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Resumen

El objeto de esta tesis es el estudio de sistemas automáticos de ayuda al diagnóstico, concretamente
los dirigidos a enfermedades que afectan a la producción vocal del sujeto considerando patologías
orgánicas de las cuerdas vocales (nódulos, pólipos y edema de Reinke) y enfermedades de origen
neurológico, como la enfermedad de Parkinson (EP). El objetivo principal de estos sistemas es la
detección automática de las variaciones que dichas enfermedades inducen en la producción vocal
mediante el análisis y procesado de señal.

A partir de la grabación de la voz de un sujeto, un conjunto de algoritmos analiza la serie
temporal que representa la grabación. Como resultado de este análisis de señal se obtiene un
conjunto de características numéricas, cada una de las cuales representa un aspecto concreto de
la grabación. Suponiendo que existan diferencias significativas entre voces sanas y patológicas, y
que esas diferencias se reflejen en dichas características numéricas, se puede entrenar un sistema
de aprendizaje automático como herramienta de ayuda en el proceso de diagnóstico.

Este enfoque presenta muchas ventajas en el entorno clínico. La prueba es fácil de realizar,
no es invasiva, tiene bajo coste, y los resultados se obtienen rápidamente. Sin embargo, también
presenta el inconveniente de que la transición desde el entorno de investigación a una situación
clínica real puede resultar complicada debido a diversos factores.

En estos sistemas, el canal de comunicación tiene un gran impacto en la predicción. Desde
la producción vocal, y hasta la forma de onda en bruto obtenida, cada elemento del canal tiene
influencia en el resultado. La suma de todas estas contribuciones es lo suficientemente grande
como para que las grabaciones tomadas bajo las mismas condiciones constituyan un subdominio
del grupo objetivo: El conjunto de todas las grabaciones vocales, tanto sanas como afectadas por la
enfermedad que se quiere diagnosticar. Por lo tanto, entrenar un sistema de aprendizaje automático
utilizando grabaciones obtenidas en condiciones específicas induce un sesgo en el modelo.

En este trabajo se ha analizado el impacto que tiene el canal (ruido, dispositivos de grabación)
en la detección automática de enfermedades detectables a través de grabaciones de voz. El en-
trenamiento multicondición se propone como una posible solución a este problema. Entrenar el
clasificador con un conjunto de grabaciones obtenidas en una variedad de entornos ayuda a evitar
el sesgo del modelo. Para probarlo se han estudiado diferentes elementos del canal de comunicación
de forma aislada. Todos ellos provocan individualmente un sesgo en el modelo. Para todos ellos,
la estrategia de entrenamiento multicondición ha demostrado ser una solución válida.

Para evaluar la capacidad de generalización de los resultados se han usado varias bases de datos,
que contienen grabaciones reales. Se han utilizado datos públicos o con acuerdo de transferencia, así
como datos propios recogidas con la colaboración del Servicio de Otorrinolaringología del Hospital
San Pedro de Alcántara (Cáceres) y de la Asociación Regional de Parkinson de Extremadura
(Cáceres y Mérida). La utilización de la base de datos mPower ha permitido estudiar también el
impacto en los resultados de detección automática de la EP de la ausencia de supervisión cualificada
en las grabaciones.

Además de la variabilidad que introduce el canal, se ha tenido en cuenta la variabilidad intra-
sujeto, proponiendo métodos de regularización que tienen en cuenta esta variabilidad para mejorar
el funcionamiento de un sistema automático de detección del edema de Reinke.
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Summary

This thesis subject of study consists on automatic diagnostic aid systems, specifically those aiming
to detect diseases that affect the subject vocal production, considering both organic pathologies
of the vocal folds (nodules, polyps, and Reinke’s edema), and diseases of neurological origin, such
as Parkinson’s disease (PD). The main goal of these systems is the automatic detection of the
variations that those diseases induce in the vocal production by means of signal analysis and
processing.

On the basis of a subject’s vocal recording, a collection of algorithms analyze the time series
representing the recording. The outcome of those analysis is a set of numerical features, each
one of them representing a specific aspect of the recording. Assuming that there exist significant
differences between healthy and pathological voices, and that those differences are reflected in those
numerical features, machine learning systems can be trained to help in the diagnostic process.

This approach shows many advantages in the clinical environment. The test is easy to perform,
noninvasive, low cost, and the results are quickly obtained. However, it also has the disadvantage
that the transition from the research environment to a realistic clinical setup can be difficult due
to several factors.

In these systems, the communication channel has a large impact on the prediction. Between the
vocal production and the raw waveform obtained, every element of the channel has an influence.
The sum of all these contributions is large enough to allow recordings taken under the same
conditions to constitute a subdomain of the target group: The set of every vocal recording, both
healthy or affected by the disease being assessed. Therefore, training a machine learning system
using recordings obtained under specific conditions induce a model bias.

The present work has analyzed the impact that the channel (noise, recording devices) has
in the automatic detection of diagnosable by voice diseases. Multicondition training technique is
proposed as a solution to this problem. Training the classifier with a recording set showing a variety
of conditions helps avoiding the bias problem. Different elements of the communication channel
have been isolated. All of them individually lead to model bias. For all of them, multicondition
training strategy has proven to be a valid technique to overcome this problem.

Different databases, containing real voice recordings, have been used to evaluate de generaliz-
ability of the results. Public databases or databases with transfer agreement have been considered,
as well as in-house collected databases built in collaboration with Servicio de Otorrinolaringología
del Hospital San Pedro de Alcántara (Cáceres), and Asociación Regional de Parkinson de Ex-
tremadura (Cáceres and Mérida). mPower database has allowed to consider the impact that the
absence of professional supervision in the recording process has in the automatic detection of PD
outcome.

In addition to variability induced by the channel, intra-subject variability has also been consid-
ered. Regularization methods that improve the machine learning system performance by handling
the intra-subject variability have been proposed, and successfully improved the performance of an
automatic Reinke’s edema detection system.
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1.1. BACKGROUND CHAPTER 1. INTRODUCTION

1.1 Background

Since the proposal of machine learning techniques, parallel with the development of the first com-
puter systems circa the decade of 1950’s, a huge amount of research and development on these
techniques has been conducted. The ever increasing computing capacity along with the recent
increase in information availability has enabled the spread of these techniques. One of the topics of
machine learning is the classification problem. Given a population composed of a set of categories,
the objective is to identify which one new observations belong to.

The potential applications for these techniques are almost unlimited, and they have been widely
used in many knowledge fields. One of most obvious candidates is medical diagnosis. There exist
differences between healthy and pathological subjects caused by the disease. If these differences
are measurable, the classification problem becomes clear. For each subject, the features that
characterize the disease must be obtained. Those measurements feed a machine learning system
that tries to predict the category the sample belongs to based on previous observations (Shehab
et al., 2022).

Using this approach, research on many diseases has been conducted. Medical diagnosis counts
with a wide range of tests of different nature. Image diagnosis, tissue and blood samples, or
physiological measurements are some examples of useful features that have been considered in the
scientific literature. Biomedical signal acquisition, and the subsequent processing and analysis, is
one of the many tools that can be successfully used for medical diagnosis. Computer and electrical
engineering tools developed for signal processing are commonly used in the biomedical field. For
example, signals coming from electrocardiograms and electroencephalograms are widely used in
this context. However, many other signals can be obtained from the physiological processes of the
human body. One of these signals comes from voice production. Voice is the main communication
tool for human beings, and its production involves complex physiological and neurological processes.
As such, it is a good candidate to be used as a descriptor for diseases affecting those processes.

In the physiological side, modifications of the mechanical aspects of voice production will change
its properties. Changes in the mechanical aspects of the vocal folds like mass or rigidity lead
to alterations in vocal production. Reinke’s space diseases share common pathologic features,
although the lesions’ etiologic factors differ. Hantzakos et al. (2009) described the differences
between the usual conditions associated to Reinke’s space. The main diagnostic methods involve
direct examination of the vocal folds; Laryngoscopy and videostroboscopy performed by qualified
otolaryngologists are the most usual techniques for diagnosis (Echternach et al., 2020).

On the other hand, neurological disorders can also affect vocal production in a significant yet
different way. Parkinson’s disease (PD) is a good example. PD is a neurodegenerative disorder
which is usually classified as a motor function disease. People suffering from PD usually present
bradykinesia, rigidity and tremor (Tysnes and Storstein, 2017). Its diagnosis is complex and many
approaches have been proposed. Electroencephalograms (Oh et al., 2020), magnetic resonance
imaging (Amoroso et al., 2018) or motion and gait analysis (Belić et al., 2019) have been considered,
among others.

The proposed techniques for both physiological and neurological diseases share great disad-
vantages for detection and progression tracking of voice-detectable diseases. They are usually
expensive, cumbersome, and require the expertise of a well trained specialist. Therefore they are
not widely available and can delay the diagnostic process. For that reason, the search for new,
fast, low-cost, noninvasive, and reliable tests is of great interest.

Voice analysis arises as a good candidate for that task. The affection of physiological diseases on
the mechanical aspects of voice production are reflected on the vocal signal. Thus, voice analysis is
a good candidate as Computer Aided Diagnostic (CAD) tool. On the neurological side, the motor
function alteration produced by PD is also reflected on the vocal production. Pawlukowska et al.
(2018) stated that 75%-95% of people with PD suffer from some sort of speech impairment. In this
case, many aspects of vocal production can be studied, like the ability to sustain a steady voice
production (Zhang et al., 2021), running speech analysis (Rahman et al., 2021), or diadochokinesis
tests (Montaña et al., 2018). This makes voice analysis a good candidate for new developments on
automatic diagnostic tools of PD.

3



CHAPTER 1. INTRODUCTION 1.2. OBJECTIVE

Extensive research on automatic diagnostic aid tools has been made. A large number of machine
learning techniques have been proposed and tested. Hidden Markov Models, Gaussian Mixture
Models, Support Vector Machines, Random Forests, Artificial Neural Networks, or Deep Neu-
ral Networks are examples of recently applied techniques for the classification task. Input data
selection for these techniques is another factor under research in the topic.

Although the target diseases for these systems share a common symptom like voice production
alteration, the materialization of the effects is different attending to the specific disease. Physiolog-
ical conditions mostly affect frequency related properties like fundamental frequency, or harmonic
structure. Neurological diseases on their side can prevent the patient’s pitch control, normal artic-
ulation, and prosodic abilities. PD patients usually refer speech impairment, which is beyond voice
production. Therefore, each pathology requires a specific set of descriptors, or features, which also
receive great research attention. Gómez-García et al. (2019a,b) and Hegde et al. (2019) offer an
overview of both features and classification tools used in this area.

1.2 Objective

More than two decades after the first efforts in automatic diagnostic aid tools for detectable-by-
voice diseases, it does not exist a reliable commercial application available yet. One of the possible
reasons is population mismatch. Research is usually made by strictly controlling the setup so
the number of variables is minimized. In this case, the research teams usually want to fix every
recording aspect like equipment, location, and even medication in the case of neurological disorders
to find significant differences between groups in the analysis. Therefore, generalization is not an
easy task.

The general purpose of this PhD thesis is studying and analyzing some of the factors that hinder
the application in clinical environments of automatic diagnostic aid systems for detectable-by-voice
diseases and propose solutions that help preventing them.

The main specific objectives of this PhD thesis are summarized as follows:

O1. Investigate, implement and test speech feature extraction algorithms that show efficient per-
formance in computer aided diagnosis systems for detectable-by-voice diseases.

O2. Investigate variable selection and classification algorithms that provide efficient performance
in the same application context.

O3. Analyze the impact of channel mismatch effects (noise, different recording devices) on the
performance of computer aided diagnosis systems for detectable-by-voice diseases.

O4. Perform healthy/disease-affected discrimination experiments based on real voice recordings
including diseases with organic and neurologic origin, and including the smartphone as a
recording device in some experiments.

O5. Address intra-subject variability by proposing replication-based regularization approaches
and test them to detect pathologies affecting speech.

O6. In healthy/disease-affected discrimination experiments, address result generalization by the
use of different databases in a comparative way.

O7. Propose novel multicondition training based approaches to address channel mismatches and
investigate the performance improvement versus single-condition training systems for the
same applications.

1.3 Thesis development

This PhD thesis, presented by a compendium of publications, contains seven chapters, including
the introduction and a chapter of summary of results, conclusions and future research. The main

4



1.3. THESIS DEVELOPMENT CHAPTER 1. INTRODUCTION

body of the work (chapters 2-6) consists of five publications in journals indexed in the Journal of
Citation Reports. This subsection provides a short overview of how these five articles contribute
to the thesis goals stated in the previous subsection.

Suboptimal recording conditions affect the performance of the output machine learning model.
The presence of noise makes it harder to perform the signal analysis step and therefore the sub-
sequent steps are affected and performance is degraded (Gómez-García et al., 2021). Chapter 2
(Madruga et al., 2021a) studied the impact of noise in the accuracy of a machine learning system
trained to detect some Reinke’s space diseases, i.e. nodules, and Reinke’s edema. It uses MEEI
database (Massachusetts Eye & Ear Infirmary, 1994), a well known voice recordings database long
considered as the test case for voice disease computer analysis, along with an at-home voice record-
ing database collected in collaboration with the Hospital San Pedro de Alcántara (Cáceres). Noise
is added to the original recordings and the consequent performance drop is measured. This article
is linked to the specific objectives O1-O4 and O6.

Chapter 3 (Carrón et al., 2021) analyzed the diagnostic ability of systems built using non
curated datasets. In this case, in addition to an at-home database from healthy and people suffering
from Parkinson disease (collected in collaboration with the Asociación Regional de Parkinson de
Extremadura, ARPE), mPower recordings were used (Bot et al., 2016). Both databases were
recorded in non-optimal conditions, by using a mobile phone as recording device. Furthermore,
mPower dataset was recorded by volunteers using their own device in different locations unlike the
at-home collected database which had a fixed setup. This article addressed the specific objectives
O1-O4 and O6.

Recording conditions are not the only perturbation for CAD systems though. Biological systems
are complex and their behavior is not purely deterministic. Chapter 4 (Naranjo et al., 2021a)
studied the variability that occurs when a subject repeats an experiment of vocal production
recording and the influence that it makes in the results obtained when training a machine learning
model. It takes into consideration regularization methods addressing the intra-subject variability.
This article is related to the specific objectives O1, O2, O4, and O5.

Articles in chapters 2 and 3 show that CAD systems are relatively tolerant to environmental
noise and changes in recording conditions, whereas article in chapter 4 shows that intra-subject
variability can be addressed using the appropriate methodology. Therefore, it might be possible
to build systems which are robust against any source of variability in the recording process. This
problem is known in machine learning research as domain adaptation (Kouw and Loog, 2021). The
circumstances surrounding the sampling process lead to a bias in the model. Therefore, if a model
is fed with samples from a different population, i.e. recorded in a different environment, this leads
to lower performance than that obtained for the original experimental population.

Multicondition training has been proposed to address the variability problem in the speaker
recognition context (Garcia-Romero et al., 2012). By mixing different environmental conditions
the system avoids specialization and the resulting model improves in generalization. Chapter 5
(Madruga et al., 2021b) proposes a methodology that takes variability in the recording environment
into account, in the context of CAD systems. Three physiological diseases in Reinke’s space are
considered: Nodules, polyps and Reinke’s disease. In this case, four different databases are studied:
MEEI database (Massachusetts Eye & Ear Infirmary, 1994), an at-home collected database (in
collaboration with Hospital San Pedro de Alcántara, Cáceres), Saarbrücken Voice Database (SVD)
(Barry and Pützer, 2016), and Hospital Universitario Príncipe de Asturias (HUPA) database
(Godino-Llorente et al., 2008). Environmental noise was isolated as a variability source and its
influence on model performance measured for each database is evaluated and compared. Specific
objectives O1-O4, O6, and O7 are linked to this article.

Environmental noise is not the only source of variability. One often ignored factor in the data
acquisition process is the recording equipment. Article in chapter 6 (Madruga et al., 2023) focused
on the impact of changing the recording device used in the experiments. Different smartphone
models were considered and the performance was compared. The positions of the recording device
were also analyzed. Multicondition training was proposed and applied for subjects suffering PD
from ARPE. The related specific objectives for this article are O1-O4 and O6-O7.

5



CHAPTER 1. INTRODUCTION 1.3. THESIS DEVELOPMENT

The work developed for this thesis shows that one of the obstacles CAD systems are facing in
their implementation as valid diagnostic tools is the lack of generalization. This research shows
that noise is introduced in several stages of the recording process and affects the models created.
This leads to a bias that prevents these models from being useful under circumstances other than
those used for their training stages. The proposed methodology of multicondition training has
proven to be a good solution for this problem as it improves generalization in all the scenarios
studied.
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A B S T R A C T

Automatic voice condition analysis systems have been developed to automatically

discriminate pathological voices from healthy ones in the context of two disorders related

to exudative lesions of Reinke’s space: nodules and Reinke’s edema. The systems are based

on acoustic features, extracted from sustained vowel recordings. Reduced subsets of fea-

tures have been obtained from a larger set by a feature selection algorithm based on Whale

Optimization in combination with Support Vector Machine classification. Robustness of the

proposed systems is assessed by adding noise of two different types (synthetic white noise

and actual noise recorded in a clinical environment) to corrupt the speech signals. Two

speech databases were used for this investigation: the Massachusetts Eye and Ear Infirmary

(MEEI) database and a second one specifically collected in Hospital San Pedro de Alcántara

(Cáceres, Spain) for the scope of this work (UEX-Voice database). The results show that the

prediction performance of the detection systems appreciably decrease when moving from

MEEI to a database recorded in more realistic conditions. For both pathologies, the predic-

tion performance declines under noisy conditions, being the effect of white noise more

pronounced than the effect of noise recorded in the clinical environment.
� 2021 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy

of Sciences. Published by Elsevier B.V. All rights reserved.

1. Introduction

Voice is a person’s main communication tool and, therefore,

the impact of voice disorders on quality of life can be substan-

tial. For people involved in certain professions, such as teach-

ers, singers, and many others, voice is also the main working

tool and, as an immediate consequence, they are in a high risk

of developing voice disorders due to excessive and/or incorrect

use of their voices. Voice professionals are prone to suffer

from organic diseases and will eventually need some kind of

medical diagnosis and care [1]. Some of those voice disorders

are exudative lesions of Reinke’s space and aremanifestations

of different etiologic factors like voice abuse leading to nod-

ules, or tobacco use linked to Reinke’s Edema [2].
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The main methods used by otolaryngologists to diagnose

laryngeal diseases are direct inspection of the larynx through

the use of invasive techniques such as laryngoscopy and

videostroboscopy [3], and/or evaluation of voice quality by

hearing. The first group of diagnosis techniques causes dis-

comfort to the patient and requires sophisticated equipment

like endoscopic instruments or specialized video cameras,

whereas the second group is subjective and strongly depends

on the experience of the specialist [4].

In recent years, computer aided diagnosis (CAD) of voice

disorders has attracted considerable scientific interest with

the aim of providing an effective screening method for

pathologies in an early stage. Using automatic voice condition

analysis (AVCA) helps the physicians providing useful infor-

mation in the differential diagnostic process [5]. These tech-

niques usually consist of an acoustic feature extraction step

followed by the application of machine learning algorithms

under the assumption that voice quality is correlated with

voice pathology [5]. Compared to the previously mentioned

diagnosis methods, these techniques show the advantages

that they are non-invasive, fast, objective, and low-cost. Also,

acoustic analysis have been proved to be a sensitive, objec-

tive, and quantitative tool, being more accurate than percep-

tual assessment [6]. For example, they can be applied in

preventive medicine to professionals at high risk of suffering

from voice disorders [7]. Other contribution in the field of

automatic detection of structural vocal-fold pathologies is

[8], which offers experimental results of binary discrimina-

tion between normal and pathological voices, where the

pathological voice class is composed of a variety of disorders.

A recent scientific review on AVCA systems is provided by [9].

This paper focuses on laryngeal diseases, in particular,

nodules and Reinke’s edema. In this application context, the

most usual vocal task is sustained phonation of /a/ vowels,

where the speakers are asked to pronounce a vowel sound

as steady as possible in terms of amplitude and fundamental

frequency [10]. This vocal task has several advantages. First, it

requires continuous motion of the vocal folds, which consti-

tute the main structure involved in these pathologies. Also,

this vocal task is quick and easy to perform and it is a com-

mon sound across different languages and accents. Sustained

phonation of other vowel sounds or production of sentences

have also been used [8].

Based on sustained vowel recordings, the studies in the lit-

erature consider many different characteristics of speech

including perturbation measurements (such as jitter or shim-

mer), noise measures (such as harmonic-to-noise ratio (HNR)

or glottal-to-noise excitation (GNE) ratio), Mel frequency cep-

stral coefficients (MFCCs), among others [5]. More recent stud-

ies show that nonlinear time series analysis methods may be

more appropriate for pathological voices than classical mea-

surements. Those methods, including Lyapunov exponents

and correlation dimension, have been applied to classification

of disordered voice samples [5].

There is also a variety of pattern recognition techniques

based on supervised learning applied in this context in the

scientific literature. Among the many different classification

techniques that have been used, [5] highlights Support Vector

Machines (SVM) and Gaussian Mixture Models as the most

widely employed, although [9] compiles a much wider range

of alternatives which have been used in this particular field.

In general, when a large feature set size is used, the model

becomes less comprehensible and there is a high risk of over-

fitting [11]. Therefore, for a reliable classification, it is impor-

tant to use a small number of measurements, containing an

optimal amount of information. Feature selection for classifi-

cation is an active research area on its own, whose main

objective is to reduce the dimension of the original feature

set. Wrapper algorithms based on meta-heuristic optimiza-

tion techniques allow to obtain a global optimum of the pre-

dictive accuracy achieved for a certain classification

algorithm by using a simple and easy to implement concept.

Among the different meta-heuristic approaches, the Whale

Optimization Algorithm (WOA) is a recently proposed

approach which mimics the hunting behavior of humpback

whales. It was originally created as an optimization algorithm

[12] and later adapted as a feature selection operator [13,14].

An important aspect to take into account regarding AVCA

systems for speech disorder detection is robustness. When

the recordings have been obtained under a controlled acous-

tic environment, the performance of these systems in real-life

conditions remains unknown. A clear example is the Mas-

sachusetts Eye and Ear Infirmary (MEEI) database [15], whose

recordings were taken in Kay Elemetrics and MEEI Voice and

Speech Lab [16], being these conditions very difficult to repro-

duce in everyday situations. In order to be useful, it is

required that these systems remain robust even when the

recordings are captured in a non-controlled environment.

Experiments have been carried on in order to assess different

channels in remote disease monitoring [17,18]. Even mobile

healthcare applications have been tested in controlled acous-

tical environments, like [19], which mentions that experi-

ments are carried out in an as low as 30 dB background

noise room. However, noise robustness is very seldom present

in the scientific literature about automatic detection systems

of organic voice disorders. [20] presents assumable noise

levels of 25 dBA, 36 dBA, 30 dB, 40 dB and 50 dB for different

studies, remarking that the maximum acceptable noise level

was not investigated. [21] presents a study about the adverse

effects of noise on voice quality measurement. This study

focuses on fundamental frequency and perturbation mea-

surements with no particular pathology addressed. [22] stud-

ies the numerical effects of noise on the computation of

different acoustical features, although it does not test their

classifying capabilities. [23] performs a preliminary study on

the impact of noise on the automatic detection of a particular

voice pathology: Reinke’s edema. In the context of Parkinson’s

disease, [24] shows the impact of noise on an automatic

detection system based on acoustic features. Finally, [25] pro-

poses a technique to mitigate the possible differences in

recording environments, characterized by different noise

conditions.

The main goal of the present paper is to assess the nega-

tive effects of realistic noisy recording conditions on the out-

come of an AVCA system for voice pathology detection. We

have focused on two specific related diseases which are com-

mon vocal fold lesions, and their etiologies are related. How-

ever, we performed independent experiments with each

disease in order to minimize the number of variables present

in the study since the main goal is not building an automated
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diagnostic system, but to check the potential effects of envi-

ronmental noise on the outcomes of AVCA systems for vocal

fold lesions detection.

We have built AVCA systems to discriminate pathological

voices from healthy ones in the context of two structural

organic speech pathologies: nodules and Reinke’s edema.

This work is a significant extension of the conference paper

[23]. It introduces new case studies in a different pathology

(vocal fold nodules) that allow to improve the generalization

capability of the conclusions and to make a disease compari-

son. Also, it exposes a feature selection algorithm which has

been designed, implemented, and tested for these applica-

tions. Specifically, the systems are built on reduced acoustic

feature subsets, obtained by a feature selection algorithm

based on Whale Optimization in combination with SVM clas-

sification. This algorithm has been implemented using paral-

lel computing libraries and executed on a Beowulf cluster

system. Two voice recording databases are employed: The

first one is MEEI, recorded in the most favorable acoustic con-

ditions; the second one is an own database, recorded in a

more usual clinical environment. Also, system robustness is

evaluated by adding two different types of noise (white Gaus-

sian noise and actual clinical environment noise) to both

databases and studying the impact on the discrimination

capacity of each system.

2. Materials and methods

This section provides the main information on participants,

collection and pre-processing of voice samples and noise

recording. Also, the proposed feature extraction approach is

summarized and the feature selection algorithm is explained.

2.1. Participants

MEEI database, commercialized by KayPentax Corp. [15], is

one of the voice databases used for this work. This database,

widely used for research in pathological voice classification,

has been recorded under very strict acoustical and technical

conditions (sound-proof booth, high-quality recording equip-

ment, type of microphone, distance to the source. . .) [16]. It

includes sustained /a/ recordings of 53 healthy and 657 patho-

logical subjects, 19 and 25 of them suffering from vocal-fold

nodules and Reinke’s edemas, respectively.

Notall thevoicesamples in theMEEIdatabasewererecorded

using the same technical parameters, being the healthy voices

recorded at a sampling rate of 50 kHz, with a total length of 3 s,

whereas the pathological voices were recorded at 25 kHz for

one second. For the purpose of our experiments, all the wave-

formswere resampledwhenneededand trimmedso thewhole

database complieswith the specifications of a sampling rate of

25 kHz and one second length.

An experiment has been conducted to collect a voice

recording database (UEX-Voice) also based on sustained /a/

phonations. This database has been recorded in Hospital

San Pedro de Alcántara (HSPdA), Cáceres, specifically, in an

ordinary diagnostic room, with its door closed, providing only

a certain isolation from the noisy aisles and waiting halls sur-

rounding it.

All the recordings were taken using the same equipment:

an AKG 520 head-worn condenser cardioid microphone

attached to a TASCAM US322 sound card, being the recording

software Audacity 2.0.5. The sampling rate was 44.1 kHz. Four

phonations were recorded for each participant, of variable

lengths depending on the capacity of each individual, so they

were trimmed both at the beginning, ensuring no silence, and

at the end, to obtain a uniform duration of one second. All the

waveforms were downsampled to 25 kHz in order to match

the sampling rate of MEEI database.

Fig. 1 shows the age distribution of the considered subjects

with nodules and Reinke’s edema from the MEEI and UEX-

Voice databases. Summary statistics are provided in Table 1.

2.2. Noise database

A noise database has been specifically collected from the

room where the research study took place. This room was

placed in the external consultation area, on the second floor,

of a hospital in a small town (population < 100:000). Back-

ground noise was recorded using the same equipment previ-

ously defined. The length of the recording was 11 min 50 s

and included noise from different sources: multitalker babble,

cell phone sounds, fluorescent lighting, door closing, and

footsteps, among others. Since post-processing is made alter-

ing recording level, we are more interested in the nature of

sound than in its power. The recordings made include a real-

istic representation of the variety of indoor noise sources that

are present in the outpatient clinic area of any hospital during

consultation hours. Furthermore, national and regional envi-

ronmental noise laws are very strict in hospital surroundings.

Anyway, the impact of external sources on the final record-

ings is negligible, as in free space the received noise power

is inversely proportional to the square of the distance to the

source, given that external sources are farther away than

internal ones, and accounting for the attenuation due to

building walls. For those reasons, considering that the voice

samples are at most 3 s long, and that they are trimmed down

to one second, these noise recordings provided enough vari-

ability to perform all the desired experiments.

The noise waveforms were recorded inside the empty

diagnosis room with door and windows closed while noise

level was being measured using a certified Brüel & Kjaer

2260 sound level meter, what allows us to assert the acousti-

cal environment recreated when using these recordings.

Three one-minute measurements showed an A-weighted

mean Leq of 34.17 dBA.

2.3. Feature extraction

A total of 94 features were extracted from each voice sample.

These features have been previously used in scientific litera-

ture, either for voice disease detection, Parkinson’s disease

detection, or other biomedical signal analysis [5,9]. The

extraction methods were coded in Python by direct imple-

mentation of the formal mathematical definition, by translat-

ing existing code from other authors, or by using available

libraries of proven reliability from Python repositories. A com-

prehensible list is provided in Table 2 including short name,
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references to previous work, and variants taken into

consideration.

Age and sex are two features inherent to each subject.

Humans undergo several changes with aging that affect the

voice production system. For example, changes in the larynx

tend to alter the average fundamental frequency and to

produce instability of vocal fold vibrations [34]. The impact

is different for men than for women; in particular, fundamen-

tal frequency tends to increase in men and decrease in

women due to some aging effects [35]. Also, women are more

prone to suffer from organic voice diseases than men [36].

These and several other aspects related to the impact of age

Fig. 1 – Age distribution of the subjects from MEEI and UEX-Voice databases.

Table 1 – Distribution of subjects by health status, sex and age.

Sex Age

Database Health status Male Female Mean Std. Dev.

MEEI Healthy 21 32 36.00 8.29
Nodules 1 17 29.11 10.45
Reinke’s edema 5 20 48.04 11.97

UEX-Voice Healthy 4 26 40.76 11.18
Nodules 1 23 40.41 11.33
Reinke’s edema 3 27 47.96 11.76
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and gender on speech have motivated the inclusion of these

two features.

Many diseases affecting vocal production cause pitch-

related alterations, specifically frequency or amplitude modu-

lation, being sustained vocal analysis the most useful tech-

nique to apply [37]. Most studies till recent years focused

their attention on acoustical features such as jitter or shim-

mer, which assume that voice production is a linear system.

Though the definition of jitter seems very simple, i.e., the

mean variation in the fundamental frequency of the phona-

tion process, there is no method considered as standard for

calculating such variation, mainly because the fundamental

frequency calculation is not a trivial task. Most usual methods

are provided by Multi-Dimensional Voice Program [15], the

software tool provided by KayPentax with their database;

and Praat suite. Other algorithms have been proposed, such

as Sun’s algorithm or SWIPE alternatives [38]. In our imple-

mentation jitter and shimmer were translated from MATLAB

code given by [27]. We obtained 22 different measurements

for both jitter and shimmer, each one corresponding to a dif-

ferent mathematical formulation.

Besides jitter and shimmer, other spectrum and funda-

mental frequency related linear features have been studied.

GQ was originally used to monitor Parkinson’s disease [39],

and shortly after for early diagnosis of pathological voice

[40]. GQ takes into account the lengths of time the glottis is

open and closed. CPP was proposed as a measure of breathi-

ness and our version was coded following the definition given

by [26]. HNR is intended to assess voice hoarseness and tries

to estimate the relationship between purely harmonic to tur-

bulent noise in voice production. MFCCs try to describe the

spectral components and do not require a previous pitch esti-

mation [28].

Nonlinear behaviors have been shown to play a role in the

voice production process and, particularly, in the case of voice

pathologies [5]. Therefore, assuming that voice diseases may

induce a chaotic behavior in human voice production, nonlin-

ear analysis has also been taken into consideration in the

search for new accurate features [7]. RPDE considers the

uncertainty in signal cycle estimates using both an embedded

space and entropy, being related to fundamental frequency,

nonlinear, and entropy measurements [18]. ZCR is not prop-

erly a nonlinear measurement, but it is useful in time series

analysis [31], measuring the number of times the signal

crosses zero level. D2 is an estimator of the correlation

dimension, a measure of self-similarity of chaotic systems

[10]. HURSTand MFSWare closely related: HURST, also known

as detrended fluctuation analysis, used in [10], measures a

monofractal local fluctuation of the root-mean-square in a

time series, whereas MFSW [30] analyzes the q-order Hurst

Table 2 – Features extracted.

