackled in the present work. However, energy
efficiency aspects are not taken into account. To solve the



problem at hand, SOTE jointly optimizes the OSPF weight
setting of the whole network to balance outgoing flows at
IP nodes, as well as the traffic splitting ratio of flows that
aggregate at SDN nodes.

The second algorithm that is considered is named Hybrid
Energy-Aware Traffic Engineering (HEATE) and is proposed
in [18]. This solution minimizes the power consumption of a
hybrid IP/SDN network by finding the optimal setting of OSPF
link weight and splitting ratio on SDN nodes. In particular, IP
routers perform shortest path routing by optimizing OSPF link
weights and SDN nodes fulfil multi-path routing with traffic
flow splitting through the action of the controller.

These two algorithms have been selected to be compared
with HSLA since they are both representative when tackling
the load balancing problem [27] and the energy consumption
problem [18] in hybrid networks. Although works such as [2]
and [28] consider the joint problem of load balancing and
energy efficiency in these scenarios, both of them are survey
papers that review a set of works tackling each type of problem
( [2] considering Machine Learning aspects), not the combined
one. Moreover, no proposals to compare with are provided.

Results for the first analysis are reported in Fig. 9, in which
the Cumulative Distribution Function (CDF) curves of MLU
are drawn for HSLA, SOTE and OSPF. The deployment ratio
is set to α = 50%, i.e., a half hybrid IP/SDN network, and
the non-peak TM (TM1) is considered. As shown in Fig. 9,
HSLA achieves the lowest MLU compared with the rest of
solutions. SOTE, which is specifically designed to minimize
the MLU, presents slightly worse results, with an average of
1% of difference in the MLU w.r.t. HSLA in about 80% of
the links. The difference is that HSLA allows for a better load
balancing in the less congested links with respect to SOTE.
Furthermore, the performance of OSPF is decreased due to
the fact that its goal is not to minimize the MLU, but to find
the shortest path among each source-destination pair.

In order to compare the power saving gains between HSLA
and HEATE, Fig. 10 shows the obtained results as a function
of the SDN deployment rate for Geant topology. Two lines are
reported for each solution, for the peak and non-peak TMs,
respectively (TM5 and TM1). By looking at the figure, it can
be seen that HSLA outperforms HEATE in all the cases, with
an average power saving gain of 3.4% for the non-peak TM,
and of 1.8% for the peak TM. As a summary, the proposed
solution, which jointly minimizes the MLU and the power
consumption, presents better results than the ones obtained by
ad-hoc solutions that specifically tackle a single objective.

V. CONCLUSION

This paper analyzes the tradeoff between load balancing
and energy-efficiency in hybrid IP/SDN networks. Starting
from the opposite nature of the two optimization problems,
which are normally tackled separately, an heuristic is pro-
posed to jointly minimize the MLU and the network power
consumption during the transition from IP to SDN networks.
Simulations on realistic network topologies show that HSLA
outperforms other state-of-the-art solutions such as SOTE,
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which is intended only to minimize the MLU, and HEATE,
aimed at solely minimizing the power consumption. As future
steps, HSLA is planned to be installed in a real SDN controller
to evaluate its impact on the network performance in a working
test-bed.
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Abstract — The advent of the Internet of Things (IoT) 

paradigm allows for real-world tasks to be monitorized and 

managed using computing applications. The application of IoT to 

the industrial environment leads to the Industrial Internet of 

Things (IIoT), in which industrial processes are managed 

through IoT, thus allowing industry workers to better control 

their facilities and processes. However, IIoT applications have 

very strict Quality of Service (QoS) requirements, such as short 

response times, that require for the deployment of their services 

in edge nodes, close to the facilities. In IIoT scenarios, deploying 

each of the services so that the QoS requirements are met is not 

an easy task. Moreover, the dynamicity of the environment 

requires for a fast, adaptive solution. In this position paper, we 

propose DeQALE, an approach to train a deep reinforcement 

learning agent to solve this problem in short cycles. 

Keywords – Quality of Service; Industry 4.0; Internet of Things, 

Deep Reinforcement Learning; Edge computing 

I.  INTRODUCTION 

In recent years, the number of Internet-connected devices 
has grown exponentially, as it is expected to reach over three 
times the global population by 2023 [1]. This growth has been 
especially motivated by the Internet of Things (IoT) paradigm, 
which allows computer applications to interact with the real 
world. Through the use of IoT, it is possible to bring the 
benefits of computing and telecommunications to real-world 
processes, sending, processing and receiving data making use 
of the Internet. Such potential is especially interesting in the 
industrial domain, in which the monitoring and management of 
information related to critical processes can be crucial [2]. 
Hence, the term Industrial Internet of Things (IIoT) refers to 
the application of the IoT paradigm to industry. IIoT is 
considered one of the key enabling technologies for Industry 
4.0, the next step in industrialization, bringing computerization 
and automation to industrial processes [3]. 

Nonetheless, IIoT devices rarely have the power to run a 
complete IIoT application themselves, and instead, they rely on 
their connections to offload the computational workload to 
other machines, while they serve as a gateway to the real world 
[4]. Traditionally, the applications were deployed to the cloud, 
a set of vastly powerful computers in the core of the network. 
However, IIoT applications usually require a high Quality of 

Service (QoS), such as very short cycle times [2]. Hence, the 
latency to the cloud may be unsuitable for IIoT applications. 
Instead, these applications can be deployed to the edge 
computing environment, in which the computation is offloaded 
to multiple devices within the close vicinity to the IIoT devices 
themselves [5]. 

Moreover, IIoT applications are generally have a Service-
Oriented Architecture (SOA) [6]. SOAs are composed of 
multiple, loosely-coupled services that perform different tasks, 
enabling for high modularity and evolvability [6]. However, 
this modular nature, together with the multiple offloading 
points provided by edge computing, complicate the 
management of the services themselves, as their placement 
affects the application's QoS [4]. Thus, while it is desirable to 
place the services in a manner that optimizes QoS, the 
assessment of this placement is not trivial in an edge 
computing environment. Furthermore, Industry 4.0’s focus on 
computerization motivates the development of solutions that 
adapt automatically, rather than requiring workers to manually 
adapt the IIoT systems to the environment [3]. This is 
especially important in a dynamic environment such as the 
industrial one, in which adapting the service placement to the 
current situation should be performed in a fast, and preferably 
automatic, manner [2]. As such, the development of software 
solutions that automatically assess the placement of services 
can help operators meet the QoS requirements of IIoT 
applications. 

Due to this fast requirement, techniques with a high 
computational complexity, such as backtracking or 
mathematical programming, are unfit for this task. Thus, Deep 
Reinforcement Learning (DRL) is a promising technique to 
apply to service placement assessment [7]. The objective of 
DRL is to train an agent to perform a given set of actions in an 
environment through the training of a deep neural network [8]. 
This training is performed by assessing the optimality of the 
actions taken by the agent and giving it an according reward, 
which is used to tune the weights in the neural network [9]. 
However, while the inference process of a DRL agent is fast 
enough for dynamic adaptation, its training process can take a 
large amount of time [10]. Moreover, a digital environment 
needs to exist for the agent's training process, as pushing an 
untrained agent to production may result in malfunctions. 
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In this position paper, we propose the Deep QoS-Adaptive 
Learning Environment (DeQALE), a conceptual architecture to 
enable the use of DRL agents to assess QoS-adaptive service 
placements, providing industrial facilities an intelligent 
technology and enabling for the use of IIoT. Specifically, the 
contributions of this position paper are the proposal of a 
conceptual architecture for the training and use of DRL agents 
in IIoT service placement, and the proposal of a model for the 
environment of DRL-based, QoS-adaptive service placement 
agents. 

The remainder of this paper is structured as follows: section 
II details DeQALE's conceptual architecture, section III 
proposes the model for DeQALE's DRL system, and section IV 
concludes the paper. 

II. THE DEQALE ARCHITECTURE 

The DeQALE conceptual architecture addresses some of 

the problems that arise due to the time-consuming task of 

training DRL agents for service placement. These problems 

appear at two key points of an agent's lifecycle: its inception, 

and its use in production environments. In the inception phase, 

there is no prior DRL agent in place, and thus, one is needed. 

However, the use of an untrained agent at this phase, allowing 

it to control the real industrial environment to learn, can lead 

to catastrophic results, especially considering the amount of 

time required to properly train a DRL agent. On the other 

hand, the agent requires an environment to train, which needs 

to be realistic for it to learn correctly. Moreover, once the 

DRL is in production, it would be desirable for the agent to 

continuously learn at production, further enhancing its 

performance. However, an agent trained with more data may 

not necessarily lead to a better result [8]. DeQALE provides a 

conceptual architecture, depicted in Fig. 1, that addresses these 

concerns. 

 

A. Training the DRL Agent: the Simulated Environment 

First, to solve the problem at the inception phase, 

DeQALE provides a simulated environment for the DRL 

agent to train. This simulated environment can be constructed 

using estimations about the IIoT application, its services, the 

application's QoS requirements, the IIoT and edge computing 

infrastructures, its hardware resources, and their performance 

metrics. Since they are estimations, and not necessarily real 

information, these metrics can be obtained at the late design 

phase of the application's development. Then, using simulators 

such as iFogSim [11], or even emulators such as Netkit [12], it 

is possible to construct a realistic simulation based on these 

estimations. DeQALE allows the DRL agent to control the 

simulation by migrating the services between nodes, 

effectively creating a training environment for the DRL agent. 

Due to the fact that this environment can be created at early 

stages of the IIoT application's development, the time required 

at the training phase is not an issue, and the DRL agent can be 

integrated once the application enters the deployment phase. 

 

B. Continuously Enhancing the DRL Agent 

However, as the initial DRL agent has been trained with 

estimations, while its initial performance may be good, it 

would be desirable to further train and enhance its 

performance with real data. Thus, in the same manner 

monitoring is leveraged to detect any events that may trigger 

the DRL agent, DeQALE uses the information obtained 

through monitoring to feed the simulated environment with 

real data, adjusting the simulation to be as realistic as possible. 

