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1. INTRODUCTION 

Since the work of Kan [11], [9] it is well known that the homotopy category 
of simplicial groups is equivalent to the homotopy category of path connected 
pointed spaces. The equivalence carries a simplicial group S to its classifying 
space BS. For example if S(n) is the simplicial group freely generated by 
one element in degree n then BS(n) '::::' 3n+1 is an (n + 1)-sphere, n ~ 0. 
Now let Groups be the category of groups. We consider endofunctors T : 
Groups --+ Groups which preserve reflective coequalizers and filtered colimits. 
Then applying the functor T to S(n-l) yields a new simplicial group TS(n-l) 
and hence the space 

K(T, n) = BTS(n-1), n ~ l, 

associated to T. This space, in particular, is of importance if T is an additive 
functor. In this case the functor T = ( - ) (8) A is given by an abelian group A, 
in the sense that T( G) = cab (8) A, and by the Dold-Kan theorem K ( (-) (8) 

A, n) coincides with the Eilenberg-MacLane space K(A, n). Hence the spaces 
K (T, n) are canonical generalizations of Eilenberg-MacLane spaces. As a next 
step we consider quadratic functors T = (-) ®Q, which by the classification in 
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[6] are given by square groups CJ. We apply a variety of concepts of quadratic 
algebra and quadratic homology theory in order to study the spaces K ( ( - ) (81 

Q, n). Of course K((-) (81 Q, n) is (n - 1)-connected and the first k-invariant 
of X = K((-) (81 CJ, n) for n 2 2 is given by a homomorphism 

A:: r(?T2) --t 1T3 for n = 2, 

k : ?Tn ® Z/2Z --t ?Tn+l for n 2 3. 

We say that k is flat if for n = 2 the homomorphism k is trivial if restricted 
to the kernel of r( 1T2) --t 1T2 (81 1T2 and for n 2 3 the group 1Tn+1 satisfies 
2?Tn+l = Q. 

THEOREM 1. For an_y sq11are group Q the first k-invariant ofX = K((-)® 
CJ, n) is fl.at, n 2 2. Moreover we have ?TmX = 0 form 2 2n + 2. 

We conjecture that conversely all flat k arc realizable by a quadratic 
K((-) 0 Q,n). This is true for n > 3 and for many k; for n = 2 by the 
next result. 

THEOREM 2. Let k be ffat and for n = 2 let 1T2 be in the class A of abclfan 
groups defined below. Then there exists a sq11are group Q such that the first 

k-invariant of K((-) (8) (J ,n) is k. 

Let A he the smallest class of ahelian groups which is closed under ar
bitrary direct sums and contains i) all cyclic groups, ii) all abelian groups 
A such that 2 is invertible in A and iii) all abclian groups A such that 
Ext(A, Syrn2 A) = 0, where Syrn2 A is the second symmetric power of A. It is 
clear that then A contains all finitely generated abelian groups as well as all 
free and all divisible abclian groups. 

Theorem 1 for n = 2 is proved in Section 4.9 (see Theorem 17) and for 
n 2 3 in Section 5.9 (see Corollary 36). Theorem 2 for n = 2 is proved in 
Section 5.8 (sec Corollary 33) and for n 2 3 in Section 5.9 (sec Theorem 37). 

Our approach is to use presquare groups. They are gadgets classifying 
quadratic functors from the category of finite pointed sets to the category of 
groups. If Fis such a functor, we have 

BF(S1
) E types(2, 3) 

Thm; one obtains a functor from the category of prcsquare groups to the 
category of spaces. To pass from presquare groups to square groups we then 
develop an appropriate obstruction theory. 
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2. ON CERTAIN QUADRATIC FUNCTORS 

In this section we consider few quadratic functors defined on the category 
Ab of abelian groups. Let F : Ab ➔ Ab be a functor with F(0) = 0. Let us 
recall that the functor F is additive or linear if the natural projection 

F(X EB Y) ➔ F(X) EB F(Y) 

is an isomorphism. Furthermore, F is quadratic if the second cross-effect 

F(X I Y) = Ker(F(X EBY) ➔ F(X) EB F(Y)) 

as a bifunctor is linear in X and Y. In this case one has a natural decompos
ition 

F(X EB Y)~ F(X) EB F(Y) EB F(X I Y). 

2.1. UNIVERSAL QUADRATIC FUNCTOR Let A and B be abelian groups. 
A map f : A ➔ B is called quadratic if the cross-effect 

(a I b)J := f(a + b) - f(a) - f(b) 

is linear in a and b. It follows then that f (0) = 0. It is well known that for any 
abelian group A there is a universal quadratic functionp: A ➔ P(A), meaning 
that for any quadratic map f : A ➔ B there exists a unique homomorphism 
h : P(A) ➔ B such that f = hop. In this way one obtains the functor 
A f--+ P(A), which has the following alternative description. Let I(A) be the 
augmentation ideal of the group algebra of A. Then one has the isomorphism 

P(A) ~ I(A)/ I(A) 3 

induced by p(a) f--t (a - l)(mod I(A) 3 ) (see [14]) . The following fact is well 
known [13]: 

LEMMA 3. For any abelian group A one has the following short exact 
sequence 

(1) 0 ---+ Sym2 (A) _!___ P(A) _:!__ A ---+ 0 

where Sym2 is the second symmetric power, the homomorphisms j and q are 
given by 

j(ab) = (a I b)v = p(a + b) - p(a) - p(b) 

q(p(a)) = a. 
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It follows that the functor P commutes with filtered colimits and one has 
the following natural isomorphism 

P(A EBB) ~ P(A) EB P(B) EB (A 0 B). 

Furthermore, one has isomorphisms ([12]) 

P(Z) ~ Z EB Z, 

P(Z/2Z) ~ Z/4Z, 

P(Z/2nz) ~ z;2n+lz EB z;2n- 1z, n > 1 

and for any odd prime p, one has an isomorphism 

For an abelian group we let 

(2) 0(A) E Ext(A, Sym2 (A)), 

be the element corresponding to the exact sequence ( 1) . 

LEMMA 4. The class 0(A) is represented by the canonical symmetric 2-
cocycle J8, given by 

J8(a, b) = ab E Sym2 (A), a, b EA. 

Proof. The homomorphism q : P(A) ---+ A has a set-section p: A---+ P(A) 
and the cocycle corresponding to this section is exactly f8 . I 

The class 0 is nontrivial in general. For example one has 0(Z/2nz) -/- 0. 
However one has 

LEMMA 5. If 2 is invertible in A, then 0(A) = 0. 

Proof. Let g: A---+ Sym2 (A) be the map given by g(a) = a2 • Then 

(a I b)9 = 2ab 

which shows that the co boundary of ~ is J8. I 
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2.2. A FUNCTOR W For an abelian group A we let w(A) be the kernel 
of the natural projection A 0 A -+ A2 (A) from the second tensor power to 
the second exterior power. Thus by the very definition one has the following 
exact sequence 

(3) 

In this way one obtains the functor w : Ab -+ Ab. The functor w commutes 
with filtered colimits and one has the following natural isomorphism 

w(A EB B) ~ w(A) EB w(B) EB (A 0 B). 

Furthermore, one has isomorphisms 

2.3. WHITEHEAD f-FUNCTOR The functor W is closely related with Whi
tehead f-functor, which is defined as follows. Let A and B be abelian groups. 
A quadratic map f : A-+ Bis called homogeneous if f(-a) = f(a) . It follows 
then that 

(a I a)J = -(a I -a) J = f(a) + J(-a) = 2f(a) . 

Based on this identity a simple induction argument shows that 

f(na) = n 2 f (a). 

It is well known [16] that for any abelian group A there is a universal homo
geneous quadratic function ry : A-+ I'(A), meaning that for any homogeneous 
quadratic map f : A-+ B there exists a unique homomorphism h: I'(A) -+ B , 
such that f = hory. The functor A f---t r(A) is known as the Whitehead's quad
ratic functor. It is well known [16] that the functor r commutes with filtered 
colimits and one has the following natural isomorphism 

r(A EB B) ~ r(A) EB r(B) EB (A 0 B). 

Furthermore, one has isomorphisms 

f(Z) ~ Z, 

r(z;2nz) ~ z;2n+1z 
and for any odd prime one has an isomorphism 
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It follows that if a EA is of order n, then ')'(a) E f(A) is of order n if n is 
odd and it is of order 2n, provided n is even. 

We have a natural homomorphism T: r(A) -+ A 0 A, given by T(')'(a)) = 
a 0 a. It is clear that the image of T lies in w(A) and in this way one gets a 
natural homomorphism 

T': r(A) -+ w(A). 