Linear

Short name References Full name and variants

CPP [26] Cepstral peak prominence
GNE_X [27] Glottal-to-noise excitation ratio. Four different statistical features: mean, std, SNR_TKEO,

SNR_SEO
GQ [27] Glottal quotient. Three statistics used: prc5_95, std cycle open, std cycle closed
HNR [27] Harmonic-to-noise ratio
JITTER_X [27] Jitter. Twenty-two different statistics used: abs_dif, diff_percent, PQ3_classical_Schoentgen,

PQ3_classical_Baken, PQ3_generalised_Schoentgen, PQ5_classical_Schoentgen,
PQ5_classical_Baken, PQ5_generalised_Schoentgen, PQ11_classical_Schoentgen,
PQ11_classical_Baken, PQ11_generalised_Schoentgen, abs0th_perturb, DB, CV, TKEO_mean,
TKEO_std, TKEO_prc5, TKEO_prc25, TKEO_prc75, TKEO_prc95, FM, range_5_95_perc

SHIMMER_X [27] Shimmer. Twenty-two different statistics used: abs_dif, diff_percent,
PQ3_classical_Schoentgen, PQ3_classical_Baken, PQ3_generalised_Schoentgen,
PQ5_classical_Schoentgen, PQ5_classical_Baken, PQ5_generalised_Schoentgen,
PQ11_classical_Schoentgen, PQ11_classical_Baken, PQ11_generalised_Schoentgen,
abs0th_perturb, DB, CV, TKEO_mean, TKEO_std, TKEO_prc5, TKEO_prc25, TKEO_prc75,
TKEO_prc95, FM, range_5_95_perc

MFCC-X [28] Mel Frequency Cepstral Coefficient, 13 first coefficients MFCC0 - MFCC12

Non-linear

D2 [10] Correlation dimension
FMMI [29] First minimum in mutual information
FZCF [29] First zero of autocorrelation function
HURST [10] Hurst Exponent
MFSW [30] Multifractal spectrum width
ZCR [31] Zero crossing rate

Entropies and complexities

PERMUTATION [32] Permutation entropy
PPE [27] Pitch period entropy
RPDE [18] Recurrence Period Density Entropy
SHANNON [29] Shannon entropy
LZ-X [33] Lempel–Ziv complexity. 16 features quantifying signal 21 to 216 steps
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exponent, or multifractal fluctuation analysis, capable of dis-

tinguish fast and slow fluctuations. FMMI measures the time

lag for which the signal adds a maximum of information

about itself, or for which the information redundancy is min-

imal [29]. FZCF gives the input lag for which the autocorrela-

tion function is minimal [29].

Another aspect that has been considered is the signal

entropy, or the amount of information carried by the signal.

Different approaches can be found in the scientific literature:

SHANNON is a classical communication theory measurement

of the information a signal carries [29]; PERMUTATION adds a

perspective of symbolic dynamics, or the temporal order of

the values in a series [32]; PPE quantifies the lack of control

over pitch beyond natural vibrato and microtremor [27,40].

Finally, LZ measures the regularity or repetitiveness of a

sequence [33].

2.4. Feature selection and classification

We built different systems for each database-disease combi-

nation. Those systemswere created using clean samples from

the databases, and their ability to handle additive noise was

checked by inducing different types of noise at different

SNR levels. The systems creation comprised two steps: fea-

ture selection and recording classification.

Given the number of features considered and datasets

sizes, the risk of overfitting is a relevant issue, whichever clas-

sifier is used. To avoid this inconvenience, the following fea-

ture selection approach has been designed and implemented.

In general, features belonging to the same family, that is,

those which share a common base algorithm, are highly cor-

related within the group [41]. This is shown in Fig. 2, which

represents a heat map of the Pearson correlation coefficient

for each pair of features. It can be observed that jitter, shim-

mer, and LZ features are highly correlatedwithin their groups.

Therefore, prior to any WOA related computation, the feature

set was reduced to keep only one feature per group in the case

of these three families.

The number of features considered after discarding the

highly correlated ones is still high compared to the number

of individuals included in each database, so further feature

selection is performed. We used WOA [12], a bio-inspired evo-

lutionary algorithm properly modified as a wrapper feature

selection operator [14], which has recently started to be tested

as a feature selection method [13]. It mimics the bubble-net

feeding in the hunting behavior of the humpback whales.

These whales hunt close to the surface by creating a net of

bubbles where the prey is trapped. The algorithm mimics this

behavior in two phases: one of them is called exploitation,

when a whale herd tries to encircle a prey (solution or, in this

case, set of features) in a spiral bubble-net attack; the other

phase, called exploration, searches randomly for a new prey.

In each iteration, the algorithm selects a prey, a local opti-

mum point. WOA selection algorithm relies on the fitness

function from Eq. (1)

f ¼ a� ð1� accuracyÞ þ b� number of selected features
number of features

ð1Þ

based on the accuracy of a given classifier and the number of

features selected to train such classifier. In this case, the objec-

tive is to maximize the accuracy, that is, minimize the error

rate through the a parameter while minimizing the relative

number of features using the b parameter, thus decreasing

the risk of overfitting due to an excessive number of features

involved. Both accuracy and relative number of features are

in the range ½0;1�, and a and b also range ½0;1� being b ¼ 1� a.

Exploitation or prey encircling is done by taking the local

optimum point obtained in the previous iteration, or a ran-

dom point at the beginning of the execution, and then each

search agent or ‘‘whale” describes a spiral around that point.

To create such spiral thewhale alters the optimum point, con-

sisting of a feature set, and modifies it by adding or removing

features, ensuring a lower euclidean distance to the optimal

point in each iteration, so the new candidate obtained by each

search agent is always closer to the local optimum point at

each iteration.

At this point, as suggested by [42], we changed the updat-

ing mechanisms. Feature addition or subtraction in the solu-

tions is performed using Eq. (2),

~Xðtþ 1Þ ¼ D0 � ebl � cosð2plÞ þ ~X�ðtÞ; ð2Þ

where b defines the spiral shape, l is a random number in

½�1;1�, D0 is the euclidean distance to the best available solu-

tion and ~X� is the best solution so far, as depicted in [12]. In

this case, since the solutions space is discrete (a feature is

either present or not) the updated leading position is trans-

formed into a binary vector whose positions indicate whether

the whale position in a given dimension or feature is above

0.5 or not (e.g. 4-dimensional solution [0.7, 0.3, 0.8, 0.9] would

turn into [1, 0, 1, 1]).

In order to extend search to a wider portion of the solu-

tions space, some of the whales will move randomly to

another unrelated point in the space, what constitutes the

exploration mechanism. Eventually, one or more whales will

find a better solution than the temporary optimal one given

by the last iteration, and then, all the search agents will turn

to the best solution in terms of accuracy and feature number,

and will start encircling it. The algorithm ends when it finds a

solution with a fitness function lower than a given threshold,

or when it has computed a maximum number of iterations.

The algorithm can be fine tuned by using tournament and

roulette wheel selection mechanisms instead of a random

operator to enhance the exploration phase, as well as cross-

over and mutation to optimize the exploitation phase [14].

In this case we have implemented the algorithm based on

tournament selection as selection mechanism, and mutation

as subset search.

Tournament selection randomly chooses two challengers

within the search agents population and, according to a ran-

dom number being greater than a given threshold, selects

either the best or worst fitted candidate as new individual.

Mutation provides a tool for generating new possible solu-

tions from actual solutions being considered in the current

state. It randomly changes the state of some features from

selected to un-selected or vice versa. The number of altered

selections decreases as the algorithm reaches the hard limit

of iterations, making it more prone to mutations at the begin-

ning of the execution and more unlikely to mutate towards

the end.
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Fig. 2 – Correlation heat map for all the extracted features.
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The algorithm also makes use of crossover, where two

candidate solutions are mixed, or ‘‘bred”, in order to create

a new candidate solution with mixed characteristics of the

two original ones.

The overall procedure is shown as Algorithm 1. It begins

initializing candidates in the search field. In every iteration,

until it reaches the hard limit imposed or achieves a fitness

function above a desired threshold, it performs the following

actions. First, an update of the a, A, C, l, p parameters is per-

formed for each whale. a decreases linearly from 2 to 0 as the

number of iterations get closer to the hard limit; A and C

define the whale position update along with a: A is a coeffi-

cients vector built using the value of a and a random vector

in [0, 1] and C is built using the same random vector; l is a ran-

dom number in ½�1;1� which defines the spiral shape as seen

in Eq. 2; and p is a random number in [0, 1] whose value deter-

mines whether the whale is going to encircle the best solution

(exploit) or it is going to explore, and how. Then, if it chooses

to explore, it either explores the solutions space by perform-

ing a tournament selection or mutation of the best solution,

creating a new candidate by crossover. If it chooses to exploit

the current best solution, the process is completed by encir-

cling in a spiral shaped curve the best solution.

Algorithm 1. Whale Optimization Algorithm

leaderScore ¼ 1
candidates ¼ randomðsearchagents; featuresÞ
while leaderScore < threshold doanditerations < maxIterations
do

for all candidates do
Update a; A; C; l; p following [14]
if p > 0:5 then

if Aj j > 1 then
Xrand ( tournament selection
RA ( mutateðXrandÞ
RE ( mutateðcandidateÞ
candidateLeftarrowcrossoverðRA;REÞ

else
D ( mutateðleaderPositionÞ
candidate ( crossoverðD; candidateÞ

end if
else

Encircle LeaderPosition using Eq: (2)
end if

end for
for all candidates do
if fitnessðcandidateÞ < leaderScore then

leaderScore ( fitnessðcandidateÞ
leaderPosition ( candidate

end if
end for
iterations ( iterationsþ 1

end while

For the classifier, SVM is considered. Prior to any computa-

tion a grid search is performed to find the best parameters for

each database, and only for the case without additional noise

(called ‘‘clean” case) as we intend to show the effects of noise

on classification accuracy. The search space includes the

kernel function used, among the four implemented ones in

Python scikit library (linear, poly, rbf, and sigmoid) as well

as their specific parameters.

Given the database sizes, one single run of WOA algorithm

could yield a feature set fitted to the training set and the ini-

tial random conditions used for that particular run, reaching

a local optimal point not suitable for most work settings, thus

the need of multiple runs in order to generalize performance.

Stratified shuffle and split was performed, all the selected fea-

ture sets were collected, and the most repeated features were

compiled as the optimal feature set for each database and

condition.

3. Results

Experiments were carried out to check the performance and

robustness of different detection systems for two databases

of voice disorders: nodules and Reinke’s edema. This section

describes the experimental setting and the main results

obtained.

3.1. Experimental setting

The experiments consisted of two steps: first, classification

systems were built minimizing the number of features used

in each case (each database and each disease); then, those

features were used to classify the same subjects from the

databases they were created from, with and without added

noise in the voice recordings, under a stratified repeated ran-

dom subsampling validation framework.

As there are two heterogeneous databases to work with,

some previous steps were taken in order to ensure a reliable

results comparison. Most of them, concerning technical

recording characteristics like sampling rate or recording

length are summarized in Section 2.1. However, UEX-Voice

database consists in four recordings per participant in the

experiment. In this case, considered features were extracted

for each recording, and mean value for each one was used

in the following experiments.

In order to minimize the feature set, for each voice data-

base (without artificially-added noise) the collection of results

was obtained as follows. 640 instances of the WOA algorithm

were launched, each one consisting of 640 whales, and amax-

imum of 25000 iterations to find the optimum features set.

Preliminary studies were carried out to get values for a and

b that both yield good accuracy and low feature set size.

The values chosen for this specific problem were

a ¼ 0:99;b ¼ 0:01. The execution provided 640 different sets,

represented by binary vectors of length 35, where 1 represents

the presence of a feature, and 0 the absence of the feature in

the set. By adding all the vectors as if they were natural vec-

tors we end up with a total appearances vector.

The most useful features were used to train a set of classi-

fiers, one set per disease, using an increasing number of fea-

tures. They were incrementally added in the most repeated
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order obtained by the WOA algorithm, and classifier perfor-

mance was computed until no improvement was found for

at least three feature additions. At this point, the feature set

yielding the local maximum was chosen, so it was possible

to check the evolution of the classifier F1 score with respect

to the number of features used. Validation of results was per-

formed by stratified repeated random subsampling, by repeat-

ing this procedure 1000 times and averaging the results.

Training and test sets were selected using a stratified shuffle

and split schema, so in each repetition the ratio of healthy

and pathological individuals remained constant and identical

to the ratio present for the database and disease being consid-

ered in each experiment. 2/3 of randomly chosen subjects

from the database were used as training set and 1/3 as testing

set.

In order to check the robustness of these systems, two dif-

ferent sources of additive noise were used: artificially gener-

ated Gaussian white noise and an actual recording of noise

taken inside HSPdA. Two different scenarios were considered

within each case: taking a random sample within noise

recording by randomly selecting a starting point from the

noise vector for every single voice recording in each database,

and adding both noise sample and voice recording, what

inherently introduces more variability in the process; and tak-

ing a random sample by randomly selecting a starting point

within the noise vector and adding this unique sample to

every recording in the database.

This processwas repeated fromasignal tonoisepower ratio

(SNR) ranging from0 dB to 30 dB in steps of 6 dB. Since theUEX-

Voicedatabaserecordingconditionsareknown,wecanassume

that the noise level present in the recording session is propor-

tional to the value provided in Section 2.2, although we have

nomeanstoquantify thevoicesignalpower.Ontheotherhand,

weareconsidering that theMEEIdatabasewas recorded insuch

good acoustical and technical conditions that the noise con-

tained in the recordings is negligible, and as such will not alter

significantly the induced SNR. For each SNR level considered,

thesametrainingandtestsets foreachrunof theclassifierwere

considered, so we can avoid the variability that random sets

would induce in the different classifiers, so differences in the

results obtained are a consequence only of the induced noise

in each case.

3.2. Experimental results

The next subsections summarize the results obtained for

each disease, once applied the different levels of noise and

trained the set of classifiers. For each database and disease,

four experiments were considered, which relate to a particu-

lar combination of noise nature (white synthetic noise, or

actual recorded noise) and randomness (same noise clip

added to every sample in the database, or one randomly gen-

erated or selected clip per sample).

We have used confusion matrix analytics to measure the

performance of the final classifiers. True positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN)

were computed for each iteration, and accuracy, precision,

recall, and F1 score (Eqs. (3)–(6)) were derived from them,

and were later averaged:

accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

; ð3Þ

precision ¼ TP
TPþ FP

; ð4Þ

recall ¼ TP
TPþ FN

; ð5Þ

F1 score ¼2 � precision � recall
precisionþ recall

: ð6Þ

In each of the four plots in Figs. 3–6, the X-axis shows

which features have been selected and, as we move to the

right, we add the features to the subset being considered, so

the curve represents at a given point the mean F1 score on

Y-axis, obtained after stratified repeated random subsampling

validation. The upper limit for the number of features has

been selected taking in consideration the shape of the clean

curve in each case as stated in Section 3.1.

Each plot shows seven curves, one obtained after training

the classifiers using the original recordings, no noise added,

called clean, and six graphs labeled after SNR levels ranging

from 0 dB to 30 dB in steps of 6 dB.

3.2.1. Nodules
Figs. 3, 4 and Tables 3, 4 show the mean F1 scores using an

increasing number of features for voices affected with nod-

ules in MEEI and UEX-Voice, respectively. In the case without

noise addition, the results show that the classification F1

scores decrease from 0.91 to 0.61 when moving from MEEI

database (Fig. 3)) to UEX-Voice database (Fig. 4). In this case,

the implemented procedure has allowed to identify a reduced

feature subset (4 or 5 features, depending on the database)

that allows to achieve a saturation behavior in the prediction

performance. In the case of UEX-Voice database, these fea-

tures are CPP and three MFCCs, that is, cepstral and spectral

features. For MEEI the most useful features resulted to be:

MFCC1, CPP, HURST, AGE, and MFSW, which is a mixture of

features based on linear and non-linear analysis, and the age.

F1 scores for MEEI database when adding 0 dB SNR noise

are not even computable as we can not compute precision

as well. This shows that the classifier marks every subject

as healthy: Eq. (4) shows that, if there are neither TP nor FP

(all the subjects classified as pathological), precision is not

computable; also, by Eq. (5), recall equals 0. Looking at recall,

which for binary classification shows the ability to detect

pathological voices, for MEEI database we get values over 0.9

only for SNRs above 24 dB, and even then precision does not

get over 0.9. In the case of UEX-Voice database F1 score, pre-

cision, and recall are lower, specially the latter.

The overall behavior results as expected, with higher SNR

levels yielding better results, closer to the clean samples clas-

sifications. However, that behavior varies as we change the

nature of the noise: Actual noise (subplots (a) and (b) in Figs. 3

and 4) tends to be less problematic when taking into consid-

eration a few features, staying closer to the clean samples

classifiers than synthetic noise (subplots (c) and (d) in Figs. 3

and 4).

3.2.2. Reinke’s edema
Figs. 5, 6 and Tables 5, 6 show the discrimination results

obtained in the case of Reinke’s edema. The comparison

between both databases in the case without additional noise
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allows to extract similar conclusions than in the case of nod-

ules. Again, the detection F1 score obtained with MEEI data-

base is higher than in the case of UEX-Voice (0.98 versus

0.83). The number of features needed to reach a saturation

behavior is 5 or 6, depending on the database. Cepstral and

spectral features play again a relevant role, however an

entropy feature is required in both feature subsets. In the case

of MEEI, shimmer is also selected.

In the presence of additive noise, the detection perfor-

mance decreases, and the impact is again higher in the case

Fig. 3 – Mean F1 scores using cumulative features for nodules disease, MEEI database. SNRs ranging from 0 dB to 30 dB in

steps of 6 dB. The features are: 1-MFCC1, 2-CPP, 3-HURST, 4-AGE, 5-MFSW. Noise characteristics: (a) realistic noise, fixed

sample, (b) realistic noise, random sample, (c) white noise, fixed sample, (d) white noise, random sample.

Fig. 4 – Mean F1 scores using cumulative features for nodules disease, UEX-Voice database. SNRs ranging from 0 dB to 30 dB

in steps of 6 dB. The features are: 1-CPP, 2-MFCC7, 3-MFCC3, 4-MFCC2. Noise characteristics: (a) realistic noise, fixed sample,

(b) realistic noise, random sample, (c) white noise, fixed sample, (d) white noise, random sample.
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of synthetic white Gaussian noise than in the case of realistic

noise. Also, as it happens in the experiment about nodules,

the effect of noise addition is more pronounced on UEX-

Voice database than in the case of MEEI.

F1 scores for MEEI database along with accuracy show that

the classifier is reliable for SNRs as low as 18 dB, where both

values reach over 0.9 in the case of realistic noise. For UEX-

Voice database, the minimum SNR to show acceptable perfor-

Fig. 5 – Mean F1 scores using cumulative features for Reinke’s edema, MEEI database. SNRs ranging from 0 dB to 30 dB in

steps of 6 dB. The features are: 1-MFCC1, 2-PERMUTATION, 3-Shimmer, 4-MFCC3, 5-CPP. Noise characteristics: (a) realistic

noise, fixed sample, (b) realistic noise, random sample, (c) white noise, fixed sample, (d) white noise, random sample.

Fig. 6 – Mean F1 scores using cumulative features for Reinke’s edema, UEX-Voice database. SNRs ranging from 0 dB to 30 dB in

steps of 6 dB. The features are: 1-MFCC7, 2-CPP, 3-MFCC2, 4-SHANNON, 5-MFCC10, 6-MFCC4. Noise characteristics: (a)

realistic noise, fixed sample, (b) realistic noise, random sample, (c) white noise, fixed sample, (d) white noise, random

sample.

d i a b e t e s r e s e a r c h a n d c l i n i c a l p r a c t i c e 4 1 ( 2 0 2 1 ) 1 0 3 9 –1 0 5 6 1049

CHAPTER 2: Madruga et al. (2021a) 2.3. RESULTS

20



mance is 24 dB, where F1 score drops from 0.83 to 0.71 and

accuracy, precision and recall score show a similar

degradation.

4. Discussion

The results involve two diseases, two different databases and

four kinds of noise. This allows to perform a comparative

analysis from different perspectives. In spite of the fact that

we have studied the effects of noise addition in the perfor-

mance of a classifier using F1 score as the reference metric,

most studies use accuracy as the main performance indicator

[9]. However, since we have also computed accuracy, and the

best results are obtained using all the features selected in

each case, we can compare our system performance with

prior research in the field.

Comparing clean case performance allows us to analyze

the differences from a database point of view, with MEEI data-

base the detection accuracies reach 0.95, while the systems

reach 0.71 for nodules and 0.84 for Reinke’s edema with

UEX-Voice database. This difference in performance between

MEEI and a database obtained in more realistic conditions is

in line with the scientific literature. Whereas most reported

detection accuracies for MEEI data are in excess of 0.9, in [8]

best accuracies of 0.784 and 0.762 were achieved after carry-

ing out voice pathology detection experiments using the

Hospital Universitario Prı́ncipe de Asturias database (HUPA)

and the Saarbrücken Voice Disorder database (SVD), respec-

tively. [43] computed accuracy, recall, and other metrics when

classifying recordings from MEEI (0.91–0.97 accuracy, 0.93–

0.98 recall) and HUPA databases (0.68–0.82 accuracy, 0.77–

0.85 recall). Moreover, [10] achieves 0.95/0.97 accuracy/recall

for MEEI database using spectral-cepstral features, while the

results with HUPA database using the same features only

reach 0.78/0.74.

Some studies have taken into consideration noise corrup-

tion. For example, [24] studies environmental noise and white

Gaussian noise effects on Parkinson’s disease detection using

a variety of vocal tasks including a phonation model based on

sustained vowels. Both disease and noise are not directly

comparable since Parkinson’s disease is a neurological dis-

ease and different diseases require different analysis tech-

niques which depend on the specific effects on voice [10].

Moreover, noise was recorded in 8 different scenarios. How-

ever, it shows that with clean training the accuracy for the

phonation model drops from about 0.7 to 0.5 when SNR is

equal to 0 dB, much like the results obtained here. Further-

more, some research has been made in order to alleviate

the effects of different recording conditions on disease detec-

tion performance [25].

Table 3 – Accuracy, precision, recall and, F1 score values computed for MEEI database, nodules disease, SNRs ranging from
0 dB to 30 dB in 6 dB steps, using 5 features: MFCC1, CPP, HURST, AGE, and MFSW.

Real fixed Real random White fixed White random

Clean Accuracy 0.95 0.95 0.95 0.95
Precision 0.88 0.88 0.88 0.88
Recall 0.95 0.95 0.95 0.95
F1 score 0.91 0.91 0.91 0.91

30 dB Accuracy 0.95 0.95 0.95 0.95
Precision 0.87 0.88 0.86 0.87
Recall 0.95 0.95 0.94 0.95
F1 score 0.91 0.91 0.90 0.90

24 dB Accuracy 0.95 0.94 0.94 0.94
Precision 0.86 0.85 0.85 0.86
Recall 0.94 0.92 0.91 0.91
F1 score 0.90 0.88 0.88 0.89

18 dB Accuracy 0.93 0.92 0.92 0.93
Precision 0.85 0.81 0.87 0.88
Recall 0.89 0.88 0.83 0.83
F1 score 0.87 0.85 0.85 0.85

12 dB Accuracy 0.88 0.87 0.88 0.88
Precision 0.84 0.83 0.91 0.90
Recall 0.68 0.64 0.59 0.58
F1 score 0.75 0.72 0.71 0.70

6 dB Accuracy 0.75 0.76 0.75 0.75
Precision 0.85 0.94 0.98 0.98
Recall 0.04 0.05 0.01 0.01
F1 score 0.07 0.10 0.01 0.02

0 dB Accuracy 0.74 0.74 0.74 0.74
Precision – – – –
Recall 0.00 0.00 0.00 0.00
F1 score – – – –
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On the other side, when noise is added with a low SNR,

MEEI database gets much higher results for all metrics than

UEX-Voice. Apart from the fact that MEEI database was col-

lected in a more controlled acoustic environment, some

authors have pointed out that this database contains no

lightly pathological speakers [29], and that the normal and

dysphonic voices present in the database are easily separable

[44], which makes the classification task easy.

Given the proportions of healthy and pathological samples

present in the databases, shown in Table 1, MEEI test set con-

tains roughly 70% of healthy patients whereas in UEX-Voice

50% of test samples are healthy. Those ratios match the accu-

racies obtained for the worst SNR ratios for all the classifiers

for both databases. Precision and recall values support the

fact that the classifier is unable to distinguish pathological

subjects and marks most of them as healthy. That explains

the differences in the lower accuracy levels shown between

Tables 3, 5 and 4, 6.

Considering the different kinds of noise it seems that real-

istic noise is less intrusive than white synthetic noise. This

trend is specially pronounced for UEX-Voice database. A pos-

sible explanation for this is that the spectral compositions of

both types of noise are different. White noise (Fig. 7a) is char-

acterized by an even spectral power density, thus all the fre-

quencies in the full bandwidth are interfered in the same

way. However, realistic noise coming from several sources in

the hospital environment concentrates most energy in a

lower part of the spectrum. A spectrogram of an example of

realistic noise segment is shown in Fig. 7b, where it is easy

to see the spectral contributions of the noise sources taken

in consideration, and how realistic noise most prominent fre-

quencies lie in the lower half of spectrum, and even consider-

ing that bandwidth, frequencies below 4 kHz stand out.

Regarding noise randomness, the variability introduced by

random noise sampling in all cases has little impact in the

overall capacity of the resulting classifiers. Although some

differences exist in the results, there is no consistency in

any advantage of fixed over random sampling or vice versa,

as we can see, for example, in Fig. 5, subplots (a) versus (b)

or Fig. 5, subplots (c) versus (d).

The comparative analysis of the results from a disease per-

spective is more challenging. Vocal fold nodules are smooth,

benign masses involving anterior or middle vocal folds and

located superficially to the free edge of the fold. Reinke’s

edema (also known as polypoid degeneration) is character-

ized by an accumulation of fluid, usually in both vocal folds

[45]. Since both pathologies share some histological charac-

teristics, [2] even proposed to use the term ‘‘exudative lesions

on the Reinke’s space” to refer to nodules, polyps, and Rein-

ke’s edema. These histological characteristics affect the vibra-

Table 4 – Accuracy, precision, recall and, F1 score values computed for UEX-Voice database, nodules disease, SNRs ranging
from 0 dB to 30 dB in 6 dB steps, using 4 features: CPP, MFCC7, MFCC3, and MFCC2.

Real fixed Real random White fixed White random

Clean Accuracy 0.71 0.71 0.71 0.71
Precision 0.74 0.74 0.74 0.74
Recall 0.52 0.52 0.52 0.52
F1 score 0.61 0.61 0.61 0.61

30 dB Accuracy 0.67 0.67 0.59 0.59
Precision 0.74 0.73 0.59 0.59
Recall 0.41 0.40 0.24 0.25
F1 score 0.53 0.52 0.34 0.35

24 dB Accuracy 0.64 0.63 0.53 0.53
Precision 0.70 0.68 0.43 0.43
Recall 0.33 0.32 0.14 0.14
F1 score 0.45 0.44 0.21 0.21

18 dB Accuracy 0.60 0.59 0.51 0.51
Precision 0.63 0.59 0.35 0.35
Recall 0.26 0.25 0.11 0.11
F1 score 0.37 0.36 0.16 0.16

12 dB Accuracy 0.55 0.54 0.51 0.50
Precision 0.48 0.45 0.32 0.32
Recall 0.16 0.17 0.10 0.10
F1 score 0.24 0.24 0.15 0.15

6 dB Accuracy 0.54 0.53 0.50 0.50
Precision 0.46 0.40 0.30 0.30
Recall 0.16 0.12 0.09 0.09
F1 score 0.24 0.19 0.14 0.14

0 dB Accuracy 0.54 0.53 0.49 0.49
Precision 0.43 0.41 0.28 0.27
Recall 0.11 0.12 0.08 0.08
F1 score 0.17 0.18 0.13 0.13
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tory patterns of the vocal folds (increase in mass of the folds,

reduction in the pliability of the overlying cover. . .), and may

produce some common perceptual consequences, such as

hoareseness and breathiness. Nevertheless, it can be

observed that Reinke’s edema is detected with higher accu-

racy and F1 score (0.99 and 0.98 respectively in the case of

MEEI; 0.84 and 0.83 respectively in the case of UEX-Voice) than

nodules (0.95 and 0.91 respectively in the case of MEEI; 0.71

and 0.61 respectively in the case of UEX-Voice), which may

be the consequence of its inflammatory character producing

a more severe impact on voice quality in comparison to a sim-

ple mass lesion.

The overall structure of the system is in line with most of

previous work, with the common steps of preprocessing, fea-

ture extraction, dimensionality reduction, machine learning

training, and system evaluation [5]. Regarding dimensionality

reduction, prior work in the field include techniques such

principal component analysis, linear discriminant analysis,

or minimum redundancy maximum relevance among others.

The four experimental settings have led to four different fea-

ture subsets. The composition of these feature subsets is

important as they may provide some clues not only on which

features are more important when building a new detection

system, but also which ones show a certain noise robustness.

Although the feature selection process is applied on the

original databases, without noise addition, UEX-Voice is

recorded in amore realistic acoustic environment, so it is pos-

sible to conclude that, if there are features that are selected

using both databases, they may have a reliable discrimination

potential across different databases under moderately con-

trolled acoustic conditions. This is the case of CPP andMFCCs.

They play a very important role, as CPP and at least one MFCC

have been selectedwithin the most useful features in the four

cases, to the point that for nodules disease in UEX-Voice data-

base all the selected features are MFCCs and CPP. Both share

the advantage that, unlike traditional acoustic measures such

as jitter or shimmer, they do not require a pitch estimation

which may be difficult due to the absence of periodicity in

severely dysphonic voices. This is in line with results

obtained by [28], where it is shown that advanced multi-

band cepstral analysis might be useful in disease detection

and even in disease discrimination, and [10] which shows

the ability of spectral-cepstral features to classify disphonic

voices based on a sustained vowel analysis.

The rest of selected features is heterogeneous among the

four studied cases: Non-linear analysis features are found in

Fig. 3 with HURSTand MFSW, but no other case shows nonlin-

ear features. Entropies make their appearance in both Rein-

ke’s edema cases, Figs. 5 and 6, with permutation and

Shannon entropies, but not in nodules cases. From the classi-

cal perturbation measurements only shimmer is selected for

MEEI Reinke’s edema case, but not for UEX-Voice. The reason

Table 5 – Accuracy, precision, recall and, F1 score values computed for MEEI database, Reinke’s edema disease, SNRs ranging
from 0 dB to 30 dB in 6 dB steps, using 5 features: MFCC1, PERMUTATION, Shimmer, MFCC3, and CPP.

Real fixed Real random White fixed White random

Clean Accuracy 0.99 0.99 0.99 0.99
Precision 1.00 1.00 1.00 1.00
Recall 0.96 0.96 0.96 0.96
F1 score 0.98 0.98 0.98 0.98

30 dB Accuracy 0.98 0.98 0.98 0.97
Precision 1.00 1.00 1.00 1.00
Recall 0.94 0.93 0.92 0.91
F1 score 0.97 0.96 0.96 0.96

24 dB Accuracy 0.98 0.97 0.93 0.94
Precision 1.00 1.00 1.00 1.00
Recall 0.93 0.91 0.80 0.81
F1 score 0.96 0.96 0.89 0.90

18 dB Accuracy 0.94 0.95 0.84 0.84
Precision 1.00 1.00 0.99 0.97
Recall 0.83 0.84 0.50 0.52
F1 score 0.91 0.91 0.66 0.67

12 dB Accuracy 0.84 0.81 0.81 0.82
Precision 1.00 1.00 1.00 1.00
Recall 0.50 0.41 0.39 0.43
F1 score 0.67 0.58 0.56 0.61

6 dB Accuracy 0.78 0.76 0.77 0.81
Precision 0.94 0.93 0.82 0.88
Recall 0.32 0.26 0.37 0.46
F1 score 0.47 0.41 0.51 0.60

0 dB Accuracy 0.69 0.69 0.71 0.69
Precision 0.87 0.72 0.88 0.77
Recall 0.03 0.03 0.12 0.06
F1 score 0.06 0.06 0.20 0.11
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might be that, as an amplitude perturbation measure, shim-

mer is very sensitive to noise, performing better in a more

controlled acoustic environment.

On the classifier side, we chose SVM for its simplicity and

execution speed since WOA feature selection is computation-

ally expensive. Many alternatives have been used, line Hidden

Markov Models, Gaussian Mixture Models, K-nearest neigh-

bors or decision trees to name a few of them [9]. Most of the

alternatives found in previous work uses that kind of algo-

rithms, although in recent years artificial neural networks

have gained popularity and we start to see studies using such

techniques.

Table 6 – Accuracy, precision, recall and, F1 score values computed for UEX-Voice database, Reinke’s edema disease, SNRs
ranging from 0 dB to 30 dB in 6 dB steps, using 6 features: MFCC7, CPP, MFCC2, SHANNON, MFCC10, and MFCC4.