Nonetheless, the agent that is used at production is not directly 

trained. Instead, the agent is cloned, and a clone of the 

production agent is the one trained at the enhanced simulation. 

Furthermore, an evaluator module is on charge of assessing 

the performance of both, the trained agent in production and 

the training agent in the simulation, using the Key 

Performance Indicators (KPIs) selected by DeQALE's 

operator (e.g., response time, energy consumption). Whenever 

the KPIs of the training agent indicate it is outperforming the 

agent in production (i.e., it is enhanced due to the additional 

training), the training agent is cloned, and this clone 

substitutes the agent in production. Thus, the agent can 

improve constantly, and each of these improvements are 

continuously reflected in production. 

 

C. DeQALE’s Role in the IIoT Environment 

Within the IIoT environment, DeQALE acts as an 

intermediary between the IIoT application and the edge 

computing infrastructure. Making use of the information 

provided through the monitoring of the edge infrastructure, 

DeQALE places the services from the IIoT application into its 

edge nodes, while performing its continuous dual training-

inference approach to enhance the DRL agent. 

III. THE DEQALE ENVIRONMENT REFERENCE MODEL 

In order to enable the use of DeQALE, there is a need to 

create a DRL environment in which the agents can train. In 

this section, we present DeQALE's DRL environment 

reference model, which can be used for this purpose. 

Nonetheless, as a conceptual architecture, DeQALE is not 

Figure 1. DeQALE's architecture and role in the IIoT environment. 



necessarily bound to a concrete DRL environment for QoS-

adaptive service placement, and environments that do not 

follow the reference model can be used as well. In DRL, the 

environment is usually modeled as a Markov Decision Process 

(MDP) [7], and comprises three main elements: the state 

space, the action space, and the reward system [8]. The agent 

observes the current state, one of the nodes of the MDP, which 

belongs to the state space, and takes a suitable action from the 

action space, i.e., an edge from the MDP. This action may 

alter the state of the system, as the edge of the MDP may lead 

to another node. As a result of taking that action, the agent is 

given a reward, as its objective is to maximize it through their 

actions. This process is repeated until the agent reaches the 

terminal state of the MDP. Furthermore, as the agent also 

needs to control real service placement, we also introduce the 

integration with this sort of control as a fourth element. The 

complete reference model, including all its elements and 

interactions, can be seen in Fig. 2. 

 

A. State Space 

In the DeQALE reference model, we consider the state 

space to be bound to another entity, the observation space. 

The state space represents the possible states in which the 

environment can be, while the observation space represents all 

the information that the DRL agent can sense of a given state 

[8]. This allows for the state space to have a compact 

representation, which can be expanded in the observation 

space to give additional information to the agent. For the state 

space, in an environment with 𝑆 services and 𝐸  edge nodes, 

each of edge nodes can host zero or more services, while each 

service can be deployed to one edge node. Thus, a state in 

DeQALE is an integer vector 𝑋𝑆, where 𝑥𝑠 takes the value 𝑒, 

and 𝑒 is the edge node the service was deployed to (e.g., edge 

node 2), and 0  if it is yet to be deployed. Therefore, the 

complete state space can be represented as 𝑋𝑆 , i.e., all the 

possible combinations of vectors in which each element takes 

values between 0 and 𝐸. All the states in which none of the 

elements in the vector take the value 0 are thus considered 

terminal. For the observation space, along with the full 𝑋𝑆 

vector, the DRL agent should be provided with additional 

information about both common limitations (e.g., hardware 

consumption of services and hardware resources available at 

each node), and KPI-specific information (e.g., latency to each 

node, energy consumption of each service). 

B. Action Space 

A DeQALE agent is expected to place a single service on 

each action, i.e., each episode will always take 𝑆 actions to 

complete. Therefore, the action space of the DeQALE agent is 

𝐸, as it simply has to choose an edge node per action. Once 

the action is taken, the value it selects will be the edge node in 

which the service 𝑠 is placed, where the agent is performing its 

𝑠𝑡ℎ action in the episode. 

 

 

 

C. Reward System 

The objective of an agent trained by DeQALE is twofold. 

On the one hand, it must place the services in a valid manner, 

as edge nodes have certain limitations (e.g., RAM, number of 

CPU cores, storage) that cannot be surpassed by the 

consumption of the services placed in them. On the other 

hand, it must place the services as optimally as possible w.r.t. 

the KPIs defined for the IIoT application. To perform both of 

these actions, we propose to punish (i.e., provide a negative 

reward) any invalid solutions provided by the agent, so that it 

learns to place services in a valid manner [8]. Once the 

deployment is valid, the reward should be calculated 

according to the KPIs that are defined for the application. 

Namely, those KPIs that should be minimized (e.g., energy 

consumption) should provide either an inversely proportional 

or negative reward, while KPIs to maximize (e.g., reliability) 

should provide directly proportional and positive reward [8]. 

Furthermore, if multiple KPIs are optimized at the same time, 

all of them should to be normalized to maintain a similar r 

Figure 2. DeQALE’s environment reference model. 



D. Service Placement Control 

Finally, the integration of DeQALE with the simulated and 

real infrastructure and application must be done in both ways, 

from DeQALE to the infrastructure and vice-versa. On the one 

hand, the decisions taken by DeQALE's DRL agents in the 

environment must also be performed in the infrastructure. On 

the other hand, the DeQALE agent needs to receive updated 

information from monitoring to adapt the deployment to the 

changes that may appear. To perform this communication, we 

propose the monitoring of both, the simulated and the real 

infrastructure, to be performed in a push scheme by calling the 

API of the environment. Thus, the monitoring system can 

directly provide the agent with updated information, request 

for placement adaptations, and retrieve the results after an 

episode. Furthermore, DeQALE's environment can directly 

push the updated information to the agent by simply updating 

the observation space and the reward that the agent is 

awarded. 

 

IV. CONCLUSIONS AND FUTURE WORK 

The introduction of Industry 4.0 is turning industry to a 

cyber-physical system model, in which technology becomes 

the wrapper for automation and management of industrial 

assets. IIoT, allowing for the computerized management of 

industrial processes, is one of the enabling technologies of this 

future. However, the high QoS requirements of IIoT 

applications motivate the use of edge computing, which in 

turn complicate the placement of services throughout the 

infrastructure. Moreover, the high dynamicity of the industrial 

environment requires for fast and intelligent service placement 

solutions. In this position paper, we have introduced DeQALE 

as a solution to make use of DRL agents for QoS-adaptive 

service placement in IIoT environments. 

 

As future work, we expect to evaluate the performance of 

DeQALE in a simulated or emulated industrial testbed, as well 

as comparing its performance to other approaches to this 

adaptation problem. 
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Resumen La aparición del Internet de las cosas (IoT) ha atráıdo el
interés de industria y academia para su aplicación en dominios intensi-
vos, como la salud. Esta clase de aplicaciones tienen requisitos estrictos
de calidad de servicio (QoS), lo que motiva el uso de paradigmas co-
mo edge o fog computing. Las redes definidas por sofware, junto a las
arquitecturas de microservicios, permiten el uso de dichos paradigmas
proveyendo virtualización, flexibilidad y programabilidad a las aplicacio-
nes IoT distribuidas. Sin embargo, para cumplir los estrictos requisitos
de estas aplicaciones, la QoS debe optimizarse considerando la interac-
ción de tres dimensiones: computación, red y aplicación. En este trabajo
presentamos el framework Despliegue Óptimo de Aplicaciones Distribui-
das, que optimiza la localización de microservicios y recursos de red en
términos de tiempo de respuesta y coste del despliegue.

Keywords: Internet of Things, Software-Defined Networks, Edge Com-
puting, Fog Computing, Quality of Service

1. Introducción

El incremento en el número de dispositivos conectados a Internet en los
últimos años, provocado en especial por la llegada del paradigma del Internet
de las cosas (IoT), ha generado un crecimiento exponencial de la cantidad de
tráfico que fluye por la red. En particular, se espera que el número de dispositivos
conectados triplique la población mundial en 2023, siendo la mitad de estas
conexiones de máquina a máquina (M2M) [6].

Las tareas de IoT, aśı como las tareas de procesamiento de datos relaciona-
das, pueden llegar a ser computacionalmente pesadas y, por ende, los limitados
recursos de los dispositivos IoT ordinarios (memoria, bateŕıa, etc.) suelen no ser
suficientes para su ejecución [3]. Para superar esta dificultad, estas tareas suelen

* Este trabajo ha sido parcialmente financiado por el proyecto RTI2018-094591-B-I00
(MCI/AEI/FEDER,UE), el proyecto 4IE+ (0499-4IE-PLUS-4-E) financiado por el
programa Interreg V-A España-Portugal (POCTEP) 2014-2020, por el Departamen-
to de Economı́a e Infraestructura de la Junta de Extremadura (GR18112, IB18030),
por la Fundación Valhondo Calaff, y por el Fondo Europeo de Desarrollo Regional.
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realizarse en el cloud, donde se pueden ejecutar sin comprometer estos recur-
sos. Sin embargo, el uso del paradigma cloud impone un retraso en el tiempo de
respuesta debido a la latencia entre los dispositivos finales y los servidores cloud.

Mientras que esta técnica se puede utilizar fácilmente con aplicaciones que
no tienen requisitos estrictos de calidad de servicio (QoS), existen aplicaciones
emergentes muy sensibles al retardo (realidad aumentada y mixta, conducción
autónoma, etc.). Estas requieren de grandes anchos de banda y muy bajas la-
tencias, que no son factibles si se usa un paradigma cloud puro. Por ello, los
paradigmas edge y fog computing suponen una solución adecuada cuando exis-
ten estos requisitos [3]. Al mover los servicios del cloud al borde de la red, se
obtiene una reducción de la latencia y una menor carga de tareas en los dispo-
sitivos finales, que solicitan dichas tareas a los servidores edge [3].