It is well known that T 1 is an epimorphism, moreover it is an isomorphism 
provided A= Z, or A= Z/nZ with odd n. To identify the kernel of this map 
we need additional notations. 

For each n;?: 1 and each abelian group A we put tn(A) = {a EA I 2na = 
O}. Multiplication by 2 yields the natural transformation tn+l -+ tn. We 
have also an inclusion tn-1 Y tn . Here and elsewhere we assume that to = 0. 
Thus one obtains a natural transformation tn+l E& tn- l -+ tn, whose cokernel 
is denoted by <I>n. It follows that <I>n : Ab -+ Ab is a well-defined additive 
functor, which commutes with filtered colimits and 

if p is an odd prime. It is also clear that 

and 

LEMMA 6. For each n ;?: 1 there is a well-denned homomorphism ln 
<I>n(A) -+ r(A) given by ln(a) = 2n')'(a). 

Proof. If a, b E tn(A) , then one has 

Here we used the fact that ( a I b), is linear in a, and therefore 2n ( a I b), = 
(2na I b), = 0. On the other hand if a = 2b, then 2n')'(a) = 2n')'(2b) = 

2n+2,.,,(b) = 0, because 2n+1b = 0. Similarly, if a E tn- 1, then 2n- 1a = 0 and 
therefore 2n')'(a) = 0. Thus ln is a well-defined homomorphism. I 

The collection ln , n ;?: 1, defines the natural transformation l : <I> -+ r, 
where <I> = EBn>l <I>n. 
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PROPOSITION 7. For any abelian group A the kernel of the natural map 

T' : r(A) ---+ w(A) 

is isomorphic to c!>(A), thus one has an exact sequence: 

0 - c!>(A) ~ I'(A) ~ A 0 A -A2 (A) - 0 

Proof. Let us observe that r---+ 0 2 induces a monomorphism on the second 
cross-effect and therefore cl>' := Ker(r ---+ 0 2 ) is an additive functor. To show 
that l yields an isomorphism cl> ---+ cl>' it suffices to evaluate on cyclic groups, 
because both functors in question are additive and preserve filtered colimits. 
Since both functors vanish on Z::: and on Z/nZ with odd n , we have to consider 
only the case, when A = z;2nz. Since r(Z/2nz:::) is the cyclic group of order 
2n+l generated by ')'(1) it follows that cI>'(Z:::/2nz:::) is the cyclic group of order 
two generated by 2n')'(l). On the other hand cl>k(Z:::/2nz:::) = 0, provided n-/- k 
and cl>n(Z/2nz:::) = Z:::/2.Z::: and the result follows . I 

COROLLARY 8. For any abelian group A the natural transformation I'(A) 
---+ Z:::/2.Z::: 0 A induced by ')'(a) H a(mod 2A) factors trough w(A). 

Proof. It suffices to note that the composite cl>n(A) ---+ A/2A is induced by 
a H 2na = 0, a E tn(A). I 

The functors P and r are related via the natural transformation v : P ---+ r, 
which is given by v(p(a)) = ')'(a). Since any homogeneous quadratic function 
is quadratic it follows that this transformation is an epimorphism. To identify 
the kernel, let us observe that the map f : A ---+ P(A) given by f(a) = 
p(a) - p(-a) is linear. Indeed we have 

(a I b)J = (a I b)p - (-a I -b)p = 0 

because (- I - )v is bilinear. 

LEMMA 9. One has the exact sequence 

where J(a) = p(a) - p(-a) and 2A = { a EA I 2a = 0}. 
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Proof. It is clear that the transformation v : P ➔ r yields an isomorphism 
on the second cross-effects. Thus the kernel of v is linear. It is clear that f 
yelds the transformation from the identity functor to the kernel of v : P ➔ r 
and since both functors Id and Ker(v) are linear and preserve filtered colimits, 
it suffices to observe that the result is true for a cyclic group A . I 

3. ALGEBRAIC MODELS OF ONE-CONNECTED TWO STAGE SPACES 

3.1. ONE-CONNECTED TWO STAGE SPACES For any n ~ 2, we let types(n, 
n + 1) be the homotopy category of such pointed CW-complexes X that 
1riX = 0 for all i =/= n , n + 1. If X is an object of types(n, n + 1) , then 
1ri(~X) = 0 if i < n + 1, thus the (n + 2)-th stage of the Postnikov tower of 
~X belongs to types(n + 1, n + 2). This yields the functor 

Pn+2~ : types(n, n + 1) ➔ types(n + 1, n + 2) 

which is known to be an equivalence of categories, provided n ~ 3. 
This category is closely related to the category II(n, n + 1) of k-invariants 

[1], whose objects are triples (1rn, 1rn+1, k), where 7rn and 7rn+i are abelian 
groups and k: r n(1rn) ➔ 7rn+ l is a homomorphism. Here for an abelian group 
A and a natural number n ~ 2, we let r n(A) be f(A) if n = 2 and Z/2Z@A if 
n ~ 3. A morphism f from (1rn,1rn+1,k) to (1r~,1r~+ 1,k') is a pair Un,fn+1), 
where f n : 7rn ➔ 1r~ and f n+ l : 7rn+ l ➔ 7r~+l are homomorphisms of abelian 
groups such that the diagram 

f n(7rn) ~ 7rn+l 

I' n(fn) ! l f n+l 

f n ( 7r~ ) ~ 7r~ + 1 

commutes. Taking the nontrivial k-invariant yields the functor 

r;, : types(n, n + 1) ➔ II(n, n + 1), n ~ 2 

which fits in the following linear extension of categories [1], [3] 

0 ➔ Dn ➔ types(n, n + 1) ➔ II(n ,n + 1) ➔ 0, 

where Dn is a bifunctor on II(n , n + 1) , given by 

Dn((1rn, 7rn+ l, k), (1r~, 7r~+ l, k')) = Ext(1rn , 7r~+ i)· 
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In particular ,.,, : types(n, n + 1) -r IT(n, n + 1) yields a bijection on isomorph
ism classes of objects, moreover ,.,, reflects isomorphisms and is surjective on 
morphisms. 

3.2. BRAIDED AND SYMMETRIC CATEGORICAL GROUPS We also need 
the following well-known algebraic models for types(n, n + 1), n 2: 2 [8L[10], 
[4]. 

DEFINITION 10. A bra:ided mtegor'iml _qnmp, shortly BCG, consists of the 
following data 

where Ge and Gee are groups and 8 is a homomorphism, while {-, - } is a 
map such that the following equalities hold for :r, y, z E Ce and a, b E Gee· 

{Da,Db} = a- 1b-1ab 

{ aa, :r}{:1:, Ba} = 1 

{:r,yz} = {:E,z}{:r, y}{:11- \r- 1;ip:,z} 

{xy, z} = {y-1xy-1, y-1 zy }{y, z}. 

A braided categorical group is called syrnrnetric categorical group, shortly 
SCG, if 

(4) 

It follows that Ker(u) is an abclian group and lm(D) is a normal subgroup of 
Ge and Coker{B) is an abelian group. One puts 

1rf/ := Coker(u), 1rf := Ker(D) . 

The DCG's and SCG's form categories in an obvious way. A morphism of 
BCG's (rcsp. SCG's) is called weak equivalence if it induces an isomorphism 
on 1ri, ,,; = 0, 1. Let Ho(BCG) (resp. Ho(SCG)) denote the localization of 
Ho(BCG) (resp. Ho(SCG)) with respect to weak equivalences. 

Let us note that BCG's arc termed reduced 2-modulcs in [4], while SCG's 
are termed stable 2-modules in [4]. Thanks to [8] one knows that the category 
of braided categorical groups is equivalent to the category of such simplicial 
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groups G*, that NiG* = 0, if i # 1, 2. Here N*G* denotes the Moore nor
malization of G*. Similarly the category of symmetric categorical groups is 
equivalent to the category of such simplicial groups G* , that NiG* = 0, if 
i # n, n + l for a fixed n > l. Therefore the classifying space functor induces 
the functors 

b2 : BCG -+ types(2, 3) 

and 
bn : SCG -+ types(n, n + l) , n ;?: 3 

such that 7rnbn(G) = 1rf and 7rn+1 bn+1 (G) = 1rf, n;?: 2. 
The inclusion functor SCG C BCG has the left adjoint functor >. : BCG -+ 

SCG, which is obtained by 

>.(G) = (8 : G;e-+ Ge, {-,-}: Ge x Ge -+ G~e), 

where G~e is the quotient of Gee by the relation (4). 
Then the functor >. makes the following diagram commute: 

BCG - types(2 , 3) 

! A ! P4~ 

SCG-types(3, 4). 