Real fixed Real random White fixed White random

Clean Accuracy 0.84 0.84 0.84 0.84
Precision 0.84 0.84 0.84 0.84
Recall 0.83 0.83 0.83 0.83
F1 score 0.83 0.83 0.83 0.83

30 dB Accuracy 0.76 0.76 0.68 0.69
Precision 0.79 0.79 0.68 0.69
Recall 0.71 0.70 0.68 0.68
F1 score 0.75 0.74 0.68 0.69

24 dB Accuracy 0.71 0.71 0.55 0.55
Precision 0.72 0.71 0.55 0.55
Recall 0.70 0.70 0.57 0.57
F1 score 0.71 0.71 0.56 0.56

18 dB Accuracy 0.56 0.56 0.47 0.47
Precision 0.56 0.56 0.48 0.48
Recall 0.58 0.57 0.51 0.51
F1 score 0.57 0.57 0.49 0.49

12 dB Accuracy 0.48 0.48 0.47 0.47
Precision 0.48 0.48 0.47 0.47
Recall 0.51 0.51 0.52 0.52
F1 score 0.50 0.50 0.49 0.49

6 dB Accuracy 0.48 0.48 0.48 0.48
Precision 0.48 0.48 0.48 0.48
Recall 0.51 0.51 0.52 0.52
F1 score 0.50 0.50 0.50 0.50

0 dB Accuracy 0.47 0.47 0.48 0.48
Precision 0.47 0.47 0.48 0.48
Recall 0.47 0.49 0.49 0.49
F1 score 0.47 0.48 0.48 0.49

Fig. 7 – Spectrograms for white noise and an example of realistic noise segment from the hospital environment. Both noise

recordings were used on the same voice recording.
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Deep learning methods have seldom been used in this

specific application until recent times. [9] mentions artificial

neural networks but only shows multilayer perceptron, which

barely can be classified as a deep learning method. [46] pre-

sents 2 out of 45 studies using deep learning techniques,

which date from 2019. The most plausible reason is database

size. Looking at the numbers shown in Table 1, the number of

samples is very low, and a small multilayer neural network

comprises thousands of coefficients. DenseNet has been used

on cepstrum features [47] with good results although it cites

the low number of pathological samples as a limitation. Other

classical deep learning approaches like VGG16 and CaffeNet

have been used [48], with the particularity that those algo-

rithms are used for image recognition and classification. Con-

sequently, raw waveforms are feed into the network (in the

form of spectrograms) since it will infer features, and transfer

learning techniques (neural network partially trained with

examples from other fields) are used to overcome the long

training times and small dataset size limitations.

Research on robust pathology detectors has not been

addressed until recent times. [49] performs experiments

using four different databases, aiming at robustness against

different recording conditions, but does not focus on specific

differences between them. Little work has been done around

noise robustness in voice quality assessment, so thorough

comparisons can not be made, although this research is nec-

essary. For example, [20,47] point towards differences in

recording environment (e.g. background noise) as a limitation

for different studies results comparison. [50] points out the

difficulties to extrapolate the results obtained with different

databases due their recording differences. However, [21] pro-

poses a SNR level of 42 dB for perturbation measurements (jit-

ter and shimmer) to be reliable, and estimates 30 dB as the

lowest limit of SNR level for reliable usage of classifiers. This

seems to match the results for MEEI database in Figs. 3 and 5,

where the F1 score is almost identical for the clean and the

30 dB SNR cases, for all the numbers of features considered,

specially when realistic noise is added.

Considering the impact of noise can benefit other research

work focused on mobile health tools to detect vocal fold dis-

orders. There is currently a high interest in the development

of mobile-aided systems to manage a wide variety of diseases

and, in particular, disorders affecting voice [17–19]. A critical

aspect is to check if the approaches proposed for controlled

conditions are robust or have to be modified when used in

increasingly realistic environments.

5. Conclusion

The results of this paper highlight the importance of perform-

ing experiments on more realistic voice pathology databases,

alternative to MEEI, since the achievable prediction accuracies

are not expected to be comparable. The feature subsets

obtained by feature selection with MEEI and with a more real-

istic database collected in the scope of this work emphasize

the role of CPP and MFCCs as useful and robust features to

discriminate pathological from healthy voices.

Also, the degrading impact of additive noise on AVCA sys-

tems based on acoustic features for detection of nodules and

Reinke’s edema has been demonstrated and quantified.

Although the effect of real-world noise recorded in a clinical

environment has been shown to be lower than that of white

noise, the effect is sufficiently detrimental to motivate further

research into noise-robust prediction systems.

In the future, it will be interesting to increase UEX-Voice

database by including new organic pathologies. Also, explor-

ing new techniques in the field like deep learning and looking

for solutions to overcome the voice databases limitations are

of research interest.
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Background and objective
Automatic voice condition analysis systems to detect Parkinson’s disease (PD) are generally based
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performance of these approaches in a free-living scenario is unknown. The aim of this research
is to investigate the impact of uncontrolled conditions (realistic acoustic environment and lack of
supervision) on the performance of automatic PD detection systems based on speech.
Methods
A mobile-assisted voice condition analysis system is proposed to aid in the detection of PD using
speech. The system is based on a server–client architecture. In the server, feature extraction and
machine learning algorithms are designed and implemented to discriminate subjects with PD from
healthy ones. The Android app allows patients to submit phonations and physicians to check the
complete record of every patient. Six different machine learning classifiers are applied to compare
their performance on two different speech databases. One of them is an in-house database (UEX
database), collected under professional supervision by using the same Android-based smartphone
in the same room, whereas the other one is an age, sex and health-status balanced subset of mPower
study for PD, which provides real-world data. By applying identical methodology, single-database
experiments have been performed on each database, and also cross-database tests. Cross-validation
has been applied to assess generalization performance and hypothesis tests have been used to report
statistically significant differences.
Results
In the single-database experiments, a best accuracy rate of 0.92 (AUC = 0.98) has been obtained
on UEX database, while a considerably lower best accuracy rate of 0.71 (AUC = 0.76) has been
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performance degradation observed using data from mPower study, semi-controlled conditions are
encouraged, i.e., voices recorded at home by the patients themselves following a strict recording
protocol and control of the information about patients by the medical doctor at charge.
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Abstract 

Background and objective: Automatic voice condition analysis systems to detect 
Parkinson’s disease (PD) are generally based on speech data recorded under acousti‑
cally controlled conditions and professional supervision. The performance of these 
approaches in a free‑living scenario is unknown. The aim of this research is to investi‑
gate the impact of uncontrolled conditions (realistic acoustic environment and lack of 
supervision) on the performance of automatic PD detection systems based on speech.

Methods: A mobile‑assisted voice condition analysis system is proposed to aid in the 
detection of PD using speech. The system is based on a server–client architecture. In 
the server, feature extraction and machine learning algorithms are designed and imple‑
mented to discriminate subjects with PD from healthy ones. The Android app allows 
patients to submit phonations and physicians to check the complete record of every 
patient. Six different machine learning classifiers are applied to compare their perfor‑
mance on two different speech databases. One of them is an in‑house database (UEX 
database), collected under professional supervision by using the same Android‑based 
smartphone in the same room, whereas the other one is an age, sex and health‑status 
balanced subset of mPower study for PD, which provides real‑world data. By applying 
identical methodology, single‑database experiments have been performed on each 
database, and also cross‑database tests. Cross‑validation has been applied to assess 
generalization performance and hypothesis tests have been used to report statistically 
significant differences.

Results: In the single‑database experiments, a best accuracy rate of 0.92 (AUC = 0.98) 
has been obtained on UEX database, while a considerably lower best accuracy rate of 
0.71 (AUC = 0.76) has been achieved using the mPower‑based database. The cross‑
database tests provided very degraded accuracy metrics.

Conclusion: The results clearly show the potential of the proposed system as an aid 
for general practitioners to conduct triage or an additional tool for neurologists to 
perform diagnosis. However, due to the performance degradation observed using data 
from mPower study, semi‑controlled conditions are encouraged, i.e., voices recorded at 
home by the patients themselves following a strict recording protocol and control of 
the information about patients by the medical doctor at charge.
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Introduction
Parkinson’s disease (PD) is an up-to-now incurable neurodegenerative disorder that 
mainly, but not exclusively, affects the motor system. It is the most relevant neurodegen-
erative disorder after Alzheimer’s disease, but with a faster growth. The Global Burden 
of Disease study projects to reach 13 million people affected by PD in 2040 [10].

PD is typically diagnosed by a neurologist when certain motor symptoms become 
clinically evident, in particular when bradykinesia occurs along with rigidity or tremor. 
Early diagnosis is key to improve quality of life of people suffering from PD. However, in 
the European survey presented by Bloem and Stocchi [6], diagnosis time after the first 
symptoms’ onset was above 2 years in 11.8% of the patients. Misdiagnoses are also com-
mon and can be as high as 25% when the practitioners have limited clinical experience 
in PD [26]. The situation is critical in developing countries, where many patients remain 
undiagnosed [11]. Therefore, new tools seem necessary to obtain an early diagnosis.

Subjects with PD suffer from speech impairment [8]. This leads to consider automatic 
analysis of voice recordings as a potential tool to aid diagnosis. Different vocal tasks, 
focused on phonation, articulation, prosody, and cognitive–linguistic aspects have been 
used for the detection of PD through voice. The most used vocal task is the sustained 
phonation of the /a/ vowel due to its simplicity and ubiquity in different languages [30, 
46]. Previous works have used a wide variety of acoustic features extracted from this type 
of speech recordings. For example, perturbation measures (such as Jitter or Shimmer 
[50]), noise measures (for instance, the harmonic-to-noise ratio (HNR) [20]), spectral 
and cepstral features [37], and several features based on nonlinear analysis [50], among 
others.

Also, diadochokinesis test recordings studying articulatory tasks [28, 41], prosodic 
features extracted from reading texts and spontaneous speech [19, 53], and even com-
binations of different vocal tasks [43] have been proposed. An equally wide range of pro-
posals can be found regarding machine learning techniques. Commonly used classifiers 
that have been used for this application are: Random Forest, Neural Networks or Sup-
port Vector Machines, among others [18, 29, 38].

Those studies were carried out using speech recordings obtained using high-grade 
equipment like professional microphones and sound cards. Several feature datasets that 
have been extracted from recordings obtained with this type of equipment are publicly 
available [24, 30, 44]. Some authors have performed cross-database tests, which involve 
different microphones, environment, and even languages [35, 54], although always 
under controlled conditions. In this article, the term “controlled conditions” refers to the 
fact that there is professional supervision of the recordings and a certain control on the 
acoustic environment so that at least the noise level is low.

Systems built on recordings based on professional equipment are limited in the range 
of potential applications. Due to the ever-increasing penetration of smartphones, using 
these mobile devices would allow for extending the application of automatic PD detec-
tion through voice on a larger scale. The use of these devices to record phonations and 
build databases is an interesting strategy introduced in some recent studies. Almeida 
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et al. [1] proposed a comparison of two different datasets of sustained vowel phonations. 
These datasets have been obtained through simultaneous recordings by using a profes-
sional microphone and a smartphone. Afterwards, a common methodology, consist-
ing of preprocessing, feature extraction, and classification, was applied to both datasets 
comparing the results obtained in each case. In a similar way, Rusz et al. [42] simultane-
ously recorded different vocal tasks with a professional head-mounted condenser micro-
phone and a smartphone, comparing the results. The outcomes point in the direction 
that detection of speech abnormalities due to PD via a smartphone is possible.

As the use of mobile phones increases the scope of this research line, specialized app 
development is a natural step. Some reviews have been published on the existing and 
potentially useful apps for PD patients available in the leading app stores [23, 39]. How-
ever, they concluded that, despite the clear potential of this type of technology, further 
efforts and more improvements are needed for it to be effectively used in a real clini-
cal scenario. In line with this demand, a smartphone app frontend in conjunction with 
a computing server backend has been designed and implemented as a necessary step 
to build a mobile-assisted voice condition analysis system. The app allows patients to 
provide data and physicians to check the complete record of every patient. The system 
is completed with a machine learning approach to perform PD detection on the server 
side. This approach is built on top of a feature extraction process that includes some of 
the most relevant algorithms for PD detection, a recursive feature elimination selection 
process, and a classifier. To provide robust results cross-validations have been consid-
ered. Besides, approaches with six different classifiers have been implemented for com-
parison purposes. The system also allows its use with future implementations to aid also 
disease monitoring.

A critical aspect is to check the results obtained in increasingly realistic environments. 
The works previously mentioned were issued in a controlled environment and under 
supervision. More concretely, in Rusz et al. [42] the speech recordings were performed 
in a quiet room with an environmental noise level lower than 50 dB, and with a special-
ist who guided the participants through the recording protocol. In the case of Almeida 
et  al. [1], the recordings were taken in a sound-proof booth. However, there are also 
recent studies that use public repositories where participants send their voice recordings 
and complementary information (age, health status, sex, etc.) without any professional 
supervision. This is the case of mPower PD database [7]. Some previous contributions 
using this database show the results of applying different feature extraction and machine 
learning techniques to perform PD detection based on uncontrolled conditions, that is, 
unknown acoustic environment and without a professional control to make sure that 
the recordings strictly follow the protocol [48, 49, 55, 56]. These studies do not ensure 
age and sex balances in the mPower-based datasets they use. Age and sex balances are 
necessary to avoid potential biases in the results. Also, to the authors’ best knowledge, 
cross-database studies that use data obtained in a realistic environment have not been 
presented. Research that considered smartphone recordings has focused on datasets col-
lected either in controlled or uncontrolled conditions. However, both types of scenarios 
have not been jointly considered under the same methodology.

The research hypothesis is that the accuracy obtained by a mobile-assisted PD 
detection system based on voice tested on a controlled scenario (in terms of acoustic 
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environment and professional supervision) is degraded when the scenario is uncon-
trolled. The aim of this research work is to analyze the impact of uncontrolled acous-
tic environment and lack of professional supervision during the recordings avoiding 
the influence of the feature extraction and machine learning algorithms. This requires 
the application of exactly the same methodology on controlled and uncontrolled data-
bases and the realization of cross-database experiments, in which the training is per-
formed with one database and the test with the other one.

One of the databases is an in-house one (UEX database), collected with professional 
supervision in a controlled environment. It has been obtained from an experiment 
specifically conducted to help in the detection of PD. The second one is a subset of 
the public mPower database, collected in a realistic environment without professional 
control. This subset has been chosen to ensure age and sex balance as well as compa-
rable disease severity in relation to the in-house database. The concrete voice record-
ings from mPower study that we have used can be checked in the Appendix, which 
provides the health codes, unique identifiers provided by mPower. Both databases are 
also the same size. The comparison allows for evaluation of the performance degrada-
tion that might be expected when moving an automatic PD detection system from a 
controlled mobile scenario to an uncontrolled one. Also, cross-database tests are per-
formed to assess the generalizability of the results.

The novel contributions of this paper can be summarized as follows:

– Performance comparison of a speech-based PD detection approach on two differ-
ent databases created by using smartphones, one of them recorded under controlled 
conditions (quiet acoustic environment, professional supervision) and the other one 
collected without supervision in realistic environments (mPower-based database).

– Cross-database experiments involving the controlled database and the database 
recorded in realistic environments.

– Methodologically robust analysis based on the following considerations: balanced 
datasets regarding age and sex, comparable disease stage between datasets, identi-
cal methodology (preprocessing, feature extraction, feature selection and six clas-
sification algorithms) applied in all the experiments.

– Design and implementation of client–server system architecture: Android-based 
app and artificial intelligence engine, ready to perform further analysis in semi-
controlled clinical trials.

Results
Experimental settings

The methodology proposed in Section  is applied to the UEX and mPower-based data-
bases. A total of 100 iterations of stratified 5-fold  cross-validations have been used 
for the feature selection step. For hyperparameter optimization with grid search also 
a stratified 5-fold cross-validation has been issued. Finally, the classification process 
consists of 1000 iterations. In each one of them the set is randomly split in training 
and test subsets with a 75–25% ratio stratified by health status.
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Results for UEX database

Table  1 shows the evaluation metrics resulting from applying the machine learning 
approaches with the considered specifications to the UEX database.

Three out of six approaches (Passive Aggressive, Perceptron, and Support Vector 
Machine (SVM)) produced accuracy rates greater than 0.9, and Logistic Regression is 
close to this value. Random Forest and Gradient Boosting showed a downgrade in per-
formance with accuracy rates around 0.75. Sensitivity and specificity are used to ana-
lyze how balanced the system is by checking whether PD or healthy subjects are better 
detected. All of the approaches provided slightly larger sensitivities (right classifications 
for subjects suffering from PD) than specificities (right classifications for healthy peo-
ple). However, these differences are small and it can be concluded that all of them are 
reasonably well balanced.

Figure 1 shows mean receiver operating characteristic (ROC) curves (blue lines) with 
bands for ± 1 standard deviation (light gray area) for the six classifiers under considera-
tion. The ROC curve shows the trade-off between false-positive rate (FPR = 1-specific-
ity) in the x-axis and true-positive rate (TPR=sensitivity) in the y-axis. As performance 
is measured with the area under the curve (AUC) metric, ROC curves closer to the top-
left corner indicate a better performance.

Gradient Boosting ROC curve presented in Fig.  1a provides a relatively good AUC 
mean value of 0.8387 with a standard deviation of 0.0964. Given the shape of the curve 
the results are far from the optimal classifier (TPR = 1, FPR = 0), and the slow growth 
indicates that we should face a very high FPR for TPR higher than 0.7. Random Forest 
ROC in Fig. 1e shows a similar performance, with mean AUC = 0.8787, and the same 
problem of high FPR for TPR higher than 0.7. On the other side, Logistic Regression 
(Fig.  1b), Passive Aggressive (Fig.  1c), Perceptron (Fig.  1d) and SVM (Fig.  1f ) show a 
great AUC, well above 0.95 in every case, and a standard deviation that shows a perfect 
classifier for some of the cross-validation experiments performed. In these cases, the 
FPR/TPR trade-offs are much more beneficial, with FPR lower than 0.2 for TPR above 
0.9 in every case.

Table  2 presents the run times separated by feature selection, grid search and clas-
sification. The most time-consuming task for all six classifiers is feature selection, since 
a very exhaustive recursive feature elimination with cross-validation (RFECV) has been 
applied, followed by grid search. Finally, classification, applied here with cross-valida-
tion, is the least expensive task in terms of computational time. Gradient Boosting and 

Table 1 Evaluation metrics (mean ± standard deviation) obtained with the proposed procedure by 
using the UEX database

Accuracy rate Sensitivity Specificity AUC 

Gradient Boosting 0.7503 ± 0.0983 0.7683 ± 0.1486 0.7331 ± 0.1697 0.8387 ± 0.0964

Logistic Regression 0.8897 ± 0.0820 0.9007 ± 0.1145 0.8788 ± 0.1324 0.9627 ± 0.0522

Passive Aggressive 0.9205 ± 0.0723 0.9396 ± 0.1005 0.9018 ± 0.1108 0.9756 ± 0.0403

Perceptron 0.9083 ± 0.0781 0.9284 ± 0.1030 0.8881 ± 0.1232 0.9713 ± 0.0457

Random Forest 0.7631 ± 0.1024 0.7666 ± 0.1591 0.7605 ± 0.1486 0.8787 ± 0.0821

SVM 0.9148 ± 0.0853 0.9229 ± 0.1102 0.9076 ± 0.1229 0.9749 ± 0.0483
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Random Forest, which yield the lowest performance, also have the largest execution 
times. The rest of the classifiers have closer values, all of them with less than one minute 
for the total run time.

Fig. 1 ROC curves and AUC metric obtained with the proposed procedure by using the UEX database: a 
Gradient Boosting, b Logistic Regression, c Passive Aggressive, d Perceptron, e Random forest, f Support 
Vector Machine
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Table  3 summarizes the results from the feature selection process, providing a 
global perspective about which features are the most relevant for each approach. 
Checking the number of times each feature has been selected, it can be determined 
that Lempel–Ziv complexity (LZ-2), Cepstral Peak Prominence (CPP), Period Density 
Entropy (RPDE), and 4th and 8th Mel Frequency Cepstral Coefficients (MFCC) are 
the most selected features. Specifically, the most chosen feature is LZ-2, which is the 
only one selected by all the approaches. Conventional features like Jitter, Shimmer 
or HNR are not very relevant. Gradient Boosting only selected three features, but it 
performs badly in accuracy metrics and run time results. The rest of the classifiers 
selected a similar number of features and chose the five most relevant ones (LZ-2, 
CPP, RPDE, MFCC4, and MFCC8).

In summary, the best result is obtained with the Passive Aggressive approach. It pro-
duces the largest accuracy rate (0.9205) and AUC (0.9756), with the lowest standard 
deviations (0.0723 and 0.0403, respectively). Besides, its computing time is low. SVM 
and Perceptron approaches are also very competitive in accuracy metrics and computing 
time. Any of these three approaches could be considered for the mobile-assisted system 
to detect PD.

Table 2 Run times in seconds for the different steps of the proposed procedure by using the UEX 
database

Feature selection Grid search Classification Total

Gradient Boosting 390.05 318.47 105.69 814.21

Logistic Regression 24.63 21.51 12.28 58.42

Passive Aggressive 23.43 11.97 12.21 47.61

Perceptron 22.17 7.58 12.37 42.13

Random Forest 938.81 286.77 155.31 1380.89

SVM 17.75 14.00 9.16 40.91

Table 3 Selected features for each classifier in the proposed procedure by using the UEX database
Gradient
Boos�ng

Logis�c
Regression

Passive
Aggressive

Perceptron Random
Forest

SVM Total

Sex 0
Ji�er 0

Shimmer 1
LZ-2 6
CPP 5
Hurst 0
MFS 2

Shannon 0
Permuta�on 0

PPE 2
FMMI 0
FZCF 0
GNE 0
ZCR 3
D2 4
HNR 2
RPDE 5

GQ prc5 95 0
GQ std cycle open 0
GQ std cycle closed 4

MFCC0 4
MFCC1 0
MFCC2 1
MFCC3 0
MFCC4 5
MFCC5 3
MFCC6 0
MFCC7 0
MFCC8 5
MFCC9 4
MFCC10 1
MFCC11 4
MFCC12 2
Total 3 12 13 12 11 12

Gradient
Boos�ng

Logis�c
Regression

Passive
Aggressive

Perceptron Random
Forest

SVM ToTT tal

Sex 0
Ji�er 0

Shimmer 1
LZ-2 6
CPP 5
Hurst 0
MFS 2

Shannon 0
Permuta�on 0

PPE 2
FMMI 0
FZCF 0
GNE 0
ZCR 3
D2 4
HNR 2
RPDE 5

GQ prc5 95 0
GQ std cycle open 0
GQ std cycle closed 4

MFCC0 4
MFCC1 0
MFCC2 1
MFCC3 0
MFCC4 5
MFCC5 3
MFCC6 0
MFCC7 0
MFCC8 5
MFCC9 4
MFCC10 1
MFCC11 4
MFCC12 2
ToTT tal 3 12 13 12 11 12
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Results for mPower‑based database

The same experimental settings and methodology applied to UEX database is 
applied to this matched database based on mPower study. Table 4 presents the accu-
racy metrics. T-tests reported statistically significant differences ( p-values < 0.001 ) 
for comparisons of each accuracy metric and method between UEX database and 
mPower-based database.

Accuracy rates are much lower than in the case of UEX database, ranging from 
0.6167 to 0.7138. The best approach is based on Gradient Boosting classifier. This 
means that the accuracy rates have been degraded for all the approaches. In percent-
age terms, the reductions with respect to UEX database range from 4.9% to 33.0%. 
Analogously, sensitivities and specificities are also degraded, with reductions ranging 
from 3.4% to 35.1%, and from 6.3% to 30.7%, respectively. Sensitivities and specifici-
ties are close for most of the approaches when applied to mPower dataset.

Figure  2 shows the ROC curves (blue lines) with bands for ± standard deviation 
(light gray area). Superiority of the ROC curves in Fig.  1 with respect to Fig.  2 can 
be seen at a glance. Following the AUC criterion, the best approach is also Gradient 
Boosting, but its AUC value is only 0.7449. In fact, the AUC values range from 0.6923 
to 0.7560, which means reductions of AUC between 9.9% and 28.9% with respect to 
the UEX database. Every classifier but Gradient Boosting (Fig. 2a) produces an AUC 
under 0.75, though the latter slightly exceeds that value, making it the best option. In 
every case, the trade-off between FPR and TPR is quite low. It is worth noting that 
the curve does not reach TPR = 1 in any case, no matter the threshold. Also, Passive 
Aggressive and Perceptron (Fig. 2c and d) are near random classification, given that 
standard deviation shows that, in the worst cases, AUC stays as low as 0.5.

It is remarkable that the standard deviations of the metrics are greater in the case of 
mPower-based database in spite of the fact that the mean values are lower than those 
of the UEX database. This means that the approaches provide more dispersed values 
with mPower-based dataset, and therefore the results obtained with UEX dataset are 
more robust.

With respect to the computing time, the results match those obtained with UEX 
database. Table  5 shows the computing times separated by tasks. There are two 
approaches, Gradient Boosting and Random Forest, that have large computing times. 
The other four approaches keep their execution time below one minute for the whole 
process.

Table 4 Evaluation metrics (mean ± standard deviation) obtained with the proposed procedure by 
using the mPower‑based database

Accuracy Sensitivity Specificity AUC 

Gradient Boosting 0.7138 ± 0.1051 0.7419 ± 0.1712 0.6868 ± 0.1665 0.7560 ± 0.1147

Logistic Regression 0.6523 ± 0.1101 0.6530 ± 0.1961 0.6525 ± 0.1910 0.7330 ± 0.1258

Passive Aggressive 0.6167 ± 0.1167 0.6096 ± 0.2168 0.6247 ± 0.2141 0.6935 ± 0.1349

Perceptron 0.6245 ± 0.1179 0.6334 ± 0.2211 0.6164 ± 0.2150 0.6923 ± 0.1411

Random Forest 0.6957 ± 0.1048 0.7123 ± 0.1659 0.6823 ± 0.1664 0.7475 ± 0.1110

SVM 0.6562 ± 0.1122 0.6476 ± 0.2047 0.6657 ± 0.1879 0.7437 ± 0.1240
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Finally, it is remarkable that the feature selection processes have provided differ-
ent results than those of UEX database. Table  6 shows the selected features for each 
approach. Sex, Shimmer, MultiFractal Spectrum Width (MFSW), Glottal Quotients 

Fig. 2 ROC curves and AUC metric obtained with the proposed procedure by using the mPower‑based 
database: a Gradient Boosting, b Logistic Regression, c Passive Aggressive, d Perceptron, e Random forest, f 
Support Vector Machine
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(GQ prc5-95 and GQ std cycle open), and MFCC6 have been the most selected features, 
being Shimmer selected by all the approaches. MFCCs have also been selected with UEX 
database. The number of selected features range from 7 to 10.

Cross‑database tests

In this type of experiments, we use the selected features and hyperparameter val-
ues obtained in a single-database experiment and test the performance on the other 
database.

Table  7 shows the results obtained when the selected features and hyperparameter 
values obtained from UEX database are applied on mPower-based database. It can be 
observed that the detection capability has been lost, with a result close to random clas-
sification. Specifically, the degradation can be quantified with a reduction percentage 
with respect to the results obtained with the UEX database in 27.7–45.5% for accuracy, 
31.0–49.9% for sensitivity, 30.0–43.1% for specificity, and in 33.7–48.4% for AUC. This 
indicates that it is not recommendable to train the system with a controlled database if it 
is going to be applied on an uncontrolled scenario.

The results obtained using the reverse procedure are shown in Table 8. In this case, 
the selected features and hyperparameter values are obtained from the mPower-based 

Table 5 Run times in seconds for the different steps of the proposed procedure by using the 
mPower‑based database

Feature selection Grid search Classification Total

Gradient Boosting 392.43 379.88 24.64 796.95

Logistic Regression 19.22 15.81 9.58 44.60

Passive Aggressive 18.27 8.82 8.99 36.09

Perceptron 17.08 5.48 9.62 32.18

Random Forest 939.55 281.49 82.51 1303.55

SVM 18.61 13.59 9.21 41.42

Table 6 Selected features for each classifier in the proposed procedure by using the mPower‑based 
database

Gradient
B oos�ng

Logis�c Re-
gression

Passive Ag-
gressive

Perceptron Random Forest SVM Total

Sex 4
Ji�er 0

Shimmer 6
LZ-2 0
CPP 0
Hurst 0
MFS 4

Shannon 2
Permuta�on 0

PPE 0
FMMI 0
FZCF 0
GNE 1
ZCR 0
D2 1
HNR 0
RPDE 2

GQ prc5 95 4
GQ std cycle open 5
GQ std cycle closed 2

MFCC0 2
MFCC1 0
MFCC2 2
MFCC3 1
MFCC4 0
MFCC5 3
MFCC6 5
MFCC7 1
MFCC8 2
MFCC9 0
MFCC10 0
MFCC11 0
MFCC12 0
Total 8 7 7 7 10 7

Gradient
B oos�ng

Logis�c Re-
gression

Passive Ag-
gressive

Perceptron Random Forest SVM ToTT tal

Sex 4
Ji�er 0

Shimmer 6
LZ-2 0
CPP 0
Hurst 0
MFS 4

Shannon 2
Permuta�on 0

PPE 0
FMMI 0
FZCF 0
GNE 1
ZCR 0
D2 1
HNR 0
RPDE 2

GQ prc5 95 4
GQ std cycle open 5
GQ std cycle closed 2

MFCC0 2
MFCC1 0
MFCC2 2
MFCC3 1
MFCC4 0
MFCC5 3
MFCC6 5
MFCC7 1
MFCC8 2
MFCC9 0
MFCC10 0
MFCC11 0
MFCC12 0
ToTT tal 8 7 7 7 10 7
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database and tested on UEX database. Now, the reduction percentage with respect to 
the results obtained with the mPower-based database are in 7.7–13.6% for accuracy, 
5.7–11.6% for sensitivity, 6.3–24.2% for specificity, and 8.3–21.5% for AUC. In spite of 
the low performance, the results are better than in the previous experiment. This indi-
cates that system robustness is increased when a variety of acoustic conditions is used 
to determine the feature set and hyperparameter values, and they are applied to voice 
recordings fulfilling a very strict recording protocol.

Discussion
In this study, we have proposed a methodology to discriminate PD patients from healthy 
subjects based on sustained phonations of /a/ vowel recorded by a smartphone. We 
applied feature extraction, data standardization, feature selection, hyperparameter opti-
mization, and six different classification techniques. The results obtained when applying 
this methodology to recordings obtained under controlled conditions (protocol super-
vised by specialized staff, same recording room and same smartphone) have been pre-
sented first.

Under these controlled conditions, the procedure has allowed to identify a set of fea-
tures that provide good performance using accuracy, sensitivity, specificity and AUC 
metrics. The results demonstrate the relevance of LZ-2 and RPDE. The high ability for 
PD discrimination of these and other features based on nonlinear dynamics has been 
noted by other authors (see e.g., Orozco-Arroyave et al. [36]). It is also remarkable the 
role played by CPP which, as opposed to classic features such as Jitter, can be robustly 
extracted even from strongly aperiodic signals like those obtained from PD patients 
with a severely affected voice. It is also known the huge potential of MFCCs for different 

Table 7 Evaluation metrics (mean ± standard deviation) obtained by selecting features and 
hyperparameter values from UEX database and testing the performance on mPower‑based database

Accuracy Sensitivity Specificity AUC 

Gradient Boosting 0.5234 ± 0.1139 0.5358 ± 0.1827 0.5131 ± 0.1912 0.5377 ± 0.1294

Logistic Regression 0.5380 ± 0.1233 0.5376 ± 0.2024 0.5393 ± 0.2036 0.5569 ± 0.1495

Passive Aggressive 0.5021 ± 0.1243 0.4706 ± 0.2092 0.5357 ± 0.2130 0.5036 ± 0.1548

Perceptron 0.5289 ± 0.1205 0.5267 ± 0.2019 0.5334 ± 0.2027 0.5522 ± 0.1452

Random Forest 0.5519 ± 0.1245 0.5286 ± 0.1956 0.5818 ± 0.1980 0.5822 ± 0.1474

SVM 0.5230 ± 0.1209 0.5308 ± 0.2023 0.5166 ± 0.2025 0.5442 ± 0.1432

Table 8 Evaluation metrics (mean ± standard deviation) obtained by selecting features and 
hyperparameter values from mPower‑based database and testing the performance on UEX database

Accuracy Sensitivity Specificity AUC 

Gradient Boosting 0.6165 ± 0.1046 0.6260 ± 0.1786 0.6089 ± 0.1736 0.6664 ± 0.1216

Logistic Regression 0.6022 ± 0.1175 0.5940 ± 0.2138 0.6114 ± 0.1985 0.6495 ± 0.1426

Passive Aggressive 0.5302 ± 0.1262 0.5877 ± 0.2529 0.4738 ± 0.2426 0.5446 ± 0.1625

Perceptron 0.5877 ± 0.1258 0.5925 ± 0.2219 0.5849 ± 0.2142 0.6322 ± 0.1539

Random Forest 0.6421 ± 0.1003 0.6717 ± 0.1749 0.6152 ± 0.1664 0.6851 ± 0.1216

SVM 0.6053 ± 0.1142 0.6033 ± 0.2062 0.6074 ± 0.2024 0.6511 ± 0.1416
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classification applications based on speech. They have been previously used for PD 
detection by Sakar et  al. [45]. MFCCs allow for capturing differences in the resonant 
characteristics of the vocal tract. It has been reported that patients with PD present an 
asymmetric centralization of tongue position during the phonation of vowels, which 
produces a decrease in the vowel space area in comparison to healthy speakers [2]. This 
can explain the high number of MFCCs present in the subsets of selected features that 
result from our study.

With UEX database, the best results have been achieved using Passive Aggressive clas-
sifier: 0.9205 in accuracy rate, 0.9396 in sensitivity, 0.9018 in specificity, and 0.9756 in 
AUC. Placing these results in the context of the literature is a complex task since a real 
comparison of methodologies would require working on the same databases, or at least 
on databases with comparable disease stages which also ensure age and sex balance. To 
the authors’ best knowledge the published scientific work does not allow for a compari-
son that fulfills these three requirements. However, in the next paragraphs we provide 
a rough overview of the performance obtained using professional microphones and 
smartphones.