En la actualidad, se está tratando de integrar computación y red para me-
jorar los tiempos de respuesta y el uso de recursos, formando el llamado con-
tinuo edge-cloud [8]. Para realizar esta integración, se pueden acoplar recursos
de computación (servidores) a equipos de red (switches, routers, etc.), a medio
camino entre el cloud y el edge, de modo que se reduzca el tiempo de respuesta
cuando sea necesario. Diversos paradigmas, como las redes definidas por software
(SDN) o las arquitecturas de microservicios, facilitan esta tarea, ya que propor-
cionan caracteŕısticas como virtualización o programabilidad a la red. Gracias a
esto, por ejemplo, es posible realizar tareas como descubrimiento o composición
de servicios directamente en la red, de manera transparente [2]. Estas tareas son
interesantes en las aplicaciones sensibles al retardo actuales, puesto que permiten
desacoplar infraestructura y aplicación, encargando las tareas correspondientes
a la red [15]. Sin embargo, la QoS que experimentan las aplicaciones en arquitec-
turas de este tipo depende del rendimiento de los recursos de computación y red.
A su vez, este rendimiento depende de la colocación de microservicios y contro-
ladores SDN en la infraestructura [3,7]. Por tanto, para aprovechar los beneficios
del continuo edge-cloud, se deben abordar con especial atención los problemas
de colocar tanto los microservicios de la aplicación como los controladores SDN.

En este art́ıculo, presentamos Despliegue Óptimo de Aplicaciones Distribui-
das (DADO), un framework para optimizar la colocación de microservicios y
recursos de red en el continuo edge-cloud. Concretamente, la solución propuesta
obtiene: i) la localización óptima de los microservicios que se ejecutarán en los
servidores de la infraestructura, y ii) la localización del controlador o contro-
ladores SDN que maximiza la QoS de aquellas tareas asignadas a la red (des-
cubrimiento de servicios, composición, etc.). Este framework se evalúa sobre un
escenario de aplicaciones IoT sensibles al retardo considerando dos métricas: i) la
minimización del tiempo de respuesta medio, y ii) la minimización de los costes
derivados del despliegue de la infraestructura. Por último, exponemos los bene-
ficios de considerar conjuntamente las dimensiones de computación y red para
gestionar las aplicaciones IoT actuales y sus estrictos requisitos de QoS.

El resto de este art́ıculo está organizado de la siguiente manera. La sec-
ción 2 describe la arquitectura considerada y los paradigmas que la habilitan.
La sección 3 presenta el framework propuesto para optimizar el despliegue de
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aplicaciones. La sección 4 presenta la evaluación del rendimiento del framework
en un escenario relacionado con la salud. La sección 5 presenta los trabajos
relacionados con DADO. Finalmente, la sección 6 concluye el art́ıculo.

2. Arquitectura de despliegue de aplicaciones IoT
jerárquica

El desarrollo de aplicaciones IoT con requisitos estrictos de QoS requiere
de la coordinación de tres dimensiones altamente relacionadas: la dimensión de
aplicación, que indica cómo esta modularizada y coordinada la aplicación; la
dimensión de computación, que define los servidores disponibles y cómo se des-
pliegan los módulos de aplicación en ellos; y la dimensión de red, que comprende
aquellos elementos de la infraestructura que permiten la comunicación entre
módulos de aplicación. Todas estas dimensiones deben visualizarse de manera
hoĺıstica, puesto que están altamente relacionadas, ya que la configuración de
cada dimensión afecta al resto y, por tanto, a la QoS obtenida.

2.1. Dimensión de aplicación

Figura 1: Dimensión de aplicación.

Las aplicaciones IoT suelen estar basadas en el paradigma de computación
orientada a servicios (SOC), ya que deben ser interoperables, altamente evolu-
cionables y masivamente distribuidas [17]. El patrón de arquitecturas orientadas
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a microservicios (MSA) permite dividir las aplicaciones en módulos poco aco-
plados que colaboran entre śı. Estos módulos, llamados habitualmente contextos
acotados o servicios, contienen uno o más microservicios altamente acoplados,
que normalmente se despliegan de forma conjunta [14].

Para ejemplificar esta arquitectura, nos basamos en una aplicación del Inter-
net de las cosas médico (IoMT) que permite monitorizar la tensión de un paciente
y detectar anomaĺıas en su electrocardiograma (ECG) mediante los datos obte-
nidos por sensores. Este ejemplo se basa en la arquitectura propuesta en [11] y
las caracteŕısticas de entradas, salidas y procesamiento obtenidas por [16]. En
él, cada usuario está equipado con un dispositivo IoT que obtiene muestras de
los sensores durante 15 segundos, tras lo cual se env́ıa para ser procesado. Las
funcionalidades que se utilizan en este caso de estudio se dividen en tres servi-
cios: monitorización de ECG y tensión (verde), encriptación de datos (azul) y
detección de anomaĺıas (rojo). La Figura 1 muestra un diseño arquitectónico a
alto nivel de esta aplicación.

Estos servicios pueden desplegarse de manera independiente, de modo que
pueden desplegarse en la misma máquina, en diferentes máquinas o replicarse
para equilibrar la carga y mejorar la QoS. Pueden usarse diversas técnicas de
virtualización, como Kubernetes, para reducir el esfuerzo del despliegue. Además,
SOC hace uso de técnicas clave para la integración de los servicios desplegados
como el descubrimiento de servicios, que permite conocer la localización de cada
servicio; o la composición, que permite coordinar la ejecución de funcionalidades
complejas orquestando diversos servicios [17,13].

2.2. Dimensión de computación

Paradigmas como fog, edge o mist computing permiten que las aplicaciones
IoT intensivas con requisitos de QoS estrictos se puedan desarrollar utilizando
una arquitectura jerárquica [3]. Los servicios de aplicaciones basadas en MSA
pueden desplegarse cerca de los usuarios finales, reduciendo la carga de red y
el tiempo de respuesta [3]. Los servicios que más recursos requieren siguen des-
plegándose en nodos potentes (como servidores cloud o fog), mientras que aque-
llos que requieren menos recursos pueden desplegarse en nodos de red con capa-
cidades de computación (edge) o incluso en los propios dispositivos (mist) [3].
Ergo, al desplegar estas aplicaciones, se debe evaluar una gran variedad de posi-
bilidades, y los nodos elegidos para desplegar son clave para cumplir sus estrictos
requisitos de QoS. Del mismo modo, deben coordinarse estos servicios, haciendo
uso de descubrimiento de servicios, agregadores y módulos de composición, para
que las funcionalidades y workflows definidos puedan ofrecerse. La localización
de dichos elementos es también crucial para obtener la QoS requerida.

La Figura 2 muestra cómo se despliegan en las diferentes capas cada uno
de los servicios definidos en nuestro ejemplo, despliegue que depende de la QoS
que requiere cada servicio y los recursos disponibles. Por ejemplo, los monitores
de ECG y tensión (verde) se despliegan en dispositivos IoT, ya que requieren
menos recursos. Además, diferentes agregadores se despliegan en la capa superior
(edge) para procesar las respuestas de los dispositivos IoT y reducir el tráfico. De
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Figura 2: Dimensión de computación.

forma similar, la encriptación (azul) y detección de anomaĺıas (rojo) requieren de
recursos adicionales, por lo que se despliegan en nodos más potentes (edge y fog,
respectivamente). Definir una distribución de la computación óptima depende
en gran medida de los servicios definidos y los recursos disponibles.

2.3. Dimensión de red

Desplegar una aplicación IoT teniendo en cuenta exclusivamente la dimen-
sión de computación no siempre garantiza una QoS óptima. En particular, la
configuración de red, incluyendo el enrutamiento entre los servicios desplegados
o el despliegue de infraestructuras espećıficas, tiene un gran impacto en la QoS,
ya que afecta a la latencia de red. Las redes SDN permiten el despliegue de
controladores SDN, que utilizan la virtualización para que la red sea progra-
mable, basándose en los principios de SOC [8]. Estas funciones de red virtuales
(VNFs) pueden utilizarse para realizar ingenieŕıa de tráfico, mejorando aśı el
rendimiento de la red [2]. Para hacer uso de ellas, la red SDN centraliza su lógi-
ca en el controlador SDN, mientras que los switches pasan a ser elementos puros
del plano de datos: tan solo reciben y env́ıan mensajes de acuerdo a las normas
que tienen instaladas. En caso de que no sepan cómo manejar un mensaje, lo
env́ıan al controlador SDN, que les enviará de vuelta una norma para instalar.
Dado que el controlador SDN es programable, el administrador de red puede
desplegar diversas VNFs en la red instalando las normas apropiadas. No obs-
tante, el reenv́ıo de paquetes queda detenido desde que el switch SDN env́ıa el
paquete al controlador hasta que recibe la norma correspondiente. De este modo
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Figura 3: Dimensión de red.

el problema de colocación del controlador SDN (Controller Placement Problem
o CPP) identifica la localización óptima para desplegar controladores SDN, de
modo que se reduzca la latencia entre switches y controladores y el tiempo de
respuesta [7]. En la Figura 3, se muestra el controlador SDN colocado cerca de
switches espećıficos, entre las capas edge y fog, para mejorar la latencia.

Sin embargo, la infraestructura de red tiene también otras capacidades. La
aplicación de la virtualización y los principios de SOC a la red ha dado lugar a
una cloudificación de los controladores y switches [8]. El paradigma edge com-
puting incorpora servidores en la infraestructura de red, con lo que los switches
pueden desplegar funciones de computación virtuales además de VNFs [8]. Esto
incluye tanto servicios IoT como otros módulos de gestión (descubrimiento de
servicios, agregación, composición, etc.). Por ejemplo, ETSI propone el módulo
MANO(MANagement and Orchestration) [10] para gestionar y orquestar los di-
ferentes servicios y VNFs, aśı como encadenarlos en workflows. Por tanto, todos
estos elementos de red también deben ser parte de la dimensión de computación,
ya que se puedan desplegar servicios en ellos. La Figura 3 muestra que la capa
edge está compuesta por tres switches SDN con capacidades de computación.
Además, el descubrimiento y la composición de servicios se han desplegado en
el controlador SDN, mejorando la QoS de la aplicación considerada.