According to [10],[4] one has the equivalence of categories 

Ho(BCG) ~ types(2 , 3) 

and 
Ho(SCG) ~ types(n, n + l), n;?: 3. 

4. PRESQUARE GROUPS 

4.1. QUADRATIC FUNCTORS ON POINTED FINITE SETS Let r be the cat
egory of finite pointed sets and let Groups be the category of groups. We 
consider functors F : r -+ Groups with the property F([0]) = 0. Here and 
elsewhere [n] denotes the set {0, · · · , n }, with basepoint 0. The functor F is 
linear if the map 

(Fr1 , Fr2) : F(X VY) -+ F(X) x F(Y) 

is an isomorphism, where XVY is the sum in the category rand r 1 : XVY-+ 
X, r 2 : X VY -+ Y are the retractions. Furthermore, F is quadratic if the 
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second cross-effect F(X I Y) = Ker(F(r1 ), F(r2)) as a bifunctor is linear in X 
and Y. 

Let HZ : r ➔ Groups be the functor which assigns to a pointed set S the 
free abelian group generated by S modulo the relation * = 0, where * is the 
basepoint of S. For any abelian group A, we let HA : r ➔ Groups be the 
functor given by HA(S) = A@HZ(S). It is clear that HA is a linear functor. 
It is easy to prove that any linear functor r ➔ Groups is isomorphic to one of 
the form HA. Thus the assignment A H HA is an equivalence between the 
category of abelian groups and the category of linear functors r ➔ Groups. 
The category of quadratic functors r ➔ Groups has the following description 
[15]. 

DEFINITION 11. A presquare group, shortly a PSG, consists of the follow
ing diagram 

{ -,- } er p 
M = ( Me X M e --+ M ee --+ M ee --+ Me ), 

where Mee is an abelian group and a is a homomorphism with a 2 = Id . 
Moreover, Me is a group written additively, Pisa homomorphism and{-, - } 
is a bilinear map, that is {x+y,z} = {x ,z}+{y,z} and {x , y+z} = {x , y}+ 
{x,z}, for all x,y,z E M e. One requires that 

(a) Pa= P, 

(b) a{x,y} + {y,x} = 0, x,y E Me, 

(c) P{x , y} = x + y- x -y, x,y E M e, 

(d) {x,Pa} = 0, x E M e, a E Mee • 

It follows from (b) that for any PSG Mone has { Pa, x} = 0. It follows from ( c) 
and (d) that Pa lies in the centrum of M e. Thus Coker(P) is well-defined and 
by ( c) it is an abelian group. It follows that M e is a group of nilpotency degree 
2. It follows from the condition (a) that a yields a well-defined involution on 
Ker(P). 

If M and N are two PSG, then a morphism f from M to N consists 
of a pair of homomorphisms fe : M e ➔ N e, Jee : M ee ➔ Nee such that fee 
commutes with involutions and the diagrams 
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commute. We let PSG be the category of presquare groups. 
If M is a PSG and S is a pointed set with basepoint *, we let S 0 M be 

the group generated by the symbols s 0 x and [s , t] 0 a with s , t ES, x E Me , 
a E M ee subject to the relations 

[s ,s] 0a =s 0P(a) 

* 0 x = 0 = [* , s] 0 a 

[s , t] 0 a= [t, s] 0 o-(a) 

[s , t] 0 {x , y} = -t 0 x - s 0 y + t 0 x + s 0 y 

where s 0 x is linear in x and where [s , t] 0 a is central and linear in a. 
A result similar to [6] shows that the functor S H S 0 M is a quadratic 

functor on r and in this way one gets the equivalence between the category 
PSG of presquare groups and the category of quadratic functors from r to 
Groups. Actually this is a very particular case of much more general results 
obtained in [15]. 

4.2. HOMOTOPY AND k-INVARIANT OF A PRESQUARE GROUP Let M be 
a PSG. We set 

11"{'1 := Ker(P: M ee -+ M e) and Kfj := Coker(P : M ee -+ M e)-

The involution o- equips 11"1'1 with an involution, which is still denoted by o-. 
For any x E M e we let i; be the class of x in Kfj. It follows from the 

condition (d) of the definition of PSG, that {-, - } factors through Kfj and 
thanks to (b) it yields the homomorphism 

{-,-}: K{j @K{j-+ M e~, 

where 
M ~ := {a E M ee I a+ o-(a) = O}. 

We also need the homomorphism w: A2(K{j) -+ M e which is induced by the 
commutator map: 

w(x I\ y) = x + y - x - y. 

Consider the following diagram: 

o- <I>(Ko) ~ I'(Ko) ~ Ko 0 Ko - A2(Ko) - 0 

~ {-,-}l p tw 
0 ----a.- 11"1 --- Mee -----a.- Me __ .,.. 11"Q - 0 



QUADRATIC ENDOFUNCTORS OF THE CATEGORY OF GROUPS 111 

where 'Tri = 1rf'1, i = 0, l. The diagram is commutative thanks to the property 
(c) of the definition of PSG. Since the columns are exact, we see that there is 
a well-defined morphism 

(5) 

given by k('y(x)) = { x, x }. A diagram-chase shows that koi = 0. Furthermore, 
the condition (b) of the definition of PSG shows that the image of k lies in 
7r1 = {b E 1r1 I b + CT(b) = 0}. 

4.3. STABLE HOMOTOPY AND STABLE k-INVARIANT OF A PRESQUARE 

GROUP We let PSG8 be the full subcategory consisting of objects M such 
that the involution on Mee is trivial, that is CT(a) = a for all a E Mee• In 
this case the bracket {-, - } : 1ro (8) 1ro ➔ Mee factors through A2(1ro) ➔ Mee, 
where A2 (A) is the quotient of A (8) A by the relation a (8) b + b (8) a~ 0. 

The inclusion PSG8 C PSG has the left adjoint given by MM M, where 

{-,-} Id P 
M = ( Me X Me -Mee/(ld - CT) -Mee/(ld - CT)-Me ). 

The fact that P is still well-defined follows from the property (a) of Definition 
11. Moreover, the quotient map M ➔ Mis a morphism in category PSG. We 
now put 

M M . 0 1 '!!..i := 'Tri, i = ' . 

Thus 1ro = 1ro, while '!ii = Ker(Mee/(ld - CT) ➔ Me)- In other words 7riM, 
i = 0, 1 is the i-th homology of the following chain complex 

( ) ( ld+a Id-a ld+a Id-a P ) (6) Q* M := · · · -----'--+ Mee -----'--+ Mee -----'--+ Mee -----'--+ Mee -----'--+ Me 

We define the homomorphism 

15.. : Z/2'11.,, (8) 1r{;1 ➔ 1r1 M 

by 
15..(x) := {x,x}(mod(ld - CT)). 

The homomorphism /5_ fits in the following commutative diagram with exact 
rows: 
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where the homomorphism vis induced by x f----+ x®x, while the homomorphism 
.1\.2(1ro) ➔ Mee/(ld - o-) is induced by {-, - }. The fact that the last map is 
well-defined can be checked as follows: 

{x,y} + {y,x} = -o-{y,x} + {y,x} E lm(ld - o-). 

The commutative diagram 

shows that there is a natural epimorphism EM 1rt1 ➔ .zr:t1, which is an 
isomorphism provided ME PSG8 • 

4.4. PRODUCT OF PRESQUARE GROUPS The category PSG possesses all 
limits and colimits. In the sequel we need the following explicit construction 
of the product in PSG. Let M and N be two PSG. Then (M x N) is the PSG 
given by 

(M x N)e = Me x Ne, 

(M X N)ee = Mee X Nee, 

o-(a, c) = (o-(a), o-(c)), 

P(a, c) = (Pa, Pc), 

{(x,u),(y,v)} = ({x,y},{u,v}), 

where a E Mee,C E Nee, x,y E Me,u,v E Ne, 
It is clear that the functors 7ri, i = 0, 1, 1r1 (and the morphisms k, f5;_ as well 

) preserve the product. 