In the case of professional microphones, in a recent work, Solana-Lavalle et  al. [46] 
compare their accuracy rate (0.94) with other scientific works presenting values between 
0.85 and 1. In the case of databases based on smartphone recordings, Almeida et al. [1] 
use sustained vowel recordings and a similar methodology than ours: feature extrac-
tion and classification process with 2/3 training and 1/3 test ratio for cross-validation. 
They achieve 0.9294 of accuracy rate and 0.9240 of AUC by using 1-nearest neighbor 
classifier with smartphone recordings. The health status of PD patients was evaluated 
at stages 1 to 2.5 according to HY (Hoehn and Yahr) scale. The experimental design was 
not age-balanced, since the mean age of PD patients was 61.5 years, while the mean age 
of healthy subjects was 41.8 years. Rusz et al. [42] recorded different vocal tasks includ-
ing sustained vowels with a professional microphone and a smartphone. The experiment 
was well balanced in terms of age and sex. The mean HY stage was 2.1 (0.4) in compari-
son to 2.7 (0.53) in this study. Their methodology is based on the extraction of 6 acous-
tic features and the use of Logistic Regression with Leave-One-Out cross-validation for 
classification. They achieved an AUC of 0.85 for smartphones. Zhang [57] proposed a 
smartphone-based PD detection service by using a deep learning methodology based on 
stacked autoencoders and K-Nearest-Neighbor classifier achieving a maximum accuracy 
value of 0.9881. However, this can not be considered a complete smartphone-based sys-
tem since their experimental results were not obtained from recordings made by mobile 
phones. Instead, they used already extracted features from publicly available datasets.

Once the potential of our methodology to perform automatic detection of PD has 
been proved on a controlled scenario, the next step is applying the same techniques in 
an uncontrolled one, therefore, we considered mPower database [7]. It must be pointed 
out that this database has been massively collected. As a consequence, it contains some 
faulty recordings that would not pass a simple playback quality check performed by the 
majority of the users if they were immersed in a real clinical scenario. Also, it includes 
some inconsistencies in diagnosis, having recordings from the same subject labeled as 
PD affected and healthy. In order to issue a valid comparison with it, a previous work 
has been done to select recordings from the database which provided a balanced set by 
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sex, age, and disease stage. The results show a best accuracy rate of 0.7138 with sensitiv-
ity of 0.7419, specificity of 0.6868 and AUC of 0.7560 for Gradient Boosting versus a 
best accuracy rate of 0.9205 with sensitivity of 0.9396, specificity of 0.9018 and AUC of 
0.9756 for Passive Aggressive with the UEX database. This has provided statistically sig-
nificant differences for the four accuracy metrics ( p-values < 0.001 ). This shows a clear 
degradation in the accuracy performance in comparison to UEX database that is not 
only reported for the best methods, but for all ones. In this case, using mPower-based 
database produces a performance degradation of 22.5% for accuracy rate, 21% for sensi-
tivity, 23.8% for specificity and 22.5% for AUC.

The aforementioned difficulties arise again when these results are intended to be 
placed in the context of the scientific literature, because previous works based on 
mPower database do not use exactly the same subset of recordings. Since the database 
has been massively collected, experiments based on large cohorts have been performed. 
For example, with a subset of mPower database consisting of 2222 phonation recordings, 
933 PD patients and 1289 healthy subjects, Giuliano et al. [14] obtained AUC values over 
0.82 in the discrimination of PD subjects from healthy ones. Their methodology was 
based on Neural Networks and Logistic Regression models. Wroge et al. [55] reached a 
maximum accuracy rate of 0.86 by using Minimum Redundancy Maximum Relevance 
for feature selection and Gradient Boosted Decision Tree for classification, with a total 
of 5826 voice recordings. Tougui et al. [48] achieved an accuracy rate of 0.9578 by using 
Least Absolute Shrinkage and Selection Operator feature selector, hyperparameter tun-
ing, and Extreme Gradient Boosting classifier with 18210 recordings (9105 PD patients 
and 9105 healthy subjects). In these works based on large cohorts, sex and age balances 
between PD and healthy groups are not ensured in the experiments.

The application of an identical methodology to both databases has allowed for check-
ing the differences that can be expected when moving from a controlled scenario to an 
uncontrolled one. As previously mentioned, a clear degradation in the detection perfor-
mance can be noted, but there are also differences concerning the selected features and 
the best classifier. In terms of selected features, with the exception of Gradient Boost-
ing, the results obtained with UEX database show a good stability when varying the 
classification method. A similar conclusion regarding stability across classifiers can be 
extracted from the results obtained on mPower-based database, which means that the 
database plays a more important role than the classification method. On mPower-based 
database the most relevant features are: Sex, Shimmer, MFSW, GQ std cycle open, GQ 
prc5 95 and MFCC6. Although the features are different for each database, we can iden-
tify some common aspects. For example, if we consider the most repeated features, in 
both cases the role is shared by features that are able to capture source-related irregu-
larities considering the classical source-filter theory of speech production (CPP in the 
case of UEX database, GQ std cycle open and GQ prc5 95 in the case of mPower-based 
database), resonance-related features (MFCCs) and features based on nonlinear analysis 
(LZ2 and RPDE in the case of UEx database and MFSW in the case of mPower-based 
database).

A limitation of our work is the size of the databases. The reason is the difficulty in 
recruiting people suffering from PD in the case of the controlled database (UEX data-
base). Nevertheless, 60 people (30 with PD and 30 healthy controls) is a reasonable size 
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compared to other studies in the scientific literature. For example, in Benba et al. [4] the 
number of participants is 40 (20 with PD and 20 healthy); in Little et al. [24], this num-
ber was 31 (23 with PD) and in Novotny’ et al. [34] the total number was 80 (40 with PD 
and 40 healthy).

Regarding computation time, the executions on both databases yield similar conclu-
sions in the comparison of classifiers. In a real clinical application, the first two tasks 
will be only applied from time to time to improve the learning process, so that both the 
selected features and the searched hyperparameters will be used during a long time. Fur-
thermore, the third task, classification, is applied here with cross-validation, but in real 
time approaches it will be applied only to the new subject. For all these reasons, com-
putation time is not a critical issue. Anyway, even for model assessment purposes, the 
experiments have been performed in a very reduced time.

Due to the differences in the selected features found in the single-database experi-
ments, we have performed cross-database tests, in which the feature set obtained 
for each classifier with one database has been applied to the other one. Although we 
observe an important degradation in performance in both cases, the results are slightly 
better when feature selection is performed on mPower-based database and applied to 
UEX database than when using the reverse procedure. The wide variety of acoustic 
conditions available in mPower database due to the fact that the recordings were per-
formed by the participants themselves is considered a strength that could be exploited 
to achieve robustness. However, it must be taken into account that, since this database 
has been massively collected, some information provided by the participants may be 
incorrect and some voice recordings may be of bad quality, having an impact on the 
performance. Some research initiatives point out that personalized medicine and col-
laboration between patients and health professionals might provide a greater insight in 
disease impact by allowing patients to provide and self assess their condition outside 
clinical environment [22]. Therefore, a semi-controlled scenario appears as a very suit-
able option. This means that the participants would submit their audio files, recorded by 
following a strict recording protocol in a variety of acoustic conditions, but the clinical 
information is provided by the physicians. The proposed mobile-assisted system is con-
sidered a very useful tool to address this semi-controlled scenario.

Conclusion
Smartphones have a great potential to assist diagnosis and improve patient monitoring 
of many diseases. In the case of PD, smartphones allow for an easy collection of speech 
waveforms that can be used with clinical purposes. This can help general practitioners to 
conduct triage and neurologists or movement disorders specialists to perform diagnosis 
and tracking. In particular, PD management could be highly benefited by smartphone-
based systems, due to different aspects such as increasing incidence, diagnosis prone to 
errors, difficulty of tracking progression, and the fact that it mostly targets elderly peo-
ple, which in general have more difficulties to visit a hospital, among others.

We have designed and implemented a mobile-assisted voice condition analysis sys-
tem based on an Android app frontend in conjunction with a machine learning-based 
implementation hosted on a computing server backend. Although the machine learning 
approach is focused on a detection task, the app allows for monitoring PD progression.
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The most relevant novel contribution of our work is that we have applied identical 
methodology to an in-house smartphone-based database recorded under controlled 
conditions (in a quiet room with low noise level and with professional supervision of the 
recordings) and to a subset of mPower database (created by collecting data from free-liv-
ing scenarios). This comparison of results is performed within a methodologically robust 
framework ensuring age and sex balance and comparable disease stage. The results of 
this study show the potential of the proposed system under controlled conditions. The 
performance decreases when testing the methodology with the uncontrolled database 
and strongly drops in cross-database tests.

These results confirm the research hypothesis and suggest that semi-controlled scenar-
ios have high potential to be useful in real clinical applications. In these semi-controlled 
scenarios the relevant clinical information is provided by the physicians. Also, general 
practitioners (in the context of triage for diagnosis) or patient and caregivers (in a PD 
monitoring application...) should receive some initial training after which a test should 
be mandatory to ensure that the speech protocol is fully understood and that the user 
has some control on the acoustic environment regarding noise level. Within this frame-
work, recordings would be submitted via smartphone from different environments.

Future analyses should be performed on new datasets obtained in the described 
semi-controlled clinical scenarios. The proposed app is a very suitable tool for this task 
because it allows patients to submit phonations and physicians to check the complete 
record of every patient. In those semi-controlled conditions, also longitudinal studies 
would be interesting for PD tracking. This type of studies are difficult to perform because 
they require larger amounts of time. However, they would be very useful to achieve opti-
mal treatment of PD.

Methods
A mobile-assisted voice condition analysis system for PD detection is proposed. This 
system is built through the design and implementation of a mobile application that 
communicates with a server backend to collect and process voices recorded following a 
protocol. The system extracts acoustic features from the voice recordings and use them 
to feed machine learning approaches specifically designed for a PD detection task. An 
experiment has been conducted to test the proposed approaches. Also, the same archi-
tecture was used on a different database collected using smartphones and results are 
compared. In this section, the several parts that compose the system are described.

System architecture and mobile app design

Voice recordings are received and stored in a server where they can be accessed and 
processed. The server runs Windows 10 and the Windows Internet Information Services 
(IIS) functionality has been employed to host a web service written in PHP that manages 
a MySQL database. An Android app exchanges information with the server via an HTTP 
connection, using JavaScript Object Notation (JSON) format to organize it. Figure  3 
shows the system structure in a schematic way.

The Android application has two types of user accounts: patients and doctors. Every 
user needs to fill a registration form with the most relevant personal information, some 
of which will be used for the authentication. This form is slightly different for patient 
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and doctor accounts. The user receives a notification in the email account provided after 
the registration process. It is necessary to give permission for the use of personal data 
as part of a non-profit study. In the patient case, as part of the registration process, an 
informed consent document is requested to be signed by accepting participation in the 
mentioned study. Users can sign the document through the phone’s touch screen.

Once completely registered, users can employ their credentials (email and password) 
to access the functionalities allowed for the type of account created. On the one hand, 
patient accounts are able to record and send audio files following the given instruc-
tions. After each recording, the user can choose between three options: submit to the 
server, listen or discard and try again. On the other hand, doctor accounts can associ-
ate patients with their account to keep track of their cases. Only doctor accounts can 
access patient data, and only those linked to the doctor account. Figure 4 shows some 
screenshots extracted from the app: Fig. 4a shows the registration and login screen of 
the system; Fig. 4b shows the screen that allows to select the type of account (patient or 
physician) in the registration process; Fig. 4c presents the screen showing the instruc-
tions the patient should follow to perform the recordings; after that, three possibilities 
(listen, send, discard) are offered to the patient, as shown in Fig. 4d.

Participants

Two databases were used in the study. The first one was generated by the University of 
Extremadura with the collaboration of the Regional Association for Parkinson’s Disease 
of Extremadura (UEX database). A total of 60 participants with ages between 51 and 87 
years old were recruited, 30 of whom were affected by PD (PD subjects) and 30 were 
healthy. Patients suffering from PD were recruited among the voluntary members of 
the Regional Association for Parkinson’s Disease of Extremadura that meet the follow-
ing inclusion criteria: (1) have a definitive diagnosis of PD; (2) medical reports available. 
After the voluntary PD patients were recruited, then the healthy group was selected to 
approximately match sex and age. Healthy subjects were selected with the requirement 
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Fig. 3 System structure
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of neither having been diagnosed with PD nor having any symptom related to PD. Those 
not meeting the inclusion criteria were not eligible for participation. There were 24 men 
and 6 women in the PD group and 26 men and 4 women in the healthy group. The mean 
(standard deviation) of the age was 70.27 (9.54) for the PD group and 67.33 (8.57) for 
the healthy group. The mean time in years since diagnosis was 9.93 (6.16), and the mean 

Fig. 4 Screenshots obtained from the Android mobile application: a first screen, b types of accounts, c 
instructions, d recording process
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time in hours since the last medication dose was 2.21 (1.32). The mean HY stage was 2.6 
(0.4). The research protocol was approved by the Bioethics Committee of the University 
of Extremadura. All of them signed an informed consent.

The second database (mPower-based database) is a subset extracted from the mPower 
Public Researcher Portal, a mobile PD study [7]. The goal of this initiative is to collect 
information of patients suffering from PD. The objective is to describe more precisely 
the experience, habits, lifestyle, drawbacks, and interactions with medication of those 
patients. By using a mobile application, each volunteer records different aspects of the 
impairment caused by the disease and tracks their evolution. The study is open to any-
one who wants to participate, and the only requirement is having a personal iPhone for 
PD patients, and also not having been diagnosed for the control group subjects. These 
requirements are not checked.

The subjects selected to build the mPower-based database were matched with the ones 
from the UEX database by keeping exactly the same proportion of health status and sex, 
and approximately the same age, so the results can be compared. Specifically, the mean 
of the age was 68.36 (8.14) for the PD group and 65.23 (7.76) for the healthy group. The 
mean time in years since diagnosis was 7.83 (4.54), whereas the estimated mean HY 
stage was 2.7 (0.53). The mean time since the last medication dose was not available. The 
voice recordings were stored for posterior use. Table 9  shows the codes of these voice 
recordings extracted from mPower.

Recording task and equipment

The selected vocal task was sustained phonation of /a/ vowel due to several advantages, 
such as its wide spread use in the scientific literature; simplicity to realize by the partici-
pants, which avoids fatiguing them, especially in the case of patients with more advanced 
PD stages; ease of analysis and control; ubiquity in different languages; and the fact that 
it is unaffected by phonetic context or intonation [12].

The recording task for UEX database consists of performing three 5-seconds voice 
phonations, pronouncing the /a/ vowel in a continuous and uninterrupted way holding 
pitch and loudness as constant as possible.

Due to the biological variability, voice recordings from a particular subject result in 
similar but not identical waveforms. The consequence is that the features are also not 
identical when extracted from different recordings from the same individual. To obtain 
more stable predictors, it was decided to record three utterances per subject so that the 
feature values can be later averaged to produce an only feature vector per subject.

All the voice recordings were made using the same smartphone (model BQ Aquaris V) 
at a sample frequency of 44.1 kHz. The recordings were taken at the facilities of the 
Regional Association for Parkinson’s Disease of Extremadura (Spain), always in the 
same room, that was relatively quiet but did not have any special acoustical isolation. A 
specialized person was present to ensure that all the participants properly followed the 
voice recording protocol and registered the complementary information based on medi-
cal reports.

Voice recordings from mPower were performed on participants’ iPhones (4th genera-
tion or a more advanced version) or iPods (5th generation or newer) by using the /a/ 
vowel phonation protocol. A sample frequency of 44.1 kHz was used. Since participants 
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record themselves without supervision, this database includes a variety of acoustic envi-
ronments. They were also responsible to fill in the form including the complementary 
information, which makes the obtained data somehow unreliable.

Before applying feature extraction, all the recordings from both databases were 
trimmed down to one second discarding any leading or trailing silence. This length has 
been considered sufficient to extract speech features from sustained vowel phonations 
by other authors [40]. Voice recordings were edited using Audacity software (release 
2.0.5).

Feature extraction

The same feature extraction algorithms are applied to both databases. A total of 33 fea-
tures have been considered to measure different aspects related to speech production: 
Sex (male, female), Jitter, Shimmer [51], CPP [34], HNR, glottal-to-noise excitation 
ratio, zero crossing rate [3], 3 GQ features [45], MFCCs (13 features) [52], correlation 
dimension, RPDE, pitch period entropy [51], Hurst’s exponent, LZ-2 [36], permutation 
entropy, Shannon’s entropy, first minimum in mutual information [25], MFSW [17], first 
zero in correlation function [16]. The methods have been coded in Python.

Considering these feature extraction algorithms, 180 vectors (60 subjects × 3 audio 
recordings/subject) of 34 feature components (health status plus extracted features) 
were initially stored in a spreadsheet for UEX database. This spreadsheet was reduced 
to 60 vectors of 34 features by aggregating every 3 vectors corresponding to the same 
subject through a component-wise average. This ensures that each subject is represented 
by only one feature vector and no artificial increase of the dataset is considered. In the 
case of the mPower-based database, 60 vectors of 34 feature components were stored in 
another spreadsheet. These datasets were used to feed the machine learning approaches.

Statistical methods

Due to the amount of features, many of them measured in different scales, a preproc-
essing step is required. A standardization was applied based on the mean and standard 
deviation of each feature.

Several classifier methods have been considered to test their performance in this 
context. They cover a wide range of techniques commonly used in machine learning 
applications such as linear methods (Logistic Regression [33]), ensemble decision trees 
(Random Forest [9]), neural networks (Perceptron [31]), online learning (Passive Aggres-
sive [32]), additive models (Gradient Boosting [21]) and separating data models (SVM 
[13]).

In order to compare the performance of the procedure with each classifier, and based 
on the confusion matrix, the following metrics have been considered: accuracy, sensitiv-
ity, specificity, and AUC. Student’s t-test for independent samples were applied to report 
statistically significant differences between mean values of accuracy metrics. P-values 
smaller than 0.05 were considered statistically significant.

Figure 5 represents the whole procedure. After preprocessing, the machine learn-
ing approaches contain 3 steps: Feature selection, hyperparameter optimization, and 
classification process (steps 5, 6 and 7). The involved techniques have been coded in 
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Python based on the scikit-learn package [15]. Next paragraphs provide a detailed 
description of these three steps.

Feature selection Once having a standardized dataset, a feature selection process 
is applied. RFECV [27] is used to eliminate redundant features while keeping a good 
classification performance. The algorithm trains the chosen classifier and removes 
the feature with the weakest effect on the classification process, providing a feature 
top-ranked list based on the order of removal. It provides the optimal number of fea-
tures by selecting the top-ranked features of the mentioned ranking. The process is 
repeated several times in order to achieve a representative value. Since the number of 
optimal features can vary in each iteration, the result of each iteration is stored in a 
vector and the value of the first quartile after all iterations is chosen as the final num-
ber of selected features. A stratified k-fold cross-validation [5] is used in the RFECV 
algorithm, which consists in splitting the complete dataset in k groups but maintain-
ing the same ratio between PD subjects and healthy ones in each group.

Hyperparameter optimization Each classifier has its own parameters that can 
be adjusted, these are called hyperparameters. Once the most relevant features are 
known for the chosen classifier, a hyperparameter tuning has been issued in order 
to know which is the best configuration for the classifier. The method selected for 
this step is Grid Search [47]. It optimizes the chosen hyperparameters using stratified 
k-fold cross-validation again. Accuracy is calculated for each combination of classifier 
parameter values, selecting the set that provides the best result. These values are used 
in the classification process.

Classification process With the selected features and the optimal hyperparameter 
configuration for each classifier, a stratified cross-validation is issued. The dataset is 
randomly split into only a training and a test subset, maintaining the ratio between 
the number of PD and healthy subjects in each set. In order to maintain training and 
test sets independent from each other, the scaling is applied after this splitting with 
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Fig. 5 Methodology followed in the procedure
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respect to the training set values. With this splitted data, the classifier is fitted with 
the training data and after that, it makes a prediction of the PD-healthy state given 
the test subset. Finally, its predictions are compared with the correct labels. Based 
on this comparison, the considered metrics are extracted for each iteration. In order 
to obtain global results, this classification process is repeated several times and the 
resulting accuracy metrics are averaged after all iterations are finished.

At the end, for each approach, the following are available: the selected features, the 
optimal hyperparameter configuration, the averaged accuracy metrics, and run times.

Appendix: Codes of voice recordings from mPower
In this appendix, the codes of the voice recordings that have been considered from 
mPower database are presented in Table 9.

Table 9 Codes of considered voice recordings from mPower

Recording ID

Healthy PD

0f81a5ef‑14d4‑4a19‑9d89‑deabeb728adb 45155beb‑a91f‑4bca‑8296‑7612c6915af8

7c5a339d‑35ba‑48ec‑8447‑f51aec949a1e 955aa8c3‑9116‑43e7‑9e4b‑d1843be4839a

ebfb61fc‑c218‑4d3a‑a680‑eb3b4ce3b91d 4412716d‑e1b0‑4572‑b976‑8bcb7669925e

b3c61a60‑acff‑426b‑aaeb‑d8b6d4c31cb6 0ce23959‑8092‑47ce‑b394‑0f65c951a548

740240f3‑6752‑456b‑9f39‑6ede3afb3423 a86b7dee‑759d‑452c‑86b5‑4b6a248d7286

be0ecb7f‑95a2‑468a‑a12e‑2fb738c9b922 9e03615f‑1f52‑4a95‑94bf‑cc5805d0c3b8

18cd4553‑1c4f‑4f6d‑a622‑8951eb79e780 e2766ec9‑e97d‑4224‑81a8‑35b095ea9fd6

3accca87‑eaf1‑4219‑b0e0‑af29eb426093 22ad855e‑1c57‑4f9b‑bf67‑2a44f2a3ce41

f908e76b‑b4e1‑40b6‑86a5‑b4a0def0e6c0 7eac5187‑e241‑4f80‑b704‑0f91b8041dc6

75ad7180‑afb1‑49ea‑b766‑221106d32e02 0d1c8246‑8e42‑45e5‑b662‑91e26e6cb6d4

a3907344‑70e3‑410c‑a6ac‑3ae5e790d3ad 02ed9d30‑620f‑4c6c‑88ce‑64a286df79b9

393a367c‑9727‑4390‑96f8‑6a7a3c6e2797 90899edf‑a289‑4557‑aff9‑a168fd82a92e

6348a018‑d039‑4c38‑8920‑66ceba01c8e0 06e8ee83‑0e3a‑4575‑a7e4‑0c1c813376b6

2fabaecf‑423b‑4db1‑98e6‑54daf6844a2d 2b72e6d8‑9963‑4edd‑a8ca‑ae2d4262f640

8fa63734‑04cb‑4f15‑a954‑34db4d0c9d2e eb764994‑17ef‑4421‑b052‑9acbb0440a3b

15791b9e‑89c9‑421b‑be3c‑c3acf89bd167 a9b6687a‑c533‑410e‑8f87‑c319a969b98e
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A B S T R A C T   

Reinke's edema is one of the most prevalent laryngeal pathologies. Its detection can be addressed by using 
computer-aided diagnosis systems based on features extracted from speech recordings. When extracting acoustic 
features from different voice recordings of a particular subject at a concrete moment, imperfections in technology 
and the very biological variability result in values that are close, but they are not identical. This suggests that the 
within-subject variability must be properly addressed in the statistical methodology. Regularization-based 
regression approaches can be used to reduce the classification errors by favoring the best predictors and 
penalizing the worst ones. Three replication-based regularization approaches for variable selection and classi-
fication have been specifically designed and implemented to take into account the underlying within-subject 
variability. In order to illustrate the applicability of these approaches, an experiment has been specifically 
conducted to discriminate Reinke's edema patients (30 subjects) from healthy people (30 subjects) in a hospital 
environment. The features have been extracted from four phonations of the sustained vowel /a/ recorded for 
each subject, leading to a database that has fed the proposed machine learning approaches. The proposed 
replication-based approaches have been proved to be reliable in terms of selected features and predictive ability, 
leading to a stable accuracy rate of 0.89 under a cross-validation framework. Also, a comparison with traditional 
independence-based regularization methods reports a great variability of the latter in terms of selected features 
and accuracy metrics. Therefore, the proposed approaches contribute to fill a gap in the scientific literature on 
statistical approaches considering within-subject variability and can be used to build a robust expert system.   

1. Introduction 

Voice is the main communication tool that human beings have. 
Misuse or overuse of the vocal folds can damage the vocal function. 
Voice disorders may affect anyone, but they are especially relevant for 
voice professionals such as teachers, singers, actors, anchors, coaches, 
lawyers… Voice professionals are prone to suffer from organic voice 
disorders and, because of that, they need to avoid potential risks and, 
eventually, ask for medical care [41]. 

Reinke's edema is one of the most prevalent laryngeal pathologies 
[33]. It is the result of the gelatinous fluid accumulation in the Reinke's 
space, mainly due to vocal abuse and/or heavy tobacco use. It mainly 
affects women, causing progressive hoarse voice with a lower pitch, less 
vocal power and a tendency to fatigue in more intense cases [5]. Direct 
inspection of the larynx through laryngoscopy and videostroboscopy 

(specialized invasive equipment) and/or subjective listening tests to 
evaluate voice quality are two common diagnostic tools used by oto-
laryngologists [45]. 

In the last years, acoustic features extracted from voice recordings 
have been considered as a potential biomarker (non-invasive, fast, 
objective, and low cost) to assist in the diagnosis and tracking of voice- 
related diseases. Computer-Aided Diagnosis (CAD) systems have been 
built with this purpose, consisting of an acoustic feature extraction step 
followed by the use of machine learning algorithms. A perspective on 
automatic speech signal analysis for clinical diagnosis and assessment of 
speech disorders is provided by Baghai-Ravary and Beet [1] and Gómez- 
García et al. [13]. These systems have been developed for several dis-
eases affecting the voice such as, e.g., vocal fold nodules, vocal fold 
polyps, Reinke's edema, or even neurodegenerative disorders such as 
Parkinson's disease. 
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Contents lists available at ScienceDirect 

Artificial Intelligence In Medicine 

journal homepage: www.elsevier.com/locate/artmed 

https://doi.org/10.1016/j.artmed.2021.102162 
Received 15 February 2021; Received in revised form 21 August 2021; Accepted 31 August 2021   

CHAPTER 4: Naranjo et al. (2021a) 4.1. INTRODUCTION

60



Artificial Intelligence In Medicine 120 (2021) 102162

2

Diagnosis of Reinke's edema can be addressed by using CAD systems 
based on features extracted from speech recordings. Some authors have 
considered a mix of different pathologies, including Reinke's edema, to 
build a unique pathological class to discriminate diseased subjects from 
healthy ones [6,23,31,58]. Verde et al. [56] focused on Reinke's edema 
and their results were based on a personalized fundamental frequency 
estimation and no other acoustic feature was considered. Features based 
on nonlinear dynamics analysis have not been thoroughly used for 
Reinke's edema diagnosis in the scientific literature. Tavares et al. [51] 
combined entropy measures and cepstral analysis to discriminate 
healthy subjects from people suffering from Reinke's edema. Based on 
energy, zero-crossing rate and signal entropy, Silva Fonseca et al. [48] 
presented a speech disorder classification method that handles coexist-
ing pathologies (Reinke's edema and laryngitis) that share the main 
phonic symptom. Phonation of sustained vowels was used in the pre-
vious works because they constitute easy to produce tasks, involving 
vocal fold vibration [39]. 

MEEI database, commercialized by Kay Elemetrics, is one of the most 
used voice database for automatic diagnosis research and covers several 
voice pathologies, including Reinke's edema [34]. However, it suffers 
from some disadvantages: the recorded phonations have been performed 
with high quality equipment in an acoustically controlled environment, 
and normal and pathological voices were recorded in different locations. 
Besides, the voice recordings have been selected by experts, which 
allowed for obtaining the best examples of each disease [44]. This has 
provided high accuracies when applying machine learning methods, but 
the results are not transferable to realistic situations where the phona-
tions are recorded in medical centers or occupational health and safety 
services. 

Voice databases used for organic disease diagnosis are generally 
based on one single utterance per subject, i.e., acoustic features 
extracted from only one voice recording per subject. However, there 
exists variability between two or more voice recordings from the same 
subject at a particular time, so using only one utterance per subject may 
provide different results depending on the voice recording that has been 
selected. The imperfections in technology and the very biological vari-
ability result in values that are similar (but not identical) for recordings 
from a particular subject, rather than for recordings from different in-
dividuals. For Parkinson's disease diagnosis, many authors considered 
several replicated voice recordings for each subject, so a collection of 
related features based on consecutive voice recordings for each subject 
are used (see, e.g., Little et al. [29]). Although the existing variability 
among the extracted features from the several voice recordings of each 
subject has been recognized and the experimental design is based on the 
within-subject dependence of the recordings of each individual, tradi-
tional machine learning techniques based on independence have been 
usually applied to all the utterances as if they were independent 
[8,29,54]. This means that the considered experimental unit is the ut-
terance, and not the subject, so a voting system is used to decide if a 
subject is classified as healthy or having the disease by taking into ac-
count the larger number of utterances classified as healthy or diseased 
for each subject. This leads to an artificial increase of the sample size, a 
diffuse criterion to make decisions since one subject can have utterances 
classified as healthy and diseased, and the application of independence- 
based methods to dependent data. 

The replicated measurements must be treated with specifically 
designed methods that address the existing within-subject variability. 
Pérez et al. [43] developed a logistic regression-based classification 
approach that takes into account the underlying within-subject depen-
dence based on 6/7 utterances per subject. Later, Naranjo et al. [37] 
addressed this problem with a probit regression based on 3 utterances 
per subject, whereas Naranjo et al. [38] proposed a variable selection 
and classification approach for the same data. All these three approaches 
have been developed in the context of Parkinson's disease diagnosis with 
features extracted from voice recordings. 

In this paper, replication-based Bayesian regularization approaches 

for Reinke's edema diagnosis using acoustic features extracted from 
speech recordings have been developed and implemented. Variable se-
lection and classification approaches have been widely addressed by 
Bayesian regularization regression with independent instances (see, e.g., 
van Erp et al. [55]), which aim to shrink small effects to zero while 
maintaining true large effects. However, there is a lack of regularization 
methods able to address within-subject variability. To the best of the 
authors' knowledge, up to now, it has never been demonstrated that 
having into account the within-subject variability provides more stable 
results than the approaches based on independent instances at the same 
time that relevant features are selected and accuracy metrics keep at 
good values. This study contributes to fill a gap in the scientific literature 
on statistical approaches considering replicated data and they can be 
used to build robust CAD systems. The main contributions of this article 
are: 

• Designing and implementing three Bayesian regularization ap-
proaches based on replicated measurements.  

• Using Markov Chain Monte Carlo (MCMC) methods to solve the 
increasingly complex models.  

• Conducting an experiment to discriminate subjects suffering from 
Reinke's edema (30 subjects) from healthy people (30 subjects) in a 
hospital environment.  

• Extracting a variety of relevant features based on perturbation, 
cepstral analysis, noise, nonlinear dynamics, and entropies.  

• Proposing and integrating a 95% Bayesian credible interval-based 
technique to determine the most relevant acoustic features.  

• Reporting a robust performance in terms of feature selection and 
predictive capability, leading to an accuracy of 0.89 by using cross- 
validation and 0.93 without it.  

• Reporting the outperformance of the replication-based approach 
based on Ridge regression with respect to the traditional regulari-
zation methods based on independent instances, which provide a 
great variability in terms of selected features and accuracy metrics. 

The rest of this paper is structured as follows. Section 2 shows the 
necessary information to collect the dataset, i.e., participants, equip-
ment, speech recordings, and feature extraction procedures. In Section 
3, the general Bayesian approach is presented, including the binary 
response model, the way the replications are addressed in the model, the 
prior distributions for the different approaches, the Bayesian analysis, 
and the variable selection method. Section 4 shows the experimental 
settings and results. In Section 5, a discussion is presented, and the 
conclusions can be found in Section 6. 

2. Data collection 

This section provides details on the different aspects related to the 
generation of the acoustic feature database, i.e., the participants, pro-
tocol, recording equipment, vocal task, and feature extraction process. 

2.1. Participants 

A total of 60 people participated in the study. Half of them were 
diagnosed as suffering from Reinke's edema and the other half were 
healthy control subjects. The general eligibility criteria for participation 
were to be volunteers, native Spanish speakers, aged from 18 to 65, and 
to properly perform the phonation task in the research protocol. 

The group of people suffering from Reinke's edema comprised 27 
women and 3 men, with mean (standard deviation) age of 47.9 (11.8) 
years. They were recruited among the volunteers who attended the voice 
disorder program at the San Pedro de Alcántara Hospital. Note that there 
is a gender imbalance due to the fact that women are more affected by 
organic vocal-fold pathologies than men (see, e.g., Hunter et al. [21]). 
The gender rate in this study is approximately the same as in people 
attending the voice disorder program at the moment of the recruitment. 
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On the other hand, the healthy control group was selected among people 
with good vocal health status, who had never suffered from any voice 
pathology or used their voices in a professional way. It comprised 26 
women and 4 men, with mean (standard deviation) age of 40.8 (11.2) 
years. 

All the subjects were informed and provided their consent by signing 
an informed consent letter. 