Por estos motivos, una arquitectura de despliegue de aplicaciones IoT jerárqui-
ca facilita el cumplimiento de requisitos de QoS estrictos en aplicaciones IoT
distribuidas. Sin embargo, para obtener un despliegue y configuración óptima,
deben evaluarse tres dimensiones de manera conjunta: aplicación, computación
y red. En este art́ıculo, se toma como base una aplicación IoT que hace uso de
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los principios de SOC y MSA [14], y se propone un framework que coloca de
manera óptima los servicios IoT y los controladores SDN en arquitecturas IoT
jerárquicas.

3. Despliegue Óptimo de Aplicaciones Distribuidas

Obtener una QoS óptima requiere un despliegue que evalúe conjuntamente
las dimensiones de aplicación, computación y red, colocando de forma óptima
servicios IoT y controladores SDN. DADO es un framework que tiene en cuenta
las tres dimensiones para encontrar despliegues factibles que cumplen los requi-
sitos de QoS de dichas aplicaciones IoT. Aunque DADO es extensible y soporta
diferentes clases de QoS, este art́ıculo se enfoca en dos parámetros: tiempo de
respuesta y coste. Estos parámetros suelen ser importantes en aplicaciones IoT
y están estrechamente relacionados (una infraestructura que obtiene menores
tiempos de respuesta suele tener un mayor coste), por lo que realizar un trade-
off entre ambos es complejo [1]. DADO toma como entrada las caracteŕısticas
de la aplicación, la topoloǵıa de red, los recursos de computación y los objeti-
vos de QoS a satisfacer. Procesando esta información, DADO optimiza la QoS,
considerando las tres dimensiones. Finalmente, se obtiene un plan de despliegue,
óptimo según los objetivos seleccionados, como salida.

3.1. Entradas

Para conocer el despliegue óptimo de una aplicación, DADO requiere de di-
versa información de las tres dimensiones consideradas. Estas entradas se dividen
en dos tipos para facilitar la reutilización y extensibilidad de DADO: información
básica, e información espećıfica de un objetivo de QoS.

La información básica es siempre necesaria, independientemente de los obje-
tivos de QoS a optimizar, ya que se utiliza para conocer la factibilidad de un
determinado despliegue, comprobando que no se rebasen los recursos disponibles.
De la dimensión de aplicación, DADO necesita conocer la cantidad de memo-
ria RAM consumida por cada servicio, el tamaño de sus entradas y salidas, y
las peticiones procesadas por cada servicio, incluyendo qué dispositivo realiza
cada petición o qué servicios se solicitan. De la dimensión de computación, es
necesario indicar los recursos de computación disponibles (incluyendo su canti-
dad de memoria RAM disponible) y su localización en la red. Por último, de la
dimensión de red, se requiere un grafo que represente la topoloǵıa de red, aśı
como la capacidad de los enlaces. Si el framework se utiliza en la fase de diseño,
muchos de estos datos serán estimaciones obtenidas por los desarrolladores. Por
otro lado, en tiempo de ejecución, deberán utilizarse técnicas de monitorización
para obtener tanto valores reales como predicciones basadas en ellos.

La información espećıfica de la QoS comprende aquellas entradas necesarias
para identificar la optimalidad de un despliegue para un determinado objetivo de
QoS. En su estado actual, DADO soporta como objetivos de QoS tanto tiempo de
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respuesta como coste del despliegue, pudiendo combinarse para buscar el trade-
off óptimo entre ambos. El tiempo de respuesta se calcula como el tiempo medio
necesitado para ejecutar cada petición, lo que incluye tiempo de ejecución de
los servicios y tiempo de comunicación entre los dispositivos involucrados. Para
evaluar este objetivo, se necesita: i) de la dimensión de aplicación, el número de
ciclos que tarda en ejecutarse cada servicio; ii) de la dimensión de computación,
la velocidad de reloj en ciclos de cada recurso de computación; iii) de la dimensión
de red, la latencia de cada enlace. Por otra parte, el objetivo de coste se calcula
como la suma de los gastos capitales (CAPEX) de cada uno de los elementos
de la infraestructura y los gastos operacionales (OPEX) derivados de su uso. La
información requerida de la dimensión de aplicación también son sus ciclos de
ejecución, mientras que de la de computación, se necesita el OPEX por ciclo (aśı
como el CAPEX) de cada recurso de computación. En la dimensión de red, se
pide el CAPEX de cada elemento de red, aśı como su OPEX por segundo.

3.2. Framework DADO

DADO procesa todas las entradas definidas y obtiene un plan de desplie-
gue óptimo según los objetivos de QoS seleccionados. Para ello, DADO tiene en
cuenta como se ejecutan los servicios en los recursos de cómputo, como generan
tráfico si se ejecutan en ciertos recursos, y como gestiona la red este tráfico.
Siguiendo con el ejemplo de la Sección 2: dada una petición de detección de ano-
maĺıas en un ECG, si ambos servicios están desplegados en la misma máquina, el
tráfico se enviará del dispositivo IoMT a dicha máquina y volverá. No obstante,
si cada servicio se despliega en máquinas diferentes, se generará un flujo de tráfi-
co que comunique ambas máquinas. DADO utiliza la QoS que proporciona la red
dependiendo de la localización del controlador SDN, aśı como la QoS que pro-
porciona cada máquina, como criterio para seleccionar entre diversas opciones,
eligiendo aquel que mejor QoS proporcione considerando las tres dimensiones.
Sin embargo, un plan de despliegue óptimo puede dejar de serlo si el entorno
cambia. Es por esto que el plan de despliegue debe ser evaluado y modificado
continuamente, de modo que se garantice el cumplimiento de los requisitos de
QoS definidos. Existen dos fases clave para encontrar el despliegue óptimo: di-
seño y ejecución. Por limitaciones de espacio, este art́ıculo se centra en la fase de
diseño. Durante esta fase no suele haber grandes cambios en las estimaciones de
la aplicación y la infraestructura, y no existe un ĺımite de tiempo estricto para
obtener el plan de despliegue.

Para identificar el plan de despliegue óptimo en la fase de diseño, DADO
formula el problema de optimización mediante programación lineal entera mixta
(MILP). MILP garantiza que la solución obtenida cumple todas las restricciones
definidas y es óptima considerando la función objetivo seleccionada. Para dar
soporte a los tres objetivos definidos (tiempo de respuesta, coste, y ambos), se
definen tres funciones objetivo. Esta formulación busca un despliegue óptimo que
coloca servicios y controladores SDN, mientras que su factibilidad se evalúa con
las siguientes restricciones: i) la memoria RAM disponible en los dispositivos
no se sobrepasa; ii) cada flujo de tráfico, ya sea de datos o de control, tiene
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un único origen y un único destino, que dependen del despliegue de servicios y
controladores; y iii) las capacidades de los enlaces no se sobrepasan. Aplicando
la función objetivo, ya sea tiempo de respuesta, coste, o el mejor compromiso
entre ambos, DADO encuentra el despliegue óptimo.

3.3. Salidas

La salida de DADO es un conjunto de colocaciones, es decir, un plan de
despliegue para servicios IoT y controladores SDN. Este despliegue sigue ciertos
patrones, tales como que cada servicio se desplegará en la máquina (o máquinas)
que lo ejecutan, que los controladores SDN deben estar co-localizados con swit-
ches SDN [7] o que cada switch está bajo el control de un solo controlador SDN.
Este plan, en la fase de diseño, es una gúıa para el ingeniero de operaciones, el
administrador de sistemas y el administrador de red, que deberán seguirlo para
localizar servicios y controladores. No obstante, en la fase de ejecución, es posi-
ble automatizar los cambios en el despliegue con herramientas de orquestación
como Kubernetes. De este modo, evaluando conjuntamente las tres dimensiones,
DADO obtiene el plan de despliegue óptimo para el objetivo QoS seleccionado.
Además, dado su soporte para las fases de diseño y ejecución del ciclo de vida,
se puede adaptar el despliegue en el tiempo para mantener una QoS óptima.

4. Evaluación de rendimiento

En esta sección, se evalúan los posibles beneficios derivados del uso del fra-
mework, aśı como las posibles contras a su aplicación. Primero, se describe el
entorno de evaluación. Más tarde, se proponen tres conjuntos de experimentos:
el primero, evalúa la escalabilidad en cuatro topoloǵıas de diferente tamaño,
evaluando el segundo la complejidad computacional y el último el porcentaje
de servicios desplegados en las capas fog/edge dependiendo del proveedor cloud
elegido.

4.1. Entorno de evaluación

Para evaluar el rendimiento de DADO, se han utilizado cuatro escenarios
basados en el ejemplo de la Sección 2. En cada uno de estos escenarios se vaŕıa
el número de nodos SDN, usuarios que realizan peticiones, nodos fog capaces de
desplegar servicios y nodos gateway que conectan la red local al cloud. Todos
ellos han sido realizados mediante redes generadas con el modelo Erdös-Rényi [9],
derivando en los escenarios detallados en la Tabla 1. El modelo espećıfico de
cada elemento en el escenario, aśı como su CAPEX y OPEX, se desglosa en [12].
Respecto a la conexión inalámbrica utilizada por los dispositivos IoMT para
conectarse a la red SDN, los dispositivos Arduino utilizan Wi-Fi y Bluetooth,
mientras aquellos de Texas Instruments utilizan 6LoWPAN y ZigBee. Por último,
el número de servicios desplegados depende del número de peticiones y usuarios,
siendo 18 en el caso con menor número de ellos y 125 en el mayor.
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Cuadro 1: Parámetros de los escenarios.
Escenario Switches SDN Usuarios Nodos fog Gateways

1 7 5 1 1

2 20 15 3 2

3 50 40 10 5

4 150 50 20 10

4.2. Trade-off tiempo de respuesta-coste de despliegue

El primer análisis propuesto evalúa el rendimiento de DADO en los objetivos
definidos: tiempo de respuesta y coste del despliegue. Inicialmente, cada objetivo
se evalúa por separado. Más tarde, se comparan ambas métricas para encontrar
un trade-off que represente el mejor compromiso entre tiempo de respuesta y cos-
te, trade-off que DADO realiza automáticamente. Utilizando esta comparación,
se puede seleccionar si se prefiere un despliegue con tiempo de respuesta mı́nimo,
con coste mı́nimo, o un despliegue equilibrado que priorice ambos objetivos.