4.5. COPRODUCT OF PRESQUARE GROUPS In the sequel we need also the 
following explicit construction of the coproduct in PSG. But first we recall 
few facts on the category Nil of nilpotent groups of class two. The inclusion 
functor 

Nil ➔ Groups 

has the left adjoint functor, which is given by the nilization functor: 

G f----+ anil = G/[G, [G, G]] 



QUADRATIC ENDOFUNCTORS OF THE CATEGORY OF GROUPS 113 

Let G1 and G2 be two objects in Nil, then the copruduct G1 V G2 in Nil is 
obtained by the nilization of the free product of the groups G 1 and G2. It is 
well known that one has the following short exact sequence 

where cab= G/[G, G] is the abclization of G. This shows that any clement of 
G1 VG2 (all groups are written additively) can be written as a sum of elements 
a+ b + w, where a E G1, b E G2 and w is a sum of commutators of the form 
a1 + b1 - a1 - b1, a 1 E G1 and b1 E G2. 

LEMMA 12. Let 

and 
0 --+ B ---+ Y -1..+ H ---+ 0 

be central extensions in Nil with abelian G and H. Define the group Z as the 
quotient (XV Y)/ ~, wlwre the equivalence refation ~ is generated by 

a+y~y+a 

b+:1;~:1;+b 

where a E A, b E D, x E X and y E Y. Then one has the following central 
extension of groups 

0 ---+ A EBB EB ( G @ H) ~ Z ---+ G x H ---+ 0. 

Here the homomorpl1is111 j is given by j(a+b+g @h) = a+b+ (x+y- ;r -y), 
where :DEX and y E Y satis(y r1(:D) = g and ((y) = h. 

Proof. It frJllows from the definition of the group Z that _j is a well-defined 
homomorphism, whose image is a normal subgroup of Z. It is also clear that 
Coker(j) ~ G x H. It remains to show that j is a monomorphism. To this 
end let us recall that for any abelian group M which is considered as a trivial 
(G x H)-module one has 

We now take M = AEBBEB(G@H) and we let cl(Z) E H 2 (GxH, M) be the ele
ment whose components in the above decompositions are i 1 • (cl (X)), i 2 • (cl(Y) ), 
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i3 • Here cl(X) E H 2 (G,A) and cl(Y) E H 2 (H,B) are elements defined by the 
given central extensions, while i1 : A-+ M, ie : B-+ Mand i3 : G 0 H-+ M 
are standard inclusions. The class cl ( Z) defines a central extension: 

0-+ A EB B EB (G 0 H)-+ Z1-+ G x H-+ 0 

Since G and H are abelian groups, it follows that Z1 E Nil. By our construc
tion one has a commutative diagram 

o-A-x G 0 

! ! 
0 - M - Z1 - G X H - 0 

l r r 
0---+B-Y H 0 

Thus we have a canonical morphism X V Y -+ Z1 and one easily shows that 
it yields the homomorphism Z -+ Z1 which makes the following diagram 
commute 

AEBB EB (G @H) -z-c X H---+O 

tld l l 
0---+ A EBB EB ( G 0 H)---+ Z1---+ G x H---+ 0. 

It follows that j : A EB B EB ( G 0 H) -+ Z is a monomorphism and the proof is 
finished. I 

Now we construct coproducts in PSG. Let 

{-,- iN ~ N NM 
N = (Ne X N e Nee ----'-'-+ N ee ----+ Ne) 

be presquare groups. Let us recall that M e, Ne E Nil. The coproduct 

MV N = ((MV N)e x (MV N)e {-,-} (MV N)ee ~ (MV N) ee ~ (MV N)e) 
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in the category PSG is given by 

Here the equivalence relation is generated by 

for x E Mee, c E Ne, u E Nee, a E Me, Let x E 1rt/, ii E 1r{; be the elements 
in cokernels represented by x and u respectively. The operators er and P for 
M V N are defined by 

P(x+u+a1 ®c1 + c2@a2) = PM(x)+PN(u)+(a1 + c1 -a1 - c1) +(c2+a2-c2 -a2) 

From this definition is it clear that 1rtfvN ~ 1rt/ tB 1r{;. Now the map{-, - } : 
1rtfvN 0 1rtfvN ➔ (M V N)ee is given by 

LEMMA 13. For any M, NE PSG one has the following isomorphisms 

Proof. We already had the first isomorphism. To get other isomorphisms, 
one has to apply Lemma 12 to central extensions 

and 

0 ➔ lm(PN) ➔ Ne ➔ 1rf{ ➔ 0 

to conclude that I mPMv N ~ Im (PM) tB Im ( PN) tB ( 1rt/ 0 1r{;) which obviously 
implies the result. I 
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4.6. A PUSHFORWARD CONSTRUCTION Let M be a PSG and let f : 
1rt1 ➔ A be a homomorphism of abelian groups with involutions. We can 
form the pushout diagram in the category of abelian groups with involutions 

It follows from the properties of the pushout construction that we have the 
following commutative diagram with exact rows: 

It is clear that J*(M) is also a PSG, where J*(M)e = Me and J*(M)ee 
f*(Mee) and the map Me X Me ➔ f*(Mee) is the composite of the map Me X 

Me ➔ Mee and the homomorphism Mee ➔ J*(Mee), Furthermore one has 

f.(M) - M f.(M) - A 
1ro - 1ro , 1r1 -

4.7. PRESQUARE GROUPS AND THE UNIVERSAL COEFFICIENT THEOREM 

In this section we construct a collection of presquare groups using the universal 
coefficient theorem in group cohomology. Let us recall that for any abelian 
groups A and B there is a natural short exact sequence 

O - Ext(A, B) - H 2 (A, B) ~ Hom(A2 (A), B) -o 

which has a splitting natural in B. Here we used the well-known isomorphism 
H2(A) ~ A2 (A). The homomorphism c is given by the commutator map: If 

O ➔ B ➔ G ➔ A ➔ O 

is a central extension, corresponding to an element x E H 2 (A, B), then c(x) : 
A2 (A) ➔ B is given by (a, b) Mu+ v - u - v. Here u and v are liftings of a 
and b to the group G which is written additively. 
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Of special interest is the case when B = A2 (A). We let TA be the set of 
equivalence classes of central extensions 

such that c(NA) = ldA2(A)· The set TA is nonempty and the group Ext(A, 
A2 (A)) acts transitively and freely on TA· 

If (NA) ET A, then one can define the presquare group w(NA) as follows. 
By definition we put 

w(NA)e = NA, 

w(NA)ee =A® A, 

P(a ® b) = µ(a I\ b), 

(J'(a®b) = -b®a, 

{x,y} = p(x) ®p(y), 

where x, y ENA and a, b EA. One easily checks that w(NA) is a PSG. 
By our construction we have: 

LEMMA 14. For any abelian group A and any (NA) E TA one has iso-
morphisms 

w(NA) ~ A 
7ro = ' 

1r1(NA) ~ \Jl(A) 

under which kw(NA) corresponds to the canonical homomorphism T 1 : r(A) -+ 
\Jl(A) induced by 

T : r(A) -+ A® A, X M X ® x. 

Moreover, additionally one has 

Kt(NA) ~ Z/2Z ® A 

and "/5..w(NA) = ldz/2Z!ZIA· 

We can apply the functor PSG-+ PSGs, M f-t M to the presquare group 
w(NA). Here A is any abelian group and NA E TA· In this way one obtains 
an object ~(NA) E PSG. By definition one has 

~2 
~(NA)e = Ne, ~(NA)ee = A (A), 

the structure homomorphisms are given by (J' = ldx2, P(al\b) = µ(a I\ b), and 
{x,y} = p(x)Ap(y), where x,y ENA and a, b EA, compare with the definition 
of w(NA)- By our construction we have: 
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LEMMA 15. For any abelian group A and any (NA) E T A one has iso-
morphisms 

!!1_(NA) ~A 
Jro = ' 

1rf(NA) ~ A/2A 

which identify k!!l.(NA) with the canonical transformation I'(A) -+ A/2A in
duced by ')' (x) c--+ x(mod 2A). Moreover, additionally one has 

IIT( NA) ~ 7L/27L 0 A 

4.8. PRESQUARE GROUPS AND BRAIDED CATEGORICAL GROUPS Forget
ting the involution one gets the functor 

Y: PSG-+ BCG 

which is given by 

{-,-} a p 
( Me X Me---,.. Mee ---,.. Mee---,.. Me) r--+ ((P : Mee-+ Me) ,{-, -}) . 