2.2. Protocol and equipment 

The participants were asked to fill out a questionnaire for assessment 
of part of the general and specific eligibility criteria. They provided 
information such as sex, age, smoking habits, use of medication, and 
previous surgical interventions. They also underwent a medical exami-
nation consisting of a laryngological evaluation by videostroboscopy 
performed by an otorhinolaryngologist. For the subjects suffering from 
Reinke's edema, it was confirmed that Reinke's edema was the only 
existing voice pathology. 

A portable computer with an external sound card (TASCAM US322) 
and a headband microphone (AKG 520) featuring a cardioid pattern was 
used to record the phonations. The digital recording was performed 
using Audacity software (release 2.0.5). The sampling frequency was 
44.1 kHz and the resolution 16 bits/sample. 

This research protocol was approved by the bioethics committees of 
the San Pedro de Alcántara Hospital and the University of Extremadura. 

2.3. Speech recordings 

The voice recordings were performed in an ordinary diagnostic room 
at San Pedro de Alcántara Hospital. The room was not sound-proof, but a 
certain isolation from the aisles and waiting halls was obtained by reg-
ular walls and closed doors. No specific measures for acoustic isolation 
were implemented. 

The participants were asked to perform a sustained voicing of the /a/ 
vowel, at a comfortable pitch and loudness, as constantly as possible. 
This phonation was kept up as long as they could after a deep breath. A 
segment of one second was considered for feature extraction. This pro-
cedure was repeated four consecutive times per individual to address the 
within-subject variability after feature extraction. 

2.4. Feature extraction 

Different types of acoustic features were considered. The idea was to 
measure different aspects of speech degradation caused by the voice 
disorder. 

Two conventional perturbation measures (jitter and shimmer) were 
extracted based on the high values observed in patients with Reinke's 
edema in previous studies [47]. Fundamental frequency and amplitude 
perturbations also produce an impact on the cepstral peak prominence 
(CPP). This measure, originally proposed by Hillenbrand et al. [19], is 
considered more robust than time-domain techniques, since it does not 
require pitch tracking and can be reliably extracted even from highly 
aperiodic signals. For this reason, CPP has been included in the list of 
features. 

Voice roughness is a characteristic symptom of Reinke's edema 
because the swelling alters the elasticity of the vocal folds [7]. Two noise 
measures have been included in the feature set to assess roughness: 
glottal-to-noise excitation (GNE) ratio and the harmonic-to-noise ratio 
(HNR). These noise measures have been considered suitable for the 
detection of voice pathologies [12]. 

According to previous scientific studies, vocal fold pathologies lead 
to changes in vocal tract configuration during phonation. Lee et al. [27] 
pointed out that the reason is related to physiological or psychological 
compensations. Mel-frequency cepstral coefficients (MFCCs) have been 
widely used to characterize the vocal tract configuration in different 
application areas of speech classification, also for the detection of vocal- 

fold disorders [10]. A total of 13 MFCCs were calculated and included in 
the feature set. 

Furthermore, it has been emphasized that nonlinear behaviors play a 
relevant role in the voice production process, especially in the case of 
disordered voices [12,32,53]. Therefore, the classical source-filter the-
ory is not sufficient to describe all important aspects of speech that can 
be useful to detect pathologies. Orozco-Arroyave et al. [40] state 
different reasons which lead to a nonlinear speech behavior: nonlinear 
pressure-flow in the glottis, nonlinear stress-strain curves of vocal fold 
tissues, and nonlinearities in vocal fold collisions. These authors also 
consider the compensatory movements mentioned in the previous 
paragraph as nonlinear effects. Based on this nonlinear assumption, 
some authors have proposed acoustic features taken from the field of 
time-series analysis to predict diseases affecting voice [25,30,40]. The 
following ones have been used: Hurst exponent (HURST), correlation 
dimension (D2), permutation (PERMUTATION) and shannon entropy 
(SHANNON), pitch period entropy (PPE), and recurrence period density 
entropy (RPDE). Finally, the zero-crossing rate (ZCR) was also included. 
This adds up to a total of 25 acoustic features extracted from each voice 
sample. The extraction methods were coded in Python. 

Gender is also important in this topic. Yamauchi et al. [59] used 
glottal area waveform analysis based on high-speed digital imaging to 
emphasize the relevant role of gender when deciding whether a vocal 
fold pattern is normal or pathological. Previous studies [26,52] had 
already identified gender differences in vocal fold configuration during 
phonation: in glottal flow, glottal area or contact area waveforms. These 
anatomical and physiological differences have motivated the inclusion 
of the gender label as an additional feature, giving a total number of 26 
features. 

The feature extraction procedure provides a dataset with 240 rows 
(60 subjects × 4 utterances) and 27 columns (number of features plus 
health status). 

3. Methodology 

In the following subsections the methodology is described. Firstly, a 
hierarchical model to deal with binary responses and replicated cova-
riables is formulated. This provides a general framework for replication- 
based classifiers. Then, three Bayesian regularization methods are 
considered through their respective prior distributions. Next, the pos-
terior distribution is estimated and the posterior predictive probabilities 
are calculated. Finally, a variable selection method based on Bayesian 
credible intervals is proposed to determine the most relevant features. 

3.1. Binary response model 

In order to define the hierarchical model, the first level corresponds 
to the binary response variable. Let Y1, …, Yn be the n independent bi-
nary random variables: 

Yi ∼ Bernoulli(θi)

The probabilities θi = P(Yi = 1) are related to two sets of covariates, 
wi and zi by: 

Ψ − 1(θi) = w
′

iβ+ z′

iγ,

where wi = (wi1,…,wiK)′ and zi = (zi1,…,ziH)′ are covariate vectors of 
dimension K and H, respectively. The parameters β and γ are vectors of 
unknown parameters, of dimensions K and H, respectively. Ψ − 1(⋅) is the 
inverse of the cumulative distribution function (cdf) of the normal 
distribution. 

3.2. Introducing replications 

Assume that the covariates zi are exactly known (e.g. sex), but the 
covariates wi are not (acoustic features), instead they have been 
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measured with J replicates. Let xij = (xi1j,…,xiKj)′ be the jth replication 
of the unknown covariate vector wi = (wi1,…,wiK) ′ , j = 1, …, J, and 
assume that they have a linear relationship specified as an additive 
measurement error model (see, e.g. Buonaccorsi [3]), i.e.: 

xikj = wik + εikj,

εikj ∼ Normal
(
0, δ2

k

)
,

where the errors εik are independent of wik, and xikj can be considered as 
surrogates of wik. 

The rationale under this formulation is that the observed replicated 
features can be considered as measurement with errors of the underlying 
real acoustic feature, which is unknown for each individual. This latent 
variable-based structure is the key idea to address the within-subject 
variability. 

3.3. Integrating regularization 

Regularization methods simultaneously perform estimation and 
variable selection. They favor the best predictors and penalize the worst 
ones through parameter regularization. A wide variety of regularization 
methods have been developed (see e.g., Hastie et al. [15] and Hastie 
et al. [16]). The most usual regularization methods are Least Absolute 
Shrinkage and Selection Operator (LASSO), Ridge, and Elastic Net. They 
have been widely used for independent instances, but now they are 
considered for data with dependent nature in a framework that ad-
dresses the within-subject variability of replicated measurements, and 
therefore for a different type of statistical design. 

In typical Bayesian regression, the prior distribution for the regres-
sion parameters is normal. When regularization methods are considered, 
different prior distributions are used. LASSO is one of the most 
commonly used penalized regression methods (see Park and Casella 
[42]). The prior distribution for the regression parameters βk is based on 
the proposal of Genkin et al. [9], i.e., a Laplace distribution is consid-
ered, i.e.: 

βk ∼ Laplace
(
0, λ− 1

1

)
,

with mean 0 and variance 2/λ1
2, for k=1,…, K. 

The Laplace pdf is proportional to: 

p(βk)∝exp{ − λ1|βk|},

and it can be represented as a scale mixture of normal distributions with 
independent exponentially distributed variances, i.e.: 

p(βk) =

∫ ∞

0
p(βk|τk)p(τk)dτk,

where 

βk ∣τ2
k ∼ Normal

(
0, τ2

k

)
,

τ2
k ∼ Exp

(
λ2

1

/
2
)
,

being the exponential distribution parameterized so the mean is 2/λ1
2. 

Ridge regression is another regularization model (Hoerl and Kennard 
[20]). In this case, the prior distribution for the regression parameters βk 
is: 

βk ∼ Normal
(
0, λ− 1

2

)
,

i.e., its pdf is proportional to: 

p(βk)∝exp
{

λ2

2
β2

k

}

The prior distribution restricts the regression parameters (with high 
probability) to a sphere of radius determined by λ2. 

Finally, the Elastic Net method combines LASSO and Ridge regula-
rization methods [60]. The prior distribution for the regression 

parameters βk is: 

p(βk)∝exp
{

− λ1|βk| −
λ2

2
β2

k

}

By using latent variables, it is possible to obtain a scale mixture of 
normal distributions representation: 

βk ∣ σ2
βk
∼ Normal

(
0, σ2

βk

)
,

σ2
βk
=

(
τ− 2

k + λ2
)− 1

,

τ2
k ∼ Exp

(
λ2

1

/
2
)

3.4. Exploring the posterior distribution 

Firstly, the prior distributions are presented. The prior distributions 
for the regression parameters related to the acoustic features βk, k = 1, 
…, K, have been defined in Section 3.3. Besides, normal distributions are 
assumed for the regression parameters related to the exactly known 
covariates, i.e. γh ~ Normal(ch,Ch), for h = 1, …, H, where c = (c1,…,cH) 
and C = (C1,…,CH) are fixed values. Inverse Gamma distributions are 
considered for variances δk

2, i.e., δk
2 ~ InvGamma(sk, rk), where Sk and rk 

are the shape and rate parameters, respectively. 
Normal distributions are considered for the latent variables, i.e., wik 

~ Normal(μk, τk
2). For the hyperparameters of the latent variables, the 

prior distributions are defined as μk ~ Normal(mk,vk
2) and τk

2 ~ 
InvGamma(uk, tk). The hyperparameters of the regularization methods, 
λ1

2 and λ2, can be fixed values, but they may have hyperprior distribu-
tions, e.g., λ1

2 ~ Gamma(a1,d1) and λ2 ~ Gamma(a2,d2). 
The binary hierarchical model with replications defined in Sections 

3.1 and 3.2 results in the likelihood function, considering the observed 
and the latent variables, given by: 

L
(
β, γ, δ2, μ, τ2 |y,x, z,w

)

= p(y|z,w, β, γ)p
(
x|w, δ2)p

(
w|μ, τ2)

=
∏n

i=1

{

p(yi|zi,wi, β, γ)

[
∏K

k=1

{
∏J

j=1
p
(
xikj|wik, δ2

k

)
}

p
(
wik|μk, τ2

k

)
]} (1) 

The joint posterior distribution is obtained by using the likelihood 
function (1) and the prior distributions previously defined, and it is 
given by: 

p
(
β, γ, δ2, μ, τ2 |y,x, z,w

)

∝L
(
β, γ, δ2, μ, τ2 |y,x, z,w

)
p(β)p(γ)p

(
δ2)p(μ)p

(
τ2)p(λ)

(2) 

A Markov Chain Monte Carlo (MCMC) algorithm has been imple-
mented in JAGS1 through the R platform2 to estimate the posterior 
distribution. The source code and instructions that allow to run the 
approach for a simulation-based dataset can be found in the GitHub 
repository through the link https://github.com/lizbethna/ClassificaRe 
plicaRegulariza.git. 

Other Monte Carlo approaches could be applied. For instance, par-
ticle filtering could be considered [11]. It deals with targets that are 
influenced by the proximity and/or behavior of other targets. Also, 
Hamiltonian Monte Carlo methods can be used. They utilize techniques 
from differential geometry to generate transitions spanning the full 
marginal variance [2] or the No-U-Turn sampler, which is an adaptive 
form of Hamiltonian Monte Carlo sampling [4]. 

3.5. Determining the most relevant features 

After the chain has converged, a random sample for each parameter 
from the posterior distribution is obtained. Based on the estimated 

1 http://mcmc-jags.sourceforge.net/http://mcmc-jags.sourceforge.net/  
2 https://cran.r-project.org/https://cran.r-project.org/ 
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posterior densities for the regression parameters, a variable selection 
method based on Bayesian credible intervals is proposed here. For the 
estimated posterior density of each parameter, this method considers a 
95% Bayesian credible interval, being the lower interval limit the 2.5% 
percentile and the upper one the 97.5% percentile (see, e.g., Hespanhol 
et al. [18]). The features related to the regression parameters that do not 
contain 0 in the Bayesian credible interval are selected as relevant fea-
tures, given the important contribution for predicting the response. 
Then, the approach is applied to these features to provide accuracy rate, 
sensitivity, specificity, and AUC-ROC (Area Under the Curve Receiver 
Operating Characteristic). 

The details about the concrete practical implementation considering 
cross-validation frameworks for variable selection and accuracy metrics 
are provided in the experimental setting subsection of the results 
section. 

4. Results 

4.1. Experimental settings 

The replication-based Bayesian regularization approaches in Section 
3 are applied to the dataset described in Section 2. The response variable 
Y takes values Y=0 for healthy subjects and Y=1 for people suffering 
from Reinke's edema, whereas the 25 acoustic variables have been 
individually normalized to have mean 0 and standard deviation 1, and 
the variable sex Z takes values Z = 0 for men and Z = 1 for women. 

The MCMC sampling is applied using the following hyperparameters 
for the prior distributions. For the regression parameters of the cova-
riates exactly known γh ~ Normal(0,0.01), for h = 1, …, H. For the latent 
variables in the replications, wik ~ Normal(μk,τk

2), where μk ~ Normal 
(0,1), τk

2 ~ InverseGamma(1,1), and δk
2 ~ InverseGamma(0.01,0.01), 

for k = 1, …, K. For the parameters in the regularization methods, λ1
2 ~ 

Gamma(1,1) and λ2 ~ Gamma(1,1). 
A total of 30,000 iterations with a burn-in of 10,000 and a thinning 

period of 10 generated values are used, providing a sample of length 
2000. With these specifications, the chains generated by using the 
MCMC sampling algorithm seem to have converged. Bayesian Output 
Analysis (BOA) package was used to perform the convergence analysis 
[49]. The previous specifications are enough to provide evidence of 
convergence for all parameters in the three regularization approaches. 

Posterior predictive probabilities are obtained for the accuracy 
metrics. The used metrics are accuracy rate ((TP + TN)/n), sensitivity 
(TP/(TP + FN)), specificity (TN/(TN + FP)), where TP = True Positive; 
TN = True Negative; FP = False Positive; FN = False Negative. AUC-ROC 
is also considered. 

A stratified cross-validation framework is considered. Specifically, 
the dataset is randomly split into a training subset composed of 75% of 
the control subjects (3 men and 20 women healthy) and 75% of the 
people with Reinke's edema (2 men and 20 women with Reinke's edema) 
for each iteration. The remaining individuals constitute the testing 
subset, 25% of healthy people (1 man and 6 women) and 25% with 
Reinke's edema (1 man and 7 women). This framework is applied for 
variable selection and, later, for evaluating accuracy metrics by using 
the selected variables in an independent way, i.e., in each one of the 
iterations, the partitions are independent. In the first case, the model 
parameters are determined using the training subset, and the 95% 
Bayesian credible intervals (built as specified in the Section 3.5) for the 
model parameters are computed using the testing subset. This procedure 
is independently repeated 100 times. Then, the variables associated to 
parameters having more than one non-null 95% credible intervals out of 
the 100 iterations are selected. This leads to one only set of selected 
features for the whole cross-validation process. In the second case, once 
the variables have been selected, the model parameters are determined 
using the training subset, and the accuracy metrics are computed using 
the testing subset. This procedure is repeated 100 times and the accuracy 
metrics are then averaged. Each regularization approach has been 

trained independently. Note that the second stage has been introduced 
to test if the concrete set of acoustic features performs well in an inde-
pendent cross-validation framework. In practical applications, the first 
stage is applied to select the features, then the classification of the new 
subjects is done by applying the proposed approach with the selected 
features without cross-validation. 

Three scenarios have been independently considered for each regu-
larization approach, all of them start with the 25 acoustic features plus 
gender:  

1. All the features were used by training and testing with the whole 
dataset, and later the previously described cross-validation scheme 
was performed.  

2. Common principal components (CPCs) [22] were used to reduce the 
dimension of the variable space and, then, the approaches were 
applied to the selected CPCs under the defined cross-validation 
scheme. 

3. The 95% Bayesian credible interval-based approach defined in Sec-
tion 3.5 was applied to provide the most relevant features based on 
the previously defined cross-validation framework for variable se-
lection. Then, the approaches are applied to the selected features 
under the defined cross-validation framework for accuracy metrics. 

Finally, an analogous Bayesian credible interval-based approach is 
applied for the corresponding Bayesian regularization approaches based 
on independent instances (LASSO, Ridge, and Elastic Net). These 
methods are designed to be applied to individual instances, i.e., each 
subject is represented by a feature vector extracted from a single voice 
recording. Since the database consists of four replications of the sus-
tained /a/ phonation for each subject, four independent cases are 
considered. The first one uses the first feature vector of each subject, the 
second case considers the second feature vector of each subject and so 
on, i.e., the cases are R1, R2, R3 and R4, where Rj means that only the Jth 
replication for each individual is used. This leads to four independent 
experiments with independence-based regularization approaches. The 
same cross-validation framework for variable selection and accuracy 
metrics as those defined for the replication-based approaches are used 
for comparison purposes. Fig. 1 summarizes the experiment capturing 
within-subject variability and the four experiments based on indepen-
dent instances, which do not capture the within-subject variability. 

Next subsection shows the experimental results obtained for the 
three scenarios based on replications, and for the four cases of inde-
pendent instances as well as the comparison among them. 

4.2. Experimental results 

4.2.1. Replication-based approaches 
Firstly, all the acoustic features plus gender were considered by 

training and testing with the whole dataset, i.e., all the subjects were 
considered for training and all of them for testing. No differences were 
found for accuracy rate, sensitivity and specificity, with the three ap-
proaches providing the same value of 0.9333 for these three metrics. 
AUC-ROC results were very close, larger than 0.98. Specifically, 0.9944 
for LASSO, 0.9933 for Ridge, and 0.9844 for Elastic Net. 

The approaches were applied to all 26 variables with the defined 
cross-validation scheme for accuracy metrics, and the results are shown 
in Table 1. The accuracy rates, sensitivities, and specificities are around 
0.79, 0.81, and 0.76, respectively, for the three regularization models. 
The best result was obtained by Elastic Net with an accuracy rate of 
0.7927, a sensitivity of 0.8150, and a specificity of 0.7671. The AUC- 
ROC measures are very close and around 0.88. In general, the differ-
ences are very small, so in this scenario very similar results are obtained 
for the three regularization methods. 

The second scenario considers CPCs. Specifically, 75% of the total 
variability is obtained with eight CPCs. The three regularization 
methods with the defined cross-validation scheme were applied to these 
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eight CPCs and the results are shown in Table 2. It can be observed how 
the loss of information provided lower accuracy rates, being now close 
to 0.76. The same happens for sensitivity, and specificity, which are 
around 0.73, and 0.80, respectively. In summary, the accuracy metrics 
have decreased, but they are still very similar for the three regulariza-
tion approaches. 

The third scenario considers the variable selection based on Bayesian 
credible intervals that has been previously described. Each replication- 
based regularization approach selects its own feature set under the 
defined cross-validation framework for variable selection. Table 3 shows 
the features selected for the three approaches. Note that LASSO selects 7 
features, Ridge 7, and Elastic Net 5. Note that CPP, MFCC4, MFCC7, 
MFCC10, and SHANNON are selected by the three approaches. 

Once the feature sets have been defined for each method, the regu-
larization approaches are applied with the defined cross-validation 
scheme for evaluating accuracy metrics. The results are presented in 
Table 4. It can be observed how the best performance is provided by 
Ridge regression for the four accuracy metrics. The accuracy rate is 
0.8893, larger than the ones corresponding to LASSO and Elastic Net, 
which are 0.8240 and 0.8253, respectively. 

Table 5 shows the posterior estimations for the model parameters of 
the three considered replication-based regularization approaches. These 
are the mean and standard deviation of the parameter estimates ob-
tained from the 100 iterations in the cross-validation framework. Note 

that standard deviations for intercept parameters, and parameters 
associated to GNE and sex are higher than the absolute value of the 
estimate itself. Therefore, the estimations of these three parameters 

Fig. 1. Graphical scheme of the experiment capturing within-subject variability (top) and the four experiments based on independent instances (bottom).  

Table 1 
Means and standard deviations of accuracy rate, sensitivity, specificity, and 
AUC-ROC by using the replication-based regularization models with all the 
features under the defined cross-validation scheme for accuracy metrics (Sce-
nario 1).   

LASSO Ridge Elastic Net 

Accuracy rate 0.78733 (0.08352) 0.78533 (0.08128) 0.79267 (0.08254) 
Sensitivity 0.80625 (0.13574) 0.80250 (0.13551) 0.81500 (0.13702) 
Specificity 0.76571 (0.13548) 0.76571 (0.13548) 0.76714 (0.13568) 
AUC-ROC 0.88553 (0.06604) 0.88553 (0.06643) 0.88642 (0.06717)  

Table 2 
Means and standard deviations of accuracy rate, sensitivity, specificity, and 
AUC-ROC by using the replication-based regularization models with eight CPCs 
under the defined cross-validation scheme for accuracy metrics (Scenario 2).   

LASSO Ridge Elastic Net 

Accuracy rate 0.76466 (0.09776) 0.76600 (0.09639) 0.76733 (0.10005) 
Sensitivity 0.72875 (0.12818) 0.73125 (0.12609) 0.73000 (0.13614) 
Specificity 0.80571 (0.14574) 0.80571 (0.14574) 0.81000 (0.14649) 
AUC-ROC 0.85410 (0.08973) 0.85464 (0.08977) 0.85625 (0.10005)  

Table 3 
Acoustic features selected by considering the 
replication-based regularization approaches under the 
defined cross-validation framework for variable se-
lection (Scenario 3). 

Table 4 
Means and standard deviations of accuracy rate, sensitivity, specificity, and 
AUC-ROC by using the replication-based regularization models considering the 
selected features under the defined cross-validation framework for accuracy 
metrics (Scenario 3).   

LASSO Ridge Elastic Net 

Accuracy rate 0.82400 (0.09064) 0.88933 (0.07104) 0.82533 (0.07971) 
Sensitivity 0.84375 (0.13690) 0.90750 (0.09504) 0.82125 (0.13560) 
Specificity 0.80142 (0.14198) 0.86857 (0.12463) 0.83000 (0.13111) 
AUC-ROC 0.92232 (0.05568) 0.95500 (0.04450) 0.92160 (0.05930)  
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come from dispersed values. 

4.2.2. Independence-based approaches 
Now the traditional independence-based regularization approaches 

LASSO, Ridge, and Elastic Net are applied to the four cases R1, R2, R3 and 
R4, where Rj means that only the jth replication for each individual is 
used. Each case is treated independently of the others, so each case 
contain independent instances. 

An analogous Bayesian credible interval-based approach is applied 
and the features are independently selected for each case. The cross- 
validation framework defined in Section 4.1 has been also applied in 
this case. Table 6 shows the selected features for the three traditional 
regularization-based methods in the four cases. Within each method, the 
selected features are different for each dataset. There are important 

differences in the chosen features and in the number of them. The four 
cases select between 8 and 10 features for LASSO, with only 4 common 
features. For Ridge, between 7 and 10 features are selected, with 5 
common features. Finally, for Elastic Net, there are between 5 and 9 
features selected with only 3 of them common. This shows a great 
variability in number and kind of features within each method for the 
different cases constituted by the individual replications. 

The variability in the feature selection considering the four cases is 
translated into the accuracy metrics. The defined cross-validation 
scheme is independently applied to each case with their selected fea-
tures and the results are shown in Table 7. In LASSO approach, accuracy 
rates ranging from 0.8100 to 0.8580 are obtained for the different cases. 
Ridge approach provides accuracy rates ranging from 0.8160 to 0.8720, 
whereas accuracy rates for Elastic Net approach range from 0.8326 to 
0.8560. Different results are also obtained for sensitivities, specificities, 
and AUC-ROC through the four cases. 

With this experiment, it has been shown how different results for the 
selected variables and the accuracy metrics are obtained, depending on 
the concrete voice recording for each subject being considered. For the 
first time, it has been demonstrated that having into account the within- 
subject variability provides more stable results at the same time that 
relevant features are selected and accuracy metrics keep at good values. 

5. Discussion 

Bayesian independence-based regularization regression methods 
have been widely used in many contexts (see, e.g., Kadoya et al. [24]). 
These methods are based on independent instances as input data. When 
there exists a dependent nature among some instances, methods that are 
able to properly address this dependency are demanded. Imperfections 
in technology and the very biological variability result in acoustic fea-
tures that are not identical for one specific individual in a particular 
recording time. This leads to the concept of replication that tries to 
address the within-subject variability underlying the experimental 
design. The recording of only one phonation per individual introduces 
lack of confidence in the process, because if other phonations had been 
performed, different feature vectors representing the subject would have 
been obtained and, therefore, the results would have been different. 
Using independence-based approaches has been the common way to 
address automatic detection of laryngeal pathologies from speech re-
cordings in the scientific literature [23,31,56]. 

Table 5 
Means and standard deviations of the parameters for the replication-based 
regularization models considering the selected features under the defined 
cross-validation scheme (Scenario 3).  

Parameters LASSO Ridge Elastic Net 

β0 Intercept 0.26411 (1.19126) − 0.23393 
(0.99422) 

− 0.46030 
(0.62526) 

β1 GNE 1.39850 (1.41908) – – 
β5 CPP 8.52840 (5.00575) 9.85189 (5.67987) 2.21863 (0.60491) 
β7 MFCC2 – 8.84516 (5.11999) – 
β9 MFCC4 − 2.72866 

(2.37346) 
− 5.54057 
(3.08061) 

− 1.16507 
(0.53925) 

β12 MFCC7 4.21886 (2.65877) 5.20452 (2.54884) 1.56190 (0.47818) 
β15 MFCC10 − 5.81843 

(4.36594) 
− 6.46859 
(4.24449) 

− 1.94313 
(0.70239) 

β22 RPDE − 3.38629 
(2.21472) 

− 8.18662 
(4.04477) 

– 

β23 

SHANNON 
− 2.19405 
(1.42865) 

− 3.67750 
(2.58735) 

− 1.09540 
(0.32860) 

γ Sex 0.10964 (1.16550) 0.23033 (1.11815) 0.59197 (0.60488) 
λ1 0.59822 (0.13337) – 0.65412 (0.06362) 
λ2 – 0.18626 (0.07188) 0.39791 (0.09816)  

Table 6 
Acoustic features selected by considering the traditional independence-based 
regularization approaches in the four cases under the defined cross- 
validation framework for variable selection. 

Table 7 
Means and standard deviations of accuracy rate, sensitivity, specificity, and 
AUC-ROC by using the traditional independence-based regularization ap-
proaches in the four cases under the defined cross-validation scheme.   

LASSO Ridge Elastic Net 

R1 

Accuracy rate 0.85800 (0.08614) 0.87200 (0.08022) 0.85600 (0.08135) 
Sensitivity 0.83875 (0.13680) 0.85875 (0.12264) 0.83875 (0.12346) 
Specificity 0.88000 (0.11614) 0.88714 (0.11175) 0.87571 (0.12786) 
AUC-ROC 0.92696 (0.06097) 0.94035 (0.05128) 0.92785 (0.05484)  

R2 

Accuracy rate 0.83333 (0.08658) 0.83600 (0.08602) 0.84066 (0.08781) 
Sensitivity 0.85000 (0.13176) 0.85375 (0.13301) 0.86000 (0.13328) 
Specificity 0.81428 (0.14285) 0.81571 (0.14683) 0.81857 (0.14900) 
AUC-ROC 0.91964 (0.06104) 0.92071 (0.06050) 0.92375 (0.05753)  

R3 

Accuracy rate 0.81000 (0.08958) 0.81600 (0.08995) 0.83266 (0.08554) 
Sensitivity 0.83000 (0.12997) 0.81250 (0.13588) 0.85125 (0.12897) 
Specificity 0.78714 (0.13993) 0.82000 (0.14303) 0.81142 (0.14050) 
AUC-ROC 0.91910 (0.05740) 0.93482 (0.05191) 0.94500 (0.04826)  

R4 

Accuracy rate 0.84800 (0.07875) 0.83533 (0.07896) 0.83866 (0.06974) 
Sensitivity 0.87625 (0.11581) 0.86875 (0.11148) 0.85000 (0.10952) 
Specificity 0.81571 (0.12728) 0.79714 (0.13187) 0.82571 (0.12934) 
AUC-ROC 0.92839 (0.05369) 0.93196 (0.05297) 0.91303 (0.07204)  
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Three regularization-based approaches have been implemented and 
applied to detect Reinke's edema based on features extracted from 
replicated voice recordings. The existing within-subject variability for 
each subject has been statistically addressed by considering that the 
replicated observations from a feature are measurements with errors of 
the real underlying feature, which is unknown. In this way, the observed 
replicated features act as surrogates. This idea allows to build hierar-
chical models based on latent variables that are handled with Bayesian 
methodology. Due to the way that the models have been designed, 
MCMC methods can be used to generate from the posterior predictive 
distribution. 

The three replication-based regularization approaches (LASSO, 
Ridge, and Elastic Net) consist of variable selection and classification. A 
total of 26 variables have been considered (25 acoustic features plus 
gender). Each one provides information that may be useful for voice 
disorder detection. However, there are many variables to feed the 
classifiers, some of them highly correlated. This may produce a multi-
collinearity problem and overfitting. To avoid this, two variable selec-
tion approaches have been considered. The first one uses CPCs [22]. 
Note that this is not a conventional principal component analysis, since 
CPC analysis allows to properly consider the replicated measurements, 
because the extracted features display a correlation structure that is 
stable throughout the replications. This kind of analysis has been widely 
used in other contexts (see, e.g., [28]). However, it has the disadvantage 
that none of the CPCs is a feature itself, so no interpretation can be 
obtained in terms of the disease's effects. The second variable selection 
approach has been specifically proposed for this problem and it is based 
on Bayesian credible intervals. Relevant features are obtained from 
those whose regression parameter estimations do not contain 0. This 
variable selection method within a cross-validation scheme has provided 
the selection of relevant features related to the malfunctioning of the 
voice production system under Reinke's edema. Note that the second 
stage under the defined cross-validation framework is independently 
applied to the selected features from the first stage to test if this concrete 
set of selected features works well for metric performance. This step is 
not necessary for realtime applications, once the selected variables have 
been tested. 

An analysis of selected features from the experiments based on 
Bayesian credible intervals reveals that the following five features are 
selected in the three considered replication-based approaches: CPP, 
MFCC4, MFCC7, MFCC10 and SHANNON. In the case of the method 
providing the best accuracy metric results, Ridge, two additional fea-
tures (MFCC2 and RPDE) have been also selected to complete a seven- 
feature set. However, when considering the independence-based coun-
terparts applied to the four datasets (each one composed by only one of 
the four replicated feature vectors for each individual) a great variability 
of selected features is obtained depending on the voice recording 
considered, ranging from 5 to 10 features per experiment and a total of 
15 different features out of the 25 available acoustic features. This 
contrasts with the previously reported results for feature selection with 
replication-based regularization approaches. 

The selected features provide information about how the voice 
production system is failing under Reinke's edema disease. CPP, ob-
tained from the cepstrum of a sound, has shown promising results as an 
acoustic biomarker of dysphonia [17]. High CPP values correspond to a 
well-defined harmonic structure, whereas periodicity perturbations 
(either in amplitude or frequency) lead to a lower amplitude of the 
cepstral peak. Reinke's edema produces an alteration of vocal-fold vi-
bration patterns which has been quantified by means of CPP. The 
important role played by MFCCs (with three coefficients selected in the 
three cases, or even four in the case of Ridge method) may be related to 
the fact that Reinke's edema patients may produce compensatory 
articulatory changes in response to altered vocal-fold vibration. These 
compensatory movements modify the resonance properties of the vocal 
tract. The selection of SHANNON feature lines up with previous results 
in the literature showing that entropy measures produce higher values in 

people with vocal-fold disorders in comparison to healthy ones Sca-
lassara et al. [46]. Pathological speech is characterized by an increase in 
the signal unpredictability that can be quantified by the use of entropy 
measures. Finally, RPDE also uses the concept of entropy, in this case, to 
measure the uncertainty in pitch period estimation. Some physiological 
aspects of this pathology, such as vocal-fold asymmetry, make it difficult 
for these patients to maintain a stable vocal fold oscillation. These 
physiological aspects of Reinke's edema have been shown through the 
use of high-speed digital imaging and videostroboscopy by Watanabe 
et al. [57]. 