La Figura 4 muestra el resultado de este análisis, que mide el impacto de las
métricas consideradas para cada uno de los cuatro escenarios. La Figura 4 tiene
dos ejes y: el coste del despliegue se muestra en el eje y derecho (rojo), mientras
que el izquierdo (azul) está relacionado con el tiempo de respuesta . Estos valores
se presentan para tres grupos de simulaciones, con cada uno de los tres objeti-
vos: minimizar tiempo de respuesta medio, minimizar coste, o minimizar ambos
(buscando el mejor compromiso). Inspeccionando la Figura 4, queda claro que el
tamaño de la red tiene un gran impacto en el coste del despliegue. Sin embargo,
no hay grandes diferencias en el coste cuando se cambia el objetivo de QoS de
la optimización. Por otra parte, surgen diversas consideraciones al analizar el
tiempo de respuesta. Inicialmente, el tamaño de la red impacta negativamente
en el tiempo de respuesta si se elige el coste como objetivo de QoS, llegando a
ser hasta 16.28 veces superior en los escenarios más grandes. Sin embargo, si se
selecciona el tiempo de respuesta como objetivo, las topoloǵıas grandes obtienen
menores tiempos de respuesta que las pequeñas. Esto se debe a que los escena-
rios más pequeños disponen de menos recursos, por lo que se necesita desplegar
más servicios en el cloud. Por último, si se considera el objetivo conjunto, la
diferencia en el tiempo de respuesta obtenido es despreciable.

4.3. Análisis computacional

En el siguiente análisis, se utilizan datos del tiempo que DADO ha necesitado
para obtener una solución. DADO está implementado utilizando Gurobi, y se
ejecutó en una máquina Intel con cuatro núcleos a 2 GHz y 16 GB de RAM.
La Figura 5 muestra los resultados de tiempo requerido para obtener el plan de
despliegue en función del tamaño de la topoloǵıa y el objetivo de QoS.

El primer aspecto a tener en cuenta es el incremento exponencial (nótese que
el eje y es logaŕıtmico) del tiempo de ejecución con relación al tamaño de la
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Figura 4: Trade-off de tiempo de respuesta vs. coste del despliegue.

topoloǵıa. Como se esperaba, la optimización conjunta de tiempo de respuesta
y coste requiere más tiempo para resolverse, entre 2 y 3,5 veces más que si se
selecciona un único objetivo de QoS. Por último, la métrica que menos tarda
en optimizarse es el coste del despliegue, que, de media, tarda 502,55 segundos
menos que el tiempo de respuesta en obtener solución. Este análisis muestra
claramente que, aunque la versión MILP de DADO es apta para tiempo de
diseño, se debe utilizar una heuŕıstica en tiempo de ejecución.

4.4. Análisis de despliegue de servicios

En este último análisis, nuestro objetivo es evaluar la distribución de los ser-
vicios desplegados por DADO en las capas fog/edge (y, por extensión, cloud).
La Figura 6 muestra los resultados de este análisis, en el que se analizan los
porcentajes de servicios desplegados en la capa fog (siendo el porcentaje comple-
mentario aquellos en el cloud) en función del proveedor cloud y el tamaño de la
topoloǵıa. Se han considerado dos proveedores: Amazon Web Services (AWS) y
Google Cloud Platform (GCP). Inicialmente, el porcentaje de servicios desplega-
dos en las capas fog/edge aumenta con el tamaño de la topoloǵıa: las pequeñas,
con menos recursos, llevan más servicios al cloud, ya que es económico y la pérdi-
da en rendimiento es baja. Sin embargo, el OPEX del cloud es superior al de
la capa fog [12]. Por ende, al aumentar el número de servicios en las topoloǵıas
mayores, el uso de fog/edge reduce tanto tiempos de respuesta como costes. Si se
comparan los proveedores cloud, puede verse que DADO despliega más recursos
en el cloud cuando se utiliza GCP. Esto se debe a que el ciclo de ejecución es
1,39 · 10−15€ más barato en GCP. Aunque el ahorro por ciclo es despreciable, al
extrapolarlo a la gran cantidad de ciclos de cada servicio, se vuelve significativo.
En conclusión, el paradigma de fog computing es interesante tanto a nivel de
tiempo de respuesta como a nivel de coste.
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5. Trabajos relacionados

En la actualidad, y con el objetivo de acortar los tiempos de respuesta en
aplicaciones de diversas clases (tales como realidad aumentada o IoT intensi-
vo), existe un esfuerzo de investigación en paradigmas de edge y fog computing.
Estos esfuerzos tratan tanto de aplicar estos paradigmas a dichas aplicaciones,
como de estandarizarlos. En [3], Bellavista et al. hacen un repaso por diferentes
paradigmas tipo edge y fog, clasificándolos en base a su utilidad en aplicaciones
IoT intensivas y en la clase de soporte que proporcionan a servicios clave en di-
chas aplicaciones, como seguridad, virtualización o comunicación. No obstante,
ninguna de estas propuestas optimiza la colocación de microservicios y controla-
dores SDN, sino que proveen una plataforma para el despliegue de aplicaciones
en estos paradigmas.

Por otro lado, la optimización del despliegue de microservicios en una arqui-
tectura de fog computing, enfocado completamente en la dimensión de compu-
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tación, es también un problema con ĺıneas de investigación activas. No obstante,
no existe un consenso respecto al nombre de este problema, denominándose
problema de la distribución de la computación descentralizada, problema de la
distribución de la computación, o problema de la colocación de aplicaciones en el
fog, según el autor. Se han propuesto diversas soluciones a este problema: Carre-
ga et al. [4] proponen una solución para aplicaciones tipo MSA que las despliega
teniendo en cuenta las dependencias entre microservicios. Sun et al. [18] pro-
ponen hacerlo con una heuŕıstica de doble subasta, en la que los dispositivos
IoT utilizan los recursos del fog en función de las necesidades de la aplicación.
Choudhury et al. [5] lo enfocan como un problema en el que algunos servicios
del cloud se traen a demanda a la red local para mejorar el rendimiento. No
obstante, todas estas propuestas se diferencian de DADO en su visión: en lu-
gar de la visión hoĺıstica en tres dimensiones de DADO, estas propuestas son
unidimensionales, centrándose solo en la computación o aplicación.

Por otro lado, en la dimensión de red, el CPP es un problema conocido, dado
que la colocación del controlador SDN es clave para la QoS de la red y, por
extensión, de todas las comunicaciones que se realizan a través de ella. Existen
diversas soluciones para el CPP: tanto con uno como con varios objetivos, varios
tipos de heuŕıstica, aplicando teoŕıa de juegos, etc., siendo revisados en [7]. No
obstante, de nuevo, la visión hoĺıstica de DADO es clave. El CPP considera
que existe un tráfico en la red, pero no considera que ese tráfico provenga de
aplicaciones y, más concretamente, de su ejecución. Por tanto, DADO es de nuevo
innovador, al supeditar la solución del CPP a la conveniencia para la QoS de las
aplicaciones que utilizan la red, en lugar de considerar tan solo la red misma.

Aunque tanto la colocación de microservicios como la de controladores son
problemas tratados en la literatura, no conocemos ningún otro trabajo que los
integre en una visión hoĺıstica del despliegue, que una aplicación, computación
y red, además de considerar sus influencias mutuas. Por tanto, DADO apor-
ta al integrar la optimización de las tres dimensiones, minimizando tiempo de
respuesta y coste en aplicaciones IoT cŕıticas.

6. Conclusión y trabajos futuros

El número de dispositivos IoT conectados a Internet crece cada año, y con él
la demanda de aplicaciones IoT con requisitos de QoS estrictos, que dif́ıcilmen-
te admiten un despliegue puramente cloud. Las arquitecturas IoT jerárquicas
facilitan el despliegue de estas aplicaciones, pero optimizar su QoS requiere la
consideración conjunta entre las dimensiones de aplicación, computación y red.
En este trabajo, hemos presentado DADO, un framework capaz de desplegar de
forma óptima aplicaciones IoT distribuidas en arquitecturas jerárquicas consi-
derando las tres dimensiones conjuntamente. En el futuro, esperamos presentar
el comportamiento de DADO durante la fase de ejecución, aśı como evaluarlo
sobre infraestructuras reales o emuladas.
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Summary of the contribution

The Internet of Things (IoT) paradigm offers applications the potential of au-
tomating real-world processes. Applying IoT to intensive domains comes with
strict quality of service (QoS) requirements, such as very short response times.
To achieve these goals, the first option is to distribute the computational work-
load throughout the infrastructure (edge, fog, cloud). In addition, integration of
the infrastructure with enablers such as software-defined networks (SDNs) can
further improve the QoS experience, thanks to the global network view of the
SDN controller and the execution of optimization algorithms. Therefore, the best
placement for both the computation elements and the SDN controllers must be
identified to achieve the best QoS. While it is possible to optimize the comput-
ing and networking dimensions separately, this results in a suboptimal solution.
Thus, it is crucial to solve the problem in a single effort. In this work, the in-
fluence of both dimensions on the response time is analyzed in fog computing
environments powered by SDNs. DADO, a framework to identify the optimal
deployment for distributed applications is proposed and implemented through
the application of mixed integer linear programming. An evaluation of an IIoT
case study shows that our proposed framework achieves scalable deployments
over topologies of different sizes and growing user bases. In fact, the achieved
response times are up to 37.89% lower than those of alternative solutions and
up to 15.42% shorter than those of state-of-the-art benchmarks.
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The Internet of Things (IoT) paradigm has brought
to applications the potential of automating real-world
processes. Applying IoT to intensive domains comes
with strict Quality of Service (QoS) requirements. To
achieve such goals, a first option is to distribute the
computational workload throughout the infrastructure
(edge, fog, cloud). In addition, its integration with
Software-Defined Networks (SDN) can even further
improve the QoS experienced, thanks to the global
network view of the SDN controller. Therefore, the
best placement for both the computation elements and
the SDN controllers must be identified to optimize
QoS. To obtain a truly optimal result, it is crucial
to solve the problem in a single effort. In this work,
a framework to identify the optimal deployment for
distributed applications, DADO, is proposed, imple-
mented and evaluated over an IIoT case study. DADO
achieves response times up to 15.42% shorter than
state-of-the-art benchmarks.