The same functor can be obtained in terms of functors on r as follows. 
Let us recall that there is a standard way to prolong a functor F : r -+ 

Groups to a functor from the category of pointed simplicial sets to the category 
of simplicial groups s.Sets* -+ s.Groups. First using direct limits one can 
prolong F to a functor from the category of pointed sets Sets* -+ Groups, 
then by degreewise action one obtains a functor from the category of pointed 
simplicial sets to the category of simplicial groups. By abuse of notation we 
will still denote this functor by F. In particular one can use this construction 
for the functor F = (-) 0 M for a PSG M. In this paper we are particularly 
interested in the evaluation of F = (- )0 M on simplicial spheres and especially 
on 5 1 , which is the simplicial model of the circle with two nondegenerate 
simplices. Let us recall that 5 1 is [ n] in dimension n. Moreover Si : [ n] -+ [ n+ 1] 
is the unique monotone injection whose image does not contain i + 1, while 
di : [n] -+ [n - 1] is given by di(j) = j if j < i, di(i) = i if i < n, dn(n) = 0 
and di (j) = j - 1 if j > i . 

LEMMA 16. Let M be a PSG and F = (-) 0 M : r-+ Groups. Then the 
Moore complex associated to F(51 ) is isomorphic to the following complex 

p 
· · · -+ 0 -+ Mee ---+ M e -+ 0. 
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Proof. The fact that the Moore complex associated to F(S1 ) vanishes 
in dimensions > 2 is a particular case of Proposition 5.9 of [15] and the 
computations in dimensions 1 and 2 are trivial ( compare also with (2.6) of 
[7]). I 

Since the Moore complex of F(S1) is trivial in all dimensions except dimen
sions one and two, it follows from [8] that it corresponds to a BCG. Thanks to 
Lemma this particular BCG is nothing but Y(M). In particular BF(S1 ) has 
only two nontrivial homotopy groups 1r2B(S1) ~ 1rf and 1r3B(S1 ) ~ 1r{'1 and 
the unique nontrivial k-invariant is given by the map kM E Hom(r(1rf), 1r{'1) 
constructed in equation (5). It follows that we have the following commutative 
diagram of categories and functors: 

BCG y PSG Ii* II* (2, 3) 

~ ! ev(S1 ) ! forgetful 

types(2, 3) ~ II(2, 3) 

Here ev(S1 ) : PSG --+ types(2, 3) is the functor which is given by 

MM BF(S1 ), where F = (-) 0 M, 

while the category II* (2, 3) is defined as follows. An object of the category 
II*(2, 3) is a triple (1r2, 1r3, k), where 1r2 is an abelian group, 1r3 is an abelian 
group with involution (J' and k : f(1r2) --+ 1r3 is a homomorphism, where as 
usual we put 

1r3 := {a E 1r3 I a+ (]'(a)= O}. 

If (1r2, 1r3, k) and (1r;, 1r;, k') are objects of II*(2, 3), then a morphism f from 
(1r2, 1r3, k) to (1r;, 1r;, k') is a pair (h, h), where h : 1r2--+ 1r; is a homomorph
ism of abelian groups, while h : 1r3 --+ 1r; is a homomorphism of abelian 
groups with involutions such that the diagram 

r ( 1r 2 ) ~ 1r 3 

r(h) ! !h 

r( 1r;) ~ 1r;-

commutes. The functor 
/'i,* : PSQ --+ II*(2, 3) 
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is given by 
~*(M) = ('rr{;1,1rf1,kM) . 

We have also the forgetful functor II* (2, 3) -+ II(2, 3) which forgets the invol
ution on 1r3 . This functor has the retraction given by the inclusion II(2, 3) '---+ 

II*(2 , 3) . Under this inclusion 1r3 is considered as a group with involution, 
given by a-(a) = -a. 

4.9. REALIZATION OF ONE-CONNECTED 3-TYPES VIA PRESQUARE 
GROUPS In this section we characterize objects of the categories types(2 , 3) 
and II* (2, 3) which are isomorphic to objects of the form F(S 1 ) or ~* (M), 
where ME PSG and F = (-) 0 M. 

An object of II*(2, 3) (resp. II(2, 3)) is called flat if the composite 

is zero, where the functor <I> and the natural transformation l were defined in 
Section 2.3, in other words k factors trough w(1r0 ). An object X E types(2 , 3) 
is called flat provided ~(X) is flat. 

THEOREM 1 7. i) The values of~* ( and therefore of~ as well) are flat. 
ii) Let ( 1r2 , 1r3 , k) be a flat object of the category II* (2, 3). Then there exist 

ME PSG and an isomorphism ~*(M) ~ (1r2 ,1r3 ,k) in II*(2,3). 
iii) An object X E types(2, 3) is isomorphic to an object of the form F(S1 ) , 

with quadratic F : r -+ Groups iff X is flat. 

Proof. Part iii) is an immediate consequence of i) and ii) and properties 
of linear extensions of categories [3] . The first statement follows from the 
diagram chase based on the following commutative diagram: 

o - <1> ( 1r o) ~ r ( 1r o) ~ 1r o 0 1r o 

k! !{-,-} 

For the second part we prove that a pushforward construction applied on 
w(NA) does the job. Here NA is any element of T A, where A= 1r2. Indeed, 
we already observed that 
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where the involution on 'lr(A) is given by z f----+ -z, z E 'l'(A). Let us now take 
a flat object (1r2, 1r3, k) of the category II*(2, 3). It follows that one has the 
commutative diagram 

1f3 

Thus one can take the pushforward construction M = k:(w(NA)), A = 1r2, 

Then one has t,,*(M) ~ (1r2, 1r3, k) in II*(2, 3) and we are done. I 

4.10. PRESQUARE GROUPS AND SYMMETRIC CATEGORICAL GROUPS It 
is clear that Y(M) is a symmetric categorical group provided M E PSG 8 • On 
the other hand one can take the composite of functors Y : PSG --+ BCG and 
>. : BCG --+ SCG to get the functor 

>. o Y : PSG --+ SCG 

It is clear that 

>.(Y(M)) = ((P: Mee/(ld - CT) --+Me),{-, - } ). 

Thus one has the following commutative diagram 

i j - PSG - PSGs 

y! ~ ly 
SGC 

i1 
BCG -----:X--- SCG -

where i and i1 are the inclusions, while j(M) = M. 
Let us fix a natural number n ~ 2 and let sn be a simplicial model of the 

n-dimensional sphere, which has only two nondegenerate simplices. For any 
functor F : r --+ Groups one obtains the simplicial group F(Sn) by applying 
the functor F on sn. If F is quadratic, then the Moore normalization of sn 
is trivial in dimensions > 2n and < n and it is isomorphic to 

--+ .. · 0--+ Qn(M) --+ .. · --+ Qo(M) --+ Q .. · --+ 0 

where F = (-) 0 M and Q*(M) is defined in (6). As we see for n ~ 2 the 
space BF(Sn) in general does not belong to types(n + 1, n + 2). However 
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one can take the (n + 2)-th stage of the Postnikov tower of BF(Sn), which is 
denoted by en(M). It follows that one has the following commutative diagram 
of categories and functors: 

SCG >.oY PSG 

l ~l~ 
types(n + 1, n + 2) r:-- II(n, n + 1) 

where !:S.: PSG ➔ II(n + 1,n + 2) is given by M f-t (1rr,1r1M,Js..M). 

THEOREM 18. Let n ~ 2. For any object X of the category types(n + 
1, n + 2) there exists an object ME PSG 8 and an isomorphism en(M) ~ X in 
types(n + 1, n + 2). 

Proof. Since the functor K, : types(n + 1, n + 2) ➔ II(n + 1, n + 2) induces 
bijection on isomorphism classes of objects and realizes all morphisms in II(n+ 
1,n+2) it suffices to prove that for any object (1rn+1,1rn+2,k) of the category 
II(n + 1, n + 2) there exists an object ME PSG and an isomorphism J:S.(M) ~ 
(1rn+1, 7rn+2, k) in the category II(n + 1, n + 2). The proof of this statement is 
quite similar to the proof of Theorem 17. Let us recall that for any abelian 
group A and any element NA E TA in Section 4.6 we constructed !!:!_(NA) E 

PSG8 with the property 

Take now any object (1rn+l, 7rn+2, k) E II(n + 1, n + 2), where k : 1fn/21rn ➔ 
1r n+ 1 is a homomorphism. One can take the pushforward construction 
k*(!:!:!._(NA)), A= 1fn to get an object of expected kind. I 

5. SQUARE GROUPS 

5.1. QUADRATIC FUNCTORS ON THE CATEGORY OF FINITELY GENER
ATED FREE GROUPS We now consider functors F: Grf ➔ Groups, where Grf 
is the category of finitely generated free groups. For groups G1 and G2, we let 
G1 * G2 be the coproduct in Groups. The functor F : Grf ➔ Groups is linear 
if the map 

(Fr1, Fr2) : F(X * Y) ➔ F(X) x F(Y) 

is an isomorphism, where r1 : X * Y ➔ X, r 2 : X * Y ➔ Y are the retractions. 
Moreover F is quadratic if F(X I Y) = Ker(Fr1, Fr2) as a bifunctor is linear 



QUADRATIC ENDOFUNCTORS OF THE CATEGORY OF GROUPS 123 

in X and Y. The main result of [6] shows that the category of such quadratic 
functon; Grf ---+ Groups is equivalent to the category of square group8. Here a 

8qv,are gr<mp is a diagram 

where C2ee is an abelian group and C2e is a group. Both groups are written 
additively. Moreover P is a homomorphism and H is a map such that the 
cross effect 

(.1: I Y)H := H(:1.: + y) - H(x) - H(y) 

is linear in :r, y E C2e- In addition the following properties are satisfied 

(Pa I x)H = 0, 

P(x I y)H = :z: + y - x - y, 

PHP(a) = P(a) + P(a) , 

where x, y E Qe and a, b E Qee · It follows from the first two identit ies that P 
maps to the ccnter of Qe- The second equation shows also that Coker(P) is 
abelian. Hence C2e is a group of nilpotency degree 2. For square groups one 
has the following additional formulas (see [6]): 

(:r I I'a)11 = 0, 

H(x + y - :z: - y) = -(y I :z:)H + (:z: I Y)H

Now we relate the square groups with pret1quare groups. 