From an accuracy metric perspective, the application of the 
independence-based regularization approaches has also provided a great 
variability within each regularization method, attaining the best accu-
racy rate with Ridge regression for the dataset with the first voice re-
cordings (R1). This has shown that different results can be obtained 
depending on the voice recording considered for each individual. In 
contrast, the replication-based regularization approaches have provided 
a reduced number of features, and greater agreement regarding selected 
features among the three methods, at the same time that good accuracy 
metrics have been obtained. The best approach has been obtained with 
Ridge regression, providing an accuracy rate of 0.8893, sensitivity 
0.9075, specificity 0.8686, and AUC-ROC 0.9550 (see Table 4). All the 
four metrics outperform those obtained with the independence-based 
regularization approaches (see Table 7). Even more, the other compa-
rable approach for variable selection and classification that considers 
replications, that was developed for Parkinson's disease detection [38], 
provides worse results in this context. Specifically, when applying that 
methodology to this dataset with the same cross-validation scheme, 
lower accuracy metrics were obtained, specifically, an accuracy rate of 
0.8120, sensitivity of 0.80375, specificity of 0.82142, and AUC-ROC of 
0.8750. Finally, it is remarkable that the combination of selecting a 
reduced number of relevant features, good accuracy metrics and a 
rigorous statistical basis make the replication-based regularization ap-
proaches worthwhile. 

In certain related contexts such as in Parkinson's disease detection by 
voice recordings, it has become usual to use features extracted from 
replicated recordings of each subject as if they were independent (see, e. 
g., Little et al. [29] and Hariharan et al. [14], and references therein). 
This means that the experimental unit becomes the phonation and not 
the subject. Given the fact that each subject has several consecutive 
feature vectors (each one coming from a phonation), which are depen-
dent, a voting-based system is usually established to decide if a subject is 
classified as healthy or diseased after applying an independence-based 
classifier to each phonation. In our case, this increases the sample size 
from 60 subjects (30 healthy and 30 suffering from Reinke's edema) to 
240 feature vectors, which are not all independent. This artificial in-
crease of the sample size may or may not provide better accuracy rates, 
but it provides incoherent results. Specifically, applying a voting system 
based on independence-based Ridge regularization regression, it is ob-
tained that, for the 30 healthy subjects, 12 of them (40%) had in-
coherences in their own voice recording classification (not all the voice 
recordings were assigned to the healthy group), whereas for the 30 
people suffering from Reinke's edema 11 of them (36.67%) had in-
coherences in a similar way. Regarding the accuracy rate, it was ob-
tained 0.8566, which is lower than the corresponding counterpart based 
on replications, 0.8893. However, this is not always true, for LASSO, the 
voting system provides an accuracy rate of 0.8440, which is larger than 
0.8240, the one from the corresponding counterpart considering within- 
subject variability. In order to avoid this conceptual and methodological 
concern, the methods addressing within-subject variability provide an 
only response for each subject containing all the information from all 
voice recordings. 

The proposed CAD system relies on a voice recording experiment to 
detect Reinke's edema based on the phonation of the vowel /a/ in a 
sustained way, a feature extraction process considering a variety of 
relevant features and a statistical methodology for variable selection and 
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classification based on Bayesian regularization for replicated covariates. 
Any of these components could be modified or replaced to try a better 
approach in different ways. For example, regarding the phonation pro-
tocol, other authors have considered other vowels and their combination 
for detecting voice disorders (see, e.g., Oliveira et al. [39]). It would be 
interesting to check if it is possible to further decrease the within-subject 
variability and improve stability by using recordings of different sus-
tained vowels. Another relevant CAD component is feature extraction, 
since it provides the main ingredient for the classifiers. We have 
considered an initial set of features that had shown potential in the 
scientific literature about vocal-fold pathologies, mixing features based 
on perturbation, cepstral analysis, noise, nonlinear dynamics, and en-
tropies. The proposed variable selection procedure selected the most 
relevant ones for Reinke's edema detection. However, classification 
approaches based on replications could be applied with the same ben-
efits to other feature sets as well. For example, PLP coefficients consti-
tute an interesting option to test. Also filtering as RASTA could be 
studied for PLP coefficients providing RASTA-PLP features [36] that 
could be tested on databases recorded under mismatched acoustic 
conditions for Reinke's edema detection. Robustness on environmental 
noise and recording channel effects in realistic environments is a 
research topic of great interest that has not been fully addressed up to 
now for voice disorder detection. Finally, the third CAD component to 
discuss is the statistical methodology. The regularization-based ap-
proaches considered in this paper can be easily modified to handle other 
methods different from the most usual ones: LASSO, Ridge and Elastic 
Net. In this Bayesian context, this is achieved through the use of other 
shrinkage prior distributions. For example, van Erp et al. [55] provided a 
theoretical and conceptual comparison of nine different shrinkage prior 
distributions that included local Student's t, group LASSO, hyperLASSO, 
horseshoe, and discrete normal mixture in addition to LASSO, Ridge and 
Elastic Net. An approach that would need a different framework to 
handle within-subject variability would be based on nonlinearity. For 
example, it would be interesting extending artificial neural networks 
and support vector machine for replicated covariates. In an 
independent-based approach, they have been used in the diagnosis of 
voice diseases by automatic speech recognition [50]. The idea of 
considering replications in a proper way could also be extended to the 
construction of kernels, which have been successfully developed for 
independent instances in the problem of semi-supervised learning using 
a small number of training samples [35]. 

There is a scientific and technological challenge to develop robust 
CAD systems that can be incorporated into medical center protocols in 
such a way that they provide assistance in the diagnosis and monitoring 
of voice diseases to the health professionals. The proposed system, 
including or not modifications of its components, could be integrated 
into a protocol that could be used in primary care as a triage method. 
This would enable the family doctor to refer the patient to the appro-
priate hospital department based on an objective criterion that supports 
his or her basic knowledge of the symptoms. 

6. Conclusion 

The proposed CAD system capturing within-subject variability due to 
the multiple replications of voice recordings for each individual con-
stitutes a robust system to address the detection of voice disorders by 
using acoustic features. The system relies on a voice recording experi-
ment to detect Reinke's edema, a feature extraction process, and variable 
selection and classification approaches based on Bayesian regularization 
considering replications. 

The replication-based regularization methods provide a more robust 
approach to the solution of the current problem than the independence- 
based methods, at the same time that good accuracy metrics and a 
relevant set of features are selected, which can be interpreted in relation 
to the effects of Reinke's edema on the voice production mechanisms. 
This study constitutes a contribution to fill in the gap provided by the 

lack of within-subject variability management in the scientific literature. 
Although the approaches have been applied in the context of an 
experiment specifically designed for Reinke's edema detection, they can 
be applied to different contexts where the replications play a key role. 

Larger experiments containing different voice recording protocols in 
mismatched acoustic conditions and the study of other signal processing 
algorithms for feature extraction are issues of interest to improve the 
CAD system, as well as trying to explore the possible nonlinearity 
through the development of new replication-based variable selection 
and classification approaches based on kernels. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

The authors would like to thank Dr. Moreno for his medical advising, 
and Sandra Paniagua and Esther de la O. for their work recording part of 
the speech database. It is also acknowledged the collaboration of the 
patients and healthy people who voluntarily participated in this study. 

This research has been funded by Agencia Estatal de Investigación, 
Spain (Project MTM2017-86875-C3-2-R), Junta de Extremadura, Spain 
(Projects IB16054, GR18108 and GR18055), and the European Union 
(European Regional Development Funds). Lizbeth Naranjo has also been 
partially funded by UNAM-DGAPA-PAPIIT (Project IN118720), Mexico. 
Mario Madruga has been funded by Ministerio de Universidades under the 
doctoral fellowship FPU18/03274. 

References 

[1] Baghai-Ravary L, Beet SW. Automatic speech signal analysis for clinical diagnosis and 
assessment of speech disorders. Springer briefs in electrical and computer 
engineering - speech technology. New York: Springer; 2013. 

[2] Betancourt M, Girolami M. Hamiltonian Monte Carlo for hierarchical models. In: 
Dipak US, Dey K, Loganathan A, editors. Current trends in Bayesian methodology 
with applications. Chapman & Hall/CRC Press; 2015. 

[3] Buonaccorsi JP. Measurement error: models, methods and applications. Boca 
Raton, FL: Chapman and Hall/CRC; 2010. 

[4] Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. Stan: 
a probabilistic programming language. J Stat Softw 2017;76(1):1–32. 
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ABSTRACT This study evaluates the effects ofMulticondition Training (MCT) on computer aided diagnosis
systems for voice quality assessment associated to exudative lesions of Reinke’s space. This technique
adds various noise conditions to the speech recordings in order to recreate realistic acoustic environments.
Four different databases (Massachussets Eye and Ear Infirmary, UEX-Voice, Saarbrücken, and Hospital
Universitario Príncipe de Asturias) recorded in very different acoustic environments are used. We compare
the outcomes of random forest classifier models comprising feature selection, hyperparameter tuning, and
cross-validation attending the specific MCT schema used to separate healthy from pathological subjects for
three diseases (nodules, polyps, and Reinke’s edema). Apart from the clean case baseline, an asymmetric
(one subject recording is affected only by one noise recording) and two symmetric (one subject recording is
affected by all the noise recordings) noise-based MCT scenarios are considered. These scenarios are created
by adding realistic acoustic noise of different types to the sustained /a/ vowel recordings. The symmetric
approaches are affected bymethodological concerns and are tested with a comparative purpose, to emphasize
these issues. Experimental results highlight the drawbacks of symmetric MCTs and exclude these techniques
as a viable option. In contrast, asymmetric MCT is proven to be a suitable noise-robust approach to build
a diagnosis system for exudative lesions of Reinke’s space, as performance obtained with the resulting
classifiers is not far from the performance obtained for clean training.

INDEX TERMS Acoustic features, computer aided diagnosis (CAD), machine learning, multicondition
training (MCT), nodules, polyps, Reinke’s edema.

I. INTRODUCTION
Human voice production can be affected by a wide range of
conditions, either vocal specific like nodules, polyps, cleft lip
and palate, or by other disorders which affect motor control
like neurodegenerative diseases. Either way, voice quality
assessment is a reliable source of information for physicians
and patients for diagnosis and monitoring of the underlying
disease.
Nodules, polyps, and Reinke’s edema are the main lesions

that occur in Reinke’s space [1]. Although their etiologic
factors are different, their pathologic features are quite similar
and diagnosis usually relies on the clinical description of

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiri Mekyska.

the patient. Classical voice quality assessment relies on
cumbersome techniques such as videostroboscopy or laryn-
goscopy, procedures which are highly invasive and uncom-
fortable for patients, and require expensive equipment and
expert practitioners. It is for such that Computer Aided Diag-
nosis (CAD) tools are of great interest since they can help
diagnosis procedures by using voice recordings as a non-
invasive biomarker. They are non-intrusive as they only per-
form signal processing of voice samples [2].
Different signal sources have been taken into considera-

tion, being the most usual vocal production recordings and
electroglottography (EGG) [3]. Both techniques have their
pros and cons: whereas the latter one needs of specific equip-
ment like electrodes and laryngograph, voice analysis only
needs common recording equipment like microphones and
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sound interfaces, being high quality devices widely available
even in portable format like modern smartphones. However,
such vocal recording devices are prone to be affected by inter-
ferences like environmental and electronic noise or reverbera-
tion, whereas EGG, measuring the glottal activity, is affected
only by noise induced in the equipment electronics. Further-
more, the need of specific devices makes EGG less common
and available. Vocal recordings will be, therefore, the subject
of this study.
Research conducted in order to find reliable automatic

voice quality assessment systems has considered different
approaches [4]. One of them is by looking for newmeaningful
features, using a well known classifier. In that regard mul-
tiple research lines have been proposed, from pitch related
features [5], cepstral analysis [6]–[8], non-linear analysis
[9], [10] or wavelet transformation [11]. Other common
route is researching a good new classifier which improves
the already known ones, since new machine learning tech-
niques are being constantly researched, and many of them
have been applied to this particular field using already
known features [12]. Examples are hidden Markov models
(HMM) [13], gaussian mixture models (GMM) [14], support
vector machines [15], random forests [16] or more recently
artificial neural networks [7] and deep neural networks [17]
among others. Even data augmentation techniques have been
proposed, creating synthetic feature values in order to supply
data for the classifiers due to the lack of pathological record-
ings [18], or new selection techniques, like paraconsistent
machines [19].
Most of these systems are developed on voice databases

collected in the best recording conditions available. The
most common database is the Massachusets Eye and Ear
Infirmary (MEEI) database [20], available since 1994, but
nowadays some other databases have been created, like
Hospital Universitario Príncipe de Asturias (HUPA), span-
ish database [21], Saarbrücken Voice Database (SVD), ger-
man database [22], or the Arabic Voice Pathology Database
(AVPD), arabic database [23]. All of them were recorded in
sound proofed rooms and even use KayPENTAX Computer-
ized Speech Lab. However, those controlled acoustical and
technical conditions can not be replicated in a real clinical
environment, or from the opposite side, realistic noise condi-
tions are not represented in the databases.
Multicondition Training (MCT) alleviates such underrep-

resentation by artificially adding noise to selected samples
from the voices database prior any processing. That technique
has been used in other application fields [24], [25] but, to the
best of the author’s knowledge, it has never been applied
to voice quality assessment. The field of pathological voice
detection represents a new challenge since the noise com-
ponents caused by the pathology have to be discriminated
within a noisy environment. In the present study we build
MCT systems and evaluate their effects on the ability of
the resulting classifier to distinguish between healthy and
pathological voices affected by Reinke’s space diseases such
as nodules, polyps, and Reinke’s edema.

II. VOICE DATABASES
We use four voice databases recorded in different environ-
ments: MEEI, well known and widely used as a research
dataset, recorded in the most favorable conditions; a dataset
collected at Universidad de Extremadura (UEX-Voice),
recorded at a more realistic environment; SVD collected by at
Institut für Phonetik, Universität des Saarlandes; and HUPA
database, recorded by Universidad Politécnica de Madrid.

A. PARTICIPANTS
Details of the participants taken into consideration can be
found below. All of the databases were previously sanitized
in order to avoid undesired issues, as some databases lack
information like some subjects’ age at the time of recording,
others include more than one recording for a given subject
and health status, and there are even cases where a subject
has samples in both healthy and pathological groups in the
same database.
MEEI database, commercialized by KayPentax Corp,

compiles recordings of voices affected by a wide variety of
diseases along with a control group of healthy recordings
as well. 53 healthy people are present, and nodules, polyps,
and Reinke’s edema have a representation of 18, 20, and
25 subjects, respectively.
UEX-Voice database recordings were performed in a diag-

nosis room at Hospital San Pedro de Alcántara (HSPdA),
Cáceres [26], with no special sound isolation from aisles and
surroundings (street noise, waiting rooms. . . ). Those record-
ings include 24 nodules, 30 polyps, and 30 Reinke’s edema
samples. 30 healthy subjects were recruited among admin-
istration staff volunteers from Universidad de Extremadura
during an annual health check-up, where an otorhinolaryn-
gologist performed an evaluation and assessed a good vocal
health status. All of the volunteers signed an informed
consent concerning subsequent studies using the collected
information.
SVD database [22] is a vast collection of recordings com-

piled by Institut für Phonetik at Universität des Saarlandes
and the Phoniatry Section of the Caritas Clinit St. Theresia in
Saarbrücken. It contains 869 healthy recordings, 17 nodules,
40 polyps, and 51 Reinke’s edema samples. This huge imbal-
ance in number had to be addressed by making a selection of
healthy subjects: We tried to match the numbers of female
and male subjects while keeping the average and standard
deviation of the age as even as possible by matching each
of the pathological utterances with a healthy one of the same
sex and closest age possible, without repetitions.
HUPA database [27] was recorded by Universidad Politéc-

nica de Madrid in Hospital Universitario Príncipe de
Asturias. It contains 239 healthy, 29 nodules, 28 polyps,
and 28 Reinke’s edema utterances. As for SVD database,
the imbalance was addressed by picking healthy subjects
which matched the sex and age distribution of each of the
diseases being considered, again matching healthy sex-age
samples with each pathological recording without repetitions.
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Table 1 shows sex and age distribution for each combina-
tion of database and disease after balancing SVD and HUPA
databases.

B. RECORDING EQUIPMENT
MEEI database was recorded in a most optimal environ-
ment using KayPENTAX Computerized Speech Lab, a state-
of-the-art equipment purposely designed for voice disease
research, including features like professional grade audio
capture or calibrated input [28]. Although recording condi-
tions were strictly controlled, they vary among pathological
and healthy voices, with different sampling rates, 50 kHz for
normal vs. 25 kHz for pathological, with normal and patho-
logical voices also recorded in different locations, which are
not described but assumed to be acoustically identical [28].
Regarding UEX-Voice database, it was compiled using

an AKG 520 head-worn condenser cardioid microphone
attached to a TASCAM US322 interface using Audacity
2.0.5 recording software, with no special sound isolation from
aisles and surroundings. The sampling rate was 44.1 kHz, and
the resolution was 16 bits per sample.
SVD recordings were collected using a headset condenser

microphone fed directly into a Kay elemetrics Computerized
Speech Lab (CSL) station model 4300B, and recorded at
50 kHz sample rate and a bit depth of 16 bits inside a sound-
treated room [29].
Finally, for HUPA database recordings were performed

with the CSL 4300B equipment of Kay Elemetrics, using a
condender microphone as input device, sampling both signals
with a frequency of 50 kHz and 16 bits of quantization.
All the recordings were taken under the same conditions and
recording parameters, and were collected in a soundproof
room [27].

C. VOCAL TASK
In MEEI database each subject was asked to perform a sus-
tained phonation at a comfortable pitch and level for at least
3 seconds of the /a/ vowel, repeating the process 3 times, after
which an expert speech pathologist chose the best sample for
the database [28]. That sample was also trimmed down to
1 second looking for the stable part of the phonation before
including it into the database.
In the case of UEX-Voice, the phonation of the /a/ vowel

was kept up for at least 5 seconds in a single breath. Laryngo-
logical evaluationwas performed by an otorhinolaryngologist
using videostroboscopy. The leading and trailing segments of
the recording were discarded prior to storing the utterance in
the database. The depicted recording and research protocol
was approved by the bioethics committees from both UEX
and HSPdA.
SVD subjects on their side had to perform a phonation of

the /a/ vowel, among other tasks which are not of interest for
this study. A mid-section of the phonation was stored in the
database, avoiding onset and offset segments.

TABLE 1. Age distribution by database, disease, health status, and sex.
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Patients in HUPA database had to perform a sustained
phonation of the /a/ vowel. The resulting recording was later
trimmed, discarding the first 500 ms and the last part of the
utterances to avoid onset and offset issues, storing amidvowel
segment of about 3 seconds length for each utterance.

III. CORRUPTION METHODOLOGY
The main problem we find in moving from a research context
to a clinical one is the difference in environmental conditions.
Most diagnosis rooms are much more noise affected than
the labs where research recordings are usually taken. This is
especially true in the case of MEEI database, where not only
recording conditions are strictly controlled, but recordings
are also screened in order to obtain the best examples of
each disease. Therefore we have created a series of noise
corruption schemata that try to replicate some of the most
usual noises that could happen inside or in the surroundings
of a typical diagnosis room.

A. NOISE DATABASE
There are many resources available on the Internet, with
repositories containing sound samples from different sources,
some of them oriented to other fields such as speech recog-
nition. However, we have not found any published noise
database for voice corruption in a CAD setting. Specifi-
cally, we were looking for sounds that meet the following
requirements:

• The noise source would be common in a clinical
environment.

• The recording is clean, containing one kind of noise.
• The noise is recognizable when listening, so the record-
ing contains mostly noise from the source and not static
noise.

The most suitable alternative we found is the MUSAN
dataset [30], included in the OpenSLR repository.1 It contains
recordings of a variety of sounds, from which we extracted
a subgroup which fulfills the aforementioned conditions.
We selected 31 noise files which contain 7 different noise
types. Table 2 shows the distribution of recordings and noise
types present in the database. Noise classes include: indis-
tinct voices, keyboard typing, doors (opening, closing, and
squeaking), paper flicking, phone buzzers, meteorological
conditions, and people walking around.

TABLE 2. Types of noises considered and number of recordings present
in the corruption schemata.

1www.openslr.org

MUSAN dataset recording characteristics remain
unknown, as it is a compilation of different sources and
recording situations. However, all the noise samples con-
tained are available at a sampling rate of 16 kHz and a
resolution of 16 bits per sample, with a highly variable
recording length.

B. SPEECH CORRUPTION
Voice samples from both databases are intended to be affected
by selected noise samples in a realistic way. In this case,
noise is added to the recordings making sure that the Signal-
to-Noise Ratio (SNR) does not exceed a given threshold to
be configured at corruption time. We consider that noise is
usually produced at a low enough level to be unnoticed by the
patient or the practitioner at recording time, so the maximum
noise level should remain below the desired threshold at all
times during the voice recording.
In order to mimic such level, we perform the corruption

by applying some gain to the additive noise in order to limit
the effects of residual noise present in the voice recording,
as we only have control over the former. Even though voice
samples are intended to be recorded so that their signal power
remains constant, one of the effects of voice diseases is the
inability to control a steady output level. The same happens
for noise recordings since no considered noise is stationary.
Therefore, we have to ensure that the minimum signal and
noise difference stays in a predefined range. Consequently,
a Welch’s periodogram is computed both on the voice and
noise samples using a sliding window 10 ms long and a
stride of 5 ms for power calculation; the window with least
difference between signal and noise power is used to calculate
the noise gain in order to get the desired SNR. We decided to
add noise using SNRs of 20 and 30 dB, as lower levels would
probably be noticed at recording time.
Noise recordings usually exceed voice recording length,

so a random segment of the noise waveform is selected each
time corruption was performed, adding some variability as
noise samples will not be repeated in any iteration.

C. MCT APPROACHES
MCT requires a variety of conditions in the development
dataset but, from that starting point, there are different ways
to confront such task, which are shown in Fig. 1 and explained
below.
The first one is asymmetric MCT, where the development

dataset equals the size of the original dataset, but noise is
added proportionally to the number of noise types present
in the noise database, plus clean condition where no noise is
added. In our experiments there are 7 types of noise, so for
each classifier trained, 1/8 random subset of the original
dataset is affected by each type of noise and the rest remain
intact. As we have different number of noise recordings for
each type of noise, random selection of noise recording is
performed prior noise addition and subsequently we pick a
random one-second clip for noise addition.
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FIGURE 1. MCT selection process. The diagram shows an example: color
coded are i=6 subjects, n=2 noises, and s=2 SNR levels in a
2/3 train - 1/3 test split. In our case i is the database size as shown
in Table 1, n=31, s=2.

Another approach is symmetric MCT, where data aug-
mentation is performed. This MCT technique takes the orig-
inal recordings database and increases its size by adding
all the different noise conditions being considered. In our
case, 31 noise recordings were chosen, so the final dataset
is 32 times the size of the original one (31 different noise
affected datasets plus clean recordings). It is important to
note that with symmetric MCT one subject appears in the
dataset as many times as corruption conditions are present.
This leads to two different approaches: the first one treats
each recording as an independent instance and, when splitting
into training and test, recordings from the same subject can lie
in both subsets. It is also possible to add a stratification level
in which training and test sets are not built with recordings
but subjects, thus assigning all the recordings from a subject
to the randomly chosen subset, either training or test, so a
subject never has representation in both of them.
However, symmetric MCT methodology raises major con-

cerns. Data augmentation can lead to good classification
metrics, but constraints the generalization of the system, and
performance when assessing new unknown recordings usu-
ally suffers. This is especially true in the case of symmetric
MCT, since all of the individuals present in the development
dataset can have representation in both training and test sets.
In any case, although symmetric multicondition appears to

be flawed by design, we are including the experiments and
results obtained in order to further emphasize the concerns
this approach rises.
Figure 1 shows the process followed to implement the

aforementioned strategies. We start with one of the voice
databases containing recordings for i individuals and the
noise database of n noise recordings. We perform noise addi-
tion by adding the noises to the voice utterances using s differ-
ent SNRs and create a pool of recordings available for MCT
selection. That pool contains a total of i+(i×n×s) utterances,
i for the database size, i× n× s for all the combinations with
noises. For visual simplicity, in Fig. 1 i = 6, n = 2, s = 2.
From that pool, the MCT selection schema can be clean,

where only clean utterances are selected; asymmetric, where
each noise type is present proportionally, including clean
recordings, and only one recording per individual; patient-
stratified symmetric, where all of a individual recordings lay
either in train or test set; symmetric, where train and test
utterances are selected randomly.

IV. CAD SYSTEM
The process followed to build a CAD system for each pathol-
ogy is described next, specifically, feature extraction, feature
selection and classification, and cross-validation methods.

A. FEATURE EXTRACTION
An initial number of 94 features was originally considered,
from which 2 are sex and age, and the rest are described next.
That set includes linear and non-linear features, all of them
used in previouswork either for functional voice disease diag-
nosis or other biomedical signal analysis. Extraction meth-
ods are coded in Python either using free implementations
available in public repositories or translating code from other
implementations. Analysis is performed in a long term basis
since all recordings have been pre-processed to match some
standard parameters as shown in section II-C.
Linear features include Cepstral Peak Prominence

(CPP) [6], [31], Glottal-to-Noise Excitation ratio (GNE,
4 features: mean, standard deviation, Teager Kaiser energy
Operator and squared energy operator) [32], [33], Glottal
Quotient (GQ, 3 features) [33], [34], Harmonic-to-Noise
Ratio (HNR) [33], [35], Jitter (22 features) [33], [36], Shim-
mer (22 features) [31], [33], Mel Frequency Cepstral Coeffi-
cients (MFCC, 13 features) [7].
In the nonlinear subset we consider correlation dimen-

sion (D2) [37], [38], First Minimum in Mutual Informa-
tion (FMMI) [38], [39], First Zero in Correlation Function
(FZCF) [38], [39], Hurst’s exponent (HURST) [37], [40],
MultiFractal SpectrumWidth (MFSW) [40], and Zero Cross-
ing Rate [38] (ZCR).
Finally, a set of entropies and complexities was computed,

including permutation entropy (PERMUTATION) [41], Pitch
Period Entropy (PPE) [33], [34], Recurrence Period Den-
sity Entropy (RPDE) [42], Shannon’s entropy (SHANNON)
[39], [43] and Lempel-Ziv complexity (LZ, 16 features
attending to different quantization bin size) [44], [45].
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B. FEATURE SELECTION AND CLASSIFICATION
The number of features extracted is very high, and compara-
ble to the development set size for each disease. One desirable
characteristic in CAD systems is simplicity, as it would not
only solve the problem but also provide some insight in the
possible causes of the disease and why the system assigns a
label to a given sample. In classification tasks using acoustic
features, complexity grows as we increase the number of fea-
tures considered in the solution: a low number of features can
be interpretable as it is possible to discern which conditions
cause abnormal values.
Moreover, big feature vectors imply the possibility of

overfitting. In our case that risk is evident since the initial
number of features being considered outnumbers the size of
the databases used as seen in Table 1, where the sum of
pathological and normal individuals is lower than the num-
ber of features for all but one database-disease combination
(SVD-Reinke’s edema).
Given that we do not know the optimal number of features,

our approach mixes feature selection an classification tech-
niques in order to obtain optimal, small feature subsets: The
first step is getting rid of redundant information considering
pairwise correlation, reducing all the feature pairs that have a
high Pearson coefficient to a single representative, repeating
the process for every feature pair until no high correlation
pairs are present. This step is performed once and applied for
all the experiments proposed, as correlation only depends on
feature extraction step.
From the low correlation feature set we select, in each case,

a subset making use of Recursive Feature Elimination with
cross-validation (RFECV). A significant number of RFECV
repetitions with random cross-validation sampling are made
and the selected features of each one are collected. Then,
we created an optimum subset by counting the number of
times each feature is selected and choosing only the ones
which exceed the median number of repetitions.
Once we have a unique feature set for each training schema

we proceed to apply random forest classifiers. Prior to any
training we obtain an idea of the best hyperparameters by
means of a grid search over each MCT strategy-dataset
combination.
Finally, making use of the selected features and hyper-

parameters in each combination of database, disease and
corruption schema we train a set of classifiers: Starting with
the most repeated single feature in the RFECV step, a random
forest is trained and its performance measured. The process is
repeated adding features following the number of selections
order obtained by the RFECV process, until all features are
used, collecting the results for every feature set size. These
steps are repeated, all classifier outcomes are collected, per-
formance metrics are averaged and accuracy rate is used as
performance measurement.
Confusion matrices containing true positives (TP), false

positives (FP), true negatives (TN), and false nega-
tives (FN) are collected. Average results for accuracy rate

((TP+TN )/(TP+TN +FP+FN )), specificity (TN/(TN +
FP)), sensitivity or recall (TP/(TP + FN )), precision
(TP/(TP+FP)), and area under the curve - receiver operating
characteristic (AUC-ROC) are collected as well as their
coefficient of variation (s/x̄ × 100), where s is the standard
deviation, and x̄ is the arithmetic mean.
Though the number of features selected by RFECV is

much lower than the original feature set size, we con-
sider that it is still high since accuracy usually reaches a
plateau or decays due to overfitting, so we chose to set a limit
in the number of features used by taking the lowest subset
whosemean accuracy reaches a certain threshold with respect
to the maximum accuracy obtained.

C. CROSS-VALIDATION
Training a classifier and thus creating a model is a process
driven by chance. The outcome is highly dependent on the
selection of training and test sets, especially when the devel-
opment set is small. In an ideal situation any combination
of training and test sets would yield equivalent models of
nearly identical performance. However, real life systems do
not fulfil this requirement, so we need a reliable method
to check a system performance. Cross-validation replicates
an experiment multiple times with different test-train splits
and averages their results, thus obtaining closer to the ideal
situation metrics. Two steps in the pipeline require of cross-
validation, and each one is performed in a different way:
RFECV and classifier training.
In feature selection, RFECV uses K-Fold cross-validation

in each step to select the least relevant features and dis-
card them. K-Fold is designed making sure to keep the sub-
ject stratification correct, meaning that we take special care
in the patient-stratified symmetric case for which, instead
of splitting by recording, we pick subgroups by patient,
and all recordings from a given patient lay in one of the
folds.
To check the possible performance impact of MCT

schemata, we perform cross-validation using a stratified shuf-
fle split strategy, where in each iteration we randomly choose
a portion of healthy and sick patients for the training set and
the rest for test set. In the cases of clean and asymmetric
MCT that task is trivial since pathological voice stratification
is enough, keeping the normophonic-pathological proportion
constant in training and test sets. However, in the case of
symmetric corruption the multiplicity of recordings from
each patient needs a closer look.
Two options arise, and both of them are tested: firstly,

a simple shuffle and splitting technique on the recordings
is performed, so we do not care if a patient had recordings
in both training and test sets; secondly, a patient-stratified
shuffling and splitting is performed along the usual patho-
logical stratification, ensuring that all the recordings from
a given individual lay in either training or test sets while
maintaining the normophonic-pathological proportion in
each one.
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V. RESULTS
A. EXPERIMENTAL SETTINGS
We performed the steps detailed in Section IV: feature extrac-
tion, feature selection, classification, and cross-validation as
follows, repeating the experiment several times and averaging
the results. We have taken into consideration all 4 different
scenarios depicted:

• Clean recordings: Using the original datasets without
further manipulation.

• Asymmetric MCT: Partitioning the datasets into not
overlapping equal size subsets and adding one kind of
noise to each subset choosing a different noise sample
for each recording. We also kept one of the partitions
untouched.

• Symmetric MCT: Adding every sample from all of the
noise types to the whole recording set of each dataset,
thus working with an augmented database. Two different
approaches were taken in this case regarding patients:

– Patient stratified: Data manipulation in CAD train-
ing is aware of the patient, and it is taken into
consideration when splitting the dataset (patient-
stratified symmetric).

– Raw datasets: Every recording is considered as an
independent event (symmetric).

All vocal recordings were processed in the sameway: First,
all samples were trimmed down to 1 second length in order
to ensure homogeneous length across databases; later, all of
them were downsampled to 16 kHz prior corruption in order
to match noise files sampling rate; after that, noise was added
from all sources at all proposed SNRs; preprocessing was
applied to the sound files prior feature extraction, normalizing
amplitude to range [−1, 1]; and lastly, feature extraction was
performed for each recording.
Highly correlated features were discarded when the Pear-

son coefficient exceeded 0.8. After feature discarding, most
of the feature families such as jitter or shimmer were
stripped down to one representative feature. We finally
worked with the following 34 features: SEX, CPP, D2,
FMMI, FZCF, GNE mean value (GNE_mean), GNE stan-
dard devition (GNE_std), GNE Teager Kaiser energy
operator (GNE_SNR_TKEO), GNE squared energy opera-
tor (GNE_SNR_SEO), GQ pecentiles 5-95 (GQ_prc5-95),
HNR, HURST, JITTER absolute difference (JITTER_abs_
diff), LZ2, MFCC (MFCC_1-13), MFSW, PERMUTATION,
PPE, RPDE, SHANNON, SHIMMER absolute difference
(SHIMMER_abs_diff), and ZCR.
RFECV was performed following a 2-Fold cross-

validation strategy, which consequently uses a
50/50 training/test splitting, computing 500 iterations during
feature selection stage, using a random forest classifier with
default parameters. For the classification task, 1000 shuffle
and split repetitions were made using a 2/3 to 1/3 train/test
proportion, and each train-test pair was used to train classi-
fiers using an increasing number of features following the
number of times each feature was selected in the RFECV

selection step until all features were used, and their confusion
matrices were collected. The threshold in accuracy for the
final feature selection step was 0.975 times the maximum
mean accuracy rate.
We will now detail the results obtained after training clas-

sifiers for the studied diseases: nodules, polyps, and Reinke’s
edema, and will compare the outcomes of using the original
voice recordings, and the noise corruption scenarios pro-
posed. Different scenarios will make use of different feature
sets, which will be detailed and compared. Average results for
accuracy, specificity, sensitivity, precision, and AUC-ROC
will be displayed as well as their coefficient of variation.