Palabras Clave—Fog computing, Internet of Things,
Software-Defined Network

I. SUMMARY

We live surrounded by everyday things that are con-
nected to the Internet and run IoT applications – programs
that interact with the real world. This interaction has
generated interest in intensive domains such as industry
or healthcare. However, integrating IoT applications into
these domains is complex, as they have very strict QoS
requirements. For this reason, cloud computing is very
complicated to leverage, because it imposes a large latency
penalty. New paradigms, such as fog computing, propose
bringing some of the computing resources closer to the

This work has been published in IEEE Internet of Things Journal, Vol
8, Issue 11, 2021. Impact Factor: 9.936. DOI: https://doi.org/10.1109/
JIOT.2021.3077992. This work has been partially funded by the project
RTI2018-094591-B-I00 (MCI/AEI/FEDER,UE), the 4IE+ Project (0499-
4IE-PLUS-4-E) funded by the Interreg V-A España-Portugal (POCTEP)
2014-2020 program, by the Department of Economy, Science and Digital
Agenda of the Government of Extremadura (GR18112, IB18030), by the
Valhondo Calaff institution and by the European Regional Development
Fund.

network edge, hence enhancing the QoS. Nonetheless, to
properly make use of fog paradigms, it is important to
optimally distribute the application’s microservices among
the available resources. This distribution problem is known
as the Decentralized Computation Distribution Problem
(DCDP). It is also important to note that the QoS of
the application is determined not only by the comput-
ing QoS, but also by the networking QoS. Within the
networking dimension, SDNs are also key enablers for
fog paradigms because of the flexibility, scalability, and
network programmability provided by the SDN paradigm,
that allow for common tasks in IoT applications, such
as service discovery, to be performed transparently. The
QoS of SDNs, however, heavily depends on the QoS
between the network’s switches and the SDN controller
they are assigned to. The problem in which controllers
are placed and assigned optimally to SDN switches is the
SDN Controller Placement Problem (CPP).

Both problems are deeply related, as the decisions
on microservice placement are related to the networking
QoS, and the CPP is heavily affected by the steering
of application traffic flows. Thus, both problems require
to be solved jointly in order to obtain optimal QoS. In
this paper, we present Distributed Application Deployment
Optimization (DADO), a framework based on mixed in-
teger linear programming that jointly solves the DCDP
and the CPP to minimize the response time in SDN-Fog
environments. An evaluation of DADO over an industrial
case study shows that this framework provides scalable
solutions with response times up to 37.89% lower than
alternative solutions, and up to 15.42% shorter than state-
of-the-art benchmarks.

In the future, we expect to extend DADO, developing
heuristics that will allow DADO to be applied to infras-
tructures larger than 300 nodes and while finding near-
optimal solutions, as well as to add mobility considerations
to DADO. Finally, we intend to expand DADO to consider
multiple QoS features, such as reliability.
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Summary of the contribution

The irruption of the Internet of Things (IoT) has attracted the interest of both
the industry and academia for their application in intensive domains, such as
healthcare. The strict Quality of Service (QoS) requirements of the next gener-
ation of intensive IoT applications requires the QoS to be optimized considering
the interplay of three key dimensions: computing, networking and application.
This optimization requirement motivates the use of paradigms that provide vir-
tualization, flexibility and programmability to IoT applications. In the com-
puting dimension, paradigms such as edge or fog computing, Software-Defined
Networks in the networking dimension, along with micro-services architectures
for the application dimension, are suitable for QoS-strict IoT scenarios. In this
work, we present a framework, named Next-gen IoT Optimization (NIoTO),
that considers these three dimensions and their interplay to place micro-services
and networking resources over an infrastructure, optimizing the deployment in
terms of average response time and deployment cost. The evaluation of NIoTO
in a healthcare case study reveals a response time speed-up of up to 5.11 and a
reduction in cost of up to 9% with respect to other state-of-the-art techniques.
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Abstract—The next generation of Internet of Things (IoT)
applications automates critical, real-world processes from do-
mains such as industry or healthcare. These applications have
very strict Quality of Service (QoS) requirements. To meet these
requirements, in recent years, the deployment of the application
services can be performed not only in the cloud, but also
through the fog to enhance the QoS, as well as for the use
of programmable, Software-Defined Networks to optimize the
QoS of their communications. However, the application and the
network dimensions have been addressed separately, which leads
to sub-optimal QoS in these critical applications. In this paper, we
present the proposal of a framework to optimize the deployment
of next-gen IoT applications through the fog that optimizes both,
application and network, in a single effort.

Index Terms—Fog computing, Internet of Things (IoT),
Software-Defined Networking (SDN)

I. INTRODUCTION

The advent of the Internet of Things (IoT) paradigm allows
computer applications to automate and computerize real world
processes. The next generation of IoT applications will apply
this computerization to intensive domains, such as industry or
healthcare [1]. Nonetheless, these applications require a high
Quality of Service (QoS) [1], reflecting the criticality of the
real-world processes they automate. These QoS requirements
can span over different, or even multiple, QoS attributes, such
as reliability or performance.

Traditionally, the most popular paradigm for IoT applica-
tion deployment is cloud computing [2]. However, the large
distance between IoT devices and cloud data centers is often
reflected on its QoS (e.g., as a high latency), and hence it
may be difficult to meet the QoS requirements of next-gen
IoT applications in pure cloud deployments [2]. Therefore,
paradigms such as fog computing, in which the application is
deployed to servers closer to IoT devices, are more suitable for
these applications [2]. Moreover, next-gen IoT applications are
often implemented as a set of loosely-coupled microservices
that collaborate to perform the application’s functionalities [3].
Each of these microservices can be deployed independently
or along with others, and it can also be replicated, allowing
for the IoT application to be deployed through the complete

This work has been partially funded by the project RTI2018-094591-B-
I00 (MCI/AEI/FEDER,UE), the 4IE+ Project (0499-4IE-PLUS-4-E) funded
by the Interreg V-A España-Portugal (POCTEP) 2014-2020 program, by the
Department of Economy and Infrastructure of the Government of Extremadura
(GR18112, IB18030), by the Valhondo Calaff institution, and by the European
Regional Development Fund.

cloud-to-thing infrastructure. Nonetheless, the placement of
each microservice within the infrastructure affects the QoS of
the application. The problem of placing these microservices to
optimize the application’s QoS is known as the Decentralized
Computation Distribution Problem (DCDP) [3].

One of the main causes of the DCDP is the network
fabric’s QoS (e.g., latency), which directly impacts the com-
munications between devices. Therefore, it is also desirable to
optimize the network’s QoS with techniques such as routing
optimization [3]. Software-Defined Networking (SDN) is a
paradigm that allows networks to be programmed by central-
izing the control plane in the figure of SDN controllers. SDN
enables, among other techniques, for the optimization of the
communications’ QoS through specific routing optimization.
However, SDN switches must communicate with the SDN
controller to retrieve their expected behavior in the form of
rules [4]. These communications affect the QoS of the network
fabric, but are themselves affected by the network fabric’s
QoS. Therefore, it is key to place SDN controllers in a manner
that optimizes the network’s QoS, i.e., to solve the Controller
Placement Problem (CPP) [4].

Both the DCDP and the CPP are inherently related. On
the one hand, the DCDP is partially caused by the QoS of
the communications between microservices, which depends
on where SDN controllers are placed, and thus, different
controller placements may lead to different microservice dis-
tributions [3]. On the other hand, the CPP heavily depends
on the sources and targets and of the traffic demands that are
routed through the network [4], demands that are generated
by the communications between microservices, and that may
vary depending on the microservice distribution. Therefore,
we conclude that both the DCDP and the CPP must be solved
as part of a single optimization effort able to control all
four, microservice replication, microservice placement, routing
optimization and SDN controller placement. The objective
of this project is the proposal of the Distributed Application
Deployment Optimization (DADO) framework, able to solve
both the DCDP and the CPP, optimizing the QoS of the next
generation of IoT applications.

II. DADO FRAMEWORK

The DADO framework allows developers to optimize the
QoS of their IoT applications in two key stages of their
lifecycle, optimally deploying the application at design-time
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Figure 1: Empirical CDF of workflow response times.

and adapting the deployment to environmental changes at
execution-time. In DADO, QoS is the set of characteristics of
a service that bear on its ability to satisfy the needs of its user
[5]. This definition includes technical and non-technical QoS,
e.g., performance, availability or deployment cost. Therefore,
DADO is envisioned as framework that provides an extensible
model for QoS optimization. DADO provides multiple built-in
QoS attributes to be optimized, and the possibility for users
to define their own attributes.