LEMMA 19. Let Q be a square group. Tllen 

1s a prcsquarc group. 

Proof. The axioms (b) and (c) of the definition of PSG hold by the defin
ition of square group. Let us observe that, HP is a homomorphism thanks to 
the identity (I':r I r1.)11 = 0. Thus one has 

a2 = HI'HI' - 2HI' +Id = H(2I') - 2HI' +Id = Id, 

which shows that er is an involution. We have alt10 

Pa= P(HP - Id)= PHP- P = P 
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and 
a(x I Y)H + (y,x)H = HP(x I Y)H - (x,y)H + (y,x)H = 0. 

Here we used the identity P(x I y)H = x + y - x - y and known expression 
for H ( x + y - x - y). I 

We let SG be the category of square groups. The presquare group p(Q) 
is called the underlying PSG of a square group Q. By abuse of notations we 
write 1rQ 1rQ 1rQ and kQ instead off 1rr,(Q) 1rr,(Q) 1rr,(Q) and kP(Q) 0 , 1 , -1 0 , 1 , -1 · 

Let G be a group and let Q be a square group. We define the group G 0 Q 
by the generators g 0 x and [g, h] 0 a with g, h E G, x E Qe and a E Qee 
subject to the relations 

(g + h) 0 x = g 0 x + h 0 x + [g, h] 0 H ( x) 

[g, g] 0 a= g 0 P(a) 

where g 0 x is linear in x and where [g, h] 0 a is central and linear in each 
variable g, h and a. In this way one gets a bifunctor 

0 : Grf x SG -+ Groups 

One can prove ([6]) that in addition the following identities hold: 

[g,h] ®a= [h,g] ®a(a), a= HP-Id 

-h ® x - g 0 y + h ® x + g 0 y = [g, h] 0 (x I Y)H, 

For any Q E SG the functor (-) 0 Q : Grf -+ Groups is quadratic and any 
quadratic functor is isomorphic to (-) 0 Q : Grf -+ Groups with appropriate 
Q E SG [6]. 

In terms of quadratic functors the relation between ( - ) 0 Q and (-) 0 p( Q) 
can be seen as follows. For a pointed set S we let (S) be the free group 
generated by S modulo the relation * = 0, where * is the base point of S. 
Then one has a natural isomorphism 

In other words the following diagram commutes 

r (-) Grf 

0~ !@Q 
Groups 
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5.2. PRODUCT AND COPRODUCT OF SQUARE GROUPS In the sequel we 
need the following explicit construction of the product and coproduct in SG. 
Let Mand N be two SG. Then (M x N) is the SG given by 

H(:r,y) = (HM (:1:),HN(y) ) 

P(a, c) = (PMa, PNc). 

Thus the functor tJ : SG -+ PSG commutes with products. As our next 
construction shows it commutes also with coproducts. By abuse of notation 
we denote the underlying presquare groups of M and N still by M and N. 
Vve can consider the coproduct M V N in PSG. Define 

H: (M V N)e-+ (M V N)ee 

by 

One checks that in this way one really gets the coproduct in SG (see 7.11 of 
[6]). 

5.3. LIFTING OF PSG We are going to answer the following question. 
For a given ME PSG under what conditions docs there exists a square group 
Q such that ~;(Q) ~ M? If such Q exists it is called a lifting of M. 

It is easy to see that not all PSG have liftings. Indeed, take Me = 0 and 
Mee = Z. We let a be the trivial involution on Mee and P = 0, { -, - } = 0. 
Then one obtain8 a PSG. This particular PSG i8 not of the form p(Q), because 
if P = 0 in a square group, then u = HP - Id= -Id. This show that unlike 
the linear fi.mctors not any quadratic functor r-+ Groups factors through Grf. 

As the following easy lemma shows if a PSG M has a lifting Q E SG such 
a lifting in general is not unique. In fact the set of liftings is a torsor on an 
appropriate group. 

LEMMA 20. a) Let CJ be a square group and let o: nb2 -+ CJee be a 
lwmomorpbism. ½'(: set 
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and 
Ha(x) = H(x) + a(x) 

where x E Qe and x denotes the class of x in 1rf Then Qa is a square 
group and p( Q) = p( Qa). Conversely, if Q and P are two square groups with 
p(P) = p(Q) then Erst of all Pe = Qe and Pee= Qee, furthermore there exists 
a unique homomorphism a : 1r~ ➔ Qee such that P = Qa. 

b) Let Q, Q' E SG and let fe : Qe ➔ Q~ and fee : Qee ➔ Q~e be homo
morphism of groups such that f = Ue, fee) defi.nes the morphism p(Q) ➔ 
p~Q') in the category PSG. Then there exists a unique homomorphism a(J) : 
1r O ➔ Q~e such that 

H' fe(x) = feeH(x) + a(J)(x), x E Qe, 

In other words a(J) = 0 iff f is a morphism in SG. 

We now consider the problem under what conditions an object M E PSG is 
isomorphic to one of the form p(Q). Of course if such Q exists then Qe = Me 
and Qee = Mee· Moreover the map P in Q is the same as in M. Thus 
the problem is under what conditions does there exist H with appropriate 
properties. 

5.4. THE CATEGORY PSG0 We let PSG0 be the full subcategory of the 
category PSG which consists of such M that 

In other words, one requires that if Pa = 0 for an element a E Mee, then 
o-(a) = -a. 

LEMMA 21. Let Q E SG. Then p(Q) E PSG0 . 

Proof. Let us recall that in p(Q) the involution o- is given by a-= HP-Id. 
Thus, if Pa= 0, then o-(a) = -a. I 

LEMMA 22. Let ME PSG0 • Then there exists the unique homomorphism 

h: lm(P) ➔ Mee 

such that hP(a) =a+ o-(a). 



QUADRATIC ENDOFUNCTORS OF THE CATEGORY OF GROUPS 127 

Proof. Uniqueness is clear, because each element from lm(P) can be writ
ten as P(a). To prove existence, we have to show that if Pa = Pb then 
a+ a(a) = b + a(b) . If this holds, then a= b + c with Pc= 0. Thus 

a+ a(a) = b + c + a(b) + a(c) = b + a(b) . 
I 

LEMMA 23. Let ME PSGo. Then for the diagram 

P h 
A= (Mee -----+ lm(P) -----+ Mee ) 

one has PhP = 2P and hPh = 2. In other words A is a quadratic Z-module 
in the sense of {2}. 

Proof. For a E Mee one has PhP(a) = P(a) + Pa(a) = 2P(a) . On the 
other hand we have hPhP = h(2P) = 2hP. Since P : Mee -+ lm(P) is an 
epimorphism it follows that hPh = 2h. I 

5.5. A COHOMOLOGICAL OBSTRUCTION FOR LIFTING To each object 
M E PSG one can associate two cohomological invariants. The first one is the 
class 

[Me] E H 2 ('rro , lm(P)) , 1ro = 1r{: , 

which is associated to the central extension of groups: 

0-+ lm(P) -+Me -+ 1ro-+ 0. 

The second one is the class 

which is represented by the 2-cocycle f E Z2 (1r0 , Mee ), where 

f( x, y) = {x ,y}. 

by 

DEFINITION 24. Let ME PSG0 • Define the class 

7'J(M) E H 2 (1ro, Mee ) 

7'J(M) := [Mee] - h*([Me]). 