B. NODULES
Metrics (Table 4) reveal that classifiers trained using MEEI
database recordings are much more capable of a correct clas-
sification than the classifiers trained using any other database
by a huge margin of more than 25% in accuracy rate: the
almost perfect MEEI recordings easily achieve accuracies
over 0.9 for all the experiments, no matter the corruption
method, whereas the more realistic recordings of UEX-Voice,
SVD, and HUPA do not get over 0.71 of accuracy, with the
exception of symmetric corruption.

FIGURE 2. Mean ROC curves for nodules disease experiments. (a) MEEI
database, (b) UEX-Voice database, (c) SVD database, (d) HUPA database.

Furthermore, the behavior of specificity, sensitivity, pre-
cision, and AUC-ROC appears to follow that of accuracy
rate as a general rule, decreasing in a similar way as noise
is introduced, so the system tends to maintain its ability
throughout all the patients for a given database. AUC-ROC
(curves on Fig. 2) values under clean conditions indicate
a moderate ability to discern healthy from pathological
voices for any disease. However, specificity shows a sub-par
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TABLE 3. Features selected for nodules disease. Corruption cases are: Clean, Asymmetric, Patient-stratified symmetric, Symmetric.

performance for clean, asymmetric, and patient-stratified
symmetric MCTs for all but SVD, showing that the classifier
struggles to correctly classify healthy utterances, which is
interesting as MEEI and UEX-Voice databases healthy group
outnumbers pathological groups.
Coefficient of variation provides a deeper insight in the

different performances. In MEEI database, while accuracy,
sensitivity, and AUC-ROC variation tend to stay low, speci-
ficity and precision variation coefficient is three times as
high. UEX-Voice, SVD, and HUPA on the other hand show
a lower performance, not only in the mean values, but also
in variability, with extreme cases like sensitivity for SVD
database, asymmetric case, where we find that the coefficient
of variation reaches 34%.
Differences in performance as we change corruption are

remarkable: as we introduce noise, in the asymmetric case,
performance decays slightly for MEEI and HUPA databases,
but for UEX-Voice and SVD database accuracy remains
almost equal, and even some variation coefficients are better.
Looking at the symmetric corruption schema performance,
it is very interesting to compare the results when perform-
ing two different data augmentation strategies: not taking
care of patients when dividing the dataset, and splitting the

training and test sets attending to the patient. In the former
case performance levels rise to almost perfect classifiers with
accuracy, specificity, sensitivity and precision levels between
0.94 and 0.99. For the latter case results are quite interesting:
the levels achieved are generally lower than the clean and
asymmetric counterparts.
Table 3 shows features selected for nodules disease when

using the different database-MCT schema combinations.
When taking apart MEEI database which is not realis-
tic, and both symmetric MCT schemata because of their
metholodogical issues, the only feature selected more than
once under good methodological and environmental condi-
tions is PERMUTATION.

C. POLYPS
Table 6 shows that for MEEI database, the baseline of clean
case is quite good, with high accuracy, specificity, sensitivity,
precision, and AUC-ROC mean levels, being specificity the
worst and also the most affected by corruption, with a 13.4%
performance dropping in the case of asymmetric corruption
and even more for patient-stratified symmetric corruption.
Meanwhile, UEX-Voice database shows more homoge-

neous values: for clean, asymmetric, and patient-stratified
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TABLE 4. Mean and coefficient of variation (CV) for accuracy, specificity, and sensitivity obtained for nodules disease.

symmetric cases, we obtain less than 5% difference in mean
accuracy. SVD and HUPA databases yield worse results:
whereas in the former asymmetric corruption only drops 3%
and patient-stratifiedMCT drops 10%, the latter decays about
12% for asymmetric MCT and 15% for patient-stratified
MCT. It is also remarkable the surprisingly low values
obtained in the symmetric case for SVD database, which
are good in comparison within the dataset, but quite low
for a MCT-based comparison. Apart from that exception,
symmetric corruption on its side gets overoptimistic results
between 0.95 and 0.98 values for all the databases.
Once again, specificity, sensitivity, precision, and

AUC-ROC follow the values obtained for accuracy, although
in this case, unlike with nodules disease, specificity does
not show the same weakness, with the exception of MEEI
database. In this case, area under ROC curves, shown in Fig. 3
is quite good, reaching values over 0.80 for UEX-voice
and HUPA databases which makes the system a fairly good
detector in both cases. We can see in the flatter curves of
subfigure 3(c) the difficulties with SVD database.
However, corruption affects differently all datasets: MEEI

and HUPA corruption tends to be more noticeable with worse
outcomes as we introduce noise, whereas UEX-Voice and
SVD mean levels usually remain closer to clean condition
for asymmetric and patient-stratified symmetric corruption
schemata. Coefficient of variation follows the same trend:
whereas asymmetric corruption in MEEI affects more nega-
tively than in the other three databases, patient-stratified sym-
metric levels are better and, in some cases, even outperform
the clean case with less variation for mean values in the same
range.
In Table 5 we can see that in this case CPP stands as a good

predictor under all circumstances. Furthermore, if we restrict
the selection to realistic conditions (UEX-Voice, SVD,HUPA

FIGURE 3. Mean ROC curves for polyps disease experiments. (a) MEEI
database, (b) UEX-Voice database, (c) SVD database, (d) HUPA database.

databases, and clean or asymmetric MCT), CPP is the only
common feature selected.

D. REINKE’s EDEMA
Once again, performances obtained, shown in Table 8, are
great for MEEI database, with all metrics over 0.9 under
clean training conditions, and accuracy, sensitivity, precision,
andAUC-ROC above 0.96. Asymmetric and patient-stratified
symmetric accuracy stay in the same range, with a penalty
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TABLE 5. Features selected for polyps disease. Corruption cases are: Clean, Asymmetric, Patient-stratified symmetric, Symmetric.

of 4-5%, and sensitivity stays above 0.96, while specificity
suffers a significant drop of 11% for asymmetric MCT, and
14% for patient-stratified MCT.
UEX-Voice, on its side, reaches good accuracy, specificity,

and sensitivity levels, all over 0.72, for clean and asymmetric
schemata, and results are also good for patient-stratified sym-
metric corruption, which gets the best accuracy and sensitiv-
ity results within the database. The same is true for HUPA
database, with very similar to those of UEX-Voice mean
levels for all metrics in all clean, asymmetric, and patient-
stratified schemas. SVD on its side yields worse accuracy
results. While UEX-Voice and HUPA performance drop with
respect to MEEI database is 21%, in the case of SVD it
goes further, up to 26%. Once again, symmetric MCT yields
almost 1 accuracy values for every database.
Specificity, sensitivity, precision, and AUC-ROC easily

follow accuracy in both, values and trend, as we introduce
corrupted recordings, which shows the classifiers consistency
for both healthy and pathological samples, although it is
worth mentioning that for MEEI database, specificity drop
is more noticeable than in any other database. AUC-ROC
is remarkably good for HUPA and UEX-Voice databases,
with values over 0.85. Once again, the flatter curves for SVD

database shown in Fig. 4 show the difficulties the systemfinds
in detecting diseases within this dataset.
In this case, Table 7 shows that GNE_mean is a great

predictor since it is selected by 10 out of 12 database-MCT
schema combinations. If we restrict ourselves to UEX-Voice,
SVD, and HUPA databases, and clean and asymmetric MCT,
GNE_mean is also the only common selected feature.

VI. DISCUSSION
Wehave studied the effects of threeMCT strategies over three
diseases and four databases. Results show a clear influence of
the MCT strategy on the outcomes. Symmetric MCT is note-
worthy as it gets very good results in every database-disease
combination, not only in mean values, but also in relative
dispersion. Under this type of corruption method, all con-
sidered noises are added to every utterance in the database.
The result is striking, especially comparing it with patient-
stratified symmetric corruption, for which the performance
is assimilable to the one obtained with clean recordings and
asymmetric corruption.
Athough addressed for other non physiological diseases,

voice replication and data augmentation techniques are
a major concern in the field of diagnosis using vocal
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TABLE 6. Mean and coefficient of variation (CV) for accuracy, specificity, and sensitivity obtained for polyps disease.

TABLE 7. Features selected for Reinke’s edema. Corruption cases are: Clean, Asymmetric, Patient-stratified symmetric, Symmetric.

recordings [46]. The overoptimistic performance of sym-
metric MCT shows the methodological failure and origin
of the great difference between symmetric and the rest of

MCT schemata: the same subject can have, and in fact has,
recordings both in training and testing sets. The presence
of subjects in both sets helps the classifier, which learns
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TABLE 8. Mean and coefficient of variation (CV) for accuracy, specificity, and sensitivity obtained for Reinke’s disease.

FIGURE 4. Mean ROC curves for Reinke’s disease experiments. (a) MEEI
database, (b) UEX-Voice database, (c) SVD database, (d) HUPA database.

to distinguish not only disease from normal recordings, but
subjects themselves. This fact has a great influence in the
outcome but raises strong methodological concerns.
Besides, symmetric MCT shows another weak spot in

the number of features selected in each case. We can see
that for most database-disease combinations, the number of
features required to achieve its results is higher than any
other combination. Typical numbers range around 8 selected
features with sporadic cases where only 4 or 5 features are
needed. On the contrary, the rest of MCT schemata behave

the opposite, usually selecting 4 or 5 features with sporadic
cases where up to 7 features are needed.
Although less evident than in the symmetric case, patient-

stratified symmetry still involves methodological concerns.
The lack of presence of subjects in both training and testing
sets prevents the results to be overoptimistic, but the sample
database size is still artificially increased. Asymmetric cor-
ruption and patient-stratified symmetric corruption perform
similarly, but a closer look reveals that whereas asymmetry
tends to yield better mean metrics, coefficient of variation is
usually better in the patient-stratified symmetric case, so there
appears to be a trade-off. This can be explained by the mul-
tiple repetitions of a subject within training or testing sets,
which lowers speaker variability.
The results obtained with asymmetric MCT indicate

that this strategy is effective to achieve noise-robustness,
since the maximum degradation in mean accuracy across
the twelve cases with respect to the clean case is 12.6%
for HUPA-polyps combination, followed by HUPA-nodules
with 8.45% and most differences below 6%. Furthermore,
the results shown when using patient-stratified symmetric
MCT approach do not support a performance improvement.
Therefore, asymmetric MCT is proposed as the most suitable
strategy to follow, being also methodologically rigorous since
it does not artificially increase the sample size.
Selected features and their significance play an important

role in the outcomes of the experiments. Every feature and
feature family considered in section IV-A has its own pecu-
liarities, strengths and weaknesses. Some of them depend
on non-acoustical characteristics present in the signal, like
its length in the case of entropies. This question is solved
by maintaining as much homogeneity as possible across
recordings in all their ‘‘physical’’ aspects like length, sample
rate or bit depth. Moreover, nonlinear analysis requires of
a careful selection of hyperparameters in order to obtain
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significant results which is addressed making use of some
simple strategies found in literature [38], [39], [47].
An analysis of selected features from the experiments

based on the two noise conditions that do not increase the
sample size, clean and asymmetric MCT, and the three real-
istic databases, UEX_Voice, SVD, and HUPA, reveals which
features are more reliable. Table 9 summarizes those features.

TABLE 9. Most selected features by subgroups.

Subgroups identify which parameter is fixed and its value.
For noise conditions we fix values clean and asymmetric and
for each one of them we iterate over database (UEX_Voice,
SVD, HUPA) and disease (nodules, polyps, Reinke). If we
look at databases fixed values are UEX_Voice, SVD, HUPA
and the counting is carried on noise condition (clean, asym-
metric) and disease (nodules, polyps, Reinke). Finally, if we
focus on diseases, fixing nodules, polyps, and Reinke’s dis-
ease, we iterate over noise condition (Clean, asymmetric) and
database (UEX_Voice, SVD, HUPA)
Although there is a variety of highlighted features, there are

some common features being selected, which are, therefore,
themost robust ones as they are valid in awide range of condi-
tions. Cepstral analysis seems to be very useful as it includes
two features: CPP, which seems to be the most reliable, and
MFCC03. Glottal-to-Noise excitation also appears in every
situation (fixing noise condition, database, and disease). Non-
linear features are also present with PERMUTATION, D2,
and LZ2, although the latter one only appears in clean cases.
Obtained from the cepstrum of a sound, CPP has been con-

sidered the most successful acoustic feature for vocal quality
assessment [48]. High CPP values correspond to a well-
defined harmonic structure, whereas periodicity perturba-
tions (commonly present due to the considered pathologies)
decrease their values. Being selected in 4 out of 9 exper-
iments under asymmetric MCT, CPP feature seems to be
still reliable under noisy conditions. It does not dominate
the classification processes as in the clean case, but it
is as important as the other two most repeated features
(PERMUTATION and GNE_mean).
GNE estimates the excitation due to vocal fold oscilla-

tions versus the excitation created by turbulent noise. It uses

the correlation of Hilbert envelopes of frequency channels
uniformly distributed along the spectrum, and detects turbu-
lent noise as narrow band noise. As our noise is not band-
width limited, such detection can be performed efficiently.
Furthermore, [49] considers GNE calculation robust because
it does not require estimations of the fundamental frequency,
which is a complicated task, encumbered by the pathological
voice, and even more difficult to perform in the presence of
environmental noise.
The capability of PERMUTATION to model the character-

istics of a biological system even when there is contamination
by noise is known from other biomedical applications, such
as studies related to brain or heart activity [50]. Its robustness
for the detection of benign vocal fold lesions under noisy
conditions is demonstratedwith this work as it mostly appears
under asymmetric MCT.
Despite the fact they are not vocal source-related features,

previous scientific work has considered the use of MFCCs
for the detection of laryngeal pathologies. In [51] the authors
report a lower first formant frequency of vocal polyp patients
based on a higher tongue position during phonation, com-
pared to healthy subjects. This means that, for subjects with a
laryngeal disorder, also the shape of the vocal tract is changed
during phonation.
The system does not select common features for a given

disease for different MCT schema, as neither does MCT
schemata comparison for different disease as well, if we
do not take account of the database. MEEI database seems
to prefer nonlinear characteristics, with MFSW or FZCF
unlike the other databases, where they have a low number
of appearances. UEX-Voice seems to prefer cepstral analysis
with a great number of MFCCs, being selected, specifically
MFCC3, on the top selected features. SVD concentrates a
great number of selected features around Glottal-To-Noise
Excitation ratio. For HUPA database entropies seem to be
the best predictor. Therefore, apart from the fact that MEEI
database metrics are better than those of any other one,
database has a greater impact on selected features than dis-
ease or corruption.
Table 1 shows sex and age distribution for each combina-

tion of database and disease after subject selection process
to create a balanced experiment, described before. Age usu-
ally does not constitute a problem as it is relatively easy to
find pathological voices for each disease in a wide range of
ages, as is shown by average and standard deviation values
on table 1.
Gender on its side has shown to be a more important issue

in voice pathology. Women are more prone to suffer from
vocal fold diseases like Reinke’s edema because of their
vocal fold structure [52], but gender aspects also influence
the acoustical feature values obtained in signal analysis [53].
This might explain the differences in feature selection among
databases: although sex is never selected as a good predictor,
the proportion of male/female subjects in both healthy and
pathological recordings varies throughout databases. Table 1
shows an obvious female prevalence in all diseases, and
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a female/male proportion that does not match for different
database-disease combinations. The effect on acoustical fea-
tures, feature selection, and therefore in classification task,
although interesting, can not be usually addressed due to the
imbalance [12].
There is a lack of comparable results due to the novelty

of applying MCT to the specific field of voice diagnosis.
Moreover, robustness assessment has not been thoroughly
discussed beyond some specific pitch related features [54].
However, we can check our results against those obtained in
studies that overlap in the use of similar parameters (database,
disease, features and/or classifier) as a baseline.
Clean results from our classifiers stand a comparison

with previous related work. Accuracy, specificity, sensitiv-
ity, precision, and AUC-ROC for MEEI database are shown
in Table 4 for nodules (0.95, 0.87, 0.98, 0.93, 0.95 ), Table 6
for polyps (0.93, 0.82, 0.97, 0.93, 0.96), and Table 8 for
Reinke’s edema (0.96, 0.91, 0.98, 0.97, 0.99), and establish
the baseline to which corruption results will be compared.
This baseline is in the vicinity of results obtained in other
MEEI research studies: [13] reaches accuracies between
0.91 and 0.97, specificities between 0.73 and 0.90, sensitivi-
ties between 0.94 and 0.98, and AUC-ROC between 0.89 and
0.98 diagnosing pathological voices with a feature set consist-
ing of MFCCs, Energy, HNR, NNE, and GNE; [55] achieves
0.95 accuracy, 0.94 specificity, 0.95 sensitivity, and 0.99 ROC
using HNR, Normalized Noise Energy (NNE), GNE, and
12 MFCCs with a GMM detector, and accuracies ranging
0.88 - 0.96, specificities ranging 0.87 - 0.98, sensitivities
ranging 0.88 - 0.97, and AUC-ROC ranging 0.94 - 0.99, using
other feature sets; [15] achieves 0.94 accuracy discriminating
nodules and polyps among others. These results, although not
directly comparable because of the discrepancies on method-
ology since they mix diseases, use other features or build a
different classifier, consolidate our clean results as a good
enough baseline to which compare MCT performance.
SVD andHUPAdatabases have been available for a shorter

period of time, thus they have not been used as thoroughly
as MEEI in research, making it more difficult to find com-
parable studies. However, some results match our accuracy
levels. Reference [56] uses different combinations of fea-
tures, including glottal source features, spectral and cepstral
analysis (using MFCCs) to achieve 0.78 accuracy, 0.80 sen-
sitivity, and 0.77 specificity when classifying healthy and
pathological voices from HUPA, whereas for SVD yields
0.74 accuracy, 0.75 sensitivity, and 0.71 specificity. Refer-
ence [13] uses HMM to detect the pathological voices present
in the dataset with accuracy, specificity, sensitivity, and AUC-
ROC ranging 0.68 - 0.82, 0.53 - 0.83, 0.78 - 0.86 and
0.72 - 0.83 respectively, whereas we detect one pathology
each time against a balanced normomorphic subset and our
results coherently range 0.71 - 0.79, 0.68 - 0.80, 0.75 - 0.78,
and 0.77 - 0.87.
Metrics analysis confirms the different performance of

MEEI in relation to the other three databases. MEEI mean
levels for clean baseline are all in the same range for every

disease, with great accuracy, as expected, and sensitivity
levels, and very good specificity. This is due to the different
recording conditions for normal and pathological speakers,
and subsequent selection of disease affected utterances.
Observed performance difference when applying the

methodology to any other database comes undoubtedly from
the recording conditions. An inter-database MCT analysis is
interesting, as we can see how the performance for asymmet-
ric training in MEEI is not comparable to clean training with
UEX-Voice, SVD, and HUPA databases, what tells us that
MEEI database collecting methodology, including strictly
controlled environment along with screening and selection of
the included recordings, makes pathological voices easily dis-
cernible. This is an issue that has already been addressed, and
as such, should be only used as starting point, and for research
where classification accuracy is not the main goal [57], which
is the case.
MCT applied to speaker and speech recognition, fields

where this work is inspired from, gets results that support
the use of this technique in this scenario. Word accuracy
in [58] drops approximately 1% when a MCT with a SNR
of 20 dB is applied to the word recognition problem. Those
results encourage us to further study the capabilities of this
technique.

VII. CONCLUSION
We have studied the effects ofMCT approach in voice disease
detection from sustained vowel recordings. We made use
of MEEI, UEX-Voice, SVD, and HUPA databases healthy
samples and nodules, polyps, and Reinke’s edema affected
recordings. For every database-disease combination a set
of random forest classifiers was trained under four condi-
tions: clean, asymmetric corruption, symmetric corruption,
and patient-stratified symmetric corruption and their ability
to discriminate between healthy and pathological samples
using a set of acoustic features extracted from each condition
set was tested.
The noise used in the corruption strategies (asymmetric,

symmetric, and patient-stratified symmetric) was chosen and
added in a way that it accurately replicates the acoustical con-
ditions that could be found in a typical clinical environment,
either in its nature, selecting the appropriate sources, and in
its relative level with respect to the specific recording.
Symmetric corruption adds all considered noises to every

utterance in the database, performing also a data augmen-
tation schema. That augmentation has a great influence in
the outcome, leads to overoptimistic results if no further
subject-stratification is performed, and raises methodolog-
ical concerns due to the artificial increase of dataset size.
If the classifier is trained using a patient-stratified schema,
accuracy, specificity, and sensitivity values align with those
obtained using clean and asymmetric strategies, though vari-
ance is usually lower.
Asymmetric corruption, which adds noise to randomly

chosen samples from the database, causes only a small degra-
dation in accuracy, specificity, and sensitivity in every case.
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However, such degradation is small enough to consider the
accuracy-robustness trade-off beneficial. Furthermore, pre-
serving the dataset size makes this strategy the only one that
does not raise any concerns about its validity. We strongly
advise on using it as the methodology to be used in future
research.
The effects mentioned in the two previous paragraphs have

been observed in all databases, what allows us to consider
that the results can be extrapolated to new unknown inputs.
Further work would be necessary to check the consistency of
results using larger voice datasets (number of samples per dis-
ease andmulti-class classification) and increasing the number
of noise conditions (noise types and amount of samples per
type present in the noise database).
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Abstract:
Objective
Voice analysis based systems offer low-cost, highly available automatic diagnostic aid for Parkin-
son’s disease (PD) detection anywhere a smartphone with a broadband connection is available.
However, reliability depends on factors affecting the communication channel. In this paper the
effects of recording device mismatch are analyzed. Multicondition training (MCT) is proposed to
improve robustness against that mismatch.
Methods
An experiment on 30 PD patients and 30 healthy subjects was designed. 3 vocalizations of sustained
\a\ were recorded using a smartphone. These recordings, along with a simulation of 8 additional
smartphones, were analyzed. Acoustical features were extracted and averaged per patient and
recording device. Machine learning was used to distinguish healthy from PD patients by using
different combinations of train-test smartphones.
Results
By using the same device for training and testing, a 10% best-worse mean accuracy drop is observed.
The gap among different devices reaches 37%. MCT retains 90% of the maximum accuracy and
exceeds a 20% mean accuracy while lowers dispersion of the aggregated results obtained with single
condition. Smartphone position shows a direct impact on performance.
Conclusion
Recording device has a major effect on results. It is also found that positioning of the recording
device might also be influential. Using MCT appears to improve robustness.
Significance
Results support the use of mobile devices to create an automated PD detection test. It is also
encouraged to consider the use of MCT to obtain more robust and reliable results across different
devices.
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Abstract

Objective: Voice analysis based systems offer low-cost, highly available automatic diagnostic aid for Parkin-
son’s disease (PD) detection anywhere a smartphone with a broadband connection is available. However, reliability
depends on factors affecting the communication channel. In this paper the effects of recording device mismatch
are analyzed. Multicondition training (MCT) is proposed to improve robustness against that mismatch. Meth-
ods: An experiment on 30 PD patients and 30 healthy subjects was designed. 3 vocalizations of sustained \a\
were recorded using a smartphone. These recordings, along with a simulation of 8 additional smartphones, were
analyzed. Acoustical features were extracted and averaged per patient and recording device. Machine learning was
used to distinguish healthy from PD patients by using different combinations of train-test smartphones. Results:
By using the same device for training and testing, a 10% best-worse mean accuracy drop is observed. The gap
among different devices reaches 37%. MCT retains 90% of the maximum accuracy and exceeds a 20% mean accu-
racy while lowers dispersion of the aggregated results obtained with single condition. Smartphone position shows
a direct impact on performance. Conclusion: Recording device has a major effect on results. It is also found
that red positioning of the recording device might also be influential. Using MCT appears to improve robustness.
Significance: Results support the use of mobile devices to create an automated PD detection test. It is also
encouraged to consider the use of MCT to obtain more robust and reliable results across different devices.

Keywords: Parkinson’s disease, Microphone simulation, Machine learning, Diagnosis aid, Channel mismatch,
robustness.

1 Introduction
Parkinson’s disease (PD) is a neurodegenerative disorder usually classified as a motor function disease. It is char-
acterized by the presence of bradykinesia, rigidity and tremor [1]. It is estimated that more than 8 million people
worldwide suffer from PD. The population group aged over 65 accumulates most of the patients, and the percentage
rapidly grows as the population reaches 80 years old. The prevalence shows an age-standardized rate of 106.28 per
100,000 inhabitants, with an increasing percentage change of 155.5% in the 1990-2019 period [2].

A reliable diagnostic test for PD has yet to be available. A range of novel techniques have been developed in
order to obtain an early PD diagnosis. Examples are found in [3], using electroencephalograms; [4] finds markers in
magnetic resonance images; or [5], analyzing motion of upper and lower extremities. However, their availability as a
general diagnostic method is low.

Voice analysis has been proposed as a non-invasive low-cost method for PD detection and assessment. 75%-95% of
people with PD suffers from some sort of speech impairment [6], so voice analysis is a potential candidate to become
an additional biomarker that can be used for PD diagnosis. This has led to the research of early detection of PD by
analyzing different aspects of voice impairment, for which sustained vowels [7], running speech [8], and diadochokinesis
tests [9] have been considered. Also, a variety of machine learning techniques have been proposed, from classical
approaches [10] to state-of-the-art deep learning methods [11]. [12, 13] provide a thorough review of voice assessment
approaches in the context of PD and other diseases.

One of the advantages that these non-invasive diagnostic techniques offer is ubiquity. The omnipresence of mobile
technology allows to carry a recording device with broadband connectivity in the form of a smartphone. This technology
gives both practitioners and patients access to advanced diagnostic aid tools almost everywhere. In fact, PD related
telemedicine systems have long been developed [14], with a recent focus on mobile devices [15, 16].

The concept of channel robustness is commonly applied in relation to speech classification systems, meaning that
perturbations affecting the channel do not critically decrease the system performance. The use of the term robustness
with this meaning is often present in the scientific literature related to speech classification systems [17].
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Channel robustness covers several factors that may produce variations in the outcomes of the experiments (noise,
differences in the recording device. . . ). In this work we focus on recording device variability. Most studies refer to a
single recording device for all of their voice samples, while those showing a variety of devices, it is due to the use of a
variety of databases. As a consequence, they do not offer isolation of a single element on the channel, since recording
environments are markedly different. This leads to lack of generalization, a common problem in machine learning
known as domain adaptation. Training datasets are often small compared to the target population, and testing data
sources do not often match training data [18].

These differences can even cause an unnoticed bias, leading to unwanted discrimination [19]. However, little effort
has been made in studying the variability induced by differences in the communication channel. To the authors’ best
knowledge, [20] is the only published study about the robustness of telemonitoring systems against the impact of such
differences, in this case mobile telephony network. In fact, it points out the need of a detailed microphone comparison.

In the present study we isolate the recording device and focus the attention on the effects of this element of the
communication channel. The research hypothesis is that the recording setup has significant impact on the outcome of
the classifier, especially if the training process is made using a dataset obtained with a different setup than that used
to record new unseen samples.

First, we study robustness against recording device variability of an automatic detection aid system. Then, we
propose multicondition training (MCT) [21] as a useful generalization technique: we test its ability to improve robust-
ness against differences between training and application devices. We show that this technique increases the ability of
the machine learning model to distinguish healthy from PD diagnosed subjects when tested against previously unseen
recording devices.

2 Materials and methods
The influence of smartphone as recording device has been studied by means of simulation. We used an in-house
collected voice database, and designed a methodology to add the recording behavior of an assortment of smartphones
to the recordings. Later, we trained a machine learning classifier to test the differences on classification accuracy due
to the smartphone change. The following subsections provide details on each element of the experiment.

2.1 Participants
60 subjects volunteered for the experiment: 30 of them affected with PD, and 30 of them healthy. This number is in
line with other research on PD assessment using vocal recordings [22, 23]. All subjects affected by PD were recruited
in collaboration with the Asociación Regional de Parkinson de Extremadura (ARPE). The inclusion criteria were that
all of them should have been formally diagnosed with PD, and that their medical reports were available.

Healthy subjects were later recruited to approximately match the age and sex distribution of PD patients with the
only requirement of neither having been diagnosed with PD nor having PD related symptomatology at recording time.
All participants signed an informed consent. The research protocol was supervised and approved by the Bioethics
Committee of the Universidad de Extremadura.

The group of people with PD is composed of 24 men and 6 women, with mean (standard deviation) age of 70.27
(9.54). The time since diagnosis was 9.93 (6.16) years. The Hoehn and Yahr stages ranged from 2 to 3, with a median
stage of 2.5, i.e., patients in a mild-to-moderate condition. All the subjects were medicated with levodopa and the
mean time since the last intake was 2.21 (1.32) hours.

2.2 Vocal task and recording equipment
For each subject included in the study, three different recordings were performed in a single session. Subjects were
asked to vocalize an open \a\, for at least 5 seconds, as steadily as possible in both pitch and volume. Open \a\ is
commonly used in research on automatic detection and assessment systems for voice impairment related diseases. Its
ubiquity throughout different languages, and the simplicity of the experimental settings involved are the main reasons
[10, 24].

The voice recordings were made using the same smartphone, model BQ Aquaris V, at a same sampling frequency
of 44.1 kHz, and resolution of 16 bits. The setup for each recording session was the same: the distance from the
speaker’s mouth was about 30 cm, with the smartphone horizontally held, touchscreen up, and oriented so that the
microphone points directly towards the source.

All the recordings were performed in the same room at the ARPE facilities under similar acoustical conditions.
The room was not acoustically treated, although at recording time it was quiet. A trained person was present at all
times in each recording session to ensure that all the participants properly followed the protocol, and to register the
required complementary information.
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Before any computation was made, all of the recordings were trimmed down in order to eliminate any leading or
trailing silence. Also, one second segments were used to extract the considered speech features (see section 2.4), a
duration deemed long enough [25]. This process was performed using Audacity software (release 2.0.5).

2.3 Recording device simulation
Different devices record the same sound in a disparate way, given the dissimilarities in design, component selection,
and construction. The divergence can go from subtle, when comparing two specimens of the same model, to wide,
when comparing models from different manufacturers, age, price range, or other features.

For our purposes, the ideal situation would be being able to record the same vocalization simultaneously using as
many smartphones as possible. However, this situation is far from feasible: two devices can not be in the same position,
and location influences the voice acquisition process since the human voice is not omnidirectional [26]. Furthermore, to
the authors’ best knowledge, database collection for any PD study has not considered the recording device variability
problem.

Smartphone influence goes far beyond pure microphone frequency response. The recording system of a modern
smartphone might include signal processing such as noise cancellation, compression or equalization. However, vendors
do not offer information on their recording stacks. For that reason, recording device simulation seems to be an adequate
alternative.

Having access to the original recording device, and to an assortment of smartphones, we can experimentally
determine their individual frequency responses. We can process the recordings so that we subtract the effects of the
original device, and estimate what the recording would have been if some another device had been used instead.

For the smartphone simulation, eight different devices were considered: Apple iPhone (model A1533); Apple iPhone
S and Apple iPhone S(2) (model A1688), without and with an external battery attached respectively, which alters the
microphone opening; iPhone SE (model A2296); OnePlus Nord (model AC2003); Realme 8 (model RMX3241); Redmi
Note 9 Pro (model M2003J6B2G); and Samsung A51 (model SM-A515F/DSN). The selection criteria was having a
variety of manufacturers, with high market penetration and relatively affordable. Microphone placement for each of
them is shown in Fig. 1.

We followed the IEC 60268-4:2018 standard for microphone testing to the extent possible. It describes the way
a microphone should be tested in order to obtain its characteristics, including frequency response and directional
pattern. The standard is intended for stand alone microphones, thus not all requirements could be fulfilled since
smartphone recording is a black box where processing is unknown.

Testing was made in an anechoic chamber located at Array Processing Lab (Universidad de Valladolid). The
loudspeaker model was Hedd Audio Type 07, which has a frequency response of -3 dB in the range 38-40,000 Hz. As
for the reference microphone, we used Behringer ECM8000, with a frequency response of -3 dB in the range 20-20,000
Hz. The frequency swipes and recordings were made using Audacity software (release 2.0.5) and the sound interface
was TASCAM US-322.

A total of 4 different orientations were tested: 3 different pitch angles (rotation around X-axis): 0°, position 1,
Fig. 2a; 45°, position 2, Fig. 2b; and 90°, position 3, Fig. 2c. The device microphone as the center point for rotation
was always considered, thus microphone placement relative to the sound source remained the same. Also, an extra
position was tested by placing the smartphone on a horizontal surface as could be a table, which is not considered in
the standard, Fig. 2d.

For positions 1-3 the sound source was located at a distance of 30 cm from the microphone and, due to the technical
difficulties of placing the reference microphone and the device under test in the exact same spot in space, substitution
method was discarded and simultaneous comparison method was used. For position 4, distance to the sound source
was located 20 cm over the horizontal plane where the smartphone is lying, and the distance to the source was still
30 cm. In this case, substitution method was used, placing the reference microphone without the horizontal surface
present in the same spot as the smartphone microphone would later be placed.