DADO requires three inputs: the application architecture,
the computing devices from the infrastructure and the net-
work fabric that connects them. These inputs are plans and
estimations if DADO is leveraged at design time, or their
monitored versions at execution time. Along with these inputs,
the developer must also specify the QoS attributes to be
optimized. The output received by the developer consists on
a deployment plan that optimizes the QoS.

Applications in DADO are modeled as sets of independent
modules or microservices, that define their technical charac-
teristics. It is important to note that each microservice should
be defined only once, as DADO will automatically replicate
the microservice if needed. These microservices are often not
requested independently, e.g., after data has been processed
by a microservice, it will probably be stored by another
microservice. Therefore, the application is also defined by the
interactions among microservices or workflows: pipelines of
multiple microservices in which the output of a microservice
is the input of the next one. The workflow definition includes
the valid workflows for the application as well as the estimated
or real number of requests per workflow, allowing DADO to
adapt the application’s deployment to its load.

Each of the microservices requested by these workflows and
instanced by DADO needs to be deployed at a computing
device (e.g., fog node, cloud server). DADO models all the
computation-capable devices as a set of technical character-
istics, normally analogous to those of microservices (e.g.,
microservices consume RAM, and devices have a total RAM).
DADO does not directly model whether a device is a cloud,
fog, edge or mist device, thus allowing the developer to define
an infrastructure with arbitrary layers.

All these devices are connected to each other using a
network fabric, modeled as a graph. Each of the vertices of
the graph is either a computing device, or an SDN switch
(and thus, a potential placement for an SDN controller [4]),
while each edge represents a link between devices or switches.

Furthermore, each of the switches and links also define their
own technical characteristics (e.g., latency, capacity).

Using these inputs, DADO generates an optimal deployment
plan for the application. This deployment plan details how
many replicas of each microservice need to be deployed, where
to deploy each of them, how many SDN controllers need to
be set up, where to place each controller, which controller
should each switch communicate with, and the paths followed
by application and SDN control traffic. All these decisions are
taken by DADO to optimize the QoS, considering the effects
of each decision in the rest (e.g., deploying two microservices
that communicate in different machines creates a traffic flow,
which alters the optimal controller placement).

Currently, a version of DADO based on Mixed-Integer
Linear Programming (MILP) is under development [3]. Fig.
1 depicts an empirical CDF of the preliminary results from
this prototype version, comparing DADO with the usage of
graph metrics such as Highest Closeness Centrality (HCC) or
Highest Betweenness Centrality (HBC) to take the deployment
decisions. As seen in Fig. 1, the slowest workflows deployed
using DADO have similar response times to the fastest work-
flows deployed using HBC and HCC. However, MILP does
not scale well on large infrastructures, taking over 10 hours
to optimize the deployment plan [3].

III. CONCLUSIONS AND FUTURE WORK

The next generation of the Internet of Things will com-
puterize and automate critical real-world processes, and their
criticality will be reflected as high QoS requirements for
next-gen IoT applications. Meeting the QoS requirements will
require the applications to be optimally deployed in a fog
infrastructure, communicated by a SDN network fabric. The
objective of this PhD thesis is to build DADO, a framework to
optimize the application’s deployment, and a possible enabler
for the next generation of IoT.

DADO is currently a work in progress, and thus, there
are limitations to what this paper currently presents. The
current MILP-based prototype takes a long amount of time to
optimize the deployment of large scenarios [3], and therefore
is only useful at design time. Accordingly, we expect to
develop heuristic solutions that allow for the optimization to
be performed at execution time, allowing DADO to adapt the
deployment to environmental changes.
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Appendix T

DADO and NIoTO implementation

The details on the implementation of DADO and NIoTO can be found on their source

code repository, including documentation, code, and other information: https://

bitbucket.org/spilab/dado-nioto
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Appendix U

FNPP implementation

The details on the implementation of the FNPP MILP solver and the FNPP heuristic

solver can be found on their source code repository, including documentation, code,

and other information: https://bitbucket.org/spilab/fnpp-heuristic and

https://bitbucket.org/spilab/fnpp-milp
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Appendix V

ConDADO implementation

The details on the implementation of ConDADO can be found on its source

code repository, including documentation, code, and other information: https://

bitbucket.org/spilab/continuousdado
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Appendix W

Faustum implementation

The details on the implementation of Faustum can be found on its source code

repository, including documentation, code, and other information: https://

bitbucket.org/spilab/faustum
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Appendix X

Pascal implementation

The details on the implementation of Pascal can be found on its source code repository,

including documentation, code, and other information: https://bitbucket.org/

spilab/pascal
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Appendix Y

S-DADO implementation

The details on the implementation of S-DADO can be found on its source

code repository, including documentation, code, and other information: https://

bitbucket.org/spilab/s-dado
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Appendix Z

Umizatou-MO-SFO implementation

The details on the implementation of Umizatou and MO-SFO can be found on their

source code repository, including documentation, code, and other information: https:

//bitbucket.org/spilab/umizatou-mo-sfo
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Appendix AA

µDADO implementation

The details on the implementation of µDADO can be found on its source code

repository, including documentation, code, and other information: https://

bitbucket.org/spilab/udado
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Appendix AB

Vernier implementation

The details on the implementation of Vernier can be found on its source code

repository, including documentation, code, and other information: https://

bitbucket.org/spilab/vernier
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Appendix AC

Glossary

AC.1 Glossary of acronyms

• CAPEX: Capital Expenditures

• CD: Continuous Deployment

• CI: Continuous Integration

• CPP: Controller Placement Problem

• DCDP: Decentralized Computation Distribution Problem

• Dev: Software developers

• FNPP: Fog Node Placement Problem

• FN: Fog Node

• GGS: GII-GRIN-SCIE conference rating

• HTTP: HyperText Transfer Protocol

• IF: Impact Factor

• IIoT: Industrial Internet of Things
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• IP: Internet Protocol

• IaaS: Infrastructure as a Service

• IoMT: Internet of Medical Things

• IoT: Internet of Things

• JCR: Journal Citation Reports

• JSON: JavaScript Object Notation

• KPI: Key Performance Indicator

• MILP: Mixed-Integer Linear Programming

• MSA: Microservices Architecture

• MS: Microservice

• NIST: National Institute of Standards and Technology

• OPEX: Operational Expenditures

• Op: Application operators

• PFE: Private Function Evaluation

• PaaS: Platform as a Service

• QoS: Quality of Service

• REST: REpresentational State Transfer

• RQ: Research Question

• SDN: Software-Defined Networking

• SOA: Service-Oriented Architecture

• SOC: Service-Oriented Computing
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• SaaS: Software as a Service

• XML: eXtensible Markup Language

AC.2 Glossary of venues

• CCGRID: IEEE/ACM International Symposium on Cluster, Cloud and Internet

Computing

• CISTI: IEEE Iberian Conference on Information Systems and Technologies

• GLOBECOM: IEEE Global Communications Conference

• ICC: IEEE International Communications Conference

• ISCC: IEEE Symposium on Computers and Communications

• IoTJ: IEEE Internet of Things Journal

• JCIS: Jornadas de Ciencia e Ingenierı́a de Servicios

• JISBD: Jornadas de Ingenierı́a del Software y Bases de Datos

• JITEL: Jornadas de Ingenierı́a Telemática

• LATINCOM: IEEE Latin-American Conference on Communications

• NoF: International Conference on Network of the Future

• PERCOM: IEEE International Conference on Pervasive Computing and

Communications

• PMC: Pervasive and Mobile Computing

• SMARTCOMP: IEEE International Conference on Smart Computing
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AC.3 Glossary of artifacts

• CA: Continuous Adaptation

• CRE: Continuous Reasoning Engine

• ConDADO: Continuous Distributed Application Deployment Optimization

• DADO: Distributed Application Deployment Optimization

• DeQALE: Deep QoS-Adaptive Learning Environment

• MO-SFO: Multi-Objective SDN Fog Optimization

• MinMaxLat: Minimization of Maximum Latency

• MinMeanLat: Minimization of Mean Latency

• NIoTO: Next-generation IoT Optimization

• PADEC: Privacy-Aware DEvice Communication

• PODS: Pervasive Opportunistic Delegation of Services

• S-DADO: Stochastic Distributed Application Deployment Optimization

AC.4 Glossary of terms

• Application dimension: Dimension of deployment that represents software and

its interaction with the other two dimensions. In next-gen IoT, the application

dimension is generally architected as an MSA, using the SOC paradigm.

• Capital Expenditures: Cost of acquiring new assets, which are generally

one-time costs.

• Cloud computing: Computational paradigm where application components,

usually microservices, are executed by cloud servers that are in remote data

centers.
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• Cloud servers: Computational device, real or virtual, that resides in a cloud data

center. They are usually more powerful than fog nodes.

• Cloud-to-Thing Continuum: Umbrella term for the computational paradigms

that propose bringing computing devices with the key traits of cloud computing

closer to users, creating a continuum of computing devices from the cloud to the

IoT device (thing).

• Computing dimension: Dimension of deployment that represents computing

hardware and its interaction with the other two dimensions. in next-gen IoT, the

computing dimension generally uses the Cloud-to-Thing continuum paradigm.

• Constraint (mathematical programming): Element of a mathematical

programming model that takes the form of an equality or inequality and describes

the behavior of the model. Constraints must always hold true for a solution

to be considered valid. If they are contradictiory, either due to their definition

or to the values of the parameters, the model is deemed infeasible. They can

express how different decision variables interact, as well as how they interact

with the parameters. From the point of view of computer science, it represents

the behavioral rules of a system based on mathematical programming.

• Continuous reasoning: Technique to speed up continuous evaluation processes

based on reasoning over which elements in a scenario were affected by a change,

and re-evaluating only said affected elements.

• Controller Placement Problem: Problem of determining the placement of

a set of SDN controllers, the assignment of each controller to one or more

SDN switches, and the routing from each controller to its assigned switches,

to optimize the QoS of a given scenario. It is the main deployment optimization

problem of the networking dimension.