Here h*: H 2 (1ro , lm(P))-+ H 2 (1ro , Mee ) is induced from the homomorphism 
h defined in Lemma 22. 
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THEOREM 25. If Q E SG, then '!9(p(Q)) = 0. Conversely if M E PSGo 
is an object with '!9(M) = 0, then there exists a square group Q and an 
isomorphism p(Q) ~ M . 

Proof. Take M E PSGo . Let us choose a set section s : 1ro ----+ Me of the 
quotient M e ----+ 1ro. One can assume that s(0) = 0. For any x E M e one has 
x - s(x) E lm(P) . The class [Me] is represented by the 2-cocycle ~' which is 
defined by 

s(x) + s(y) = ~(x, y) + s(x + y). 

If M = p (Q) , then the map h: lm(P)----+ Mee is the restriction of H to lm(P). 
We set 

g = H o s : 1ro ----+ Mee· 

One has 

H(x) = H(x - sx + sx) 

= h(x - sx) + g(x) + (x - s(x) I s(x))H = h(x - sx) + g(x) 

because x - sx = P(a) for some a E Mee and {P(a), sx} = 0 = (P(a) I sx)H 
It follows that 

H(x + y) = h(x + y - s(x + y)) + g(x + y). 

Since y - s(y) lies in the center of Me one can write 

h(x + y- s(x + y)) = h(x + y- s(y) - s(x) + ~(x,y)) = 

h(x - s(x)) + h(y- s(y)) + h(~(x,y)), 

because h is a homomorphism. Thus one obtains 

(x I Y)H = H(x + y) - H(x) - H(y) 

= h(x - s(x)) + h(y - s(y)) + h(~(x, y) + g(x + y) 

- h(x - s(x)) - g(x) - h(y - s(y)) - g(y) 

= h(~(x,y)) + (x I y) 9 . 

Since (x I Y)H = (x I fJ)H represents the class [Meel, and the function 
(x I y) 9 is the coboundary of g, we see that '!9(M) = 0. Conversely assume 
M E PSG0 is such object that '!9(M) = 0. The first condition defines the 
homomorphism h : lm(P) ----+ Mee, while the second condition says that there 
exists a function g : 1ro----+ Mee such that {x,y} = (x I y) 9 + h(~(x,y)). Now 
we can define H: Me----+ Mee by H(x) = h(x - sx) + g(x) . One checks easily 
that M equipped with this H is indeed a square group. I 
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5.6. LIFTING PROBLEM FOR w{N_,1) In this section we consider the prob
lem whether for a given abclian group A there exists an clement (NA) E T.4. 
such that w(NA) has a lifting as a square group. The answer to this question 
depends entirely on the element 0(A) E Ext(A, Sym2 (A)), which was defined 
in (2) via the exact sequence (1), or equivalently via the canonical symmetric 
2-cocycle f s, given by f s ( a, b) = ab E Syrn 2 (A), a, b E A. Let us recall that 
0(A) = 0 provided 2 is invertible in A ( see Lemma 5). 

As an application of Theorem 25 we obtain the following 

THEOREM 26. Let A be an abclian group. If tlwrc exists an clement 
(N.1) E T.4. s11d1 that w(N.4.) E PSG has a lifting in SG tl1en 0(A) = 0. 
Conversely, if 0(A) = 0, then there exists an clement (N.4) E T.4. such that 
w(N..,1) E PSG has a, lifting in SG. In particular such a lifting exists prnvided 
2 is invertible in A or Ext(A, Syrn2 A) = 0. 

Proof. First of all let us observe that for any abelian group A and any 
(N_4) E T.4 one has w(N.4) E PSGo. For w(N.4) we have lm(P) = A2(A) and 
the homomorphism h: A2 (A) ➔ A@A is nothing but h(aAb) = a0b-b®a. It 
follows then that the image of -O(w(N11)) E H 2(A,A ® A) under c: H 2(A,A ® 
A) ➔ Hom ( A, A ®A) is zero. Thanks to the universal coefficient theorem one 
has ,,9(w(NA)) E Ext(A,A 0 A). On the other hand one has also the short 
exact sequence 

where the first arrow is h. Thus one has exact sequences 

Ext(A, A2 (A)) ➔ Ext(A, A@ A) ➔ Ext(A, Syrn2 (A)) -+ 0 

and 
H 2 (A, A2 (A)) ➔ H 2 (A, A 0 A) ➔ H 2 (A, Syrn2 (A)) 

Let us recall that ,,9(w(NA)) = [Mee] - h*([Me]), One observes that the first 
term depends only on A and docs not depend on (N.4.) E T.4. It follows 
thus that the image of,19(w(N.4.)) E H 2 (A,A ®A) in H 2 (A,S2 (A) is the same 
as the image of [Mee] in H2{A, A 0 A). Ilut [Mee] was represented by the 
cocycle (a, b) c-+ a 0 b and therefore the image of [Mee] in H 2 (A, A® A) 
lies in Ext(A, Syrn2 (A)) and it coincides with 0(A). If (N.4.) E T.4. is such 
element that the presquare group w(N_.1) has lifting, then d(w(N11)) = 0 and 
a fortiori 0(A) = 0. Conversely, assume 0(A) = 0, then the exact sequence for 
ext groups shows that there is an element ,D E Ext(A, A2 (A)) which maps to 
19(w(NA)). I3ut Ext(A, A2 (A)) acts on T il• Therefore using :1_: we can correct 
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N to obtain another element N' E TA such that '19(w(N~)) = 0 and we are 
done. I 

COROLLARY 27. If Ext(A, A 0 A) = 0 then the set T A is a singleton and 
w(NA) E PSG has a lifting in SG, where (NA) is the unique element ofT A· 

Proof. Since Ext(A, - ) : Ab ➔ Ab is right exact, it follows that 

Ext(A, A2 (A)) = 0 = Ext(A, Sym2 (A)). 

The first equation shows that T A is a singleton, while the second equations 
shows that such lifting exists. I 

5.7. LIFTING PROBLEM FOR 1:!:!_(NA) Let A be an abelian group. We let 
.fl_(A) E Ext(A, Sym2 (A/2A)) be the image of 0(A) E Ext(A, Sym2 (A)) under 
the canonical map Sym2 (A) ➔ Sym2 (A/2A). The following is a straightfor
ward variation of the main result of the previous section: 

LEMMA 28. Let A be an abelian group. If there exists an element (NA) E 
T A such that f:!:!..(NA) E PSG has a lifting in SG then .fl.(A) = 0. Conversely, if 
.fl.(A) = 0, then there exists an element (NA) E T A such that f:!:!..(NA) E PSG 
has a lifting in SG . 

Proof. The only difference is to use the exact sequence 

where the first map is induced by a I\ b H ali.b - bli.a = 2a7'b. I 

5.8. REALIZATION OF ONE-CONNECTED 3-TYPES VIA SQUARE GROUPS 
We have the functors 

~ Y b2 
SG - PSG - BCG - types(2, 3). 

In this section we study the composite functor 

e: SG ➔ CW(2, 3). 

From the homotopy theoretic point of view the functor e is the same as Q H 

B((OS2 ) 0 Q). Here 0S2 is the simplicial group, which is obtained by the 
degreewise action of the functor 

(-): r ➔ Groups 
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on 8 1. Here 8 1 is the standard simplicial model of the circle with two nonde
generate simplices. The fact that this particular simplicial functor is of the ho
motopy type of the loop space on the two-dimensional sphere 082 follows from 
the classical result of Milnor. The fact that the functor Q f-t B( (082)@ Q) is 
isomorphic to the composite b2 o Yo p follows from the following isomorphism 
of simplicial groups: 

In this section we ask the following question: is every flat object of types(2 , 3) 
isomorphic to one of the form B((O 82 )@ Q), where Q E SG? 

An object (1r2 , 1r3 , k) of II(2 , 3) is called realizable via SG if there exists a 
square group Q and an isomorphism 

An object X E types(2, 3) is called realizable via SG provided K:(X) is realizable 
via SG. In other words X is isomorphic to B((082 )@ Q) ~ ev(81)(p(Q)), 
where ev(81 ) : PSG-+ CW(2, 3) is the same as in Section 2.7. 

LEMMA 29. If(1r;, 1r;, k') and (1ri, 1r1, k") are realizable via SG, then (1r; x 
1r" 1r' x 1r" k' x k") is also realizable via SG 2, 3 3, · 

Proof. Indeed, if Q' and Q" realize (1r; , 1r; , k') and (1ri , 1r1 , k") respectively, 
then Q' x Q" realizes (1r' x 1r" 1r' x 1r" k' x k") I 2 2, 3 3, · 

An abelian group A is called realizable via SG provided (A, w(A), T 1) is 
realizable via SG. 