A continuous frequency sweep was performed in the 0-22,050 Hz range which, along with distance to the source,
follows IEC 60268-4:2018 standard. Fig. 3 shows the magnitude of the Fourier Transform for a sample recording using
each device simulation in each position.

Given that 1 second length recordings were used, at a sampling rate of 44,100 Hz, frequency responses were obtained
with a resolution of 1 Hz. The frequency gains for BQ Aquaris-V were subtracted from each recording spectral analysis
to obtain a “clean” recording without device influence. Then, frequency gains for each device were added so we could
simulate each device influence. The gains were applied by transforming the signal to frequency domain using Fourier
Transform, operating with the gains obtained for each device, and reconstructing the signal by means of Inverse Fourier
Transform.
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(a) BQ Aquaris. (b) Apple iPhone. (c) Apple iPhone S.

(d) Apple iPhone S(2). (e) Apple iPhone SE. (f) OnePlus Nord.

(g) Realme 8. (h) Redmi Note 9. (i) Samsung A51.

Figure 1: Microphone placement for all the devices.

2.4 Feature extraction
35 features were initially considered, including Cepstral Peak Prominence, Correlation Dimension, First Minimum
in Mutual Information, Glottal to Noise Excitation, Harmonic to Noise Ratio, Hurst’s Exponent, Jitter, Lempel Ziv
Complexity, Mel Frequency Cepstral Coefficients, Multifractal Spectrum Width, Permutation Entropy, Pitch Period
Entropy, Recurrence Period Density Entropy, Shannon’s Entropy, Shimmer, and Zero Crossing Rate.

More detailed information on the considered features can be found in [12, 27]. They have been widely used in
studies on pathological speech since they measure different speech impairment aspects. Also, a feature selection process
is performed (see Subsection 2.5) to select and employ only the most useful ones.

2.5 Variable selection and classification
As stated in section 2.2, three vocal samples were collected from each participant. Those samples were individually
processed, simulating 8 additional devices in 4 positions, and totaling 36 device/position combinations. Features
were extracted for all the subjects, obtaining a data matrix of 180 voice samples × 35 acoustical features for each
combination. Later, the values for each feature were averaged per patient, reducing the matrix size to 60 × 35 and
the result was used as input data.

Different experiments were conducted by changing train and test datasets. For each device/position combination
we built a machine learning model consisting in three steps: feature selection, grid search, and classification. The
goal was to maximize accuracy. This process follows the methodology shown in [27]. In this case, we used a passive
aggressive classifier because it yielded high accuracy levels and low computation times in early research stages.

The initial number of features is large compared to the number of voice samples, with a ratio close to 1/2. This
could lead to overfitting problems in the train phase, and limited statistics for valuable results. Therefore, reducing
the number of features is a critical step in the pipeline.
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(a) Position 1. Horizontally suspended. (b) Position 2. 45° slant suspended.

(c) Position 3. Vertically suspended. (d) Position 4. On a table.

Figure 2: Test setup for each source-smartphone positioning.

Feature selection was performed using Recursive Feature Elimination with Cross Validation (RFECV). This tech-
nique obtains an optimal size smaller feature subset by discarding the least important features in an iterative process.
This was repeated 500 times using a 2-fold cross validation scheme. The number of repetitions was chosen looking for
stability, and is based in the law of large numbers (LNN), which states that the larger the number of trials, the closer
to the expected value the average will be. The resulting subsets were stored and used in a sorting mechanism so that
the features could be ranked by their prevalence in the selections. This ranking would be later used to obtain a small
working subset.

Grid search looks for the best hyperparameters given a dataset and a classifier. A passive aggressive classifier was
used, matching the one used in the feature selection step, and training data was set to match feature selection as well.
At this point, the system must be oblivious to the testing samples to be used.

Finally, for each train/test device and position combination, we found the feature subset that yielded the best
accuracy for that specific combination, which brought to an end the feature selection process. Those subsets are small
compared to the initial one, therefore small compared to the dataset size, alleviating the feature number to sample
size ratio problem. To obtain these small sets we trained the classifier 35 times using the n most important features
according the rank obtained in the feature selection phase, being n = 1 . . . 35. Finally, we found which classifier yielded
the highest accuracy, thus finding a small feature subset for each cross validation split. This was repeated for each
train/test device and position combination.

We used a stratified shuffle and split strategy as model validation and generalization technique. Cross validation
enables us to generalize the performance of the machine learning model and obtain an estimate of the classification
accuracy if tested against new samples, as long as those samples come from a dataset with similar statistical charac-
teristics. We are looking specifically towards the influence of recording devices on the outcomes. Therefore, it is of
interest to maintain every other constraint constant. Stratification ensures that the proportion of healthy/pathological
subjects is constant across training and testing sets. The number of splits was 1000, with a 2/3 (40 subjects) training
size and 1/3 (20 subjects) testing size. The number of splits was chosen based on LNN.

Also, random sampling was conditioned so the n-th split for each phone-position combination selects the same
individuals for testing and training, thus the differences in accuracy can only be attributed to splitting.

2.6 Multicondition training
Whenever a classifier is built with samples from a single data acquisition setup, the system may specialize in the
environmental characteristics of the experimental setup, and may lack accuracy if tested with samples from other
sources. Therefore, it is necessary to develop strategies to avoid this problem. MCT, which takes into consideration
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(d) Position 4. On a table.

Figure 3: Test setup for each source-smartphone positioning.

the variability of acquisition conditions in the training dataset [21], has proven to be useful to improve robustness of
classifiers for Reinke’s space diseases in an environment affected by noise [28].

Differences in the recording equipment and its relative position to the subject may also degrade the performance
when this source of variability has not been taken into account in the training process. The robustness of a multicon-
dition trained classifier based on the different smartphone frequency responses has been tested. The performance of
this system is compared with the aggregated results obtained when training with a smartphone recordings and testing
with a different smartphone; the aimed improvement should be assessed not only in the mean accuracy, but also in
the dispersion of the results obtained.

Among the different multicondition strategies available, [28] has shown that asymmetry (using only one recording
per subject independently of the number of recording conditions present in the dataset) is the right strategy.

Training phase for MCT follows the same schema than single condition training: A feature selection phase, followed
by grid search and classification. Two different approaches were studied: First, each recording in the train set was
affected by a randomly selected device, and all the recordings in the test set were affected by the same device, named
all to one; secondly, both train and test sets were affected by a randomly selected device, named all to all. The devices
were chosen so that the proportion of recordings affected by each device was constant, with the limitation of split size
and number of devices being coprime integers.

Finally, the umpteenth split for each cross validation step selects the same individuals for each set, which are also
the same individuals for the n-th split in single condition training (see Subsection 2.5). Thus, the differences in results
between steps in cross validation are to be attributed only to splitting, and the differences between single, all to one
MCT, and all to all MCT, can be attributed merely to the training strategy.

2.7 Statistical analysis
Descriptive statistics such as mean, standard deviation, and coefficient of variation have been considered. Coefficient
of variation is a dimensionless relative dispersion measure that is defined as CV = s/x̄, where s stands for standard
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deviation and x̄ for mean. Statistical hypothesis tests have been used to report statistically significant differences be-
tween groups. When normality condition could be assumed, unpaired t-tests for the homoskedastic and heteroskedastic
cases were applied because of their statistical power [29]. Otherwise, the non-parametric counterpart (Mann-Whitney
U test) was applied [30]. Both tests provide a p-value that can be thought of as the probability of finding the data
under the assumption of the null hypothesis, i.e. under the hypothesis of no difference between groups. P-values lower
than 0.05 reported statistically significant differences.

3 Results and discussion
We have studied the influence that changing the recording device and its relative position to the subject might have
on the performance of the system.
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(c) Position 3. Vertically suspended.
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(d) Position 4. On a table.

Figure 4: Classification accuracy obtained with every training-testing device combination for each of the device
positions considered.

Fig. 4 shows the accuracy obtained for all the combinations for training device, testing device, and position, as
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discussed in section 2.3. It is noticeable how the BQ Aquaris-BQ Aquaris-Position 1 combination yields the best
accuracy overall (0.822). The original recording device and experimental setup should be expected to get the best
results since the recordings have not been processed and nothing had to be simulated.

Not every position shows an even behavior. Fig. 4c shows a higher homogeneity in results for position 3, with
a more equal “heat” across all training-testing combinations than Figs. 4a, 4b, and 4d. For a smartphone common
use case, the microphone points towards speaker’s face when the user is making a phone call; that direction is normal
to the smartphone screen so it is pointing towards sound source in position 3 experiments, which explains the good
results.

Position 4 yields surprising results, overperforming positions 1-3 in 49, 43, and 47 out of 81 combinations, respec-
tively. It is commonly advised for any measurement procedure where microphones are involved that the microphone
should be far enough from reflective surfaces [31]. However, in our experiments, placing the phone on a horizontal
surface shows better behavior than positions 1 and 2.

Table 1 is consistent with this analysis. It shows the mean value and coefficient of variation for all the accuracies
shown in each Fig. 4 subfigure. Mean accuracy increases from position 1 to position 2, and from position 2 to position
3, while the coefficient of variation decreases. This explains the homogeneity perceived for position 3 where the "heat"
seems more evenly distributed in the subfigure. Also, accuracy values are higher in general.

Position
1 2 3 4

Average 0.701 0.718 0.729 0.731
CV 0.103 0.085 0.052 0.073

Table 1: Average accuracy and coefficient of variation for each subfigure in Fig. 4, training and testing with a single
device.

Position 4 shows higher mean accuracy than position 3, and positions 1 and 2 consequently. However, the coefficient
of variation is higher than that of position 3, showing a slight advantage for the latter, while it is still lower than the
coefficients of positions 1 and 2. This places position 4 as the second best setup, very close to position 3. Given the
sound source position relative to the microphone, the smartphone angle is α = arcsin(20/30) ≈ 42◦, close to that of
position 2. The reason for this improvement is not clear: reflections on the surface and resonances should be accounted
for, and, instinctively, one might expect a degradation in performance, but the data shows the opposite.

Every combination other than BQ Aquaris-BQ Aquaris should be affected by the simulation, with some undeter-
mined side effects than might induce error into the system. However, looking at the main diagonal in Figs.4a-4d, where
the training and testing recording/simulated device is the same, it is shown that the performance of all the systems is
similar regardless its position, showing accuracies in the 0.73-0.82 range. This combination is always at least a 89%
of the BQ Aquaris-BQ Aquaris-Position 1 combination, thus retaining most of the classifying ability.

Furthermore, the matched diagonal elements seem to yield better results than mismatched experiments. This is
supported by the statistical analysis shown in Fig. 5 and Table 2. Mean accuracy for matched devices is almost even
across all positions, in the vicinity of 0.77, whereas mismatched experiments lose between 11% and 7% depending on
the position. Error bars shown in Fig. 5 underline the improving effect of matched over mismatched experiments.
A hypothesis test has also been applied. The results reveal that in all positions there exist statistically significant
differences in accuracies between matched and mismatched conditions, being the values for mismatched lower. All
p-values were lower than 0.001.

Based on the matched-mismatched differences in accuracy, we proceeded to train the system under an MCT schema,
testing its capacity to improve the system robustness. Fig. 6b shows results for the experiments carried out: For
each position we train the classifier with a mixture of multiple recording devices and test their abilities against an
individual device recordings. It is worth noting that for MCT the train/test split is stratified in both PD/healthy

Position Type N Mean Stand. Dev. P-value

Position 1 Matched 9 0.778 0.025
<0.001Mismatched 72 0.692 0.071

Position 2 Matched 9 0.777 0.022
<0.001Mismatched 72 0.710 0.061

Position 3 Matched 9 0.768 0.018
<0.001Mismatched 72 0.724 0.037

Position 4 Matched 9 0.779 0.017
<0.001Mismatched 72 0.725 0.053

Table 2: Count, mean, and standard deviation for one-one comparison.
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Figure 5: Classification accuracy obtained with every training-testing device combination for each of the device
positions considered.

ratio and recording device prevalence, so differences in results can be attributed, like in single condition experiments,
to the patients selected for each cross validation split.

For comparison purposes, we show in Fig. 6a the row-wise mean accuracy obtained in Figs.4a-4d. Each column
summarizes results for single phones as test devices in a position. We can see that in this situation MCT improves
the mean classifier performance for each position and for each recording device under test, since the results exceed
the equivalent mean values for all the combinations. Exceptions are found in position 2-iPhone S(2), position 2-
Realme 8, position 3-Samsung A51, and position 4-Realme 8 simulations. However, these exceptions in MCT barely
underperform a 2% from the mean, whilst the mean improvement in accuracy due to MCT is about 4%, with peaks
of 8%.

The fact that MCT gets better average results and lower error (Fig. 7) points out that MCT might contribute
to build more robust systems. This is also backed by the statistical analysis results shown in Table 3: the difference
between MCT and SC is more than one standard deviation apart and shows statistically significant differences (p-value
< 0.05). This underscores the MCT usefulness to improve robustness. Position 2 is an exception to this, although its
p-value is 0.058, very close to statistical significance.

Comparing position performance, both position 1 and position 2 seem more homogeneous with MCT (Fig. 6b)
than they do without using it (Fig. 4a). Also, the growing trend of accuracies for positions 1, 2, and 3 appears to
remain with MCT, and position 4 still rivals with position 3 results. This qualitative analysis is supported by Table 4:
Compared with Table 1, averages obtained per position are higher with MCT in all cases, and coefficients of variation
are lower as well. It is remarkable how, in this case, position 4 yields the best results, beating those obtained for
position 3.

Finally, Table 5 shows the results obtained for an all to all MCT experiment (using a train set and a test set built
with a mixture of all recording devices). The average accuracy values for positions 1-4 are consistent to the mean
accuracy shown in Table 4 as should be expected: the low all to one CV values suggest that an all to all experiment
should yield an average close to the mean average of the all to one experiments, which is the case. In fact, the difference
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Figure 6: Comparison between mean accuracy obtained attending to position. Mean testing device accuracy versus
MCT mean accuracy.

Position Type N Mean Stand. Dev. P-value

Position 1 SC 9 0.701 0.033 0.040MCT 9 0.728 0.028

Position 2 SC 9 0.718 0.018 0.058MCT 9 0.738 0.028

Position 3 SC 9 0.729 0.017 0.006MCT 9 0.753 0.015

Position 4 SC 9 0.731 0.024 0.004MCT 9 0.762 0.006

Table 3: Count, mean, standard deviation, and p-value for MCT and SC.

Position
1 2 3 4

Average 0.728 0.738 0.753 0.762
CV 0.039 0.038 0.020 0.008

Table 4: Average accuracy and coefficient of variation for each column in Fig. 6b, MCT with all the devices and
testing with a single device.

of Table 5 values from those shown in Table 4 is lower than 0.01% in all cases, and specifically lower than 0.001% for
positions 3 and 4. Those results lie within error in positions 3 and 4, which are consistently yielding the most stable
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Figure 7: Classification accuracy obtained with every training-testing device combination for each of the device
positions considered.

Position
1 2 3 4

Average 0.724 0.734 0.754 0.762

Table 5: Mean accuracies for MCT, all devices in training and testing sets.

results.
For the sake of completeness, since in diagnostic tools sensitivity and specificity are important metrics, we also

include their values as supplementary data. In the case of MCT, the mean sensitivity (specificity) values obtained
after testing will all the devices, are 0.737 (0.711), 0.744 (0.724), 0.772 (0.737), 0.782 (0.743), for positions 1, 2 ,3 and
4, respectively. Therefore, the proposed MCT system is more sensitive than specific. In the case of a screening test
for a disease, the role of sensitivity is more critical than that of specificity

Although the goal of this study is to analyze the effects of changing the recording device, accuracy obtained for
the realistic scenario, where we use BQ Aquaris smartphone for both train and test phases, is on par with related
literature. For example, [32] uses a variety of phonemes from PC-Gita and Viswanthan’s databases for PD detection.
Using \a\ phoneme it reaches an accuracy of 0.693 and 0.858, respectively. On its side, [33] uses Neurovoz, ItalianPVS
and mPower databases with accuracies of 0.854, 0.990, and 0.754, respectively, always using \a\ phoneme.

There have been some efforts in studying the reliability of smartphones as a source of data for voice health
assessment [34, 35]. They show that certain features are more affected than others, and consider smartphones as
a valid recording device. They compare the error of an assorted set of smartphones performance against a studio
microphone, but do not get into the automatic assessment phases.

Regarding selected features, there exists a high variability on experimental conditions: 9 single condition feature
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selection experiments per position; 1 multicondition feature selection experiment per position in all to one configuration;
and 1 in all to all configuration. However, an examination of the most selected features shows that, for each experiment,
the 10 most used features are a subset of the following: Glottal to Noise Excitation, Lempel Ziv Complexity, Mel
Frequency Cepstral Coefficients 3, 5, 6, 9, 10, 11, 13, Cepstral Peak Prominence, and First Zero in Correlation
Function.

Those features are usually considered in scientific literature [12]. Some of them also stand out as reliable: in [33],
experiments with different databases show that MFCCs are usually ranked among the most important features they
considered. The prevalence of the aforementioned features across every experiment shows that, for PD, these might
be the most robust ones among the features considered, which should be further investigated.

All of the experiments were designed having in mind that future health telemonitoring, specifically voice assessment,
and particularly PD diagnosis and monitoring, will probably be linked to the development of smartphones and their
capabilities. Many efforts have been already made, like mPower initiative [36], recruiting volunteers and recording
their voices among other motor and cognitive tests for PD monitoring, or Parkinson Voice Initiative [37], collecting
telephone-quality recordings from subjects from seven different countries. In the case of PD, [20] suggests the necessity
of a detailed comparison of different microphones from different smartphones to complete the analysis of the full
communication path in a hypothetical telemonitoring system.

This paper fills that gap. Results obtained in matched conditions show that most modern smartphones provide
adequate recording systems for this particular application. Furthermore, the quality of the recording device is not
nearly as important as a right setup for experimentation. It is worth stressing that in this paper we do not intend to
recommend a specific recording device, but to underline the importance of training with a variety of sound sources.
Environmental influence has been tested in previous work [27, 28]. The present paper complements them in channel
description even though those studies revolve around voice conditions other than PD.

However, the results can be transposed to any other condition. The experiments test the influence of recording
device and their positioning in the outcome of a statistical learning algorithm. The fact that we can compare positioning
of the same device allows us to discard any other influential factor, since the experimental setup fully isolates the
considered variables. The differences in simulation between two different positions given a smartphone, or between
two smartphones having selected a position, can only be attributed to that change, as the anechoic chamber eliminates
any noise source other than those inherent to the recording system, and the ones already present in the original
recording.

Moreover, the present results can be further extended to any other telemonitoring setup. In this paper, we have
considered .wav lossless voice recordings. Other efforts in telemedicine development use real time connections. To the
authors’ best knowledge, influence of other channels than that of cell phone networks have not been tested. However,
there is a wide range of commercial voice over IP solutions, and it is a hot topic in communications development
mostly due to current teleworking needs. All of these solutions will necessarily be placed after voice sampling, and
therefore the recording setup would have an influence on them all, whether it is live or recorded.

4 Conclusions
We have studied the effects of smartphone selection and placement in the accuracy of an automatic detection aid
system for PD based on voice recordings. Experimental results indicate that it is a good practice to test the system
using recordings obtained with the same device used for testing. If we acknowledge the variability in recording devices
used for a widespread technology, results may vary. Differences up to 37% were found when using other smartphone
than that used for training.

We have also proposed a methodology to overcome the limitation in recording device selection by using MCT.
This technique offers lower results dispersion with an increase in accuracy compared to the averaged results of single
condition. However, further studies would be required to increase the statistical power of the results, involving a
higher number of voice samples.

Also, we have found that recording device position relative to the speaker has a high impact on results. Holding
the phone vertically right in front of the speaker yields the best results, and placing the phone atop a table is the
second best option.
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7.1. SUMMARY OF THE RESULTS CHAPTER 7. RESULTS AND CONCLUSION

This chapter summarizes the most significant contributions arising from the exposed research
work. Also, a conclusion and a discussion on future research lines is included.

7.1 Summary of the results

This thesis represents a scientific advance in terms of robustness of automatic detection systems for
diseases that affect voice production. Regardless of its final purpose, the work has covered the whole
development cycle for machine learning models. As such, conclusions and results can be extracted
for every step in the process. Concrete solutions for specific problems associated to the nature of
the task in hand have been proposed. Also, different health conditions have been studied, covering
organic vocal fold pathologies, such as nodules, polyps and Reinke’s edema, and a neurological
disease (PD), and similar challenges were raised for all of them. Domain adaptation and high
bias emerges as a methodological problem that has been addressed by introducing multicondition
training. The results presented have been obtained by following a rigorous methodology based on
balanced datasets regarding age and sex in all the experiments in which the same approaches are
applied on different databases in a comparative way; comparable disease stages between datasets
have been considered where possible; also, cross validation is based on multiple iterations to reduce
results variability. The following subsections address the most significant results.

7.1.1 Performance assessment of automatic voice evaluation systems for
disease detection

Differences in recording conditions have a direct impact on the performance of the resulting ma-
chine learning model. These differences include, but are not limited to the following aspects:
room, background noise, and recording device. Model generalization becomes a difficult task due
to specialization in the specific recording conditions of the sample population. Alteration of a
single factor can have a great impact. This behavior has been observed for every disease under
consideration, and for each isolated noise source studied. Lack of qualified supervision in the data
collection process is also an aspect that might critically impact performance.

Mismatched noise and recording device conditions

Mismatched noise conditions are challenging scenarios for the applications considered. This work
has shown and quantified the degrading impact of additive noise on automatic systems based on
acoustic features for detection of nodules and Reinke’s edema. An aspect to highlight is that
the study used real-world nonstationary noise specifically recorded for this purpose in a clinical
environment, showing a lower impact than that observed when white noise was added, but still
detrimental (Madruga et al., 2021a).

Healthcare is becoming mobile and ubiquitous based on a wide variety of available devices with
the ability to collect data. Future exploitation of the full potential of automatic voice condition
analysis systems requires considering mismatched recording device conditions. A novel contribution
of this thesis is the assessment of the impact that smartphone model and position may have in PD
detection aid systems based on speech. The investigation showed differences in detection accuracy
up to 37% when using other smartphone model than that used for training. It also showed that
recording device position relative to the speaker has a high impact on the results, being the best
position holding the phone vertically right in front of the speaker (Madruga et al., 2023).

Tolerable noise levels

Not all the noises that have been induced in the communication channel are measurable. For
example, smartphone simulation effects cannot be measured in terms of Signal-to-Noise ratio.
However, the additive noises studied allow for an estimation of the maximum noise level allowed
for a machine learning CAD model to be moderately good. In absence of mitigation strategies, the
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minimum Signal-to-Noise ratio can be established at 30 dB, by allowing an accuracy degradation
not higher than 10% if we consider the in-house database, real noise and both nodules and Reinke’s
edema pathologies (Madruga et al., 2021a).

Impact of non-controlled conditions

mPower PD database provides data sent by volunteers under a variety of realistic acoustic envi-
ronments and without control. This means that each volunteer sent their own voice recordings and
complementary information without any professional supervision. A decisive step in the field of
automatic voice condition analysis for PD detection would be to obtain systems that are reliable in
such real-life scenarios. On the other hand, an in-house database, collected using the same smart-
phone and room under trained supervision, was recorded. By application of the same methodology
on the in-house and mPower databases and the realization of cross-database experiments it has
been shown that the performance of a PD detection system decreases in the case of an unsupervised
database and strongly drops in cross-database tests (Carrón et al., 2021).

7.1.2 Strategies to performance robustness improvement

Once the system performance is assessed and the problem is identified, strategies to improve
robustness were defined, implemented and tested. The main results are summarized next.

Semi-controlled scenarios

The performance degradation observed using voice recordings from non-controlled scenarios allows
to encourage the use of semi-controlled conditions, i.e., voices recorded at home by the patients
themselves following a strict recording protocol and control of the information about patients by
professional supervision.

The relevant clinical information is provided by the physicians. However, general practitioners
(in the context of triage for diagnosis) or patient and caregivers (in a PD monitoring application...)
should receive some initial training after which a test should be mandatory to ensure that the
speech protocol is fully understood and that the user has some control on the acoustic environment
regarding noise level. Within this framework, recordings would be submitted via smartphone from
different environments. The semi-controlled scenarios have shown great potential to be useful in
real clinical applications.

Multicondition training

Multicondition training has proven to be an effective technique to tackle the problems associated
with restricted development populations. These problems lead to high bias since the variability
shown is small compared to the target population. Moreover, research in this field has so far
restricted the recording environment, further reducing the sampling variability.

The multicondition training strategies proposed in this work are based on asymmetric ap-
proaches, in which the development datasets equal the size of the original datasets. Symmetric
approaches are affected by methodological concerns and the only purpose to test them within this
work in comparison to asymmetric ones is to emphasize these issues (Madruga et al., 2021b).

The use of multicondition training strategies, bounded by the statistical limitations due to
database size, has shown to be beneficial. Inclusion of multiple noise sources (Madruga et al.,
2021b) or a variety of recording devices (Madruga et al., 2023) in the training phase leads to
an improvement of robustness. Not only the individual performance for noise mismatched train-
test sets is improved, but also dispersion is lower. Hence, global performance is improved, and
reliability enhanced. These effects are shown by the fact that, by using multicondition training,
the tolerable noise level for classifier training can be lowered to 20dB instead of the 30dB level
estimated in Madruga et al. (2021a). It is also noteworthy that multicondition training improves
model performance irrespective of the classifier used (Madruga et al., 2021b).
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Replication strategy

Voice databases have been shown to be relatively small in this particular research field. This is 
likely to increase bias in the models. Intra-subject variability associated with the participants has 
been addressed. Imperfections in technology and the very biological variability produce replicated 
recordings for which results from signal analysis are not identical, even if they correspond to 
the same subject at a concrete moment, in the same acoustic environment, and using the same 
recording device.

Taking within-subject variability into account has also made it possible to propose strategies to 
obtain more stable results. Specifically, regularization techniques were proposed, and have proven 
to improve model performance by taking into consideration multiple experiments coming from the 
same individual, aggregating the results into a unique feature set.

Experimental results consistently show that the classifier should only see each participant once, 
either in train or test phase. This result, in addition to the regularization technique used per 
individual, suggests that the best way to lower model bias is taking multiple samples from each 
participant, apply regularization, and use these aggregations as unique inputs per patient. In an 
application context that considered Reinke’s edema detection, the replication-based regularization 
methods proposed have proven to provide a more stable performance than independence-based 
methods (Naranjo et al., 2021b).

Feature robustness and gender dimension

Classifiers and variable selection methods play a very relevant role as a strategy to make the process 
more robust. A wide range of methods have been tested. For each disease and noise source studied, 
a full model was developed. This includes the feature selection phase for each scenario. Therefore, 
any feature that happens to be commonly selected, especially under noisy conditions, may be 
deemed as noise robust. Passive-aggressive method as a classifier and a variable selection approach 
based on relevance of the features have provided the best results in the multicondition training 
frameworks. The following features have been the most relevant in noisy scenarios, regardless of 
the noise origin: Permutation entropy (PERMUTATION) stands as a good predictor for nodules, 
Cepstral Peak Prominence (CPP) for polyps and Glottal Noise Excitation (GNE) for Reinke’s 
edema (Madruga et al., 2021b).

Gender perspective in this research is relevant. There is a gender imbalance in organic voice 
diseases and in PD prevalence. Vocal apparatus disorders affect women more than men, whereas 
PD affects men more than women. This has been considered in the experiments by using different 
sample sizes and including a gender variable in the machine learning algorithms, although part of 
this information is underlying in the extracted features.

Novel publicly available electronic health record dataset

In the scientific l iterature, there i s a  l ack o f datasets r elated to this c ontext. This work a lso con-
tributed to the publication of open access electronic health record datasets of acoustic features 
extracted from healthy, nodules, polyps and Reinke’s edema effected voices. For noise multicon-
dition training, the data can be downloaded from Madruga et al. (2021c,d), for analyzing data 
coming from controlled voice recordings, see Carrón et al. (2023), and for voice recordings from 
non-controlled situations see Bot et al. (2016); finally, for a replication-based strategy, data can be 
found in Naranjo et al. (2021b). 

7.2 Conclusion and further research

The proposed CAD systems have a great potential to assist diagnosis and improve patient monitor-
ing of many detectable-by-voice diseases. The procedure is non-invasive, low cost, and potentially 
applicable remotely. It can help general practitioners to conduct triage and help in diagnosis and 
tracking the disease. The detectable-by-voice diseases can be highly benefited b y smartphone-
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based systems, due to different aspects such as increasing incidence, diagnosis prone to errors,
continuous monitoring, and remote control.

To ensure that a model is achieving its intended purpose, it’s necessary to consider, optimize
and check its performance in terms of robustness. The results obtained show the viability of
CAD techniques for clinical diagnostic aid, enhancing robustness by overcoming some limitations
present in the previous state-of-the-art. These limitations are related to at least the following
aspects: mismatched conditions with respect to the communication channel (noise and device);
methodological issues, such as the artificial increase of the sample size by using replicated recordings
as if they were independent; unbalanced datasets; and other methodological weaknesses present in
previous approaches. We can conclude that robustness of the proposed techniques is superior to
that of the state-of-the-art approaches available at the publication time.

Nevertheless, despite the methodological and empirical advances provided in this PhD thesis,
there is further research that can be conducted to bring these systems closer to real world clinical
practice. Further studies with other vocal tests are interesting to carry out. This PhD thesis
revolves around a single test: sustained /a/ sound. This is not the only option. It has the
advantage of universality, since it is a common sound on most languages. However, it focuses on
the vocal folds control. Other tests focus on other speech features. One example is diadochokinetic
test for PD. In this regard, one research paper showing the viability of the proposed techniques
for these tests is already under peer review (M. Madruga, Y. Campos-Roca, Carlos J. Pérez.
Enhancing robustness of automatic PD detection from diadochokinesis tests through the use of
noise multicondition training).

In that paper, speech features extracted from diadochokinetic tests have been used to measure
articulatory aspects of speech impairment in PD and the migration from lab conditions to real world
settings is faced by taking into account the corruption of speech by environmental noise. A mul-
ticondition training approach is considered for PD detection. Firstly, the experiments considered
single-condition (clean and specific noises) training. In a second step, noise-based multicondition
training is applied and the test is performed under different noisy conditions. The mean accuracy
rates show relevant improvement percentages. To the authors’ best knowledge, this is the first
strategy addressed in the scientific literature to deal with the potential corruption of speech by
environmental noise in the development of automatic PD detection systems from diadochokinetic
tests.

Database size plays an important role in training a new model. The methods proposed help to
overcome the limitations associated with low variability of recording conditions. This is the case
for the databases used for this research work, which are collected in a controlled and repeatable
environment. In this case, the noise was simulated in various stages of the communication channel.
A better solution for real world medical applications would be to develop models using heteroge-
neous and large databases. This would increase the recording conditions variability, and would
also yield more robust models, since multicondition training would be embedded in the training
dataset.

The feature extraction algorithms and machine learning methodology developed in this PhD
thesis are directly applicable for moderate size databases. However, if the database size is large
enough, deep learning algorithms could be used. Deep learning faces the same problems addressed
by this research work. Researchers already use similar techniques to avoid bias due to dataset size,
namely data augmentation. However, results obtained for replication strategies suggest that in this
case, intra-subject variability should also be taken into account. The integration of multicondition
training in a well developed deep learning strategy for voice recordings could lead to even better
results. Therefore, further research is encouraged.

In this work the models are trained to discriminate healthy from pathological voices by taking
into account only one disease. It is a common issue for this research field. Multi-class classification,
where a machine learning model is able not only to differentiate between healthy and pathological
voices, but also detect the specific disease that might affect each individual, has not been properly
addressed. This would allow CAD tools to move up from screening to diagnosis. In the case
of PD, the different Hoern and Yahr stages are of interest, whereas for organic voice diseases,
differentiating from vocal fold nodules, Reinke’s edema or other related voice disorders is of great
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help for triage or for diagnosis aid. The development of Bayesian hierarchical additive generalized
models properly addresses nonlinearity and may provide good results.

Another related problem is monitoring the progression of voice-detectable diseases. This is
highly relevant so that patients can receive continuous monitoring of the disease progression, since
the voice tests can be remotely applied. This would allow customizing the dose of medication
and its administration according to the evolution of patient symptoms. To address this problem,
longitudinal models are needed. Specifically, longitudinal additive generalized models are flexible
enough to handle this kind of data. The real problem is to recruit patients for the long term. This
requires a long and stable collaboration with medical institutions or patients’ associations. In this
way, an agreement has been signed with the Spanish Federation of PD, which gives access to a
great number of PD subjects that may compose a sample of sufficient size for future experiments.
The collaboration with the Otorhinolaryngology Unit of the Hospital San Pedro de Alcántara can
be reactivated any time.

Finally, in a longer term, the considered features can be combined with others such as eye-
related measurements, gait or tapping to produce a multimodal approach for PD. The features
should be able to be automatically collected by an easy-to-use mobile app, so the data generation
process is straightforward and no other specific devices are needed. The rest of the proposed and
future methodology would keep the same.
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