• Count to infinity: Problem of the distance-vector routing algorithm where,

if a link is disconnected, the devices will wrongly report their distances to
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another device, entering an infinite loop of constant updates where the distance

is increased slowly until reaching infinity.

• Decentralized Computation Distribution Problem: Problem of determining

the number of replicas of each microservice and the placement of each replica

to optimize the QoS in a given scenario. It is the main deployment optimization

problem of the application dimension.

• Decision variable: Element of a mathematical programming model whose

optimal value is not known a priori and must be determined by solving the

problem. From the point of view of computer science, it represents the outputs

of a system based on mathematical programming. From a more general

point of view, it represents the decisions that the user of a mathematical

programming-based system desires to optimize.

• DevOps: Software development methodology that focuses on accelerating the

delivery of features to final users by continuously following a process that

involves both devs and ops.

• Edge computing: Computational paradigm where application components,

usually microservices, are executed by edge nodes that are one network hop

away from the final IoT or mobile devices.

• Edge node: Computational device that is one network hop away from the final

IoT or mobile devices, or a subset of them. They are usually more powerful than

IoT or mobile devices.

• Execution time: Time that a given computing device takes to perform a given

task.

• FLOW-INSTALL: Message sent by an SDN controller to an SDN switch to

install a rule on how to manage traffic. Finalizes the flow setup process.
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• Flow setup: Process in SDN networks where an SDN controller installs a rule

in an SDN switch to allow it to handle a given type of messages. Flow setups are

requested by SDN switches when they find a message that does not match any

of their installed rules.

• Fog Node Placement Problem: Problem of determining the placement of a set

of FNs, the assignment of each FN to one or more IoT devices, and the routing

from each IoT device to its assigned FN, to optimize the QoS of a given scenario.

It is the main deployment optimization problem of the computing dimension.

• Fog computing: Computational paradigm where application components,

usually microservices, are executed by fog nodes that are at different points in the

network, closer to final devices than the cloud, but normally further away than

the edge. It is possible to have multiple layers of fog nodes in a fog computing

scenario.

• Fog node: Computational device that is closer to the final IoT or mobile devices,

or a subset of them, than the cloud data center. Generally, they are more than one

network hop away from the final devices. They are usually more powerful than

edge nodes. If it is referred to as capital (Fog Node) or FN, it refers to the model

of fog node used in the FNPP, which integrates the computing device with an

SDN switch and is allowed to be within one hop of the final devices.

• Industrial Internet of Things: Term that refers to the application of the

IoT paradigm to the industrial field to automate and manage industrial and

manufacturing processes.

• Infrastructure as a Service: Cloud computing service model where the cloud

provider offers the consumer virtual machines, provisioned from the resources

of the general pool, and allows the consumer to control the software executed by

these machines.
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• Infrastructure: Hardware equipment of a given scenario. In terms of

deployment, it is the union of the computing and networking dimensions.

• Internet Protocol: Networking paradigm where each network device can only

forward messages, exclusively using the destination fields. Each network device

in this paradigm embodies both the data and control plane.

• Internet of Medical Things: Term that refers to the application of the IoT

paradigm to the healthcare field, generally to automatically and remotely

monitor, diagnose, or treat patients.

• Internet of Things: Computer science paradigm in which the inputs of an

application can come from the real world, and the outputs can also affect the real

world directly, making use of devices that are able to communicate the real-world

data over the Internet.

• IoT device: ”Computing device, usually low-power, low-capacity, and low-cost,

that has sensors and actuators and can connect to the Internet, normally using

wireless technologies. IoT devices are generally integrated into ””things””, such

as clothes, wearable accessories or home appliances.”

• Latency: Time from the source of a communication sending a message to the

destination receiving it.

• Mathematical programming: Mathematical model that expresses an

optimization model as a set of parameters, decision variables, constraints, and

an objective function.

• Microservices Architecture: Software architecture where an application is

designed as a set of microservices that collaborate to perform application

functionalities. It generally is a SOA where services are very cohesive, very

small, and very numerous, accentuating the characeristics of SOC.
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• Microservice: Very small service that generally performs a single task. Thus,

a microservice is very loosely-coupled, very cohesive service that reinforces the

characteristics of SOC.

• Mist computing: Computational paradigm where application components,

usually microservices, are executed by the IoT or mobile devices themselves.

• Mixed-Integer Linear Programming: Subset of mathematical programming

models where the decision variables can be integer or binary, and the constraints

and objective function are linear. If a problem can be expressed using

Mixed-Integer Linear Programming, it can be solved using appropriate software.

• Monolithic application: Application paradigm that considers that applications

are made of a single and indivisible software module that contains all its logic.

• Networking dimension.Dimension of deployment that represents

networking hardware equipment and its interaction with the other

two dimensions. in next-gen IoT, the networking dimension generally uses

the SDN paradigm.:

• OF-STAT: Message sent by an SDN controller to monitor the network.

• Objective function: Element of a mathematical programming model that takes

the form of a function of the decision variables, and whose value must be either

maximized or minimized. From a more general point of view, it represents the

metrics that a mathematical programming-based system must optimize.

• Operational Expenditures: Ongoing cost of maintenance of assets, generally

expressed as the cost per unit of time, or the cost per usage over time.

• Opportunistic network: Ad-hoc wireless network where mobile devices

communicate with those within their reach, forwarding messages as users move.

Two devices in an opportunistic network can communicate without the need for

an end-to-end communication path by exploiting the mobility of other devices.
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• PACKET-IN: Message sent by an SDN switch to its SDN controller to request

a flow setup.

• PACKET-OUT: Message sent by an SDN controller to an SDN switch as a

response to a PACKET-IN, which indicates how to handle the message.

• Parameter (mathematical programming): Element of a mathematical

programming model that allows the model to be generalized. Although they

are technically variable, once the model is created, they remain constant. From

the point of view of computer science, it represents the inputs of a system based

on mathematical programming.

• Private Function Evaluation: System that allows two parties to compute the

result of a function without any of the parties revealing their inputs to the other

party.

• Quality of Service: Term related to all the non-functional quality metrics

provided by a given service, such as response time or monetary cost. When

used in a given scenario, it normally refers to the metrics that are relevant for a

certain party, generally the user or the provider, in that scenario.

• Response time: Time from a device requesting the execution of a functionality

to the same device receiving the result of said functionality. Response time is

the summation of the execution times of the microservices of the functionality

and the network latencies of the messages between the devices where they were

deployed.

• SDN controller: Hardware element in an SDN network that embodies the

control plane by running SDN controller software. There can be multiple SDN

controllers in a network.

• SDN switch: Network equipment in SDN that embodies the data plane. It

follows the rules installed by the controller, and is able to request for flow setups.
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• Service discovery: Process in which a device which does not initially know

where a given microservice is deployed finds the microservice. It can be

performed through service discovery applications, or can be managed at the

network level.

• Service-Oriented Architecture: Software architecture where an application

is designed as a set of services that collaborate to perform application

functionalities.

• Service-Oriented Computing: Application paradigm that considers that

applications are made of multiple autonomous, loosely-coupled, cohesive,

reusable, and platform-independent components.

• Service: Autonomous, loosely-coupled, cohesive, reusable, and

platform-independent component that is part of a SOA.

• Software-Defined Networking: Networking paradigm where the behavior of

the network, including the operations performed over messages, how they are

forwarded, or which fields of the headers should be considered to decide on how

to behave with a given message, can all be programmed. In this paradigm, the

control and data plane are separated.
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[3] J. L. Herrera, J. Galán-Jiménez, L. Foschini, P. Bellavista, J. Berrocal, and J. M.

Murillo, “Qos-aware fog node placement for intensive iot applications in sdn-fog

scenarios,” IEEE Internet of Things Journal, 2022.

[4] J. L. Herrera, J. Berrocal, and J. M. Murillo, “Deploying next generation

iot applications through sdn-enabled fog infrastructures,” in 2022 IEEE

International Conference on Pervasive Computing and Communications

Workshops and other Affiliated Events (PerCom Workshops). IEEE, 2022, pp.

130–131.
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[45] J. L. Herrera, J. Galán-Jiménez, J. Garcı́a-Alonso, J. Berrocal, and J. M. M.
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[54] J. L. Herrera, J. Galán-Jiménez, J. Garcı́a-Alonso, J. Berrocal, and J. M. M.

Rodrı́guez, “Joint Optimization of Response Time and Deployment Cost

in Next-Gen IoT Applications (Summary),” in JCIS2022, E. Navarro, Ed.

SISTEDES, 2022. [Online]. Available: http://hdl.handle.net/11705/JCIS/2022/

008

[55] J. L. Herrera, J. Berrocal, J. Galán-Jiménez, J. Garcı́a-Alonso, and J. M.
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[56] M. Jiménez-Lázaro, J. L. Herrera, J. Berrocal, and J. Galán-Jiménez, “Improving
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container-based framework for implementing network function virtualization

and software defined networks,” in NOMS 2018-2018 IEEE/IFIP Network

Operations and Management Symposium. IEEE, 2018, pp. 1–9.

[62] V. F. Pacheco, “Chained Microservice Design Pattern,” in Microservice Patterns

and Best Practices, O’Reilly, Ed., 2018, ch. 8.

[63] S. Wang, M. Zafer, and K. K. Leung, “Online placement of multi-component

applications in edge computing environments,” IEEE Access, vol. 5, pp.

2514–2533, 2017.

[64] Google Inc., “Kubernetes,” 2014. [Online]. Available: https://kubernetes.io/

[65] Edge, “The leading Edge computing platform — Edge,” 2022. [Online].

Available: https://edge.network/en/

[66] P. Maiti, J. Shukla, B. Sahoo, and A. K. Turuk, “QoS-aware fog nodes

placement,” in Proc. 4th IEEE Int. Conf. Recent Adv. Inf. Technol. RAIT 2018,

jun 2018, pp. 1–6.

[67] D. Maguire, The business benefits of GIS: an ROI approach, 1st ed. Redlands:

ESRI press, 2008.
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