LEMMA 30. If 1r2 is realizable via SG, then any flat object of the form 
(1r2, 1r3, k) is also realizable via SG. 

Proof. Let Q realize (1r2, w(1r2), T 1). Since (1r2, 1r3, k) is flat, the homo
morphism k is the composite k = k' o T 1, where k' : w(1r2) -+ 1r3 is defined 
uniquely. Let us recall that in Section 4.6 we defined the pushforward con
struction for PSG's. It is clear that pushforward construction of a square group 
has a square group structure in an obvious way. It follows that k: ( Q) E SG 
realizes ( 1r2, 1r3, k). I 

LEMMA 31. Let (Ai)iEI be a family of abelian groups. If each Ai is real
izable via SG, then EBi EIAi is also realizable via SG. 
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Proof. Assume Qi realizes Ai, We claim that the coproduct of Qi in the 
category of square groups realizes EBiE I Ai. Since 7ri respects filtered colimits, 
it suffices to assume that I is finite and therefore without loss of generality 
one can assume that I consists of two elements. In this case the result follows 
from the isomorphisms of Lemma 13. I 

LEMMA 32. a) If 0(A) = 0, then A is realizable via SG. In particular 
any free abelian group, or any divisible abelian group is realizable via SG. 
Moreover, if 2 is invertible in an abelian group A , then A is realizable via SG. 

b) For any n ~ 1 the group z;2nz is realizable via SG. 

Proof. If 0(A) = 0 there exists (NA) such that w(NA) has a square group 
structure (see Theorem 26) and this SG realizes A. b) Let us consider the 
following square group: 

Q e = z/2n+lz = Q ee 

The homomorphism P is multiplication by 2n. Define the quadratic map 

H: zl2n+l ----+ zl2n+l 

by H(x) = x 2 - x. One easily checks that in this way one obtains a SG which 
realizes z! 2n. I 

Let A be the smallest class of abelian groups which is closed under arbit
rary direct sums and contains i) Z/2Z, ii) all abelian groups A such that 2 
is invertible in A and iii) all abelian groups A such that Ext(A, Sym2 A) = 0, 
where Sym2 A is the second symmetric power of A . It is clear that then A 
contains all cyclic groups, and hence all finitely generated abelian groups as 
well as all free and all divisible abelian groups. 

COROLLARY 33 . Let X E types(2, 3) be a flat object. Then X is realizable 
via SG provided 1r2X E A. 

5.9. REALIZATION OF STABLE TWO-STAGE SPACES VIA SQUARE GROUPS 

Now we consider the corresponding stable problem. Let us fix an integer 
n ~ 3. We let f.n be the composite of the following functors: 

~ en ( ) SG - PSG - types n, n + 1 . 

where en is the composite of the following functors: 

Y .\ bn ( ) PSG-BCG-SCG-types n,n+l. 
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From the homotopy theoretic point of view the functor f.n is the same as 
Q f--+ Pn+2B((OSn) @Q) . In this section we ask the following question: What 
sort of objects of types(n,n + 1) are isomorphic to ones of the form f.n(Q), 
where Q E SG? 

We start with few easy observations. We let SG 8 be the full subcategory 
of the category SG consisting of objects Q such that for any a E Qee one has 
HP(a) = 2a. 

LEMMA 34. For any Q E SGs one has p(Q) E PSG8 • 

Proof. The involution a on (p(M) )ee = Mee is defined by a = HP - Id . 
Thus a= Id iff ME SG 8 • I 

LEMMA 35. Let Q be a square group. Then there exists the unique square 
group structure on Q such that the quotient map Q ----+ Q is a morphism in 
SG, where 

(Q)e = Qe, (Q)ee = Qee/(HP - 21d) 

Moreover the functor SG ----+ SG 8 is the left adjoint functor to the inclusion 
functor SG 8 C SG 

Proof is immediate. 

COROLLARY 36 . For any Q E SG the group '!I.~ is a vector space over 
Z/2Z. 

Proof. By the definition we have '!I..~ = 1rf. Since p( Q) E PSG 8 it suffices 

to show that if M E PSGo n PSGs then 2 annihilates 1r{'1. But by definition 
ME PSG0 implies that the involution on 1r{'1 is multiplication by (-1) , while 
M E PSG 8 implies that the involution on 1r{'1 is trivial, hence the result . I 

We let types(n, n + l)* be the full subcategory of types(n, n + l) consisting 
of spaces X such that 7rn+iX is a vector space over Z/2Z. Thus the values of 
the functor f.n lie in types(n, n + l)*. 

THEOREM 37. For any object X E types(n, n + l)*, n ~ 3 there exists an 
object Q E SG 8 and an isomorphism f.n(Q) ~ X in types(n, n + l) . Moreover, 
one can assume that Qe is an abelian group. 



134 H.-J. BAUES, T. PIRASHVILI 

Proof. Still it suffices to realize objects like (1rn, 1rn+1, k) , where 1rn+1 is a 
vector space over Z/2Z. Using pushforward construction it suffices to con
sider the universal case (A, A/2A, k) , where k : A ➔ A/2A is the canonical 
projection. We choose a basis (bi)iEI of A/2A. Let Ba the free Z/4Z-module, 
with a basis (bi)iEI · We have canonical epimorphisms E: A ➔ A/2A E(a) = a 
and E : B ➔ A/2A, E(bi) = bi. It follows that one has the following exact 
sequence 

O - A/2A A/2A - O 

where a(bi) = 2bi. Let us consider the corresponding pullback diagram 

C 
p 

A 

B ~ A/ 2A 

It follows that one has the following exact sequence 

0 - A/2A __!:_____,.. C ~ A - 0. 

We now put 
Qe = C, Q ee = B , 

P=lOE: , H=hop, 

where h : B ➔ B is the quadratic map uniquely defined by the conditions: 
h(bi) = 0 and (bi I bj )h = 0, if i -/- j and (bi I bi)h = 2bi. Here i, j E I. 
A direct computation shows that in this way one really gets a PSG which 
realizes (A, A/2A, k). I 

5.10. THE TRANSFORMATION~ The homotopy groups 1rf, i = 0, 1 and 

the stable homotopy group '!!..f of a square group Q depends only on the 
underlying presquare group SJ(Q) . In [6] a homomorphism ~Q : 1r~ ➔ 1rf 
was constructed, which defines the natural transformation of functors defined 
on SG. Recall that 

~(x) = HPH(x) + H(x + x) - 4H(x) , x E Qe. 
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Since 
b.P = HPHP + 2HP - 4HP = 2HP - 2HP = 0 

we see that b. is well-defined. Since er = HP - Id, one can rewrite 

(7) b.(x) = er(H(x)) - H(x) + (x I x)H 

Now it is clear that b. is additive, because 

(x I y)t:,. = er(x I Y)H - (x I Y)H + (x I Y)H + (y I x)H = 0. 

We have also 
Pb.= PerH - PH+ P(x I x)H = 0. 

Thus b. really defines the natural transformation 1ro ➔ 1r1 . 

It follows from the identity (7) that the following diagram is commutative: 

Let a : 1r~ ➔ Qee be a homomorphism; according to Lemma 20 we have 
also the square group Q°' which has the same underlying presquare group as 
Q and therefore the same homotopy groups as Q. One easily sees that 

b.°' = b. + era - a 

which shows that b. could not be constructed only m terms of presquare 
groups. 

LEMMA 38. Let A be a E.nitely generated abelian group and let B be any 
abelian group. Furthermore let f : A ➔ B be any homomorphism. Then 
there exists a square group Q such that 1r~ = A, 1rf = B and b.Q = f. 

Proof. Using pushforward construction it suffices to consider the universal 
case B = A and f = ldA . An abelian group A is called b.-realizable if there 
exists a square group Q such that 1r~ = A = 1rf and b.Q = ldA. Since 
7ri : SG ➔ Ab, i = 0, 1 takes finite products to finite products and b.MxN = 
(b.M, b.N) it suffices to show that any cyclic group is b.-realizable. Assume 2 
is invertible in A. Then we have the following square group 

a 
Qe =A= Qee , P = 0, and H(a) = - 2 
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which realizes A. The square group Znil realizes Z, where 

a2 -a 
(Znil)e = Z = (Znil)ee, P = 0 and H(a) = - 2-

Finally the square group constructed in the proof of the part b) of Lemma 32 
realizes Z/2nz for all n 2:: 1. I 
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